
PITFALLS
Some of the most frequent pitfalls peo-

ple encounter when trying to achieve
reuse savings include the following:

Field of Dreams. This pitfall derives
from the mistaken belief that if you
“build a repository of components,
reusers will come.” An early DoD Reuse
2000 initiative, whose main goal was
simply to accumulate 2,000 reuse candi-
dates as quickly as possible, found that
the program’s components languished
virtually unused thanks to nontechnical
factors such as risk aversion and not-
invented-here (NIH) reactions.

Component versus Interface Focus.
The Common Ada Missile Packages pro-
gram addressed risk and NIH effects via
a community effort, but the components
developed for it proved insufficiently
reusable because the program lacked a
domain architecture with appropriate
interface specifications for reusable com-
ponents.

Overgeneralization. The National Li-
brary of Medicine MEDLARS II publi-
cation system was built with many layers
of abstraction to support a wide range of
future publication systems. The system
was scrapped when, after two expensive
hardware upgrades, it still proved inca-
pable of processing the MEDLARS II
workload.

Scalability. Reuse via very high level
languages (VHLLs), while effective for
many small systems, does not scale up
well. The New Jersey Department of
Motor Vehicles auto registration system
was developed using the IDEAL VHLL;
the system performed so poorly that
eventually more than a million New
Jersey cars roamed the streets without
license renewals.

Technical Obsolescence. In the 1970s
and early 1980s, TRW won many digi-
tal processing competitions with a for-
midable domain architecture and set of
reusable components based on Digital’s
VAX processors with attached vector-
processor boxes. By the mid-1980s,
though, this architecture lost out to more
powerful approaches that involved dis-
tributed processing and custom ASICs.

The “Critical Reuse Success Factors
and Resources” sidebar provides tips and

September 1999 111

Y
our organization can choose
from three main strategies for
improving its software produc-
tivity. You can work faster,
using tools that automate or

speed up previously labor-intensive
tasks. You can work smarter, primarily
through process improvements that
avoid or reduce non-value-adding tasks.
Or you can avoid unnecessary work by
reusing software artifacts instead of cus-
tom developing each project. Which
strategy will produce the highest payoff?

LEADING INCREASED
PRODUCTIVITY STRATEGY

I performed an extensive analysis
(B.W. Boehm, “Economic Analysis of
Software Technology Investments,” in
Analytical Methods in Software Engi-
neering Economics, Thomas Gulledge
and William Hutzler, eds., Springer-
Verlag, 1993) that addressed this ques-
tion for the US Department of Defense.
This analysis factored in existing labor
distributions by phase and activity, nor-
mal commercial trends, technology capa-
bility trends, and technology transition

delays. The results showed that a proac-
tive DoD strategy could achieve the fol-
lowing percentage savings over and
above the normal improvements accrued
via a business-as-usual approach:

• Working faster: 8 percent
• Working smarter: 17 percent
• Work avoidance: 47 percent

The analysis also concluded that all
three strategies were worth pursuing in
concert, as their benefits were largely
complementary. For this column, how-
ever, I’ll focus on reuse because it offers
the biggest potential payoffs. Before
launching into a major reuse program,
however, you should know that several
potential pitfalls await the unwary.

Managing
Software

Productivity
and Reuse

Barry Boehm, University of Southern California

M
an

ag
em

en
t

Editor: Barry Boehm, Computer Science
Department, University of Southern
California, Los Angeles, CA 90089;
boehm@sunset.usc.edu

Reuse can increase
your productivity by

nearly half if you avoid
the common pitfalls

that derail many reuse
programs.

112 Computer

Management

pointers to sources that can help you
avoid these pitfalls and make reuse suc-
cessful in your organization.

STATISTICS SHOW REUSE WORKS
When I advocated investments in soft-

ware technology at DARPA, I felt con-
tinually frustrated by the hardware guys’
ability to show curves indicating expo-
nential growth in the DoD’s number of
transistors owned or number of Internet
packets handled, while the counterpart
software curves continued to show a rel-
atively flat 8-10 delivered source instruc-
tions per person-day.

In self-defense, and with the help of
Tom Frazier’s cost analysis group at IDA,
we came up with a set of curves that
counted executable machine instructions
of DoD software as lines of code in ser-
vice. LOCS let us count software much
the same way the hardware guys counted
DoD transistors: by adding up the aver-
age number on each ship, airplane, work-
station, and so on used by the DoD, then
multiplying by the number of ships, air-
planes, workstations, and so on owned
by the DoD.

Figure 1 shows the resulting trends in
LOCS of DoD software and the DoD
cost in dollars per LOCS between 1950
and 2000. I’ve conservatively estimated
the figures for 2000 by multiplying 2 mil-
lion DoD computers by 100 million exe-
cutable machine instructions per com-
puter, which gives 200 trillion LOCS.
Based on a conservative $40 billion-per-
year DoD software cost, the cost per
LOCS is $0.0002. These cost improve-
ments come largely from software reuse.

You might object that not all these
LOCS add value for their customers. But
you could raise the same objection for all
the transistors being added to chips each
year and all the data packets transmitted
across the Internet. All three commodi-
ties pass similar market tests.

Figure 2, from a chart by Lawrence
Bernstein (“Software Investment Strate-
gy,” Bell Labs Technical Journal,
Summer 1997, pp. 233-242), shows
some corroborative trends of the soft-
ware expansion factor: the ratio of
machine lines of code to a source line of
code. Bernstein’s historical data shows an
order-of-magnitude increase every 20

The eight critical success factors that
follow include references to several valu-
able sources for both the management
and technical aspects of reuse.

• Adopt a product line approach. This
approach involves determining the
right product lines for your organiza-
tion, developing domain-specific soft-
ware architectures for your product
line, and developing product-line solu-
tions. The CMU Software Engineering
Institute’s Product Line Practices Web
site (http://www.sei.cmu.edu/activities/
plp/plp_init.html) contains a wealth of
useful guidelines for doing this.

• Perform a business case analysis to
determine the right scope and level of
expectation for your product line.
Donald J. Reifer’s Practical Software
Reuse (John Wiley & Sons, 1997)
and Wayne C. Lim’s Managing
Software Reuse (Prentice Hall, 1998)
have excellent treatments of product-
line business-case analysis.

• Focus on achieving black-box reuse.
Once you open up and modify a
reusable component, you incur a
number of added costs, which can
compromise your business case.
Jeffrey S. Poulin’s Measuring Software
Reuse (Addison Wesley Longman,
1997) and my own forthcoming mul-
tiple-author book, Estimating Soft-
ware Costs with COCOMO II
(Prentice Hall, 2000), include helpful
data and models for reasoning about
black-box versus white-box reuse.

• Establish an empowered product line
manager and stakeholder buy-in. This
is the most critical success factor of all.
Without a manager empowered and
accountable for making product line
investments and ensuring that the
reusable artifacts get used, and with-
out buy-in from the various asset pro-
ducers, purveyors, and users, no
amount of technology will make much
difference. Software Reuse, by Ivar
Jacobson, Martin L. Griss, and Patrik
Jonsson (Addison Wesley Longman,
1997), offers excellent case studies of

Ericsson’s and Hewlett-Packard’s
experiences in this regard.

• Establish reuse-oriented processes and
organizations. For example, serious
“model clashes” occur when trying to
reuse assets within a requirements-first
waterfall process model. If you lock in
on a one-second response time re-
quirement, and none of your reusable
components—such as commercial off-
the-shelf database management sys-
tems—can process your workload in
less than two seconds, you have a very
expensive custom component to de-
velop. You are also likely to need new
organizational entities for such func-
tions as reusable asset certification,
version and configuration control,
repository management, and adapta-
tion to change. See Practical Software
Reuse and “Process Support of Soft-
ware Product Lines,” (Proceedings
ISPW-10, Barry Boehm, Marc Kellner,
and Dewayne Perry, eds., IEEE Com-
puter Soc. Press, 1998) for further
information on these issues.

• Adopt an incremental approach, em-
ploying carefully chosen pilot projects
and real-world feedback. The Hewlett
Packard incremental approach in
Software Reuse offers a particularly
good example of this approach.

• Use metrics-based reuse operations
management. Your reuse business
case and incremental plan provide a
good framework for tracking pro-
gress with respect to expectations and
making appropriate adjustments
where necessary. Lim’s and Poulin’s
books are particularly strong on re-
use metrics and their use in manage-
ment.

• Establish a proactive product-line
evolution strategy. This is your guard
against the technical obsolescence pit-
fall. Your product line will be affected
by rapidly moving technologies such
as CORBA, DCOM, the Web, and
Java infrastructures. Unless you in-
vest in monitoring, experimenting
with, and adapting to such trends,
you risk obsolescence.

Critical Reuse Success Factors and Resources

E ven with the significant productivity
gains shown in Figures 1 and 2, we
need to do much more in both the

technical and management domains to
fully capitalize on software reuse. These
efforts should focus on stronger technical

foundations for software architectures
and component composition; more
change-adaptive components, connec-
tors, and architectures; creating more
effective reuse incentive structures;
domain-engineering and business-case
analysis techniques; better techniques for
dealing with commercial off-the-shelf
software integration; and creating appro-
priate mechanisms for dealing with lia-
bility issues, intellectual property rights,
and software artifacts as capital assets.
A 47 percent productivity boost is just
the beginning; further progress will bring
even greater gains. ❖

Barry Boehm is director of the USC Cen-
ter for Software Engineering. He devel-
oped the Constructive Cost Model
(COCOMO), the software process Spi-
ral Model, and the Theory W (win-win)
approach to software management and
requirements determination. Contact
him at boehm@sunset.usc.edu.

September 1999 113

years, with the most significant recent
gains coming from software reuse. The
LOCS curve in Figure 1 reflects a combi-
nation of productivity trends and trends
in the numbers of copies of software
products being used.

Figure 1. Thanks to reuse, while the DoD’s lines of code in service have skyrocketed over the
past 50 years, the cost per LOCS has plummeted.

1,000,000

100,000

10,000

1,000

100

10

1

0.1

0.01

0.001

0.0001

0.00001

LO
C

S

$/
LO

C
S

1015

1014

1013

1012

1011

1010

109

108

107

106

105

104

Total LOCS

Total $/LOCS

1950 1960 1970 1980 1990 2000

Year

Figure 2. Although several trends have increased the ratio of machine lines of code to source
lines of code, reuse caused the most significant increase.

1,000

100

10

0
1960

Machine
instructions

1965

Macro
assembler

1970

High-level
language

1975

Database
manager

1980

Online

1985

Prototyping

1990

Sub-
second
time

sharing

1995

Object-
oriented

programming

2000

Large-
scale
reuse

15

30
37.5

47

75 81

113
142

475
638

3 Order-of-magnitude increase every 20 years

Small-
scale
reuse

4GLRegression
testing

Projection

M
ac

h
in

e
co

d
e/

So
u

rc
e

co
d

e
ex

p
an

si
o

n
 f

ac
to

r Did You Know?

IEEE
Computer Society

... is the world’s largest

association of

computer professionals

and the largest of

35 technical societies

that make up the IEEE.

Find Out MorFind Out More @e @
http://computer.org

