
A Study to Investigate the Impact of Requirements Instability
on Software Defects

Talha Javed1, Manzil-e-Maqsood2 and Qaiser S. Durrani3
1, 2, 3 National University of Computer and Emerging Sciences,

852-B, Faisal Town, Lahore, Pakistan
{mspm008,mspm024,qaiser.durrani}@nu.edu.pk

Abstract
Software development is a dynamic process and is characterized
by change. Software projects often begin with unclear, ambiguous,
and incomplete requirements which give rise to intrinsic volatility.
Constant change in requirements is one of the main causes of
software defects and a major issue faced by the software industry.
This paper describes the findings of our research-based study that
investigates the impact of both the pre-release and post-release
requirements changes on overall defects by defining measures,
collecting data against those measures and analyzing the collected
data through statistical techniques. Our findings, based on industry
data from 4 software projects consisting of 30 releases, all in e-
commerce domain, indicate that there is a significant relationship
between pre/post release change requests initiated by the client
and software defects. In addition, our data analysis indicates that
changes in the design of the system at the later stages of software
development i.e., during coding, testing and after release have a
significant impact on the high severity defects that affect the major
functionality of the system. Also, we found that insufficient time
spent on the design phase and inadequate communication with the
client could be some of the causes of requirements changes and
consequently software defects.

 Keywords: Requirements change, pre/post release changes,
change request (CR’s)1, high/medium/low change requests,
defects, severity-1/severity-2 defects

1. Introduction
Requirements are the foundation of the software development
process. They provide the basis for estimating costs and schedules
as well as developing design and testing specifications. So the
success of a software project, both functional and financial, is
directly related to the quality of its requirements. Although an
initial set of requirements may be well documented, requirements
will change throughout the software development lifecycle. Thus,
constant change (addition, deletion and modification) in
requirements during the development life cycle impacts the cost,
schedule, and quality of the resulting product [4].

However the basic problem is not with changing requirements; the
problem is with inadequate approaches for dealing with them.
Requirements Evolution is due to both social and technical
aspects. The social viewpoint is related to the stakeholders
involved in the system, they range from end-users to software
engineers, project managers and other business actors (e.g.,
standards regulators, market competitors, etc.). All stakeholders

1 Changes in requirements (addition, deletion, modification) initiated by the client

through the Change Request Forms (CRFs).

change their understanding of the ongoing system during its life
cycle, hence requirements evolve. On the technical viewpoint,
requirements may evolve due to production constraints, usage
experience and feedback from other phases of the system life cycle
(e.g., testing).

Ideally, the requirements once approved by the client should
stabilize with no or very few major changes. According to Capers
Jones, requirements change (RC) should come down to 3% in the
design phase, 1% in the coding phase and ideally 0% during
testing. However requirements change is always there but it can
have very negative affect during the later stages of software
development. For example: requirements change during the
coding and testing stage can maximize the defect density as
compared to other phase. Studies conducted by Jones have shown
that the defect rates associated with the new features added during
mid-development are about 50% greater than those of the artifacts
associated with original requirements. [7].

Secondly it is important to realize that RC can be distinguished as:
(1) Pre-FS (Functional Specification) Changes which refer to
changes in the requirements during the early phases (i.e.
elicitation, elaboration, analysis, modeling and negotiation) of
software development before FS has been completed and signed
off, (2) Post-FS Changes occur during the later phases of software
development (i.e. design, coding, testing and development) after
the FS has been formally signed off, (3) Post-release changes
occur once the system has been deployed at the client side, after
release [20]. (First and second type of changes fall under the
category of Pre-release changes).

In the above context, it is worth mentioning that the first type of
change is constructive if correctly done, because these would help
in more complete requirements. However the second and the third
types of requirements can be destructive as they may affect the
productivity in terms of cost overruns, schedule overruns and
quality (adding defects while incorporating a change).

Malaiya [17] has examined the relationship between changing
requirements and defect density at the code phase and found the
requirements volatility has an impact on defect density.
According to Capers Jones [7], the maximum defects should
never exceed 3.5 defects per function point (Sum of the defects
found in requirements, design, code, user documents and bad
fixes)2.

Our research work investigates the impact of both the pre and
post-release requirements changes on overall defects by collecting

2 The data presented here is derived from top 5% of the projects in the top 30%

organizations Software Productivity Research has analyzed out of a total of 600.

ACM Software Engineering Notes 1 May 2004 Volume 29 Number 4

and analyzing the data through statistical techniques. For this
study we have collected data from 4 projects consisting of 30
releases. All these projects are from the e-commerce domain.
Further, we have categorized both the pre and post-release CR’s
initiated by the client in three different categories3: high; medium;
low. Similarly we have categorized the defects in two categories4:
severity-1; severity-2.

The findings of this study provide some preliminary results in
understanding the impact of RC on software defects and the
possible causes of those changes. We believe that these results
provide significant implications for software practitioners to
understand the impact of RC and the associated risks. However,
due to the intricacy of the RC phenomenon and the scarcity of
empirical evidence available, it is important to conduct further
investigations to better understand the causes and effects of RC, to
identify effective processes and tools and techniques to control
and manage RC.

This study is organized as follows: In section 2, we look at the
work related to the impact of RC. Section 3 presents our
hypotheses and the procedures for data collection along with brief
details of the data gathered against the selected projects. In section
4, we have discussed the results based on our findings and the
final section concludes our work with directions for future
research.

2. Prior Literature
Recent studies have shown that both large and complex software
projects experience many changes throughout the system
development life cycle [4]. Studies conducted by Barry [3] have
shown that the sources of RC are manifold (changing work
environment, organizational complexity, government regulations,
and conflicts among stakeholders in deciding on a core set of
requirements).

Lamsweerde [1] conducted a survey of over 8000 projects from
350 US companies and revealed that one third of the projects were
never completed and one half succeeded only partially, that is,
with partial functionalities, major cost overruns, and significant
delays. When asked about the causes of such failures, executive
managers identified poor requirements as the major source of
problems (about half of the responses) - more specifically, the lack
of user involvement (13%), requirements incompleteness (12%),
changing requirements (11%), unrealistic expectations (6%), and
unclear objectives (5%).

On the European side, a recent survey of over 3800 organizations
in 17 countries similarly concluded that most of the perceived
software problems are in the area of requirements specification
(greater than 50%) and requirements management (50%) [1].

Prior studies have investigated the impact of RC on software
productivity [15], software releases [16] and its impact on isolated
software development phases [17]. Lane [15] investigated the

3

 High: If a CR affects the Design, major functionality or databases design of the
system.

 Medium: If a CR affects minor functionality or minor database changes.
 Low: If a CR requires minimal GUI consistency changes.
4

 Severity-1: major defects, affecting the significant functionality of the system.
 Severity-2: minor defects, mostly GUI related.

impact of RC on effectiveness and efficiency of software
development productivity and found that there was no direct
impact of requirements change on these two concepts. Lane’s
findings further suggested that factors such as product size and
organization size strongly influence the impact of RC on software
development productivity. Another study conducted by Zowghi
[19, 20] provided no strong evidence to support that RC has a
direct impact on software development productivity (such as code
quality, quality of project management and development
capability). Hyatt et al [2] reported that RC must be considered as
a part of project risk assessment. Malaiya [17] has examined the
relationship between RC and defect density at the code phase and
found the RC has an impact on defect density. However, to our
knowledge, little prior research has been done to specifically
examine the impact of RC on software defects throughout the
SDLC and the root causes of those defects.

Our study focuses on what the previous studies fall short of
coverage. First, investigating the impact of both the pre-release
and post-release requirements changes (categorized as: high;
medium; low) on overall defects (categorized as: severity-1;
severity-2) throughout the SDLC. Second, identifying the possible
causes of requirements changes.

3. Hypotheses and Research Site

3.1 Hypothesis-1
The purpose of this hypothesis is to test the relationship between
the pre-release CR’s initiated by the client and the defects
introduced due to those changes. Here the variable ‘pre-release
CR’s’ has three categories: high=1; medium=2; low=3, and the
variable ‘defects’ has two categories: severity-1; severity-2. To
prove the hypothesis, we have used Cross-tabulation method and
applied the Pearson’s Chi-Square test.

3.1.1 Null Hypothesis (H0)
There is no relationship between defects and the pre-release CR’s
(high, medium, low severity) initiated by the client and the two
variables are independent.

3.1.2 Alternate Hypothesis (H1)
There is a relationship between defects and the pre-release CR’s
(high, medium, low severity) initiated by the client and the two
variables are dependent on each other

3.2 Hypothesis-2
The purpose of this hypothesis is to test the relationship between
the post-release CR’s initiated by the client and the defects
introduced due to those changes. Here the variable ‘post-release
CR’s’ has three categories: high=1; medium=2; low=3, and the
variable ‘defects’ has two categories: severity-1; severity-2. To
prove the hypothesis, we have used Cross-tabulation method and
applied the Pearson’s Chi-Square test.

ACM Software Engineering Notes 2 May 2004 Volume 29 Number 4

3.2.1 Null Hypothesis (H0)
There is no relationship between defects and the post-release CR’s
(high, medium, low severity) initiated by the client and the two
variables are independent.

3.2.2 Alternate Hypothesis (H1)
There is a relationship between defects and the post-release CR’s
(high, medium, low severity) initiated by the client and the two
variables are dependent on each other.

3.3 Research Site and Data Collection
Our research site is a leading software organization that develops
diverse commercial applications. Brief details of the organization
and the projects under study are given in Table-1.

Organization Details

Organization size 140 employees (approximately)

Organization’s
maturity level

Tick-IT Certified; ISO Certified

Project Details

Number of projects
under study

Four
Project A = 16 releases
Project B = 10 releases
Project C = 2 releases
Project D = 2 releases

Domain of the projects
under study

e-Commerce

Average duration of
each release in a
project

Project A = 56 days
Project B = 67 days
Project C = 38 days
Project D = 38 days

Project A: Developers = 5
 Database = 2
 Quality Assurance = 3
 SCM5 = 1
 System Support = 2
Project B: Developers = 17
 Database = 3
 Quality Assurance = 3
 SCM = 1
 System Support = 2
Project C: Developers = 3
 Database = 2
 Quality Assurance = 2
 SCM = 1
 System Support = 2

Average number of
resources utilized in
each release of a
project

Project D: Developers = 3
 Database = 2
 Quality Assurance = 2
 SCM = 1
 System Support = 2
Project A IBM Net Commerce

Project B Java/ J2EE

Project C IBM Net Commerce

Technology used in
the selected Projects

Project D IBM Net Commerce

SDLC followed Waterfall methodology

Communication
Methodology with the
onshore client

Conference calls, e-mails, meetings,
telephone calls

Table-1: Data collected from organization under study

Further, for this study we have collected data against 30 releases
of the four selected projects in e-Commerce domain by
considering the following areas:

5 SCM: Software Configuration Management

3.3.1 Requirements change
(Data collected from Functional Specification documents, Change
Request Forms, Project Schedules)

• Pre-release and post-release CR’s of high/ medium/ low
severity against all releases of a project

• Pre-release and post-release CR’s of high/medium/low
severity initiated in different phases (specifications, design,
coding, testing, shipment) of all releases of a project

• Requirement specifications (initial/pre-release/post-release) in
all releases of a project

3.3.2 Defects
(Data collected from in-house Defect Repository System - Bug
Base)

• Defects of high/medium/low severity against all releases
• Defects of high/medium/low severity due to pre-release and

post-release CR’s against all releases of a project
• Software Discrepancy Reports (SDR’s)6 of high/low severity

against all releases of a project

3.3.3 Project Duration
(Data collected from Quality Reports7, Project Schedules)

• Releases shipped on time/ with delay
• Duration (days) for each release of a project
• Time (days) allocated to different phases (Specifications,

design, coding, testing) of a release
• For our investigation, it was not possible to collect data

against the other factors affected by RC such as: project cost,
size and effort, since the availability of data against them was
one of the constraints. Also due to intellectual property
protection issues, the fully functional system was not
available to us and we could not store the data in persistent
media. However, we had viewing access to the project
documentation through the Configuration Management
System for the duration of the study, which allowed us to
record the data manually.

4. Discussion of Results
In this section we will discuss our findings based on the statistical
analysis of the hypotheses

4.1 Hypothesis-1: Relationship between Pre-Release CR’s
and Defects
For hypothesis-1 we have combined all the releases of the four
projects to determine if there is a relationship between the pre-
release CR’s and the defects. Our results in Table-2 indicate that
there is a significant relationship between the number of pre-
release CR’s and defects since the significant value of the Chi-
square test is less than 0.05. This proves that the two variables are
not independent and our null hypothesis is rejected.

6 SDR: It is the defect(s) in the software system that is reported by the client

through formal SDR forms once the project/release has been shipped to the
client.

7 Quality Report is developed monthly by Quality Excellence Department that

contains: project shipment details, planning and tracking details, project quality
and productivity details and process management details.

ACM Software Engineering Notes 3 May 2004 Volume 29 Number 4

Chi-Square Tests

11.526a 2 .003
8.391 2 .015

4.322 1 .038

289

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

1 cells (16.7%) have expected count less than 5. The
minimum expected count is 1.41.

a.

 Table-2: Chi-square results at significant level of 0.05

Figure-1 and Table-3 present the total number of defects found
(categories: severity-1; severity-2) against the pre-release CR’s
(categories: low; medium; high). It is worth mentioning that these
figures explain the combined results of all the 30 releases against 4
projects. However a detailed picture of percentage pre-release
defect and CR’s for each project is given in the Table-5.

Pre-release requiement changes

high severitymedium severitylow severity

D
ef

ec
t C

ou
nt

200

150

100

50

0

defects

severity 1

severity 2

 Figure-1: Defects versus no. of pre-release CR’s

requiement changes * defects Crosstabulation

2 1 3
2.5 .5 3.0
72 15 87

72.7 14.3 87.0
165 31 196

163.8 32.2 196.0
239 47 286

239.0 47.0 286.0

Count
Expected Count
Count
Expected Count
Count
Expected Count
Count
Expected Count

Pre-rel sev. low

Pre-rel sev. medium

Pre-rel sev. high

requiement
changes

Total

severity 1 severity 2
defects

Total

Table-3: A cross-tabulation table displaying the number of

defects in each category

Results in Table-4 & Table-5 show that maximum number of
severity-1 defects (69%) is found due to a less number (37%) of
high severity pre-release CR’s. It is important to note that although
majority of pre-release CR’s are of medium severity (56%) but
they only caused 30% of the severity-1 defects. Similarly,
maximum number of severity-2 defects (66%) is found due to
37% of high severity pre-release CR’s, although a major number
of pre-release CR’s (56%) are of medium severity but they only
caused 32% of the severity-2 defects.

Overall Percentage of Defects of Severity-1 and
Severity-2 due to Pre-Release CR’s

Pre-Release
CR’s

%Severity-1
Defects

%Severity-2
Defects

Low Severity 1% 2%
Medium Severity 30% 32%
High Severity 69% 66%
Total 100% 100%

 Table-4: Overall percentage distribution of
 defects due to pre-release CR’s

Project-wise Percentage Distribution of Pre-Release CR’s

Projects High
Severity

CR’s

Medium
Severity

CR’s

Low
Severity

CR’s

Total
CR’s

%age
High

Severity
CR’s

%age
Medium
Severity

CR’s

%age
Low

Severity
CR’s

Project A 9 34 3 46 20% 74% 6%
Project B 16 1 0 17 94% 6% 0%
Project C 1 5 2 8 12.5% 62.5% 25%
Project D 1 0 0 1 100% 0% 0%

Total 27 40 5 72

Total
%age

37% 56% 7% 100%

 Table-5: Project wise percentage distribution of pre-release
 CR’s

These findings indicate that the high severity pre-release CR’s
have a significant impact on the occurrence of a majority of both
the severity-1 and severity-2 defects. However medium and low
severity CR’s also contribute towards defects but their
contribution is less as compared to high severity CR’s. Some
possible reasons to this conclusion are given below:

1. High severity CR’s are the ones that require changes in the
design of the system, as defined for this study. Such changes
require major rework and may affect all the subsequent
development phases. Due to these reasons, even very minor
design changes can introduce high percentage of defects if
ripple effects/bad fixes are not taken under consideration and
sufficient time is not spent on quality assurance.

2. Second reason to the occurrence of severity-1 defects could
be due to the initiation of CR’s in the later phases of the
software development lifecycle. Our data analysis presented in
Table-6 illustrates that majority of the high severity pre-
release CR’s are initiated late during the development of all
the four projects i.e., during coding and testing phases.
However very few CR’s are initiated during the development
of RS, FS and design.

 Table-6: Pre-Release CR’s initiated in different
 phases of the SDLC

Pre-Release CR’s initiated in different SDLC phases
Pre-Release CR’s Severity of

CR’s Total No. of
Pre-Rel. CR’s

%
RS

%
FS

%
Design

%
Coding

%
Testing

High 27 7% 4% 4% 33% 52%

Medium 40 0% 0% 2.5% 25% 72.5%
Low 5 0% 0% 0% 20% 80%

ACM Software Engineering Notes 4 May 2004 Volume 29 Number 4

Ratio between pre-release CR’s initiated in Coding phase and
severity-1 bugs
Pre-Release CR’s initiated in Coding phase of all
projects

20

Severity-1 defects caused due to pre-release CR’s 38
Ratio 20:38 = 1:2
Percentage of severity-1 defects due to pre-release
CR’s during coding8

13%

Ratio between pre-release CR’s initiated in Testing phase and
severity-1 bugs
Pre-Release CR’s initiated in Testing phase of all
projects

46

Severity-1 defects caused due to pre-release CR’s 196
Ratio 46:196 = 1:4
Percentage of severity-1 defects due to pre-release
CR’s during testing9

68%

 Table-7: Percentage of CR’s initiated during Coding
 and Testing phases

Table-7 shows that the average percentage of severity-1 defects
introduced during coding and testing due to pre-release CR’s is
13% and 68% respectively. Further the defects introduced late in
the software development are difficult to eradicate and may cause
a significant reduction in the overall defect removal efficiency10 of
the work product. The overall defect removal efficiency of Project
A is 73% and that of Project B is 84%. Project C and Project D,
however, have defect removal efficiencies of 100%. Therefore, the
average defect removal efficiency of all the projects is 89%.
Studies done by Capers Jones have revealed that top ranked
companies such as AT&T, IBM, Motorola, Raytheon and HP
achieved defect removal efficiency levels of 99%.

3. Another reason could be the average percentage of time spent
in different SDLC phases. Our data analysis in Table-8
indicates that on the average only 15% of the time is spent on
design of all the four projects. This may lead to an indication
that the design phase is not allocated sufficient time due to
which most of the high CR’s, that affect the design of the
system, are initiated in the later phases i.e., during coding and
testing. As a result of these high severity CR’s a majority of
both the severity-1 and severity-2 defects are introduced.

Percent Average Time Spent (in days) in different SDLC Phases

(Excluding the time spent in incorporating the CR’s)

Project Requirement
Specifications

Design Coding Testing Others (Post
Shipment
Reviews,

Shipments,
Installations

etc.)
Project A 28% 12% 23% 26% 11%
Project B 32% 18% 25% 17% 8%
Project C 17% 15% 28% 20% 17%
Project D 16% 16% 33% 33% 2.5

Overall
Average
Duration

23% 15% 27% 24% 10%

 Table-8: Percent Average Time Spent (in days) on different
 SDLC Phases (Excluding the time spent in incorporating the
 CR’s)

8 (Severity 1 defects due to pre-release CR’s in coding phase/Total defects due to

pre-release CR’s) * 100 = (38/286)* 100 = 13%
9 (Severity 1 defects due to pre-release CR’s in testing phase/Total defects due to

pre-release CR’s) * 100 = (196/286)*100 = 68%
10 Defect Removal Efficiency = Total defects found during development/ (Total

defects found during development + Defects reported by Customer in 1 year
after deployment) * 100

4.2 Hypothesis-2: Relationship between Post-Release CR’s
and Defects
For hypothesis-II, Table-10 indicates that there is a significant
relationship between the number of post-release CR’s and the
defects since the significant value of the Chi-square test is less
than 0.05. This proves that the two variables are not independent
and our null hypothesis is rejected.

Chi-Square Tests

23.774a 2 .000
21.282 2 .000

1.009 1 .315

1400

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 20.00.

a.

Table-9: Chi-square results at significant level of 0.05

Figure-2 and Table-10 present the total number of defects found
(categories: severity-1; severity-2) against the pre-release CR’s
(categories: low; medium; high). It is worth mentioning that these
figures explain the combined results of all the 30 releases against
4 projects. However a detailed picture of percentage pre-release
defects and CR’s for each project is given in Table-12.

Post-release requiement changes

high severitymedium severitylow severity

D
ef

ec
t C

ou
nt

800

700

600

500

400

300

200

100

0

defects

severity 1

severity 2

Figure-2: Defects versus no. of post-release CR’s

requiement changes * defects Crosstabulation

63 37 100
80.0 20.0 100.0
744 154 898

718.4 179.6 898.0
313 89 402

321.6 80.4 402.0
1120 280 1400

1120.0 280.0 1400.0

Count
Expected Count
Count
Expected Count
Count
Expected Count
Count
Expected Count

Post-rel sev. low

Post-rel sev. medium

Post-rel sev. high

requiement
changes

Total

severity 1 severity 2
defects

Total

Table-10: A cross-tabulation table displaying the number

of cases in each category

Results in Table-11 & 12 show that maximum number of severity-
1 defects (66%) is found due to 71% of medium severity post-
release CR’s. However it is worth mentioning that only 15% of the
high severity post release CR’s have caused 28% of the overall
severity-1 defects, which is comparatively a high defect rate per

ACM Software Engineering Notes 5 May 2004 Volume 29 Number 4

CR as compared to the previous one (a high severity CR can cause
two severity-1 defects, whereas a medium severity CR can cause
one severity-1 defect). Similarly, maximum number of severity-2
defects (55%) is found due to 71% of medium severity post-
release CR’s but is comparatively less defect rate per CR as
compared to 15% of high severity post-release CR’s causing 32%
of the severity-2 defects (a high severity CR can cause about two
severity-2 defects, whereas a medium severity CR can cause one
severity-2 defect).

Overall Percentage of Defects of Severity-1 and

Severity-2 due to Post-Release CR’s

Pre-Release
CR’s

%Severity-1
Defects

%Severity-2
Defects

 Low Severity 6% 13%
Medium Severity 66% 55%
High Severity 28% 32%

Total 100% 100%

 Table-11: Overall percentage distribution of
 defects due to post-release CR’s

Percentage of Post-Release CR’s

Projects High
Sev
CR’s

Medium
Sev.
CR’s

Low
Sev.
CR’s

Total
CR’s

%age
High
Sev.
CR’s

%age
Medium
Sev.
CR’s

%age
Low
Sev.
CR’s

Project A 21 185 33 239 9% 77% 14%

Project B 18 17 0 35 51% 49% 0%

Project C 6 12 4 32 19% 37.5% 12.5%

Project D 1 4 0 5 20% 80% 0%

Total 46 218 37 311

Total
%age

15% 71% 12% 100%

Table-12: Project wise percentage distribution of post-release
CR’s

These results indicate that high severity post-release CR’s have a
more profound impact on severity-1 and severity-2 defects than
medium severity post-release CR’s. However medium and low
severity CR’s also contribute towards defects but their
contribution is less as compared to high severity CR’s. There
could be many reasons to this conclusion but here we have stated
only those that we have found through data analysis.

1. Our findings indicate that 81%11 of the CR’s, for all the 30
release of four projects, are initiated once the project is
shipped to the client (post-release) and only 19%12 of the
changes are initiated before release. Furthermore, 81% of
post-release CR’s have caused 67%13 of severity-1 defects
and 16%14 of the severity-2 defects. On the other hand, 19%

11 (No. of post release CR’s / Total no. of CR’s) * 100
 (311/ 383) * 100 = 81% (From Table-5 and Table-12)

12 (No. of pre-release CR’s / Total no. of CR’s) * 100
 (72 / 383) * 100 = 19% (From Table-5 and Table-12)

13 (No. of post release severity-1 defects / Total no. of defects) * 100
 (1120 / 1686) * 100 = 67% (From Table-3 and Table-10)

14 (No. of post release severity-2 defects / Total no. of defects) * 100
 (280 / 1686) * 100 = 16% (From Table-3 and Table-10)

of pre-release CR’s have only caused 14%15 of severity-1
defects and 3%16 of the severity-2 defects. These figures
indicate that majority of the CR‘s are initiated by the client
once the system is released and are the major source of
severity-1 defects.

2. One reason to this high percentage of post release changes is
the lack of communication between the client and the
development side. Either the client is not getting proper
feedback at major system milestones or the client is not taking
much interest till the final product is ready for deployment.
Both these issues add towards the post release changes and
subsequently the defects. This information was gathered
through an interview with one of the project managers of the
organization under study.

5. Conclusion
In this paper we have presented some preliminary results based on
a research work analyzing the impact of both the pre-release and
post-release requirements change on overall defects by defining
measures, collecting data against those measures and analyzing the
collected data through statistical techniques. Also, we have
reported some of the possible causes of requirements changes and
in turn software defects.

Prior studies [17] have examined the relationship between
changing requirements and defect density at the coding phase and
found that the requirements volatility has an impact on defect
density. However, to our knowledge, little prior research has been
done to specifically examine the impact of changing requirements
(categorized as: high; medium; low) on defects (categorized as:
severity-1; severity-2) throughout the SDLC and the root causes of
requirements changes.

Our study is based on industry data collected from 4 projects, all
in e-commerce domain, consisting of 30 releases. Results indicate
that there is a significant relationship between pre/post release
change requests and overall defects. In addition, our data analysis
indicates that changes in the design of the system at the later
stages of software development i.e., during coding, testing and
after release have a significant impact on the high severity defects
that affect the major functionality of the system. Also, we found
that insufficient time spent on the design phase and inadequate
communication with the client could be some of the reasons for
requirements change and consequently software defects.

Like most other researches in the context of requirements changes,
this study also has several limitations. Due to the intricacy of the
requirements change phenomenon and the scarcity of empirical
evidence available, there is a need to validate our findings by
considering projects from different domains and explicitly
controlling people-related factors, such as development expertise
in a particular domain and the communication methodology with
the stakeholders.

15 (No. of pre-release severity-1 defects / Total no. of defects) * 100
 (239 / 1686) * 100 = 14% (From Table-3 and Table-10)
16 (No. of pre-release severity-1 defects / Total no. of defects) * 100
 (47 / 1686) * 100 = 3% (From Table-3 and Table-10)

ACM Software Engineering Notes 6 May 2004 Volume 29 Number 4

Acknowledgements
We would like to thank Professor Muhammad Hanif Mian and
Usman Khan from National College of Business Administration
and Economics (NCBA&E) for providing help in the statistical
analysis of the hypotheses; Waqas Zyad and Aamir Majeed of
CresSoft (Pvt.) Ltd., for solving queries regarding the projects
under study and giving maximum resources to help accomplish
our work.

References
[1] Lamsweerde, A. (2000): Requirements engineering in the year 00: A research
perspective. In proceedings of the 22nd International Conference on Software
Engineering (ICSE’2000), Limerick, Ireland, 5-19, ACM Press

[2] Hyatt, L. and Rosenberg, L. (1996): Software Metrics for Risk Assessment.
International Academy of Astronautics (IAA) 29th Safety and Rescue Symposium,
Risk Management and Assessment Session, Beijing, China.

[3] Barry, E. (2002): Software Project Duration and Effort: An Empirical Study.
Information Technology and Management 3: pp. 113-136.

[4] Zowghi, D. (2002): A Study on the Impact of Requirements Volatility on
Software Project Performance. In proceedings of Ninth Asia-Pacific SE Conference
(APSEC’ 2002), IEEE Computer Science.

[5] Grady, R. (ed) (1987): Software Metrics Establishing a Company Wide
Program, Prentice Hall, New Jersey, USA.

[6] Kan, S. (ed) (2002): Metrics and Models in Software Quality Engineering,
Addison-Wesley Publishers.

[7] Jones, C. (ed) (1997): Software Quality: Analysis and Guidelines for Success,
International Thomson Computer Press.

[8] Davis, A. (1993): Identifying and Measuring Quality in Software Requirements
Specifications. In Proceedings of First International Software Metrics Symposium,
Baltimore, pp. 141-152.

[9] Pfahl, D. and Lebsanft, K. (2000): “Using Simulation to analyze the impact of
Software Requirements Volatility on Project Performance”, Information and
Software Technology, 42, pp. 1001-1008.

[10] Davis, A. (2003): The Art of Requirements Triage. IEEE Computer Science
36(3): pp. 42-49.

[11] Collier, B., DeMarco, T. and Fearery, P. (1996): A defined process for Project
Post Mortem Review, IEEE Software 13(4): pp. 65-72, IEEE Computer Society
Press.

[12] Weber, M. (2002): Requirements Engineering in Automative Development:
Experiences and Challenges. In proceedings of IEEE Joint International
Conference on Requirements Engineering (RE’02), 331.

[13] Pressman, R. (ed) (2001): Software Engineering: Practitioners Approach, pp.
243-297, McGraw-Hill Companies, New York, USA.

[14] Lam, W., Shankararaman, V. and Saward, G. (1999): Requirements Change: A
Dissection of Management Issues, EUROMICRO’99 Workshop on Software
Process and Product Improvement, Milan, Italy, pp. 2244-2251.

[15] Lane, M. and Cavaye, A. (1998): Management of Requirements Volatility
Enhances Software Development Productivity. In proceedings of the 3rd Australian
Conference on Requirements Engineering (ACRE 98), Geelong, Australia.

[16] Start, G., Skillicorn, A. and Ameele, R. (1998): An Examination of the Effects
of requirements changes on software Releases. In CROSSTALK, The Journal of
Defence Software Engineering.

[17] Malaiya, Y. and Denton, J. (1998): Requirements Volatility and Defect
Density. In proceedings of the 10th International, Symposium on Software
Reliability Engineering, Fort Collins, pp. 285.

[18] Harker, S., Eason, K. and Dobson, J. (1993): The change and evolution of
requirements as a challenge to the practice of software engineering. In proceedings
of the IEEE International Symposium on Requirements Engineering, pp. 266-272,
San Diego, California, USA, IEEE Computer Society Press.

[19] Zowghi, D., Offen, R. and Nurmuliani, N. (2000): The Impact of Requirements
Volatility on Software Development Lifecycle. In proceedings of the International
Conference on Software, Theory and Practice (ICS2000), Beijing, China.

[20] Zowghi, D. and Nurmuliani, N. (1998): Investigating Requirements Volatility
During Software Development: Research in Progress. In proceedings of the 3rd
Australian Conference on Requirements Engineering (ACRE98), Geelong,
Australia.

ACM Software Engineering Notes 7 May 2004 Volume 29 Number 4

