
Value-Based Software Engineering
Barry Boehm

University of Southern California
boehm@sunset.usc.edu

Abstract

Much of current software engineering practice and research
is done in a value-neutral setting, in which every requirement, use
case, object, and defect is treated as equally important; methods
are presented and practiced as largely logical activities; and a
“separation of concerns” is practiced, in which the responsibility
of software engineers is confined to turning software requirements
into verified code. In earlier times, when software decisions had
relatively minor influences on a system’s cost, schedule, and
value, the value-neutral approach was reasonably workable. But
today and increasingly in the future, software has a major influ-
ence on most systems’ cost, schedule, and value; and value-neutral
software decisions can seriously degrade project outcomes.
 This paper presents an agenda for a discipline of Value-
Based Software Engineering. It accepts the challenge of integrat-
ing value considerations into all of the existing and emerging
software engineering principles and practices, and of developing
an overall framework in which they compatibly reinforce each
other. Example elements of this agenda include value-based re-
quirements engineering, architecting, design and development,
verification and validation, planning and control, risk manage-
ment, quality management, and people management. It presents
seven key elements that provide candidate foundations for value-
based software engineering: Benefits Realization Analysis; Stake-
holder Value Proposition Elicitation and Reconciliation; Business
Case Analysis; Continuous Risk and Opportunity Management;
Concurrent System and Software Engineering; Value-Based
Monitoring and Control; and Change as Opportunity.

Keywords: value, risk, software economics, software life cycle,
software management, requirements, architecting, software met-
rics

1. Overview and Rationale
Much of current software engineering practice and research is

done in a value-neutral setting, in which:

• Every requirement, use case, object, and defect is treated as
equally important;

• Methods are presented and practiced as largely logical activi-
ties involving mappings and transformations (e.g., object-
oriented development);

• “Earned value” systems track project cost and schedule, not
stakeholder or business value;

• A “separation of concerns” is practiced, in which the respon-
sibility of software engineers is confined to turning software
requirements into verified code.

In earlier times, when software decisions had relatively minor

influences on a system’s cost, schedule, and value, the value-
neutral approach was reasonably workable. But today and in-
creasingly in the future, software has a major influence on most
systems’ cost, schedule, and value; and software decisions are

inextricably intertwined with system-level decisions.

Also, value-neutral software engineering principles and prac-
tices are unable to deal with most of the sources of software pro-
ject failure. Major studies such as the Standish Group’s CHAOS
report [33] find that most software project failures are caused by
value-oriented shortfalls such as lack of user input, incomplete
requirements, changing requirements, lack of resources, unrealistic
expectations, unclear objectives, and unrealistic time frames.

Further, value-neutral methods are insufficient as a basis of an
engineering discipline. The definition of “engineering” in [36] is
“the application of science and mathematics by which the proper-
ties of matter and sources of energy in nature are made useful to
people.” Most concerns expressed about the adequacy of software
engineering focus on the shortfalls in its underlying science. But
it is also hard for a value-neutral approach to provide guidance for
making its products useful to people, as this involves dealing with
different people’s utility functions or value propositions.

This situation creates a challenge to the software engineering
field to integrate value considerations into its principles and prac-
tices.

A Value-Based Software Engineering Agenda

 Progress has been made over the years to integrate some
value-oriented perspectives into software engineering. These in-
clude such approaches as participatory design, user engineering,
cost estimation, software economics, software investment analysis,
and software engineering ethics. However, these have been gen-
erally treated as individual extensions to baseline software engi-
neering principles and practices. The Value-Based Software
Engineering agenda below accepts the challenge of integrating
value considerations into all of the existing and emerging software
engineering principles and practices, and of developing an overall
framework in which they compatibly reinforce each other. Exam-
ple elements of this agenda include:

• Value-based requirements engineering, including principles
and practices for identifying a system’s success-critical stake-
holders; eliciting their value propositions with respect to the
system; and reconciling these value propositions into a mutu-
ally satisfactory set of objectives for the system.

• Value-based architecting, involving the further reconciliation
of the system objectives with achievable architectural solu-
tions.

• Value-based design and development, involving techniques
for ensuring that the system’s objectives and value considera-
tions are inherited by the software’s design and development.

• Value-based verification and validation, involving techniques
for verifying and validating that a software solution satisfies
its value objectives; and processes for sequencing and priori-
tizing V&V tasks to operate as an investment activity.

• Value-based planning and control, including principles and
practices for extending traditional cost, schedule, and product

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 1

planning and control techniques to include planning and con-
trol of the value delivered to stakeholders.

• Value-based risk management, including principles and prac-
tices for risk identification, analysis, prioritization, and miti-
gation.

• Value-based quality management, including the prioritization
of desired quality factors with respect to stakeholders’ value
propositions.

• Value-based people management, including stakeholder
teambuilding and expectations management; managing the
project’s accommodation of all stakeholders’ value proposi-
tions throughout the life cycle; and integrating ethical consid-
erations into daily project practice.

• Value-based principles and practices addressing emerging
software engineering challenge areas: COTS-based systems,
rapid development, agile methods, high dependability sys-
tems, systems of systems, and ethics.

The remainder of this paper focuses on seven key elements which
provide a starting point for realizing the value-based software en-
gineering agenda.

2. Value-Based Software Engineering: Seven Key
Elements
Here are seven key elements that provide candidate founda-

tions for value-based software engineering:

1. Benefits Realization Analysis

2. Stakeholder Value Proposition Elicitation and Reconciliation

3. Business Case Analysis

4. Continuous Risk and Opportunity Management

5. Concurrent System and Software Engineering

6. Value-Based Monitoring and Control

7. Change as Opportunity

2.1 Benefits Realization Analysis
Benefits Realized

Many software projects fail by succumbing to the “Field of
Dreams” syndrome. This refers to the American movie in which a
Midwestern farmer has a dream that if he builds a baseball field on
his farm, the legendary players of the past will appear and play on
it (“Build the field and the players will come”).

In The Information Paradox [35], John Thorp discusses the
paradox that organizations’ success in profitability or market capi-
talization do not correlate with their level of investment in infor-
mation technology (IT). He traces this paradox to an IT and
software analogy of the “Field of Dreams” syndrome: “Build the
software and the benefits will come”.

To counter this syndrome, Thorp and his company, the
DMR Consulting Group, have developed a Benefits Realization
Approach (BRA) for determining and coordinating the other
initiatives besides software and IT system development that are
needed in order for the organization to realize the potential IT sys-
tem benefits. The most significant of these features, the Results

Chain, is discussed next.

Results Chain

Figure 1 shows a simple Results Chain provided as an example in
The Information Paradox. It establishes a framework linking Ini-
tiatives that consume resources (e.g., implement a new order entry
system for sales) to Contributions (not delivered systems, but their
effects on existing operations) and Outcomes, which may lead
either to further contributions or to added value (e.g., increased
sales). A particularly important contribution of the Results Chain
is the link to Assumptions, which condition the realization of the
Outcomes. Thus, in Figure 1, if order-to-delivery time turns out
not to be an important buying criterion for the product being sold,
(e.g., for stockable commodities such as soap and pencils), the
reduced time to deliver the product will not result in increased
sales.

The Results Chain is a valuable framework by which soft-
ware project members can work with their clients to identify addi-
tional non-software initiatives that may be needed to realize the
potential benefits enabled by the software/IT system initiative.
These may also identify some additional success-critical stake-
holders who need to be represented and “bought into” the shared
vision.

Figure 1. Benefits Realization Approach Results Chain

For example, the initiative to implement a new order entry

system may reduce the time required to process orders only if
some additional initiatives or system features are pursued to con-
vince the sales people that the new system will be good for their
careers and to train them in how to use the system effectively. For
example, if the order entry-system is so efficiency-optimized that
it doesn’t keep track of sales credits, the sales people will fight
using it.

Further, the reduced order processing cycle will reduce the
time to deliver products only if additional initiatives are pursued to
coordinate the order entry system with the order fulfillment sys-
tem. Some classic cases where this didn’t happen were the late
deliveries of Hershey’s Halloween candy and Toys’R’Us’ Christ-
mas toys.

Such additional initiatives need to be added to the Results
Chain. Besides increasing its realism, this also identifies addi-
tional success-critical stakeholders (sales people and order fulfill-
ment people) who need to be involved in the system definition and
development process. The expanded Results Chain involves these
stakeholders not just in a stovepipe software project to satisfy
some requirements, but in a program of related software and non-
software initiatives focused on value-producing end results.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 2

2.2 Stakeholder Value Proposition Elicitation and
Reconciliation
It would be convenient if all the success-critical stakeholders

had readily expressible and compatible value propositions that
could easily be turned into a set of objectives for each initiative
and for the overall program of initiatives. “Readily expressible” is
often unachievable because the specifics of stakeholders’ value
propositions tend to be emergent through experience rather than
obtainable through surveys. In such cases, synthetic-experience
techniques such as prototypes, scenarios, and stories can acceler-
ate elicitation.

Readily compatible stakeholder value propositions can be
achievable in situations of long-term stakeholder mutual under-
standing and trust. However, in new situations, just considering
the most frequent value propositions or success models of the
most frequent project stakeholders (users, acquirers, developers,
maintainers) shows that these are frequently in conflict and must
be reconciled.

Stakeholders’ Success Model Clashes

For example, Figure 2 shows a “spider web” of the most
frequent “model clashes” among these stakeholders’ success mod-
els.

Figure 2. Model-Clash Spiderweb diagram. The red lines show

model clashes from the MasterNet system.

The left- and right-hand sides of Figure 2 show these most-
frequent success models. For example, users want many features,
freedom to redefine the feature set at any time, compatibility be-
tween the new system and their existing systems, and so on.

 However, the Spiderweb diagram shows that these user suc-
cess models can clash with other stakeholders’ success models.
For example, the users’ “many features” success model clashes
with the acquirers’ “limited development budget and schedule”
success model, and with the developer’s success model, “ease of
meeting budget and schedule.”

 The developer has a success model, “freedom of choice:
COTS/reuse” that can often resolve budget and schedule prob-
lems. But the developer’s choice of COTS or reused components
may be incompatible with the users’ and maintainers’ other appli-
cations, causing two further model clashes. Further, the devel-
oper’s reused software may not be easy to maintain, causing an
additional model clash with the maintainers.

 The red lines in Figure 2 show the results of one of the
analyses performed in constructing and refining the major model
clash relationships. It determined the major model clashes in the
Bank of America Master Net development, one of several major
project failures analyzed. Further explanations are in [8].

Given the goodly number of model clashes in Figure 2 (and
there are potentially many more), the task of reconciling them may
appear formidable. However, there are several effective ap-
proaches for stakeholder value proposition reconciliation, such as:

• Expectations management. Often, just becoming aware of
the number of potential stakeholder value proposition con-
flicts that need to be resolved will cause stakeholders to relax
their less-critical levels of desire. Other techniques such as
well-calibrated cost models and “simplifier and complicator”
lists help stakeholders better understand which of their desired
capabilities are infeasible with respect to budget, schedule,
and technology constraints.

• Visualization and tradeoff-analysis techniques. Frequently,
prototypes, scenarios, and estimation models enable stake-
holders to obtain a better mutual understanding of which as-
pects of an application are most important and achievable.

• Prioritization. Having stakeholders rank-order or categorize
the relative priorities of their desired capabilities will help de-
termine which combination of capabilities will best satisfy
stakeholders’ most critical needs within available resource
constraints. Various techniques such as pairwise comparison
and scale-of-10 ratings of relative importance and difficulty
are helpful aids to prioritization.

• Groupware. Some of those prioritization aids are available
in groupware tools, along with collaboration-oriented support
for brainstorming, discussion, and win-win negotiation of
conflict situations.

• Business case analysis. Determining which capabilities
provide the best return-on-investment can help stakeholders
prioritize and reconcile their value propositions. Business
case analysis is discussed in more detail next.

2.3 Business Case Analysis
In its simplest form, business case analysis involves determin-

ing the relative financial costs, benefits, and return on investment
(ROI) across a system’s life-cycle as:

Costs
CostsBenefitsROI −= (1)

Since costs and benefits may occur at different times, the
business case analysis will usually discount future cash flows
based on likely rates of interest, so that all of cash flows are refer-
enced to a single point in time (usually the present, as in Present
Value).

One can then compare two decision options A and B in
terms of their ROI profiles versus time. In Figure 3, for example,
Option A’s ROI becomes positive sooner than Option B’s ROI,
but its longer-term ROI is lower. The stakeholders `can then de-
cide whether the longer wait for a higher ROI in Option B is
preferable to the shorter wait for a lower ROI in Option A. Option
Rapid-B illustrates why stakeholders are interested in rapid appli-
cation development. If Rapid-B can be developed in half the time,

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 3

it will be much preferable to either of Options A or

original-B.

Figure 3. Example of Business Case Analysis Results

Unquantifiable Benefits, Uncertainties, and Risk

Two additional factors may be important in business case
analysis. One involves unquantifiable benefits; the other involves
uncertainties and risk.

In some cases, Option A might be preferred to Option B or
even Rapid-B if it provided additional benefits that may be diffi-
cult to quantify, such as controllability, political benefits, or stake-
holder good will. These can sometimes be addressed by such
techniques as multiple-criterion decision-making or utility func-
tions involving stakeholders’ preferences for financial or non-
financial returns.

In other cases, the benefit flows in Figure 3 may be predi-
cated on uncertain assumptions. They might assume, for example,
that the Option B product will be the first of its kind to enter the
marketplace and will capture a large market share. However, if
two similar products enter the marketplace first, then the payoff
for Option B may be even less than that for Option A.

If the profitability of early competitor marketplace entry can
be quantified, it can then be used to determine the relative value of
the rapid development Option Rapid-B. This value can then be
used to determine the advisability of adopting practices that
shorten schedule at some additional cost. An example is pair pro-
gramming: empirical studies indicate that paired programmers will
develop software in 60-70% of the calendar time required for an
individual programmer, but thereby requiring 120-140% of the
cost of the individual programmer.

If the profitability of early competitor marketplace entry is
unknown, this means that making a decision between the cheaper
Option B and the faster Option Rapid-B involves considerable
uncertainty and risk. It also means that there is a value in
performing competitor analysis to determine the probability of
early competitor marketplace entry, or of buying information to
reduce risk. This kind of value-of-information analysis can be
performed via statistical decision theory; a discussion and
examples of its applicability to software decision making are
provided in [6 Chapters 19-20]. An excellent overall introduction
to software business case analysis is [28].

2.4 Continuous Risk and Opportunity Management
Risk analysis and risk management are not just early business

case analysis techniques; they pervade the entire information sys-

tem life cycle. Risk analysis also reintroduces the people factor
into economic decision-making. Different people may be more or
less risk-averse, and will make different decisions in similar situa-
tions, particularly when confronted with an uncertain mix of posi-
tive and negative outcomes.

For example, consider a programmer who is given 4 weeks to
complete the development of a software module. The programmer
is given two choices. One is to develop a new version of the mod-
ule, which he is sure he can do in 4 weeks. The other is to reuse a
previously-developed module, for which there is an 80% chance
of finishing in 1 week and a 20% chance of finishing in 6 weeks.
The expected duration of this option is (.8)(1) + (.2)(6) = 2 weeks.
This represents an expected time savings of 2 weeks and a corre-
sponding savings in expected effort or cost.

Understanding and Addressing People’s Utility Functions

In this situation, though, many risk-averse programmers
would reject the reuse option. They don’t want to be known as
people who overrun schedules. Their utility function would assign
a much larger negative utility to overrunning the 4-week schedule
than the positive utility of finishing ahead of schedule. In terms of
expected utility, then, they would prefer the assured 4-week de-
velop-a-new-module approach.

However, their boss may have preferred the reuse option,
particularly if she had invested resources in creating the reusable
components, and if she could organize the project to compensate
for the uncertainties in module delivery schedules (e.g., via modu-
lar architectures and daily builds rather than a pre-planned module
integration schedule). If so, she could revise the programmers’
incentive structure (rewarding reuse independent of actual comple-
tion time) in a way that realigned their utility functions and suc-
cess models to be consistent with hers.

Thus, understanding and addressing people’s utility func-
tions becomes a powerful tool in reducing the risk of the overall
project’s failure—or, from a complementary perspective, in im-
proving the opportunity for the overall project’s success. It means
that value-based software engineering is not a dry “manage by the
numbers” approach, but a highly people-oriented set of practices.
And its treatment of uncertainty balances negative risk considera-
tions with positive opportunity considerations. Reconciling stake-
holders’ utility functions involves essentially the same approaches
for stakeholder value proposition elicitation and reconciliation as
we discussed in Section 2.2.

Using Risk to Determine “How Much Is Enough”

A current highly-debated issue is the use of plan-driven
methods versus use of agile methods such as Extreme Program-
ming, Crystal Methods, Adaptive Software Development, and
Scrum [19]. Recent workshop results involving plan-driven and
agile methods experts have indicated that hybrid plan-
driven/methods are feasible, and that risk analysis can be used to
determine how much planning or agility is enough for a given
situation.

A central concept in risk management is the Risk Exposure
(RE) involved in a given course of action. It is determined by
accessing the probability of loss P(L) involved in a course of ac-
tion and the corresponding size of loss S(L), and computing the

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 4

risk exposure as the expected loss: RE=P(L)*S(L). “Loss” can
include profits, reputation, quality of life, or other value-related
attributes.

Figure 4 shows risk exposure profiles for an example e-
services company with a sizable installed base and desire for high
assurance; a rapidly changing marketplace and desire for agility
and rapid value; and an internationally distributed development
team with mix of skill levels and a need for some level of docu-
mented plans.

 - RE due to inadequate plans
 - RE due to market share erosion

 - Sum of risk exposures

Figure 4. Risk Exposure (RE) Profile: Planning Detail

The black curve in Figure 4 shows the variation in risk ex-
posure (RE) due to inadequate plans, as a function of the level of
investment the company puts into its projects’ process and product
plans. At the left, a minimal investment corresponds to a high
probability P(L) that the plans will have loss-causing gaps, ambi-
guities, and inconsistencies. It also corresponds to a high S(L)
that these deficiencies will cause major project oversights, delays,
and rework costs. At the right, the more thorough the plans, the
less P(L) that plan inadequacies will cause problems, and the
smaller the size S(L) of the associated losses.

The red curve in Figure 4 shows the variation in RE due to
market share erosion through delays in product introduction.
Spending little time in planning will get at least a demo product
into the marketplace early, enabling early value capture. Spending
too much time in planning will have a high P(L) due both to the
planning time spent, and to rapid changes causing delays via plan
breakage. It will also cause a high S(L), as the delays will enable
others to capture most of the market share.

The blue curve in Figure 4 shows the sum of the risk expo-
sures due to inadequate plans and market share erosion. It shows
that very low and very high investments in plans have high overall
risk exposures, and that there is a “Sweet Spot” in the middle
where overall risk exposure is minimized, indicating “how much
planning is enough?” for this company’s operating profile.

With the example company situation as a reference point, we
can run comparative risk exposure profiles of companies having
different risk profiles. For example, Figure 5 shows the compara-
tive RE profile for an e-services company with a small installed
base and less need for high assurance, a rapidly changing market-
place, and a collocated team of highly capable and collaborative

developers and customers. With this profile, as shown in Figure 5,
the major change in risk exposure from Figure 4 is that the size of
rework loss from minimal plans is much smaller due to the ability
of the team to rapidly replan and refactor, and thus the company’s
Sweet Spot moves to the left toward agile methods.

Figure 5. Comparative RE
Profile: Agile Home Ground

Figure 6. Comparative RE
Profile: Plan-Driven Home
Ground

Figure 6 shows the corresponding RE profile for a company
in the plan-driven home ground, with a more stable product line of
larger, more safety-critical systems. Here, the major difference
from Figure 4 is a much higher size of rework loss from minimal
plans, and a resulting shift of the company’s Sweet Spot toward
higher investments in plans. Further discussion of these issues is
provided in [7].

Similar analyses have shown that such risk analysis tech-
niques can be used to determine “how much is enough” for other
key software engineering levels of activity, such as testing, speci-
fication, prototyping, COTS evaluation, formal methods, or docu-
mentation.

2.5 Concurrent System and Software Engineering
As we discussed in Section 1, the increasing pace of change in

the information technology marketplace is driving organizations
toward increasing levels of agility in their software development
methods, while their products and services are concurrently be-
coming more and more software-intensive. These trends also
mean that the traditional sequential approach to software devel-
opment, in which systems engineers determined software require-
ments and passed them to software engineers for development, is
increasingly risky to use.

Increasingly, then, it is much more preferable to have systems
engineers and software engineers concurrently engineering the
product’s or service’s operational concept, requirements, architec-
ture, life cycle plans and key sections of code. Concurrent engi-
neering is also preferable when system requirements are more
emergent from usage or prototyping than prespecifiable. It is fur-
ther preferable when the relative costs, benefits, and risks of
commercial-off-the-shelf (COTS) software or outsourcing deci-
sions will simultaneously affect requirements, architectures, code,
plans, costs, and schedules. It is also essential in determining
cost-value tradeoff relationships in developing software product
lines [16].

Relevant Process Models

For the future, then, concurrent spiral-type process models
will increasingly be preferred over sequential “waterfall”-type

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 5

process models. Several are available, such as the Evolutionary
Spiral Process [32], the Rational Unified Process (RUP) [29, 21,
24], and the MBASE/CBASE models [12, 9]. Some agile process
models such as Lean Software Development and Adaptive Soft-
ware Development [19] also emphasize concurrent system and
software engineering.

 An important feature of concurrent process models is that
their milestone pass-fail criteria involve demonstrations of consis-
tency and feasibility across a set of concurrently-developed arti-
facts. For example, Table 1 shows the pass-fail criteria for the
anchor point milestones used in MBASE and RUP: Life Cycle
Objectives (LCO), Life Cycle Architecture (LCA), and Initial Op-
erational Capability (IOC) [12]

LCO LCA IOC
For at least one architec-
ture, a system built to
that architecture will:
• Support the core

operational con-
cept

• Satisfy the core
requirements

• Be faithful to the
prototype(s)

• Be buildable
within the budgets
and schedules in
the plan

• Show a viable
business case

• Have its key
stakeholders
committed to sup-
port the Elabora-
tion Phase (to
LCA)

For a specific detailed
architecture, a system
built to that architecture
will:
• Support the elabo-

rated operational
concept

• Satisfy the elabo-
rated requirements

• Be faithful to the
prototype(s)

• Be buildable within
the budgets and
schedules in the
plan

• Show a viable busi-
ness case

• Have all major risks
resolved or covered
by a risk manage-
ment plan

• Have its key stake-
holders committed
to support the full
life cycle

An implemented architec-
ture, an operational sys-
tem that has:
• Realized the opera-

tional concept
• Implemented the

initial operational
requirements

• Prepared a system
operation and sup-
port plan

• Prepared the initial
site(s) in which the
system will be de-
ployed for transition

• Prepared the users,
operators, and
maintainers to as-
sume their opera-
tional roles

Table 1. LCO, LCA, and IOC Pass/Fail Criteria

These milestones work well as common commitment points
across a variety of process model variants because they reflect
similar commitment points during one’s lifetime. The LCO mile-
stone is the equivalent of getting engaged, and the LCA milestone
is the equivalent of getting married. As in life, if you marry your
architecture in haste, you and your stakeholders will repent at lei-
sure (if, in Internet time, any leisure time is available). The third
anchor point milestone, the Initial Operational Capability (IOC),
constitutes an even larger commitment: It is the equivalent of hav-
ing your first child, with all the associated commitments of care
and feeding of a legacy system.

 Another important development in this area is the Capability
Maturity Model-Integrated (CMMI) [31, 1]. It integrates the pre-
vious software-centric Software CMM [25] with CMM’s for Sys-
tem Engineering and for Integrated Product and Process
Development. The CMMI (and its predecessor iCMM [15]) pro-
vides a process maturity assessment and improvement framework,
which organizations can use to evolve from sequential to concur-
rent systems and software engineering approaches, in ways, which
emphasize integrated stakeholders teaming and reconciliation of

stakeholder value propositions.

2.6 Value-Based Monitoring and Control
A technique often used to implement project monitoring and

control functions in the software CMM or the CMMI is Earned
Value Management. It works as follows:

1. The project develops a set of tasks necessary for completion,
and associated budgets and schedules for each.

2. Each task is assigned an earned value (EV) for its completion,
usually its task budget.

3. As the project proceeds, three primary quantities are revised
at selected times T:

a. The Budgeted Cost of Work Scheduled (BCWS): the
sum of the EV’s of all tasks schedules to be com-
pleted by time T.

b. The Budgeted Cost of Work Performed (BCWP), or
project level earned value: the sum of the EV’s of all
tasks actually completed by time T.

c. The actual cost of the project through time T.
4. If the BCWP (budgeted cost of work performed) is equal to or

greater than the BCWS (budgeted cost of work scheduled),
then the project is on or ahead of schedule.

5. If the BCWP is equal to or greater than the project cost, then
the project is on or ahead of budget.

6. If the BCWP is significantly less than the BCWS and/or the
project cost at the time T, then the project is significantly
overrunning its schedule and/or its budget, and corrective ac-
tion needs to be performed.

The six steps are summarized in the earned value feedback process
shown in Figure 7.

Figure 7. “Earned Value” Feedback Process

The Earned Value Management process is generally good

for tracking whether the project is meeting its original plan. How-
ever, it becomes difficult to administer if the project’s plan
changes rapidly. More significantly, it has absolutely nothing to
say about the actual value being earned for the organization by the
project’s results. A project can be tremendously successful with
respect to its cost-oriented “earned value,” but an absolute disaster
in terms of actual organizational value earned. This frequently
happens when the resulting product has flaws with respect to user
acceptability, operational cost-effectiveness, or timely market en-
try. Thus, it would be preferable to have techniques which sup-
port monitoring and control of the actual value to be earned by the

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 6

project’s results.

Business-Case and Benefits-Realized Monitoring and Control

 A first step is to use the project’s business case (discussed in
Section 2.3) as a means of monitoring the actual business value of
the capabilities to be delivered by the project. This involves con-
tinuing update of the business case to reflect changes in business
model assumptions, market conditions, organizational priorities,
and progress with respect to enabling initiatives. Monitoring the
delivered value of undelivered capabilities is difficult; therefore,
this approach works best when the project is organized to produce
relatively frequent increments of delivered capability.

 A related next step is to monitor assumptions and progress
with respect to all of the Initiatives and Outcomes involved in the
project’s Results Chain discussed in Section 2.1 and shown in
Figure 1. The suggested monitoring approach in [35] involves
coloring in the degree to which Initiatives and Outcomes have
been realized. This can be extended to monitor Contributions and
validity of Assumptions as well. For example, monitoring the
Contribution, “Reduce time to deliver product” in Figure 1 could
uncover the problem that speeding up order entry will create more
order fulfillment delays unless a complementary order-fulfillment
Initiative is established.

 The resulting value realization feedback process is shown in
Figure 8. With respect to the order-entry example just above,
finding out that value was not being realized via reduced delivery
times would lead to some corrective action, most likely the estab-
lishment of an order-fulfillment speedup Initiative. This would
require updates of the overall plans and business case, and new
time-phased cost and benefit flows to monitor.

Figure 8. Value Realization Feedback Process

A further option in the value realization feedback process
involves adjusting the value function to reflect progress with re-
spect to the product’s production function as illustrated in Figure
9. The usual economic production function is an S-shaped curve
in which the early “Investment” segment involves development of
infrastructure which does not directly generate benefits, but which
is necessary for realization of the benefits in the High-payoff and
Diminishing-returns segment of the curve. This means that track-
ing direct benefits realized usually produces pessimistic results
during the Investment segment of the curve. One can either man-
age stakeholders’ expectations to accept low early benefit flows
(as with the ROI profiles in Figure 3), or use an alternative value
function (the dotted line in Figure 9), which ascribes additional
indirect value to the early investments in infrastructure. The pre-

ferred option will depend on the project’s stakeholders and their
expectations.

 Of course, the actual and potential benefit values realized by
each increment of capability need to be monitored and adjusted for
changes. For example, a low-cost and user-friendly animated
graphics package may increase the net value of animated graphics
for certain classes of applications (e.g. education and training).

Figure 9. Example Production Function for Software Product
Features

Value-Based Monitoring and Control at the Organization Level

 The preceding discussion focused on value-based monitor-
ing and control at the individual project level. At least as impor-
tant is value-based monitoring and control at the organization
level. A particularly good approach for integrating both organiza-
tion-level and project-level value-based monitoring and control is
the Experience Factory (EF) and its associated Goal-Question-
Metric (GQM) approach [4, 5].

 A value-based version of the EF-GQM approach is shown in
Figure 10 [9]. Using the benefits realization, stakeholder value
proposition elicitation and reconciliation, and business case analy-
sis activities discussed in Sections 2.1 through 2.3, the organiza-
tion establishes a shared vision, goals, and strategies for its
improvement initiatives (the upper left box in Figure 10).

 For example, the organization may establish more rapid
software development as a high-priority competitive strategy, and
set a goal to reduce its projects’ software development time by 50
percent. The implementing initiative may then set goals and plans
to have each project activity reduce its calendar time by 50 per-
cent.

 Once an initial pilot project is selected based on stakeholder
commitment and business-case value, its progress is monitored for
progress/plan/goal mismatches, as shown at the bottom of Figure
10. While design, code, and test planning may finish in 50 percent
less time, integration and test may start showing a 50 percent in-
crease rather than decrease in duration. Analyzing this pro-
gress/plan/goal mismatch would determine the root cause to be
delays due to inadequate test planning and preparation of test
tools, test drivers, and test data. Further, shortening the test plan
activity had produced no cycle time savings, as test planning was
not on the project’s critical path.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 7

 The results of this analysis would be fed into the organiza-
tion’s experience base: Future cycle time reduction strategies
should focus on reducing the duration of critical path activities,
and options for doing this include increasing the thoroughness and
duration of noncritical-path activities. Overall then, as shown in
the center of Figure 10, the EF analyzes and synthesizes such
kinds of experiences, acts as a repository for the experiences, and
supplies relevant experience to the organization on demand. The
EF packages experience by building informal and formal models
and measures of various processes, products, and other forms of
knowledge via people, documents, and automated support.

Figure 10. Value-Based Experience Factory Framework

Several useful techniques are available for organizing and
managing multi-dimensional improvement strategies. The Bal-
anced Scorecard technique [22] organizes goals, strategies, and
initiatives into four perspectives: financial; customer; internal
business process; and learning and growth. The BTOPP business
system [30, 35] uses five perspectives: business, technology, or-
ganization, process, and people. Both are similar; organizations
can choose the one that best fits or develop an alternative as ap-
propriate.

2.7 Change as Opportunity
Expending resources to adapt to change is frequently treated

as a negative factor to avoid. Software change tracking systems
often treat changes as defects in the original requirements. Quality
cost systems often treat change adaptations as a quality cost to be
minimized. These criteria tend to push projects and organizations
toward change-aversion.

 Nowadays, changes are continually going on in technology,
in the marketplace, in organizations, and in stakeholders’ value
propositions and priorities. And the rate of change is increasing.
Organizations that can adapt to change more rapidly than their
competition will succeed better at their mission or in the market-
place. Thus the ability to adapt to change has business value.

 And software is the premier technology for adaptation to
change. It can be organized to make the cost of changes small as
compared to hardware. It can be updated electronically, in ways
that preserve continuity of service as the change is being made.
Thus, change as opportunity for competitive success is a key eco-
nomic and architectural driver for software projects and organiza-

tions.

Examples of Change as Opportunity

 The main sources of change as opportunity come from
changes in technology or in the marketplace that open up new
opportunities to create value. These are of course other opportu-
nity sources such as changes in legislation, organizational align-
ments, and international relations.

 An excellent example of technology change as opportunity
has been the Internet and the Web and their effect on electronic
commerce. Organizations that learned early how to capitalize on
his technology made significant competitive gains. Other good
examples of technology change as opportunity have been agent
technology, mobile computing, and the Global Positioning System
(GPS).

 A good example of marketplace change as opportunity is the
existence of GPS and mobile computing in automobiles as an op-
portunity to provide mobile location-based services. Another is
the opportunity to add mobile electronic collect-on-delivery billing
and collection systems at the delivery point of rapid-delivery ser-
vices such as Federal Express and United Parcel Service.

Techniques for Enhancing Adaptability to Change

 As documented in Microsoft Secrets [14], the world’s lead-
ing software business uses a number of techniques for enhancing
its adaptability to change. Its synchronize-and-stabilize approach
focuses on concurrent evolutionary development, in which each
feature team has the flexibility to adapt to change, while buffer
periods are built into each increment to enable the teams to syn-
chronize their results. Nightly build techniques also accommodate
flexibility in the integration schedule and adaptability to change.
Also, Microsoft uses a number of techniques to enhance organiza-
tional learning and adaptation, such as customer feedback analy-
sis, project postmortems, and technology-watch and marketplace-
watch activities.

 Project techniques for enhancing adaptability to change tend
to fall into two categories: architecture-based and refactoring-
based. Architecture-based techniques focus on identifying the
product’s most likely sources of change, or evolution require-
ments, and using information-hiding modularity techniques to hide
the sources of change within architectural modules [26]. Then,
when the changes come, they can be accommodated within mod-
ules rather than causing ripple effects across the entire product. A
related technique is schedule-as-independent-variable (SAIV),
which uses prioritized requirements as potential sources of change
to ensure delivery of the highest-priority requirements within a
fixed schedule [10]

 Refactoring-based change focuses on keeping the product as
simple as possible, and reorganizing the product to accommodate
the next set of desired changes. A number of the agile methods
discussed in Section 2.4 rely on refactoring to accommodate
change, while the plan-driven methods rely on architecture.
Which one is more likely to succeed for a given project is largely
based on the validity of the Extreme Programming slogan, “You
Aren’t Going to Need It (YAGNI).” If the evolution requirements
are knowable in advance and stable, the architecture-based ap-
proach will easily accommodate them, while the YAGNI approach

Initiatives
Planning context

Progress/Plan/ Goal
Mismatches

Experience Base

Analyzed
experience,
Updated models

Achievables ,
Opportunities

• Org. Improvement Goals
– Goal - related questions, metrics

• Org. Improvement Strategies
– Goal achievement models

Org. Improvement Initiative
Planning & Control

• Initiative Plans
– Initiative - related questions,

metrics
• Initiative Monitoring and

Control
– Experience - Base Analysis

Org. Shared Vision &
Improvement Strategy

Project Shared
Vision and Strategy

Planning

Models and data

Project
experience

Org.
Goals

Project Planning
and Control

Models and
data

Progress/Plan/Goal/Mismatches

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 8

will incur a steady stream of excess refactorings. On the other
hand, if the requirements changes are frequent and highly unpre-
dictable, pre-architected frameworks will continually break, and
refactoring simpler designs will be preferable.

Economic Value of Adaptability to Change

 Developing a change-anticipatory modular design can be
considered as an investment in real options which can be exercised
in the future to execute changes which enhance the system’s value
[2, 3]. More specifically, [34] uses the options-pricing approach
to analyze the economic value of Parnas’ information-hiding tech-
nique to modularization around anticipated sources of change.
This approach can also be combined with other economic ap-
proaches, such as buying information to reduce the risk of antici-
pating the wrong set of changes (e.g. via prototypes, user surveys,
marketplace watch, or technology watch activities).

 Another perspective on the value of adaptability to change
comes from studies of complex adaptive systems [23, 20]. These
studies show that for various “fitness landscapes” or value func-
tions, one can tune a set of adaptation parameters so that a high-
value operational solution will emerge over time via the interac-
tion of a set of adaptive agents. A too-rigid set of adaptation pa-
rameters will lead to gridlock; a too-flexible set will lead to chaos.
[18] shows numerous parallels between software development and
complex adaptive systems, including the value of relatively agile
over highly rigorous approaches to software development in do-
mains undergoing rapid change.

3. Getting Started Toward Value-Based Software
Engineering

3.1 Going Toward VBSE At the Project or Organization
Level
At the individual project or organization level, there are indi-

vidual steps you can take for each of the seven key elements of
value-based software engineering. They are fairly compatible, and
can be pursued in various combinations. As with most changes, it
is best to start small with a receptive pilot project with good
chances of demonstrating early value.

 1. Benefits-Realization Analysis. Write down the name of
your software initiative and its specific deliverables as its
contribution as the left-hand end of a Results Chain, and your
stakeholders’ desired outcome(s) as the right-hand end. Then try
to fill out the Results Chain with any success-critical assumptions,
intermediate outcomes and contributions, and additional initiatives
needed to fully realize the desired outcome(s). There usually will
be some added initiatives, and they will often identify some miss-
ing success-critical stakeholders.

 2. Stakeholder Value Proposition Elicitation and Recon-
ciliation. Use the Results Chain to interview your success-critical
stakeholders to validate it and identify their additional high-
priority assumptions, initiatives, and outcomes. Use the Model
Clash Spiderweb as a top-level checklist, and as a source for iden-
tifying model clashes that need to be reconciled among the stake-
holders into a mutually satisfactory or win-win set of agreements.
Summarize the results and coordinate them with the stakeholders
via a Shared Vision document or its equivalent. A simple Shared

Vision document would include an “elevator description” of the
project and its desired outcome(s), the corresponding Results
Chain, a list of the success-critical stakeholders and their roles, a
System Block Diagram indicating the desired scope and boundary
of the system to be developed and a list of the major project con-
straints. More detailed guidelines are in Section 2 of the MBASE
Operational Concept Description Guidelines at
http://sunset.usc.edu/research/MBASE.

 3. Business Case Analysis. Do a simple (e.g. analogy-
based) estimate of the costs of developing, installing and operating
your proposed system over your chosen benefits period. Do a
similarly simple estimate of the resulting benefits across the bene-
fits period. For an order processing system, these could be both
cost savings and increased sales and profits. Construct a chart
similar to Figure 3 showing the cumulative return on investment,
ROI= (benefits-costs)/costs. Also list the qualitative benefits, such
as improved order fulfillment predictability and control and im-
proved customer satisfaction. Iterate the business case with your
stakeholders and ensure that they agree that it is worthwhile to
proceed. Don Reifer’s book, Making the Software Business Case
[28] provides further guidelines and case study examples.

 4. Continuous Risk and Opportunity Management. Any
uncertainties in your business case analysis, or in your ability to
realize the outcomes in your Results Chain, are sources of risk that
you should eliminate early (via prototyping, user surveys, COTS
evaluation, etc.), or develop plans and fallbacks for managing their
future elimination. Also identify a focal point person for doing
technology watch or marketplace watch activities to identify po-
tential new risks or opportunities.

 5. Concurrent System and Software Engineering. Rather
than sequentially developing operational concepts, software re-
quirements, prototypes, COTS and platform choices, architectures,
and life cycle plans, perform these concurrently. Use the equiva-
lent of the MBASE and Rational Unified Process Life Cycle Ob-
jectives (LCO) and Life Cycle Architecture (LCA) milestones
discussed in Section 2.5 as stakeholder review and commitment
points.

 6. Value-Based Monitoring and Control. Use the Results
Chain in step 1 to monitor the validity of assumptions actual vs.
expected contributions and outcomes. Similarly, monitor the ac-
tual vs. estimated costs and benefits in the business case, and up-
date the estimates at major milestones such as LCO and LCA.
Also, continuously monitor the status of project risks and opportu-
nities, and balanced-scorecard results such as customer satisfac-
tion. Determine appropriate corrective actions for any
progress/plan/goal mismatches. Set up a simple pilot experience
base for accumulating lessons learned and key metrics data (soft-
ware productivity and quality metrics; balanced scorecard results)
at the organizational level.

 7. Change as Opportunity. For small, non-critical projects
with rapidly changing or highly emergent requirements, experi-
ment with using one of the agile methods, enhanced where appro-
priate by the value-based steps above. For larger, more critical
projects, determine the most likely sources of requirements change
and modularize the system to accommodate these sources of
change. Again, continuously monitor technology and the market-
place to identify and reorient the project to address unanticipated

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 9

risks and opportunities. Where these are rapidly changing, ex-
periment with hybrid plan-driven and agile methods within an
architectural framework addressing the most critical and stable
requirements.

3.2 Going Toward VBSE at the National or Global Level
Figure 11 shows a roadmap for making progress toward

Value-Based Software Engineering and its benefits on a national
or global level [13]. In the spirit of concurrent software and sys-
tem engineering, it focuses its initiatives, contributions, and out-
comes at the combined software and information technology
(SW/IT) level. Its overall goals are to develop fundamental
knowledge and practical techniques that will enable significant,
measurable increase in the value created over time by software and
information technology projects, products, portfolios and the in-
dustry.

Figure 11. Roadmap for realizing benefits of value-based
software engineering

Working backwards from the end objective, the roadmap in
Figure 11 identifies a network of important intermediate out-
comes. It illustrates these intermediate outcomes, dependence rela-
tionships among them, and important feedback paths by which
models and analysis methods will be improved over time. The
lower left part of the diagram captures tactical concerns, such as
improving cost and benefit estimation for software projects, while
the upper part captures strategic concerns, such as reasoning about
real options and synergies between project and program elements
of larger portfolios, and using the results to improve software en-
gineering and information technology policy, research, and educa-
tion.

Making Decisions That Are Better for Value Creation

The goal of the roadmap is supported by a key intermediate
outcome: designers and managers at all levels must make deci-
sions that are better for value added than those they make today.
Value-based decisions are of the essence in product and process
design, the structure and dynamic management of larger programs,

the distribution of programs in a portfolio of strategic initiatives,
and national software policy. Better decisionmaking is the key
enabler of greater value added.

Value-based decision-making depends in turn on a set of
other advances. First, the option space within which managers and
designers operate needs to be sufficiently rich. To some extent, the
option space is determined by the technology market structure:
what firms exist and what they produce. That structure is influ-
enced, in turn, by a number of factors, including but not limited to
national-level strategic decision-making, e.g., on long-term R&D
investment policy, on anti-trust, and so forth. The market structure
determines the materials that are produced that managers and de-
signers can then employ, and their properties.

Second, as a field we need to understand better the links be-
tween technical design mechanisms (e.g., architecture), context,
and value creation, to enable both better education and decision-
making in any given situation. An improved understanding of
these links depends on developing better models of sources of
value that are available to be exploited by software managers and
designers in the first place (e.g., real options).

Third, people involved in decision-making have to be edu-
cated in how to employ technical means more effectively to create
value. In particular, they personally need to have a better under-
standing of the sources of value to be exploited and the links be-
tween technical decisions and the capture of value.

Fourth, dynamic monitoring and control mechanisms are
needed to better guide decision-makers through the option space
in search of value added over time. These mechanisms have to be
based on models of links between technical design and value and
on system-specific models and databases that capture system
status, valuation, risk, and so on: not solely as functions of soft-
ware engineering parameters, such as software development cost
drivers, but also of any relevant external parameters, such as the
price of memory, competitor behavior, macroeconomic conditions,
etc., as discussed in Section 2.6.

These system-specific models are based on better cost and
payoff models and estimation and tracking capabilities, at the cen-
ter of which is a business-case model for a given project, program
or portfolio. Further elements of this roadmap are discussed in
more detail in [13].

4. Summary and Conclusions
What Are You Getting Paid For?

 If you’re a professional software engineer, you’re getting
paid good money for your efforts. What do you think that people
ultimately responsible for your paycheck feel that they are paying
for? Your immediate bosses may say that you’re getting paid to
produce designs, code, tests, and so forth. But their sources of
support are expecting something different.

 The ultimate sponsors of your project are expecting that the
project’s end result will be to add more value for them than they
are paying you and the project team to create it. Their value
proposition may be a financial return on investment or an im-
proved public service like health, education, or defense. Or it
might be scientific curiosity, a political objective, or pure ego sat-

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 10

isfaction.

Why Should You Care?

 It used to be that the decisions you made on a software pro-
ject were pretty much decoupled from the value propositions that
established the project. A requirements analysis could establish
the requirements for the software, and all you were responsible for
was the traceability from your software back to the requirements.
But in today’s world of rapidly changing information technology,
organizations, and marketplaces, the ”requirements” tend also to
change rapidly, and in ways that require participation of all
knowledgeable parties in determining just how a system’s defini-
tion should change.

 As a software engineer, you are both a critically knowledge-
able and a critically responsible party in this new system-level
process. In particular, just saying, “Oh, I’ll do whatever’s needed
on the same software budget and schedule,” is a recipe for disaster
both for your career and for your sponsor’s value propositions.
Thus, traceability to value propositions becomes more important
and relevant than traceability to requirements. You need to be
able to understand and deal with other stakeholders’ value propo-
sitions and they with yours. If they want new features, they must
be prepared to drop lower-priority features or add budget and
schedule.

How Does Value-Based Engineering Help You Do This?

 A value-based approach to software engineering helps by
providing new perspectives, tools, skills, and success criteria for
most of the activities involved in software engineering. In Section
2, we presented seven key elements which are emerging as the
foundations for value-based software engineering:

1. Benefits Realization Analysis
2. Stakeholder Value Proposition Elicitation and Reconciliation
3. Business Case Analysis
4. Continuous Risk and Opportunity Management
5. Concurrent System and Software Engineering
6. Value-Based Monitoring and Control
7. Change as Opportunity

These elements fit together into a coherent framework for practic-
ing value-based software engineering as shown in Figure 12.

Figure 12. Value-Based Software Engineering Framework

How Can You Get Started Toward Value-Based Software Engi-
neering?

Section 3 provides some initial steps you can take for each
of the seven key elements of value-based software engineering.
They are fairly compatible, and can be used in various combina-
tions. As with most changes, it is best to start small with a recep-
tive pilot project with good chances of demonstrating early value.

Section 3 also provides a roadmap for making progress to-
ward value-based software engineering at a national or global
level. Its overall goals are to develop fundamental knowledge and
practical techniques that will enable significant increases in the
value created by software engineering and its information technol-
ogy products and services.

Does This Mean That You Need to Reinvent Everything?

Fortunately not. Several approaches have been evolving in
this direction in response to the changes in the information tech-
nology marketplace. The DMR Group’s Benefits Realization Ap-
proach and Results Chain have been successfully used in a wide
variety of applications [35]. Balanced Scorecard methods have
also been successfully applied to software projects and organiza-
tions [17]. The Rational Unified Process is organized around the
economics of software development, and has emerging extensions
addressing business case analysis and business modeling [29, 21,
24].

The Capability Maturity Model-Integrated (CMMI) extends
the software CMM to address system-level considerations such as
operational concept definition, stakeholder shared vision achieve-
ment, and risk management [31, 1]. The spiral model’s risk-driven
approach has been extended into a value-driven approach called
Model-Based (System) Architecting and Software Engineering
(MBASE) [11, 12], which is compatible with RUP, CMMI, and
organizational approaches such as the Experience Factory and
CeBASE Method [9]. Thus, there are ways to evolve from current
approaches to increasingly robust value-based approaches.

Also, the transition to value-based software engineering is
necessarily evolutionary because it hasn’t all been invented yet.
There are no mature packages available on the shelf for perform-
ing software benefits analysis or value-based earned value track-
ing. As with everything else in information technology, VBSE is
undergoing considerable change. And those who embrace this
source of change as opportunity will be the first and fastest to reap
its rewards.

5. Acknowledgements
This paper is based on research supported by the National

Science Foundation, the DoD Software Intensive Systems Direc-
torate, and the affiliates of the USC Center for Software Engineer-
ing. It owes a great deal to discussions with the USC-CSE
principals, with participants in the Economics-Driven Software
Engineering Research (EDSER) workshops, and with participants
in the International Software Engineering Research Network
(ISERN) workshops.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 11

References:
[1] D. Ahern, A.Clouse, and R. Turner, CMMI Distilled, Addison
Wesley, 2001.

[2] M. Amram and N. Kulatilaka, Real Options, Harvard Business
School Press, 1999.

[3] C. Baldwin and K. Clark, Design Rules: The Power of Modu-
larity, MIT Press, 2000.

[4] V. Basili, G. Caldeira, and H. D. Rombach, “The Experience
Factory”, in J. Marciniak (ed.), Encyclopedia of Software Engi-
neering, Wiley, 1994.

[5] V. Basili, G. Caldeira, and H. D. Rombach, “The Goal Ques-
tion Metric Approach,” in J. Marciniak (ed.), Encyclopedia of
Software Engineering, Wiley, 1994.

[6] B. Boehm, Software Engineering Economics, Prentice Hall,
1981.

[7] B. Boehm, “Get Ready for Agile Methods, With Care,” Com-
puter, January 2002, pp. 64-69.

[8] B. Boehm, D. Port, and M. Al-Said, “Avoiding the Software
Model-Clash Spiderweb,” Computer, November 2000, pp. 120-
122.

[9] B. Boehm, D. Port, A. Jain, & V. Basili, “Achieving CMMI
Level 5 Improvements with MBASE and the CeBASE Method,”
Cross Talk, May 2002.

[10] B. Boehm, D. Port, L. Huang, and A. W. Brown, “Using the
Spiral Model and MBASE to Generate New Acquisition Process
Models: SAIV, CAIV, and SCQAIV”, Cross Talk, January 2002.

[11] B. Boehm and W. Hansen, “Understanding The Spiral Model
as a Tool for Evolutionary Acquisition”, Cross Talk, May 2001.

[12] B. Boehm and D. Port, “Balancing Discipline and Flexibility
with the Spiral Model and MBASE”, Cross Talk, December 2001.
See also http://sunset.usc.edu/research/MBASE

[13] B. Boehm and K. Sullivan, “Software Economics: A Road-
map,” The Future of Software Economics, A. Finkelstein (ed.),
ACM Press, 2000, pp. 319-343.

[14] M. Cusumano and R. Selby, Microsoft Secrets, How the
World's Most Powerful Software Company Creates Technology,
Shapes Markets, and Manages People, The Free Press, 1995.

[15] Federal Aviation Administration, “The Integrated Capability
Maturity Model,” 1997.

[16] S Faulk, D. Harmon, and D. Raffo, “Value-Based Software
Engineering (VBSE): A Value-Driven Approach to Product-Line
Engineering,” Proceedings, First International Conference on
Software Product Line Engineering, August 2000.

[17] P. Ferguson et al., “Software Process Improvement Works!
(Advanced Information Services, Inc.),” CMU/SEI-99-TR-027,
November 1999.
[18] J. Highsmith, Adaptive Software Development, Dorset
House, 2000.
[19] J. Highsmith, Agile Software Development Ecosystems, Ad-
dison Wesley, 2002.

[20] J. Holland, Emergence: From Chaos to Order, Perseus Books,
1998.

[21] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Soft-
ware Development Process, Addison Wesley, 1999.

[22] R. Kaplan and D. Norton, The Balanced Scorecard: Translat-
ing Strategy into Action, Harvard Business School Press, 1996.

[23] S. Kauffman, At Home in the Universe, Oxford University
Press, 1995.

[24] P. Kruchten, The Rational Unified Process, (2nd ed.), Addison
Wesley, 2001.

[25] M. Paulk, C. Weber, B. Curtis, and M. Chrissis, The Capabil-
ity Maturity Model, Addison Wesley, 1994.

[26] D. Parnas, “Designing Software for Ease of Extension and
Contraction,” IEEE Trans. Software Engr., March 1979, pp. 128-
137.

[27] Rational Software Corp., Driving Better Business with Better
Software Economics, Cupertino, CA 95014, 2001.

[28] D. Reifer, Making the Software Business Case, Addison
Wesley, 2002.

[29] W. E. Royce, Software Project Management, Addison-
Wesley, 1998.

[30] M. Scott Morton, The Corporation of the 1990s: Information
Technology and Organization Transformation, Oxford University
Press, 1991.

[31] Software Engineering Institute, Capability Maturity Model
Integration (CMMI), Version 1.1., CMU/SEI-2002-TR-012,
March 2002.

[32] Software Productivity Consortium, “The Evolutionary Spiral
Process,” SPC Technical Report, Herndon, VA, 1992.

[33] The Standish Group, CHAOS Report, 1995,
www.standishgroup.com

[34] K. Sullivan, Y. Cai, B. Hallen, and W. Griswold, “The Struc-
ture and Value of Modularity in Software Design,” Proceedings,
ESEC/FSE, 2001, ACM Press, pp. 99-108.

[35] J. Thorp and DMR, The Information Paradox, McGraw Hill,
1998.

[36] Webster’s Collegiate Dictionary, Merriam-Webster, 2002.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 12

