
Algor ithm for Switching Context Temporal Par titioning Based in
CDFG-Petr i Net M odel

Paulo Sérgio B. Nascimento, Manoel E. Lima and Paulo R. M. Maciel

Centro de Informática - Cin / UFPE - P.O. Box 7851 - Cidade Universitária
Phone: +55 081 32718430, Fax: +55 081 32718438
Recife - PE - Brazil - psbn, mel, prmm@cin.ufpe.br

Keywords. Virtual Hardware, FPGA, Switching Context,
Temporal Partitioning, Petri Nets, Pipeline.

Abstract

The reconfigurable computing has seen many
promising advances in recent years. The development of
platforms that match reconfigurable hardware with
software elements, such as microprocessors, promise great
applicability in diverse areas in the future. This article
describes a algorithm for switching context temporal
partitioning, based on a control data flow representation of
hardware components, called CDFG-Petri Net model. The
proposed partitioning algorithm allows to implement
attached co-processors to speed up slow procedures in a
hardware/software co-design approach, using a context
switching model.

1 INTRODUCTION

With the increasing size of the digital systems, more

powerful system architectures are needed to increase the
speed of application. Generally, hardware implementations
into a FPGA allow concurrency and increasing data
processing speed. Software implementations present some
advantages such as flexibility and low implementation cost
of complex functions; however it presents limitations as
difficulties to explore parallelism and meet constraints for
high speed applications [2] [3] [4]. In a hw/sw codesign
methodology [1], the advantages of both hw and sw are
taking into account. This methodology break the system in
software and hardware components with objective of
accelerating the application. In general, a complex
hardware component specification is represented by a
single and large file, that can be too large to be fitted into a
single FPGA. Thus, the circuit mapping requires splitting
the original file into small ones in order to fit the logic into
the FPGAs. Multi-FPGAs platforms [3] [5] are possible
solutions since it is possible, from one given specification,
to split the system into smaller processes adjustable to the
platform. However, this approach demands hardware area
proportional to the system complexity, increasing the cost
of solution. In our model, the partitions on contexts could
be switched at time in a FPGA, according to a scheduling

algorithm [6]. The methodology suggests a virtual
hardware mechanism like a virtual memory [4].

In this article we present a temporal partitioning
algorithm based on CDFG-Petri Net model [6] for
switching context co-processor implementation. Petri net
analyses and metrics [7] [8] are used, having as target the
Xilinx XC4000 family FPGAs. This algorithm allows the
division of the process in time multiplexing contexts for
execution in low cost hardware, based on static
reconfigurable devices (FPGAs). Two stages pipeline
structure can be used to decrease the effects of the FPGA
reconfiguration time in the system performance. Section 2
presents a CDFG-Petri Net model [6] used for control-data
flow representations. Section 3 presents the hardware
context circuits model and switching context mechanism.
Section 4 discusses temporal partitioning algorithm.
Section 5 presents a complete example and some results.
Finally, section 6 presents conclusions and future works.

2 CDFG-TIMED PETRI NET MODEL

In the proposed model, the hw is represented for a

Control Data Flow Graph, showed in Figure 1, called
CDFG-Timed Petri Net Model [6] [8].

Figure 1: CDFG-Timed Petri Net Model

Timed Petri nets are a formal family of specification
techniques that allow for a graphical, mathematical
representation and have powerful methods for performing
qualitative and quantitative analysis [7]. Time information
is expressed by duration and is associated to the transitions:

int function (int a, int b) {
 int x,y
 x = a+b;
 if (x<0) {
 y = a*x;
 }
 else {
 y = x*b;
 };
 retur n(y);
}

t1 t2

t3 t4

t0

p1

p2
p3

p4

p0 Input(a) Input(b)

x=a+b

if (x<0) else

y = a*x y = x*b

Output(y)

a

a

b

b

x x

x x

y y

Hw Process:
CDFG-Timed Petri Net Model:

mailto: psbn@cin.ufpe.br,mel@cin.ufpe.br,prmm@cin.ufpe.br

Definition of Timed Petri Nets: Let a pair PN = (N,D) be a
timed Petri net, where N = (P,T,I,O,M0) is a Petri net [7] ,
D:T →A, A={ a | a > 0, a ∈ R } is a function which
associates with each transition ti the duration of the firing
di ,. �

The transitions ti ∈ T represent operations and the
duration di represent the execution time of transition ti.
operation. Places pj ∈ P interconnect transitions to establish
an operation control sequence. Timed Petri net form allows
the application of the associated mathematical formalism
for verification of the system, properties extraction and
estimates [7] [8]:

Definition of CDFG - Petri Net: is a pair (PNC,GD) where:
PNC is safe [7] and Timed Petri net and represents the
control flow. G

D = (V, E, FD), V = T ∪ In ∪ Out, is the
data dependence graph. T is Petri net transitions set; In
and Out are respectively data input and data output points;
E ⊂ VxV is the edge set that represents data dependence
among the vertex of G

D
 in V set; FD(e) is the variables sub-

set associated to the data flow represented for e ∈ E.
�

When the hardware represented by the CDFG is not
possible to be fit into the FPGA, it is partitioned in multiple
contexts. Each context is a transition subset. The contexts
are then implemented in a time-multiplexed approach as a
Virtual Hardware Circuit [4] [6]. Figure 2, shows Ci
context model defined by the transition subset Ci.T.

Figure 2: Context Model (Ci).

For each context, we can define a limit formed for

an input places set Ci.PIN and for an output places set
Ci.POUT. The context limits of Ci cuts the data dependence
graph GD in a set of entrance data edges Ci.VIN, that
represents data that will be processed in the context, and a
set of exit data edges Ci.VOUT, that represents data produced
after context execution.

3 MULTI-CONTEXT CIRCUIT MODELS

The Mul ti-Context Circui t model is based on the
Chameleon prototyping platform [5], composes by a
software component, microcontrol ler Intel 8051,
hardware component, FPGA XC4010 from Xil inx, and
memory banks.

3.1 Context Circuits

Each context Ci is converted in a control-datapath
circuit.

Figure 3: Hardware model for controller: a) PNC place
circuit; b) PNC transition circuit.

In Figure 3, the place in control flow PNC is

mapping in D flipflop in a control unit. Transitions are
mapping in AND gates, were inputs are place token value
(0,1). Making the mapping of each transition t ∈ Ci.T and
each places of the control flow graph, a control unit for
context Ci is generated. The datapath circuit is generates by
mapping the datafllow graph GD in RTL (Register Transfer
Level) structure. Variables are mapping in registers,
operations are mapping in functional units and the data
dependency, represented by edges in GD, is mapping in nets
and multiplexers[6] [8]. The sets Ci.VIN, Ci.VOUT, Ci.PIN,
Ci.POUT (Figure 2) represent the data value and control state
communications between the contexts. The communication
circuit model for control state and data values interchange
between two contexts is depicted in Figure 4. In this circuit,
the place p is common to both contexts Ci and Cj. and is
implemented in the both context controllers. The transfer is
performed by the microcontroller in the prototyping
platform. The data value and control states read from Ci are
stored in memory buffer in order to be sent to the next
context Cj, after FPGA reconfiguration.

 Figure 4: Output and Input context circuit interface.

Finally, the Figure 5 shows the circuit to detect the

end of the context execution. For each initial marking of the
input places in Ci.PIN , a set of possible final markings of
output places Ci.POUT exists. These markings are only

Ci.T = {t0,t1,t2}
Ci.PIN = {p0}
Ci.POUT = {p2,p3}
Ci.V IN = {a,b}
Ci.VOUT = {x}

p0

p3

p1

t0

t1

p2

t2

a a

x x

x

x= a+b

if (x<0) else

p

t_input t_output

Q

Flipflop
D

D

CLK

a)

p_input_2

p_input_1 t
[grdt] [grdt]

p_input_1
p_input_2

t

b)

M icro-
Processor

M emory
Buffer

Inter face Out
Context Ci

Control Unit

DataPath

Context Cj

Control Unit

DataPath

Inter face In

FPGA Configuration in Step i FPGA Configuration in Step j

Cj Ci

t1 t2
p

p p

v

Reg: v Reg: v

t1 t2

reached in the end of the context execution and when a
context finishes a marking of this set is always reached.

In each context, the initial input places marking are
storage in special flipflops called IMHF (Initial Marking
Hold FlipFlops in Figure 5) that holds this marking during
all context execution time. Therefore, it is always possible
to detect the end of the context execution by observing if
the initial Ci.PIN marking, in IMHF combined with the
marking in Ci.POUT reaches the end context marking.

Figure 5: End Context Detect Circuit.

These patterns marking are generated during the

partitioning of the application in contexts.

3.2 Switching Context Mechanism

The FPGA is used to implement the contexts

according to a previous context schedul ing and
swi tching task managed by the microcontrol ler. The
scheduling information is generated during the
temporal parti tioning. The context switching routine
in software is activated by an IntSw interrupt signal
generated by the FPGA (Figure 5). The data and state
generated for the old context are transferred to a
memory buffer and, after the FPGA reconfiguration,
the microcontrol ler transfers the data information
from the buffer to the new context. The context
swi tching time TSW i s given by the FPGA
reconfiguration time (TRec) and the data transference
time between contexts (TData), TSW = TRec + TData.

In order to improve the performance of the
switching contexts on a static reconfigurable FPGA, a two
stages pipeline structure is proposed in Figure 6. While a
FPGA executes a context Ci another FPGA is reconfigured
with next context Ci+1.

Figure 6: Two stages pipeline reconfigurable architecture.

If C1, C2, ..., CN are the contexts and if TCi is the
execution time of context Ci, TDi is the time for data
transfer in switching context Ci to next Ci+1 and TRec is the
FPGA reconfiguration time. Thus, the execution time TMC
of the multi-context application can be given by:

TMC=TRec+TD0+{
�

[Max(TRec,TCi)+TDi] }+TCN+TDN (1),

Where Max(a,b) function is the major value of a and b. TD0
is the time for input data in the first context C1 and TDN is
the time for output data in last context CN. For massive
computation applications, it is possible that TCi ≥ TRec for all
the contexts. The formula (1) is reduced to:

TMC=TRec+TD0+{
�

 (TCi+TDi)}+TCN+TDN (2)

In this in case, execution time depends only on the
sub-process time in each context and the speed of data
transfer, eliminating the reconfiguration latency.

4 TEMPORAL PARTITIONING ALGORITHM

The temporal partitioning split the CDFG-Petri net
of hardware process PHW, generating a contexts set
PartTHW. The total area of each context can not exceed the
FPGA area and transitions must be grouped in the contexts
obeying the order in the control flow PNC:
Definition Temporal Partitioning: Let a pair P

HW = (PN
C
,

G
D
) be a CDFG process implemented in an FPGA area

AHFPGA, we defined a P
HW

 partitioning as being a contexts

set PartT
HW

 = {C1, C2,…, CK} and Ci.T∩ Cj.T = {} ∀ Ci,Cj

∈ PartT
HW

, i≠ j. Ci.T is the context transitions set; Ci.AHW
is the FPGA area for Ci and context execution order is
C1→C2→…Ck. Constraints is Area: Ci.AHW ≤ AHFPGA

∀ Ci ∈ PartT
HW

 and Precedence: t∈ Ci.T � (∀ t’∈ I(p) ∧
p∈I(t): ∃ Cj | t’∈ Cj.T ∧ j ≤ i). �

The partitioning uses a constructive algorithm,
showed in Figure 7, based on the transitions grouping into
the contexts.

TempPar t{
Input (PHW=(PNC,GD), AHFPGA

)
PartTHW := { } ; CandT :={ t0}
IndxCtx := 0;
While CandT ≠ { } do {
 Possible := True; IndxCtx :=IndxCtx+1;
 CIndxCtx := Criate_Ctx(IndxCtx);
 While Possible do {
 (Possible,t) = Choice_Trans(CandT,CIndxCtx);
 I f Possible then {
 UpDate_Ctx(CIndxCTX,t);
 UpDate_CandT(CandT,t);

 } ;
 } ;
 PartTHW := PartTHW ∪ { CIndxCtx} ;
 } ;
Output(PartTHW);

 }
Figure 7: Temporal partitioning algorithm.

i=1

N-1

i=1

N-1

IM HF Flipflops Ci.PIN

Ci.POUT Context
Ci

Combinational Logic
End Pattern M atching

IntSw:
End Context Signal

FPGA
1

FPGA
2

Context
1

Context
2

Context
3

Context
4

M ulti–Context Application

Context Configur ation on FPGA

Context Execution on FPGA

time

Two Stage Pipeline FPGAs 1

1

2

2

3

3

4

4

The algorithm inputs are CDFG-Petri net and area
constraint AHFPGA. The output algorithm is a contexts set
PartTHW. The CandT set represents the transitions
candidates to be grouped in CIndxCtx Context, without violate
the precedence constraint. The choice of the transition, that
must be grouped in a context, is made by Choice_Trans
function that returns a transition t ∈ CandT that can be
grouped in CIndxCtx without violate the area constraint. When
the context CIndxCtx cannot group more transitions without
violating the area constraints, the Choice_Trans function
attributes the False value to Possible variable and a new
context is created by Criate_Ctx function. It is necessary to
apply an criterion to choose the most appropriate transition
to be placed in context CIndxCtx. The criterion More
concurrency implies the choice where the transitions are
searched in width, considering parallelism exploration and
execution time minimization. The criterion minimizes the
communication implies the choice of the transition that
results in less data edges, in data dependence graph GD,
crossing the contexts.

4.1 Area Estimation

In Figure 3, AHpl and AHt are the areas for
implementation of a p place and t transition respectively.
These metrics are given by the expressions:
AHpl = AHFFD + AHAND2+ (m+n-1)AHOR2 (3)
AHt = (n+g-1)AHAND2, g = number of [grdt] (4)

AHFFD i s the area of the Fl ip-Flop D, AHAND2 and
AHOR2 are the areas of the AND and OR gates of 2
input. The datapath circuit consists of registers,
multiplexers and functional unit components wi th
areas designated by: AHR1, AHMUX2, AHFUi . The area
estimate is done based on equivalent gates number for
the XC400XX FPGAs [8], considering control and
datapath areas:
AHP= AHCTRL + AHDP (5)

The control area estimation are obtained directly from
expressions (3) and (4):
AHCTRL=

�
∀ p∈P

c AHpl(p)+
�

∀t∈T
cAHt(t) (6)

For datapath area AHDP, it is important to find out the
number of registers, multiplexers and functional units. The
registers area AHreg is calculated as a function of the
variables set (VP) used in the process. If |v| is the length in
bits of v∈ VP, the registers area used is:
AHreg =

�
∀ v∈VP

 |v|AHR1 (7)
Multiplexers area AHmux is estimated as a function of

the number of incidences for each operation in the
hardware process. If OP is a set of incident operations,
N(op) is the number of times that op ∈ OP appears in the
process and |op| is the length in bits of the op inputs, the
area estimated of multiplexers is given by:
AHmux =

�
∀op∈OPN(op)|op|AHMUX2 (8)

The expressions (7) and (8) do not take into account
registers and functional units reutilization. In this way, the
estimates obtained may not be very accurate. For functional

units area estimates, AHfu, the results are closer to real
metrics. If ∀ op ∈ OP, ∃ FUop∈ FUL that implements op
and N(FUop) is the number of functional units of the type
FUop, then the estimate area for functional units is given by:
AHfu=

�
∀op∈OPN(FUop) AHFUop (9)

Datapath area is the addition of (7), (8) and (9):
AHDP =AHreg+AHmux+AHfu (10)

The number of functional units N(FUop), in the
expression (9), is based on p-minimus invariants supports
and universal transitions path set calculation for PNC [6] [7]
[8]. Path transition may represent transitions that has
exclusion relation in the PNC. Transition path set covering
techniques can be used to determine the transitions
concurrency degree inside of a contexts. This metrics is
necessary for functional unit reuse estimation and
concurrency criteria during the temporal partitioning.

The additional area is necessary for implementation of
circuits Interface_In and Interface_Out, depicted in Figure
4, and End Context Detect Circuit, showed in Figure 5:
AHCSW= AHInterfaceIn/Out+ AHEndCtx (11)

If NbIN and NbOUT are numbers of input and output
bits in context Ci, givens by:

NbIN = # Ci.PIN + � ∀v∈Ci.VIN |v| (12)

NbOUT = # Ci.POUT + � ∀v∈Ci.VOUT |v| (13)
If SizeB is the size of data bus interface between

microprocessor and FPGAs, in bits, then the
communication cost of context Ci is given by:
Ci.CC = (NbIN+NbOUT)/SizeB (14)

The area for implementation the circuits interfaces
in context Ci is given by:
AHInterfaceIn/Out=log2(SizeB-1

* max (NbIN, NbOUT)* [c1 + c2*

max (NbIN, NbOUT)] + c3*NbOUT + c4* #Ci.PIN + c5*

(� ∀v∈Ci.VIN |v|) (15),
where c1, c2, c3, c4 and c5 are constants dependents of the
details of interface implementation into the FPGAs.

Finally, AHEndCtx, the End Context Detect Circuit
area, is given by:
AHEndCtx = c6*M*NMarking +c7*M+c8*NMarking (16)
where c6, c7 and c8 are constants, M= #Ci.PIN+#Ci.POUT and
NMarking is the number of patterns marking of the initial
Ci.PIN marking combined with the marking in Ci.POUT that
indicates the end of context execution.

The total area for context Ci is obtained by
application of formulas (3) to (16) and is given by:
Ci.AHW = AHP+AHCSW (17)

4.2 Time Execution Estimation

The time execution TCi, for context Ci, is determined
in recursive way. For each transition t, we associate two
time values called MST, maximum start time, and MET,
maximum end time, for execution operation:
 0, if t is start transition in context Ci
MST(t) =

 Max{MET(t’)|(t’∈ I(p)∧ p∈ I(t))} (18)

 D(OPt), if t is start transition in Ci
MET(t)=
 D(OPt) +MST(t), otherwise (19),
Where, D(OPt) is the execution delay of operation OPt
associated the t.

For a context Ci, we can define the time context
execution TCi as being the maximum MET value for the last
transitions set in context Ci:
TCi =Max{MET(t) | t is last transition in Ci} (20)

5 CASE STUDY

In This section a differential equation resolution is
performed by the multi-context model presented in this
work. The equations are as following:

 x(t + i) = x(t) + y(t).i
 y(t + i) = y(t) - f(x).y(t).t.i-3.x(t).i
 t’ = t + i , new t value

The differential equation CDFG-Petri net resulted in
40 places and 39 transitions. The Petri net was then split
into 4 sub-nets of contexts, according to the two criteria.
Table 1 shows the partitioning results.

Table 1 – Temporal partitioning results
Par tit ioning 1 Par tit ioning 2

More Concurrency Minimizes Communication.
Ctx AE AR P T C Ctx AE T C

1
2
3
4

4987
4377
4995
1053

4218
3688
4678
855

84,58
84,26
93,65
81,19

4
5
6
2

13
15
19
9

1
2
3

4768
4512
2589

8
5
5

11
17
17

ΣΣΣΣ 15412 13439 87,20 17 56 ΣΣΣΣ 11869 18 45
Ctx=Context, AE=Estimated Area (equivalent gates), AR=Real Area
(equivalent gates) T=Time(cycles) and C = Communication (bytes).
FPGA area is AHFPGA = 5000 equivalent gates. P=Precision=
(AR/AE).100%.

The equivalent gates areas AE and AR in Table 1

were estimated based on the XC4000 Xilinx FPGA family
[5]. The context execution time T is estimated on the basis of
the critical transition path extracted from formulas (18), (19)
and (20). For the first contexts in both partitioning approach
(Table 1), we can observe that in the concurrency criterion
temporal partitioning takes less execution time than the
communication criterion. It is due to the parallelism
exploitation (Par titioning1) and communication reduction
(Par titioning2). The partitioning 1 has been totally
implemented in the chameleon board. The partitioning result
had been translated manually into a RTL-level hardware
description for each context and the Xilinx Foundation 3.1i.
Synthesis areas results are showed in the column AR of
Table 1. Good results have been obtained for area estimates
with precisions around 86% in relation to Xilinx Syntheses
Tool. In this version, based on a board with a single FPGA,
the time for FPGA reconfiguration takes 16 ms. Depending
on the number of contexts and application constrains the
FPGA reconfiguration time may be suitable. However, for
application in massive computational problems, the two

stages pipeline model can by useful for removes
reconfiguration latency and speed up the application.

6 CONCLUSION AND FUTURE WORKS

A switching context architecture based on Chameleon

Platform, CDFG-Petri Net model and temporal partitioning
algorithm are presented. In this architecture, large
applications may be split into suitable hardware and
software processes and run in a switching context approach.
Estimates from a Petri net model also guarantees that
hardware processes areas are suitable for the area available
in the prototyping platform. An example has been presented
in order to demonstrate the method for a low-end speed
application. A two stages pipeline approach for hardware
reconfiguration speed improvement during context
switching has been suggested. It is possible to reduce the
latency time between switching contexts since the FPGAs
reconfiguration can overlap context execution. This
pipeline strategy can also be internally used in dynamically
reconfigurable FPGAs. A new platform with such
architecture is under development.

7 REFERENCES

[1] Barros, E. et al., "Hardware/Software Codesign in the
PISH project", procedings of the II Brazilian Workshop on
Hardware/Software Codesign, 1997.
[2] Hauck, S., “The future of reconfigurable systems” ,
Keynote Address,5th Canadian conference on field
programmable devices, Montreal, 1998.
[3] Hauck, S., “The holes of FPGAs in reprogramable
systems” , preceedings of IEEE, vol. 86, No 4, 1998, pp
615-638.
[4] Hauck, S.; Compton K.,“Configurable Computing: A
Survey of Systems and Software” . submitted to ACM
Computing Surveys, 2000.
 [5] Lima, M. E., D. S. Silva, D. G. Ramalho, A. V. Burgos,
“Chameleon-I: A Rapid Prorotyping Multi-FPGA Platform
for PISH Codesign System” , SBMicro2000 - XV
International Conference on Microelectronics and
Packaging”, pp. 86-91.
[6] Nascimento, Paulo S. B.; Lima, Manoel; Maciel, Paulo;
Silva-Filho, A. G.; Barros, Edna; Cavalcante, Sérgio,
“CDFG – Petri Net Temporal Partitioning for Switching
Context Applications” , 15th Symposium on Integrated
Circuits and Systems Design – SBCCI 2002, Proceedings,
pp. 235-240.
[7] Murata T., “Petri Nets: Properties, Analysis and
Applications” , Proceeding of The IEEE, 1989.
[8] Maciel, P.M.; “Petri Net Based Estimators for
Hardware/Software Codesign” . Doctor Degree Thesis.
Centro de Informática – UFPE, Brasil, 1999.

	TITLE PAGE
	PROCEEDINGS LIST
	HPCS Table of Contents
	ACROBAT HELP
	Algorithm for Switching Context Temporal Partitioning Based in CDFG-Petri Net Model
	Keywords.
	Abstract
	1 INTRODUCTION
	2 CDFG-TIMED PETRI NET MODEL
	3 MULTI-CONTEXT CIRCUIT MODELS
	3.1 Context Circuits
	3.2 Switching Context Mechanism

	4 TEMPORAL PARTITIONING ALGORITHM
	4.1 Area Estimation
	4.2 Time Execution Estimation

	5 CASE STUDY
	6 CONCLUSION AND FUTURE WORKS
	7 REFERENCES

