
A Codesign Approach for a High Per formance Vehicle Detector

Manoel E. de Lima, Pablo Viana da Silva, Alejandro C. Frery, Edna Barros
Centro de Informática

Universidade Federal de Pernambuco
CP 7851, 50732-970 Recife, PE

BRASIL
mel@cin.ufpe.br

Keywords: image processing, hardware/software
codesign, FPGA, vehicle detection, traffic surveillance.

Abstract:
A high performance architecture for an image processing
application, a computer vision system for vehicle detection,
is proposed in this work. The system aims to detect and
count moving vehicles crossing a selected window from a
video input captured by a traffic surveillance camera. The
system works under a set of design constraints such as
communication throughput, processing time and
implementation cost on a real-time situation. The vehicle
detector attains high performance on a low cost
hardware/software platform, even using 2D FIR filtering,
histogram thresholding and color space transformations,
among others image enhancing techniques. This paper
presents the development of the algorithms in a
hardware/software DSP platform based on a field
programmable gate array architecture, their implementation
and the performance analysis on an application with real
data.

1 INTRODUCTION

Traffic congestion is one of the most important problems
that affect modern cities. This phenomenon spreads out in
small, medium-sized towns and cities as well as in urban
areas. Therefore, systems for the analysis and prevention of
traffic congestion are becoming more and more relevant.
Sophisticated techniques have been used to make traffic
congestion prevention possible, but they all depend on the
detection and counting of vehicles. These tasks rely on
computer vision systems that, in turn, require fast digital
signal processing (DSP) algorithms.

Traditionally, DSP algorithms are implemented using
general-purpose programmable DSP chips for low-rate
applications. High performances could also be attained
implementing an Application Speci fic Integrated Circuit
(ASIC). However, technological advancements in field
programmable gate arrays (FPGA) or complex
programmable logic devices (CPLDs) [2,3,4] in the last
seventeen years have opened new paths for DSP design
engineers. New options to cope with such problems are now
available. Platform FPGAs have become components for
implementing high-performance DSP systems, especially in
digital communications, video, and image processing
applications [5]. These devices preserve the high specificity
of the ASIC while avoiding its high development cost and
its inability to accommodate design modi fications after
production. Highly adaptable and design flexible, FPGAs
provide optimal device utilization through conservation of

board space and system power and the ability to implement
highly parallel custom signal processing architectures, some
important advantages not available in many stand-alone
microprocessors and DSP processors.

However, depending on their capacity, FPGAs can be
very expensive, and so the solution. On the other hand,
software solutions based on general-purpose processors
offer flexibility and permit low cost implementations.
Nevertheless, as it was said before, in such approach it is the
difficult to exploit the parallelism required by high
performance DSP applications. This paper presents a real-
time system that performs these tasks employing a low-cost
hardware/software platform. In the architecture proposed,
the trade-off between hardware and software features is
taken into account.

Today, computing demands solutions that target
aggressive time-to-market windows of opportunities, and
rapid prototyping platform based on such architecture, may
effectively respond quickly and economically to the
emergence of new, more efficient core algorithms. The
software component in this approach is a personal computer
(PC) and the hardware component, a PCI platform with
reconfigurable FPGA component.

Section 2 presents an overview of the system and the
details of the image processing modules. Section 3 describes
the vehicle detection algorithm, with an analysis of its
complexity. Section 4 presents the case study and, finally,
Section 5 presents the main conclusions and directions for
further works.

2 SYSTEM DESCRIPTION OVERVI EW

Figure 1 depicts the image processing flow: fil tering,
amplification, modulation, storage and computation. The
frames are captured and treated by the image processing
module. The result of this processing is then compared with
a reference image in order to identify the presence or not of
vehicles in the scene. Another approach can be seen in [1].

Figure 1. Overview of the computer vision system

The problem is split into processes that are treated as

hardware and software components in a codesign approach.
The software components are executed in the PC and the
hardware ones in the FPGA. The communication among
processes is performed via a PCI bus, at 33 MHz, with
interrupt signal. The “attached processor” [6], the FPGA

mailto:mel@cin.ufpe.br

platform, is a XC2S_EVAL board [7], comprising a PCI
interface and a 200,000 equivalent gates Xilinx FPGA
(Spartan-II Family) [8]. This board also contains a 512kB
SRAM memory [9], connected to the FPGA, that stores
partial images and parameters during the processing. Figure
2 illustrates hardware platform.

Figure 2. Interconnection between the board elements

The PCI interface is implemented by an ASIC [10]. The

physical hardware/software interface is implemented by PCI
8-bits bus. This bus limit reduces the final throughput on
host/PCI board interface to approximately 3 MB/sec.

A friendly graphic user interface, shown in Figure 3, was
also developed to support the image analysis.

Figure 3. User-friendly visual interface of the system

Through this platform interface the user can select any

region for observation, modify the system sensitivity and
change the threshold image level. The result, i.e., the vehicle
count, is visualized on the screen of the host (the huge “04”
in Figure 3).

3 THE VEHICLE DETECTION
ALGORITHM

The input to the system is an analog color video stream.

After its conversion to a digital color frame [11], the set of
primary data is formed by the sequence Κ,, 21 II of color

images of the form Es
B
i

G
i

R
ii sIsIsII ∈))(),(),((: , where the

superscript denote the Red, Green and Blue components.
Each image is a function KEI i →⋅ : , where the set of

coordinates is denoted }1,,0{}1,,0{ −×−= nmE ΚΚ and

the set of k possible values is]1,,0[−= kK Κ (see [12]).

In our approach 256=k and the elements of E will be
either referred to as),(ji or as s .

Previous experiences demonstrated that, for the current
application, there is enough information in the luminance of
the images, so chrominance can be discarded in order to

reduce the amount of information to be processed. The
luminance iY of the color image),,(B

i
G
i

R
ii IIII = can be

computed using the NTSC transmission system
definition [13], as

)],(114.0)(5871.0)(299.0[)(sIsIsIsY B
i

G
i

R
ii ++= (1)

where }2/1:max{][+≤∈= xx λλ N denotes the closest

integer to the real value x . Denote this transformation 1τ ; it

is a projection of 3K into K .
Gray scale images (0 as black, 1−k as white and

intermediate values as intermediate gray levels [12]),
produced by 1τ suffer from noise due to environmental
conditions, shadows and vibrations. Thus, they cannot be
compared directly to the reference image KEI →: .
Simple noise reduction techniques were tested in order to
make each gray scale image iiiY ≥)(comparable to I . The
linear nature of convolution filters made this class of
procedures desirable for this application, and noise
reduction was sought within the class of low-pass
convolution filters.

A kernel, i.e. a matrix)],([jiaA = , uniquely defines a
convolution fil ter. The size of A is typically very small
when compared to that of the image support E . The filtered
version of the image iY is AYF ii ∗= , defined as �

∈

−−=
AEqp

ii qypxYqpayxF
,

),,(),(),(

where AE is the support of the kernel A . Borders and

corners of iY are left unfil tered.
The simplest low-pass convolution filter is the mean,

defined by 1#),(−= AEjia , where “ # ” denotes the number of
elements. The smallest kernel leading to satisfactory results
under several daylight and nighttime conditions and weather
situations (sun, rain etc.) was a square of size 3 where

9/1),(=jia . This reduces the number of required
computations for the convolution, since in this case it
becomes the simple mean of nine observations around the
pixel being processed. Denote this low-pass transformation

2τ :

.),(
9

1
),)((

1,1
2 �

≤≤−

−−=
nm

ii nymxYyxYτ

Other low-pass filters may be used as, for instance, those
defined by Gaussian kernels, but in our experiences they
produced the same or worse results at a higher
computational cost.

After the application of 1τ and 2τ each color frame is
transformed into a fi ltered gray scale image, suitable for
comparison with the reference image I . This is performed
with a pixelwise difference followed by an absolute value
transformation, i.e., each comparison image KECi →: is
given by

)()()(sIsFsC ii −=
(2)

Denote this transformation 3τ .
In order to reduce the amount of information to be

processed, a thresholding was applied to the sequence of
comparison images 1)(>iiC . This transformation, called 4τ ,

produces a sequence of binary images
}1,0{:,)(1 →> EBB iii , defined as

�� �
≥
<

=
hsiCif

hsiCif
sBi

)(1

)(0
)(

(3)

where h was empirically set to 80, a suitable value under
the same conditions used to determine 2τ .

Finally, a summation was performed on the binary
images, i.e., each iB was transformed into an integer �

∈
=

Es ii sBd)(. This value is called detection index, since it

quantifies the difference between the original color frame iI
and the reference gray level from the image I . Denote this
transformation 5τ .

Not every positive value of id wil l be considered as a

relevant change. Each original image is composed by
640480× pixels, but only a small region)(E of 256128×

pixels is surveyed. The detection index id is then calculated
on this restricted rectangular area, as shown in Figure 3. For
this region, and under the aforementioned weather and
environmental conditions, values 310≥id (threshold) were
considered as significant for triggering an event. This value
corresponds to typical views of partial or total sections of
cars. The value id depends on the camera location and the

type of target to be detected.
The algorithm searches for local maxima of the

sequence 1)(>iid by comparing id with 1−id and with 1+id . If

1−> ii dd and 1+> ii dd then it is assumed that the maximum

invasion of the car takes place in image i , and this index is
stored.

Figure 4 shows the function 341)(<<iid , corresponding to
approximately 17 seconds of surveillance. The first ten
frames show no detection. A car enters in the region under
observation in frame 10 and leaves it after three frames.
Another vehicle is detected in frame 13, but the peak is
smaller since its contrast against the background is reduced.
Two big objects are also detected between frames 20 and 22
and frames 29 and 31. No false alarms were detected in the
tests and, similarly, every seen vehicle was detected by the
system.

Figure 4. Detection index function

Note that the peaks shown in Figure 4 correspond to

their respective detection index.

3.1 Complexity of the image processing
algorithm

The choice between hardware or software
implementation of the modules that define the image
processing algorithm is based on complexity issues,
assessed by the number of basic arithmetic operations
performed at each stage, such as color conversion, fil tering,
and so on.

3.1.1 Color conversion

The “RGB to Y” conversion of the images
(transformation 1τ) involves pointwise operations, based on
equation (1). These operations are composed of three
multipl ications and two sums for each pixel of the nm×
matrix.

In this work, a rectangular area of 256128× pixels
defines the region of interest within the image being
captured. Therefore, the computational complexity
regarding to color conversion is given by

304,983256128 =×× multiplications and
536,652256128 =×× sums.

3.1.2 Filter ing by convolution

This operation (transformation 2τ) is responsible for
most of the operations, being necessary eight sums and one
multipl ication by fraction (division by nine) for each pixel,
except the borders and corners points. Discarding these last
elements, the computational cost of this operation amounts
to 032,2568254126 =×× sums and 004,321254126 =××
products.

3.1.3 Comparison between images

The comparison between each frame and the reference
image (transformation 3τ) comprises a subtraction and an
absolute value operation for each image element.
Considering separately these operations, the system has to
compute 004,321254126 =×× subtractions and the same
number of absolute value operations. Following equation (3)
(transformation 4τ), each result is compared with the
thresholding parameter value requiring, thus,

004,321254126 =×× comparisons.

3.1.4 Changing index

The change quantification, that computes the detection

index at each frame (transformation 5τ), is obtained by the

summation of the binary image pixels. This operation
requires 004,321254126 =×× sums.

As the detection index represents the invasion level of an
object in the interest area, and the sensibility parameter
value discards li ttle intrusions, one comparison with a
minimum area is computed for each frame.

3.1.5 Local maxima detection

This operation demands two comparisons at each frame.

First between the detection index 2−id and 1−id , after

between 1−id and id .

3.2 Hardware/software par titioning

In order to reach the processing requirements and so the

performance, a hardware/software codesign approach was
adopted.

ParticionamentoPar titioning

Estimadores
de Qualidade

Estimators

VerificaçãoVerification
Síntese do
hardware

Software
synthesis

Síntese de
interfaces

Hw/sw inter f.
synthesis

Síntese do
softwar e

Hardware
synthesis

HW
I/Ounit

P1
 C

SW
I/O

Drivers
P2

H
W

Handshake
protocol

Memory
Cntr. mem.

� � � � � � � � � � � �
� � � � � � � � � � � �T5 T1

T17 T9

S
W T8 T3 H

W
1

T7 T4 H
W

N C
O
M

Occam
Description

H
W

Prototyping

Figure 5. A simplified hardware/software codesign flow.

In this work, the hardware/software approach takes into

account the principles of the PISH project [15,16], where
the system specification is partitioned into two large blocks,
software and hardware, considering aspects related to
communication cost between processes and area (Figure 5).

The partitioning of this system is still carried out
manually, joining processes in clusters in order to reduce
their communication cost.

Control processes or those that do not require intensive
computation are implemented in software and the intensive
processing processes are implemented in hardware. After
partitioning, as shown in Figure 5, processes to be
implemented in hardware must be synthesized and the
software ones compiled. The interface between hardware
and software partitions is also manually generated and
synthesized

A K6-II processor, 500 MHZ CPU, plays the role of the
software component. The massive processing tasks
(arithmetic functions for the convolution and fil tering
algorithms) and the surrounding peripheral circuitry were
implemented in the hardware component, a low cost
200,000 gates Xil inx Spartan-II family FPGA, a PCI
interface and a 512K SRAM.

���� �
� ���
		
	
� ���

� ��

��������������������������� ����!�"�� #�$�% &�')(�������������% #�*
� �

�
+, �

- ���
� - ��

.

/10

/�0

$�% 21�

Processor requi res much m ore
cl ock f or equ i val ent perf orm ance���� �

� ���
		
	
� ���

� ��

��������������������������� ����!�"�� #�$�% &�')(�������������% #�*
� �

�
+, �

- ���
� - ��

.

/10

/�0

$�% 21�

Processor requi res much m ore
cl ock f or equ i val ent perf orm ance

Figure 6: FPGAxDSP and general-purpose processors

When designing a DSP system in a FPGA, the data can
be processed taking the advantages of using a single chip,
parallel structures (Figure 6) and arithmetic algorithms to
exceed the performance of a single general -purpose DSP
chip. The designer can take full advantage of the FPGA
programmable resources to fit the requirements of any
application.

Figure 7 shows the Spartan internal architecture.

3 4�5 6�7�8�5 9�:�7�;�< =)>�? 3 @�A B�C�D =)>�? E F)F G H�5 A 7�; 8�6 3 IKJ 5 H�7 E 4�L > M�N�< 6�; 8�5 M A 3 ?�:�A 7�5 O A P QR>�S14UT E V�W)WX?ZY1[3 4K\�\ E ?Z:�A 7�5 3 8 M�7�; C�A B�6�C D

] 8RB�^�8RM _1_�M 9 A ;U` N�7�; 8�C�B�N�N�;�C�7

\�B�^�5 CUC�; A A a \ B�B�DU:�OZ7RM 9 A ; 4�5 6�7�5 9�:�7�; < =K>�?

3 4�5 6�7�8�5 9�:�7�;�< =)>�? 3 @�A B�C�D =)>�? E F)F G H�5 A 7�; 8�6 3 IKJ 5 H�7 E 4�L > M�N�< 6�; 8�5 M A 3 ?�:�A 7�5 O A P QR>�S14UT E V�W)WX?ZY1[3 4K\�\ E ?Z:�A 7�5 3 8RM�7�; C�A B�6�C D

] 8RB�^�8RM _1_�M 9 A ;U` N�7�; 8�C�B�N�N�;�C�7

\�B�^�5 CUC�; A A a \ B�B�DU:�OZ7RM 9 A ; 4�5 6�7�5 9�:�7�; < =K>�?

Figure 7: Spartan architecture

The FPGA is configured through the PCI bus through

C++ communication classes [17]. Due to the FPGA
flexibil ity the user can easily prototype any algorithm into
the entire hardware without the need of a device-
programmer.

The hardware/software interface is implemented in three
layers, by an ASIC, a PCI controller [10], and the C++ class
routines in software, as shown in Figure 8.

Figure 8. Layers between a hardware device and the
software program.

The application program interface represents the portion

of the software partition responsible for the communication
with the hardware module. It accesses the device driver
using C++ classes provided by the prototyping board
manufacturer. Then, the device driver addresses the
prototyping board and the PCI ASIC connects the PCI Bus
with the FPGA through a local parallel interface.

4. CASE STUDY

A real-time processing image application has been

developed to validate the algorithm and the codesign
approach. One of the requirements is that the system should
be able to detect and count intruders in a user-defined region
of interest. The intruders have to be detected even if
speeding at velocities up to 215 km/h, and their sizes are
user-defined.

The images under observation comprise 480×640 pixels,
equivalent to 900 kB true-color bitmap files, obtained from
a traffic surveil lance video.

Initially, a window on the image, free of vehicles and
limited to 256128× pixels, is extracted from the original

image and kept as reference. This reference image is unique
for each new scenario and can be taken from any place in
the picture scene.

Once captured, each frame is submitted to the image
processing algorithm (RGB to grayscale conversion, low
pass filter, and so on). As the results of this processing, a
signal from the hardware partition indicates the presence or
absence of vehicles in that frame depending on the detection
index presented in section 3.

The system should be able to process at 15 frames/sec,
66.7 ms between frames, allowing an efficient detection of
moving objects at high speed (up to 215 km/h). In order to
evaluate the advantage of the codesign solution, the image-
processing algorithm presented in Figure 9 was also
implemented in software.

Figure 9. Vehicle detection algorithm at system level
description.

The image processing algorithm requires the following

steps for each new frame:
308,130004,32304,98 =+ Multipl ications
572,353004,32032,256536,65 =++ Sums
004,32 Subtractions
004,32 Absolute values
007,3221004,32 =++ Comparisons

Since the aim of this work is comparing the performance
among different architectures, this is a suitable metric rather
than the time equivalence for each stage of the processing.

The software version was developed in C++ and
compiled using Visual C++ tools, running on a PC with a
K6-II processor and 128 MB of SRAM. This software
approach was able to process each frame in 220 ms, not fast
enough, since only 5 frames/sec could be processed in this
period.

In a second approach, a hardware/software co-design
methodology was implemented based on the model
presented in Section 3.2. The hardware modules, inside the
gray box (Figure 9) area cope with massive computation
procedures, calculating arithmetic functions and matrix
conversions [18]. The software partition is dedicated to the
system communication control between the PC and the
hardware partition, through writing and reading functions,
treatment of the interrupt protocol and user interface. The
software partition also performs the reference image fitting
(RGB to grayscale conversion and filtering).

The software partition was also implemented in C++,
while the hardware one was implemented using VHDL
(Very High Speed Integrated Circuit HDL). The FPGA
Express tool from Synopsys on Xilinx 3.1i Foundation
series was used for hardware synthesis.

Table 1 presents utilization of the reconfigurable logic
units of the FPGA.

Logic Number % of FPGA
Slices (CLB) 264 11

Flip-Flops 215 4
4-input LUTs 427 9

IOBs 51 36
GCLKs 1 25

GCLKIOBs 1 25
Total equivalent gates 5,086 2.54

Table 1. Logic synthesis report
Five thousand and eighty-six equivalent Xil inx Spartan-

II [8] gates were used in this design, amounting to 2.54% of
the total available logic on the chip. The maximum circuit
frequency reached after synthesis was 54.259 MHz, which
satisfies the system clock constraint of 40 MHz imposed by
the evaluation board.

The layout of the hardware is depicted in Figure 10.

Figure 10. Hardware layout on Xilinx Spartan-FPGA

In this design, the reference image is first sent to the PCI

board and stored at a reserved memory. After this, each new
frame is also sent to the hardware for processing and
analysis. The time spent to transfer each new frame (32kB)
from PC to the local memory on the prototyping board is
imposed by the 3MB/sec PCI throughput. Thereby, the
frame transference usually takes about 10.92 ms.

With the data available at the memory, the FPGA takes
around 1,440,180 cycles, equivalent to 36ms (40 MHz), to
perform image processing and signaling a response to the
software component by an interrupt call. For each processed
image, the following mathematics are performed:

308,130004,32304,98 =+ Multiplications
572,353004,32032,256536,65 =++ Sums
004,32 Subtractions
004,32 Absolute values
007,3221004,32 =++ Comparisons

The time analysis expected for each frame processing in
this codesign approach is estimated by the sum of the time
spent to transfer a image of 32kB (128×256, grayscale 8-bit)
from the PC to the prototyping board, plus the internal
FPGA processing time. This whole process is performed at
46.92ms for each frame.

Taking into account the area under observation, which
depends on the camera visualization angle, and the frame
capture rate (15 frames per second), the maximum
detectable speed of moving vehicles by this system is of
around 215km/h. This complies with the original
requirements.

The hardware/software codesign methodology presented
in this work shows that good results can be reached in a
hybrid approach, analyzing and exploiting peculiarities of
each processing element and aspects of their
communication.

5. CONCLUSIONS

A versatile reconfigurable DSP platform for image
signal processing and analysis in a vehicle detection
application has been presented. The optimization of the
system, through hardware/software codesign, is guided by
the system features. This optimization ultimately leads to a
system that, with modest hardware components, meets strict
real world requirements.

An affordable prototyping platform was developed and a
real case study was presented with encouraging results.
Based on a single PC system and a PCI reconfigurable
hardware platform, the methodology of synthesis and the
prototyping environment provides a good platform that
supports the design of reconfigurable systems, for DSP
applications, in hardware-on-demand fashion.

The use of the proposed hardware/software codesign
approach solved the conflict of timing constraints naturally
imposed by the real time characteristics of the problem.

The Spartan fi lter core is able to produce a fully
customized, area-efficient, high performance
implementation. Highly optimised FIR fil ters and others can
be fully realized.

In the present version the image processing algorithm
partition was performed by hand. However, new
applications are under assessment with partitions based on a
more formal and automatic methodology.

6. REFERENCES

[1] B. T. C. Jung Soh and M. Wag, “ Analysis of road image

sequences for vehicle counting” Proceedings of the IEEE
International Conference on Systems, Man, and
Cybernetics, pp. 679 – 683, October 1995.

[2] S. Hauck, “ The hole of FPGAs in reprogrammable
systems” proceedings of IEEE, vol. 86, pp. 615–638,
1998.

[3] A. DeHon, Reconfigurable Architecture for General-
Purpose Computing. PhD thesis, MIT, 1996.

[4] S. A. Z. Salsic, Digital System Design and Prototyping
Using Field Programmable Logic. Kluwer Academic
Publishers, 1997.

[5] S. K. Knapp, “ Using programmable logic to acelerate
DSP functions” Xilinx, 1995.

[6] P. M. A. Adit Tarmaster and A. L. Abbott, “ Accelerating
image fi lters using a custom computing machine”
Photonics 1995, 1995.

[7] M. Kraus, XC2SEVAL User Manual. Cesys GmbH,
Germany, 2001.

[8] Xilinx Spartan-II 2.5V FPGA Family: Functional
Description, March 2001.

[9] Hitachi Semiconductor, HM62V8512C Series, Apri l
2001.

[10] Infineon Technologies, PCI Interface for Telephony /
Data Applications. PITA-2.

[11] “ XtraConverter: AVI-BMP extractor.” at URL:
http://remote-security.co.uk/freebees/xavi2bmp.zip.

[12] G. J. F. Banon, “ Formal introduction to digital image
processing,” INPE, S̃ ao Joś e dos Campos, Brazil,
July 2000. URL: http://iris.sid.inpe.br:1912/rep/
dpi.inpe.br/banon/1998/ 07.02.12.54.

[13] A. K. Jain, Fundamentals of Digital Image Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

[14] D. e. a. Demingny, “How to use high speed
recofigurable FPGA for real time image processing.,”
Fiftth IEEE International Workshop on Computer
Architecture for Machine Perception, 2000.

[15] E. Barros, Hardware/Software Partitioning Using
UNITY. PhD thesis, Universitaet of Tuebingen, 1993.

[16] C. A. et al, “ Co-synthesis and prototyping suporting the
design of reconfigurable systems” CORE2000:
Reconfigurable Computing, pp. 54–67, 2000.

[17] Cesys, XC2SEval Evaluation Board Programmer’ s
Guide.

[18] R. S. Stefan Ludwig and S. Singh, “ Implementing
PhotoShop filters in Virtex” Field-Programmable
Logic and Applications, Proceedings of the 9th
International Workshop, FLP 99, Lecture Notes in
Computer Science 1673, pp. 233–242, 1999.

http://remote-security.co.uk/freebees/xavi2bmp.zip
http://iris.sid.inpe.br:1912/rep/dpi.inpe.br/banon/1998/

	TITLE PAGE
	PROCEEDINGS LIST
	HPCS Table of Contents
	ACROBAT HELP
	A Codesign Approach for a High Performance Vehicle Detector
	Keywords:
	Abstract:
	1 INTRODUCTION
	2 SYSTEM DESCRIPTION OVERVIEW
	3 THE VEHICLE DETECTION ALGORITHM
	3.1 Complexity of the image processing algorithm
	3.1.1 Color conversion
	3.1.2 Filtering by convolution
	3.1.3 Comparison between images
	3.1.4 Changing index
	3.1.5 Local maxima detection

	3.2 Hardware/software partitioning

	4. CASE STUDY
	5. CONCLUSIONS
	6. REFERENCES

