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Abstract 

 

The reconfigurable computing has seen many 
promising advances in recent years. The development of 
platforms that match reconfigurable hardware with 
software elements, such as microprocessors, promise great 
applicability in diverse areas in the future. This article 
describes a algorithm for switching context temporal 
partitioning, based on a control data flow representation of 
hardware components, called CDFG-Petri Net model. The 
proposed partitioning algorithm allows to implement  
attached co-processors to speed up slow procedures in a 
hardware/software co-design approach, using a context 
switching model. 

 
 

1 INTRODUCTION  
 
With the increasing size of the digital systems, more 

powerful system architectures are needed to increase the 
speed of application. Generally, hardware implementations 
into a FPGA allow concurrency and increasing data 
processing speed. Software implementations present some 
advantages such as flexibility and low implementation cost 
of complex functions; however it presents limitations as 
difficulties to explore parallelism and meet constraints for 
high speed applications [2] [3] [4]. In a hw/sw codesign 
methodology [1], the advantages of both hw and sw are 
taking into account. This methodology break the system in 
software and hardware components with objective of 
accelerating the application. In general, a complex 
hardware component specification is represented by a 
single and large file, that can be too large to be fitted into a 
single FPGA. Thus, the circuit mapping requires splitting 
the original file into small ones in order to fit the logic into 
the FPGAs. Multi-FPGAs platforms [3] [5] are possible 
solutions since it is possible, from one given specification, 
to split the system into smaller processes adjustable to the 
platform. However, this approach demands hardware area 
proportional to the system complexity, increasing the cost 
of solution. In our model, the partitions on contexts could 
be switched at time in a FPGA, according to a scheduling 

algorithm [6]. The methodology suggests a virtual 
hardware mechanism like a virtual memory [4]. 

In this article we present a temporal partitioning 
algorithm based on CDFG-Petri Net model [6] for 
switching context co-processor implementation. Petri net 
analyses and metrics [7] [8] are used, having as target the 
Xilinx XC4000 family FPGAs. This algorithm allows the 
division of the process in time multiplexing contexts for 
execution in low cost hardware, based on static 
reconfigurable devices (FPGAs). Two stages pipeline 
structure can be used to decrease the effects of the FPGA 
reconfiguration time in the system performance. Section 2 
presents a CDFG-Petri Net model [6] used for control-data 
flow representations. Section 3 presents the hardware 
context circuits model and switching context mechanism. 
Section 4 discusses temporal partitioning algorithm. 
Section 5 presents a complete example and some results. 
Finally, section 6 presents conclusions and future works. 

 
2 CDFG-TIMED PETRI NET MODEL  

 
In the proposed model, the hw is represented for a 

Control Data Flow Graph, showed in Figure 1, called 
CDFG-Timed Petri Net Model [6] [8]. 

Figure 1: CDFG-Timed Petri Net Model 
 

Timed Petri nets are a formal family of specification 
techniques that allow for a graphical, mathematical 
representation and have powerful methods for performing 
qualitative and quantitative analysis [7]. Time information 
is expressed by duration and is associated to the transitions:  

 
 
int  function (int a, int b) { 
   int x,y 
   x = a+b; 
   if  (x<0) { 
       y = a*x; 
   } 
   else { 
       y = x*b; 
   }; 
   retur n(y); 
} 
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Definition of Timed Petri Nets: Let a pair PN = (N,D) be a 
timed Petri net, where N = (P,T,I,O,M0) is a Petri net [7] , 
D:T →A, A={ a | a > 0, a ∈ R }  is a function which 
associates with each transition ti the duration of the firing 
di ,. �  

The transitions ti ∈ T represent operations and the 
duration di represent the execution time of transition ti. 
operation. Places pj ∈ P interconnect transitions to establish 
an operation control sequence. Timed Petri net form allows 
the application of the associated mathematical formalism 
for verification of the system, properties extraction and 
estimates [7] [8]: 

 
Definition of CDFG - Petri Net: is a pair (PNC,GD) where:  
PNC  is safe [ 7]  and Timed Petri net  and represents the 
control flow. G

D = (V, E, FD), V = T ∪  In ∪  Out, is the 
data dependence graph. T is Petri net transitions set; In 
and Out are respectively data input and data output points; 
E ⊂  VxV is the edge set that represents data dependence 
among the vertex of G

D
 in V set; FD(e) is the variables sub-

set associated to the data flow represented for e ∈ E.                          
�  

When the hardware represented by the CDFG is not 
possible to be fit into the FPGA, it is partitioned in multiple 
contexts. Each context is a transition subset. The contexts 
are then implemented in a time-multiplexed approach as a 
Virtual Hardware Circuit [4] [6]. Figure 2, shows Ci 
context model defined by the transition subset Ci.T. 
 

Figure 2: Context Model (Ci). 
 
For each context, we can define a limit formed for 

an input places set Ci.PIN and for an output places set 
Ci.POUT. The context limits of Ci cuts the data dependence 
graph GD in a set of entrance data edges Ci.VIN, that 
represents data that will be processed in the context, and a 
set of exit data edges Ci.VOUT, that represents data produced 
after context execution.  

 

3 MULTI-CONTEXT CIRCUIT MODELS 
 

The Mul ti-Context Circui t model  is based on the 
Chameleon prototyping platform [5], composes by a 
software component, microcontrol ler Intel  8051, 
hardware component, FPGA XC4010 from Xil inx, and 
memory banks.  

 

3.1 Context Circuits 
 

Each context Ci is converted in a control-datapath 
circuit.

 
 
Figure 3: Hardware model for controller: a) PNC place 
circuit; b) PNC transition circuit. 

 
In Figure 3, the place in control flow PNC is 

mapping in D flipflop in a control unit. Transitions are 
mapping in AND gates, were inputs are place token value 
(0,1). Making the mapping of each transition t ∈ Ci.T and 
each places of the control flow graph, a control unit for 
context Ci is generated. The datapath circuit is generates by 
mapping the datafllow graph GD in RTL (Register Transfer 
Level) structure. Variables are mapping in registers, 
operations are mapping in functional units and the data 
dependency, represented by edges in GD, is mapping in nets 
and multiplexers[6] [8]. The sets Ci.VIN, Ci.VOUT, Ci.PIN, 
Ci.POUT (Figure 2) represent the data value and control state 
communications between the contexts. The communication 
circuit model for control state and data values interchange 
between two contexts is depicted in Figure 4. In this circuit, 
the place p is common to both contexts Ci and Cj. and is 
implemented in the both context controllers. The transfer is 
performed by the microcontroller in the prototyping 
platform. The data value and control states read from Ci are 
stored in memory buffer in order to be sent to the next 
context Cj, after FPGA reconfiguration.  

 
 

 Figure 4: Output and Input context circuit interface. 
 
Finally, the Figure 5 shows the circuit to detect the 

end of the context execution. For each initial marking of the 
input places in Ci.PIN , a set of possible final markings of 
output places Ci.POUT exists. These markings are only 

Ci.T = {t0,t1,t2} 
Ci.PIN = {p0} 
Ci.POUT = {p2,p3} 
Ci.V IN = {a,b} 
Ci.VOUT = {x} 
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reached in the end of the context execution and when a 
context finishes a marking of this set is always reached. 

In each context, the initial input places marking are 
storage in special flipflops called IMHF (Initial Marking 
Hold FlipFlops in Figure 5) that holds this marking during 
all context execution time. Therefore, it is always possible 
to detect the end of the context execution by observing if 
the initial Ci.PIN marking, in IMHF combined with the 
marking in Ci.POUT reaches the end context marking. 

 
Figure 5: End Context Detect Circuit.  

 
These patterns marking are generated during the 

partitioning of the application in contexts. 
 

3.2  Switching Context Mechanism 
 
The FPGA is used to implement the contexts 

according to a previous context schedul ing and 
swi tching task managed by the microcontrol ler. The 
scheduling information is generated during the 
temporal  parti tioning. The context switching routine 
in software is activated by an IntSw interrupt signal 
generated by the FPGA (Figure 5). The data and state 
generated for the old context are transferred to a 
memory buffer and, after the FPGA reconfiguration, 
the microcontrol ler transfers the data information 
from the buffer to the new context. The context 
swi tching time TSW i s given by the FPGA 
reconfiguration time (TRec) and the data transference 
time between contexts (TData), TSW = TRec + TData.  

In order to improve the performance of the 
switching contexts on a static reconfigurable FPGA, a two 
stages pipeline structure is proposed in Figure 6. While a 
FPGA executes a context Ci another FPGA is reconfigured 
with next context Ci+1. 

 
Figure 6: Two stages pipeline reconfigurable architecture. 

If C1, C2, ...,  CN  are the contexts and if TCi is the 
execution time of context Ci, TDi is the time for data 
transfer in switching context Ci to next Ci+1 and TRec is the 
FPGA reconfiguration time. Thus, the execution time TMC 
of the multi-context application can be given by: 

 

TMC=TRec+TD0+{
�

[ Max(TRec,TCi)+TDi] }+TCN+TDN        (1), 
 
Where Max(a,b) function is the major value of a and b. TD0 
is the time for input data in the first context C1 and TDN is 
the time for output data in last context CN. For massive 
computation applications, it is possible that TCi ≥ TRec for all 
the contexts. The formula (1) is reduced to:  

 

TMC=TRec+TD0+{
�

 (TCi+TDi)}+TCN+TDN           (2) 
 

In this in case, execution time depends only on the 
sub-process time in each context and the speed of data 
transfer, eliminating the reconfiguration latency. 

 

4 TEMPORAL PARTITIONING ALGORITHM 
 

The temporal partitioning split the CDFG-Petri net 
of hardware process PHW, generating a contexts set 
PartTHW. The total area of each context can not exceed the 
FPGA area and transitions must be grouped in the contexts 
obeying the order in the control flow PNC:  
Definition Temporal Partitioning:  Let a pair P

HW =  (PN
C
, 

G
D
) be a CDFG process implemented in an FPGA area 

AHFPGA, we defined a P
HW

 partitioning as being a contexts 

set PartT
HW

 =  {C1, C2,…, CK} and Ci.T∩ Cj.T  = {} ∀ Ci,Cj 

∈ PartT
HW

, i≠ j. Ci.T is the context transitions set; Ci.AHW  
is the FPGA area for Ci and context execution order is 
C1→C2→…Ck. Constraints is Area: Ci.AHW  ≤  AHFPGA 

∀ Ci ∈ PartT
HW

 and Precedence: t∈ Ci.T �   (∀ t’∈ I(p) ∧  
p∈I(t): ∃ Cj | t’∈ Cj.T ∧  j ≤ i).  �  

The partitioning uses a constructive algorithm, 
showed in Figure 7, based on the transitions grouping into 
the contexts.  

TempPar t{  
Input (PHW=(PNC,GD), AHFPGA

 ) 
PartTHW := { }  ; CandT :={ t0}   
IndxCtx := 0; 
While CandT ≠ { }  do {  
       Possible := True; IndxCtx :=IndxCtx+1; 
       CIndxCtx := Criate_Ctx(IndxCtx);  
        While Possible do {  
                (Possible,t) = Choice_Trans(CandT,CIndxCtx);  
                I f  Possible then {   
                     UpDate_Ctx(CIndxCTX,t); 
                     UpDate_CandT(CandT,t);  

       } ; 
           } ; 
        PartTHW := PartTHW ∪ { CIndxCtx} ; 
 } ; 
Output(PartTHW);   

        }  
Figure 7: Temporal partitioning algorithm. 
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The algorithm inputs are CDFG-Petri net and area 
constraint AHFPGA. The output algorithm is a contexts set 
PartTHW. The CandT set represents the transitions 
candidates to be grouped in CIndxCtx Context, without violate 
the precedence constraint. The choice of the transition, that 
must be grouped in a context, is made by Choice_Trans 
function that returns a transition t ∈ CandT that can be 
grouped in CIndxCtx without violate the area constraint. When 
the context CIndxCtx cannot group more transitions without 
violating the area constraints, the Choice_Trans function 
attributes the False value to Possible variable and a new 
context is created by Criate_Ctx function. It is necessary to 
apply an criterion to choose the most appropriate transition 
to be placed in context CIndxCtx. The criterion More 
concurrency implies the choice where the transitions are 
searched in width, considering parallelism exploration and 
execution time minimization. The criterion minimizes the 
communication implies the choice of the transition that 
results in less data edges, in data dependence graph GD, 
crossing the contexts.  

 
4.1 Area Estimation 
 

In Figure 3, AHpl and AHt are the areas for 
implementation of a p place and t transition respectively. 
These metrics are given by the expressions: 
AHpl =  AHFFD +  AHAND2+ (m+n-1)AHOR2  (3) 
AHt = (n+g-1)AHAND2, g = number of [ grdt]   (4)  

AHFFD i s the area of the Fl ip-Flop D, AHAND2 and 
AHOR2 are the areas of the AND and OR gates of 2 
input. The datapath circuit consists of registers, 
multiplexers and functional  unit components wi th 
areas designated by: AHR1, AHMUX2, AHFUi . The area 
estimate is done based on equivalent gates number for 
the XC400XX FPGAs [8], considering control  and 
datapath areas: 
AHP= AHCTRL + AHDP      (5) 

The control area estimation are obtained directly from 
expressions (3) and (4): 
AHCTRL= 

�
∀ p∈P

c AHpl(p)+
�

∀t∈T
cAHt(t)  (6) 

For datapath area AHDP, it is important to find out the 
number of registers, multiplexers and functional units. The 
registers area AHreg is calculated as a function of the 
variables set (VP) used in the process. If |v| is the length in 
bits of v∈ VP, the registers area used is: 
AHreg = 

�
∀ v∈VP

 |v|AHR1    (7) 
Multiplexers area AHmux is estimated as a function of 

the number of incidences for each operation in the 
hardware process. If OP is a set of incident operations, 
N(op) is the number of times that op ∈ OP appears in the 
process and |op| is the length in bits of the op inputs, the 
area estimated of multiplexers is given by: 
AHmux = 

�
∀op∈OPN(op)|op|AHMUX2    (8) 

The expressions (7) and (8) do not take into account 
registers and functional units reutilization. In this way, the 
estimates obtained may not be very accurate. For functional 

units area estimates, AHfu, the results are closer to real 
metrics. If ∀ op ∈ OP, ∃ FUop∈ FUL that implements op 
and N(FUop) is the number of functional units of the type 
FUop, then the estimate area for functional units is given by: 
AHfu=

�
∀op∈OPN(FUop) AHFUop    (9) 

Datapath area is the addition of (7), (8) and (9): 
AHDP =AHreg+AHmux+AHfu    (10)  

The number of functional units N(FUop), in the 
expression (9), is based on p-minimus invariants supports 
and universal transitions path set calculation for PNC [6] [7] 
[8]. Path transition may represent transitions that has 
exclusion relation in the PNC. Transition path set covering 
techniques can be used to determine the transitions 
concurrency degree inside of a contexts. This metrics is 
necessary for functional unit reuse estimation and 
concurrency criteria during the temporal partitioning.  

The additional area is necessary for implementation of 
circuits Interface_In and Interface_Out, depicted in Figure 
4, and End Context Detect Circuit, showed in Figure 5: 
AHCSW= AHInterfaceIn/Out+ AHEndCtx   (11) 

If NbIN and NbOUT are numbers of input and output 
bits in context Ci, givens by:  

NbIN =  # Ci.PIN + � ∀v∈Ci.VIN |v|    (12) 

NbOUT =  # Ci.POUT + � ∀v∈Ci.VOUT |v|   (13) 
If SizeB is the size of data bus interface between  

microprocessor and FPGAs, in bits, then the 
communication cost of context Ci is given by: 
Ci.CC = (NbIN+NbOUT)/SizeB   (14) 

The area for implementation the circuits interfaces 
in context Ci is given by:   
AHInterfaceIn/Out=log2(SizeB-1

*  max (NbIN, NbOUT)*  [c1 + c2*   

max (NbIN, NbOUT)]  + c3*NbOUT + c4*  #Ci.PIN + c5* 

(� ∀v∈Ci.VIN |v|)     (15), 
where c1, c2, c3, c4 and c5 are constants dependents of the 
details of interface implementation into the FPGAs. 

Finally, AHEndCtx, the End Context Detect Circuit 
area, is given by: 
AHEndCtx = c6*M*NMarking +c7*M+c8*NMarking  (16) 
where c6, c7 and c8 are constants, M= #Ci.PIN+#Ci.POUT and 
NMarking is the number of patterns marking of the initial 
Ci.PIN marking combined with the marking in Ci.POUT that 
indicates the end of context execution. 

The total area for context Ci is obtained by 
application of formulas (3) to (16) and is given by: 
Ci.AHW = AHP+AHCSW      (17) 
 
4.2 Time Execution Estimation 
 

The time execution TCi, for context Ci, is determined 
in recursive way. For each transition t, we associate two 
time values called MST, maximum start time, and MET, 
maximum end time, for execution operation: 
       0, if t is start transition in context Ci  
MST(t) = 

        Max{MET(t’ )|( t’∈ I(p)∧ p∈ I(t))}  (18) 



        D(OPt), if t is start transition in Ci 
MET(t)=   
                   D(OPt) +MST(t), otherwise   (19), 
Where, D(OPt) is the execution delay of operation OPt 
associated the t.  

For a context Ci, we can define the time context 
execution TCi as being the maximum MET value for the last 
transitions set in context Ci: 
TCi =Max{MET(t) | t is  last transition in Ci}  (20) 
 
5 CASE STUDY 
 

In This section a differential equation resolution is 
performed by the multi-context model presented in this 
work. The equations are as following: 

   x(t + i) = x(t) + y(t).i 
   y(t + i) = y(t) - f(x).y(t).t.i-3.x(t).i 
   t’   =  t + i , new t value 

The differential equation CDFG-Petri net resulted in 
40 places and 39 transitions. The Petri net was then split 
into 4 sub-nets of contexts, according to the two criteria. 
Table 1 shows the partitioning results.  

 
Table 1 – Temporal partitioning results 
Par tit ioning 1 Par tit ioning 2 

More Concurrency Minimizes Communication. 
Ctx AE AR P T C Ctx AE T C 

1 
2 
3 
4 

4987 
4377 
4995 
1053 

4218 
3688 
4678 
855 

84,58 
84,26 
93,65 
81,19 

4 
5 
6 
2 

13 
15 
19 
9 

1 
2 
3 

4768 
4512 
2589 

 

8 
5 
5 

11 
17 
17 

ΣΣΣΣ 15412 13439 87,20 17 56 ΣΣΣΣ 11869 18 45 
Ctx=Context, AE=Estimated Area (equivalent gates), AR=Real Area 
(equivalent gates)  T=Time(cycles) and C = Communication (bytes). 
FPGA area is AHFPGA = 5000 equivalent gates. P=Precision= 
(AR/AE).100%. 

 
The equivalent gates areas AE and AR in Table 1 

were estimated based on the XC4000 Xilinx FPGA family 
[5]. The context execution time T is estimated on the basis of 
the critical transition path extracted from formulas (18), (19) 
and (20). For the first contexts in both partitioning approach 
(Table 1), we can observe that in the concurrency criterion 
temporal partitioning takes less execution time than the 
communication criterion. It is due to the parallelism 
exploitation (Par titioning1) and communication reduction 
(Par titioning2). The partitioning 1 has been totally 
implemented in the chameleon board. The partitioning result 
had been translated manually into a RTL-level hardware 
description for each context and the Xilinx Foundation 3.1i. 
Synthesis areas results are showed in the column AR of  
Table 1. Good results have been obtained for area estimates 
with precisions around 86% in relation to Xilinx Syntheses 
Tool. In this version, based on a board with a single FPGA, 
the time for FPGA reconfiguration takes 16 ms. Depending 
on the number of contexts and application constrains the 
FPGA reconfiguration time may be suitable. However, for 
application in massive computational problems, the two 

stages pipeline model can by useful for removes 
reconfiguration latency and speed up the application.    

 
6 CONCLUSION AND FUTURE WORKS 

 
A switching context architecture based on Chameleon 

Platform, CDFG-Petri Net model and temporal partitioning 
algorithm are presented. In this architecture, large 
applications may be split into suitable hardware and 
software processes and run in a switching context approach. 
Estimates from a Petri net model also guarantees that 
hardware processes areas are suitable for the area available 
in the prototyping platform. An example has been presented 
in order to demonstrate the method for a low-end speed 
application. A two stages pipeline approach for hardware 
reconfiguration speed improvement during context 
switching has been suggested. It is possible to reduce the 
latency time between switching contexts since the FPGAs 
reconfiguration can overlap context execution. This 
pipeline strategy can also be internally used in dynamically 
reconfigurable FPGAs. A new platform with such 
architecture is under development.  
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