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Abstract: 
A high performance architecture for an image processing 
application, a computer vision system for vehicle detection, 
is proposed in this work. The system aims to detect and 
count moving vehicles crossing a selected window from a 
video input captured by a traffic surveillance camera. The 
system works under a set of design constraints such as 
communication throughput, processing time and 
implementation cost on a real-time situation. The vehicle 
detector attains high performance on a low cost 
hardware/software platform, even using 2D FIR filtering, 
histogram thresholding and color space transformations, 
among others image enhancing techniques. This paper 
presents the development of the algorithms in a 
hardware/software DSP platform based on a field 
programmable gate array architecture, their implementation 
and the performance analysis on an application with real 
data. 
 
1 INTRODUCTION 
 

Traffic congestion is one of the most important problems 
that affect modern cities. This phenomenon spreads out in 
small, medium-sized towns and cities as well as in urban 
areas. Therefore, systems for the analysis and prevention of 
traffic congestion are becoming more and more relevant. 
Sophisticated techniques have been used to make traffic 
congestion prevention possible, but they all  depend on the 
detection and counting of vehicles. These tasks rely on 
computer vision systems that, in turn, require fast digital 
signal processing (DSP) algorithms. 

Traditionally, DSP algorithms are implemented using 
general-purpose programmable DSP chips for low-rate 
applications. High performances could also be attained 
implementing an Application Speci fic Integrated Circuit 
(ASIC). However, technological advancements in field 
programmable gate arrays (FPGA) or complex 
programmable logic devices (CPLDs) [2,3,4] in the last 
seventeen years have opened new paths for DSP design 
engineers. New options to cope with such problems are now 
available. Platform FPGAs have become components for 
implementing high-performance DSP systems, especially in 
digital communications, video, and image processing 
applications [5]. These devices preserve the high specificity 
of the ASIC while avoiding its high development cost and 
its inability to accommodate design modi fications after 
production. Highly adaptable and design flexible, FPGAs 
provide optimal device utilization through conservation of 

board space and system power and the ability to implement 
highly parallel custom signal processing architectures, some 
important advantages not available in many stand-alone 
microprocessors and DSP processors. 

However, depending on their capacity, FPGAs can be 
very expensive, and so the solution. On the other hand, 
software solutions based on general-purpose processors 
offer flexibility and permit low cost implementations. 
Nevertheless, as it was said before, in such approach it is the 
difficult to exploit the parallelism required by high 
performance DSP applications. This paper presents a real-
time system that performs these tasks employing a low-cost 
hardware/software platform. In the architecture proposed, 
the trade-off between hardware and software features is 
taken into account. 

Today, computing demands solutions that target 
aggressive time-to-market windows of opportunities, and 
rapid prototyping platform based on such architecture, may 
effectively respond quickly and economically to the 
emergence of new, more efficient core algorithms. The 
software component in this approach is a personal computer 
(PC) and the hardware component, a PCI platform with 
reconfigurable FPGA component. 

Section 2 presents an overview of the system and the 
details of the image processing modules. Section 3 describes 
the vehicle detection algorithm, with an analysis of its 
complexity. Section 4 presents the case study and, finally, 
Section 5 presents the main conclusions and directions for 
further works. 
 
2 SYSTEM DESCRIPTION OVERVI EW 
 

Figure 1 depicts the image processing flow: fil tering, 
amplification, modulation, storage and computation. The 
frames are captured and treated by the image processing 
module. The result of this processing is then compared with 
a reference image in order to identify the presence or not of 
vehicles in the scene. Another approach can be seen in [1]. 

 
 

 
Figure 1.  Overview of the computer vision system 

 
The problem is split into processes that are treated as 

hardware and software components in a codesign approach. 
The software components are executed in the PC and the 
hardware ones in the FPGA. The communication among 
processes is performed via a PCI bus, at 33 MHz, with 
interrupt signal. The “attached processor”  [6], the FPGA 
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platform, is a XC2S_EVAL board [7], comprising a PCI 
interface and a 200,000 equivalent gates Xilinx FPGA 
(Spartan-II Family) [8]. This board also contains a 512kB 
SRAM memory [9], connected to the FPGA, that stores 
partial images and parameters during the processing. Figure 
2 illustrates hardware platform. 

 

 
Figure 2. Interconnection between the board elements 
 
The PCI interface is implemented by an ASIC [10]. The 

physical hardware/software interface is implemented by PCI 
8-bits bus. This bus limit reduces the final throughput on 
host/PCI board interface to approximately 3 MB/sec. 

A friendly graphic user interface, shown in Figure 3, was 
also developed to support the image analysis. 

 

 
Figure 3. User-friendly visual interface of the system 
 
Through this platform interface the user can select any 

region for observation, modify the system sensitivity and 
change the threshold image level. The result, i.e., the vehicle 
count, is visualized on the screen of the host (the huge “04”  
in Figure 3). 

 
3 THE VEHICLE DETECTION 
ALGORITHM 

 
The input to the system is an analog color video stream. 

After its conversion to a digital color frame [11], the set of 
primary data is formed by the sequence Κ,, 21 II  of color 

images of the form Es
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superscript denote the Red, Green and Blue components. 
Each image is a function KEI i →⋅ : , where the set of 

coordinates is denoted }1,,0{}1,,0{ −×−= nmE ΚΚ  and 

the set of k  possible values is ]1,,0[ −= kK Κ  (see [12]). 

In our approach 256=k  and the elements of E  will be 
either referred to as ),( ji  or as s . 

Previous experiences demonstrated that, for the current 
application, there is enough information in the luminance of 
the images, so chrominance can be discarded in order to 

reduce the amount of information to be processed. The 
luminance iY  of the color image ),,( B
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computed using the NTSC transmission system 
definition [13], as 
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where }2/1:max{][ +≤∈= xx λλ N  denotes the closest 

integer to the real value x . Denote this transformation 1τ ; it 

is a projection of 3K  into K . 
Gray scale images ( 0  as black, 1−k  as white and 

intermediate values as intermediate gray levels [12]), 
produced by 1τ  suffer from noise due to environmental 
conditions, shadows and vibrations. Thus, they cannot be 
compared directly to the reference image KEI →: . 
Simple noise reduction techniques were tested in order to 
make each gray scale image iiiY ≥)(  comparable to I . The 
linear nature of convolution filters made this class of 
procedures desirable for this application, and noise 
reduction was sought within the class of low-pass 
convolution filters. 

A kernel, i.e. a matrix )],([ jiaA = , uniquely defines a 
convolution fil ter. The size of A  is typically very small 
when compared to that of the image support E . The filtered 
version of the image iY  is AYF ii ∗= , defined as �
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where AE  is the support of the kernel A . Borders and 

corners of iY  are left unfil tered. 
The simplest low-pass convolution filter is the mean, 

defined by 1#),( −= AEjia , where “ # ”  denotes the number of 
elements. The smallest kernel leading to satisfactory results 
under several daylight and nighttime conditions and weather 
situations (sun, rain etc.) was a square of size 3 where 

9/1),( =jia . This reduces the number of required 
computations for the convolution, since in this case it 
becomes the simple mean of nine observations around the 
pixel being processed. Denote this low-pass transformation 

2τ : 
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Other low-pass filters may be used as, for instance, those 
defined by Gaussian kernels, but in our experiences they 
produced the same or worse results at a higher 
computational cost. 

After the application of 1τ  and 2τ  each color frame is 
transformed into a fi ltered gray scale image, suitable for 
comparison with the reference image I . This is performed 
with a pixelwise difference followed by an absolute value 
transformation, i.e., each comparison image KECi →:  is 
given by 

)()()( sIsFsC ii −=  
(2) 

Denote this transformation 3τ . 
In order to reduce the amount of information to be 

processed, a thresholding was applied to the sequence of 
comparison images 1)( >iiC . This transformation, called 4τ , 



produces a sequence of binary images 
}1,0{:,)( 1 →> EBB iii , defined as 
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where h  was empirically set to 80, a suitable value under 
the same conditions used to determine 2τ . 

Finally, a summation was performed on the binary 
images, i.e., each iB  was transformed into an integer �

∈
=

Es ii sBd )( . This value is called detection index, since it 

quantifies the difference between the original color frame iI  
and the reference gray level from the image I . Denote this 
transformation 5τ . 

Not every positive value of id  wil l be considered as a 

relevant change. Each original image is composed by 
640480×  pixels, but only a small region )(E  of 256128×  

pixels is surveyed. The detection index id  is then calculated 
on this restricted rectangular area, as shown in Figure 3. For 
this region, and under the aforementioned weather and 
environmental conditions, values 310≥id (threshold) were 
considered as significant for triggering an event. This value 
corresponds to typical views of partial or total sections of 
cars. The value id  depends on the camera location and the 

type of target to be detected. 
The algorithm searches for local maxima of the 

sequence 1)( >iid  by comparing id  with 1−id  and with 1+id . If 

1−> ii dd  and 1+> ii dd  then it is assumed that the maximum 

invasion of the car takes place in image i , and this index is 
stored. 

Figure 4 shows the function 341)( <<iid , corresponding to 
approximately 17 seconds of surveillance. The first ten 
frames show no detection. A car enters in the region under 
observation in frame 10 and leaves it after three frames. 
Another vehicle is detected in frame 13, but the peak is 
smaller since its contrast against the background is reduced. 
Two big objects are also detected between frames 20 and 22 
and frames 29 and 31. No false alarms were detected in the 
tests and, similarly, every seen vehicle was detected by the 
system. 

 

 
Figure 4. Detection index function 

 
Note that the peaks shown in Figure 4 correspond to 

their respective detection index. 
 

3.1 Complexity of the image processing 
algorithm 
 

The choice between hardware or software 
implementation of the modules that define the image 
processing algorithm is based on complexity issues, 
assessed by the number of basic arithmetic operations 
performed at each stage, such as color conversion, fil tering, 
and so on. 
 
3.1.1 Color  conversion 
 

The “RGB to Y”  conversion of the images 
(transformation 1τ ) involves pointwise operations, based on 
equation (1). These operations are composed of three 
multipl ications and two sums for each pixel of the nm×  
matrix. 

In this work, a rectangular area of 256128×  pixels 
defines the region of interest within the image being 
captured. Therefore, the computational complexity 
regarding to color conversion is given by 

304,983256128 =××  multiplications and 
536,652256128 =××  sums. 

 
3.1.2 Filter ing by convolution 
 

This operation (transformation 2τ ) is responsible for 
most of the operations, being necessary eight sums and one 
multipl ication by fraction (division by nine) for each pixel, 
except the borders and corners points. Discarding these last 
elements, the computational cost of this operation amounts 
to 032,2568254126 =××  sums and 004,321254126 =××  
products. 
 
3.1.3 Comparison between images 
 

The comparison between each frame and the reference 
image (transformation 3τ ) comprises a subtraction and an 
absolute value operation for each image element. 
Considering separately these operations, the system has to 
compute 004,321254126 =××  subtractions and the same 
number of absolute value operations. Following equation (3) 
(transformation 4τ ), each result is compared with the 
thresholding parameter value requiring, thus, 

004,321254126 =××  comparisons. 
 
3.1.4 Changing index 

 
The change quantification, that computes the detection 

index at each frame (transformation 5τ ), is obtained by the 

summation of the binary image pixels. This operation 
requires 004,321254126 =××  sums. 

As the detection index represents the invasion level of an 
object in the interest area, and the sensibility parameter 
value discards li ttle intrusions, one comparison with a 
minimum area is computed for each frame. 



3.1.5 Local maxima detection 
 
This operation demands two comparisons at each frame. 

First between the detection index 2−id  and 1−id , after 

between 1−id  and id . 

 
3.2 Hardware/software par titioning 

 
In order to reach the processing requirements and so the 

performance, a hardware/software codesign approach was 
adopted. 
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Figure 5. A simplified hardware/software codesign flow. 

 
In this work, the hardware/software approach takes into 

account the principles of the PISH project [15,16], where 
the system specification is partitioned into two large blocks, 
software and hardware, considering aspects related to 
communication cost between processes and area (Figure 5). 

The partitioning of this system is still carried out 
manually, joining processes in clusters in order to reduce 
their communication cost. 

Control processes or those that do not require intensive 
computation are implemented in software and the intensive 
processing processes are implemented in hardware. After 
partitioning, as shown in Figure 5, processes to be 
implemented in hardware must be synthesized and the 
software ones compiled. The interface between hardware 
and software partitions is also manually generated and 
synthesized 

A K6-II processor, 500 MHZ CPU, plays the role of the 
software component. The massive processing tasks 
(arithmetic functions for the convolution and fil tering 
algorithms) and the surrounding peripheral circuitry were 
implemented in the hardware component, a low cost 
200,000 gates Xil inx Spartan-II family FPGA, a PCI 
interface and a 512K SRAM. 
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Figure 6: FPGAxDSP and general-purpose processors 
 

When designing a DSP system in a FPGA, the data can 
be processed taking the advantages of using a single chip, 
parallel structures (Figure 6) and arithmetic algorithms to 
exceed the performance of a single general -purpose DSP 
chip. The designer can take full  advantage of the FPGA 
programmable resources to fit the requirements of any 
application. 

Figure 7 shows the Spartan internal architecture. 
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Figure 7: Spartan architecture 

 
The FPGA is configured through the PCI bus through 

C++ communication classes [17]. Due to the FPGA 
flexibil ity the user can easily prototype any algorithm into 
the entire hardware without the need of a device-
programmer. 

The hardware/software interface is implemented in three 
layers, by an ASIC, a PCI controller [10], and the C++ class 
routines in software, as shown in Figure 8. 

 

 
Figure 8. Layers between a hardware device and the 
software program. 

 
The application program interface represents the portion 

of the software partition responsible for the communication 
with the hardware module. It accesses the device driver 
using C++ classes provided by the prototyping board 
manufacturer. Then, the device driver addresses the 
prototyping board and the PCI ASIC connects the PCI Bus 
with the FPGA through a local parallel interface. 

 
4. CASE STUDY 

 
A real-time processing image application has been 

developed to validate the algorithm and the codesign 
approach. One of the requirements is that the system should 
be able to detect and count intruders in a user-defined region 
of interest. The intruders have to be detected even if 
speeding at velocities up to 215 km/h, and their sizes are 
user-defined. 

The images under observation comprise 480×640 pixels, 
equivalent to 900 kB true-color bitmap files, obtained from 
a traffic surveil lance video. 

Initially, a window on the image, free of vehicles and 
limited to 256128×  pixels, is extracted from the original 



image and kept as reference. This reference image is unique 
for each new scenario and can be taken from any place in 
the picture scene. 

Once captured, each frame is submitted to the image 
processing algorithm (RGB to grayscale conversion, low 
pass filter, and so on). As the results of this processing, a 
signal from the hardware partition indicates the presence or 
absence of vehicles in that frame depending on the detection 
index presented in section 3. 

The system should be able to process at 15 frames/sec, 
66.7 ms between frames, allowing an efficient detection of 
moving objects at high speed (up to 215 km/h). In order to 
evaluate the advantage of the codesign solution, the image-
processing algorithm presented in Figure 9 was also 
implemented in software. 

 
Figure 9. Vehicle detection algorithm at system level 
description. 

 
The image processing algorithm requires the following 

steps for each new frame: 
308,130004,32304,98 =+  Multipl ications 
572,353004,32032,256536,65 =++  Sums 
004,32  Subtractions 
004,32  Absolute values 
007,3221004,32 =++  Comparisons 

Since the aim of this work is comparing the performance 
among different architectures, this is a suitable metric rather 
than the time equivalence for each stage of the processing. 

The software version was developed in C++ and 
compiled using Visual C++ tools, running on a PC with a 
K6-II processor and 128 MB of SRAM. This software 
approach was able to process each frame in 220 ms, not fast 
enough, since only 5 frames/sec could be processed in this 
period. 

In a second approach, a hardware/software co-design 
methodology was implemented based on the model 
presented in Section 3.2. The hardware modules, inside the 
gray box (Figure 9) area cope with massive computation 
procedures, calculating arithmetic functions and matrix 
conversions [18]. The software partition is dedicated to the 
system communication control between the PC and the 
hardware partition, through writing and reading functions, 
treatment of the interrupt protocol and user interface. The 
software partition also performs the reference image fitting 
(RGB to grayscale conversion and filtering). 

The software partition was also implemented in C++, 
while the hardware one was implemented using VHDL 
(Very High Speed Integrated Circuit HDL). The FPGA 
Express tool from Synopsys on Xilinx 3.1i Foundation 
series was used for hardware synthesis. 

Table 1 presents utilization of the reconfigurable logic 
units of the FPGA.  

Logic Number % of FPGA 
Slices (CLB) 264 11 

Flip-Flops 215 4 
4-input LUTs 427 9 

IOBs 51 36 
GCLKs 1 25 

GCLKIOBs 1 25 
Total equivalent gates 5,086 2.54 

Table 1. Logic synthesis report 
Five thousand and eighty-six equivalent Xil inx Spartan-

II [8] gates were used in this design, amounting to 2.54% of 
the total available logic on the chip. The maximum circuit 
frequency reached after synthesis was 54.259 MHz, which 
satisfies the system clock constraint of 40 MHz imposed by 
the evaluation board. 

The layout of the hardware is depicted in Figure 10. 
 

 
Figure 10. Hardware layout on Xilinx Spartan-FPGA 
 
In this design, the reference image is first sent to the PCI 

board and stored at a reserved memory. After this, each new 
frame is also sent to the hardware for processing and 
analysis. The time spent to transfer each new frame (32kB) 
from PC to the local memory on the prototyping board is 
imposed by the 3MB/sec PCI throughput. Thereby, the 
frame transference usually takes about 10.92 ms. 

With the data available at the memory, the FPGA takes 
around 1,440,180 cycles, equivalent to 36ms (40 MHz), to 
perform image processing and signaling a response to the 
software component by an interrupt call. For each processed 
image, the following mathematics are performed: 

308,130004,32304,98 =+  Multiplications 
572,353004,32032,256536,65 =++  Sums 
004,32  Subtractions 
004,32  Absolute values 
007,3221004,32 =++  Comparisons 

The time analysis expected for each frame processing in 
this codesign approach is estimated by the sum of the time 
spent to transfer a image of 32kB (128×256, grayscale 8-bit) 
from the PC to the prototyping board, plus the internal 
FPGA processing time. This whole process is performed at 
46.92ms for each frame. 

Taking into account the area under observation, which 
depends on the camera visualization angle, and the frame 
capture rate (15 frames per second), the maximum 
detectable speed of moving vehicles by this system is of 
around 215km/h. This complies with the original 
requirements. 



The hardware/software codesign methodology presented 
in this work shows that good results can be reached in a 
hybrid approach, analyzing and exploiting peculiarities of 
each processing element and aspects of their 
communication. 
 

5. CONCLUSIONS 
 

A versatile reconfigurable DSP platform for image 
signal processing and analysis in a vehicle detection 
application has been presented. The optimization of the 
system, through hardware/software codesign, is guided by 
the system features. This optimization ultimately leads to a 
system that, with modest hardware components, meets strict 
real world requirements. 

An affordable prototyping platform was developed and a 
real case study was presented with encouraging results. 
Based on a single PC system and a PCI reconfigurable 
hardware platform, the methodology of synthesis and the 
prototyping environment provides a good platform that 
supports the design of reconfigurable systems, for DSP 
applications, in hardware-on-demand fashion. 

The use of the proposed hardware/software codesign 
approach solved the conflict of timing constraints naturally 
imposed by the real time characteristics of the problem. 

The Spartan fi lter core is able to produce a fully 
customized, area-efficient, high performance 
implementation. Highly optimised FIR fil ters and others can 
be fully realized. 

In the present version the image processing algorithm 
partition was performed by hand. However, new 
applications are under assessment with partitions based on a 
more formal and automatic methodology.  
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