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Abstract

During the past three decades a number of theories
have been proposed to explain the idiosyncrasies of
software development as a team activity. These theories
variously relate to: adding more programmers to a late
project makes it later (Brooks); the structure of the system
mirrors the structure of the organization that designed it
(Conway); software modules are a responsibility
assignment (Parnas) and one must consider stability and
responsibility during dependency analysis (Martin). This
paper compares and combines these theories into a
coherent model of software development that links
software coupling and dependency management with team
productivity.

As a practical test of this model, the paper then
investigates the effects of coupling in two large
commercial systems (both measured in person decades of
effort). It achieves this by using the VCML Views
visualisation technique, developed by the authors, to
expose the system wide coupling found in the code and
how this coupling develops during the lifetime of a
project. It then compares the resultant VCML views with
simple attributes of the two projects, such as programmer
numbers and programmer productivity to derive a set of
important conclusions.

In particular, it finds that unmanaged coupling within
the code is a good indicator of potential productivity
bottlenecks; that the number of programmers on a project
is not necessarily a good indicator of programmer
productivity; and that the architecture of a software
system can radically alter the number of programmers
that can effectively work together on a system.
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1. Theories of Software Architecture

When Fred Brooks published his theories of project
management in the Mythical Man Month, he forever
linked the addition of developers to a late project with
failure [2]. The basis for Brook’s Law was that each
programmer added to a team multiplied the
communication burden that each other programmer would
have. Further, he stated that the work on a software project
is not easily partitioned into isolated tasks, and that this
lack of parallelism means that programmers conflict with
each other and impede each other’s progress.

Three years prior to the publication of the Mythical
Man Month, David Parnas had presented his ideas on
Information Hiding [14]. In his paper he defined a
software module as ‘“a responsibility assignment rather
than a subprogram,” driving home the idea that modular
design enables decisions about the internals of each
module to be made independently. That is, the aim of
structure in a program is to support co-ordination of the
development work.

In the previous decade, Melvin Conway proposed what
has since become known as Conway’s Law —that the
structure of the system mirrors the structure of the
organization that designed it [6]. He states that
architecture is about relationships between system parts
and therefore is also about relationships between people.
He further argued that the organisational arrangements
could only be optimised with respect to “the system
concept in effect at that time.” Simply put, this means that
if the system architecture is unstable the organisation
cannot sensibly isolate software modules in order to allow
parallel team development.

The views of Parnas and Conway are echoed by the
findings of Herbsleb and Grinter who studied the effects
of software architecture on multi-site development teams
[10]. They noted that instability of the software
architecture creates an enormous need for communication.
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They stated, “We believe that the qualitative evidence
from our case study strongly supports Conway’s and
Parnas’ positions that the essence of good design is
facilitating co-ordination among developers.”

Twenty years after the Mythical Man Month, Brooks
too admitted the following: “I dismissed Parnas's concept
as a ‘recipe for disaster’ in Chapter 7. Parnas was right
and I was wrong. I am now convinced that information
hiding, today often embodied in object-oriented
programming, is the only way of raising the level of
software design” [3].

Bob Martin has worked for years to document the
principles of object oriented class design, that he states are
all driven by the need for dependency management
[12,13]. He lists the symptoms of rotting design as:
rigidity, fragility, immobility and viscosity and attributes
these symptoms to improper dependencies between the
modules of the software. He states that, in order to
forestall the degradation of the dependency architecture,
the dependencies between modules in an application must
be managed. Martin further states that the way to measure
dependencies between modules is to measure the coupling
between modules. In this respect he distinguishes between
afferent coupling & efferent coupling.

Briand, Daly & Wiirst review coupling measures and
define the terms client class and server class [1]. In the
context of coupling, they see it as useful to distinguish the
class that is using another class, and the class that is being
used. They refer to the using class as the client class, and
to the used class as the server class. Linking this to the
work of Martin gives afferent coupling as being a measure
of the number of references to a class and efferent
coupling as a measure of the number of other class that the
class uses. That is afferent coupling can be seen as the
number of times the class is the server in a coupling
relationship and efferent coupling as the number of times
the class is the client in a coupling relationship.

Martin argues that high coupling is not always bad.
Abstract interfaces can quite reasonably have a high
number of references to them, making them responsible,
as long as they are stable. The parts of a system that are
unstable (i.e. those parts that are highly change prone)
must be irresponsible, so that they can change without
causing large ripples throughout the rest of the code. This
is information hiding at work, and as long as all the shared
system parts are not changing, separate programmers can
check-out from the revision control system the parts of the
system that require work without causing bottlenecks or
code merges.

Thus to facilitate dependency management, it is not
coupling that needs to be measured, but the direction of
coupling. The combination of a high number of references
(implying responsibility) and a high uses measure
(implying instability) exposes poor information hiding,
and identifies a bottleneck for parallel team development.
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2. Combined Model: Unmanaged Coupling
Impedes Team Development

Figure 1 shows a series of diagrams illustrating the
theories that have been reported from the literature. These
diagrams build into a combined model of dependency
management and demonstrate the effect that module
assignment and coupling can have on team dynamics and
productivity.

Small C++ programs can be kept within one source
file. However this strategy does not scale well. To
facilitate team development (in the most general sense),
program parts are assigned to separate modules. Figure 1.a
shows two developers working on the same program. As
the program is contained with one file, they cannot work
independently from each other. This causes conflict within
the revision control system and requires module changes
to be merged. The resolution of this problem is shown in
Figure 1.b. The program is broken into separate modules.
The commonality between the two modules is assigned to
a shared module, allowing the two developers to work on
separate modules independently of each other. Thus
module assignment facilitates teamwork. However there is
a consequence to separating code into modules.

The shared module that contains the commonality
defines an interface that dependant modules require for
successful compilation. Figure 1.c shows that the shared
module has become responsible to the dependant modules.
Any change in the interface will affect the dependant
modules, (by at least requiring a recompilation, but
possibly requiring code modification as well). Therefore
the responsibility of a module can be measured by
counting the number of modules that depend upon it. The
dependant modules that contain the variability can now be
edited independently of each other. However if the shared
module is edited then all the dependant modules are
affected. Figure 1.d shows that the cost of editing a
responsible module is higher than the cost of editing an
irresponsible module. This implies that the responsible
modules are required to be stable. Figure 1.e shows that
the modules that it depends upon affect the stability of a
module. Therefore the stability of a module can be
measured by counting the modules that it depends upon. If
the modules that a module depends upon are edited, then
any edits in the module are affected. Figure 1.f shows that
if the modules that a module depends upon are unstable,
then team productivity is impaired. Therefore if a
responsible module is also unstable, it implies that the
system has not been assigned to modules correctly. By
finding modules that are both responsible and unstable one
has found a bottleneck to team development. By
combining the theories of Parnas & Conway with Martin’s
principles one can see that improper dependencies
between software modules means poor information hiding
and therefore the assignment of responsibility for each
module has failed.
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This model suggests that by measuring the stability
and responsibility of modules, a prediction can be made of
the ability of a team of software developers to work
independently of each other.

Software development requires ‘team players’ that
work in ‘isolation’. Mackey notes that even though
software engineering is thought of as a solitary activity
that attracts a large number of introverts, most software
engineering job adverts ask for ‘team players’ [11]. The
‘isolated’, introverted developers are dependant upon each
other through the coupling of the common parts of their
developments (shared modules). If an organisation tries to
separate teams into parallel development efforts, the
coupling between their separate efforts will limit their
ability to work in parallel. Therefore there is a schism
between different parts of the organisation caused by the
software architecture.

Poor Information Hiding also conflicts with Conway’s
Law: the structure of the system mirrors the structure of
the organization that designed it. If the organisation has a
structure that does not mirror the module assignment and
coupling of the software structure, then there will be
excessive communication requirements between the
development teams that are asked to work in parallel. If
poor information hiding is allowed to dominate a project,
then it will become late due to the inefficiencies of
programmers competing for the same source module. If a
project is in this state then one can see that adding more
programmers will exacerbate the problem, leading to
Brook’s Law: adding more programmers to a late project
makes it later. In conclusion, this model can be summed as
follows: If software is improperly coupled then people are
improperly coupled.

For the purposes of testing this model two high quality
and successful software projects have been studied over a
period of between two and four years.

3. The Two Software Projects

Swift is a large-scale commercial piece of software
developed by Softel Ltd. In 1999, Swift was a joint
recipient of The Royal Television Society Award for
Innovative Applications. It has well over 500,000 lines of
original in-house code as well as incorporating third party
COTS (Components-off-the-Shelf) such as MFC
(Microsoft Foundation Classes). Development of Swift
began in the spring of 1997 utilising a single developer
and growing to seven fulltime personnel by the summer of
1999. It has continued with that level of support for the
last two years. Therefore Swift has received (very
approximately) twenty person years of effort over four
years.

Quantel developed a new platform for video and audio
editing in the 1990s. As part of this they have developed a
software suite we shall call development ‘B’. It has well
over 800,000 lines of original in-house code and also uses
many COTS such as the ACE networking toolkit and
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ImageMagick picture format library. For the purposes of
this research we can say that Development B began in
Autumn 1999 with six fulltime programmers. This figure
has risen to 14 fulltime software engineers by the summer
of 2001. Therefore development B has received (very
approximately) twenty person years of effort over two
years.

Some simple but useful attributes of the two
projects are shown in Table 1 below:

Metrics Project Swift Development B
(date) 2001-08-10 2001-07-17
Files ™ 1,930 3,540
Lines * 564,297 817,130
Approximate

project start date 1997-05 1999-09
Approximate

person years of 20 Years 20 Years
effort

Table 1 Simple Attributes of the Two Projects.

" Metrics gathered with SourceMonitor [15]. Only source code written
by the development teams was passed through the tool. Library headers
(such as C++ Standard Library, Windows™ headers and third party
headers) were excluded.

A simple analysis of these attributes shows that there
are approximately 45% more lines of code in
development B than in Swift. If the lines of code
produced per programmer year are calculated the Swift
team has averaged just over 28,000 LOC/Year whilst the
development B team has averaged in excess of 40,000
LOC/Year.

It can also be seen that development B has double the
number of programmers working in parallel These figures
are therefore counter-intuitive, for the programmers on the
development B team should have had more conflicting
merges and compile ripples than the programmers on
Swift. Based upon Brook’s analysis of communication
overhead, one would predict that the LOC/Year should be
less on projects with a larger team of programmers.

The model presented earlier in the paper has suggested
that the source code of the projects needs to be analysed to
expose the level of responsibility and stability that the
classes in the system exhibit. The model suggests that
Swift will have more classes that are both responsible and
unstable than development B.

Therefore, in order to explain the above figures,
Section 4 presents a technique that can expose the physical
coupling inherent in the source code within the two
projects.

4. Visual Class Multiple Lens Views

Visual Class Multiple Lens (VCML) views are generated
using Visual Class, a tool that implements the Lens
visualisation technique developed by the authors. The
Lens technique, the Visual Class tool suite and VCML
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views have all been documented in detail elsewhere [4, 5].
In essence, Visual Class takes as its data source the
Browser Database that can be generated by Microsoft
Visual C++ during a compilation. Once the database is
loaded into the Visual Class, each class within the code
has its reference and uses measure calculated. All classes
are then drawn, with Lenses affecting their visual
attributes.

The reference measure is mapped to the size of each
class and represented by a font size lens (the larger the
font size the greater the number of references to that
class). The uses measure is mapped to the colour of each
class using a scale that runs from blue (low) to red (high).
The images presented all have the same scaling applied to
each lens. This scaling factor has been found iteratively by
experimentation. It should be noted however, that the
current layout algorithm in Visual Class only handles
single inheritance, so in the case of multiple inheritance,
classes will be drawn more than once. As shall be seen
this does not detract from the usefulness of the VCML
views since all that is important is the relative size and
colour of each class.

In order to present the most relevant attributes of a
piece of code, a threshold can be applied to remove all the
classes that have a uses measure below 20 (or indeed any
other specified number) other classes. This means that the
views only have yellow and red classes visible. In effect
the images have had all the stable classes removed, and
the unstable classes have been exposed.

This technique and its implementation expose the
classes that have both a high reference measure and a high
uses measure. These can be seen as the classes that are
both Big and Red.

Section 5 describes the application of this technique to
the two large-scale software systems.

5. Visualising Projects with VCML Views

Lenses 1 — 4 in Figure 2 show the interaction between the
two directions of coupling within Swift over four years of
development. The lenses show that over this time the
Swift source code has become highly dependant upon
several key classes (they are big) that have in the same
period of time also become unstable (they are red).

CWnd is a class at the core of the Microsoft
Foundation Classes COTS framework, and as such is not
edited by the development team. Accordingly it does not
change colour, it just grows over time. However all the
other classes visible in the Lens view have been developed
in house, and as such are indicators of unmanaged
dependencies.

CBlock is a central abstraction in the Swift design,
being the base class to all elements that can be displayed
in its user interface. Over the four years of the
visualisation the CBlock interface has become ‘fat’. A fat
interface is one that is all things to all people, with many
of the derived classes not having a useful implementation

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

of some of the inherited interfaces. Fowler in his catalogue
of “bad smells in code”, names this problem Refused
Interface Bequest [8].

CSwift32Doc and CMainFrame are two other
classes exposed as being both unstable and responsible.
Both these classes inherit from key abstractions in the
Microsoft Foundations Class hierarchy. They are both
used heavily for routing messages around the system.
CMainFrame is available globally through a variant of
the ‘singleton pattern’ [9]. It is therefore used widely to
dispatch messages from anywhere in the system to the
user interface. It also delegates most of these messages to
the main document class, CSwift32Doc. This leads to
many of the types in the Swift system being required by
both these classes to compile.

The Swift team undertook to re-factor the code to
reduce the excessive compile times that the coupling was
causing. The effects of this are shown in the difference
between Lens 3 and Lens 4, the rate of growth in coupling
has reduced, but the coupling problems have still
worsened over the two-year period they represent.

On discussion of these results with the Swift team lead,
he wants to add an implementation of the command
pattern to distribute the dependencies caused by
CMainFrame and CSwift32Doc. This would reduce
the instability of the two classes, as they would no longer
be dependant upon all the types that currently pass through
their interfaces.

Lenses 5 — 8 in Figure 2 show the interaction between
the two types of coupling within development B over the
second 15 months of its development. During that time the
development B code base went from 386,519 LOC to
1,016,512 LOC (calculated as before using SourceMonitor
[15]). The lenses show that development B has a massive
amount of instability (there is a lot of red). However the
lenses also show that the instability is distributed through
many hundreds of classes with very little responsibility
(most of the red classes are small). Even so, there are two
classes that are both unstable and responsible (both big
and red), namely iWidget and Image.

The Image class is at the core of the ImageMagick
COTS library, and like CWnd in the Swift lenses, it is
never edited. The iWidget class is at the heart of the
development B interface system. It is the base class to
every displayable item in the user interface (much like the
role of CWnd in MFC). It is also highly dependant upon
the other classes in the system, due to its role as a
drawable, clickable, sizable element etc.

The development B team used a central Object Factory
[12], to register all class types using an abstract factory
pattern [9]. This is the design that is used by both COM
and CORBA to allow for distributed registration and
creation of classes. Object Factories strongly mitigate the
need for the unhealthy dependencies required for creating
concrete objects. Instead of creating them directly, users
create them through an abstract interface. The concrete
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factory object gets created once at program initialisation
time, and usually only in one place, thus rationalising
dependencies at the cost of requiring casts [12].

Another pattern used by the development B team was a
variant of the Visitor Pattern [9] called the Acyclic Visitor
[13] to dispatch messages around the system, both to
widgets and to worker threads. The suggested
implementation of the Visitor Pattern causes a knot of
dependencies where base classes are dependant upon all
their derived classes. The Acyclic Visitor mitigates this
dependency cycle by using forward declarations, multiple
inheritance and run time type casting. So even though
development B has real time constraints, the designers
chose patterns that have runtime costs to avoid compile
time dependencies and physical coupling.

6. Analysis

Over time, the Swift source code develops many
classes that are both big and red, such as CMainFrame,
CBlock, CTransmit, CBound, CSwit32Doc and
CSwift32App. This is an indication of unmanaged
dependencies, and indicates poor information hiding.
According to Parnas, the assignment of source code to
modules should be facilitating team development.

The classes that are both big and red will be required
by many programmers at the same time in order to
implement changes that should be independent of each
other. Thus one can see that the when the software is
improperly coupled the programmers become improperly
coupled, leading to lower productivity and frustration.

This issue can be exacerbated by the use of private
workspaces in revision control systems. If the
programmers develop with separate, private versions of
key header files, at some point their work needs to be
checked in. This will lead to source code merging.
Estublier and Casallas [7] have reported that merge tools
in revision control systems often fail. They point out that
merging modules is not a perfect mechanism.
Inconsistencies may arise from a merge; the probability of
problematic merges rapidly increases with the number of
changes performed in both copies. Therefore they
recommend that frequent merges are needed to keep
cooperating workspaces in synch.

In development B, iWidget is definitely showing
signs of being a problem. By Lenses 7 & 8, iWidget is
both large and red. This is a sign that an increasing
number of features are being added to iWidget by the
different programmers on the development B team.
Accordingly the development B team are re-factoring
iWidget into smaller interfaces, avoiding the risk of
allowing the code to become rigid, fragile and immobile.

However when comparing the productivity of the two
software teams, the development B team has been able to
deliver higher programmer productivity whilst having
double the number of programmers working on the same
source code.
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7. Conclusion

This paper has presented a model of software development
that can be summarised as follows: If software is
improperly coupled then people are improperly coupled. It
can be predicted from the model that unmanaged coupling
within a software project will slow programmers due to
the inability of each programmer to work in isolation. It
has been shown that the Swift project, with less
programmers and unmanaged coupling has experienced
less programmer productivity than the development B
project with double the programmers and partially
managed coupling.

Martin has reported that the use of the architectural
patterns can aid team development, and this has been
shown to be true of the development B project. It has also
been shown that Swift could benefit from the application
of patterns to alleviate some of the unmanaged
dependencies with its source code.

Whilst there are bound to be many other variables that
affect the teams’ productivity, one can see that
dependency management and therefore information hiding
is a key concept to facilitate team development. If poor
information hiding is allowed to dominate a project, then
it will become late due to the inefficiencies of
programmers competing for the same source module.

In the future the authors plan to assess how the
application of patterns affect the dependencies in Swift
and analyse how iWidget can be re-factored to reduce its
impact in development B. Visual Class needs modification
so that it can draw multiply inherited classes sensibly.
Finally the information source that Visual Class uses (MS
Visual C++ browser database) cannot be used to calculate
the exact reference count and uses count of each class (for
example it does not supply information about member
initialisers in constructors, so some of the reference counts
may be low). The authors would like to be able to generate
exact metrics for these measures to allow for statistical
analysis of the results.
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10. Figures
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1.a) Conflict 1.b) Resolution — Information Hiding
1.c) Module Responsibility 1.d) Editing a responsible Module affects its dependants
1e) Module Stability 1.f) Unstable dependencies impede team development

Figure 1 Consequences of Module Assignment
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