
In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

Power to the programmer
using measurement to optimise the software process at the

individual level

Gerry Coleman and Rory O’Connor

Abstract
With over a decade of Software Process Improvement (SPI) in large organisations, the

awareness of its importance has propagated to Small to Medium Enterprises (SMEs). The
most well known models for SPI are primarily suited for large- or medium-sized
organisations, but with some tailoring they can provide substantial support for SPI in small
organisations.

The IPSSI (Improving Professional Software Skills in Europe) project aims to address the
problems above and provide a process improvement framework for use by individual
software engineers working in European SMEs. This paper describes the architecture of the
IPSSI project. In particular it details experiences to date with end user trials of IPSSI SPI
training material and the development of the IPSSI tool set which consists of data gathering
and data analysis tools, which have been implemented in an web-based environment.

Keywords: Software process improvement, quality, measurement, estimation

1. Introduction
Many user needs in SPI are not fully catered for through existing software process

models. In particular, there is an absence of support for process improvement at the individual
level, although according to a recent survey of European software organisations 83% of
companies believe that SPI is essential for future success and 87% of companies believe that
SPI can significantly improve software quality [1]. However time, cost and lack of knowledge
are seen as the main barriers to SPI usage. In Europe to date, SPI has focused at the
organisational level. There is an absence of support for process improvement at the individual
level. As a result a number of issues have been identified in the European software industry
[2]. 1) There is no clearly defined framework to enable process improvement at the individual
engineer level; software engineers work with an increasing array of tools in a range of
development environments; 2) The SME needs a suitable method to improve their software
engineers’ capability for developing software of higher quality on schedule and to budget and
3) The SMEs need a set of personal process training material that is suitable to the European
software industry.

The IPSSI (Improving Professional Software Skills in Europe) project is an ESSI funded
project which aims to provide a process improvement framework for use by individual
software engineers working in European SMEs. The focus of the project is on improving
individual software engineering skills thus generating bottom-up improvement. Companies
can experiment with SPI by sending individuals on IPSSI training courses and then
monitoring its implementation. By training individuals in this way, costs are reduced.

2. IPSSI Structure
The focus of the IPSSI project is on bottom-up process improvement as illustrated in

figure 1 and illustrates the three elements of personal software engineering; defining a
personal process, personal project management and personal quality management.

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

Defects

Size
Personal Process

Personal Project
Management

Personal Quality
Management

Effort

Improvement
Areas

Personal
Measurement

Figure 1 - The IPSSI Structure

The entire model is buttressed and controlled through the use of measurement. By
collecting data on their own performance, software engineers learn about how they develop
software. The measures help them understand the fundamental relationship between size and
effort and, through this understanding, enable them to improve their estimating abilities.
Furthermore, by gathering data on their defect rates they witness how employing practices
such as personal code reviews and the use of checklists will allow them to produce higher-
quality software products. The measures provide information on performance, information
can then lead to process improvement and process improvement can lead to the production of
better quality software on time. Finally collecting performance data on an ongoing basis
moves developers from defining their own development process, through managing it to
optimising it.

Through IPSSI training, developers complete programming tasks on which they collect
increasing quantities of data. Early exercises capture effort measures. Subsequent exercises
gather size data whilst the concluding exercises capture defect and quality measures.

This is hugely empowering for both the programmer and the organisation as a whole.
Programmers are now in a position where they can provide the project manager with
achievable deadlines and the project manager can develop more accurate and predictable
delivery schedules.

The final element of IPSSI is that of personal quality management. As developers
complete IPSSI program exercises, they collect data on the defects injected into those
programs.

This process illustrates in which development phases they inject and remove defects.
Furthermore, the defects are categorised by type thus allowing a causal analysis to be
performed which can then lead to defect prevention. IPSSI focuses on proven quality control
mechanisms such as design and code reviews which enable developers to remove defects
earlier in the development process. This achieves the twin objectives of removing defects at
the front end of the development cycle where they are cheaper and easier to fix and, as a
corollary, means testing time is more focused as fewer defects are escaping into test.

Feedback from similar training programmes has suggested that the absence of a support
tool, to simplify the recording and analysis of the data produced is one of the major barriers to
continued usage of the methods [3]. Developers tire of recording data on paper forms and
eventually usage of the disciplines peters out. As part of the IPSSI project, a tool set, which
consists of data gathering and data analysis tools for use in a web-based environment, has
been developed. The IPSSI support tool enables the measures to be collected as a simple
complement to the development process. The tool also analyses the data collected to provide
the developer with important process feedback.

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

This process information highlights the developer’s strengths and weaknesses and
empowers them to make the necessary process improvement adjustments.
We believe the provision of such a tool will ensure the ‘buy-in’ of training participants
and subsequent continued usage of the IPSSI disciplines.

3. IPSSI Delivery
The delivery of the IPSSI training courses is divided into three distinct courses:
• Introductory course - aimed at management level within a software development

organisation. This one-day event presents a management view of need for and
justification of having a defined and established software process. In addition it
outlines the IPSSI structure and the IPSSI approach to process improvement at the
individual level.

• Basic course - is a two-day intensive training course aimed at the software developer.
It establishes the need for having a defined software process at the individual level and
concentrates on two main areas: personal project management and personal quality
management.

• Advanced course - provides a natural progression for participants of the basic course
who have implemented IPSSI into their software development practices. This three-
day course builds on the basic course and covers similar topics at a more detailed level
and additional topics such as diversified process models and team related issues at the
individual process level.

The main learning objectives of the IPSSI course are:
• presents techniques and methods design to improve planning activity.
• presents techniques and methods design to improve estimation.
• presents techniques and methods design to improve quality.
• understand the need for having a defined and established software process.
• In addition it outlines the IPSSI structure and the IPSSI approach to process

improvement at the individual level.
Table 1 details the main objectives of the basic and advanced IPSSI courses under the two

main headings of personal project management and personal quality management.

Table 1 - IPSSI course objectives
Course Personal Project Management Personal Quality Management
Basic • Effort measurement

• Size measurement
• Size measures
• Coding standard

• Tracking
• Estimation

• Size
• Effort

• Defects
• Measurement
• Classification
• Density
• Detection

• Process framework
• Process definition
• Process improvement

Advanced • Effort measurement
• Size measurement

• Counting standard
• Productivity

• Scheduling/Tracking
• Earned value

• Estimation
• Size and effort
• Testing techniques

• Defects measurement
• Yield
• Density

• Defect detection
• Defect prevention
• Design review
• Requirements

• Process framework
Process improvement

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

Both the basic and advanced courses contain a series of small programming tasks each of
which is used illustrate a particular issue such as measurement, estimation or defects. Each
developer gathers data about their programs which are inputted to the IPSSI tool.

4. Results to Date
The section that follows details the results of some preliminary IPSSI trials. These were

staged in an academic environment and involved a group of graduate year Computing
students. The trials had two objectives. Firstly, to enable the undergraduates to measure their
own software process to effect improvement and secondly to provide some quantitative and
qualitative feedback about the IPSSI philosophy and the training exercises.

Participation in the trials was voluntary and was therefore extra-curricular. As such
students simultaneously had commitments to other subjects on their study programme. The
IPSSI classes were held on one afternoon per week over a 5-week period and 1 exercise per
week was distributed. 24 students participated at the outset, of which, 7 completed 4 of the 5
IPSSI exercises (a 29% completion rate) and 4 completed all 5 exercises (a 16.6% completion
rate). During each of the 5 exercises participants are required to collect successively more
detailed data as shown in Table 2.

By following the approach outlined above, participants adhere to the IPSSI model (Figure
1) by commencing with effort measures, then progressing to personal project management by
relating effort to task size and finally focusing on quality management through understanding
defects. Because of the relatively low level of completion little data emerges from the study
about defects. Also because of the limited number of data points no firm conclusions can be
drawn about the disciplines and the approaches. However, the results do provide some
promising indications which merit further study.

Table 2 - IPSSI Data Gathering Requirement
Exercise 1 2 3 4 5

Activity
Estimate of

time required
Estimate of time

required
Estimate of size

(LOC)
Estimate of size

(LOC)
Estimate of size

(LOC)
Collect time

by phase
Collect time by

phase
Calculate

productivity from
programs 1 & 2

Calculate
Productivity

from Programs
1, 2 and 3

Calculate
productivity

from programs
1, 2, 3 and 4

Estimate of size
(LOC)

Estimate of time
based on size
estimate and
productivity

Estimate of
Time based on

size estimate and
productivity

Estimate of
Time based on

size estimate and
productivity

Measure of size
on completion

(LOC)

Collect time by
phase

Collect time by
phase

Collect time by
phase

Measure of size on
completion (LOC)

Collect defect
data

by phase

Estimate defects
by phase

Carry out a code
review

Collect defect
data

by phase
Measure of size
on completion

(LOC)

Carry out a code
review

Measure of size
on completion

(LOC)

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

4.1 Time Distribution
From the first exercise, participants are required to keep track of the time they have taken

to complete a particular programming task. A simple process is followed in the early
exercises, Design, Code, Compile and Test and the study group recorded their time in each of
these areas. Figure 2 illustrates the breakdown, by phase, of time spent by the group whilst
completing the programming exercises.

Figure 2 - Group Time Distribution

One of the training objectives was to convince the group of the need to spend more time
in the earlier phases of development such as understanding requirements, detailed design and
the use of code reviews. Many previous studies have shown how spending a greater
proportion of time in the earlier life-cycle phases significantly reduces the amount of time
required for testing as the product can be built ’right first time’ and less rework and repair is
required in test [4, 5, 6]. The indications from the results above are that this lesson was
learned by the group, as in programs 1 and 2, 11% and 9% respectively of total time was
spent in design whilst in programs 3 and 4, 23% and 25% respectively of total time was spent
in design. However, the group figures above don’t significantly indicate that the extra effort in
design has yet translated into reduced testing effort. Figure 3 shows a student who had some
success in reducing test time through increasing effort in the earlier development phases. This
student managed to complete all 5 of the IPSSI exercises.

Figure 3 - Student 7 Time Distribution

In programs 1 - 3 this student steadily increased the time he spent in design from 11% in
program 1 to 14% in program 2 to 18% in program 3. At the same time the proportion of time
spent in test has reduced from 44% in program 1 through 29% in program 2 to 12% in
program 3. Whilst program 4 shows the same proportions of time spent in design and test
(16% in each) program 5 has the lowest figure for test of all (11%). In program 5 Student 7
spent 14% of his time in design and 21% of his time in code review.

0%

20%

40%

60%

80%

100%

D
is

tr
ib

u
ti

o
n

 b
y

P
h

a
se

1 2 3 4

Program Number

Group - % Time Distribution by phase per program

Test

Compile

Code Review

Code

Design

0%

20%

40%

60%

80%

100%

Distribution by
Phase

1 2 3 4 5

Program Number

Student 7 - % Time Distribution by Phase per
Program

Test

Compile

Code Review

Code

Design

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

Program 5 also involved the smallest time spent in compile (3.5% of total time). This
coupled with the reduced time in test may indicate that the student has been successful at
removing defects earlier in the development process.

4.2 Time Estimation
The exercises used for the trials were deliberately short in order to allow for the maximum

amount of data to be collected during the training period. Because the exercises were quite
small many of the estimating errors are quite large. Humphrey has also found that small tasks
can generate significant percentage errors [4]. However, over time when the disciplines have
been applied to much larger tasks and sufficient historical data has been gathered then the
error percentages can be reduced. Figure 4 shows the time estimation error for the study group
for programs 1 to 4.

Whilst the average time estimation error remains around +20% for programs 2 to 4, the
range between the minimum and maximum time estimation error fluctuates significantly.
This is to be expected with so few data points as individuals, following an overestimate, often
overcompensate on subsequent tasks and vice-versa. An example of this can be seen in Figure
5 where Student 7’s estimates show such fluctuations.

Figure 4 - Group Estimation Accuracy

Figure 5 - Student 7 - Time Estimating Accuracy

4.3 Size Estimation
The same pattern of estimation error is also evident from data collected for size. Figure 6

shows the error in size estimates made by student 10. By contrast, Student 7 has very good
control over size estimates with a 17% underestimate being the largest discrepancy.

Group Time Estimating Accuracy

-60
-40
-20

0
20
40
60
80

100
120

1 2 3 4

Program Number

%
 E

rr
o

r Avg. Time Est. Error

Min. Time Est. Error

Max. Time Est. Error

Student 7 - Time Estimating Error

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5

Program Number

%
 E

rr
o

r

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

Figure 6 - Student 10 - Size Estimating Accuracy

Figure 7 - Student 7 - Size Estimating Accuracy

5. The IPSSI Support Tool
The IPSSI tool was developed in order to support the individual developer using the IPSSI

approach and is designed to support two main functions: Data Capture - simply and easy
recording of data such as time, size and defects, and Data Analysis - automatic analysis of
collected data to generate aggregate project data in textual and graphical form. There were
also a number of constraints placed on the development of the tool:

• All data gathered and analysed during a process should be stored in a private database.
• The developer can optionally elect to anonymously submit gathered data to a central

database.
• The tool should be platform independent.
• The developer (user) should be able to work in a stand-alone manner, i.e. no network

connection required.
The architecture of the tool is shown in figure 8. The user interface, which is implemented

in a web browser, provides facilities for data gathering, analysis and submission to a local
database. Upon completion of a project, the user may choose to anonymously submit their
data to a central (IPSSI project or company specific) database where aggregate data can be
further collected and analysed.

Student 10 - Size Estimating Error

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5

Program Number

%
 E

rr
o

r

Student 7 - Size Estimating Error

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5

Program Number

%
 E

rr
o

r

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

User interface

User
database

User machine

Raw
data

Aggregate
& extracted

data

IPSSI user

IPSSI server

Central
database

Anonymous
extracted

data

Anonymous
data

submission

Network Company server

Figure 8 - IPSSI tool architecture

The IPSSI model follows the three elements of personal software engineering; defining a
personal process, personal project management and personal quality management. These are
represented in the tool by three main levels:

1. Recording basic data such as: size, effort and defects.
2. Advanced review techniques and statistical analysis of derived measures including

estimated size, real size and defects found in review.
3. Expert topics such as design methods, earned value tracking, design errors found,

schedule and task planning, productivity and design quality.
Currently the initial implementation of the IPSSI tool has been completed and it is being

used to gather and analyse data by participants in the pilot IPSSI courses.

6. Future Work
The benefits, to the developer, of using IPSSI are ultimately self-convincing. The results

above require supplementary exercises to allow more data to be collected and subsequently a
clearer pattern of the developer’s process. As IPSSI is aimed at industrial practitioners, these
exercises could be real world projects. Ultimately, it is through applying IPSSI disciplines in
their own daily work that developers can become convinced of its benefits.

Improving the quality of software products is a very important goal for both companies
and developers. The trials show that if all of the exercises as currently designed are not
completed then there is very little data on defects and the potential advantages of code
reviews. It may be necessary either, to increase the number of exercises or introduce code
reviews into earlier exercises. Either way this would provide more defect data and more
feedback on the application of the reviews.

At present, within the exercises participants are asked in the later exercises to estimate the
time required to complete an exercise based on the their estimate of the size of the program
and their historical productivity. Whilst this is useful in highlighting the relationship between
size, productivity and effort, no allowance is made for the complexity of the task. The
advanced IPSSI training programme will cater for this.

There are two factors, however, which will permit a more effective evaluation of IPSSI. A
’Basic IPSSI’ course, which covers the fundamental practices and is staged over 2 consecutive
days, is planned. This course is aimed at industrial practitioners and it is expected that
motivation and completion rates will be significantly higher than the voluntary trials which
have taken place to date.

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

In Proceedings of 11th European Software Control and Metrics conference, Munich, Germany, April 2000

Secondly, if IPSSI is to succeed, it must be applied in an industrial context. The training
and the disciplines are designed to allow individuals and companies achieve meaningful
software process improvement. The ultimate benefits should accrue when the skills acquired
in training are applied by the practitioners in their workplace and it is this which will truly test
the value of IPSSI.

7. Conclusions
As stated previously, the objectives of the IPSSI trials were twofold. Firstly, to teach the

undergraduates the benefits of having a defined and measurable software process and
secondly to get some feedback on the IPSSI work carried out to date. Both of these objectives
have been met. All of the graduates commented favourably on the approaches taken.
Comments ranged from "It’s something I’d never thought of before", to "Prior to this I had no
knowledge of where I was spending my time" to "Up to now I have been a ’hacker’ who
started coding as early as possible. I have now started to concentrate more of my effort in
design and I can already see the benefits". Whilst the results from the study may not readily
show this, the study group are now adopting a much more professional approach to
developing software and have been convinced of the benefits of following a defined process.
The trials also provided the necessary feedback on the IPSSI training material. This will feed
into the future work outlined above. The next stage is to trial the IPSSI methods in a formal
training course attended by software practitioners. This will be held in the coming months.

Acknowledgements
This research is partially supported by the European Commission as ESSI project 27453.

The authors gratefully acknowledge the value gained from discussions regarding this work
with their research partners: Dublin City University, European Software Institute, IVF,
Politecnico di Torino and Universite Thomson. We would also like to thank the final year
(’99-’00) BSc. students from Dundalk Institute of Technology who participated in the trials.

8. References
[1] “The SPIRE Handbook”, Centre for Software Engineering, 1998.
[2] Y.Wang, H.Duncan, M.Kartinnen, H.Sjostrom and P.Kokeritz, “IPSSI - A European Methodology
on PSP”, Proceedings EuroSPI-99, Finland, 1999.
[3] P. O'Beirne & J. Sanders, "Personal Software Process: Does the PSP Deliver its promise?",
Proceedings of Inspire ‘97, Gothenburg, Sweden, 1997, pp. 252-265.
[4] W.Humphrey, “A Discipline for Software Engineering”, Addison Wesley, 1995.
[5] R. B. Grady, "Successful Software Process Improvement", Prentice Hall, 1997.
[6] J.D. Blackburn, G. D. Scudder and L.Van Wassenhove, “Improving the Speed and Productivity of
Software Development: A Global Survey of Software Developers”, IEEE Transactions on Software
Engineering, Vol. 22, No. 12, December 1996, pp. 875-885.

