The TRW Software Productivity System

Barry W. Boehm

James F. Elwell

Arthur B. Pyster
E. Donald Stuckle
Robert D. Williams

1. ABSTRACT/SUMMARY

This paper presents an overview of the TRW Software Pro-
ductivity System (SPS), an integrated software support
environment based on the Unix operating system, a wide range
of TRW software tools, and a wideband local network. Section
2 summarizes the quantitative and qualitative requirements
analysis upon which the system is based. Section 3 describes
the key architectural features and system components. Finally,
section 4 discusses our conclusions and experience to date.

2. SPS REQUIREMENTS ANALYSIS

This section discusses the results of a software produc-
tivity study performed at TRW during 1980. This study
analyzed the requirements for a TRW-oriented software support
environment; evaluated the technology base available for such
a support environment and the likely trends in that base; and
performed an economic analysis to determine whether a signifi-
cant level of investment into software productivity aids would
be Justified. Each analysis is summarized below, followed by
the study's conclusions and recommendations.

2.1. Corporate Motivating Factors

As a competitive system and software house, TRW has
continually strived to improve software productivity. Recently,
however, several additional factors have motivated TRW toward
a more substantial level of corporate investment for improving
software productivity. Four of the primary factors are:

Increased Demand for Software

Each successive generation of a data processing
system experiences a significant increase in
demand for software functionality. For example,
manned space-flight software support functions
grew from 1.5 miilion object code instructions for
the 1861 Mercury program to over 40 million object
instructions for the 1980 Space Shuttie program
(Boehm, 1981, Chapter 33).

Limited Supply of Software Engineers

Several sources (Business Week, 1980; NSF-DoE,
1980) have indicated that the curmrent U.S. shor-
tage of software personnel is between 60,000 and
100,000 people, and that the suppliers (primarily
university computer science departments) do not
have sufficient resources to meet the demand.

Rising Software Engineer Support Expectations

Good software engineers are in general no longer
satisfied to work with inadequate tools and a poor
work environment. Successful hiring and retention
of good software engineers requires an effective

"Unix is a trademark of Bell Laboratories

0270-5257/82/0000/0137$00.75 © 1982 IEEE

148

corporate software support environment.
Reduced Hardware Costs

The cost and performance improvements of super-
mini mainframes, powerful personal microcomputers,
and broadband communication systems permit signi-
ficantly more powerful and cost-effective software
support systems.

2.2, The 1980 Software Productivity Study

Given the motivating factors above, TRW embarked on an
extensive study during 1980 of its software environment
objectives, requirements, and alternatives, which led to recom-
mended strategies for improving software productivity. This
study included an internal assessment, an external assessment,
a quantitative analysis, and a set of recommended actions,
each of which is discussed in turn below.

2.2.1. Internal Assessment

TRW's internal assessment began with a seres of inter-
views with representative higher-level and intermediate-level
managers, and software performers. Each interviewee was
asked, "if there were only two or three things you could get
TRW to do to improve software productivity, what would they
be?"

In general, the interviewees were highly enthusiastic, and
provided a wide-ranging menu of attractive suggestions for
improving productivity. Although there was a general consensus
on the primary avenues for improving software productivity (in
the four areas of management actions; work environment and
compensation; education and training; and software tools),
there were some significant differences.

For example, Figure 1 shows the relative importance of
these four areas from the standpoint of three classes of TRW
personnel: upper managers, middle managers, and performers.

*:':;:G“ | m 22

mom.E // 7 % %

renronmens ,,Em Y m %

MANAGEMENT ENVIR WORK EDUC
ACTIONS

Figure 1. Software Productivity — Perceptions of Major Needs

It is evident from Figure 1 that the upper managers'
world-view conditions them to see management actions as the
high-leverage items, while the performers' world-view condi-
tions them to see tools as providing the most leverage. The
important point is not which group is more correct, but that each
group brings a valid set of perceptions to bear on the problem.
Furthermore, since motivation is such a key factor in software
productivity, people’s perceptions are an important considera-
tion. If we had proceeded with a big campaign to improve pro-
Ject planning, organization, reporting, etc., without providing t.he
performers with improved tools, our resulting productivity gains
would not have been anywhere near their potential.

2.2.1.1. Software Support Environment Requirements

. Another portion of the internal assessment involved an
analysis of TRW's software support environment requirements.
Since the DoD ADA Stoneman requirements document {Buxton,
1880) had recently provided an excellent general definition of
software support environment requirements for Ada, TRW used
Stoneman as its baseline, and focused on identifying additional
TRW-speclific environment requirements not included in Stone-
man. The primary additional requirements identified are summar-
ized below.

1. Support of Multiple Programming Languages

The internal assessment included a forecast of the
evolution of TRW's government-systems business
base In various dimensions, including its distribution
by programming language. It showed that even
though DoD is strongly committed to Ada for its new
starts, there Is likely to be a significant segment of
software projects consisting of compatible
developments for existing FORTRAN and JOVIAL sys-
tems. Thus, a pure Ada-based environment would
not support all of TRW's needs even by the year
2000.

Support of Mixed Target-Machine Complexes

A similar forecast of the hardware nature of TRW's
future business base indicated a strong trend
toward hierarchical mixed-vendor maxi-mini-micro
target-computer complexes. Although the APSE
concept may provide a unified virtual environment
supported on each computer In such complexes,
experience to date on such virtual environments as
the National Software Works indicate that a number
of outstanding problems need to be resolved before
one can count on this solution.

Support of Classified Projects

Among other things, this implies that a single
corporate-wide network with shared data and pro-
grams would not be feasible for TRW's classified
projects. Such projects have severe access con-
straints and require extensive precautions to
enforce those restrictions. We were not prepared
to tackle the problems of ensuring such security in
a wide-area network which would necessarily use
non-secure communications media. The alternative
approach is to have a collection of local networks
each of which can individually impose tight security
arrangements. A classified project could then use a
single local network within a restricted area. This is
the approach we have adopted.

Integration with TRW Management Programs and
Data

TRW's tool requirements included a number of pro-
ject and financial management tools not identified in
Stoneman, plus the need to integrate these with
existing TRW management support programs and
data.

149

6. Integration with Office Automation Capabilities

TRW studies indicate that about 2/3 of the effort
on a large software project results in a document
as i_ts direct product, and only 1/3 results in code
as its direct product (Boehm 1981, Chapter 31).
This and related insights have caused us to
emphasize the integration of traditional software
tool_s with word-processing and other office auto-
mation capabllities as a top-priority requirement.

Support of Non-Programmers

T_RW software projects require the close coopera-
tion, communication, and support of both program-
mers and non-programmers such as technicians,
managers, secretaries, hardware system engineers,
and business personnel. This implies the need for
both tools and a user interface which will support all
these classes of people.

2,2,1.2. Uncertainty Areas

in trying to determine the specific information support
needs of the TRW software engineer, we encountered a wide
variety of user opinions on such items as:

tool priorities (development, management, office
support);

attribute priorities (efficiency, extensibility, ease
of use by experts vs. novices);

degree of methodology enforcement (do tools
assume requirements are written in TRW's Require-
ments Specification Language, etc.);

command language characteristics; (menu vs. com-
mand, terse vs verbose, etc.).

As a result, we concluded that it would be an extremely
time-consuming, inefficient, and uncertain process to obtain
universal concurrence on a requirements specification for a TRW
software support environment before proceeding into design
and code. Developing an experimental prototype system and
using it on a TRW software project would be a more cost-
effective approach.

2.2.2. External Assessment

The 1980 study included visits to a number of organiza-
tions with experience or active R&D programs in the software
support environment area. The industrial organizations we
visited included IBM-Santa Teresa, Xerox Palo Alto Research
Center, Bell Laboratories, and Fujitsu; the universities included
Stanford, MIT, Harvard, and Carnegie-Mellon. The primary con-
clusions resulting from these visits were:

Organizations investing in significant improvements
in their software environments felt they were get-
ting thelr money's worth. Some, such as IBM
(Christensen, 1980) and Bell Labs (Dolotta et al,
1978) were able to at least partially quantify their
resulting benefits.

Organizations achleving some integration of
software development support capabllities and
office automation capabilities considered this a
high-payoff step.

Significant progress was being made toward provid-
ing very high-powered personal work station termi-
nals (with high-resolution bit-mapped displays sup-
porting window editors, integrated text and graph-
ics, and well-integrated screen-pointing devices) at
a reasonable cost.

No system we saw provided all the capabilities TRW
required.

2.2.3. Quantitative Assessment

Our quantitative assessment of alternative avenues for
improving software productivity was based primarily on TRW's
Software Cost Estimation Program, or SCEP (Boehm-Wolverton,
1978). SCEP is similar in form to the COCOMO model described
in detail in (Boehm, 1981). It estimates the cost of a software
project as a function of program size in Delivered Source
Instructions (DS!) and a number of other cost driver attributes
summarized in Figure 2. Figure 2 shows the Productivity Range
for each attribute: the relative productivity in DSI/man~-month
attributable to the given attribute, after normalizing for the
effects of other attributes. Thus, the 1.49 productivity range
for the Software Tools attribute results from an analysis indi-
cating that, all other factors being equal, a project with a very
high level of tool support will require only 0.83 of the effort
required for a project with a nominal level of tool support, while
an equivalent project with a very low level of tool support would
require 1.24 times the effort required for the nominal project, or
1.24/0.83 = 1.49 times the effort on the "'very high" tools pro-
ject. The 'very high” and 'very low" ratings correspond to
specific levels on a COCOMO rating scale for tool support
(Boehm, 1981).

120 LANGUAGE EXPERIENCE
123 SCHED. CONSTR.

134 VERTUAL MACHINE EXPERIENCE

140 VIRTUAL MACHINE VOLATILTIY

1.4 SOFTWARE TOOLS

151 MODERN PROGRAM PRACTICES

156 STORAGE CONSTRAINT

157 APPLICATIONS EXPERIENCE

1488 TIMING CONSTRAINT

187 REQUIRED RELIABILITY

“J 2.3 PRODUCT COMPLEXITY

PERSONNEL / TEAM CAP#BILITY | AL
T v AJ * T L

150 200 250 3.00 350 4.00 450

Figure 2. Comparative Software Productivity Ra.nges
{Based on Analysis of 63 Software Projects)

1.00

Productivity Audit Results

The Software Tools rating scales and those of the other
cost driver attributes were used to conduct a 'productivity
audit'' of TRW projects, to determine the weighted-average pro-
ductivity multipliers characteristic of the overall TRW distribu-
tion of software projects, both at present and for several
future scenarios representing varying levels of TRW investment
into productivity-improvement p’rograms. Table 1 summarizes a
typical analysis of this nature. It shows that a productivity
improvement program achieving several cost driver attribute
improvements in parallel could improve productivity by a factor
of 3.4 by 1985, and a factor of 7.8 by 1990. Besides providing
an estimated productivity gain, this analysis provided insights
for determining which items (e.g., tools) to emphasize as part of
a TRW productivity improvement strategy. It also provides a
valuable framework for tracking the actual progress of the pro-
ductivity program, and for determining whether its goals are
actually being achieved.

Activity Analysis

Concurrently, we performed a complementary analysis
which assessed the likely reduction of software project effort
devoted to each software activity during each software
development phase, as a result of a software environment
improvement program .

"More details underlying this analysls are given In (Boehm, 1981a).

*Thls analysis was performed by E. J. Hardy to support the U.S. Army Ballis~
tic Misslle Defense Advanced Technology Center's Distributed Computer System
Design project. See (Alford et al, 1981),

150

Table 1. Evaluation of Overall Productivity Strategy

WEIGHTED

COCOMO ATTRIBUTE AVERAGE MULTIPLIER
1981 1985 1990
USE OF SOFTWARE TOOLS 1.05 0.94 0388
MODERN PROG. PRACTICES 1.07 089 083
COMPUTER RESPONSE TIME 1.02 091 089
ANALYST CAPABILITY 1.00 0.88 0.80
PROGRAMMER CAPABILITY 1.05 0.90 080
VIRTUAL MACHINE VOLATILITY 1.06 0.95 0.90
REQUIREMENTS VOLATILITY 127 1.08 1.00
USE OF EXISTING SOFTWARE 0.90 0.70 0.50
CUMULATIVE MILTIPLIER 1.46 0.34 0.19

PRODUCTIVITY GAIN 34 78

This analysis was based on the COCOMO modei's software
effort distributions by phase and activity (Boehm, 1981;
Chapter 7). The results are given in Table 2.

Table 2. Activity — Oriented Estimate of Effort Reduction

PLANK & PRODUCT HVE:;
PHASE REQUIREMENTS | DEsION & TEST um.‘rn

PHASE EPFORT Pi (%} 74 w7 “a ns 1000
ACTIVITY A, M. ES | AE AS ES AE AS,ES | A2 ASeS > AE. AS, €3
REQUIREMENTS ANALYSIS | 04202508 | 010058005 | 003030 097 | aszenssa . 088 0.00 20
PRODUCT DESIGN OHLIEe2 | 04203821 | 08805613 | sscomees res 01103023
PROGRAMIING 0.100.100.1 | 01408012 | ossemey | emssassn ns 041050 285
TEST PLANNING 0080.350.1 | CAB038 04 | OANEIIY | AMSOIEEA 20 0.080.32.1
vav 01002001 | Cieeaser | 01282027 | awessss b7 1405877
PROJECT OFFICE omose: | 0070 | essemes | ssemes 13 wems
cM/QA os303801 | oazolmer | ansessis | cssomsia a s esels
MANUALS COBWNE 02 | CA70.4505 | SO0 18 | 00704810 27 [SITY 1V

TOoTAL 1. . 148 7 »a -

The Phase Effort (Pi) row shows the percent of the

overall development effort consumed during phase
i.

For each phase, the AE column shows the COCOMO
effort distribution by activity, including an activity
distribution for the maintenance phase. For exam-
ple, Table 2 indicates that 7.4% of the development
effort is devoted to the Plans and Requirements
phase. Within this 7.4%, Requirements Analysis
activities consume 42%, Product Design activities
consume 16% of the effort, etc.

The AS (Activity Savings) column shows the results
of a Delphi exercise to estimate the percentage of
effort for each phase-activity combination that
would be saved as a result of using the SPS. For
example, 25% of the Requirements Analysis effort
was estimated to be saved during the Plans and
Requirements phase, etc.

The ES column shows the resulting Effort Savings
for each activity j within phase i:

ESU = (P')(AEU)(ASU)

When summed over all phases and activities, the
overall results show a development savings of 39%,
and a maintenance savings of 46%, exclusive of
any savings due to software reuse. These savings
are not as great as those estimated by the cost~
driver approach, but they are reasonably compar-
able and quite significant.

2,2.4. Study Conclusions

The 1980 productivity study reached the following major
conclusions:

Significant productivity gains require an integrated
program of Initiatives in several areas. These areas
include improvements in tools, methodology, work
environment, education, management, personal
incentives, and software reuse. A fully effective
software support environment requires integration
of software tools and office automation capabili-
ties.

An Integrated software productivity improvement
program can have an extremely large payoff. Pro-
ductivity gains by factors of 2 in four years and
factors of 4 in nine years are generally achievable,
and are worth a good deal of planning and invest-
ment.

Improving software productivity involves a long,
sustalned effort. The payoffs are large, but they
require a long-range commitment. There are no
easy, instant panaceas.

In the very long run, the biggest productivity gains
will come from increasing use of existing software.

Software support environment requirements are still
too incompletely understood to specify precisely. In
this respect, software support environments fall
into an extensive category of man-machine sys-
tems whose user requirements are not completely
understood.

2.2.6. Study Recommendations

Based on these conclusions, the 1980 study made the fol-
lowing recommendations:

Initiate a significant long-range effort to improve

software productivity. The recommended effort
included initiatives in all the areas above, and

established goals of improving software produc-
tivity by:

- a factor of 2 by 1985;
- atactor of 4 by 1990.

Although these goals are conservative with respect
to the estimated productivity gains cited in the
Study Conclusions, they are clearly large enough to
justify a significant investment into a productivity
Improvement program.

Begin by developing a prototype system. Given that
the system requirements and some of the technol-
ogy issues were incompietely understood, prototyp-
ing was the most effective strategy for proceeding.

Commit to using the prototype on a large production
software project. This ensured that the prototype
would be realistic and that we would get early
feedback from its use. A related recommendation
was that a productivity improvement measurement
and analysis activity be an integral part of the pro-
gram.

8. SPS PROTOTYPE DEVELOPMENT

After an extensive review of the 1980 Software Produc-
tivity Study and its recommendations, TRW's management
decided to invest a significant effort into developing a proto-

type SPS during 1981, and to use it on a large TRW software
project anticipated to begin its major effort in late 1981. Thus,
in early 1981, a two-pronged effort was initiated: one, to
determine the long-range hardware-software architectural
options for an eventual mid-1980's SPS-2 system (under the
name Advanced Productivity Project -- APP); the other, to build
a compatible SPS-1 prototype to be ready for use by the end of
1981 (under the name Software Productivity Project -- SPP).
This section describes the overall architecture and concept of
operation of SPS-1; discusses each major SPS-1 hardware and
software component; summarizes some of the primary develop-
ment lessons learned to date on SPS-1; and describes the
ongoing efforts of SPP. There are no details offered on SPS-2
since It is still being shaped by our experiences with SPS-1.

3.1. SPS-1 Architecture and Concept of Operation

The SPS-1 architecture was developed in response to four
primary guiding principles:

1. Methodology Support

SPS-1 should reinforce TRW's life-cycle software
development methodology.

2. Master Database

The SPS-1 master database should be both
hierarchical and relational.

3. Local Network

SPS-1 should support interactive access to its
shared resources via a local network.

4. Source-Target Concept of Operation

SPS-1 should reside in a single type of source
machine or source operating system, rather than
being rehosted on each of the many target
machines for which TRW develops software.

Each of these guiding principles and its impact on SPS-1
are discussed below.

8.1.1. Methodology Support

The essence of TRW's software development methodology
is summarized in Chapter 4 of (Boehm, 1981) on the "waterfall"
model of the software life-cycle and its refinements (prototyp-
ing, incremental development, and advancemanship). Within
TRW, the methodology is elaborated in a set of 18 software
development policies (Goldberg, 1978) and an underlying set of
software product standards. SPS-1 reflects the methodology's
strong emphasis on requirements determination and validation
via such tools as the Software Requirements Engineering
Methodology (SREM) (Alford, 1877; Bell et al, 1977) and a
Requirements Traceability Tool for relating software require-
ments to design, code, and test cases. SPS-1 reflects the
methodology's strong emphasis on management visibility and
control via such tools as the Unit Development Folder (UDF)
(Ingrassia, 1978).

3.1.2. Master Database

As emphasized in the Ada Stoneman requirements document
(Buxton, 1980), a crucial element of an effective software
support environment is the structure of a master database of
software artifacts: plans, specifications, standards, code, data,
manuals, etc. This master database must support efficient
query and update of software artifacts; representation of rela-
tions between artifacts (e.g., requirements traceability) and
effective configuration management (version control, change
control, problem report tracking, library management) of the
various versions and updates of the software artifacts.

151

Based on an analysis of previous TRW software support
environments, proposed Ada Programming Support Environments
(APSE's) and others such as Unix/Programmer's Work Bench
(lvie, 1977; Kernighan-Mashey, 1981), PDS (Cheatham, 1981),
and Gandalf (Habermann, 1979), we determined that a single
underlying database structure would be overly constrained to
support a large software project. Therefore, we elected to
experiment with a multi-database support structure for the
SPS-1 prototype:

A hierarchical the software

artifacts;

file system for

An update-tracking system for representing the
successive updates of each artifact;

A relational database management system (DBMS)
for representing the relations between artifacts.

One major advantage of this approach is that each artifact
is stored only once and updated in only one place. The fact
that it is part of several larger software artifacts is handled by
the relational DBMS. (For example, a routine's design can simul-
taneously be part of the system design spec, a requirements -
traceability report, and are individual programmer's Unit
Development Folder). More details on the structure of the mas-
ter database are given later.

3.1.3. Local Network

A key productivity determinant in the 1980 study (Table
1) was interactive software development. To provide flexible,
quick-response interactive support for such capabilities as
screen editors, window editors, and rapid file transfer, a local
network was determined to be most appropriate. Furthermore,
to accommodate TRW classified projects, the overall SPS was
configured as a federation of local networks with optional
connection-gateway processors. Based on growth patterns in
similar information networks, we decided that growth potential
was the most important feature in selecting the local network’s
bandwidth. Thus, a TRW-developed multichannel broadband
(300 MHZ) cable-TV network was preferable to single channel
baseband (10 MHZ) networks such as Ethernet.

3.1.4. Source-Target Concept of Operation

Given TRW's need to develop software for a wide variety
of customer-determined target computers, we had two primary
options for developing SPS software:

An extremely portable tool system which could be
rehosted onto any target computer or operating
system;

A source-target configuration, in which the tool
system would be available for software develop-
ment on a single class of source machines or
operating systems, and the developed software
communicated to the target computer configuration
for system integration and test.

Overall, the source-target approach offered more attrac-
tive features for TRW's needs; however, such considerations as
field maintenance of the support system placed a strong prem-
lum on portability as well. Such portability considerations were
a major factor in the choice of Unix as the host operating sys-
tem for SPS-1.

3.2. SPS-1 Components

To achieve our ambitious productivity goals, the concept of
an integrated TRW software development environment was
defined. Drawing on the best of currently available environ-
ments and modified to meet cost constraints and the unique
requirements of TRW, the environment has four primary com-
ponents:

152

1. Software. An integrated tool set, supporting the
entire software development life-cycle, and well-
engineered to be friendly, portable, extensible,
flexible, and robust.

Hardware. Low cost, medium power, personal com-
puter with identical keyboards; very high quality
printing available centrally; moderately high quality
printing available locally.

Communications. High capacity bus which connects
terminals and computers in a local area network;

Facilities. Private offices of approximately 80-100
square feet with floor to ceiling walls, carpeting,
soundproofing, adequate work space, storage, and
lighting; each office contains a computer terminal
with a network connection.

3.2.1. Software

3.2.1.1. Support and General Software

One of our primary goals is to present the same software
environment to each user independent of the actual machine he
is currently using. All tools should be available on all machines
(except where size, speed, or security makes this impossible),
and a user should be able to invoke the tool using the same
keystrokes. Whenever a tool is revised or a new tool imple-
mented, it should be made available on all machines at approxi-
mately the same time. To achieve this degree of uniformity and
portability requires that all development computers use the
same operating system, regardless of machine differences.

We are not prepared to rehost operating systems our-
selves onto new machines as they become available in the
market place because of expense and the rapidity with which
new microcomputers are appearing. Hence, we wanted an
operating system which was likely to be hosted onto new pro-
cessors by commercial vendors. The only operating system
which currently is being implemented on nearly every processor
of interest is Unix.

Because the environment must support the general office
worker such as a secretary, and because software developers
spend the majority of their time performing mundane office
tasks (writing activity reports, editing documents, etc.), SPS-1
includes an Automated Office. This system provides both
command-oriented and menu-driven access to a number of basic
Unix tools relevant to office functions as well as to new tools
developed by SPP. Because of their relative importance, word
processing, forms management, electronic mall, and calendar
management have received the greatest stress in the Office.
For example, the Office now supports a complete personal
calendar management system and will by year's end support
multiple calendar scheduling.

The Automated Office is somewhat unique compared to
most office systems currently being marketed because it is not
encased as a completely separate package. Office functions
are Unix shell commands. Menus are optionally placed in front
of them using a separate utility. Hence, a secretary who
desires a rigidly structured system at the expense of flexibility
can use the menu front-end to obtain Office services, while a
programmer who can comfortably switch contexts between
compiling and reading mail is not hindered.

In addition to the general menu utility, SPP has also
developed a forms management package which allows the user
to enter and manipulate data In a structured manner on the full
video screen. This package has far ranging application and has
been adopted for most SPS-1 tools, including calendar manage-
ment, inventory control, probfem reporting, action item assign-
ment, and interoffice correspondences. Use of the menu and
forms management utilities eliminates one of the major criticisms
voiced about Unix -- its terseness.

Another SPP effort is in front-end help. A user can display
the structure of SPS-1 tools (tools groupings exist for file
manipulation, programming, editing, sorting and searching, etc.)
and obtain more detailed and better structured help on locally
developed components than is available from standard Unix.
There are plans to enhance this capability considerably over
the next year to permit sophisticated querying about SPS tools,
and about libraries of reusable software components.

Reuse of existing software is the most potent way to
improve productivity. Unix already provides a number of
libraries which can readily be incorporated into new software.
All software written for SPS-I takes advantage of these
libraries as appropriate. Taking advantage of the term/na/ capa-
bilities and cursor control libraries permit software to be writ-
ten which will work appropriately on neary all full-duplex asyn-
chronous terminals. The menu-driver and forms management
packages, using those libraries, work on a large variety of ter-
minal types from a Tl Silent 700 (in a very degraded mode) up
through a DEC VT100. in addition, we are currently developing
libraries for relatively simple applications such as date analysis
(e.g., to allow tomorrow's date to be specified as either "tomor-
row", ""Saturday", 5 June 1982, 6/5/82, etc.), for relatively
sophisticated applications such as the next version of the
forms management package, and will soon be developed for
graphics applications.

3.2.1.2. Master Database Structure

As discussed earlier, we determined that a multi-database
support structure provided the strongest mix of performance
and range of functional database capabilities required to sup-
port software development and evolution. The particular pack-
ages selected for the multi-database components were:

The Unix hierarchical
software artifacts.

file system for storing

The Source Code Control System (SCCS) (Rochkind,
1976) for representing successive updates of each
artifact.

The Ingres relational DBMS (Stonebraker, 1976) for
representing relations between artifacts.

The Unix file system is the most heavily used database
component. Program text, user's manuals, test cases, calendar
entries, etc. all reside as ordinary text files. Unix has excel-
lent facllities to organize and manipulate such files and has in
effect become the standard hierarchcial file system against
which other such systems are measured.

All baselined SPS-1 source code, manual pages, user's
manuals, and other software components are controlled through
SCCS. This guarantees that no one except the SPP Configura-
tion Manager may change any controlled document, that all
changes are recorded, and that there is full opportunity to
recover all earlier versions. Through control procedures sup-
ported by SCCS, developers and managers have access to and
can update a version of a document without affecting the offi-
cial baselined copy. In addition to using SCCS for documents
controlled at the project level, many SPS-1 users apply SCCS
to other documents for sub-project or personal use.

The most powerful component of the SPS database is
Ingres. SPP has designed a single Unified Database (UD) which
encompasses many aspects of project activities (aithough for
administrative reasons the database is divided into several
physical databases). As other development activities become
supported by SPS-1 tools, additional relations, relevant to
those activities, will be added to the UD.

Figure 3 shows some of the relations in the UD. These
components support the specification of relationships between
various software artifacts -- requirements, specifications,
design, code, and test cases -- which themselves normally
reside in the Unix hierarchical file system. For example, a test

153

case may verify that a specification has been properly imple-
mented, a relationship which can be captured in the database.
There are numerous such interesting relationships between
artifacts. Once captured in this way, it becomes possible to
automatically determine such discrepancies as when a requlrg-
ment has no test case to verify its proper implementation. This
is of incalculable value in a large software project where there
are tens of thousands of requirements, specifications, test
cases, etc. One of the SPS-1 tools, the Requirements Tracea-
bility Tool (RTT) performs such automated analysis on .the uD.
It supports easy entry of relationships, performs consistency
and completeness checks, produces formatted reports suitable
for inclusion in larger documents, and supports Interactive

querying.
CHANGE l
REQUEST/
ORDEA

TESTCASE
& RESULTS)

d

g
¢
:

]
8
2

§%

T

FUNCTIONAL
CAPABILITIES
LIsT

UDF SOURCE

TERMINAL

DEVICE MACHINE

UDF TEST
PLAN

Is

Figure 3. SPP Master Database

Our operational experience with UC Berkeley's implementa-
tion of Ingres convinced us that it was functionally satisfactory
but unacceptably slow. We have attacked this problem on two
fronts. First, SPP is investigating a faster version of ingres
from Relational Technology Incorporated. This will offer a strong
performance improvement with no additional hardware overhead.
Second, SPP has obtained a functionally compatible but highly
efficient Britton-Lee IDM-500 database machine (Britton-Lee
1980). The IDM-500 is not yet operational because of problems
in the early software releases from Britton-Lee. However, our
preliminary benchmarks indicate that when the IDM-500
becomes fully operational, it will perform an order of magnitude
or more faster than Berkeley's Ingres.

3.2.1.3. Software Development Tools

TRW has completed several iterations on a complete
methodology for software development including the implemen-
tation of tools to automate and reinforce much of that metho-
dology (Lanzano, 1970; Brown, et al, 1972; Boehm, et al 1975;
Alford, 1977; Ingrassia, 1978). The initial TRW tools selected
for SPS-1 were chosen primarily on the basis of their degree of
support for that methodology, the need to support a uniform
easy-to-use human interface, their compatibility with an
interactive Unix-based system, and their value to the contract
software project they were to support. Table 3 summarizes the
tools developed for our initial release and those under develop-
ment for the second release. Short descriptions for some of the
tools are given below:

Automated Unit Development Folder (AUDF)

-- TRW keeps a 'Unit Development Folder” for each
software unit developed. The UDF contains such information as
the unit's requirements, design, code, test plans and test
results, responsible personnel and milestone dates (ingrassia,
1978). It has been kept manually in the past. This tool auto-
mates the UDF process by using the UD for storing information
about each unit.

Table 3. SPS Tools by Category

CATEGOAY 1981 RELEASE 1982 RELEASE
¢ S/W REQ ENG METHODOLOGY © REFINEMENTS TO SREM,
(SREM) RTT AND NOT
REQUIREMENTS | ¢ REQ TRACEABILITY TOOL {RTT)
AND DESIGN ® NETWORK DEFINITION TOOL (NDT) .
* POLT2 o POLBY
® UNIX TOOLS ® UNIT DEVELOPMENT FOLDER
® SOURCE CODE CONTROL SYS (voR)
OEVELOPMENT e EDITOR ® UC BERKELEY FORTRAN 77
COMPILER
® USER FILE SUPPORT
TEST ® FORTRAN 77 ANALYZER (FT7A) REFINEMENTS TO F77A

PLANNING AND CONTROL
INVENTORY CONTROL
PROBLEM REPORT TRACKING

MANAGEMENT

BIBLIOGRAPHY DOC

ACTION ITEM TRACKING
SOFTWARE LIBRARY

PLANS AND PROPOSALS TEXT
REFINEMENTS TO FE

® AUTOMATED OFFICE (AO)

e ELECTRONIC MAIL

® WORD PROCESSING

® CALENDAR MANAGEMENT
& FRONT END (FE)

GENERAL USE

GRAPHICS UTILITIES
UNIX-VMS NETWORKING

MENU, HELP, ERROR UTILITIES

SUPPORT * DATA BASE UTILITIES

Program Design Language (PDL)
-~ a well-known design tool (Caine-Farber-Gordon, 1977)

which is available on Unix. It was purchased from Caine, Farber
and Gordon, Inc.

FORTRAN 77 Analyzer

-- as its name implies, it performs static and dynamic
analysis of ANS FORTRAN 77 programs. It is useful as a static
code analyzer, test effectiveness measurer, and general
software development aid.

Software Requirements Engineering Methodology (SREM)

-~ supports the definition and analysis of software require-
ments (Alford, 1977; Bell et al, 1977).

Requirements Traceability Tool (RTT)

-~ allows the user to trace requirements through software
design and test; generates several reports including a test
evaluation matrix and exception reports; references the UD.

Forms Management Package (FMP)

~-- provides a uniform way to manipulate electronic forms,
including summarization and a version of query by example;
applied to such diverse applications as inventory control, prob-
lem reports, and calendar management.

AUTHOR

-- a word-processor which supports ''what-you-see-is-
what-you-get" text entry. The user is shielded from troff com-
mands by seeing their effects on the screen as he enters data.
AUTHOR makes extensive use of keypad function keys; its
back-end produces a file compatible with troff so that the full
power of the Unix formatting programs is retained.

3.2,2, Hardware

3.2.2,1. Processors

SPS-1 has a local network which currently includes cne
DEC VAX 11/780 Unix source machine, four VAX 11/780 VMS
target machines, and 5 LSI1-11/23 based semi-personal micro-
computers. The acquisition of the latter represents a comprom-
ise between cost and purely personal terminals based on equip-
ment which supported Unix available during Spring 1981.

Most SPS-1 users still communicate via a dumb terminal
connected to a VAX. Our real goal, however, is to offload func-
tions from the relatively expensive VAX onto low-cost individual
Unix/microprocessor based perscnal computer terminals. We
will begin to phase in personal computers over the next year as
the marketplace brings down their cost. These will give each

154

user complete control over his local environment with no conten-
tion for resources. A small number of these will be purchased in
late 1982 or early 1983 for experimentation.

3.2.2.2. Terminals

The terminals currently used for SPS-1 are character
oriented. Graphics devices have not yet been incorporated into
SPS-1, although graphics devices will be integrated into SPS-1
by early 1983. We are currently exploring both monochrome
bit-mapped as well as color graphics stand-alone terminals. In
addition, it seems likely that all personal computers purchased
by SPP in the future will offer some graphics support.

3.2.3. Communications

There are two different computers which will be avallable
to each user -~ his personal microcomputer and the VAX super-
mini. Personal microcomputers offload the supermini. We do not
yet know what mix of operations will be performed locally and
which will be performed on the supermini. This will not be deter-
mined until the personal computers are available in number.

If SPP fully incorporates the IDM-500 into its network, the
SPS-1 database will be distributed across machines. Text files
will be kept in the hierarchical Unix file system on a VAX or per-
sonal computer, while relational database information will be
kept centralized on the IDM-500. Hence, all relational database
queries will require distributed processing.

This partitioning of effort among up to three different
machine types has certain hardware implications, the most
important one being the requirement for a high capacity bus to
support rapid file transfer between them, and accompanying
software to support such distributed processing.

3.2.3.1. SPNET

The Software Productivity Network (SPNET) currently sup-
ports 8600 baud UUCP batch file and mail transfer between
Unix/VMS machines using the toolbag available from Lawrence
Berkeley Laboratories. It also supports 9600 baud interprocess
communication between the Britton-Lee IDM-500 and the Unix
VAX. During the next year mature software which supports full
interprocess communication and terminal processing protocols
between Unix/Unix and Unix/VMS will become available (early
versions of Unix/Unix support for IPC/TP protocols are already
being marketed) and will appropriately be incorporated into
SPNET.

Computer/terminal communications is supported by a local
network. Up to 9600 baud communication between any com-
puter on the network and a terminal is currently supported on a
coaxial cable by Sytek Corporation's System 20. The Sytek
equipment will soon be replaced by Bus Interface Units, a pro-
duct of TRW research, which will support higher performance
than that currently offered by Sytek.

Work is currently proceeding to upgrade the
computer/computer communications. TRW is also developing a
High Speed Expansion Interface which will support a 30 mega-
baud bandwidth. Early versions of these devices are expected
this year.

3.2.4. Facilities

The final component of SPS-1 is the office facilities in
which the software developer works. After surveying existing
facllities in industry and universities, the basic goals for the
office facilities evolved. Currently there are 37 prototype
offices co-located in the Space Park complex of TRW. Each
office houses a single occupant, has a closable door, floor-to-
ceiling walls, carpeting, sound-proofing on the wall, and furni-
ture tailored to software developers' usage patterns. Each is
connected to the network and has sufficient power, lighting,
and air conditioning to support current and planned hardware
configurations.

3.3. Development Experience

3.3.1. Rapid Prototyping

As discussed earlier, when developing a software environ-
ment, prototyping and evolutionary design is preferable to paper
analysis and detailed requirements specifications. Classically,
however, the development of realistic-scale prototypes solely
for the purpose of better understanding what is really needed
has been far too expensive to actually do for systems of any
size and sophistication.

With the proper software development environment, how-
ever, rapid prototyping becomes feasible. As a demonstration
of this fact, many of the major components of SPS-1 which
were developed at TRW specifically for this project (i.e., not
part of native Unix and not ported from other systems) were
developed using rapid prototyping techniques. We did find,
however, that prototyping required some revisions to our usual
development methodology (Pyster and Boehm, 1982). For
example, we found it valuable to develop and iterate a rough
requirements spec for the system, but not to follow it rigorously
or to put it under configuration control. We also found the need
for added-standards, even for the prototype, in the user-
interface area.

3.3.2. User-Interface Standards

As mentioned before, special emphasis has been given to
the uniformity of the user interface. Since most SPS-1 tools
are interactive, we developed a set of user interface standards
which include: syntax standards, a help language, interfacing,
and documentation. These are constantly evolving as our user
community relates their experiences with SPS-1 to us.

8.4, Training

We recognized early in the project that our best technical
efforts could be thwarted by a lack of support for a large user
community who would initially be unfamiliar with Unix and SPS-1.
To ensure user satisfaction, we took a four-pronged approach:

3.4.1. Documentation

User manuals are written for each locally developed tool.
in addition, supplements to existing Unix documentation were
written explaining, for example, the most commonly used system
commands. Sections of existing Unix documents which were
found lacking were rewritten; e.g., we wrote a tutorial introduc-
tion to the screen-editor /i more suitable for computer novices
than the one distributed from UC Berkeley.

3.4.2. Consulting

A regular consulting service was established so that users
from outside SPP can obtain expert help on all aspects of SPS-
1.

3.4.3. Courses

Several in-house courses were developed and are offered
on a regular basis. Besides an introduction to SPS-1, we offer
courses on such diverse topics as word processing, C program-
ming, and advanced system utilities. One has been video-taped,
and greater use of video-taping in the future is planned. In
addition, commerclal software houses now sell CAl courses on
Unix. These are being examined for possible use by SPP.

3.4.4. On-Line Help

Facilities are being developed to permit a user to browse
through the system and to quickly find a tool he needs. These
will be built on the simple but useful utilities such as whatis
already offered in Unix (You can ask whatis X for any system
command X and Unix will present a one line description of that
command.).

155

3.5. User Acceptance

There was concern when SPP began that the user commun-
ity outside SPP itself would resist the different way of
approaching software development which SPS-1 and its accom-
panying methodology support. This skepticism was anticipated
for several reasons:

Unix is different and it takes a lot of work to learn another
operating system and collection of tools; the users must be
persuaded there is a large payoff in order to warrant such
effort;

In some corners Unix has the reputation of being too
academic, and therefore, might not be appropriate for sup-
parting large-scale reai-time software development;

Unix is not really "supported” by either Bell Labs or by UC
Berkeley in the sense that commercial vendors support
their operating systems, causing concern over operating
system maintenance.

These concerns motivated us to pay extra attention to
ensure that our software worked well, that users were con-
sulted on requirements, that training was adequate, that user
manuals were well-written, and that the tools placed into SPS-1
would offer valuable services not easily found elsewhere.

This strategy is paying off. Initial skepticism was indeed
encountered, but acceptance of SPS-1 has been steadily
increasing. There has been keen interest in obtaining SPP sup-
port by several projects based on what they have seen and
heard, and SPS-1 has been written into proposals for future
development projects. We expect that by the end of 1984 the
technology which SPP is pioneering within TRW will have spread
throughout much of the company.

4. CONCLUSIONS

The primary conclusions from the Software Productivity
requirements analysis are:

1. Significant productivity gains require an integrated pro-
gram of initiatives in several areas.

2. An integrated software productivity improvement pro-
gram can have an extremely large payoff (a factor of 4
by 1990).

3. Improving software productivity involves a long, sus-
tained effort.

4. In the very long run, the biggest productivity gains will
come from increased use of existing software.

6. Software support environment requirements are still too

incompletely understood to specify precisely.

The primary conclusions from the SPS-1 development
experience to date are:

6. No single software support system architecture will be
optimal for all organizations. For example, the source-
target concept of operation most appropriate to TRW is
unnecessary for organizations with a single type of target

computer.

The multiple relational-hierarchical database concept
simplifies many software support functions. It allows
the support system to caplitalize on the strengths of each
type of database while largely avoiding their weaknesses.

A rapid-prototyping capability is essential to the evolu-
tionary development of a software support environment.
Unix has provided an excellent rapid-prototyping capabil-

ity.

User-interface standards are essential for preserving
the conceptual integrity of an evolving support system.
An excellent way to implement such standards is to embed
them into a family of toolbuilders’ utilities supporting error
processing, help messages, master database access,
forms management, etc.

10. User acceptance of novel development environments is a
gradual process which requires careful nurturing by the
sponsoring organization. Involvement of the user com-
munity in planning the growth and direction of the environ-

ment will help ensure their acceptance of it.

Bibliography

(1) (Alford, 1977). M. W. Alford, "Requirements Engineering
Methodology for Real-Time Processing Requirements," IEEE

Trans. Software Engr., January 1977, pp. 60-68.

(Bell et al, 1977). T. E. Bell, D. C. Bixler, and M. E. Dyer,
"An Extendable Approach to Computer-Aided Software
Requirements Engineering,"” [EEE Trans. Software Engr.,
January 1977, pp. 49-59.

(Boehm et. al, 1975). B. W. Boehm, '"Structured Program-
ming: A Quantitative Assessment Computer,” June 1975,
pp. 38-564.

(Boehm-Wolverton, 1978). B. W. Boehm, and R. W. Wolver-
ton, "Software Cost Modeling: Some Lessons Learned,”
Proceedings, Second Software Life-Cycle Management
Workshop, U.S. Army Computer Systems Command, Atlanta,
August 1978. Also in Journal of Systems and Software, 1,
3, 1980, pp. 1956-201.

{Boehm, 1981). B. W. Boehm, Software Engineering
Economics, Prentice Hall, inc., Englewood Cliffs, NJ, 1981.

(Boehm, 1981a). B. W. Boehm, "Improving Software Pro-
ductivity,” Proceeding, IEEE COMPCOM 1981 Fall, Sep-
tember, 1981.

(Boehm-Pyster, 1982). B. W. Boehm and A. B. Pyster, "The
Impact of Rapid Prototyping on Software Development
Standards -- A Position Paper' ACM SIGSOFT Second
Software Engineering Symposium, Columbia, MD., April
1982.

(Brown et al, 1972). J. B. Brown, "Automated Software
Quality Assurance: A Case Study of Three Systems,"” TRW
Software Series TRW-SS-72-05, TRW Inc., Redondo Beach,
CA 1972

(Business Week, 1980). ''Missing Computer Software,”
Business Week, September 1, 1980, pp. 46-53.

(10) (Buxton, 1980). J. Buxton, "Reguirements for Ada Pro-
gramming Support Environments: 'Stoneman'," U.S. Depart-
ment of Defense, OSD/R&E, Washington, DC, February
1980.

(11)(Cheatham, 1981). T. E. Cheatham, "An Overview of the
Harvard Program Development System’, in (Hiinke, 1981).,
pp. 253-266.

(12)(Christensen, 1980). K. Christensen, '"Programming Pro-
ductivity and the Development Process,”" |IBM Santa Teresa
Laboratory, TR 03.083, January 1980.

(13) (Caine-Farber-Gordon, 1977). "PDL/74 Program Design
Language Reference Guide (Processor Version 3)," Caine
Farber Gordon Inc., 1977

(2)

(3)

(4

(&)
(6)

)

(8)

(9)

156

(14) (Dolotta et al, 1978). T. A. Dolotta, R. C. Haight, and J. R.
Mashey, "The Programms' Workbench," Bell System Techni-
cal Journal, July-August 1978, pp. 2177-2200.

(18) (Epstein-Hawthorn, 1980). Epstein, R.,, and P. Hawthorn
"Aid in the 80's Datamation,’' pp. 154-158, February 1980.

(16) (Goldberg, 1978). E. A. Goldberg, "Applying Corporate
Software Development Policies,” Proceedings, AIAA Third
Software Life-Cycle Management Conference, 1978."

(17) (Habermann, 1979). A. N. Habermann, "An Overview of the
Bandolf Project,” Carnegle-Mellon University Computer
Science Research Review 1978-79, 1979."

(18) (Held-Kreps-Stonebraker-Wong, 1976). G. Held, P. Kreps,
M. Stonebraker and E. Wong, ''The Design and implementa-
tion of Ingres,"” ACM Transactions on Database Systems 1:3,
pp. 188-222, March 1976.

(19)(Hinke, 1981). H. Hiinke, ed., Software Engineering
Environments, North Holland, Amsterdam, 1981.

(20) (Ingrassia, 1978). F. S. Ingrassia, "Combating the 90%
Syndrome," Datamation, January 1978, pp. 171-176.

(21)(lvie, 1977). E. L. lvie, "The Programmer's Workbench: A
Machine for Software Development,” Comm. ACM, October
1977, pp. 746-753.

(22) (Kernighan-Mashey, 1981). B. W. Kernighan and J. R.
Mashey, "The Unix Programming Environment,” Computer,
April 1981, pp. 12-24.

(23) (Lanzano, 1970). B. C. Lanzano, ''Program Automated Docu-
mentation Methods,” TRW Software Series TRW-SS-70-04,
TRW inc., Redondo Beach, CA 1970

(24) (NFE-Doe, 1980). U.S. National Science Foundation and
Department of Education; ""Science and Engineering Educa-
tion in the 1980's and Beyond,"” October, 1980.

(26) (Rochkind, 1975). M. J. Rochkind, "The Source Code Con-
trol System" /EEE Transactions on Software Engineering,
Volume SE-1,4, December 1976, pp. 364-369.

