
706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. 22, NO. 10, OCTOBER 1996 

evelopment Productivity 

Katrina D. Maxwell, Luk Van Wassenhove, and Soumitra Dutta, Member, /€€E Computer Society 

Abstract-The identification, combination, and interaction of the many factors which influence software development productivity 
makes the measurement, estimation, comparison and tracking of productivity rates very difficult. Through the analysis of a European 
Space Agency database consisting of 99 software development projects from 37 companies in 8 European countries, this paper 
seeks to provide significant and useful information about the major factors which influence the productivity of European space, 
military, and industrial applications, as well as to determine the best metric for measuring the productivity of these projects. Several 
key findings emerge from the study. The results indicate that some organizations are obtaining significantly higher productivity than 
others. Some of this variation is due to the differences in the application category and programming language of projects in each 
company; however, some differences must also be due to the ways in which these companies manage their software development 
projects. The use of tools and modern programming practices were found to be major controllable factors in productivity 
improvement, Finally, the lines-of-code productivity metric is shown to be superior to the process productivity metric for projects in 
our database. 

Index Terms-Software productivity; software effort estimation; European software projects; space, military, and industrial software 
projects; empirical study of software projects. 

1 INTRODUCTION 
VER the last 25 years, the growing cost of software de- 
velopment has increasingly focused the attention of 

industry, commerce and government on the software de- 
velopment process. In an attempt to control this process, 
engineering techniques which use metrics, measurements 
and models to make quantitative assessments of the cost, 
productivity and quality of software development were 
first introduced in the late '60s. Although initially the de- 
velopment of software was perceived to be more of an art 
and thus outside of these engineering approaches, in the 
last decade there has been a growing realization among 
researchers and managers of the need for a disciplined ap- 
proach to software development and a better quantification 
of software attributes. Many books have been published in 
recent years on the need for metrics in software develop- 
ment [13], [17], [MI, [19], [26], [31], [32], [34]. Consequently, 
the development and use of metrics which describe both 
the software itself and the software development process 
have become more and more widespread. 

Productivity rates are highly variable across the software 
development industry [3]. Some of the many factors that 
appear to influence software development productivity are: 
people factors, such as experience and team size; process 
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factors, such as programming language and tools; product 
factors, such as complexity and software type; and com- 
puter factors, such as storage and timing constraints [13]. 
The combination and interaction of all of these factors 
makes the measurement, estimation, comparison and 
tracking of productivity rates very difficult. 

Past software development productivity research has 
taken two main directions: in the first, research has con- 
centrated on determining the factors which have a signifi- 
cant effect on productivity; and in the second, the emphasis 
has been on determining the best way to measure produc- 
tivity. As the results of previous research differ and are 
limited to programming environments which are similar to 
those studied, it is important to examine additional data- 
bases to improve our understanding 

In t h s  paper, we present the results of our analysis of 
the European Space Agency software development data- 
base which, at the time of the analysis, consisted of 99 proj- 
ects from 37 companies in 8 European countries. This data- 
base is unique in that we have found no other published 
research whch analyses the factors which have a significant 
effect on software development productivity of European 
non-MIS applications. Our research also adds to overall 
management of software development knowledge in that 
we have been able to look in detail at the reasons for differ- 
ences in productivity at the company level. 

The objectives of this paper are twofold: first, to provide 
significant and useful information about the major factors 
which influence the productivity of European space, mili- 
tary and industrial applications; and second, to compare 
the results of using different productivity metrics in order 
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to determine which metric is better for measuring the pro- 
ductivity of projects similar to those in our dataset. In our 
analysis, we employ parsimonious models to examine the 
impact of differences in company, country, category, lan- 
guage, environment, team size, project duration, and sys- 
tem size, as well as the following seven COCOMO factors 
[8]: required software reliability, execution time constraint, 
main storage constraint, virtual machine volatility, pro- 
gramming language experience, use of modern program- 
ming practices and use of software tools, on lines-of-code 
productivity, and process productivity [32]. 

The remainder of this paper is organized as follows. An 
overview of prior productivity research is presented, fol- 
lowed by a description of the database and our productiv- 
ity analysis. The results of the productivity analysis are 
then presented and compared with the findings of other 
researchers. A summary of the results can be found in the 
concluding section. 

2 PRIOR RESEARCH 
Productivity rates are highly variable across the software 
development industry [3]. Consequently, early research in 
cost estimation concentrated on determining causes for the 
wide variation of project productivity. An overview of 
some of the productivity factors considered by past re- 
searchers can be found in Table 1. In an IBM study by Wal- 
ston and Felix [39], 29 factors that were significantly corre- 
lated with productivity were found. In an analysis of data 
from the NASA/Goddard Space Flight Center, Bailey and 

Basili [4] identified 21 productivity parameters. At ITT, 
Vosburgh et al. 1381 found 14 significant productivity fac- 
tors, with modern programming practice usage and devel- 
opment computer size explaining 24% of the variation in 
productivity. In Boehm's COCOMO model [8], 15 software 
factors which had a significant impact on productivity were 
identified. However, such major factors as application type 
and programming language were omitted in these models. 

Several studies attempt to determine nominal produc- 
tivity rates depending on the type of software [15], 1301, 
1321. The productivity of subsystems that were part of a 
ballistic missile defense system were found to be a function 
of software type, with real-time software having the lowest 
productivity [35]. Vosburgh et al. 1381 identified three dif- 
ferent programming environments with business applica- 
tions having the highest average productivity followed by 
normal-time and real-time applications. These environ- 
ments were characterized by the hardware used, resource 
constraints, application complexity and programming lan- 
guage. However, the difference in programming environ- 
ment was not identified as one of their 14 significant pro- 
ductivity factors and it is not clear how much variation in 
productivity was accounted for by this segmentation. 

Aron [I] found that the variation of productivity for a 
group of IBM projects involving systems programs and 
business applications was due to differences in system dif- 
ficulty, characterized by the number of interactions with 
other system elements, and project duration. He also ad- 
justed his cost estimate for the use of higher-level lan- 
guages. Kitchenham [29] found that productivity varied 
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with programming language level and working environ- 
ment. Productivity has also been found to vary with hard- 
ware constraints [8], [38], programmer experience [8], [26], 
[30], [37], [38], [39], team size [lo]/ [13], [23], duration [l], 
[7], project size [2], [6], [13], [23], [24], [32], [38], and modern 
programming practices [5], [8], [Ill, [26], [38], among other 
factors. As many of these findings differ and are limited to 
programming environments which are similar to those 
studied, there is a need for additional research on other 
databases to determine the applicability of past results to 
similar projects. An overview of the major databases which 
include productivity factors can be found in Table 2. 

A second area of productivity research has concentrated 
on determining the best way to measure productivity. In 
software development terms, productivity is conventionally 
defined as source lines of code (SLOC) per manmonth. It is 
a measure of the amount of product produced per unit of 
human effort. We will refer to this measure as lines-of-code 
productivity. 

SLOC 
Manmonths of Effort Lines - of-code Productivity = 

This relationship has been the basis for many software es- 
timation methods. A new measure of Productivity using 
lines-of-code has recently been developed by Putnam and 
Myers [32]. 

where SLOC is developed, delivered lines of source code, 
Effort is the manpower applied to the work measured in 
manmonths or manyears, B is a skills factor which is a 

function of system size, and Time represents the duration of 
the work measured in months or years. Putnam and Myers 
maintain that process productivity is superior to simple 
lines-of-code productivity because it covers a complex set 
of factors affecting the entire software development organi- 
zation throughout the development process. Their process 
productivity parameter is based on the analysis of a 750- 
system database which included projects primarily from 
the United States, but also from England, Australia, and 
Japan. 

Much discussion concerns the validity of using lines-of- 
code in the measurement of productivity. According to 
Jones [26] there are three serious deficiencies associated 
with lines-of-code: 

1) The lack of an international standard for a line of code 
that encompasses all procedural languages. 

2) Software can be produced by program generators, 
spreadsheets, graphic icons, etc. all of which make the 
effort of producing lines-of-code irrelevant. 

3) Lines-of-code metrics paradoxically decrease as the 
level of the language gets higher, making the most 
powerful and advanced languages, such as Ada and 
C, appear less productive than primitive low-level 
languages, such as Assembler. 

In order to avoid the lines-of-code problem, Halstead 
[20] defined the size of a program by decomposing lines-of- 
code into a collection of tokens that were classified either as 
operators, which are separate data portions, or operands, 
which are separate functional portions. Productivity was 
then measured as the number of tokens produced per 
manmonth. However, the Halstead metrics are now known 
to be based on questionable assumptions and to contain 
many sources of error [14]. 

TABLE 2 
OVERVIEW OF MAJOR DATABASES WHICH INCLUDE PRODUCTIVITY FACTORS 
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In the late  OS, Albrecht [2] developed a new measure of 
productivity by replacing the lines-of-code measurement 
with function points. Function points are based on the 
functionality of the software as seen by the user. He calcu- 
lated the total number of function points by weighting the 
sums of five different factors: inputs, outputs, logical files, 
inquiries, and interfaces. Since Albrecht’s initial work, 
many other methods of measuring functionality have been 
developed [16], [21], [36] to name but a few. 

The main disadvantage of function point methods is that 
they have been created and used primarily in business sys- 
tems environments. The function point method gives mis- 
leading counts for software which has a high algorithmic 
complexity but low numbers of inputs and outputs [26]. 
This means that function points are not necessarily an accu- 
rate measure of functionality for real-time software, defense 
systems, systems software, embedded software, communi- 
cations software and process control software. 

Another method, feature points, was developed by Soft- 
ware Productivity Research in 1986 [26]. This method applies 
an expanded function point logic to system software by in- 
cluding the number of algorithms in the application [27]. It 
has been applied experimentally to embedded software, real- 
time software, CAD, AI, and MIS software. However, the use 
of the feature point method is not yet widespread. 

Although the lines-of-code metric is the subject of much 
debate, the fact remains that it is considered by many organi- 
zations as a more practical productivity metric than the cur- 
rently available alternatives [9]. In a recent study by Cusu- 
mano and Kemerer [15], the lines-of-code metric was chosen 
to compare productivity across a number of organizations in 
the US and Japan. Preyious research has also shown that 
function points and lines-of-code tend to be highly correlated 
in the case of new software development [5]. 

Until the use of function and feature point methods be- 
come common for non-MIS applications, and particularly in 
the domain of space, military, and industrial applications, 
statistical analysis undertaken of large heterogeneous data- 
bases will have to rely upon measuring and analyzing the 
productivity of these types of projects using lines-of-code 
metrics. 

3 THE ESA DATABASE 
In 1988, the European Space Agency (ESA), faced with the 
evaluation of proposals for large space programs and their 
huge needs for software development, began compiling a 
software metrics database focusing on cost estimation and 
productivity measures. Subsequently, the database was 
expanded to include military and industrial applications. 
This activity is ongoing, and at the time of this analysis 
contained a selection of 99 completed projects from 37 com- 
panies in eight European countries. The variables contained 
in the database are described in more detail in Fig. l a  and l b  
and Table 3. The projects represent 5.14 million lines of 
source code (range: 2,000413,000, average: 51,910, median: 
22,000), 18 development languages or combinations of lan- 
guages, and 28,328 manmonths of effort (range: 734,361, 
average: 292, median: 93). The breakdown of projects by 
application environment was: military 39%, space 28%, in- 
dustrial 24%, and other 9%. 

FRANCE 

(4 
ASSEMBLER 

CORAL 7% 

ZZYO 

PASCAL 

10% 36% 

@) 

Fig. 1. (a) Main countries represented; (b) main languages represented. 

The database collection effort consists of contacting each 
supplier of data on a regular basis to determine if suitable 
projects are nearing completion. When a completed ques- 
tionnaire is received, each supplier of data is telephoned to 
ensure the validity and comparability of his responses. For 
example, we verify that the project has actually been com- 
pleted and that the numbers provided are actuals and not 
estimates. We also verify that the definitions of SLOC, Ef- 
fort and COCOMO factors have been understood, that the 
project is put into the correct category and each company’s 
definition of a manmonth. Other discrepancies, such as the 
total duration not equaling the duration in calendar 
months, are also checked. In the ESA database, SLOC and 
Effort are defined as follows: 
SLOC: the amount of nonblank, noncommented delivered 

lines of code. As the software developed in some projects 
consists of reused code, adaption adjustment factors [8] 
were used to correct the size of the software. When no 
adaptation adjustment factor was available, the new 
code size was used as a measure for the size. 

Effort: The total effort was measured in manmonths and 
was defined as beginning at specifications delivery and 
ending at customer acceptance. The effort value covers 
all directly charged labor on the project for activities 
during this period. All effort data has been converted to 
manmonths of 144 manhours per manmonth. 

In return, each data supplier receives periodic data analysis 
reports and diskettes of the sanitized dataset. 
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LANG (18)' 
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Additive: Productivity = a + b x x1 + c x x2 + ... 
Multiplicative: Productivity = a x x; x x i  x ... 

(3) 

(4) 

ENV ( 3 )  

where a is a constant which varies with the significant class 
variable( s).' 

The first phase of the analysis was concerned with de- 
termining which individual variables explained the greatest 
amount of variation of productivity measured as lines-of- 
code per manmonth. The results of the analysis of all indi- 
vidual class variables are presented in a summary table. As 
it would not be wise to base our conclusions on the analysis 
of class levels that contain limited observations, results are 
shown for the analysis of all of the data as well as for sub- 
sets that contain a sufficient number of observations at each 
class level. The results of these subsets are then examined 
individually. The results of models based on individual 
non-class variables are also presented and are used to ex- 
plain the differences in the class variables. 

In the second phase of the analysis, combinations of two 
class variables were analyzed to find the model which 
could explain the highest amount of productivity variance. 
A summary table of results and a matrix of productivity 
values for the best 2-class variable model are presented. In 
the third phase of the analysis, the results of models based 
on combinations of all variables are presented. Finally, the 
results of comparing lines-of-code productivity with proc- 
ess productivity are presented in the fourth phase of the 
analysis. 

I Environment (Space, Military, Indus- 

5 PRESENTATION OF RESULTS 
5.1 Phase I-Analysis of Variance Models Based on 

Individual Variables 
5.1.1 Summary 
In this phase, the variance explained by each variable alone 
is summarized. This is followed by a detailed discussion of 
the effect on productivity of each variable. The single vari- 
able which explained the greatest amount of variance (55%) 
of productivity in the dataset was Company. This high- 
lights the need for companies to establish their own soft- 
ware metrics database in addition to benchmarking their 
data against that of other companies. Ths was followed by 

4 DESIGN OF ANALYSIS 
Two productivity metrics were used in the analysis of our da- 
taset lines-of-code productivity and process productivity as 
defined previously in (1) and (2). Parsimonious models were 
employed to examine the impact of differences in company, 
country, category, language, environment, team size, project 
duration and system size, as well as the following seven CO- 
COMO factors [SI: required software reliability, execution time 
constraint, main storage constraint, virtual machine volatility, 
programming language experience, use of modern program- 
&g practices and use of s o h a r e  tools, on lines-of-code pro- Language (48'0) and (34%). The in which 
ductivity, and process productivity. As the data was not nor- the was Only 27% Of the 
mally distributed, fie meaSuTe of correlation used was Spear- ,.. correlation coefficient [171, hy two variables with 
a correlation coefficient exceeding + or - 0.75 were considered 
to be higwy correlated were not included in the same 
model. A General Linear Models procedure [33] which can 
analyze &e variance of unbalanced data was used for hs 
analysis. The variables explained the greatest amount of 
the variance of produdivity were identified and the dataset 
was divided kt0 relevant subsets of productivity values. 
Crossed effects of class variables were taken into considera- 
tion. The analysis was performed in an unbiased way: d l  Val- 
ues were considered as being equally reliable and relation- 
ships were extracted based on the face value of the data. Both 
additive and multiplicative (log) models were fit to the data. 

variation in productivity. The results of analyzing only sub- 
sets of class variables where each level contained a suffi- 
cient number Of projects did not have much effect On the 
results except for Language. Limiting Language to the eight 
languages used in four Or Projects caused the amount 
Of variance explained by Language to decrease from 48% to 
39%. A summary of the analysis can be found in Table 4. 
Models were also run to determine if maximum team size, 
the duration of the project or the system size (KLOC) could 
be used to explain some of the variation in productivity. In 
addition, analysis was carried out on a subset of the ESA 
database which included data for seven COCOMO cost 
drivers [8]:  required software reliability, execution time 

2. For the 2-class models, a is a function of the crossed effects of two class 
1 The number of categories is in parentheses. variables. 
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C2 C3 C1 C5 C8 C7 C6 

MEAN 853 554 524 479 425 293 268 
PRODUCTIVITY 
%LOWPROD. 0 0 0 0 0 0 0 
LANGUAGE 
%LOWPROD. 0 0 0 14 25 0 67 
CATEGORY 

COMPANY (3)4 (4) (7) (7) (4) (3) (3) 

71 1 

C10 C9 C4 

203 131 84 

44 67 0 

4 100 100 

(25) (3) (5) 

TABLE 4 
SUMMARY OF ANALYSIS OF INDIVIDUAL CLASS VARIABLES 

TABLE 5 
SUMMARY OF ANALYSIS OF INFLUENCE OF NONCLASS VARIABLES 

TABLE 6 
MEAN LINES-OF-CODE PRODUCTIVITY BY COMPANY 

constraint, main storage constraint, virtual machine volatil- 
ity, programming language experience, use of modern pro- 
gramming practices, and use of software tools. Table 5 shows 
the amount of variance for each variable individually. 

5.2 Phase la-Analysis of Variance by Individual 

5.2. I Analysis of Variance by Company 
The difference in Company alone explained 55% of the varia- 
tion in productivity. A subset of 64 projects from 10 companies 
which had supplied data for three or more projects was ana- 
lyzed. Table 6 lists the average productivity for each company. 
Some explanations for the difference in productivity across 
companies are: more projects in a low productivity category; 
more use of a low productivity language; differences in prod- 
uct, computer, personnel and project attributes; more success- 
ful at managing software projects; and differences in quality of 
end product. The low productivity of four of the five least 
productive companies was due to the fact that most of their 

Class Variables 

3. The type of model has an effect on the definition of mean productivity. 
The mean productivity of an additive model is the average of the produc- 
tivities. The mean productivity of a log model is the inverse natural log of 
the mean of the In of the productivities. 

4. Number of projects is shown in parentheses. 

projects were in the low productivity categories of On Board 
and Message Switching and/or used the low productivity 
languages Coral and Assembler. However, this explanation 
does not account for the nearly 300% difference in productiv- 
ity between company 2 and company 7. Some of this differ- 
ence must also be due to the ways in which these companies 
manage their software development projects. In his analysis of 
278 commercial programs from 23 companies, Lawrence [30] 
also found that some organizations obtained si&cantly 
higher productivity than others, although no industry pattem 
was evident. He suggested that the identification of proper 
organizational variables, such as morale, group norms, per- 
sonality, management style, level of supervision, training, and 
employee selection criteria, could contribute to a better under- 
standing of programming productivity variations. 

Some further insight into these large productivity differ- 
ences can be gained from the analysis carried out on a sub- 
set of the ESA database which included data for the seven 
COCOMO cost drivers described previously. The 300% 
difference in the productivity between company 7 and 
company 2 can thus be explained by the fact that company 2 
projects had lower reliability requirements, and a higher 
use of tools and modern programming practices (see Fig. 2). 
The least productive company, company 4, had projects 
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Fig. 2. Median scores of significant productivity factors for companies 
in ESA dataset. 

with very high required reliability, execution time con- 
straints and storage constraints. As these three require- 
ments are fixed, this suggests that the use of tools and 
modern programming practices are major controllable fac- 
tors in productivity improvement. 

5.2.2 Analysis of Variance by Language 
A number of researchers have found that productivity, 
measured using either lines-of-code or function points, 
varies with the level of the programming language [l], [2], 
[6], [26], [29]. Some productivity studies have removed this 
effect either by considering only programs written in the 
same language [5], [E], [30], or by converting all data into 
one language using conversion factors [15]. In the ESA da- 
taset, language alone explained 48% of the variation in pro- 
ductivity of 99 projects coded in 18 languages or combina- 
tions of languages. A subset of 83 projects coded in lan- 
guages that had four or more observations was also ana- 
lyzed in more detail. Fig. 3 shows clearly that Coral and 
Assembler are low productivity languages. 

It is interesting to note that in the ESA dataset the higher 
level languages, such as Ada, do not appear less productive 
than the low level Assembler language when measuring 
productivity in lines-of-code. This result contradicts the lines- 
of-code paradox put forward by Jones [28] which states that 
"when programs are written in higher level languages, their 
apparent productivity expressed in source code per time unit 
is lower than for similar applications written in lower level 
languages. When software migrates from low level to high 
level languages, the noncoding tasks act as though they are 

costs (i.e., specifications, documentation) whde the num- 
f source code 'units' goes down. Hence, the cost per unit 
go up." However, ths  is only true if we assume that the 

total effort in manmonths increases, remam unchanged, or 
decreases less than proportionally with lines-of-code. It is pos- 
sible that the decrease in effort involved in coding, testing, and 
integrating software written in higher level languages is so 
great that the total development effort is substantially de- 
creased. This would have the effect of counteracting the de- 
crease in the lines-of-code. If we look ahead to Table 9, we see 
no proof of a lines-of-code paradox in the ESA database even 
when projects in the same category are considered. 

5 

5 As the level of a language Increases fewer llnes of code are needed to 
produce a product of the same functlonality 

400 
350 
300 
250 
200 
150 
100 

50 
A " 

ADA PAS FOR LTR C TAL COR AS 
(34) (8) (91 (41 (9) (4) (8) (7) 

The number in parentheses is the number of observations. 

Fig. 3. Mean lines-of-code productivity by language. 

In the ESA database, the difference in the productivity 
between languages can be accounted for by the five signifi- 
cant COCOMO cost factors (see Table 5). Assembler proj- 
ects have a low productivity because they have the highest 
required reliability and storage constraints, high time con- 
straints, and the lowest use of tools and modern program- 
ming practices. In contrast, the Ada projects have low re- 
quired reliability and storage constraints, average time con- 
straints, and the highest use of tools and modern pro- 
gramming practices. 

5.2.3 Analysis of Variance by Cafegory 
As the categorization of other large heterogeneous datasets 
1151, [26], [32] have been mainly based on a breakdown into 
MIS, systems and military projects, with an emphasis on MIS, 
the results of tlvs part of the analysis cannot be compared 
with past research and are presented only in order to high- 
light the existence of low productivity categories in the ESA 
database. The ESA classification by category alone explained 
34% of the variation in productivity. The 99 projects were 
classified into 10 categories. A subset of 92 projects in catego- 
ries that had five or more observations was analyzed in more 
detail. Fig. 4 shows clearly that On Board and Message 
Switchg are low productivity categories. This is due to the 
fact that the size of the software for most OB projects must be 
as small as possible. In the ESA dataset, OB projects have the 
highest time and storage constraints, the second highest re- 
quired reliability, and the lowest use of tools and modern 
programming practices. The projects in the MSG category 
have the highest required reliability and consist of software 
developed for handling and distributing messages and man- 
aging information flows. In some cases, encryption of the 
messages is required. The high productivity categories, 
Ground Support Equipment and Tool, have low reliability 
requirements and time constraints and the highest use of 
modern programming practices. 

5.2.4 Analysis of Variance by Country 
Past research comparing the software development produc- 
tivity levels of different countries is almost nonexistent. 
Cusumano and Kemerer [15] have published a comparative 
productivity analysis between the US. and Japan in which 
they find no sigruficant difference in the productivity of U.S. 
and Japanese projects when the application type, the hardware 
platform, and code reuse have been taken into account. Jones 
[27] has published some tables of world-wide productivity 
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MEAN %OB / MSG 
COUNTRY NOBS PRODUCTIVITY PROJECTS 
Belgium 4 838 0 
Netherlands 6 502 0 
France 25 419 32 
Germany 8 406 25 
Italy 15 365 40 
UK 34 187 26 

~ 

7 i3  

%COR/AS 
PROJECTS 

0 
0 

20 
0 
0 

29 

levels but states that there is currently not yet enough accurate 
data for such an evaluation. In the ESA dataset, country as a 
class variable explained 27% of the variation of productivity. 
The average productivity for countries with four or more ob- 
servations is shown in Table 7. These productivity values 
should not be considered as national productivity levels as 
they are based on limited observations. Some difference in the 
mean productivity of the countries in our dataset can be ex- 
plained by the percentage of projects that companies in each 
country undertook either in low productivity categories 
(OB/MSG) or using low productivity languages (COR/ AS). 

6 0 0  

5 0 0  

4 0 0  

3 0 0  

2 0 0  

1 0 0  
n 

The number in parentheses is the number of observations 

Fig. 4. Mean lines-of-code productivity by category 

Differences can also be accounted for by the mixture of 
industrial, space and military projects that were undertaken 
in each country (see Fig. 5). This has also been mentioned 
by Jones [28] as a factor which influences software produc- 
tivity at a national level. Belgium appears as the most pro- 
ductive country in our dataset because of the predominance 
of high relative productivity industrial projects (see Fig. 6). 
In contrast, the UK appears as the least productive country 
because of its high volume of military projects. As no other 
factors considered in our analysis could consistently ex- 
plain any further difference in productivity across coun- 
tries, it appears that factors other than the ones considered 
in our analysis are contributing to productivity differences. 
Further large scale data gathering efforts are needed to es- 
tablish the relative productivity levels of European coun- 
tries and their major influential factors. 

5.3 Phase Ib-Analysis of Variance of Individual 

Of the seven COCOMO cost factors, only five were found 
to be significant and two, use of tools and modern pro- 
gramming practices, were found to be highly positively 

Nonclass Variables 

correlated. This suggests that in the COCOMO model these 
two variables could be combined. Referring back to Table 5, 
we see that the main storage constraint alone explains 53% 
of the variation in productivity. Low productivity in the 
ESA dataset is due to high storage constraints, high time 
constraints, high reliability requirements, low tool use, and 
low use of modern programming practices. 

' 3  I$ 
BE NE FR GE IT UK 

Fig. 5. Breakdown of projects by country and development environment. 
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Fig. 6. Mean lines-of-code productivity by environment. 

These results are, for the most part, in agreement with 
other researchers. Storage constraints and time constraints 
were also found to have a negative impact on productivity in 
the following studies [ll], [38], [39]. Boehm [SI assumes that 
high reliability requirements have a negative impact on pro- 
ductivity in his COCOMO model. However, there does exists 
a divergence of opinion on the impact of tools and modern 
programming practices on productivity. In agreement with 
our results, Jones [26] concluded that the use of tools and 
modern programming practices improved productivity. Sig- 
nificant gains in productivity due to the use of modern pro- 
gramming practices have also been found by Albrecht [2], 
Vosburgh et al. [38], Walston and Felix [39], and Brooks [ll]. 
On the contrary, Kitchenham [29] found that no significant 
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productivity improvement resulted from the use of tools and 
modem programming practices. Card et al. [12] determined 
that although the use of tools and modern programming 
practices had no significant effect on productivity, the use of 
modem programming practices resulted in improved reli- 
ability. Banker et al. [5] found that these two factors had a 
negative impact on short term productivity in their study of 
maintenance projects. Lawrence [30] found that the duef 
benefits of disciplined programming methodology are expe- 
rienced in the early design and test stages. He concluded that 
even though there was no noticeable productivity difference 
in groups using structured programming or walkthroughs, 
these factors probably resulted in fewer latent bugs and re- 
duced maintenance costs. As the positive productivity im- 
pact of the use of tools and programming methods may not 
be visible immediately, more research should be done to de- 
termine their effect on long term productivity. 

Programming language experience was found to have 
no significant effect on the productivity of the ESA dataset. 
Kitchenham [29] also found weak empirical evidence that 
more experienced personnel improved project productivity. 
Although language experience had the second highest pro- 
ductivity range out of 29 factors studied by Walston and 
Felix [39], Brooks's [ l l ]  analysis of the same dataset deter- 
mined that programming language experience was not sig- 
nificant for large projects. Boehm [9] included language 
experience as one of 16 COCOMO software productivity 
factors, albeit with the smallest productivity range. An 
analysis by Kitchenham [29] of Boehm's dataset confirms 
that this result is significant, although she points out that 
projects with staff of normal experience had similar pro- 
ductivity level to projects with highly experienced staff. 
This trend was also confirmed by Jeffrey and Lawrence's 
[22] finding that COBOL programmers did not improve in 
productivity after a one year experience with the language. 
The fact that virtual machine volatility was not found to be 
significant was due to it not varying much among projects. 
Factor Analysis was also carried out on these seven pro- 
ductivity variables. We found that the seven variables 
could be grouped in four factors which explained 90% of 
the variance in the data. The first factor included the vari- 
ables TIME, STOR, and RELY. The second factor was com- 
prised of MODP and TOOL, the third factor was LEXP, and 
the fourth factor was VIRT. 

The simple models based on TEAM, DUR, and KLOC 
had a R-squared of less than 0.20 which means that none of 
these variables alone is a good indicator of productivity. 
However, the models were significant and as they have 
been discussed in previous research some comparisons can 
be made and conclusions drawn. 

Productivity was found to decrease with increasing team 
size. This is probably due to the coordination and commu- 
nication problems that occur as more people work on a 
project. Team size explained 19% of the productivity vari- 
ance with an elasticity of - 0.5. This result is in agreement 
with the findings of other researchers [lo], [13]. In particu- 
lar, Conte et al. [13] also determined that team size had an 

6 

elasticity of -0.5 when analyzing projects from the NASA 
database. Card et al. [12] found that team size was not sig- 
nificant; however, this may be because it was confined to a 
narrow range in their study. 

Increasing project duration was found to lead to a de- 
crease in productivity. Duration explained 12% of the 
variation in productivity with an elasticity of -0.6. Putnam 
and Myers [32] include duration with an elasticity of -1.33 
in their process productivity equation (see (2)). Their defi- 
nition of process productivity is directly based on their ap- 
proach to cost estimation in which they holds that effort 
varies inversely as the fourth power of development time. 
This severe penalty imposed by reducing development time 
is not greatly subscribed to by other researchers [13], nor is 
it supported by our analysis. In contrast to subsequent 
findings by other researchers, Aron [l] determined that the 
productivity of easy and medium difficulty projects of 
greater than 24 months duration was 66% higher than that 
of shorter projects. He also found that productivity re- 
mained relatively stable for difficult projects no matter 
what the duration. 

Productivity was found to slightly increase with in- 
creasing system size for the ESA dataset. This result is the 
opposite of those of other researchers who have found that 
productivity decreases with increasing system size [2], [6], 
[ll], [13], [24], [32], [38]. For the ESA database, system size 
(KLOC) explained 5% of the productivity variance with an 
elasticity of 0.2. Although Jones found that productivity 
decreased exponentially and Putnam and Myers found that 
productivity decreased substantially, Conte et al. found that 
productivity did not show a strong decreasing trend as 
system size grew. 

5.4 Phase Il-Analysis of Variance Models Based on 

5.4.1 Summary 
Combinations of relevant subsets of class variables (see 
Table 4) were analyzed to find the model which could ex- 
plain the highest amount of productivity variance. Only 
combinations of two class variables at a time were consid- 
ered; categorizing the data by three class variables led to 
too many cells with only one observation. Table 8 summa- 
rizes the four best models found: 

Although they explained the same amount of variance of 
productivity, the Categ0ry"Language model has more ob- 
servations than the Company"Language model and can be 
considered to be better. Therefore the best method of 
benchmarking the productivity of a project in this dataset 
would be to compare its productivity to projects of the 
same category and language. 

These results correspond well with the conclusions of 
Arthur that lines-of-code metrics should only be compared 
witlun the same language and to similar projects using 
identical technologies [3]. He also concluded that lines-of- 
code productivity is representative only when measured for 
large projects, as is the case of projects in the ESA database. 

Combinations of Class Variables 

6. In this context, elasticity is a measure of the effect on productivity of a 
change in team size. An elasticity of -0.5 means that if team size is in- 
creased by lo%, productivity will decrease by 5%. 
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TABLE 8 
SUMMARY OF ANALYSIS FOR MODELS BASED ON TWO CLASS VARIABLES 

TABLE 9 
MEAN LINES-OF-CODE PRODUCTIVITY BY LANGUAGE AND CATEGORY 

The number in parentheses is the number of observations 

TABLE 10 
SUMMARY OF ANALYSIS OF BEST MIXED MODELS 

VARIANCE MODEL 
VARIABLES NOBS EXPLAINED ROOT MSE (siguficance) 

Company* 30 99% .16 Log(.OOO1) 

subset Country" 54 96% .26 Log(.O001) 

subset Country* 53 95% .29 Log(.OOO1) 

subset Language* Log( ,0001) 

subset Category, 
RELY, TOOL(25%)7 

subset Category, 
RELY, TOOL(7%) 

subset Category, 
RELY, MODP(6%) 

subset Category, 

RELY, STOR, 70% Log(.OOO1) 

RELY, STOR, 70% .53 Log(.OOO1) 

5.4.2 Analysis of Variance by Category and Language 
Table 9 shows the average productivity of projects of the 
same category and language. It can be concluded that no 
matter what language is used, the categories of On Board 
and Message Switching have a low productivity. In addi- 
tion, the languages Coral and Assembler have a low pro- 
ductivity regardless of the category in which they were 
used. The low average productivity of the language TAL in 
the ESA dataset (Fig. 3) appears to be a result of its being 
used for Message Switching projects. 

7. The number in parentheses is the amount of productivity variation ex- 
plained by MODI' or TOOL. 

5.5 Phase Ill-Models Based on Combinations of All 

5.5.1 Summary 
Variables 

Multivariable models were run to determine if maximum 
team size, the duration of the project, the system size 
(KLOC), and the seven COCOMO factors grouped together, 
as well as combined with subsets of class variables which 
contained a sufficient number of projects at each level, 
could better explain the variation in productivity. The vari- 
ables MODP and TOOL were found to be significantly cor- 
related at the 0.81 level and thus were not considered to- 
gether as independent variables in the multivariate regres- 
sion. Table 10 shows the amount of variance explained by 
the best models. 
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TIME 
MODP 
LEXP 

Taking into account the number of observations, the best 
mixed models, both of which explain 95% of the productiv- 
ity variance, are based on the class variables: Country and 
Category, and the variables: required reliability and either 
use of tools or modern programming practices. This sug- 
gests that for a given Country and Category, productivity 
can be improved by increasing the use of tools and modern 
programming practices. However, these models based on 
country are misleading because there are not enough ob- 
servations in each country to make this categorization reli- 
able. It is for this reason that the model based on Language 
and Category is also presented. Although is explains less of 
the productivity variation, it makes more sense. 

The best nonclass variable model of lines-of-code pro- 
ductivity was found to be based on team size, duration, and 
KLOC. However, we will ignore this model because it is 
roughly the definition of lines-of-code productivity and 
thus adds nothing to our knowledge. The two models 
based on required software reliability, main storage con- 
straint and either use of tools or modern programming 
practices are much more interesting. As the required soft- 
ware reliability and main storage constraint are fixed, we 
can conclude that the use of tools or modern programming 
practices are major factors in productivity improvement. 
However, as the use of tools and modern programming 
practices are highly dependent on the language used, they 
are only controllable to the extent that the choice of lan- 
guage is not imposed. It is interesting to note that once lan- 
guage is added to the model neither tools or modern pro- 
gramming practices are significant. 

5.6 Phase IV-Comparison of Lines-of-Code 
Productivity and Process Productivity 

Putnam and Myers [32] maintain that process productivity 
is superior to simple lines-of-code productivity because it 

53 not significant 
23 not significant 
24 not significant 

covers a complex set of factors affecting the entire software 
development organization throughout the development 
process including: management practices, use of methods, 
level of programming language, software environment, 
skills and experience of team members, and the complexity 
of the application type. According to Putnam and Myers, 
process productivity can be used to measure the effective- 
ness of an organization over time, to compare the effective- 
ness between organizations, or to indicate the degree of 
complexity of the application work being done. In order to 
assess the added value of process productivity, a detailed 
analysis of the factors affecting process productivity in the 
ESA database was undertaken in this phase of our analysis. 

5.6. I Summary 
The single variable which explained the greatest amount of 
variance (60%) of process productivity in the dataset was 
Comtry. The results of analyzing only subsets of class vari- 
ables where each level contained a sufficient amount of proj- 
ects substantially effected the results with the classes subset 
Language and subset Category becoming insignificant. In ad- 
dition, limiting Country to the six countries containing four or 
more projects caused the amount of variance explained by 
Country to decrease from 60% to 17%. Process productivity 
was not found to vary significantly with environment. A 
summary of the analysis can be found in Table 11. 

Models were also run to determine if maximum team 
size, the duration of the project or the system size (KLOC) 
could be used to explain some of the variation in process 
productivity. In addition, analysis was carried out on a sub- 
set of the ESA database which included data for the seven 
COCOMO cost drivers. Table 12 shows the amount of vari- 
ance for each variable individually. 

Of the set of complex factors whch are supposedly cov- 
ered in the definition of process productivity, we are able to 

TABLE 11 
SUMMARY OF PROCESS PRODUCTIVITY ANALYSIS OF INDIVIDUAL CLASS VARIABLES 

TABLE 12 
SUMMARY OF ANALYSIS OF INFLUENCE OF NONCLASS VARIABLES ON PROCESS PRODUCTIVITY 
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look in particular at the effect of the use of methods, level of 
programming language, software environment, experience of 
team members, and company differences on process produc- 
tivity. Lookng in detail at Tables 11 and 12, we see that envi- 
ronment, experience of team members and modern pro- 
gramming practices had no significant effect on process pro- 
ductivity in the ESA database. Furthermore, the difference in 
the level of programming language and category in subsets 
in which there were an adequate number of observations at 
each class level was not significant for process productivity. 
The difference among companies did account for 34% of the 
variation in process productivity; however, company differ- 
ences accounted for 53% of the variation of lines-of-code 
productivity. 

In summary, we believe that process productivity is not 
superior to lines-of-code productivity for the following rea- 
sons: First, the utility of incorporating duration in the defini- 
tion of productivity is questionable as it is one of the factors 
which accounts for the least amount of variation in lines-of- 
code and process productivity. Second, lines-of-code pro- 
ductivity already covers a complex set of factors affecting the 
development process such as the differences among com- 
pany, language, category, environment, storage and time 
constraints, use of tools and modern programming practices, 
and software reliability requirements. The variation of these 
factors have significant effects on the variation of lines-of- 
code productivity while many of these factors were not 
found to be significant for process productivity. Finally, lines- 
of-code productivity is easier to calculate. 

6 CONCLUSIONS 
The objectives of this paper were first, to provide significant 
and useful information about the major factors which influ- 
ence the productivity of European space, military, and in- 
dustrial applications, and second, to compare two produc- 
tivity metrics, process productivity and lines-of-code pro- 
ductivity, in order to determine which metric was better at 
measuring the productivity of projects similar to those in 
our dataset. 

Our study has found that organizational differences ac- 
count for most of the productivity variation of projects in 
the ESA dataset. This highlights the need for companies to 
establish their own software metrics database in addition to 
benchmarking their data against that of other companies. 
The results indicate that some companies are obtaining sig- 
nificantly higher productivity than others. Some of the dif- 
ference in productivity among companies can be attributed 
to their use of low productivity languages, such as Coral 
and Assembler, or to the fact that many of their projects 
were in low productivity categories, such as On Board and 
Message Switching; however, some differences must also 
be due to the ways in which these companies manage their 
software development projects. Further research should 
concentrate on identifying which management related fac- 
tors contribute to productivity improvement. In addition, 
high productivity was found in those companies which 
undertook projects with low reliability requirements, low 
main storage constraints, low execution time constraints 
and which had a high use of tools and modern program- 

ming practices. As the first three requirements are fixed, 
this suggests that the use of tools and modern program- 
ming practices are major controllable factors in productivity 
improvement. 

We have also been able to contribute to knowledge in the 
area of software development productivity by confirming 
or disproving the applicability of previous research results 
to projects in the ESA dataset. In agreement with most 
other researchers, we have found that productivity de- 
creases with increasing storage constraints, timing con- 
straints, reliability requirements, team size, and project du- 
ration. We have also found that programming language 
experience has no significant effect on productivity. As the 
conclusions of previous research are divided over the posi- 
tive impact of the use of tools and modern programming 
practices on productivity, and as the benefits of these two 
factors may not be visible immediately, more research 
should be done to determine their effect on long term pro- 
ductivity. Contrary to the findings of other researchers, we 
have found that productivity increases with increasing 
system size and that high level languages do not appear 
less productive than low level languages when measuring 
productivity in lines-of-code. 

Finally, we have determined that, for the ESA database, 
the process productivity metric is not superior to the lines- 
of-code productivity metric. Until the use of a better metric 
becomes widespread for non-MIS applications, the best 
measure of relative productivity for space, military and 
industrial applications is lines-of-code productivity. 

The relevance of any analysis is greatly limited by the 
quality of the data available. One of the weaknesses of the 
ESA database is that no faults data was collected and thus 
there is no means of assessing the quality of the projects. 
The analysis would also have been much more meaningful 
had metrics concerning management factors been collected. 
Before any data collection effort, the hypotheses to be tested 
should be formulated, terms should be precisely defined, 
and care should be taken to ensure that the scales used to 
collect the data support statistical analysis. The ESA ques- 
tionnaire has now been modified to these criteria. 

The ESA database is being maintained at INSEAD. A 
sanitized version of the database is available to any com- 
pany who provides data. 

ACKNOWLEDGMENTS 
The authors would like to thank the European Space 
Agency for their funding of this project and Dr. Benjamin 
Schreiber in particular for initiating the data collection ef- 
fort. They also extend their thanks to the referees for their 
constructive comments. 

REFERENCES 
[l] J.D. Aron, "Estimating Resources for Large Programming Sys- 

tems," Software Engineering: Concepts and Techniques, J.M. Buxton, 
P. Naur, and B. Randell, eds., pp. 206-217. Litton Education Pub- 
lishing, 1976. 
A.J. Albrecht, "Measuring Application Development Produdiv- 
ity," Proc. Joint SHAREIGUIDEIIBM Application Development Symp., 
pp. 83-92, Monterey, Calif., Oct. 1979. 

[2] 



71 8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. IO, OCTOBER 1996 

[3] 

[4] 

L.J. Arthur, Measuring Programmer Productivity and Software Qual- 
ity. New York: John Wiley & Sons, 1985. 
J.W. Bailey and V.R. Basili, “A Meta-Model for Software Devel- 
opment Resource Expenditures,” Proc. Fifth Int’l Con$ Software 
Eng., pp. 50-60, San Diego, Calif., 1981. 
R.D. Banker, S.M. Datar, and C.F. Kemerer, ”A Model to Evaluate 
Variables Impacting the Productivity of Software Maintenance 
Projects,” Management Science, vol. 37, no. 1, pp. 1-18, Jan. 1991. 
C.A. Behrens, ”Measuring the Productivity of Computer Systems 
Development Activities with Function Points,” I E E E  Trans. Soft- 
ware Eng., vol. 9, no. 6, pp. 648-652, Nov. 1983. 
L.A. Belady and M.M. Lehman, ”The Characteristics of Large 
Systems,” Research Directions in Software Technology, P. Weger, ed. 
Cambridge, Mass.: MIT Press, 1979. 

[8] B.W. Boehm, Software Engineering Economics. Englewood Cliffs, 
N.J.: Prentice Hall, 1981. 

[9] B.W. Boehm, ”Improving Software Productivity,” Computer, vol. 20, 
no. 9, pp. 43-57, Sept. 1987. 

[lo] F.P. Brooks, The Mythical Man-Month: Essays on Software Engi- 
neering. Addison-Wesley, 1975. 

[ l l ]  W.D. Brooks, “Software Technology Payoff Some Statistical Evi- 
dence,” J .  Systems and Software, vol. 2, pp. 3-9, 1981. 

[12] D.N. Card, F.E. McGarry, and G.T. Page, ”Evaluating Software 
Engineering Technologies,” IEEE Trans. Software Eng., vol. 13, no. 7, 
July 1987. 

[13] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering 
Metrics and Models. Menlo Park, Calif.: Benjamin/ Cummings, 
1986. 

[14] N.S. Coulter, ”Software Science and Cognitive Psychology,” I E E E  
Trans. Software Eng., vol. 9, no. 2, Mar. 1983. 

[15] M.A. Cusumano and C.F. Kemerer, ”A Quantitative Analysis of 
US. and Japanese Practice and Performance in Software Devel- 
opment,” Management Science, vol. 36, no. 11, pp. 1,384-1,406, Nov. 
1990. 

[16] T. DeMarco, Controlling Software Projects. New York: Yourdon 
Press, 1982. 

[5] 

[6] 

[7] 

N.E. Fenton, Software Metrics: A Rigorous Approach. London: 
Chapman and Hall, 1991. 
R.B. Grady and D.L. Caswell, Software Metrics: Establishing a Com- 
pany-Wide Program. Englewood Cliffs, N.J.: Prentice Hall, 1987. 
R.B. Grady, Practical Software Metrics for Project Management and 
Process Improvement. Englewood Cliffs, N.J.: P.T.R. Prentice Hall, 
1992. 
M.H. Halstead, Elements of Software Science. New York: Elsevier 
North-Holland, 1977. 
Int’l Function Point Users Group (IFPUG), Function Point Counting 
Practices Manual, Release 4.0,1994. 
D.R. Jeffrey and M.J. Lawrence, “Managing Programming Pro- 
ductivity,” J .  Systems and Software, vol. 5, pp. 49-58, 1985. 
D.R. Jeffrey, ”Time-Sensitive Cost Models in the Commercial MIS 
Environment,” IEEE Trans. Software Eng., vol. 13, no. 7, July 1987. 
T.C. Jones, ”The Limits of Programming Productivity,” Proc. Joint 
SHAREIGUIDEIIBM Application Development Symp., pp. 77-82, 
Monterey, Calif., Oct. 1979. 
C. Jones, Programming Productivity: Issues for the Eighties, Los 
Alamitos, Calif IEEE CS Press, 1986. 
C. Jones, Applied Software Measurement: Assuring Productivity and 
Quality. New York McGraw-Hill, 1991. 
C. Jones, Software Productivity and Quality Today: The Worldwide 
Perspective. Carlsbad, Calif.: IS Management Group, 1993. 
C. Jones, Assessment and Control of Software Risks. Englewood 
Cliffs, N.J.: PTR Prentice Hall, 1994. 
B.A. Kitchenham, ”Empirical Studies of Assumptions that Un- 
derlie Software Cost-Estimation Models,” Information and Software 
Technology, vol. 34, no. 4, Apr. 1992. 
M.J. Lawrence, ”Programming Methodology, Organizational 
Environment, and Programming Productivity,” I. Systems and 
Software, vol. 2,1981. 
K.H. Moller and D.J. Paulish, Software Metrics: A Practitioner’s 
Guide to Improved Product Development. London: Chapman & Hall, 
1993. 
L.H. Putnam and W. Mvers, Measures for Excellence: Reliable Soft- 
ware on Tzme, within Budget. EnglewoodCliffs, N.J.: P.T.R. Prentke 
Hall, 1992. 
SAS Institute Inc., SASISTAT User’s Guide, version 6, fourth edi- 
tion, vol. 2, SAS Inst. Inc., Cary, N. Carolina, 1989. 

[34] M. Sheppard and D. Ince, Derivation and Validation of Software 
Metrics. Oxford: Clarendon Press, 1993. 

[35] W.E. Stephenson, ”An Analysis of the Resources Used in the 
Safeguard System Software Development,” Proc. Second Int’l Con5 
Software Eng., pp. 312-321,1976. 

[36] C.R. Symons, ”Function Point Analysis: Difficulties and Improve- 
ments,’’ IEEE Trans. Software Eng., vol. 14, no. 1, pp. 2-11, Jan. 1988. 

[37] A.J. Thadhani, “Factors Affecting Programmer Productivity dur- 
ing Application Development,” IBM Systems J .  vol. 23, no. 1, pp. 

[38] J. Vosburgh, E. Curtis, R. Wolverton, B. Albert, H. Malec, 
S. Hoben, and Y. Liu, ”Productivity Factors and Programming 
Environments,” Proc. Seventh Int’l Conf. Sofhvare Eng., pp. 143.152, 
1984. 

[39] C.E. Walston and C.P. Felix, ”A Method of Programming Meas- 
urement and Estimation,” IBM Systems J., vol. 16, no. 1, pp. 54-73, 
1977. 

19-35,1984. 

Katrina D. Maxwell received a BS in civil engi- 
neering from the University of Illinois, Urbana- 
Champaign, in 1983, and a PhD in mechanical 
engineering from Brunel University, Uxbridge, 
England, in 1986. 

Dr. Maxwell is a research fellow at the Euro- 
pean Institute of Business Administration 
(INSEAD), Fontainebleau, France. After receiv- 
ing her PhD, she worked as a management sci- 
entist for the M&M/Mars Group. Since joining 
INSEAD in 1988, she has undertaken research 

in the areas of economics, business policy, marketing, operations re- 
search, and technology management. She has also worked as a soft- 
ware developer for a small French company. Her current research 
interests include applied data analysis, software development produc- 
tivity, and effort estimation. 

His research intei 
and strategic problei 
particular process de 

Luk Van Wassenhove is a professor of opera- 
tions management and operations research and 
coordinator of the Technology Management Area 
at the European Institute of Business Admini- 
stration (INSEAD). Before joining INSEAD in 
1990, he held faculty positions at the engineering 
school of the Catholic University of Leuven 
(Belgium) and at the Econometric Institute of 
Erasmus University Rotterdam (The Nether- 
lands) where he was the head of the Operations 
Research Department. 

rests are in modeling complex operational tactical 
ns in manufacturing, distribution, and services, in 
sign for quality and responsiveness. 

Soumitra Dutta obtained a PhD in computer 
science and an MS in business administration 
from the University of California at Berkeley, 
where he was also a postdoctoral research as- 
sistant In 1989, he joined the European Institute 
of Business Administration (INSEAD) in Fon- 
tainebleau, France, where he is an associate 
professor of technology management. His re- 
search interests include the management of 
software development, knowledge-based sys- 
tems, and the role of technology in performance 

improvement initiatives. He is a member of ACM, INFORMS, and the 
IEEE Computer Society. 


