
IP/SOC 2005 – December 7-8, 2005 1

$EVWUDFW�

Electronic System Level (ESL) design is a highly
effective approach for creating complex chips and
systems. At this level engineers design and verify
systems using abstract models, concentrating their
efforts on systems architecture and algorithms
rather than on low level RTL design
implementations. Additionally, with advances in the
semiconductor technology, it has been made
affordable the implementation of digital systems as
multiple processors SoCs (MPSoCs) or platforms.
In order to speed-up an ESL design it is important
to have processors models at distinct abstraction
levels starting from functional and transaction levels
to register transfer level. This paper presents an
approach for specifying micro-controllers models
using the ADL (Architecture Description Language)
ArchC and SystemC. This approach has been used
to specify an 8051 micro-controller in SystemC
allowing the design of a very efficient model in few
weeks.

1. INTRODUCTION

ESL design is a highly effective approach for
creating complex chips and systems. ESL design
has mainstreamed — it is now an established design
methodology at most of the world’s leading system-
on-chip (SoC) design companies, and is being
increasingly used in system design. Additionally,
with advances in the semiconductor technology, it
has been made affordable the implementation of
digital systems as multiple processors SoCs
(MPSoCs) or platforms.

1 This work has been supported by CNPq (Brazilian
funding agency) under projects Brazil-IP (grant nr.
552078-02/6) and ProPlat (grant nr 480733/04-0)

Shared memory multi-processor systems-on-chip
(MPSoCs) have been widely used in today’s high
performance embedded systems, such as network
processors and parallel media processors (PMP).
They combine the advantages of data processing
parallelism of multi-processors (MP) and the high
level integration of systems-on-chip (SoC) [1]. In
order to speed-up an ESL design it is important to
have processors models at distinct abstraction levels
ranging from functional and transaction levels to
register transfer level. This paper presents an
approach for specifying micro-controllers models
using ADLs and SystemC. This approach has been
used to specify an 8051 micro-controller in
SystemC allowing the design of a very efficient
model in few weeks. The following section presents
related works regarding ADLs and tools for SoC
specifications. The approach for specifying micro-
controllers models using ArchC is described in
section 3, including a very briefly introduction into
ArchC. The resulting specification of the 8051
micro-controller is described in section 4. Finally,
section 5 presents some conclusions and future
works.

2. RELATED WORK

In this section we briefly discuss some related
works regarding specification of SoCs with ADLs.
Most ADLs allow the description of processor
architectures and its instruction set, but not all
provide a mechanism to integrate the processor
model with other peripheral components to create a
SoC.

LISA[7][9] is a processor description language
which allows for architecture exploration,
implementation and system-level simulation. Its
focus is the formal description of programmable
architectures along with peripherals and also
external interfaces.

,3�62&������
�

6HVVLRQ�����6SHFLILF�0RGHOLQJ
�

$�675$7(*<�)25�63(&,)<,1*�6<67(0&�0,&52�&21752//(56�02'(/6�
86,1*�7+(�$'/�$5&+& � �

�
3DWULFLD�/LUD��9tWRU�6FKZDPEDFK�DQG�(GQD�%DUURV��&HQWUR�GH�,QIRUPiWLFD�±�8)3(�

�
5HFLIH�%UD]LO�

(pfal, vsc, ensb@cin.ufpe.br)

IP/SOC 2005 – December 7-8, 2005 2

EXPRESSION[8] is an architecture description
language that is suited for the description of
different types of architectures: VLIW, ASIP, DSP
and conventional processor architectures like RISC.
Functional, cycle accurate and compiled simulation
simulators can be generated from an EXPRESSION
description.

ConvergenSC[10] is a tool for platform based
design for generic application domains. It comes
with a model library that includes ARM and MIPS
processor models and also bus models like AMBA.
For processors that are not in the library, designers
must create them separately using the LISATek
product family [9] and use them as components.

3. DEVELOPMENT METHODOLOGY

Most micro-controllers include a CPU, which is
able to execute a defined instruction set, as well as
peripherals such as timers, interrupt controllers,
serial and parallel interfaces, etc. As mentioned,
most ADLs lack the capability to specify
peripherals. In this work we describe a strategy for
obtaining SystemC specifications of micro-
controllers using the ADL ArchC [2][3][5]. The
main idea is to describe the instruction set using the
ArchC ADL. From the ArchC description a
SystemC description of the CPU is generated. This
SystemC description is then modified in order to
allow an easy integration of SystemC peripheral
descriptions. Figure 1 shows the main steps of the
proposed strategy.

The instruction set and architecture resources are
described using ArchC, from this description, a
SystemC description can be generated using the
ArchC tool called DFBVLP. The obtained processor
simulator in SystemC is then modified for
introducing a binding mechanism, which allows
accessing peripheral registers through read and
write memory operations. Additionally, an interrupt
handling mechanism should be included for
handling peripheral interruptions. Finally, the
SystemC descriptions of all peripherals can be
easily integrated resulting in a SystemC description
of the micro-controller.

A more detailed description of how to create the
processor model and then add the binding
mechanism and interrupt handling capability to the
model is described in the upcoming sub-sections.

�

Peripherals

AC_ARCH

Processor Model

Integration

Microcontroller

Extended
Processor Model

Memory Binding Interrupt Handling

AC_ISA

AC_SIM

)LJXUH�����'HYHORSPHQW�3URFHVV�

3.1 DESCRIBING THE PROCESSOR MODEL

As mentioned, ArchC is an architecture description
language, initially conceived for architecture
description, which aims to facilitate and accelerate
processor description. In ArchC, a processor
architecture description is divided in two parts: the
Instruction Set Architecture (ac_isa) description and
the Architecture Resource (ac_arch) description.

The ac_isa description includes details about
instruction formats, size and names, as well as all
necessary information to automatically generate an
instruction decoder. The ac_arch description
specifies the storage devices, pipeline stages and
memory hierarchy of the processor. Figure 2 shows
part of the DFBDUFK description for the 8051 micro-
controller [4], which is an 8-bit CPU with a set of
255 instructions, 256 bytes of internal RAM
(registers), 64Kbytes of external RAM and 64K
bytes of ROM.
�

�

)LJXUH�����$UFK&�DUFKLWHFWXUH�GHVFULSWLRQ�
In this example four memories have been declared
with the associated length and word size. The
internal RAM includes a RAM with 256 bytes

IP/SOC 2005 – December 7-8, 2005 3

representing registers, the extended RAM with 64
Kbytes, and a ROM memory with 64 Kbytes.

The ISA description is defined in two files, the first
one containing the instructions and format
declarations and the other one including instructions
behavior.

)LJXUH� � shows the DFBLVD� description for the
DGGBDU instruction, an instruction for adding a
register to the accumulator. Each instruction
declaration includes its format, its assembler syntax,
the instruction identification and the number of
cycles to execute it. The DFBIRUPDW�keyword defines
a specific instruction format, which can be
associated with more than one instruction. It allows
the designer to access each instruction field
individually. ArchC provides mechanisms to
describe a common behavior of a set of instructions
only once as the behavior of a instruction type. In
the example, the format 7\SHB23B5 is defined,
which is associated with the instruction DGGBDU
through the keyword DFBLQVWU� Additionally, the
VHWBDVP� specifies the assembler instruction syntax
and operand encoding,� VHWBGHFRGHU indicates the
instruction opcode and VHWBF\FOHV� specifies the
number of instruction cycles in a cycle accurate
model

�

)LJXUH�����$UFK&�LQVWUXFWLRQ�VHW�DUFKLWHFWXUH�

GHVFULSWLRQ�

Figure 4 shows an example of an DFBLVD
description, which describes the behavior of the
DGGBDU instruction. The switch statement is used to
describe the instructions cycles. Each case
represents one state of the CPU control unit when
executing an DGGBDU instruction. In the second
cycle, the accumulator value is read and in the
following cycle the content of the register to be
added is also read. In the cycle number 6 the sum
takes place and finally in the cycle 12 the results are
written back to the accumulator. The specification is
the same as specified in the 8051 datasheet. The
cycles omitted updated the flags register. A more
detailed discussion on the ArchC architecture
description language can be found in [5].

�

)LJXUH�����$UFK&�GHVFULSWLRQ�RI���

$''�$���UHJLVWHU!�LQVWUXFWLRQ�IURP������
�

3.2 BINDING CPU AND PERIPHERALS

After the CPU has been described in ArchC, the
DFBVLP tool generates a SystemC processor
simulator, which is able to execute any instruction
of code compiled for that processor.

In the case of micro-controllers peripheral models
should be included in the processor model. The
8051 micro-controller, for example, includes as
peripherals timers, serial interface, interrupt
handler, etc. Most micro-controllers implement
communication to and from peripherals through
read and write operations CPU registers. These
registers store data (from and to) peripherals as well
as the peripherals status.

Using ArchC the designer is able to specify
registers in the CPU, but a problem arises when
registers assigned to peripherals must be accessed
by the CPU and by the peripheral as well. How data
consistency can be guaranteed when accessing such
registers?

This work proposes a technique to cope with this
problem by ensuring consistency when accessing
peripheral registers. Only a single exemplar of
peripheral registers is defined, which is located at
the peripheral side. Whenever the CPU does a read
or write operation in such registers, the registers
accessed are the ones on the peripheral side.

IP/SOC 2005 – December 7-8, 2005 4

ArchC implements all storage elements (registers,
memory, caches) using the DFBVWRUDJH class, which
includes the methods for reading and writing. For
implementing the proposed strategy, a binding
mechanism has been developed. This mechanism
performs a mapping among registers addresses in
the CPU and the corresponding peripheral register.

In order to implement this mapping mechanism, the
read and write methods have been changed to deal
with the address bindings. For every call to a read
or write method in the memory it is first checked if
a bound address is being accessed. If the given
address is bound to a peripheral then the pointer to
that peripheral is retrieved and the method call is
redirected to that pointer, otherwise the method
executes normally. This causes the processor model
to access the appropriate registers in case the
registers are located in the peripherals. For
redirecting read and write calls to peripherals, the
behavioral description of peripherals must
implement the DFBVWRUDJH interface. This interface
comprises all read and write methods available in
the DFBVWRUDJH class, so by implementing this
interface the peripheral itself becomes a memory
element, making it possible to redirect the read and
write calls.

Figure 5 shows the binding of registers in the
processor model and the corresponding registers in
the peripherals. This way, the processor model can
access registers assigned to peripherals in a
transparent way, and no further modifications are
necessary.

����� � �����	�
���

��� �	� ��� �������	�	���

 0

 1

 2

 3

 4

 ...

����� ���
�	�	� � ���	���
	� �

Binding

��� �	���
��

�	�	� � �����	�
	� �

Binding

Binding

)LJXUH�����3HULSKHUDO�0DSSLQJ�

3.3 INTERRUPT HANDLING

Some peripherals of a micro-controller need to
interrupt the CPU in order to have some kind of
data processing or simply to activate another
peripheral. To implement this kind of functionality,
some mechanism to interrupt the CPU must be
provided. The CPU behavior when an interruption
occurs must also be specified. To support this
feature, an interrupt handler has been developed.
decoding of each instruction has been specified.

A device can generate a new interruption by
invoking the UHTXHVW7UDS method (shown in
Figure 6) with a device identifier given as argument.
Whenever the interrupt handler receives an
interruption request it puts this new interruption on
a priority queue. Before decoding a new instruction,
the instruction decoder checks if there are any
interruptions to be served by calling a method of the
interrupt handler, the JHW3HQGLQJ5HTXHVWV, which
returns the interruption to be served, if any. If there
are none, the execution resumes. In the case an
interruption is returned, the instruction decoder
executes the behavior described in the interrupt
handler for that particular interruption.

�

)LJXUH�����,QWHUUXSW�+DQGOHU�LQWHUIDFH�
The instruction decoder executes the interruption
service routine, which behavior is described in the
interrupt handler. As it can be seen in Figure 7, the
current value of the program counter is pushed onto
the stack, in order to allow the return to the normal
execution flow, once the interrupt service routine
has finished.
�

)LJXUH�����2&3�,3�H[WHUQDO�LQWHUIDFH�
LQWHUUXSWLRQ�EHKDYLRU�

IP/SOC 2005 – December 7-8, 2005 5

Whenever the instruction decoder identifies the
instruction of interrupt return, it must inform this
event to the interrupt handler, invoking the
WUDS'RQH method shown in
Figure 6, so that it can remove that particular
interruption from the queue.

Furthermore, peripherals that can interrupt the
processor must receive a pointer to the interrupt
handler in their constructor. Thus, when the
peripheral wants to interrupt the processor, it calls a
method of the interrupt handler to request the
interruption. The interrupt handler will then process
the request.

3.4 PERIPHERAL INTEGRATION

Once the SystemC processor model has been
obtained from an ArchC description and has been
modified to include a binding mechanism to
peripherals registers and an interruption handler, a
complete model of the micro-controller can be
obtained by declaring and instantiating each
individual peripheral specification.

Figure 8 shows how to integrate peripherals in the
SystemC processor description2. In this case, the
i8051.h file has been modified for integrating an
OCP-IP [6] interface peripheral. An advantage of
having an 8051 IP-core with OCP interface is the
fact that this IP can be connected to any OCP
complaint IP-core.

)LJXUH�����2&3�,3�SHULSKHUDO�LQWHJUDWLRQ�
The integration specification includes peripheral
declaration followed by its instantiation. Notice that
a pointer to the interrupt handler called WUDS�
BFRQWUROOHU is passed as argument to the constructor
of the OCP-IP interface peripheral. Through this

2 Obtained after processing of ArchC files by the
tool ac_sim

pointer the OCP-IP interface can access the
interrupt handler and is able to generate an
interruption to the processor as explained
previously. The code that follows the instantiation
binds some addresses in the external memory of
8051 (IRAMX) to the OCP-IP interface peripheral.

The method ELQG$GG6WRUDJH has been proposed to
perform the address binding. The first argument of
this method is the memory address, which is going
to be bound to the peripheral3, and the second
argument is a pointer to the peripheral itself. Each
time this method is invoked, a entry is created in an
internal addresses table, which relates the IRAMX
address and the OCP-IP interface peripheral. From
this point on, whenever read or write methods of
IRAMX are called with an address that has been
bound to the OCP-IP interface it will relay the call
to the OCP-IP peripheral. Thus, the processor-
peripheral communication is established.

After all peripherals have been integrated to the
processor model and their interruption priorities
have been established, the next step is to update the
interrupt handler. It must be adapted to correctly
handle the peripherals interruptions considering
their respective priorities.

4. RESULTS

The proposed strategy has been used to design a
cycle accurate model of an 8051 micro-controller,
which includes a serial interface with 4 operating
modes, 2 timers, 4 parallel input/output ports, 256
bytes of internal RAM (registers), an interrupt
handler with four levels of priority, as well as an
OCP-IP compliant external interface. The number
of SystemC code lines for the peripherals is
summarized in Table 1.

The processor has been described at transaction
level but with accuracy of cycle. The table also
displays the number of SystemC code lines for a
SystemC RTL description of the same processor.
The efficiency of the obtained SystemC model at
transaction level has been evaluated by running the
DALTON benchmark [4], a set of programs to test
the instruction set. A set of programs to validate the
peripherals has also been executed. The simulation
time is depicted in Table 2. The benchmarks have
been executed using a computer with a Pentium 4
CPU running at 1.8 GHz with 512 MB of RAM.
The reader can see that the TL cycle accurate model
runs approximately 29 times faster than the RTL
description in average.

3 We have used pre-defined constants for each
address

IP/SOC 2005 – December 7-8, 2005 6

7DEOH����&RPSDULVRQ�RI�6\VWHP&�FRGH�OLQHV�
 "!$#&% !$#&% "!$#$' !$#

Processor 21097 11080 1.90

OCP 2595 513 5.06

Port 1650 245 6.73

Timer 1169 581 2.01

USART 2037 477 4.27

Total 28548 12896 2.21

*Unit: Code lines.

7DEOH����&RPSDULVRQ�RI�VLPXODWLRQ�WLPH�

 "!$#&% !$#&% "!$#$' !$#

Divmul 34.98 1.16 30.15

Fib 36.86 1.24 29.75

Int2bin 9.27 0.49 18.91

Sort 47.39 1.43 33.14

OCP 72.75 4.93 14.75

Timer 137.57 7.27 18.92

USART 200.34 3.56 56.27

*Unit: Seconds.

5. CONCLUSION AND FUTURE WORKS

In this paper a strategy for obtaining a micro-
controllers model at cycle-accurate transaction level
has been proposed. The instruction set is described
initially by using the ADL ArchC, which provides a
mechanism for describing the syntax and semantic
of processor instructions at a very high abstraction
level. Therefore, ArchC lacks a mechanism for
describing peripheral behavior, included in the most
micro-controllers. For describing peripherals,
SystemC has been used. The integration of the
generated SystemC description of the CPU with the
peripherals description has been achieved by
introducing a binding mechanism, which allows the
mapping of the CPU registers into registers in the
peripherals. With this technique, the CPU can
access peripheral registers in a transparent way. A
mechanism for interrupt handling has also been
developed. The occurrence of an interruption is
tested after instruction decode. The interruption

handler includes the interruption behavior, as well
as the interruption priority for the peripherals. A
SystemC transaction level cycle accurate
description of an 8051 micro-controller has been
obtained according to this strategy. The obtained
model has less code lines and is 29 times faster then
the corresponding RTL SystemC description. The
obtained TL cycle accurate model can be used at an
early design phase, reducing the design time and
allowing a best quality design.

As a future work we can mention the integration of
the proposed technique in the ArchC tools, in order
to generate a processor model including facilities
for peripheral integration. A mechanism for
interruption handling is already available in the
ArchC language, but must be adapted to allow the
peripheral interruptions. Furthermore, mechanisms
for facilitating the peripherals integration are under
development. This way the micro-controller model
could be generated without ever modifying the
ArchC generated code, thus reducing even further
the effort and time required to model micro-
controllers.

7. REFERENCES

[1] Chang, H., et al.: Surviving the SoC revolution:
a guide to platform-based design. Kluwer Academic
Publishers, Massachusetts (1999)
[2] Rigo, S., Azevedo, R., Araújo, G., Araújo, C.
and Barros, E.: The ArchC Architecture Description
Language and Tools. In International Journal of
Parallel Programming. Kluwer Academic
Publishers, 2005, Pages: 453 - 484
[3] Viana, P., Barros, E., Rigo, S., Azevedo, R.,
and Araújo, G.: “Modeling and Simulating Memory
Hierarchies in a Platform-Based Design Methodo-
logy”. In Proc. of the DATE, 2004
[4] http://www.cs.ucr.edu/~dalton/i8051/i8051syn/
[5] http://www.archc.org
[6] OCP-IP: Open Core Protocol International
Partnership, Available at: http://www.ocpip
[7] http://servus.ert.rwth-aachen.de/lisa
[8] Halambi A., Grun P., Ganesh V., Khare A.,
Dutt N., and Nicolau A.: Expression - a language
for architecture exploration through compiler
simulator retargetability. In Proceedings of DATE,
199, ACM Press, page 100.
[9] Homann A., Kogel T., Noah A., Braun G.,
Schliebush O., Wahlen O., Wieferink A., and
Meyer H.: A novel methodology for the design of
application specific instruction set processors
(ASIP) using a machine description language. In
IEEE Transactions on Computer-Aided-Design,
pages 1338-1354, November 2001.
[10] Coware company. Available at
http://www.coware.com, Nov 2005.

