By I. ROBERT CHIANG AND VIJAY S. MOOKER]JEE

IMPROVING Software

Team Productivity

Choosing the most effective quantitative process design approach will not only
improve a firm’s project management but, ultimately, the bottom line.

The widespread adoption of information technology (IT) over the last few decades

has helped organizations reap numerous operational and strategic benefits. Con-
sumers have also benefited from IT as it reduces market frictions caused by geo-
graphical separation, price opacity, and information latency. The resulting increase
in demand for I'T products and services has created new challenges for delivering

IT solutions involving hardware, software, and networking components under

ever-tightening deadlines.

While hardware speed and network capacity
have made impressive strides through manufac-
turing automation and technological innovation,
software development has not improved under
the same order of magnitude. As a result, the soft-
ware component of information systems chroni-
cally causes project delays, cost overruns, and
customer dissatisfaction.

There are several factors that make software
systems difficult to develop, notably the complex-
ity of software that demands human intervention
throughout its creation. As a result, massive
automation of software development (for exam-
ple, using automatic code generation) has not
been realized. Furthermore, the innovative nature
of software makes it difficult to leverage experi-
ence and team knowledge across projects. Finally,
software—being intangible—complicates mea-
surement and resists the quantitative analysis nec-
essary for continuous productivity improvement.

It is widely recognized that improving software
development productivity requires a balanced
approach toward the three pillars [8] of software
management: technology, people, and process.

Much effort has been devoted to refining software-
building technologies, with significant results. For
example, sophisticated compilers, middleware,
and scripting technologies have increased pro-
gramming speed; robust utilities have allowed for
easy bug tracking and configuration management;
and communication applications and networking
have made it relatively easy to keep project and
system information transparent.

Due to the human-centric nature of develop-
ing software, however, the benefits of technologi-
cal improvements cannot be fully realized without
a capable work force. Thus, it is also critical to
improve individual competency. However, invest-
ing in human capital requires long-term planning
and commitment, and does not produce immedi-
ate payoffs. CMU/SEI’s People Capability Matu-
rity (P-CMM) framework' has provided
recommendations on how organizational changes
can be carried out to facilitate better management
and development of the work force.

For more details visit www.sei.cmu.edu/publications/documents/01.reports/
01mmO001.html.

A third way of increasing productivity is to refine
the development process. The benefits of process
improvement are not limited to accelerating the
development work but also reducing the effort spent
on corrective activities. Without a proper develop-
ment process in place, a project team could operate in
a chaotic manner, resulting in low productivity and
poor system quality [11].

Previous literature (such as Brooks incremental
development [1] and Boehm’s spiral model [2]) sug-
gests that system development should be an act of
gradual enhancement rather than a forced assembly of
software components. Brooks has found that incre-
mental development—interleaving development
work with periods of testing and debugging—Ieads to
easy backtracking and natural prototyping. Frame-
works for incremental development, however, are
often qualitative in nature and offer no precise guid-
ance on how incremental development can be opti-
mally implemented when faced with a vast array of
system, personnel, and technical factors.

Here, we advance a variety of quantitative process
models and policies to better manage incremental
development. The main focus is on the system con-
struction phase, that is, the stage of a project in which
the system is actually being coded. The specific activ-
ities that occur during system construction are coding
and unit testing, (software) module integration (inte-
grating a module with the rest of the system), team
communication (for example, walkthroughs, peer
reviews, project meetings, and so on), and system
integration (system-level debugging).

These activities are depicted in Figure 1 forming a
construction cycle. At the end of each cycle, a system
baseline (consisting of a collection of stable software
modules) is established upon which future develop-
ment can be based. Typically, several construction
cycles are needed before the entire system is coded
and debugged.

With the exception of Step 1, the activities
depicted in Figure 1 are coordination related. Most
real-world system construction requires coordination
among project participants such as developers, testers,
designers, and system users. In the context of software
development, Kraut and Streeter [7] have described
coordination to mean any activity that facilitates dif-
ferent people working on a project to have a common
definition of what they are building, to share infor-
mation, and to mesh their efforts with one another.

Coordination Problem and Approaches

Here, we provide examples of coordination decisions
in real-world software organizations. Specifically, we
discuss how organizations address the question:

90 May 2004/Vol. 47, No. 5 COMMUNICATIONS OF THE ACM

Step I:
Code and Unit Test

System Integration

Step 3:
Team Communication

When is the best time to coor-
dinate? This is important to
answer because delaying coordination beyond a point
can lead to costly rework. At the same time, prema-
ture coordination can be counterproductive because it
can disrupt development work.

We describe three current approaches being used:
Big Bang, frequent integration and periodic synchro-
nization, and fault-driven. In each approach, there is
a different coordination trigger.

Big Bang. The Big Bang approach is one where all
coordination occurs at the end of the project. In this
approach, Steps 2, 3, and 4 of Figure 1 are put on
hold until Step 1 is completed. This approach follows
the Waterfall process model and thus is not an incre-
mental development technique per se. Since the tim-
ing of coordination is not actively managed, this
approach incurs low project management overhead
and works well for small and competent teams work-
ing on well-defined projects [9].

The main drawback of Big Bang coordination is
scalability. Software components in a system can
have intricate interactions; a fault, if not removed
in a timely manner, either becomes more difficult
to rectify and/or causes additional faults to occur
later in the project. Such a downstream effect
makes it very costly to use Big Bang for large pro-
jects. Also, this approach does not benefit from
learning that could accrue if the team is allowed to
coordinate periodically.

Frequent integration and periodic synchronization.
Software organizations are now performing module
integration (such as Step 2 in Figure 1) more fre-
quently—often on a daily basis. A well-publicized
approach adopted by Microsoft, the “Daily Build
and Smoke Test,” has been used in many of the

Figure 1. Activities in a
construction cycle.

firm’s high-profile development projects [4, 12]. In
addition to frequent module integration, periodical
team communication and system integration are
performed to ensure product quality throughout
its construction.’

While more frequent coordination on the module
and system level help alleviate downstream effects, an
important question remains unanswered: How long
should development in each construction cycle last?
We have noticed the timing of coordination is often
ad hoc in many organizations. In this regard, there is
some evidence of the use of a bell-shaped coordina-
tion policy where coor-

ment, the project domain, and the available time to
construct the system [3].

In a fault-driven policy, coordination occurs at the
release of a module if the observed fault count exceeds
the threshold associated with the release. The down-
ward slope of the policy curve ensures that unless
there are a large number of faults, coordination should
not occur when relatively few modules have been
released. On the other hand, thresholds decrease for
high release counts to encourage coordination unless
the development work is of extremely high quality.
Figure 2(b) compares time-based and fault-driven

coordination policies and shows

dination is intense at

that fault-driven coordination is

the beginning of the
project, relaxes at the
middle, and becomes
intense again near the
end. A bell-shaped
coordination policy
can be explained as a
result of two factors:
team learning and sys-
tem stability.
Fault-driven coordi-

Fault Threshold

@] | consistently more effective. The
use of system fault data for mak-
ing coordination decisions is par-
ticularly beneficial for projects
with a compressed schedule (that
is, high ratio of work required to
time available).

Factors Affecting
Coordination
Conceptually, the intensity of

nation. While the

Release Count

coordination is the proportion of

time-based coordina-
tion policy has clear
administrative bene-
fits, it does not appear
to fully capture the
dynamics of an evolv-
ing project. Specifically, coordination is more urgent
when the system appears to be going out of synch,
otherwise it may be appropriate to allow development
work to continue. This implies the coordination deci-
sion should somehow be tied to the health of the sys-
tem. Several firms that we contacted used a
fault-driven coordination policy.

With advanced development and project manage-
ment tools, it is now possible to obtain system fault
data and other related metrics on a near continuous
basis. Using current system fault (bug) count and
severity metrics, project managers can schedule coor-
dination whenever the average cost to fix a fault is
expected to rise. Figure 2(a) shows a fault threshold
curve that can be derived with this reasoning. The
shape of a threshold curve depends on specific project
factors; for example, the complexity of the system,
team size and experience, the development environ-

Figure 2. Fault-driven coordination.
(a) Fault threshold curve.

(b) Benefit of fault-driven
coordination.

20ur study on a NASA project revealed that about 10-15% of the system construc-
ton effort could have potentially been saved if the Big Bang approach had been
replaced by an approach involving periodic synchronization [10].

(b)

Time-Based

—— Fault-Driven

% of Effort for Coordination

Level of Schedule Compression

effort spent on coordination in one construction
cycle. We have clustered the factors affecting coordi-
nation intensity into four groups: project, team, sys-
tem, and technology.

A critical factor affecting team productivity is the
allowable system construction time. For a given set of
requirements, a shorter construction time should
translate to a larger team and thus more expensive
coordination among the team members; hence,
increasing team size diminishes the productive output
per member. This “mythical man-month” phenome-
non implies that increasing team size beyond a point

COMMUNICATIONS OF THE ACM May 2004/Vol. 47, No. 5 91

@
g | o—ww 8 g 5 4
c
3
o
O
Q
4
o
Q
o
—4— Low —l— Medium High
Cycle Index
()
R
c
=1
o
O
Q
o
o
[9)
o
Cycle Index
‘\Q——_.__’\‘\‘ (C)
R
=
3
5 '\.——I—I—.\.\.
O
Q
@
(]
)
o
—4— Low —@E— Medium High
Cycle Index

Figure 3. Change in coordination can.actually leggthen the
policy curve: (a) Effect of system project duration. The

cbilton i S0 ey when Fced wih
system complexity. a large team is to estab-
lish a hierarchical com-
munication structure so that relatively small groups of
developers can focus on well-interfaced system com-
ponents [10].
Team skill and learning effect. A notable advantage
of using incremental development is the availability of
several baseline versions of the system. Modules that

92 May 2004/Vol. 47, No. 5 COMMUNICATIONS OF THE ACM

are part of the system baseline are no longer subject to
major revision, thereby reducing two-way module
adaptation to one-way accommodation (new mod-
ules must be consistent with baseline modules). The
policy curve in Figure 3(a) suggests that project teams
that can stabilize modules fairly quickly can afford to
coordinate less frequently early on in the project. On
the other hand, with more volatility, frequent coordi-
nation is necessary until sufficient familiarity and sta-
bility can be achieved. For example, a project
undertaken by a less experienced team can be
expected to stabilize more slowly, thus the team
should coordinate more frequently. An indication of
slow stabilization is that core system components
(such as system interfaces or driver modules) continue
to undergo change late into the project.

Many studies have shown a tenfold productivity
gap between novice and proficient developers. One
trait of top-notch developers is their ability to acquire
project-specific knowledge and avoid major rework—
even in an unfamiliar project domain. Evidence of
this learning process is the development team stabi-
lizes (or “baselines”) newly developed modules more
efficiently as the project progresses. The policy curve
in Figure 3(b) shows that relatively tight coordination
is appropriate for such a team at the start of the proj-
ect to foster learning. The team should then focus on
programming tasks with less intervention until near
the end, when tight control is again necessary to mit-
igate schedule risk. Thus, the coordination scheme in
Figure 3(b) should be recommended to a skilled team
assigned to a project in a new domain.

Software characteristics. Everything else being equal,
the higher the system (architectural/design) complex-
ity the more intense the coordination should become.
In more complex systems, intermodule discrepancies
are more prone to occur and are more difficult to rec-
tify. Thus, more intense coordination helps to keep
faults under check. Figure 3(c) shows the optimal
coordination policy at different levels of system com-
plexity. The total coordination cost is found to also
increase with the system complexity. One implication
of Figure 3(c) is that it provides us with a basis for
design economics. Faced with limited resources or a
tight schedule, project managers are often tempted to
forego system design tasks for more productive cod-
ing tasks. Often, however, they may be better off
investing in a good quality design to avoid costly “fire
fighting” later during construction.

Technology and tools. Changeover efficiencies can
be measured by how easily team members toggle their
work environment between development and coordi-
nation. Another measure is the program comprehen-
sion support provided by the project environment. In

contrast to the effect of structural complexity shown
in Figure 3(c), coordination should be more intense
when project changeover is more efficient. For exam-
ple, in an organization with sophisticated CASE sup-
port, the development team should be encouraged to
coordinate more frequently. Technological innova-
tions offered by new tools are often regarded as silver
bullets for programming speed. However, if used
properly, they can also reduce coordination overhead.

Implications and Next Steps

Software development organizations now enjoy a
wide assortment of tools and technologies that
promise to enhance development productivity. Yet in
an industry that practices “creative destruction,” speed
and quality advantages gained from technology are
being harshly challenged by elevated user expecta-
tions. We believe that only through a quantitative
management of the project process will we achieve the
best use of personnel and technology.

Release economics. An interesting area for future
research is to develop models and theories of hetero-
geneous software systems. In previous studies, the
software system is typically viewed as a collection of
(more or less) identical modules. While the homo-
geneity assumption has obvious analytical benefits,
there are many situations in which software modules
may possess significant differences in size, complex-
ity, and functionality. A possibility is to link the
sequence in which modules are developed with busi-
ness factors such as user functionality, revenue
arrangements, and development cost. In other words,
it may be possible to develop an economic basis for
the release of software modules and then tie in coor-
dination concerns based on the actual, rather than an
average release pattern.

Coordination economics. A measuring stick for a
software organization’s maturity is whether it delivers
consistent productivity in the long run. Most pro-
ductivity studies focus on reducing the direct coding
effort. However, a team’s productivity is also pro-
foundly influenced by how well coordination efforts
are distributed. An analogy from Amdahl’s Law indi-
cates that unless coordination (dependency) is con-
trolled, it is unlikely that quality software can be
produced faster simply by adding more people. We
argue here that proper process design is the key to bet-
ter productivity.

Many organizations view the development process
as a deterrent rather than a catalyst for productivity
because the development process is often used to
enforce the sequencing of project tasks without explic-
itly considering coordination activities. Another mis-
perception is that establishing an infrastructure for

development is a costly proposition. However, Glass [5]
and the discussions here argue imposing discipline on
the development process could have dramatic payofs.

Managing expectation. Blindly seeking productivity
improvements to meet customer expectation is wish-
ful thinking if the expectations are set with little
chance of achieving them [6]. Many project managers
are unable to conduct sensitivity analyses for studying
the consequences of change requests on the project
cost or schedule. Project attributes such as system
complexity, stabilization rate, and team learning pro-
vide guidelines on how to assess the impact of mid-
course project adjustments on the project schedule.

This article attempts to bridge the chasm between
analytical and empirical views of project management
to provide guidelines on how software projects can be
best managed. We are currently investigating the
coordination design issues for massive customization
(for example, SAP systems) and open source (decen-
tralized) projects. ©

REFERENCES

1. Brooks F.P. Mythical Man-Month: Essays on Software Engineering,

Anniversary Edition, Addison-Wesley, Reading, PA, 1995.
2. Bochm, B. A spiral model of software development and enhancement.
IEEE Computer (1988), 61-72.

3. Chiang, L.R., Mookerjee, V.S. A fault threshold policy to manage soft-
ware development projects. [nformation Systems Research (2004), Forth-
coming.

Cusumano, M., and Selby, R. Microsoft Secrets, Free Press, 1998.

Glass, R.L. An embarrassing, yet rewarding, ending to a previous column.

Commun. ACM 44, 1 (Jan. 2001), 11-13.

6. Glass, R.L. Evolving a new theory of project success. Commun. ACM 42,

11 (Nov. 1999), 17-19.

7. Kraut, R., and Streeter, L. Coordination in software development. Com-

mun. ACM 38, 3 (Mar. 1995), 69-81.

. Landis, L., McGarry, F., Waligora, S., et al. Manager’s handbook for soft-

ware development (Revision 1). NASA Software Engineering Laboratory,

SEL-84-101, (Nov. 1990).

McConnell, S. Rapid Development. Microsoft Press, 1996.

10. Mookerjee, V.S., Chiang, I.R. A dynamic coordination policy for soft-
ware system construction. /EEE Trans. Software Engineering 28, 7 (2002),
684-694.

11. Paulk, M.C,, Curtis, B., Chrisses, M.B., Weber, C.V. Capability Matu-
rity Model for software. CMU/Software Engineering Institute, Technical
Report, CMU/SEI-93-TR-024, (Feb. 1993).

12. Zachery, G.P. Showstopper! Macmillan, New York, 1994.

M

oo

N

I. ROBERT CHIANG (Robert.chiang@business.uconn.edu) is an
assistant professor of information management at the School of Busi-
ness, University of Connecticut, Storrs, CT.

ViJAY S. MOOKERJEE (vijaym@utdallas.edu) is a professor of
information systems at the School of Management, University of
Texas at Dallas, Richardson, TX.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/0500 $5.00

COMMUNICATIONS OF THE ACM May 2004/Vol. 47, No. 5 93

