
The T R W S o f t w a r e P r o d u c t i v i t y S y s t e m

Barry W. Boehm
James F. EIwell
Arthur B. Pyster

E. Oonalcl Stuclde
Robert D. Will iams

1. ABSTRACT/SUMMARY
This paper presents an overv iew of the TRW Software Pro-

duct iv i ty System (SPS), an integrated sof tware support
X

environment based on the Unix operating system, a wide range
of TRW software tools, and a wideband local network. Section
2 summarizes the quant i tat ive and qualitat ive requirements
analysis upon which the system is based. Section 3 describes
the key architectural features and system components. Finally,
section 4 discusses our conclusions and experience to date.

2. SPS REQUIREMENTS ANALYSIS
This section discusses the results of a software produc-

t iv i ty study performed at TRW during 1980. This study
analyzed the requirements for a TRW-odented sof tware support
environment; evaluated the technology base available for such
a support environment and the likely trends in that base; and
performed an economic analysis to determine whether a signifi-
cant level of invsstment into software productivi ty aids would
be justif ied. Each analysis is summarized below, followed by
the study's conclusions and recommendations.

2.1. Corporate Mot ivat ing Factors

As a competit ive system and software house, TRW has
continually strived to Improve sof tware productivity. Recently,
however, several additional factors have motivated TRW toward
a more substantial level of corporate investment for improving
software productivity. Four of the primary factors are:

Increased Demand for Software

Each successive generation of a data processing
system experiences a significant increase in
demand for sof tware functionality. For example,
manned space-f l ight software support functions
grew from 1.5 million object code instructions for
the 1961 Mercury program to over 40 million object
Instructions for the 1980 Space Shuttle program
(Boehm, 1981, Chapter 33).
Limited Supply of Software Engineers

Several sources (Business Week, 1980; NSF-DoE,
1980) have indicated that the current U.S. shor-
tage of sof tware personnel is between 50,000 and
100,000 people, and that the suppliers (primarily
university computer science departments) do not
have suff icient resources to meet the demand.
Rising Softwele Engineer Support Expectations

Good sof tware engineers are in general no longer
satisf ied to work with inadequate tools and a poor
work environment. Successful hiring and retention
of good sof tware engineers requires an e f fec t ive

~Jnlx is a trademark of Bell Laboratories

corporate sof tware support environment.
Reclucecl Harclware Costs

The cost and performance improvements of super-
mini mainframes, powerful personal microcomputers,
and broadband communication systems permit signi-
f icant ly more powerful and cost -e f fec t ive software
support systems.

2-2- The 1980 So f tware Product iv i ty Study

Given the motivating factors above, TRW embarked on an
extensive study during 1980 of its sof tware environment
object ives, requirements, and alternatives, which led to recom-
mended strategies for Improving sof tware productivity. This
study included an internal assessment, an external assessment,
a quant i tat ive analysis, and a set of recx)mmended actions,
each of which is discussed in turn below.

2-2-1. Internal Assessment

TR~Ps Internal assessment began with a sedes of inter-
views with representat ive higher-level and intermediate-level
managers, and sof tware performers. Each Interviewee was
asked, " i f there were only two or three things you could get
TRW to do to improve sof tware productivity, what would they
be?"

In general, the interviewees were highly enthusiastic, and
provided a wide-ranging menu of a t t rac t ive suggestions for
Improving productivity. Although there was a general consensus
on the primary avenues for improving softL~Nare productivi ty (in
the four areas of management actions; work environment and
compensation; education and training; and sof tware tools),
there were some significant differences.

For example, Figure 1 shows the relat ive importance of
these four areas from the standpoint of three classes of TRW
personnel: upper managers, middle managers, and performers.

% CITING 50 p
N~eO 3p ~

MGMT ENVIR + COMP EDUC TOOLS
100

, M M
MGMT ENVIR +COMP EDUC TOOLS

N
Figure 1. Software Productivity - Perceptions of Major Needs

148
0270-5257/82/0000/0137500.75 © 1982 I E E E

It IS evident from Figure 1 that the upper managers ~
world-view conditions them to see management actions as the
high-leverage items, while the performers ~ world-view condi-
tions them to see tools as providing the most leverage. The
important point is not which group is more correct, but that each
group brings a valid set of perceptions to bear on the problem.
Furthermore, since motivation is such a key factor in sof tware
productivity, people's perceptions are an important considera-
tion. If we had proceeded with a big campaign to improve pro-
jec t planning, organization, reporting, etc., without providing the
performers with improved tools, our resulting product iv i ty gains
would not have been anywhere near their potential.

2.2~1.1. So f tware Support Environment Requirements
Another portion of the internal assessment involved an

analysis of TRW's sof tware support environment requirements.
Since the DoD ADA Stoneman requirements document (Buxton,
l g 8 0) had recently provided an excel lent general definition of
sof tware support environment requirements for Ade, TRW used
Stoneman as Its baseline, and focused on identifying additional
TRW-speclfic environment requirements not included in Stone-
man. The primary additional requirements identif ied are summar-
ized below.

1. Support of Multiple Programming Languages

The intemal assessment included a forecast of the
evolution of TRW's government-systems business
base In various dimensions, including its distribution
by programming language. It showed that even
though DoD is strongly committed to Ada for its new
starts, there is l ikely to be a significant segment of
sof tware projects consisting of compatible
developments for exist ing FORTRAN and JOVIAL sys-
tems. Thus, a pure Aria-based environment would
not support all of TRW's needs even by the year
2000.

2. Support of Mixed Target-Machine Complexes

A similar forecast of the hardware nature of TRW's
future business base indicated a strong trend
toward hierarchical mixed-vendor maxi-mlni-micro
target-computer complexes. Although the APSE
concept may provide a unified virtual environment
supported on each computer in such complexes,
exper ience to date on such virtual environments as
the National Software Works indicate that a number
of outstanding problems need to be resolved before
one can count on this solution.

8. Support of Classified Projects

Among other things, this implies that a single
corporate-wide network with shared data and pro-
grams would net be feasible for TRW's classif ied
projects. Such projects have severe access con-
straints and require ex tens ive precautions to
enforce those restrictions. We were not prepared
to tackle the problems of ensuring such securi ty in
a wide-area network which would necessari ly use
non-secure communications media. The alternat ive
approach is to have a collection of local networks
each of which can individually impose t ight securi ty
arrangements. A classif ied project could then use a
single local network within a restr icted area. This is
the approach we have adopted.

4. Integration with TRW Management Programs and
Data

TRW~s tool requirements Included a number of pro-
jec t and financial management tools not identif ied in
Stoneman, plus the need to integrate these with
exist ing TRW management support programs and
data,

6. Integration with Office Automation Capabilities

6.

TRW studies indicate that about 2/3 of the ef for t
on a large sof tware project results In a document
as its direct product, and only 1 /3 results in code
as its direct product (Boehm 1981, Chapter 31).
This end related insights have caused us to
emphasize the integration of traditional software
tools with word-processing and other of f ice auto-
mation capabil it ies as a top-prior i ty requirement.

Support of Non-Programmers

TRW sof tware projects require the close coopera-
tion, communication, and support of both program-
mere and non-programmers such as technicians,
managers, secretaries, hardware system engineers,
and business personnel. This implies the need for
both tools and a user interface which will support all
these classes of people.

2.2.1.2. Uncer ta in ty Areas
In trying to determine the specif ic information support

needs of the TRW sof tware engineer, we encountered a wide
vade ty of user opinions on such items as:

tool priorities (development, management, of f ice
support);

at t r ibute priorities (eff iciency, extensibi l i ty, ease
of use by exper ts vs. novices);

degree of methodology enforcement (do tools
assume requirements are wri t ten in TRW's Require-
ments Specification Language, etc.);

command language characterist ics; (menu vs. com-
mand, terse vs verbose, etc.).

As a result, we concluded that it would be an extremely
time-consuming, inefficient, and uncertain process to obtain
universal concurrence on a requirements specif ication for a TRW
sof tware support environment before proceeding into design
and code, Developing an experimental prototype system and
using it on a TRW sof tware project would be a more cost-
e f fec t ive approach.

2.2.2° External Assessment
The 1980 study included visi ts to a number of organiza-

tions with exper ience or act ive R&D programs in the sof tware
support environment area. The industrial organizations we
visi ted included IBM-Santa Teresa, Xerox Pale Alto Research
Center, Bell Laboratories, and Fujitsu; the universities included
Stanford, MIT, Harvard, and Carnegie-Mellon. The primary con-
clusions resulting from these visits were:

Organizations investing in significant improvements
In their sof tware environments fe l t they were get-
t ing their money's worth. Some, such as IBM
(Christensen, 1980) and Bell Labs (Dolotta et el,
1 g78) were able to at least partial ly quantify their
resulting benefits.

Organizations achieving some Integration of
sof tware development support capabil i t ies and
of f ice automation capabil i t ies considered this a
high-payoff step.

Significant progress was being made toward provid-
ing very high-powered personal work station termi-
nals (with high-resolution bit-mapped displays sup-
porting window editors, integrated t e x t end graph-
ics, and wel l- integrated screen-pointing devices) at
a reasonable coSt.

149

No system we saw provided all the capabil it ies TRW
required.

2 . 2 . 3 . Quant i tat ive Assessment

Our quanti tat ive assessment of al ternat ive avenues for
improving sof tware product ivi ty was based primarily on TRW's
Software Cost Estimation Program, or SCEP (Boehm-Wolverton,
1978). SCEP is similar in form to the COCOMO model described
In detail in (Boehm, 1981). It estimates the cost of a sof tware
project as a function of program size in Delivered Source
Instructions (DSI) and a number of other cost driver at tr ibutes
summadzed In Figure 2. Figure 2 shows the Productivity Range
for each attr ibute: the relat ive product iv i ty i~n DSI/man-month
attr ibutable to the given attr ibute, af ter normalizing for the
e f fec ts of other attr ibutes. Thus, the 1.49 product iv i ty range
for the Software Tools attr ibute results from an analysis indi-
cating that, all other factors being equal, a pro ject with a very
high level of tool support will require only 0.83 of the ef for t
required for a project with a nominal level of tool support, while
an equivalent project with a very low level of tool support would
require 1.24 times the ef for t required for the nominal project, or
1 .24 /0 .83 = 1.49 times the ef for t on the "very high" tools pro-
ject . The "very high" and "very low" ratings correspond to
specif ic levels on a COCOMO rating scale for tool support
(Boehm, 1981).

L A N G U A G E EXPERIENCE

1~3 SCHED. CONSTR.
D A T A BASE

.32 T U R N A R O U N D T IME
V E R T U A L M A C H I N E EXPERIENCE

1.4o V I R T U A L M A C H I N E V O L A T I L T I Y
S O F I W A R E TOOLS

1.61 M O D E R N P R O G R A M PRACTICES

| t ~ STORAGE C O N S T R A I N T
ILt2s7 A P P L I C A T I O N S EXPERIENCE
| t ~ l T I M I N G C O N S T R A I N T

11,117 R E Q U I R E D R E L I A B I L I T Y
I=~" PRODUCT COMPLEXITY

PER ,SONNE L / T.EAM ,CAP~BI L I T Y I 4;,,
t~0Q ' 1.~4) 2~Q~ 2.50 ~ 3.50 4.00 4.60

Figure 2. Comparative Software Productivity Ranges
(Based on Analysis of 63 Software Projects)

Productivity Audit Results
The Software Tools rating scales and those of the other

cost driver at tr ibutes were used to conduct a "product iv i ty
audit" of TRW projects, to determine the weighted-average pro-
duct iv i ty multipliers characterist ic of the overall TRW distribu-
tion of sof tware projects, both at present snd for several
future scenarios representing varying levels of TRW investment
into productivity-improvement programs. Table 1 summarizes a
typical analysis of this nature*. It shows that a product iv i ty
Improvement program achieving several cost driver at tr ibute
improvements in parallel could improve product ivi ty by a factor
of 3.4 by 198,5, and a factor of 7.B by 1990. Besides providing
an estimated product iv i ty gain, this analysis provided insights
for determining which items (e.g., tools) to emphasize as part of
a TRW product!vity improvement strategy. It also provides a
valuable framework for tracking the actual progress of the pro-
duct iv i ty program, and for determining whether its goals are
actual ly being achieved.

Activity Analysis
Concurrently, we performed a complementary analysis

which assessed the likely reduction of sof tware project ef for t
devoted to each sof tware act iv i ty during each software
development phase, as a result of a sof tware environment
Improvement program .

=~lore d e t a i l s u n d e r l y i n g t h i s a n a l y s i s a r e g i v e n in ~ o e h m , 1 9 8 1 a) .

~ T h l s a n a l y s i s w a s p e r f o r m e d b y E. J . H a r d y t o s u p p o r t t h e U,S. ~ r n y Ba l l i s -
t i c M i ss i l e D e f e n s e / ~ d v a n c e d T e c h n o l o g y C e n t e r ' s D i s t r i b u t e d C o m p u t e r S y s t e m
Des ign p r o j e c t , S e e (A l fo rd e t a l , 1 9 8 1) .

Table 1. Evaluation of Overall Productivity Strategy

COCOMO A T T R I B U T E

USE OF SOFTWARE TOOLS
M O D E R N PROG. PRACTICES
COMPUTER RESPONSE T IME
A N A L Y S T C A P A B i L i T Y
P R O G R A M M E R C A P A B I L I T Y
V I R T U A L M A C H I N E V O L A T I L I T Y
R E Q U I R E M E N T S V O L A T I L I T Y
USE OF E X I S T I N G S O F T W A R E

C U M U L A T I V E MILT iPLUER

P R O D U C T I V I T Y G A I N

W E I G H T E D
A V E R A G E M U L T I P L I E R

1981 l g ~ 5 1990

1.05 0 .94 0.88
1.97 0 .89 0 .83
1.02 0.91 0 .89
1 .oo 0.98 0.80
1.05 0.90 0.80
1 . ~ 0.95 0.90
1.27 1.08 1.00
0.90 0.79 0.50
1.46 0.34 0.19

3.4 7.8

This analysis was based on the COCOMO model's sof tware
effort distributions by phase and act iv i ty (Boehm, 1981;
Chapter 7). The results are given in Table 2.

Table 2. Activity - Oriented Estimate of Effort Reduction

~'-r=v~rv AL M, =S ~ , AS. ¶s
#EQUglq M Nlr's A~ALYI~ lul= i3m M 0.to iiJio u
MIOI04JCT O ~ 0.14 LlS e4 (k4~ ~ ~.1
PROG~I~IG L10 Lte e.1 0.14 lure 1.2
• r~r~ ~..AN~IN~ 0J~ 0.m 0.1 0.eo o.;o e.4
v , v ~toeJ~L1 ~tO eA~ 0.7
I'leOa~CT O~Fq~i~ 0.a e..lO 0~ o.an ~ 0JI
(~/OA o~t~t G~ L1 0JI~ 0,,il L1

i

~TAL I,II 0.1

D=VEL-
~tO6nNdM~ ml"SWtATmk Cet~NT MAmlrsNaaec=

• ~ 'IOTA L

44A ~ teL0
~.AS, n De(. ms. u n Ju~. as. ES

e.=: u o L=7 em SAOU ~S oAm eAe ~
~ t ~ sa4 e~e eJ 4.1 o.lt 0~e ¢3
oJs e~s L t e~s sAo ILl I u ~41 oJle =Ls
o ~ e.m 1.1 oJs e,ts e,4 u ~ 0 . 1 = . t
0.111.illb t.? gk.aB I . I i M 7.0 0.14 OJll 7.7
lUN tJm O~ U O ~ U tJ Sale.~ ~
aull i~uR 1.1J oJO o,m 1~1 &t qUN0 IlJO ~
sAst,es t~ oJr/o~ 1.o =.7 O.lt oJm u

14JII 10.7 ;10.4 48.1

The Phase Effort (Pi) row shows the percent of the
overall development ef for t consumed dudng phase
I.

For each phase, the AE column shows the COCOMO
ef for t distribution by act iv i ty, including an act iv i ty
distribution for the maintenance phase. For exam-
ple, Table 2 Indicates that 7.4% of the development
ef for t is devoted to the Plans and Requirements
phase. Within this 7.4%, Requirements Analysis
act iv i t ies consume 42%, Product Design act iv i t ies
consume 16% of the effort, etc.

The AS (Act iv i ty Savings) column shows the results
of a Delphi exerc ise to estimate the percentage of
ef for t for each phase-act iv i ty combination that
would be saved as a result of using the SPS. For
example, 25% of the Requirements Analysis ef for t
was estimated to be saved during the Plans and
Requirements phase, etc.

The ES column shows the resulting Effort Savings
for each act iv i ty j within phase i:

ESij = (Pi)(AEij)(ASij)

When summed over all phases and act ivi t ies, the
overall results show a development savings of 39%,
and a maintenance savings of 46%, exclusive of
any savings due to sof tware reuse. These savings
are not as great as those estimated by the cost-
driver approach, but they are reasonably compar-
able and quite significant,

150

2.2 .4 . Study Conclusions
The 1980 product iv i ty study reached the following major

conclusions:

Signi f icant productivity gains require an integrated
program of init iat ives in several areas. These areas
include improvements in tools, methodology, work
environment, education, management, personal
incentives, and sof tware reuse. A fully e f fec t ive
sof tware support environment requires integration
of sof tware t~ools and off ice automation capabili-
t ies.

An integrated software productivity improvement
program can have an extremely large payoff. Pro-
duct iv i ty gains by factors of 2 in four years and
factors of 4 in nine years are generally achievable,
and ere worth a good deal of planning and invest-
ment.

Improving software productivity involves a long,
sustained effort. The payoffs are large, but they
require a long-range commitment. There are no
easy, instant panaceas.

In the very long run, the biggest productivity gains
w i l l come from increasing use of exist ing software.

Software support environment requirements are st i l l
too Incompletely understood to specify precisely. In
this respect, sof tware support environments fall
Into an extens ive category of man-machine sys-
terns whose user requirements are not completely
understood.

2.2 .8 . Study Recommendations
Based on these conclusions, the 1980 study made the fol-

lowing recommendations:

Ini t iate a signif icant long-range ef for t to improve
software productivity. The recommended ef for t
Included init iat ives m all the areas above, and
establ ished goals of improving sof tware produc-
t i v i t y by:

- a factor of 2 by 1985;
- a factor of 4 by 1090.

Although these goals are conservat ive with respect
to the estimated product iv i ty gains ci ted in the
Study Conclusions, they are clearly large enough to
just i fy a significant investment into a product ivi ty
Improvement program.

Begin by developing a prototype system. Given that
the system requirements and some of the technol-
ogy issues were incompletely understood, protctyp-
Ing was the most e f fec t ive s t ra tegy for proceeding.

Commit to using the prototype on a large production
software project. This ensured that the prototype
would be realistic and that we would get early
feedback from its use. A related recommendation
was that a product iv i ty Improvement measurement
and analysis act iv i ty be an Integral part of the pro-
gram.

8. SPS PROTOTYPE DEVELOPMENT
After an ex tens ive review of the 1980 Software Produc-

t iv i ty Study and its recommendations, TRW's management
decided to Invest a significant ef fort into developing a proto-

t ype SPS during 1981, and to use it on a large TRW sof tware
project ant ic ipated to begin Its major ef fort in late 1981. Thus,
In early 1981, a two-pronged ef for t was initiated: one, to
determine the long-range hardware-software architectural
options for an eventual mid-1980's SPS-2 system (under the
name Advanced Productivity Project -- APP); the other, to build
a compatible SPS-1 prototype to be ready for use by the end of
1081 (under the name Software Productivity Project - - SPP).
This section describes the overall architecture and concept of
operation of SPS-1; discusses each major SPS-1 hardware and
sof tware component; summarizes some of the primary develop-
ment lessons learned to date on SPS-1; and describes the
ongoing ef for ts of SPP. There are no details offered on SPS-2
since It is still being shaped by our experiences with SPS-I.

8.1. SPS-1 Arch i tec ture and Concept of Operation

The SPS-1 architecture was developed in response to four
primary guiding principles:

1. Methodology Support

SPS-1 should reinforce TRW's l i fe-cycle software
development methodology.

2. Master Database

The SPS-1 master database
hierarchical and relational.

should be both

3. Local Network

SPS-1 should support interact ive access to its
shared resources via a local network.

4. Source-Target Concept of Operation

SPS-1 should reside In a single type of source
machine or source operating system, rather than
being rehosted on each of the many target
machines for which TRW develops software.

Each of these guiding principles and its impact on SPS-1
are discussed below.

8.1.1. Methodology Support

The essence of TRW's sof tware development methodology
Is summarized in Chapter 4 of (Boehm, 1981) on the "waterfal l "
model of the sof tware l i fe-cycle and its refinements (prototyp-
ing, incremental development, and advancemanship). Within
TRW, the methodology is elaborated in a set of 18 sof tware
development policies (Goldberg, 1078) and an underlying set of
sof tware product standards. SPS-1 ref lects the methodology's
strong emphasis on requirements determination and validation
via such tools as the Software Requirements Engineering
Methodology (SREM) (Alford, 1077; Bell et al, 1977) and a
Requirements Traceability Tool for relating sof tware require-
ments to design, code, and tes t cases. SPS-1 ref lects the
methodology's strong emphasis on management visibi l i ty and
control via such tools as the Unit Development Folder (UDF)
(Ingrassia, 1078).

3.1 .2 . Master Database
As emphasized in the Ada Stoneman requirements document

(Buxton, 1980), a crucial element of an e f fec t ive sof tware
support environment Is the structure of a master database of
sof tware art i facts: plans, specif ications, standards, code, data,
manuals, etc. This master database must support eff ic ient
query and update of sof tware art i facts; representation of rela-
tions between art i facts (e.g., requirements traceabi l i ty) and
ef fect ive configuration management (version control, change
control, problem report tracking, library management) of the
various versions and updates of the sof tware art i facts.

151

Based on an analysis of previous TRW software support
environments, proposed Ada Programming Support Environments
(APSE's) and others such as Unix/Programmer's Work Bench
(Ivie, 1977; Kernighan-Mashey, 1981), PDS (Cheatham, 1981),
and Gandalf (Habermann, 1979), we determined that a single
underlying database structure would be overly constrained to
support a large sof tware project. Therefore, we elected to
experiment with a mult i-database support structure for the
SPS-1 prototype:

A hierarchical fi le system for the sof tware
art i facts;

An update-tracking system for representing the
successive updates of each art i fact;

A relational database management system (DBMS)
for representing the relations between art i facts.

One major advantage of this approach is that each ar t i fact
is stored only once and updated in only one place. The fact
that i t is part of several larger sof tware art i facts is handled by
the relational DBMS. (For example, a routine's design can simul-
taneously be part of the system design spec, a requirements -
t raceabi l i ty report, and are individual programmer's Unit
Development Folder). More details on the structure of the mas-
ter database are given later.

3.1.3. Local Ne twork

A key product iv i ty determinant in the 1960 study (Table
1) was interact ive sof tware development. To provide f lexible,
quick-response interact ive support for such capabil i t ies as
screen editors, window editors, and rapid fi le transfer, e local
network was determined to be most appropriate. Furthermore,
to accommodate TRW classif ied projects, the overall SPS was
configured as a federation of local networks with optional
connect ion-gateway processors. Based on growth patterns in
similar information networks, we decided that growth potential
was the most important feature in selecting the local network's
bandwidth. Thus, a TRW-developed multichannel broadband
(300 MHZ) cable-TV network was preferable to single channel
baseband (10 MHZ) networks such as Ethernet.

3.1 .4 . Source-Target Concept of Operation
Given TRW's need to develop sof tware for a wide var iety

of customer-determined target computers, we had two primary
options for developing SPS software:

An extremely portable tool system which could be
rehosted onto any target computer or operating
system;

A source-target configuration, in which the tool
system would be available for sof tware develop-
ment on a single class of source machines or
operating systems, and the developed sof tware
communicated to the target computer configuration
for system integration and test .

Overall, the source-target approach offered more at t rac-
t ive features for TRW's needs; however, such considerations as
f ield maintenance of the support system placed a strong prem-
Ium on portabil i ty as well. Such portabi l i ty considerations were
a major factor in the choice of Unix as the host operating sys-
tem for SPS-1.

3.2 . SPS-1 Components
To achieve our ambitious product iv i ty goals, the concept of

an integrated TRW software development environment was
defined. Drawing on the best of currently available environ-
ments and modified to meet cost constraints and the unique
requirements of TRW, the environment has four primary com-
ponents:

1. Software. An integrated tool set, supporting the
entire sof tware development l i fe-cycle, and well-
engineered to be friendly, portable, extensible,
f lexible, and robust.

2. Hardware. Low cost, medium power, personal com-
puter with identical keyboards; very high quality
printing available centrally; moderately high quality
printing available locally.

3. Communications. High capaci ty bus which connects
terminals and computers in a local area network;

4. Facilities. Private off ices of approximately 60 -100
square fee t with floor to ceiling walls, carpeting,
soundproofing, adequate work space, storage, and
lighting; each off ice contains e computer terminal
with a network connection.

3.2 .1 . S o f t w a r e

3 .2 .1 .1 . Support and General S o f t w a r e
One of our primary goals is to present the same software

environment to each user independent of the actual machine he
is currently using. All tools should be available on all machines
(excep t where size, speed, or securi ty makes this impossible),
end a user should be able to invoke the tool using the same
keystrokes. Whenever a tool is revised or e new tool imple-
mented, it should be made available on all machines at approxi-
mately the same time. To achieve this degree of uniformity and
portabil i ty requires that ell development computers use the
same operating system, regardless of machine differences.

We are not prepared to rehost operating systems our-
selves onto new machines as they become available in the
market place because of expense and the rapidity with which
new microcomputers are appearing. Hence, we wanted an
operating system which was likely to be hosted onto new pro-
cessors by commercial vendors. The only operating system
which currently is being implemented on needy every processor
of interest is Unix.

Because the environment must support the general of f ice
worker such as a secretary, and because sof tware developers
spend the majority of their time performing mundane of f ice
tasks (writ ing act iv i ty reports, editing documents, etc.), SPS-1
Includes an Automated Office. This system provides both
command-oriented and menu-driven access to a number of basic
Unix tools relevant to of f ice functions as well as to new tools
developed by SPP. Because of their re lat ive importance, word
processing, forms management, electronic mail, and calendar
management have received the greatest stress in the Office.
For example, the Office now supports a complete personal
calendar management system and will by year 's end support
multiple calendar scheduling.

The Automated Office is somewhat unique compared to
most of f ice systems Currently being marketed because i t is not
encased as a completely separate package. Office functions
ere Unix shell commands. Menus are optionally placed in front
of them using a separate utility. Hence, a secretary who
desires a rigidly structured system at the expense of f lex ib i l i ty
can use the menu front-end to obtain Office services, while a
programmer who can comfortably switch con tex ts between
compiling and reading mail is not hindered.

In addition to the general menu util ity, SPP has also
developed a forms management package which allows the user
to enter and manipulate data In a structured manner on the full
video screen. This package has far ranging application and has
been adopted for most SPS-1 tools, including calendar manage-
ment, inventory control, problem reporting, action item assign-
ment, and interoff ice correspondences. Use of the menu and
forms management util it ies eliminates one of the major criticisms
voiced about Unix - - i ts terseness.

152

Another SPP ef for t is in front-end help. A user can display
the structure of SPS-1 tools (tools groupings ex is t for f i le
manipulation, programming, editing, sorting and searching, etc.)
end obtain more detai led and bet ter structured help on locally
developed components than is available from standard Unix.
There are plans to enhance this capabi l i ty considerably over
the nex t year to permit sophist icated querying about SPS tools,
and about libraries of reusable sof tware components.

Reuse of exist ing sof tware is the most potent way to
improve productivi ty. Unix already provides a number of
libraries which can readily be incorporated into new software.
All software wri t ten for SPS-I takes advantage of these
libraries as appropriate. Taking advantage of the terminal capa-
b i l i t ies and cursor centre/ libraries permit sof tware to be wri t -
ten which will work appropriately on nearly all ful l -duplex asyn-
chronous terminals. The menu-driver and forms management
packages, using those libraries, work on a large var iety of ter-
minal types from a TI Silent 700 (in a very degraded mode) up
through a DEC VT100. In addition, we are currently developing
libraries for relat ively simple applications such as date analysis
(e.g., to allow tomorrow's date to be specif ied as either "tomor-
row", "Saturday", 5 June 1982, 6 / 6 / 8 2 , etc.), for relat ively
sophist icated application.~ such as the nex t version of the
forms management package, and will soon be developed for
graphics applications.

3.2.1.2. Master Database Structure

As discussed earlier, we determined that a multi-database
support structure provided the strongest mix of performance
and range of functional database capabil i t ies required to sup-
port sof tware development and evolution. The particular pack-
ages selected for the mult i-database components were:

The Unix hierarchical fi le system for storing
sof tware art i facts.

The Source Code Control System (SCCS) (Rochkind,
1976) for representing successive updates of each
art i fact.

The Ingres relational DBMS (Stonebraker, 1976) for
representing relations between art i facts.

The Unix fi le system is the most heavily used database
component. Program tex t , user's manuals, tes t cases, calendar
entries, etc. all reside as ordinary t e x t files. Unix has excel -
lent facil i t ies to organize and manipulate such files and has in
e f fect become the standard hlerarchcial f i le system against
which other such systems are measured.

All baselined SPS-1 source code, manual pages, user's
manuals, and other sof tware components are controlled through
SCCS. This guarantees tha t no one excep t the SPP Configura-
tion Manager may change any controlled document, that all
changes are recorded, and that there is full opportunity to
recover all earlier versions. Through control procedures sup-
ported by SCCS, developers and managers have access to and
can update a version of a document without af fect ing the off i-
cial basellned copy. In addition to using SCCS for documents
controlled at the project level, many SPS-1 users apply SCCS
to other documents for sub-project or personal use.

The most powerful component of the SPS database is
Ingres. SPP has designed a single Unif ied Database (UD) which
encompasses many aspects of pro ject act ivi t ies (although for
administrative reasons the database is divided into several
physical databases). As other development act iv i t ies become
supported by SPS-1 tools, additional relations, relevant to
those act ivi t ies, will be added to the UD.

Figure 3 shows some of the relations in the UD. These
components support the specif ication of relationships between
various sof tware art i facts - - requirements, specif ications,
design, code, and tes t cases -- which themselves normally
reside in the Unix hierarchical fi le system. For example, a tes t

case may verify that a specif icat ion has been properly imple-
mented, a relationship which can be captured in the database.
There are numerous such interesting relationships between
art i facts. Once captured in this way, it becomes possible to
automatically determine such discrepancies as when a require-
ment has no tes t case to ver i fy its proper implementation. This
is of incalculable value in a large sof tware project where there
are tens of thousands of requirements, specif ications, tes t
cases, etc. One of the SPS-1 tools, the Requirements Traces-
b i l i t y Tool (RTT) performs such automated analysis on the LID.
It supports easy entry of relationships, performs consistency
end completeness checks, produces formatted reports suitable
for Inclusion in larger documents, and supports interact ive
querying.

Figure 3. SPP Master Database

Our operational exper ience with UC Berkeley's Implementa-
tion of Ingres convinced us that it was functionally sat is factory
but unacceptably slow. We have at tacked this problem on two
fronts. First, SPP is investigating a faster version of Ingres
from Relational Technology Incorporated. This will of fer a strong
performance improvement with no additional hardware overhead.
Second, SPP has obtained a functionally compatible but highly
eff ic ient Britton-Lee IDM-500 database machine (Britton-Lee
1980). The IDM-500 is not ye t operational because of problems
In the early sof tware releases from Britton-Lee. However, our
preliminary benchmarks indicate that when the IDM-500
becomes fully operational, it will perform an order of magnitude
o~ more faster than Berkeley's Ingres.

3.2.1.3. So f tware Development Tools
TRW has completed several iterations on a complete

methodology for sof tware development including the implemen-
tat ion of tools to automate and reinforce much of that metho-
dology (Lanzano, 1970; Brown, et al, 1972; Boehm, et al 1976;
Nford, 1977; Ingrassia, 1978). The initial TRW tools selected
for SPS-1 were chosen primarily on the basis of their degree of
support for that methodology, the need to support a uniform
easy- to-use human interface, their compatibil ity with an
Interact ive Unix-based system, and their value to the contract
sof tware project they were to support. Table 3 summarizes the
tools developed for our initial release and those under develop-
ment for the second release. Short descriptions for some of the
tools are given below:

Automated Unit Development Folder (AUDF)
- - TRW keeps a "Unit Development Folder" for each

sof tware unit developed. The UDF contains such information as
the unit 's requirements, design, code, tes t plans and tes t
results, responsible personnel and milestone dates (Ingrassla,
1978). It has been kept manually in the past. This tool auto-
mates the UDF process by using the UD for stodng information
about each unit.

153

Table 3. SPS Tools by Category

CATEGORY 1981 RELEASE l U 2 RELEASE

• SIW REO ENG METHOOOLOGY • REFINEMENTS TO SREM,
(SREM) RTT AND NOT

REQUIREMENTS • REQ TRACEABILITY TOOL (RTT)
AND DESIGN • NETWORK DEFINITION TOOL (NUT)

• P O L / 2 • POL 81

• UNIX TOOLS • UNIT OEVELOPMENT FOLDER
• SOURCE CODE CONTROL SY~; (UOF)

DEVELOPMENT • EDITOR • UC BERKELEY FORTRAN/7
COMPILER

• USER FILE SUPPORT

TEST • FORTRAN 77 ANALYZER (F77A) • REFINEMENTS TO FT/A

• PLANNING ANO CONTROL
MANAGEMENT • INVENTORY CONTROL

• PROBLEM REPORT TRACKING

• AUTOMATED OFFICE (AO) • BIBLIOGRAPHY OOC
• ELECTRONIC MAIL • ACTION ITEM TRACKING

GENERAL USE • WORD PROCESSING • SOFTWARE LIBRARY
• CALENDAR MANAGEMENT • PLANS AND PROPOSALS TEXT

• FRONT END (F e • REFINEMENTS TO FE

• MENU, HELP, ERROR UTILITIES • GRAPHICS UTILITIES
SUPPORT • DATA BASE UTILITIES • UNIX-VMS NETWORKING

Program Design Language (PDL)

- - a wel l -known design tool (Caine-Farber-Gordon, l g 7 7)
which is avai lable on Unix. It was purchased from Calne, Ferber
and Gordon, Inc.

FORTRAN 77 Analyzer

- - as i ts name implies, i t performs stat ic and dynamic
analysis o f ANS FORTRAN 77 programs. It is useful as a s ta t ic
code analyzer, t e s t e f f ec t i veness measurer, and general
so f tware development aid.

Software Requirements Engineering Methodology (SREM)
- - supports the defini t ion and analysis o f so f tware require-

ments (Afford, l g 7 7 ; Bell e t al, I g 7 7) .

Requirements Traceability Tool (RTT)

- - allows the user to t race requirements through so f twa re
design and tes t ; generates severa l reports including a t e s t
evaluation matr ix and except ion reports; re fe rences the UD.

Forms Management Package (FMP)
- - provides a uniform way to manipulate electronic forms,

including summarization and a version o f query by example;
applied to such diverse applications as inventory control, prob-
lem reports, and calendar management.

AUTHOR

- - a word-processor which supports "wha t -you -see - i s -
wha t -you -ge t " t e x t entry. The user is shielded from t rof f com-
mands by seeing their e f f e c t s on the screen as he enters data.
AUTHOR makes ex tens ive use of keypad funct ion keys; i ts
back-end produces a f i le compatible with t rof f so tha t the full
power of the Unix formatt ing programs is retained.

3.2.2. Hardware

3.2.2.1. Processors

SPS-1 has a local network which current ly includes one
DEC VAX 1 1 / 7 8 0 Unix source machine, four VAX 1 1 / 7 8 0 VMS
ta rge t machines, end 5 L S I - 1 1 / 2 3 based semi-personal micro-
computers. The acquisit ion of the la t te r represents a comprom-
ise between cost and purely personal terminals based on equip-
ment which supported Unix avai lable during Spring 1981.

Most SPS-1 users stil l communicate via a dumb terminal
connected to a VAX. Our real goal, however, is to o f f load func-
t ions from the re lat ive ly expens ive VAX onto low-cost individual
Unix/microprocessor based personal computer terminals. We
will begin to phase in personal computers over the n e x t year as
the marketplace brings down their cost. These will give each

user complete control over his local environment with no conten-
t ion for resources. A small number o f t hese will be purchased in
la te 1982 or ear ly 1 g83 for experimentat ion.

3.2.2.2. Terminals

The terminals current ly used for SPS-1 are character
oriented. Graphics dev ices have not ye t been incorporated Into
SPS-1, although graphics dev ices will be in tegrated into SPS-1
by early 1983. We are current ly explor ing both monochrome
bit-mapped as well as color graphics s tand-a lone terminals. In
addition, i t seems l ikely that all personal computers purchased
by SPP in the fu tu re will o f f e r some graphics support.

3.2.3. Communications

There are two d i f fe ren t computers which will be avai lable
to each user - - his personal microcomputer and the VAX super-
mini. Personal microcomputers o f f load the supermini. We do not
ye t know what mix o f operat ions will be performed locally and
which will be performed on the supermini. This will not be de ter -
mined until the personal computers are avai lable In number.

If SPP ful ly incorporates the IDM-500 into i ts network, the
SPS-1 da tabase will be distr ibuted across machines. T e x t f i les
will be kept in the hierarchical Unix f i le system on a VAX or per-
sonal computer, while relat ional da tabase Information will be
kept central ized on the IDM-,500. Hence, all relat ional da tabase
quedes will require distr ibuted processing.

This part i t ioning o f e f fo r t among up to three d i f fe ren t
machine t ypes has cer ta in hardware implications, the most
important one being the requirement for a high capac i ty bus to
support rapid f i le t rans fe r be tween them, and accompanying
so f tware to support such d ls tdbuted processing.

3.2.3.1. SPNET

The Sol.rare Productivity Network (SPNET) current ly sup-
ports 9 8 0 0 baud UUCP batch f i le and mall t rans fe r between
Unix/VMS machines using the toolbag avai lable from Lawrence
Berkeley Laboratodes. It also supports 9 6 0 0 baud interprocess
communication be tween the Bdtton-Lee IDM-500 and the Unix
VAX. During the nex t year mature so f tware which supports full
interprocess communication and terminal processing protocols
between Unix /Unix and Unix/VMS will become avai lable (ear ly
versions of Unix /Unix support for IPC/TP protocols are already
being marketed) and will appropr iate ly be incorporated into
SPNET.

Computer/terminal communications is supported by a local
network. Up to 9 6 0 0 baud communication between any com-
puter on the network and a terminal is current ly supported on a
coaxia l cable by Sytek Corporat ion's System 20. The Sytek
equipment will soon be replaced by Bus Interface Units, a pro-
duct of TRW research, which will support higher performance
than tha t current ly o f fe red by Sytek.

Work is current ly proceeding to upgrade the
computer /computer communications. TRW is also developing a
High Speed Expansion Interface which will support a 30 mega-
baud bandwidth. Early versions o f these devices are e x p e c t e d
this year.

3.2.4. Faci l i t ies

The f inal component of SPS-1 is the o f f i ce faci l i t ies in
which the so f twa re developer works. Af ter surveying ex is t ing
faci l i t ies in industry and universit ies, the basic goals fo r the
o f f i ce faci l i t ies evolved. Currently there are 37 pro to type
o f f i ces co- located in the Space Park complex o f TIWV. Each
o f f i ce houses a single occupant, has a closable door, f loo r - to -
ceiling walls, carpet ing, sound-proof ing on the wall, and furni-
ture tai lored to so f tware developers ' usage pat terns. Each is
connected to the network and has su f f i c ien t power, lighting,
and air conditioning to support current and planned hardware
configurations.

154

8.3. Development Exper ience

3.3.1. Rapid Proto typ ing

As discussed earlier, when developing a so f tware environ-
ment, prototyping and evolut ionary design is preferable to paper
analysis and detai led requirements speci f icat ions. Classically,
however, the development o f real is t ic-scale pro to types solely
for the purpose of be t te r understanding what is real ly needed
has been far too expens ive to actual ly do for systems o f amy
size and sophist icat ion.

With the proper so f tware development environment, how-
ever, rapid prototyping becomes feasible. As a demonstrat ion
o f this fac t , many of the major components o f SPS-1 which
were developed at TRW speci f ica l ly for this pro ject (i.e., not
part o f nat ive Unix and not ported from other systems) were
developed using rapid prototyping techniques. We did find,
however, tha t prototyping required some revisions to our usual
development methodology (Pyster and Boehm, 1982) . For
example, we found it valuable to develop and i terate a rough
requirements spec fo r the system, but not to fo l low it r igorously
or to put it under conf igurat ion control. We also found the need
for added-standards, even for the prototype, in the user-
In ter face area.

3.3.2. User - I n te r f ace Standards

As mentioned before, special emphasis has been given to
the uniformity o f the user inter face. Since most SPS-1 tools
are interact ive, we developed a se t of user in ter face standards
which include: s y n t a x standards, a help language, interfacing,
and documentation. These are constant ly evolving as our user
community re la tes their exper iences with SPS-1 to us.

8.4. Training

We recognized early in the pro ject that our best technical
e f fo r t s could be thwar ted by a lack o f support for a large user
community who would initially be unfamiliar with Unix and SPS-I .
To ensure user sat is fact ion, we took a four-pronged approach:

3.4.1. Documentat ion

User manuals are wr i t ten for each locally developed tool.
In addition, supplements to ex is t ing Unix documentation were
wdt ten explaining, for example, the most commonly used system
commands. Sections o f ex is t ing Unix documents which were
found lacking were rewri t ten; e.g., we wro te a tutorial introduc-
tion to the screen-ed i tor Vi more sui table for computer novices
than the one distr ibuted from UC Berkeley.

3.4.2. Consulting
A regular consulting serv ice was establ ished so that users

from outside SPP can obtain expe r t help on all aspects o f SPS-
1.

3.4.3. Courses

Several In-house courses were developed and are o f fe red
on a regular basis. Besides an introduction to SPS-1, we o f f e r
courses on such diverse topics as word processing, C program-
ming, and advanced system util i t ies. One has been v ideo-taped,
and greater use o f v ideo- taping in the fu ture Is planned. In
addition, commercial so f tware houses now sell CAI courses on
Unix. These are being examined for possible use by SPP.

3.4.4. On-Line Help
Facil it ies are being developed to permit a user to browse

through the system and to quickly f ind a tool he needs. These
will be built on the simple but useful uti l i t ies such as whatis
already o f fe red in Unix (You can ask whatis X f o r any system
command X and Unix will present a one line descript ion of tha t
command.).

3.5. User Accep tance

There was concern when SPP began tha t the user commun-
I ty~outs ide SPP i tse l f would resist the d i f fe ren t way o f
approaching so f tware development which SPS-1 and i ts accom-
panying methodology support. This skepticism was ant ic ipated
for severa l reasons:

Unix is d i f fe ren t and it takes a lot o f work to learn another
operat ing system and collection of tools; the users must be
persuaded there is a large payo f f in order to warrant such
e f fo r t ;

In some corners Unix has the reputat ion of being ton
academic, and therefore, might not be appropriate for sup-
port ing large-scale real- t ime so f twa re development;

Unix is not really "supported" by e i ther Bell Labs or by UC
Berkeley in the sense that commercial vendors support
their operat ing systems, causing concern over operat ing
system maintenance.

These concerns motivated us to pay e x t r a at tent ion to
ensure that our so f tware worked well, tha t users were con-
sul ted on requirements, tha t training was adequate, that user
manuals were wel l -wr i t ten, and tha t the tools placed into SPS-1
would o f f e r valuable serv ices not easi ly found elsewhere.

This s t ra tegy is paying of f . Initial skepticism was indeed
encountered, but acceptance o f SPS-1 has been steadi ly
Increasing. There has been keen in terest in obtaining SPP sup-
port by severa l pro jects based on what they have seen and
heard, and SPS-1 has been wr i t ten into proposals for fu tu re
development pro jects. We e x p e c t tha t by the end o f 1984 the
technology which SPP is pioneering within TRW will have spread
throughout much o f the company.

4. CONCLUSIONS

The pdmary conclusions from the Sof tware Product ivi ty
requirements analysis are:

1. S ign i f icant p roduc t i v i t y gains requi re an In tegra ted pro-
gram o f In i t ia t ives in seve ra l areas.

2. An in teg ra ted s o f t w a r e p roduc t i v i t y improvement p ro -
gram can have an ex t r eme l y large p a y o f f (a f a c t o r o f 4
by 1990) .

3. Improving s o f t w a r e p roduc t i v i t y involves a long, sus-
tained e f f o r t .

4. In the v e r y long run, the biggest productivity gains wil l
come f rom increased use o f ex is t ing s o f t w a r e .

6. S o f t w a r e suppor t env i ronment requ i rements are st i l l too
incomplete ly understood to spec i f y precisely .

The primary conclusions from the SPS-1 development
exper ience to date are:

6. No single software support system a rch i t ec tu re wi l l be
opt imal f o r all o rgan izat ions. For example, the source-
ta rge t concept of operat ion most appropr iate to TRW is
unnecessary for organizat ions with a single type o f ta rge t
computer.

7. The mult iple re la t iona l -h ie ra rch ica l da tabase concept
simplifies many software support functions. It allows
the support system to capital ize on the s t rengths o f each
t ype o f da tabase while largely avoiding their weaknesses.

155

8.

9.

10.

A rapid-prototyping capabi l i ty is essential to the evolu-
t ionary development of a so f tware support environment.
Unix has provided an excel lent rapid-prototyping capabil-
ity.

User- interface standards are essential for preserving
the conceptual integrity of an evolving support system.
An excel lent way to implement such standards is to embed
them into a family of toolbuilders' utilities supporting error
processing, help messages, master database access,
forms management, etc.

User acceptance of novel development environments is a
gradual process which requires careful nurturing by the
sponsoring organization. Involvement of the user com-
munity in planning the growth and direction of the environ-
ment will help ensure their acceptance of it.

Bibl iography

(1) (Alford, 1977). M. W. Alford, "Requirements Engineering
Methodology for Real-Time Processing Requirements," IEEE
Trans. Software Engr., January 1977, pp. 60-58.

(2) (Bell et al, 1977). T. E. Bell, D. C. Bixler, and M. E. Dyer,
"An Extendable Approach to Computer-Aided Software
Requirements Engineering," IEEE Trans. Software Engr.,
January 1977, pp. 49-59.

(3) (Boehm e t el, 1975). B. W. Boehm, "Structured Program-
ming: A Quantitative Assessment Computer," June 1975,
pp. 38-54.

(4) (Boehm-Wolverton, 1978). B. W. Boehm, and R. W. Wolver-
ton, "Software Cost Modeling: Some Lessons Learned,"
Proceedings, Second Software Life-Cycle Management
Workshop, U.S. Army Computer Systems Command, Atlanta,
August 1078. Also in Journal of Systems and Software, 1,
3, 1980, pp. 195-201.

(5) (Boehm, 1981). B. W. Boehm, Software Engineering
Economics, Prentice Hall, Inc., Englewood Cliffs, NJ, 1 gS l .

(6) (Boehm, 1981a). B. W. Boehm, "Improving Software Pro-
ductlvi ty," Proceeding, IEEE COMPCOM 1981 Fall, Sep-
tember, 1981.

(7) (Boehm-Pyster, 1982). B.W. Boehm and A. B. Pyster, "The
Impact of Rapid Prototyping on Software Development
Standards - - A Position Paper" ACM SIGSOFT Second
Software Engineering Symposium, Columbia, MD., April
1982.

(8) (Brown et al, 1972). J. R. Brown, "Automated Software
Quality Assurance: A Case Study of Three Systems," TRW
Software Series TRW-SS-72-05, TRW Inc., Redondo Beach,
CA 1972

(9) (Business Week, 1980). "Missing Computer Software,"
Business Week, September 1, 1980, pp. 46-53.

(l O) (Buxton, 1980). J. Buxton, "Requirements for Ada Pro-
gramming Support Environments: 'Stoneman'," U.S. Depart-
ment of Defense, OSD/R&E, Washington, DC, February
1980.

(11)(Cheatham, 1981). T. E. Cheatham, "An Overview of the
Harvard Program Development System", in (HLinke, 1981).,
pp. 258-286.

(12) (Chdstensen, 1980). K. Chdstensen, "Programming Pro-
duct iv i ty and the Development Process," IBM Santa Teresa
Laboratory, TR 03.083, January 1980.

(13)(Caine-Farber-Gordon, 1977). "PDL/74 Program Design
Language Reference Guide (Processor Version 3)," Caine
Farber Gordon Inc., 1977

(14)(Dolot ta et al, 1978). T. A. Dolotta, R. C. Haight, and J. R.
Meshey, "The Programms' Workbench," Bell System Techni-
cal Journal, July-August 1978, pp. 2177-2200.

(15)(Epstein-Hawthorn, 1980). Epstein, R., and P. Hawthorn
"Aid in the 8O's Datamation," pp. 154-1 58, February 1980.

(16)(Goldberg, 1978). E. A Goldberg, "Applying Corporate
Software Development Policies," Proceedings, AIAA Third
Software Life-Cycle Management Conference, 1978."

(17) (Habermann, 1979). h~ N. Habermann, "An Overview of the
Bandolf Project," Carnegie-Mellon University Computer
,Science Research Review 1978-79, 1979."

(18) (Held-Kreps-Stonebraker-Wong, 1976). G. Held, P. Kreps,
M. Stonebraker and E. Wong, "The Design and Implementa-
tion of Ingres," ACM Transactions on Database Systems 1:3,
pp. 189-222, March 1978.

(19)(HtJnke, 1981). H. HiJnke, ed., Software Engineering
Environments, North Holland, Amsterdam, 1981.

(2O)(Ingrassia, 1978). F. S. Ingrassia, "Combating the 90%
Syndrome," Datamation, January 1978, pp. 171-176.

(21)(Iv ie , 1977). E. L. Ivie, "The Programmer's Workbench: A
Machine for Software Development," Comm. ACM, October
1977, pp. 746-753.

(22)(Kernighan-Mashey, 1081). B. W. Kernlghan and J. R.
Mashey, "The Unix Programming Environment," Computer,
April 1981, pp. 12-24.

(23) (Lanzano, 1970). B. C. Lanzano, "Program Automated Docu-
mentation Methods," TRW Software Series TRW-SS-70-04,
TRW Inc., Redondo Beach, CA 1970

(24)(NFE-Doe, 1980). U.S. National Science Foundation and
Department of Education; "Science and Engineering Educa-
tion in the 198O's and Beyond," October, 1980.

(25) (Rochkind, 1975). M. J. Rochkind, "The Source Code Con-
trol System" IEEE Transactions on Software Engineering,
Volume SE-1,4, December 1975, pp. 364-369.

156

