

By Dick B. Simmons Page 1

Software Organization Productivity

By Dick B. Simmons
Software Productivity Improvement Laboratory

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112

Email: simmons@cs.tamu.edu
Telephone: (409) 845-2015

Abstract

Software projects often do not turn out as planned. When milestones are missed, frequently the knee jerk

reaction of management is to increase effort to assure that a software product is delivered sooner rather than later.

One school of thought says that increasing effort helps, another says it does not. This article links compressing

delivery schedules to increasing productivity of an organization. We show that if the problem that causes a missed

milestone in not related to lack of effort, then increasing effort alone probably will not improve deliver schedule. In

fact in some cases, we show that increasing effort actually decreases the overall organization productivity.

Introduction

In the world of software development, the customer would like to pay as little as possible. He would like

the highest productivity as possible out of the software contractor. The software contractor would like to make as

much money as possible. The software contractor is usually paid either directly or indirectly by how many people

are working on a project. The greater the effort (and the lower the productivity) the higher is the profit for the

contractor. Whenever a problem arises, the contractor would like to solve the problem by adding people.

For example, most projects do not allow enough time to complete a project. Brooks says that more projects

have gone awry for lack of calendar time than for all other causes combined.1 Plans often do not allow for a realistic

amount of time to complete a project. When a project falls behind, contractors often claim that adding more people

to a project will speed up project completion. Adding people to a project can actually cause it to take longer.

Brooks proposed the following Law:

Adding manpower to a late software project makes it later.

By Dick B. Simmons Page 2

When he first proposed his Law, Brooks admitted that it was oversimplifying outrageously what happens. There

have been many careful studies evaluating the truth of Brooks’s Law. After 20 years of evaluating the many studies

of his Law, Brooks feels that it is the best zeroth-order approximation to the truth, a rule of thumb to warn managers

against blindly making the instinctive fix to a late project. If adding manpower to a late project makes it later, the

productivity of an organization is actually lowered. Can adding people to a project lower software organization

productivity?

 We will investigate the effect of adding people to a project to demonstrate when it helps improve delivery

schedule and when it does not. If adding people to a late project does not make it later, then adding people must

make it finish sooner. If you add people to a project or increase project effort, then the productivity of the project

organization must improve for sooner completion. In other words, if you have a project with eight people on a team

and you add a ninth person, then the team productivity (or organization productivity) must increase for the project to

finish sooner. If it finishes later when effort is increased, then any claim that adding people always helps improve

delivery schedule would be false.

We will examine software organization productivity by trying to answer the following questions: What

makes up a software project? How do we determine when a project is successful? How do we control a project?

What is the relationship between project completion time and sequential factor, communication factor, and

organization productivity? Which cost drivers dominate organization productivity causing project failure?

Background

Everyone likes successful software projects. A simple criterion to measure the success of an organization

is to determine if it delivers a software product on time, within budget, and to a satisfied customer. In 1995, Capers

Jones stated that the failure or cancellation rate of large software products is over 20%.2 Of the 80% that are

completed, approximately two thirds are late and experience cost overruns as much as 100%. Roughly two thirds

are also plagued by low reliability and quality problems in the first year of operation.

 To create successful large software products, we must have a plan against which to measure success. We

will now introduce terminology for discussion. The aggregate parts of a Project are represented in Figure 1. A

development Project starts with a Plan that predicts SoftwareProduct features (FeaturesPlanned), size

(VolumePlanned), reliability (ReliabilityPlanned), and usability (UsabilityPlanned). The Plan will also predict the

By Dick B. Simmons Page 3

average salary (SalaryaveragePlanned), size of the Organization (nPlanned), and time in it will take to complete

development (TimePlanned).

The fastest way to developed software is to not develop it, but to reuse software that already works. We

can acquire reused software from a Supplier. The easiest reusable software to acquire is commercial off the shelf

software (COTSSoftware). Reusable chunks of software that we obtain from a colleague or from a reuse library

we will call reusable software (ReusableSoftware). COTSSoftware takes no development time, but effort and

time may be required to adapt it to the planned SoftwareProduct. ReusableSoftware obtained from a reuse

library usually requires additional time and effort to adapt it for use by the planned SoftwareProduct.

 Firuge 1. Software Project aggregate parts.

Software developers make up the Project Organization. Anyone whose salary is charged to the Project

we define to be part of the Organization. Project Cost can be computed from average monthly salary

(Salaryaverage), nominal number of persons working on the Project (n), and development time in months (Time).

The status of the SoftwareProduct can be monitored by tracking its features (Features), reliability (Reliability),

and usability (Usability).

Every effort should be made to satisfy the Customer. Experience has shown that Customers are happier

if they receive a quality SoftwareProduct. Simmons et al.3 say that Customer satisfaction can be predicted if a

SoftwareProduct has expected features (FeaturesExpected), reliability (ReliabilityExpected), and usability

(UsabilityExpected). A successful Project should plan for

 FeaturesPlanned ⊆ FeaturesExpected

Project

Supplier OrganizationPlan

FeaturesPlanned
VolumePlanned
ReliabilityPlanned
UsabilityPlanned
SalaryaveragePlanned
nPlanned
TimePlanned

Salaryaverage

n
Time

SoftwareProduct

Features
Volume
Reliability
Usability

Customer

FeaturesExpected
ReliabilityExpected
UsabilityExpected

COTSSoftware

Features

ReusableSoftware

Features

1..* ***

* *

By Dick B. Simmons Page 4

 ReliabilityPlanned ≥ ReliabilityExpected

 UsabilityPlanned ≥ UsabilityExpected

 nPlanned ≤ nCompleted Project

 TimePlanned ≤ TimeCompleted Project

 Seldom does a Project proceed exactly as planned. When problems emerge they often show up when

milestones are not completed on time. Project control can be asserted by applying the control triangle shown in

Figure 2. Depending on the problem that causes a milestone to be missed, you may be able to decrease Time by

deleting Features or increasing Effort or both. When you decrease Features, the Volume of a SoftwareProduct

decreases. Thus when you reduce the Volume of a SoftwareProduct, the Time and Effort required to develop it

should decrease.

 Figure 2. Project Control Triangle

 For some cases, increasing Effort does not decrease Time. For Time to decrease when

you increase Effort, Organization productivity (OrganizationProductivityn) must increase. We

will define OrganizationProductivityn as

where Productivityn is the nominal productivity of an individual in an Organization. Grady and Caswell4 reported

that at Hewlett-Packard they found the probability of 0.300 KNCSS/pm (Thousand Non-Comment Source

Statements per person month) ≤ Productivityn ≤ 0.500 KNCSS/pm was 30% and of 0.250 KNCSS/pm ≤ Pn ≤ 0.600

KNCSS/pm was 60%. They cautioned managers that few Projects achieve greater than 0.900 KNCSS/pm. If you

Effort Time

Features

Project
Control

OrganizationProductivity n Productivityn n= × ()1

By Dick B. Simmons Page 5

try to decrease Time by adding people to a Project, inefficiencies cause Productivityn to decrease as n increases.

We will show that OrganizationPriductivityn sometimes decreases as n increases.

We will concentrate on the control triangle. We will assume that the Reliability and Usability requirements

of the finished SoftwareProduct are met. For Reliability and Usability prediction models see Simmons et al.3

We will concentrate on the effects on a development Project of changing the Features, Time, and/or Effort.

Volume

A SoftwareProduct Plan describes the Features that the finished SoftwareProduct should contain. A

requirements document often describes Features in terms understandable by the Customers and the software

development Organization. A design document describes how a SoftwareProduct will be created to implement

the Features. As the number of Features grow, the size (or Volume) of the SoftwareProduct grows. Units for

describing the Volume of a SoftwareProduct include source lines of code, source statements, non-comment

source statements, delivered source instructions, function points, object points, chunks, and many more. Once the

Features of a SoftwareProduct have been determined, there are many models for predicting Volume.3

Time

Simmons, et al.3 list many empirically derived formulas for predicting the Time required to develop a

SoftwareProduct. The nominal form of the development time estimation equation is

where a and b are constants in the range 3.04 ≥ a ≥ 2.15 and 0.38 ≥ b ≥ 0.32.3 The constant a is the Volume of a

program that a person can produce in one month. Thus as the Volume of a program increases, the Effort to produce

the program increases and the resulting development Time increases.

Observation: When you add people to any Project, the nominal Time that it takes to produce the

SoftwareProduct increases.

By adding people, how much can you actually compress nominal development Time? Figure 3 shows the Effort

required to compress a development schedule for an example Project. You have a schedule range from Excessive

Time to Impossible. If management were to allow a very long time, then you would reach a point where

inefficiencies would set in and you would have excessive staff. Management usually would like for a Project to be

completed as soon as possible and will not allow excessive time in the schedule. Figure 3 shows a Minimum Cost

Time a Effort b= × ()2

By Dick B. Simmons Page 6

region that for the example Project ranges from 37 months to 60 months. The nominal completion Time falls at the

beginning of the inefficient range at about 37 months. Very seldom would a Project be allowed to span over three

years. People would normally be added to compress the schedule resulting in slight inefficiencies. If you continue

to add people, then the costs will begin to rise exponentially as you inter the Crash Project region resulting in major

inefficiencies. The point that you continue to add people but do not reduce the development Time is the beginning

of the Impossible range. This point we will call the point of maximum compression (TimeMaximum Compression). Boehm

says his experience has shown that it is virtually impossible to compress the nominal scheduled development Time

more than 25%.5, 6 Conte, Dunsmore, and Shen7 conclude that a good choice of Project duration should be about

10% less than nominal development Time.

 Figure 3. Effort Required to Compress a Development Schedule

Observations: 1. When software development contractors are paid by head count, there is no incentive to keep

the headcount low.

 2. Due to the pressure to complete a software development Project as soon as possible, an

Organization tries to complete a Project in less time than the nominal Time.

 3. Adding people to Projects only helps when you are trying to reduce the nominal

development Time by up to 25%.

 4. To avoid excessive waste, the scheduled development TimeScheduled should be in the range of
 0.85 × Time(EffortNominal) ≤ TimeSheduled ≤ Time(EffortNominal)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

months

E
ffo

rt
 (

p
er

so
n

-m
o

n
th

s)

10,000

1,000

2,000

0

3,000

4,000

5,000

6,000

7,000

8,000

9,000

C
rash

 P
ro

ject

In
efficien

t

M
in

im
u

m
 C

o
st

E
xcessive T

im
e

Im
p

o
ssib

le

TimeTimeMAXIMUM COMPRESSION = 0.75×Time

By Dick B. Simmons Page 7

McConnell claims that the average business systems Project overran its original schedule by 120%.8 If this is true,

then the average business systems Project is scheduled to be completed in the Impossible region. Often schedules

are set based on budget cycles instead of the known Time that a Project should take. Actual time scheduled for a

Project should be around the nominal Time predicted using a schedule prediction model calibrated to the business

development environment. Once a Project is scheduled in the Impossible region, you can add 10 to 100 times the

Effort, but still the Project would not be completed any sooner. The Effort expended to meet an impossible

schedule would dominate Project costs. Simmons, et al.3 define dominators as Project attributes that cause Effort

(and productivity) to vary by an order of magnitude (or 10 to 1).

 A key to effectively adding people to a Project is to create a SoftwareProduct design that can be

partitioned into separate tasks like the tasks related to picking cotton. You can pick as much cotton as you have

people to assign to the task. In the world of software development an example of a cotton picking easy Project

(ProjectCottonPicking) would be simple web site development. With the proper tools and knowledge, you can develop

as many simple web sites as you have people available to work on web site development. There would be no need

to complete cotton picking easy tasks in sequence. We will define fS as the ratio of time that must be spent working

on tasks in sequence to total time required for a single developer to complete a Project. For a ProjectCottonPicking

fS = 0 (3)

There are tasks which cannot be partitioned for parallel development. The task of bearing a child takes

nine months for a pregnant lady. There is no way to partition the task into subtasks where the subtasks can be

developed in parallel. A Project that cannot be divided into subtasks for parallel development we will call a

ProjectPregnant. An example of a ProjectPregnant was a software system developed by a programmer named Ted that

once worked at Bell Telephone Laboratories. He was assigned to an advanced technology group after he had

developed a private branch exchange program that ran as a sub-program within a larger software system. His

program was a table driven spaghetti code system with no documentation that anyone understood except Ted. We

used Ted’s ProjectPregnant as a task for summer student interns who would try their best to document his system.

Even though Bell Telephone Laboratories hired the top students interns from around the country, none of them

could document Ted’s software. A ProjectPregnant like Ted’s is one that cannot be partitioned into tasks that can be

worked on in parallel. For a ProjectPregnant

By Dick B. Simmons Page 8

A typical Project is neither a ProjectCottonPicking nor a ProjectPregnant. The range of fS is for a typical Project is

Many software development tasks are sequential in nature. Often you must wait to use a test laboratory or a

conference room, for a bug to be found and fixed, etc. A typical Project may have an fS of 0.3. How much can you

improve OrganizationProductivityn by adding people to a Project?

We will answer that by defining Speedupn as the productivity of a team of n people compared to the

productivity of a single person working alone.3 In addition, we will define a communication factor fC as the ratio of

time spent communicating with other team members compared to the total time available for software development.

For the case where there is no communication among team members, the Speedup is

We will define OrganizationProductivityn for a team with n members as

where Productivityn=1 is the average individual productivity for someone working alone. As n increases, Speedupn

approaches a constant

For a typical Project with an fS of 0.3, the maximum Speedupn→∞ for the entire team would be 1/0.3 or 3.333. In

other words, no matter how many people you add to the team, the team productivity would be no more than 3.333

times the average productivity of a team member working alone.

 The fS is determined when the Project Organization structure and the work breakdown structure are

determined. The number of tasks that can be worked on in parallel is a function of the system architecture and the

modularization of the chunks of software. Once design is complete and work breakdown structure is determined,

there is very little that can be done to change the fS for a given Project.

f S = 1

0 1< <f S

() ()Speedup f f
n

f nn S C
S

, = =
+ × −

0
1 1

OrganizationPrductivity Productivity Speedupn n n= ×=1

Speedup
fn

S
→∞ →

1

()5

()6

()7

()8

()4

By Dick B. Simmons Page 9

Observations: 1. OrganizationProductivityn of a team is limited by the value of
 Productivityn=1 ÷ fS

 2. For software development tasks to be as easy as picking cotton, fS should
 be as small as possible.

 3. Timen→∞ ≥ fS × Timen=1

The assumption we made that fC is zero is unrealistic. Software development teams spend a considerable

amount of time communicating with team members and non team members. In fact, a very hard working member of

a software development team spends less than 5 hours of an 8 hour day developing software. The other 3 hours is

spent in meetings, training, arriving a few minutes early and possibly leaving a few minutes late, coffee breaks,

restroom breaks, , socializing with colleagues, etc. Thus approximately 62.5% of the workday is spent developing

software.

 Interruptions cause loss in productivity. The average duration of a work interruption is approximately 5

minutes for a typical programmer. The average time to regain a train of thought after an interruption is about 2

minutes. Thus, the average total time spent on a typical interruption of active software development is

approximately 7 minutes or 2.33% of a workday (or 0.107% of the work month). For a software development team

of eight members, two interruptions a month from each of the other team members would result in an fC of 0.015.

For teams that add members after a Project has started, two interactions per month are minimal due to the need to

understand the status of the Project, current problems, and activities of other team members.

 We can examine the effect of fC on OrganizationProductivityn by assuming that we have a perfect design

where every task can be developed in parallel resulting in an fS = 0. Figure 4 shows what happens to

OrganizationProductivityn as additional team members are added to a team. For a team with a fairly high

communication factor of fC=0.025 when a seventh member is added to a 6 member team, the

OrganizationProductivityn decreases from 3.429×Productivityn=1 to 3.415×Productivityn=1. For each fC there is a

maximum number of team members that can be added to increase the OrganizationProductivityn of the team.

Simmons, et al.,3 determined that the maximum number of team members for a given fC is

Maximum compression occurs at n MAXIMUM.

n
fMAXIMUM

C

=
1 ()9

By Dick B. Simmons Page 10

Figure 4. OrganizationProductivityn of teams that have
 different communication factors where fS = 0.

As the amount of communications increase between team members, the OrganizationProductivityn of the team

decreases for n greater than nMAXIMUM .

Observations: 1. Adding person-power to a team Project makes it later when

Effort

We saw earlier that the nominal Time required to complete a Project is based on Effort. The nominal Time

increases when Effort increases. We saw that if you increase Effort, the maximum compression TimeMaximumCompression

also increases. If your Project is operating near TimeMaximumCompression, then you cannot improve your schedule

without adding large amounts of Effort. Adding large amounts of additional Effort increases both nominal Time and

TimeMaximumCompression.

 If a Project is not in the Crash Project region, then it can be completed sooner if we increase Effort.

Prediction of Effort required for a successful Project is problematic. There are a number of cost drivers that cause

required Effort to increase and OrganizationProductivityn to decrease. We will define the average productivity of a

member of an n member Organization to be

Productivity
Volume

Effortn =

-

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5 6 7 8 9 10 11 12

Number of Team Members

O
rg

an
iz

at
io

nP
ro

du
ct

iv
it

y
n

fc=0.015

fc=0.020

fc=0.025

fc=0.030

() () ()Time f f f f Time nMaximumCompression S C C C= > = × − × =0 0 2 1,

n
fC

>
1

2.

()10

By Dick B. Simmons Page 11

The productivity of the Organization would be

There are a number of attributes called dominators that can have a dominant effect on OrganizationProductivityn of

a Project. One of the main causes of large Project failure is poor management. Poor management can cause

chaos and results in large amounts of wasted Effort and very low OrganizationProductivityn. More that 10 to 1

amounts of extra Effort could be expended before a Project is cancelled. Dominators like poor management

usually result in reducing OrganizationProductivityn instead of improving it. Table 1 lists 19 Project attributes that

can dominate OrganizationProductivityn. Dominators are not independent of each other. A poor manager will

probably also create an inadequate Plan. Also, some dominators are difficult to represent in Effort prediction model

equations. For example, even though Boehm uses 15 cost drivers for his COCOMO model5 and 23 for his

COCOMO 2.0 model,6 he was unable to represent management quality because of the difficulty of determining

management quality ahead of time. The worst case prediction combining the extreme values of his multiplier

adjustment factors could cause his estimate to vary by 808 times or almost three orders of magnitude. Thus, let us

examine some of the dominators that can cause an Effort estimate to be incorrect.

Project Area Dominator
Overall Project Plan
 Development schedule constraints (Time)
 K × Salaryaverage
 Software life cycle (SLC) process
Organization Management quality
 Lead designer
 Individual developers
 Average number of personnel (n)
 Personnel turnover
 Communications (fC)
SoftwareProduct Volume
 Amount of documentation
 Programming Language
 Complexity
 Quality (Includes required Reliability and Usability)
 Work breakdown structure (fS)
Suppliers Reuse
Customers Interface
 Requirements volatility

Table 1. Software OrganizationProductivityn Dominators

OrganizationProductivity n Prodctivityn n= × ()11

By Dick B. Simmons Page 12

 The Plan is the reference for determining success of a Project. The Plan establishes SoftwareProduct

FeaturesPlanned, VolumePlanned, ReliabilityPlanned, UsabilityPlanned, SalaryaveragePlanned, nPlanned, TimePlanned, and many

other items. Adding people to reduce completion Time when TimePlanned was incorrectly set to be completed in the

Impossible range (See Figure 3) would definitely make the Project later than TimePlanned. An incorrect Plan can

cause excessive resources to be used to try to meet an impossible schedule. A Plan may cause a Project to fail

when the FeaturesPlanned, ReliabilityPlanned, and UsabilityPlanned do not meet the Customer’s expected

FeaturesExpected, ReliabilityExpected, and UsabilityExpected. Often large amount of additional Effort must be exerted

to meet the Customer’s expectations which results in later Projects and lower OrganizationProductivityn.

 Over optimistic schedules are a real problem in software development. Brooks1 states that more software

Projects have gone awry for lack of calendar time than for all other causes combined. Attempts to meet an

unrealistic schedule results in inefficient crash Projects that have no hope of meeting the schedule.

 Cost of personnel resources is based on Salaryaverage and the overhead and fringe benefit constant K.

Software development is a people intensive activity. Cost of overhead, fringe benefits, developer workstations, etc.

are all based on the number of people working on a Project. Thus we can approximate the cost of a software

Project as

where K is a constant calibrated to the local costs, Salaryaverage is the average salary paid Project personnel, and

Effort is the person-months spent on the Project. For a typical Project K and Salaryaverage are constant and

relatively easy to measure. An alternate definition of productivity is

While large well-established companies have high overhead and fringe benefits, these costs can be reduced by using

contract labor that have low overhead and fringe benefits. Salaryaverage can be reduced by requiring unpaid overtime

and by subcontracting development tasks to regions of the world where Salaryaverage is very low.

 The software life cycle (SLC) can cause large variations in cost. High software OrganizationProductivityn

can be realized when a simple SLC is used to develop software that is cotton picking easy to create. The

ProjectCottonPicking can use standard designs, straight forward work breakdown structures, and minimal

()Productivity
Volume

K Salary Effort
n

average

=
× ×

Cost K Salary Effortaverage= × × ()12

()13

By Dick B. Simmons Page 13

communications. Complex SLCs are necessary when developing large complex ultra reliable real time

SoftwareProducts like software that controls deep space probes. The SLCs for Projects at the Jet Propulsion

Laboratory require as many as 10 phases, 38 deliverables, and 13 major milestone reviews. A major milestone

review can cost $600,000 or more. Major inefficiencies can occur when a complex SLC is used for a simple

Project or when a simple SLC is used for a complex Project. Selection of an improper SLC often results in failed

Projects.

 Management quality is a major factor leading to successful Projects. Boehm5 says that poor management

can increase software costs more rapidly than any other factor. Poor management often leads to excessive

consumption of effort, low OrganizationProductivityn, and Project failure.

 The lead designer is an important factor in Projects. Great designers are as important to the success of a

Project as quality managers. Brooks1 says that study after study shows that the very best designers produce

structures that are faster, smaller, simpler, cleaner, and produced with less effort. He says that the difference

between a great designer and the average approaches an order of magnitude.

 Individual developers are the foundation of a successful Project. Many studies have shown that individual

developer productivity varies by more than 10 to 1. To assure success, you should do everything you can to get the

best people working on your Project.

 Increasing the number of Project personnel increases Project OrganizationProductivityn up to a point.

Past that point, OrganizationProductivityn declines with each added person. We have shown that a team

productivity declines when n exceeds fC
-0.5. For large Organizations made up of many teams,

OrganizationProductivityn increases up to the Crash Project region. Additional Effort applied to a Project in the

Crash Project region can lead to chaos and reduced OrganizationProductivityn.

 Personnel turnover is a factor with which large Projects must cope. As long as a Project has average

turnover, there is no reason for special concern. Only when a Project experiences turnover of key people or

excessive turnover of other people does turnover begin to dominate OrganizationProductivityn. Excessive turnover

results in later Projects and lower OrganizationProductivityn.

 Communication among Project personnel is vital. As the communication factor fC increases, the

maximum OrganizationProductivityn decreases. From a team OrganizationProductivityn viewpoint, small fC is

By Dick B. Simmons Page 14

desirable. Every effort should be made to assure efficient communication among team members. Voice mail, email,

electronic conferencing, and other communication tools should be used to improve communication efficiency.

 Size or Volume of a SoftwareProduct is a major factor in determining Effort. Adding Features to a

SoftwareProduct increases Volume, deleting Features decreases Volume. Increased Volume requires increased

Effort, reduced Volume results in decreased Effort. Project managers can control Project Effort, Time, Reliability,

and Usability by adding and/or deleting Features.

 Documentation can be both a help and a burden. Useful documentation, like well written Customer

requirements, can be helpful. Documentation that is never read is a burden. Government agencies that require as

many as 38 different documents for every Project, even the ProjectCottonPicking easy ones results in unnecessary

inefficiencies.

 Use of a higher level programming language can help improve productivity. Table 2. lists programming

language level for an assembler language, FORTRAN, C++, and graphic icons. If productivity is directly related to

language level, then a graphic icon language would result in an 80 times increase in productivity over an assembler

language. Realistically, only the coding and unit test phases would gain the entire improvement in productivity. For

a sample constant function point Project using high level languages, Table 2 shows the Volume, Effort, Time, n,

and. OrganizationProductivityn for a COCOMO Basic Semidetached Effort estimation model.5 The SLC is assumed

to spend 40% of the Time in the coding and unit test phases and 60% of the Time in the user requirements, design

specification, system test, and V&V (validation and verification) phases. Also, the non coding and unit test phases

are assumed to be independent of programming language. Each of the SoftwareProducts developed is assumed

to have the same functionality measured in Function Points. While the language level improves by 80 times the

OrganizationProductivityn of the coding and unit test phases, the OrganizationProductivityn for the entire

development SLC only improves by 1.49. As tool sets and Organization structures improve, the time spent in the

non-coding and unit test phases will decrease and OrganizationProductivityn improvement will fall somewhere in

the range between 1.49 times and 80 times. Use of a higher level programming reduces the nominal Time required

to develop a SoftwareProduct and reduces the number of personnel required as shown in Table 2. Greater

improvements than those listed in Table 2 will be realized when we improve software development tool sets to

reduce Effort for non-coding tasks.

By Dick B. Simmons Page 15

 SoftwareProduct complexity is a major cost driver. The Effort required to create software for an ultra

reliable computer embedded in a space probe is much greater that the Effort required for an easy ProjectCottonPicking.

Brooks1 states that software entities are more complex for their size than perhaps any other human construct. He

says that many development and management problems derive from complexity and its nonlinear increase with size.

Most Effort prediction models use some form of complexity cost driver.

 Table 2. Productivity for different programming language levels.

 A quality SoftwareProduct should have a broad spectrum of Customer desired Features, have few

defects, function efficiently, operate easily, and have satisfactory user documentation. A SoftwareProduct that

functions efficiently, operates easily, and has satisfactory documentation reflects that SoftwareProduct is usable.

The interaction of Features, Reliability, and Usability can be represented by the Software Quality Triangle in Figure

5. If we add Features, Reliability and Usability may decline. We can improve SoftwareProduct Reliability by

removing defect riddled Features. We can improve Usability by improving Reliability and adding and/or deleting

selected Features. A large amount of Effort must be expended to achieve ultra high SoftwareProduct quality.

L
an

g
u

ag
e L

evel

N
C

S
S

 p
er F

u
n

ctio
n

 P
o

in
t

n

O
rganizationP

roductivity
n

Source
Language NCSS

Function
Points

non
coding
person-
months

coding
and unit

test
person-
months

total
person-
months

non
coding
months

coding
and unit

test
months

total
months

Function
Points per

project-
month

Assembler 1 320 320,000 1,000 1,151 767.3 1,918 21.1 14.1 35.2 54 28.4
FORTRAN 3 107 107,000 1,000 1,151 225.0 1,376 21.1 9.2 30.3 45 33.0
C++ 11 29 29,000 1,000 1,151 52.1 1,203 21.1 5.5 26.6 45 37.5
Graphic Icons 80 4 4,000 1,000 1,151 5.7 1,157 21.1 2.5 23.7 49 42.2

V
olum

e

E
ffort

T
im

e

By Dick B. Simmons Page 16

 Figure 5. Software Quality Control Triangle

 Reuse of software can lead to enormous increases in OrganizationProductivityn. If software is completely

reused with zero Effort expended on software development, then the OrganizationProductivityn would be very large.

As software development Effort approaches zero, the OrganizationProductivityn approaches infinitive. Reuse is the

one software OrganizationProductivityn dominator that can result in very large improvements in

OrganizationProductivityn. Many recent software engineering advances such as object oriented languages,

component architectures, architectural patterns, application domain frameworks, and languages that support

inheritance all are related to reuse.

 Customer interface has proven to be a major productivity cost driver. Projects with Customer

interface complexity much less than normal are many times as productive as ones that are more complex that

normal. As the Customer interface complexity increases, the OrganizationProductivityn will decrease.

 Requirements volatility can results in major amounts of Effort expended to keep up with requirement

changes. Ideally, Customer requirements should be defined before a Project starts and remain stable until a

Project is completed. In actual practice, Customer requirements change continually. While small changes in

requirements can be tolerated, highly volatile requirements can lead to very low OrganizationProductivityn and a

failed Project.

Conclusion

Completely successful Projects are rare. Government Projects are especially vulnerable to cost overruns

and partially featured SoftwareProducts because of the procurement culture used to select government

Usability

ReliabilityFeatures

Software
Quality

By Dick B. Simmons Page 17

contractors. When contractors are paid by the size of the development Organization instead of the finished

SoftwareProduct, this encourages bloated inefficient Organizations. Even attempts at process improvement are

problematic in this environment. While some Organizations have instigated successful software process

improvement programs, most have not. Norm Brown, executive director of the Department of Defense (DoD)

Software Acquisition Best Practices Initiative, claims that organizational improvement has been occurring at a

glacial rate.9 The DoD Software Engineering Institute (SEI) has developed a five-level software capabilities

maturity scale. Brown says that, according to the SEI, of 379 Organizations at 99 companies that have process

improvement programs in place and have conducted SEI maturity assessments, 73% do not rate higher that level 1.

It is not surprising that many Project s do not proceed as planned.

What action should be taken once milestones are missed and management realizes that future milestones

will also be missed unless effective action is taken. You can remove FeaturesPlanned, reduce ReliabilityPlanned,

and/or relax UsabilityPlanned requirements. These type of actions may result in future milestones being met but will

not increase the income to a contractor that is paid directly (or indirectly) by increasing Effort. Also, these actions

may disappoint the Customer. Contractors that increase their income by increasing Effort may instinctively

suggest that the first choice to missed milestones is to increase Effort (which of course is often paid for by the

Customer,. not the contractor)

Arguments against increasing Effort to avoid Projects falling further behind when milestones are missed

are:

1. Brooks’s Law suggests that adding manpower to a late software project makes it later.

2. Increasing Effort for any Project that has a high fC can actually make the Project take longer.

3. Increasing Effort for Projects that have a high fS may not help reduce completion Time.

4. Projects where TimePlanned is in the Impossible or Crash Project regions (See Figure3) have very little

chance of meeting future milestones by increasing Effort.

5. Increasing Effort results in longer nominal Time.

6. Increasing Effort results in longer TimeMaximum Compression.

7. Very few if any Projects have a TimePlanned in the Excessive Time or Minimum Cost ranges (See Figure

3). Those in the Inefficient or Crash Project ranges have an estimated maximum 25% possible

By Dick B. Simmons Page 18

compression. If more than 25% compression is necessary for the Project not to be late, then increasing

Effort will not be effective.

8. Projects may miss their milestones because of poor planning, impossible schedules, wrong SLCs,

incompetent management and lead designers, incorrect Volume estimates, incorrect complexity estimates,

improper application of reuse, underestimating Customer interface problems, and/or excessive

requirements volatility. All of these Projects will probably be later if only Effort is increased.

9. Projects that fall behind because of excessive personnel turnover will probably fall further behind even if

they replace those who have left.

10. Very few Projects rate at the top level 5 on the SEI CMM scale. Even if they do, Project milestones can

be missed for many of the reasons mentioned above.

Once Project planning is complete and resources have been allocated and a Project is underway, there is no easily

identifiable point where adding person-power to a late software Project does not make it later. There are very few

cases where only increasing Effort will result in greater OrganizationProductivityn and shorter Project completion

times. I agree with Brooks1 that Brooks’s Law is still the best zeroth-order approximation to the truth, a rule of

thumb to warn managers against blindly making the instinctive fix to a late Project. There is no creditable

evidence that would lead to repealing Brook’s Law any time in the near future.

References

1. F. Brooks, The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition, Addison -Wesley

Publishing Co., Reading, MA, 1995.

2. C. Jones, "Patterns of Large Software Systems: Failure and Success," IEEE Computer, March 1995, pp. 86-87.

3. D. Simmons, N. Ellis, H. Fujihara, and W. Kuo, Software Measurement: A Visualization Toolkit for Project

Control and Process Improvement, Prentice Hall, Upper Saddle River, NJ, 1998.

4. R. Grady and D. Caswell, SoftwareMetrics: Establishing a Company-wide Program, Prentice Hall, Upper

Saddle River, NJ, 1987.

5. B. Boehm, Software Engineering Economics, Prentice Hall, Upper Saddle River, NJ, 1981.

6. B. Boehm, E. Horowitz, R. Selby and J. Westland, COCOMO 2.0 User’s Manual, Version 1.1, University of

Southern California, CA, 1995.

By Dick B. Simmons Page 19

7. S. Conte, H. Dunsmore and V. Shen, Software Engineering Metrics and Models, Benjamin/Cummings

Publishing Co., Menlo Park, CA, 1986.

8. S. McConnell, "Brooks’ Law Repealed," IEEE Software, November/December 1999, pp. 6-8.

9. N. Brown, "Industrial-Strength Management Strategies," IEEE Software, July 1996, pp. 94-103.

