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It is the intention of the Journal of Systems and 
Software to publish, from time to time, articles cut 
from a different mold. This is one in that series. 

The object of the CONTROVERSY CORNER 
articles is both to present information and to stimu- 
late thought. Topics chosen for this coverage are not 
just traditional formal discussions of research work, 
but also contain ideas at the fringes of the field’s 
“conventional wisdom.” 

This series will succeed only to the extent that it 
stimulates not just thought, but action. If you have a 
strong reaction to the article that follows, either 
positive or negative, write to Robert L. Glass, Edi- 
tor, Journal of Systems and Software, Computing 
Trends, 1416 Sare Road, Bloomington IN 47401. We 
will publish the best of the responses as CONTRO- 
VERSY REVISITED. 

CHANGE-POINTS: A Proposal for 
Software Productivity Measurement 

Vernon V. Chatman, III 

This article describes a productivity measurement ap- 
proach based on a common output for design, imple- 
mentation, and testing. It relies on the traditional defi- 
nition of productivity: Output + Input = Productivity. It 
presents the concept of a unit of work- an abstract 
work item-which reflects that, to manage a develop- 
ment project, we must make logical subdivisions of 
the work effort. The notion of CHANGE-POINTS is 
derived from these subdivisions. Because we need to 
view productivity within the context of effectiveness, 
the article introduces the productivity, interference, 
and effectiveness matrix for that purpose. 

1. INTRODUCTION 

In 1985, Dr. Ed Altman, then IBM General Prod- 
ucts Division Vice-President, Software, commis- 
sioned a task force at IBM’s Santa Teresa Lab- 
oratory (STL) to look into the issue of software 
productivity measurement. The task force leaders 

Address correspondence to Vernon V. Chatman, III, 5984 Via 
Madero Driue, San Jose, CA 95120. E-mail address: 
vvchatm@IBM.net. Mr. Chatman recently retired from IBM. 

were Dr. Ursula Richter, who came to STL in 1984 
from IBM Research to work on this problem, and 
myself. Dr. Altman wrote in an internal memoran- 
dum in 1984: 

The traditional measure of productivity (CSI/PY[‘]) is 
of marginal use to management as it does not equitably 
measure many of development’s variables. CSI/PY 
does not address the considerable investment in testing 
for large products such as IMS and DB2, nor does it 
fairly measure the testing effort required for products 
built for multiple operating environments. 

Dr. Altman’s remarks raise two fundamental pro- 
ductivity measurement issues. First, a productivity 
metric must address the mission of the activity to 
which it applies, that is, managers and performers of 
that activity must believe the metric relates to their 
responsibilities. Second, to aggregate productivity 
measurements across project activities, the metric 
must have a common “output” for the activities 

‘CSI means “new and changed executable source instructions.” 
PY means “person years.” 
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included in its scope. CHANGE-POINTS addresses 
these and other important productivity measure- 
ment issues. Additionally, this article makes the 
point that we need to view productivity within the 
context of effectiveness. 

2. PRELIMINARY MAlTERS 

Before presenting the ideas and metrics associated 
with CHANGE-POINTS, there are some topics that 
must be dealt with to put these notions in context. 
This section addresses those topics. 

2.1 The Meaning of Productivity 

Discussion of “productivity” in the literature of soft- 
ware metrics has strayed from the traditional for- 
mula for productivity2 and the traditional inter- 
pretation of productivity as a period metric3. The 
paradox of lines of code (LOC) as a productivity 
indicator (Jones 1986, 1991) is no paradox. As im- 
plied by Arthur (19851, given the same start date, the 
same number of developers assigned to each task, 
and equal available time to work on each project, 
the project using the higher level language will com- 
plete in less calendar (elapsed) time.4 Comparison 
of productivity ratios should deal with calendar time 
differences; thus, there is a fallacy in the so-called 
paradox. “The tendency to use ‘productivity’ loosely 
as a synonym for other concepts can create con- 
fusion and misdirect improvement efforts” (Heyel, 
1982). 

As Packer (1983) noted: “While outputs are usu- 
ally easier to quantify than outcomes, we often care 
more about outcomes than outputs.” “Outcomes” 
lead us to another concept: 

The distinction between output and outcome is mir- 
rored in the twin concepts of efficiency and effective- 
ness. Efficiency refers to how well the enterprise con- 
verts its input resources into immediate outputs-how 
productive the organization is in doing whatever it does. 
Effectiveness, on the other hand, relates to how well 
the enterprise uses its input resources to meet its 

*Post hoc ergo propter hoc. Assume a high-level design is pro- 
duced, but no source code is produced, and the design is sold to 
another company. For this example, lines of code metrics would 
seem to preclude measurement of design effort productivity, or 
imply that design effort productivity is zero. In general, any 
“output” that is dependent on attributes of the implementation 
source code suffers from this problem. 

31t is common to compare annual productivity rates. Productiv- 
ity comparisons should be normalized for calendar (elapsed) time 
intervals. 

4The examples in Jones (1986, 1991) bear this out. See Ap- 
pendix 1 for a more detailed discussion. 

ultimate goals and purpose-how productiue the orga- 
nization is in accomplishing what it should be doing 
[(Packer, 1983); emphasis added]. 

If effectiveness is improved (e.g., reduced total de- 
velopment cost), then reduced efficiency (e.g., LOC 
per person-month) is acceptable. 

The key problem with many uses of LOC per 
person-month as a productivity metric is that “pro- 
gramming development [involves]. . . a significant 
amount of.. . [effort] not affected by source lan- 
guage” (Jones, 1986); thus, LOC are not an oz&ptput 
of those efforts. In addition, as in Arthur (19851, 
seemingly incorrect results arise from merging the 
concepts of efficiency and effectiveness, i.e., an ex- 
pectation that productivity metrics should reflect 
how well an organization is accomplishing what it 
should be doing: e.g., “the aim of this paper is to 
explore a variety of measures.. . which have been 
advocated for measuring IS productivity; i.e., their 
efficiency and effectiveness” (Scudder and Kucic, 
1991). 

The CHANGE-POINT approach does not merge 
the concepts of efficiency and effectiveness; it de- 
fines separate metrics for each concept (and one 
other covered later). “Traditional formulas for mea- 
suring productivity stress efficiency and neglect ef- 
fectiveness” (Packer, 1983). This keeps productivity 
analysis distinct from productivity measurement. 

2.2 LOC in Language x is Not Equal to LOC in 
Language x 

This section’s heading does not contain a typograph- 
ical error. It correctly reads “language X” in both 
cases and applies when using the same LOC count- 
ing convention. The point is that while some “items” 
are not equal, this fact may not prevent us from 
combining, manipulating, or comparing them; the 
significance of any differences must be proven. Fig- 
ure 1 shows three semantically identical sets of code 
(in C). The first example is three LOC, the second 
example is one LOC, and the third example is five 
LOC. Clearly, there is no useful counting rule that 
will yield the same count for the three sets of code. 
Thus, even when there is semantic identity, it is 
difficult to argue that a LOC in language x equals a 
LOC in language x. 5 Inspection of programs written 

‘Some projects use multiple languages [e.g., Grady and Caswell 
(19871, pp. 21-221. Adding LOC in different source languages 
may be more like adding US 2% and US 1Oe coins to make a 
purchase than it is like adding US dollars and British pounds to 
make the same purchase (however, even the latter can be done in 
some places of trade). 
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if(I==l) 

spec_code(A,B.C); 
J= 2; 

else 

J = 3; 

J = ( I == 1 ) ‘! (spec_code(A,B,C),2) : 3; 

switch ( I ) 

case 1: 
spec_code(A,B.C); 
J= 2; 
break; 

default: 
J= 3; 
break; 

Figure 1. Semantic identity. 

in other languages will also reveal inequalities of 
LOC. 

To repeat the point, it is acceptable to add apples 
and oranges if one is counting fruit. Simply observ- 
ing that counted elements are different is not a 
conclusive objection: a valid objection requires the 
demonstration of-the significance of any differences, 
within the context of the purpose being served. As 
a practical matter, we count, add, and manipulate 
unequal things all the time, e.g., planets, people, 
cars, planes, words, papers, books, etc. 

2.3 Productivity Measurement versus 
Cost Estimating 

Estimating the cost for a project is an important 
activity, but this is distinguishable from measure- 
ment of the efficiency of the project. Cost estimating 
involves a prognostic use of a productivity metric. In 
cases where estimated cost is incorrect, the error 
may be due to misunderstandings regarding factors 
affecting cost (e.g., particular design or implementa- 
tion errors), and not a deficiency in the productivity 
metric for measuring efficiency. Thus, attempts to 
evaluate a productivity metric based on its use in 
estimating cost may not be appropriate and perhaps 
arise “out of a . . . misconception that a software mea- 
sure must always be part of a prediction system” (Baker 
et al., 1990). The situation may be that “productivity” 
relates primarily to the number of potatoes in 
Campbell’s sack of potatoes (the quantity of output), 

and cost estimating involves also understanding 
whether the potatoes are “good cookers” [the quali- 
ties of the output (Campbell, 1921)]. This would 
support the conclusion that generally “one software 
development environment.. . [cannot] use the algo- 
rithms developed at another environment to predict 
resource consumption” (Bailey and Basili, 1981). 

2.4 The Meaning of Size 

“Researchers in software measurement have failed 
to take advantage of measuremen-t theory” (Fenton 
and Melton, 1990). “From the standpoint of mea- 
surement theory, many of the derived measurements 
of software that have been proposed.. . are mean- 
ingless” (DeMillo and Lipton, 1981). “Size,” espe- 
cially as it relates to “effort,” has been “a compo- 
nent of almost all [software] cost and productivity 
models” (Baker et al., 1990): e.g., “we will take the 
system size scale to be related explicitly to the efsort 
to analyze, design, and develop the functions of the 
system” (Symons, 1988); “for a measure of software 
size to be useful for software productivity and.. . 
software cost estimation.. . it would have to corre- 
late well with the measure of software development 
effort” (Yu et al., 1990); “if we have a generally 
accepted product (size) metric P we can estimate 
the process (cost) metric C” (Rask et al., 1993). 

The view that size should correlate with effort in 
some predictable (formula) way preempts an aim of 
software measurement, namely, to find which of the 
competing alternatives is most effective for produc- 
ing a given program of size s. Thus, size and effort 
should be independent. We cannot assume that a 
specification of size for a program predetermines the 
effort required for its creation (or the reverse). 
Effort should be dependent on the techniques and 
technology (e.g., COBOL versus Assembler) used 
for the creation of the program. 

An additional observation concerning size is that 
the unit of size might not be the unit of output for a 
productivity metric. An example outside the soft- 
ware arena is a shoe factory that produces shoes in a 
variety of shoe sizes. Shoe factory productivity mea- 
surement will use the number of pairs of shoes 
produced, not the sum of the shoe sizes. 

In this article I do not intend to cover all of the 
many issues in the software metric area. I do share 
the view that “many misunderstandings surrounding 
software measures are due to the failure to make 
clear the distinction between a> product/ process/ 
resource attributes and measures, and b) internal 
and external attributes and measures” (Fenton, 
1991). 
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Figure 2. Program structure. 

3. UNIT OF WORK 

Figure 2 is a common picture of how we describe a 
program product or system and is accurate for what 
we ship. It does not, however, best represent what 
we work on; Figure 3 is a better representation. 
What we work on is formal [an abstraction (Brooks, 

Program Product 

198611; this is illustrated by the rectangle outside the 
hierarchical product structure in Figure 3. The 8 
symbol shown inside the module level of the hierar- 
chical structure represents the embodiment of this 
abstract work item; implementation of the abstract 
work item requires each 8. Of course, we work on 

Component 
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Sub-Component 

1 

I 1 I 

1 

1 

Module 

I 
8 => change for work Item xx 

Figure 3. Work item. 

work Item xx I 
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Program Product 
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Sub-Component 
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e => Change for Work I&m Xx 

0 => Change for Work Item W 

Figure 4. Multiple work items. 

multiple items in a release, and they may have an 
impact on the same modules; Figure 4 shows this. 

Figure 5 is an excerpt from what IMS calls a TU 
(transferable unit) and is a description of work for 
XRF Restart: “backup” system MFS block load/re- 
lease. The important things to notice are: (1) there 
are several program units involved (three new, five 
modified {REPLACE}, and three affected {REAS- 
SEM}); (2) the work involves multiple individuals, 
here two (TF and JFW); and (3) some modules 
require zero new or modified LOC. 

Figure 6 is a higher level view that illustrates that 
we work on multiple abstract work items in a re- 
lease. The example is from the DB2 Release 2 
System Plan, and it is a summary of one of their line 
item workbooks, which contain more detailed infor- 
mation. A line item (abstract work item) can require 
work in multiple components (sets of modules) within 
a product that may not all be integrated into the 
product simultaneously.6 Some abstract work items 

6A “spin” represents an integration point for selected function- 
ality (see Figure 6). 

may require actions in other products. For example, 
certain capabilities in DB2 require changes in MVS. 
We normally call these dependencies. I make this 
observation merely for completeness and, in this 
article, make no special use of this characteristic. 

In summary, our unit of work 

l is a management- or organization-defined abstract 
work item; 

l is a definable set of changes to a definable set of 
modules (and may involve the creation of new 
modules); 

l can require changes/additions in multiple ele- 
ments (products, subsystems, etc.); 

l may be subdivided if experience suggests that is 
prudent (usually when we get into trouble). 

Additionally, in each of these cases, IMS and DB2, 
the GPD Programming Development Process Hand- 
book does not even refer to TUs or line item work- 
books. These things exist because the organization 
believes them to be necessary to manage its work. 
The common thread here is that each organization 
is attempting to manage change. To fulfill their 
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hbptu.DO5 HS RESTART 1212 0 
hbpt."Backup" System WPS Block Load/Release 
hmp.FUNCTION: 
rp.Provide for the loading and releasing of the WFS BMCKS 
by the "backup" system based upon the events occurring 
in the Yactive* system. 
Ltupreq. TUDOl TUDO2 
sltuopreq. 
&mp.DESCRIPTION: 
ep.Based upon the user Terminal activity 
occurring in the “active" system, the "backup* will 
mirror the loading and releasing of the WFS Blocks. 
This is driven by the x831' Communication Message Queue Get Unique and 
the ~'35' Communication Message Queue Rnqueue log records. 

===> We have a requirement that WFS support multiple TCBs 
because this.is running under the Restart TCB concurrent with 
Communication during the CONTINUOUS TRACKING PHASE. 

&mp.RBSTRICTIONS: 
&P. 
&mp.TESTING SUGGESTIONS: 
hp.Cancel with a dump a "backup" system which was tracking terminal 
events occurring on an 'active". Inspect the 'FRE's to determine 
whether the MFS Blocks were correctly loaded and released. 
Also, check all 'CIB's for correctness. 
&tufpfs.‘I/20/03’ ‘-’ ‘I/20/03’ 
htulogic.‘3/01/03’ ‘-’ ‘3/10/03’ 
htucode.*4/01/03g 1-t ‘3/31/03’ 
htuut.‘4/15/03’ ‘4/29/03’ ‘4/29/03’ 
&tuxfer.'4/15/03' '4/29/03' '5/a/03' 
htudr2.*1/20/03' 'l/31/03' 'l/31/03' 
&tudr3.'3/15/03' '-' '3/10/03* 
&tui0.'3/15/03' '-' '3/10/03' 
&tuil.DFSCRSPO '4/15/03' '4/22/03' '4/29/03' 
&tui2.'4/15/03' '4/22/03' '4/29/03' 
Ltuutc.'4/15/03' '4/29/03' '4/29/03' 

l ******t 
&tuil.QLGGENQU '4/15/03' '4/22/03' '4/29/03' 
&tui2.'4/15/03' '4/22/03' '4/29/03' 
&tuutc.'4/15/03' '4/29/03' '4/29/03' 
&tumm.DFSCRSPO MODULE -10 REP&B TF 

&tmwn.DF0ICV50 MODULE 40 REPLACE JFW 
&tumm.DFSIINFO MODULE 62 REPLACE JFW 

t.t..tet 
&tumm.DFSQLOGO MODULE 76 REPLACE TF 
&tuamt.DFSFRT MACRO 202 NEW JFW 

l **z**** 

i 
‘&tumm.DFSCRPOO MODULB 0 RRASSBM TF 

l ******* 

&tumm.DFSQRSTO MODULE 0 RBASSRM TF 

Figure 5. IMS ‘IV-Replica. 

responsibilities, organizations factor and document 
these responsibilities to whatever degree thought 
required for the success of the organization. Change 
management is extremely important to success; thus, 
organizations create work breakdown structures.’ 

Let me call this unit of work an AWI (abstract 
work item). A working definition for an AWI is as 
follows: the intended result of a set of actions on a 
software product’s source text. The result is vitalized 

‘“The purpose of a WBS {work breakdown structure) is to divide 
the total project into small pieces, sometimes called work puck- 
ages. Dividing the project into work packages makes it possible to 
prepare project schedules and cost estimates and to assign man- 
agement and task responsibility” (Nicholas, 1990). 

through a set of internal or external product at- 
tributes; the actions are process activities performed 
to achieve the desired product attributes. The level 
of detail (degree of factoring) in a project’s docu- 
mented work breakdown structure may not always 
explicitly reveal the result (AWI) as specific product 
attributes (e.g., “update the payroll to reflect the 
new tax laws” or “improve performance by 5%“). 
Thus, the documented expression of an AWI may be 
subject to some ambiguity; nevertheless, clearly, such 
decomposition must occur. 

3.1 CHANGE-POINTS 

The use of AWI as the unit of output in the produc- 
tivity metric has a certain appeal. However, to man- 
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(DB22LINE) 
DEPT LINE ITEM DESCRIPTION LCK! 

LI40 SPUFI as a DSN Subcommand -- Spin 3 
SPUFI (TAC) 1157 

LI Total 1157, 
L141 ISPF Panel Restructure -- Spins 2.3 

ISPF/DB21 Panels (TAC) a 5038 
Installation & 414 
Precompiler/Parser & 555 

LI Total a 6007 
L152 Interpreter Rework -- Spin 3 

RDSM 28 
RDSI h 409 

LI Total a 437. 
M92 L161 RNCODE/DECODE Exit Support -- Spin 5 I 
cant RDSI & 2205 

RDSM a 2238 
PC & 265 
UC h 1157 
BMC & 344 
CAT 6 546 

LI Total h 5650, 
Department Total & 40977, 

MO9 LIO2 Sequential Prefetch -- Spin 2 
Data Manager 11 
RDSM 214 
Utilities 20 
Buffer Manager 56 
SPMC 200 

LI Total 501, 
LIO5 Restartable Load w/o logging -- Spin 3 

Utilities 641 

I I 
_- _ 

Utilities 79 I 

I I 
LIll Discard File for Load -- Spins 2,4 I 

Utilities 600 
TAC f 20 

1 LI Total 6 620 
1 L112 Delete Keyword -- SDin 1 I 

I I Utilities 
I 

490 
Data Manager 9 

Figure 6. DB2 System Plan-Replica. 

age change, there clearly are many more elements to 
deal with than are represented by a count of AWI. 
As shown in Figure 5, an AWI implementation 
might use multiple program units. Specific program 
units will be created and/or used in support of 
implementing that AWI. Those program units are 
expected to produce certain effects (under specific 
conditions) within the program in support of that 
AWI. 

Thus, recalling Figure 3, we can recognize the 
building blocks of an AWI-what I call CHANGE- 
POINTS. Please review Figure 5. Each new module 
will have a set of execution-time effects. Each modi- 
fied module will have its set of execution-time ef- 
fects altered to accommodate the new AWI. Each 

macro will have a set of compile-time effects8 Each 
reassembled module will have its set of execution- 
time effects modified in some way that accommo- 
dates this new AWI.,If the correct set of effects 
needed from any of these program units is not 
specified or implemented, then there is an error in 
the AWI design or implementation. If not all the 
needed new, modified, or affected program units are 
identified or implemented, then there is an error in 
the AWI design or implementation. Each of these 
program units is a locus of change in support of this 

'Some macros are conditional; some header files are condi- 
tional. 
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AWI. A CHANGE-POINT is defined as the in- 
tended result of a set of actions on a single new, 
modified, affected, or deleted program unit used to 
materialize a particular AWI. The result is vitalized 
through a set of internal or external program unit 
attributes; the actions are process activities per- 
formed to achieve the desired program unit at- 
tributes. More specifically, a CHANGE-POINT is 
vitalized through a subset of (possible) ejjfects within 
the set of (possible) effects in or from a single new, 
modified, affected, or deleted program unit used to 
materialize a particular AWI.9 Context (internal 
and/or external) affects which effects are expected 
to occur (e.g., is a particular symbol defined? is the 
value of a particular variable equal to l? did a divide 
exception occur? did the user click on “Close File”?), 
and these expectations will be used to judge the 
correctness of the AWI and CHANGE-POINT de- 
sign and implementation.” 

“Program unit” is imprecise, because it can refer- 
ence any level of the hierarchy shown in Figure 3, 
but mixing of levels should not occur. Within the 
context of this article, “program unit” and “module” 
are synonyms and refer to the lowest level of the 
hierarchy, assumed to be source modules (including 
merely definitional source, e.g., DSECT, INCLUDE, 
#include, and macro files). “Source modules” is also 
imprecise; I discuss this shortly. New, modified, af- 
fected, and deleted program units have somewhat 
different roles regarding change in a program; this is 
discussed below. 

3.1.1 Affected modules. Figure 7 shows some C 
code modules; for the moment, just consider Mod- 
uleA and ModuleB. ModuleA is purely definitional. 
Assume that the design for some new AWI requires 
J and I to be long instead of int. To support im- 
plementation of the new AWI, we must modify 
ModuleA by changing “int” to “long.” Merely 
changing ModuleA is not sufficient: ModuleB is 
affected by this AWI design.” For this AWI imple- 
mentation, the (compile-time) effect in ModuleA is 
new semantics for aTYPE (and for paTYPE), and 
the (compile-time) effect(s) in ModuleB from Mod- 
uleA ensure that the (execution-time) effects from 
ModuleB statements using I or J remain valid. 

‘Cf. C/C+ + usage of “side effect(s)” and “side effect opera- 
tor.” 

“See testing suggestions in Figure 5. 
“If the size of int is smaller than the size of long, tests of I and 

assignments to J can be erroneous if ModuleB is not recompiled. 

Module& 
typedcf int aTYPE: 
lypedef aTYPE *paTYPE; 

ModuleB: 
#include “ModuleA’ 
extcm aTYPE J. aTYPE I; 
void functionl(void) 

if(l==l) 

spec_code(); 
J=2; 

else 
J = 3; 

ModulcB’: 

#inch& “ModuleA” 
cxtem aTYPE 1. aTYPE 1; 
void function I(void) 

I 

t 
J = ( I == 1 ) ? (spec_code(),2) : 3; 

#include "Module A” 
extem aTYPE I. aTYPE I; 
void functionI(void) 

I 
switch ( I ) 

1 
case 1: 
spec_wdeo; 
J = 2; 
break; 

default: 
J= 3; 
break; 

Figure 7. C code. 

Affected program units are altered in support of 
some AWI that changes the product design or im- 
plementation, but the alteration is of a different 
nature than for modified modules. The source text 
of an affected module remains the same (e.g., Mod- 
uleB12), whereas the source text for a modified mod- 
ule does not (e.g., ModuleA). The action taken with 
an affected module is intended to preserve (restore) 
its integrity and in some cases will add or remove 
capability. 

3.1.2 New or modified modules. New or modified 
program units are created in support of some AWI 
that changes the product design or implementation. 
A program unit may have overlapping or nonover- 
lapping subsets of effects regarding multiple AWI. A 

12Preprocessor output will differ, as will the object code, but 
like the object code, preprocessor output is not the source text for 
ModuleB. 
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module might contain some entry points used only 
in support of a particular AWI and others that are 
used only in support of another AWI. As a practical 
matter, there are many reasons to combine into a 
single module the needs of multiple AWI, for exam- 
ple, (1) performance improvements from internal 
subroutine sharing, (2) much of the module is reus- 
able without replication, or (3) storage savings from 
sharing static data. 

3.1.3 Deleted modules. Design and implementation 
of an AWI can require deletion of program units. 
Deleted program units are alterations to the pro- 
gram (structure) intended to have a null set of 
effects (e.g., removing support for old devices). 
Sometimes deleting a program unit merely means 
allocating to other (new or modified) modules what- 
ever was previously done using the deleted module. 
Splitting a program unit can be desirable for many 
reasons, one of which is simply to create units of 
more manageable length. Not deleting unneeded 
program units is not always benign. 

The designers and implementors of OS/2 2.1 
Special Edition had to strip out Windows; testing 
had to verify that the actual deletions did not have 
undesirable effects. For legal reasons, Borland has 
to delete any modules whose only purpose is to 
support Lotus l-2-3 emulation in their spreadsheet 
product. 

3.2 Design, Implementation, and Test of Change 

High-level design (see Appendix 3) identifies 
CHANGE-POINTS by (1) assigning a set of respon- 
sibilities to a new, modified, or affected program 
unit relative to an AWI, or (2) indicating actions 
needed (e.g., recompile) for an affected program 
unit relative to an AWI, or (3) indicating deletion of 
specific program units relative to an AWI. According 
to Programming Process Architecture (1986), compo- 
nent level design “defines: all new, changed, and 
affected modules, macros, and their function&] con- 
trol and function flow to the intermodule level[;] all 
intermodule interfaces, including parameter value& 
and] all data definitions.” In this sense, high-level 
design produces specified CHANGE-POINTS, so in 
the context of productivity, it makes sense to think 
of CHANGE-POINTS as an output of design effort. 

During implementation (see Appendix 31, a 
CHANGE-POINT is materialized by a set of source 
text (in one or more languages13) within a program 
unit, or by an action performed with a program unit 
relative to an AWI (e.g., recompile because of a 
change in a data structure shared with another pro- 

gram unit). Assume ModuleB in Figure 7 is created 
in support of some new AWI. ModuleB’ and Mod- 
uleB” are semantically identical to ModuleB and 
invoked identically. They are examples of possible 
alternative materializations of the CHANGE-POINT 
ModuleB implements; ModuleB, ModuleB’, and 
ModuleB” produce the same set of effects. An opti- 
mizing compiler might generate identical object code 
for these variations. Materialization of a particular 
CHANGE-POINT might use alternative sets of 
source text; in this sense a CHANGE-POINT is 
LOC independent (see also Appendix 2). It is impor- 
tant to note that the source text used to implement a 
CHANGE-POINT might not be contiguous within a 
program unit. Furthermore, because source text 
changes used to implement a CHANGE-POINT in a 
modified module often take advantage of surround- 
ing source text, a CHANGE-POINT is not, in gen- 
eral, materialized only by new source text. 

The implementation technology and the design 
that selected the technology determine what makes 
up source or source modules. For example, the input 
to an application generator or report writer (e.g., 
RPG) can be considered a higher level of source 
than input to a compiler (e.g., PL/I). Currently, 
great interest exists in raising the level of implemen- 
tation above high-level languages (HLL) to get ben- 
efits above and beyond what is achievable with cur- 
rent HLL. 

Mixing of implementation technology also occurs. 
It is common, for example, for development projects 
to use both assembler and one or more HLL. In 
theory, designers should minimize the number of 
CHANGE-POINTS for a project (set of AWIs), but 
practical trade-offs can exert an upward push on the 
number of CHANGE-POINTS needed to implement 
a project. 

Test (see Appendix 3) validates specified and im- 
plemented CHANGE-POINTS for an AWI using a 
set of test cases. Currently, validation uses machine 
execution of the developed product, and I speak 
about test in this context. I leave proofs and other 
techniques to the future. 

Test does not produce CHANGE-POINTS except 
in the undesirable sense of detecting incomplete 
design. In the ideal case, test should execute suffi- 
cient test cases to ensure that the CHANGE-POINT 
implementations accomplish the intended objective, 
the AWI (function test, system test), without unde- 
sirable side effects (function test, regression test, 

13Some high-level language compilers support embedded as- 
sembler language, e.g., IBM’s proprietary PL/AS and Borland’s C. 
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system test). In this sense, test produces validated 
CHANGE-POINTS, so in the context of productiv- 
ity, it makes sense to think of CHANGE-POINTS as 
an output of test effort. 

During a project, a CHANGE-POINT is one of 
the sets of changes that management and the re- 
sponsible developers must design, implement, and 
test (on schedule, with high quality, and at lowest 
cost). A CHANGE-POINT is more granular than an 
AWI (in that by definition it relates only to a single 
program unit) but more global than a LOC (in 
that implementation might use multiple LO0 
CHANGE-POINTS seem usable as the unit of out- 
put in our productivity metric.14 

3.2.1 Counting CHANGE-POINTS. To have con- 
sistent and repeatable CHANGE-POINT counts for 
a given design, we need a counting rule. The rule 
should be simple and seem consistent with the num- 
ber of changes made and managed. The rule to be 
used is this: for each AWI, count 1 for each module 
modified, created (new), deleted, or affected that is 
used to vitalize that AWI; only count a module once 
for that AWI.” Summing gives the total CHANGE- 
POINT count for the design; total CHANGE-POINT 

14Design, implementation, or testing of a CHANGE-POINT 
could each be a work package (or subcategory) in a work break- 
down structure, because these are activities with a duration and a 
timing/position relative to other activities in a project, but 
CHANGE-POINTS are not themselves elements (work packages 
or subcategories) of a work breakdown structure; rather, they are 
lo$cal elements of the software product. 

New, modified, affected, and deleted assume some reference 
program structure (e.g., as in Figure 2) and program unit proper- 
ties (e.g., deleted assumes the module is in the reference program 
structure; affected assumes the module is in the structure and 
does nor have certain properties). The CHANGE-POINT count 
for an AWI is (should be) relative to the program structure and 
program unit properties assumed in the AWI design. 
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count less the sum of the counts for deleted modules 
gives the net CHANGE-POINT count. Summing the 
total or net CHANGE-POINT counts of multiple 
AWI gives, respectively, the total or net CHANGE- 
POINT count for that set of AWI (Figure 8). 

Total and net CHANGE-POINT counts for multi- 
ple AWI are distinguishable from a simple count of 
unique modified, new, deleted, and affected modules 
for that set of AWI. Given the above counting rule, 
it should be clear that, generally, total and net 
CHANGE-POINT counts will exceed a simple mod- 
ule count. One reason to go beyond a simple module 
count is that such a count would not necessarily 
reflect any or significant change because of removal 
or addition of an AWI. 

3.2.2 CHANGE-POINTS and function points. Be- 
cause many readers may have heard of function 
points, I must comment on some distinctions be- 
tween CHANGE-POINTS and the function point 
concept as described by Albrecht and Gaffney (1983). 

Five user function types are the building blocks 
for a function point count: (1) external input; (2) 
external output; (3) logical internal file; (4) external 
interface file; and (5) external inquiry. Fundamental 
to identifying the user function types is the notion 
of “the external boundary of the application being 
measured” (Albrecht and Gaffney, 1983). “The 
amount of the ‘function’ the software is to perform 
. . . is quantified as ‘function points,’ essentially, a 

weighted sum of the number of ‘inputs,’ ‘outputs,’ 
‘master files,’ and ‘inquiries’ provided to, or gener- 
ated by, the software” (Albrecht and Gaffney, 1983). 

Total and net CHANGE-POINT counts, on the 
other hand, depend on the partitioning of the AWIs 
for the application or program being measured and 
have no dependency on recognition of the user 

. 

Figure 8. Counting. 



CHANGE-POINTS J. SYSTEMS SOFTWARE 81 
1995; 31:71-91 

function types. Certain classes of rework of an oper- 
ational application would result in zero [Mark II 
(Symons, 198811 function points but nonzero total 
and net CHANGE-POINT counts: for example, per- 
formance enhancements. 

“Albrecht.. . developed a methodology to esti- 
mate the amount of the ‘function’. . . software is to 
perform . . . quantified as ‘function points’ ” (Albre- 
cht and Gaffney, 1983). CHANGE-POINTS relate to 
change in the software and its structure.‘6 Function 
points are widely accepted as a size metric by both 
practioners and academic researchers (Kemerer and 
Porter, 1992) and have approached the position of 
being a de facto standard as a size metric (Symons, 
19881, although Albrecht and Gaffney (1983) pro- 
posed function points “as an alternative to ‘size.“’ 

Symons (1988) identified limitations of function 
points (including Mark II function points). Kemerer 
and Porter (1992) addressed reliability of function- 
point counts. An additional difficulty with function 
points is as follows: the meaningfulness of computa- 
tions using the simple (low), average (medium), and 
complex (high) weights, and the degrees of influence 
(impact), is not well specified (by definition, these 
are classifications and so might be better repre- 
sented as letters). Furthermore, even if these factors 
can be reliably assigned, this does not mean that 
total unadjusted function points WFP) or total de- 
gree of influence are meaningful (e.g., summing [l] 
the result of a length in inches times a factor that 
converts it to feet and [2] the result of a length in 
centimeters times a factor that converts it to meters 
can produce a numeral {[l] + [2] = [?I), but this 
numeral is not meaningful, although the factors can 
be reliably assigned). 

Symons (1988) considered “function points. . . di- 
mensionless numbers on an arbitrary scale.” This 
seems inconsistent with the use of weights. The 
presumed purpose of the weights is to convert items 
to a common scale (e.g., L number of low-complex- 
ity external inputs is equal to M number of 
medium-complexity external outputs and H number 
of high-complexity logical files, on some nonarbi- 
trary scale). If the scale is arbitrary, then, at least, 
each triplet of weights is independent of the others 
(e.g., there is no reason for the weights for external 
inputs and external inquiries to be identical) and, 
therefore, different sets of triplets are usable to 
compute UFP; this means UFP and FP are not 
unique for a given design. 

lhJust as a software entity is an abstraction (Brook, 1986), so, 
too, are CHANGE-POINTS. 

Convention might lead to a completely reliable 
method for counting user function types and for the 
assignment of weights, and thus for computing func- 
tion points. If, as Symons (1988) maintained, differ- 
ent technologies require the use of different weights 
for FP, then relating FPr, to FPTZ requires some 
function N to map FPri to FPr2 or some function ?? 
to map FPr* to FP,,, to be meaningful; the scales 
involved may be complex, but they cannot be arbi- 
trary. 

If FP does not require different weights for dif- 
ferent technologies (and/or one maintains that FP 
is itself a scale), then we still have the zero UFP 
problem: whenever UFP is zero, FP is also zero, thus 
implying that productivity is zero; this can occur for 
certain classes of work, e.g., software defect repairs 
that do not affect the definition of or quantity or 
complexity of user function types, and some changes 
to macros in C #include files.17 Also, user function 
counts are integers, so the current standard weights 
cause UFP to be a discontinuous count that sets an 
upper and lower bound on UFP for all possible 
technologies usable for implementation of all possi- 
ble applications that have the same counts for each 
of the five user function types.18 The view of soft- 
ware leading to these features requires explanation; 
“measurement without an underlying theme can 
leave the experimentalist, the theorist, and the prac- 
titioner very confused” (Chillarege et al., 1992). 

A major tenet of Albrecht and Gaffney (1983) is 
that function points have a high correlation with the 
eventual LOC. They suggest using “ ‘function points’ 
to estimate ‘SLOC,’ and then using ‘SLOC’ to esti- 
mate the work-effort.” Jones (1991) considers back- 
firing a reliable method for converting LOC to func- 
tion points. Converting function points to LOC and 
converting LOC to function points are not valid 
resealings, in part because LOC is a continuous 
(unbounded) count. Furthermore, most such conver- 
sion factors vary according to the coding and project 

“AIbrecht and Gaffney (1983) refer to “counting the function 
points.. . changed by the development.. project,” but this can 
only mean changed user function types from which UFP is 
derived [“ChgA” and “ChgB” (Albrecht and Gaffney, 1983)]. 
Ellipsis when speaking of added or deleted function points, while 
problematic, is not nearly as dangerous as when speaking of 
changed function points. 

‘“For example, for the function point calculator application in 
Jones (1991), valid UFP values are {18,19,20,21,22,23,24,25, 
26,27,28,29,30,31,32,33,35}, not 34, and no value < 18 or 
> 35 is valid for any technology or application that keeps EI, EO, 
ILF, EIF, and EQ the same. Note also that the current standard 
UFP weights can be reduced to four (3, 4, 5, and 7-the unique 
simple (low) weights}, perhaps three (3, 4, and 51, and just possibly 
to one (3). 
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styles used in particular organizations and thus are 
not general. In addition, for mixed-language applica- 
tions, backfiring requires adding LOC in different 
source languages, without adjustment [see Jones 
(19911, pp. 77-781. 

Using the same function point count for different 
languages in prediction models [or “‘formula’ esti- 
mates” Wbrecht and Gaffney, 198311 for effort 
might be misleading: if effort varies with source 
language, then using different source languages to 
develop the same application might imply diflerent 
function point counts (due to different designs) 
should be used for the application in some of the 
languages as one way to eliminate or reverse the 
differences in effort. Rejecting this view forces one 
to accept that for evev application, there is some 
function point count, f, for some least effort design 
in a particular language” such that f is the function 
point count for some least effort design for that 
application in each of all possible languages.*’ If 
there is no shared function point count among least 
effort designs for all possible languages for an appli- 
cation, then function points do roof “stay constant 
regardless of the programming language used” 
(Jones, 1991) for purposes of comparison of least 
effort among languages. Thus, predictions of effort 
using a common function point count are not suffi- 
cient to make least-total-effort evaluations: for a 
specific application, least effort rankings might not 
correspond to function-point rankings-a language 
that does not have the smallest function point count 
might need the least effort, or the effort for design 
D in language L could be less than the effort for all 
designs that have a common function point count in 
all languages. 

3.3 Issues and Questions 

This section addresses a few issues and questions 
that may be on the minds of readers. 

3.3.1 LOC not factored into count. Because LOC 
are not outputs of Design or Test, including LOC 
means we cannot use CHANGE-POINTS as a com- 

19This assumes an optimal work breakdown structure for im- 
plementing that design. It is noteworthy that empirically derived 
cost prediction models may be plagued by less-than-optimal 
matches between designs and project work breakdown structure. 

2oThls is not to say that there is no single design with the same 
function point count in each language, nor that there cannot be a 
collection of designs such that, although they may differ by 
language, their function point count is the same, nor that all least 
effort designs in each of all possible languages for an application 
must have the same function point count. 

mon output. Furthermore, current indications are 
that coding is only lo-20% of Implementation ef- 
fort. 

3.3.2 Different managers or developers, given the 
same implementation or enhancement task, will define 
different sets of AW and thus generate different 
CHANGE-POINT counts. Exactly. “The hardest sin- 
gle part of building a software system is deciding 
precisely what to build” (Brooks, 1986). One hopes 
that software science can provide metrics useful for 
comparing such decisions. “Software construction is 
a creative process” (Brooks, 1986). “Design and pro- 
gramming are human activities; forget that and all 
is lost)’ (Stroustrup, 1991). Using total or net 
CHANGE-POINT count alone will not determine 
what to design; no mere count will suffice for that 
purpose, but prediction models or assessment for- 
mulas that use that count (or its components) may 
help. If we consider a case where different designs 
for the same system or application result in the same 
total and net CHANGE-POINT counts, then the 
selection of one design over the other will depend 
on other factors (e.g., elapsed-time target, total re- 
sources needed, usability, skills available, etc.). 

3.3.3 How is “Set of effects” difSerent from “states” 
or “‘set of states”? States in software systems seem 
best related to an execution time view of programs. 
CHANGE-POINTS also relate to purely definitional 
program units. Even header files that only enable 
the use of convenient symbols require change man- 
agement. Modification of such modules can have 
serious development and execution-time conse- 
quences. However, I do not think it is useful to talk 
about such a module as a “component [that] deals 
with a small number of cases” in the sense intended 
in Parnas (1985). The CHANGE-POINT approach 
integrates a construction-time (design, build, and 
test) view and an execution-time view of the soft- 
ware system. Development organizations must deal 
with the complexities of both the construction and 
execution contexts. 

3.3.4 Complexity not factored into count. To the 
extent this is true and a problem, it is not unique to 
this approach. LOC counts, for example, do not 
factor in differences resulting from variations in 
complexity. Furthermore, because total and net 
CHANGE-POINT counts are not merely counts of 
unique modules, total and net CHANGE-POINT 
counts reflect complexity. A lOO-LOC change might 
be more or less complex than one-hundred l-LOC 
changes, but the latter are likely to be more difficult 
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to manage, which could result in differences in pro- 
ductivity. 

I do not know the “right” way to measure com- 
plexity, but some indicators might be as follows21: 

l CP/Module (change density-structure) 

l Modules/CP (change dispersal-structure) 

l CP/AWI (change scope-structure) 

l AWI/CP (change compactness-structure) 

l CP/LOC (change concentration-implementa- 
tion) 

l LOC/CP (change spread-implementation) 

Summing CPawi, cpa,i/Loc,+vi> or Loc,,,/cpa,i 
yields an indicator that increases or decreases when 
adding or deleting AWIs. 

As noted earlier, a simple counting rule is desir- 
able. Complex counting rules tend to be impractical 
and subjective. Setting up elaborate weighting proce- 
dures without factual knowledge about the influence 
of things factored in could be misleading and coun- 
terproductive. 

3.3.5 External integaces not factored into count. 
First, this is primarily a problem regarding modules 
that have multiple entry ,points or multiple types for 
a single argument. Second, external module refer- 
ences imply a count of at least two for the relevant 
AWI, so total and net CHANGE-POINT counts 
reflect such references. Module recompiles required 
because of control block modifications allow total 
and net CHANGE-POINT counts to reflect such 
interface changes. 

3.3.6 Why not just use LOC? Each LOC is a change. 
LOC is implementation dependent and varies be- 
cause of compiler facilities, skill level, etc.; again, it 
is not applicable to Design and Test. 

3.3.7 CHANGE-POINT counts ignore the size/ 
complexity of a change (e.g., a IO-LOC change is not 
equal to a 50-LOC change or a lOO-LOC change). 
Neither “size” nor “complexity” of a change has a 
uniform relationship to LOC. A l-LOC change can 
be complex because of all the things and relation- 
ships that one must know and keep in mind before 
or when making that change. A lo-LOC change can 
be “larger” than a lOO-LOC change because the 
lo-LOC change spans 1,000 LOC, more than one 
module, and has substantial potential for system side 

21”Module(s)” means either “total” or “new + modified + 
affected.” 
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effects, whereas the lOO-LOC change is contiguous 
and has no potential for substantial system side 
effects. 

Part of this problem is that we are used to sizing 
changes with LOC. Our reaction to a lo-LOC change 
is that it is a small change, easy and quickly done. 
LOC is only one dimension. Test impact, documen- 
tation impact, performance impact, service impact, 
etc., influence the size of a change. The size of a 
change is distinct from the count of its implementa- 
tion LOC. 

The issue seems to be that we don’t now know the 
effects of all the things someone may think are 
important, so we should do nothing. Isn’t it better to 
do something that will allow us to start finding out 
these effects (with data)? Otherwise, the issue must 
be whether total or net CHANGE-POINT counts 
are useful for productivity measurement, which is 
different, but permitted. 

3.4 CHANGE-POINT Count: What Good Is It? 

Several characteristics of a CHANGE-POINT count 
commend it for use in a productivity metric: 

CHANGE-POINT counts are usable before 
product ship as an actual value (not something 
that is part actual and part projection). For exam- 
ple, once we have an established component level 
design baseline, the number of CHANGE- 
POINTS specified is a known value, not, as with 
lines of code, a number not yet determined. De- 
pending on the tracking system, we can even get 
intermediate counts of completed CHANGE- 
POINTS based on the status of the component 
design documentation. Having a number that is a 
known value enables us to evaluate productivity 
as we go along, and thereby helps us take actions 
that will potentially affect the final productivity of 
the project. 
CHANGE-POINT counts are probably more sta- 
ble than LOC counts. We are all, no doubt, 
familiar with the fluctuations (growth) in LOC as 
projects progress through development phases. A 
fluctuating CHANGE-POINT count shows design 
instability or error. 
Because CHANGE-POINTS relate to a logical 
organization of our work, CHANGE-POINT 
counts are usable even when process steps over- 
lap. This is because process overlap, when suc- 
cessful, maintains a logical structure that allows 
us to track the status of an AWI. At any particu- 
lar process step, we know the relationship of the 
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items being handled to their overall purpose (the 
AWI). 
We know that change management is essential. 
Improvement in productivity using CHANGE- 
POINT counts reflects management efficiency, 
not just worker efficiency. The way we plan to 
handle change affects the potential for productiv- 
ity improvement. 
Specified CHANGE-POINTS are independent of 
implementation source language; the implemen- 
tation language used for individual modules need 
not affect the CHANGE-POINT count.** This 
avoids the usual problems associated with differ- 
ent implementation languages, e.g., conversion of 
LOC counts in language x to LOC counts in 
language y. 
CHANGE-POINT counts are usable for compar- 
ing different languages: selection of a language 
that allows a high-level design with a different 
CHANGE-POINT count could represent an op- 
portunity for productivity or effectiveness im- 
provement. 
CHANGE-POINT counts are usable for periods 
of one year or less. Thus, periodic productivity 
assessments are possible; because of (3) above, 
these can include work in process. 
Automation of counting of CHANGE-POINTS is 
possible. Version and modification control identi- 
fies new or modified LOC (by sequence number 
or other indicators). It is not a complicated mat- 
ter to identify the AWI(s) associated with new, 
modified, affected, or deleted modules. A high- 
level design should indicate each module created, 
modified, affected, or deleted in support of each 
AWI; if this AWI information is in machine- 
readable form, then automation of counting 
CHANGE-POINTS is possible. 

4. THE METRICS 

This section discusses productivity, interference, and 
effectiveness metrics (the PIE matrix) for each de- 
velopment activity (Figure 9). Appendix 3 contains 
additional discussion of the terms “interference” 
and “effectiveness” and other terms used in this 
article. The focus here is on illustrating analysis that 

22 Interlanguage communication in modern compilers makes 
mixing of languages a practical consideration. It is true that 
selection of a particular language might affect the product high- 
level design and thus the CHANGE-POINT count for a project; 
however, it is not true that a high-level design must be language 
specific (any module written in a high-level language could be 
written in assembler). 
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uses CHANGE-POINT counts for assessment, as 
opposed to prediction. The reason for this focus is 
that it is probably true that predictions of project 
productivity or effort will have large variances from 
actual results, unless effectiveness for Design, Im- 
plementation, and Test is at a high level. 

4.1 The Data 

Figures 10 and 11 present data collected for three 
releases of a product developed at STL (Ra, Rb, and 
Rc; Rc is the most recent release, Rb is its predeces- 
sor, and Ra is Rb’s predecessor). Current data re- 
tention does not preserve all the data implied by the 
CHANGE-POINT approach, so the results shown in 
Figure 11 are incomplete. In particular, there is no 
AWI level data for Ra and Rb. In addition, the Rc 
values in Figure 11 use cldCP (new, modified, and 
affected modules at the end of formal test) from 
Figure 10 as a surrogate for CLDCP and CLD,CP 
(this is equivalent to assuming no new, modified, or 
affected modules were added after design comple- 
tion, i.e., RCCP and DCCP are zero). This is a 
best-case assumption (e.g., no implementation inter- 
ference) and results in effectiveness values for De- 
sign that may be better than actual data would 
produce. 

The cost data for Design used in Figure 11 are for 
effort through 11 (detailed design) and not IO (com- 
ponent level design). This is because the Financial 
Accounting Standards Board’s (FASB) rules treat 
cost through 11 as design, and the current data 
retention system meets this requirement. The result 
is that design productivity as shown may be less than 
actual data would produce, and implementation pro- 
ductivity as shown may be better than actual data 
would produce. 

Cost data by activity name may not be comparable 
from one company to another, or even within the 
same company over time, because the recorded clas- 
sification of departments and activities will vary. To 
deal with this problem, I have related cost to stan- 
dard FASB accounting classifications in the follow- 
ing manner: as stated above, Des% is per FASB; 
Test$ is formal test or performance amortized ex- 
pense; Imp$ is amortized expense less Test$ and less 
expense associated with departments or functions 
that do not have responsibility for writing or design- 
ing source text (e.g., publications and assurance). 
Programming productivity analysis and measure- 
ment will have this type of ambiguity until establish- 
ment of FASB-like standards for classification of 
activities, and this will occur only when such stan- 
dards appear to have importance to project success. 
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OVERALL: CLDCP/P$; PCP,/P$p 

DEFINITIONS: 
ClBC P: Net CHANGE-POINT count from final Component Level Design. 
CZ,D&P: Net CHANGE-POINT count from the base Component Level Design. 
Cp: CLDCP + FTCP. 
DCCP: 

DesCPp: 

D&j: 
Desgip: 
FTCP: 

ImpCPp: 

imp% 

Imp$p: 
P$: 
P$p: 
PCPp: 
RCCP: 

SCP: 

TestCPp: 
Test$: 
Test$p: 

Figure 9. The metrics. 

Total CHANGE-POINT count for Design Changes after the base Component 
Level Design is established. 
Net CHANGE-POINT count for completed Component Level Design activities 
within a period. 
Design total expense. 
Incremental Design total expense between two periods. 
Sum of fix module counts (during Formal Test, count I for each new, modified, 
deleted, or affected module due to a software-defect repair). 
Net CHANGE-POINT count for completed Implementation activities within a 
period. 
Implementation total expense. 
Incremental Implementation total expense between two periods. 
De&$ + lmp$ + Tests. 
Des$p + lmp$p + Test$p. 
DesCPp + ImpCPp + TestCPp. 
Total CHANGE-POINT count for Requirements Changes after Lhc requirements 
or objectives hase is established. 
Sum of fix module counts (after release, count 1 for each new, modified, deleted, 
or affected module due to a Service software-defect repair). 
Net CHANGE-POINT count for completed Test activities within a period. 
Formal Test total expense. 
Incremental Formal Test total expense between two periods. 

4.2 Design 

This section discusses the design metrics included in 
the PIE matrix. 

4.2.1 Productivity metrics. CLDCP/Des$ is 
straightforward; it is simply the final number of 
outputs divided by the cost to produce them. During 
a project, cumulative DesCP,/Des$, would let us 
see how design productivity is changing in a life 
cycle fashion. If we have life cycle history, we can 

compare the current project to history to see if the 
project is typical or shows expected changes, and 
attempt to investigate and understand any atypical 
or unexpected results. For an organization, we can 
sum DesCPp and sum Des$, for its various products 
for a period (year or month or quarter) and thus 
compute the high-level design productivity of the 
organization for that period. 

Currently, there is a strong feeling (which I share) 
that much more needs to be done in the area of 
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ReleaseC(Rc) 
AWI LO@ cldCP ptmCP fP CP CP/LOCb LOCYCPC 

I 

2 
3 
4 
5 
6 
7 
8 
9 
IO 
II 
I2 
I3 
I4 
IS 
I6 
I7 
18 
I9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

1630 
1632 
1633 
1640 
1790 
1820 
1830 
1840 
1850 
1890 
1892 
1910 
1920 
1970 
1980 
1990 
2000 
2010 
2030 
2040 
2080 
2090 
2100 
2102 
2103 
2140 
2150 
2160 
2170 
2180 
2190 
2192 
2200 
2220 
2261 
2310 
2320 
2340 
2342 
2380 
2430 
2490 
2500 
2501 
2550 

E Complexity,,, 

42741 371 1838 476 2,685 
1670 93 441 122 656 

13127 375 1687 392 2,454 
1743 66 335 137 538 
5067 304 390 380 1,074 
3160 259 445 449 1,153 
1742 I48 179 133 460 
2310 I4 I3 57 84 
3284 72 149 232 453 

42741 957 2165 1391 4,513 
8658 83 190 38 311 
8155 278 772 433 1,483 
1239 59 258 177 494 
397 23 65 69 157 
424 56 122 163 341 
II36 519 II77 755 2,451 
3236 49 231 100 380 

25483 369 655 I6 1,040 
1773 92 I40 206 438 
1372 43 347 96 486 
3182 677 996 982 2,655 
70 7 50 I4 71 

3095 4 9 2 I5 
5143 I6 I2 9 37 
5143 I41 311 I47 599 
345 36 93 55 184 
44 2 I4 3 I9 

2028 261 594 303 1,158 
770 70 177 199 446 
8040 320 746 374 1,440 
3459 I5 54 38 107 
3459 90 II8 107 315 
2167 80 245 I47 472 
1265 63 I51 179 393 
1841 43 176 82 301 
6387 1450 2483 1740 5,673 
II87 28 I4 7 49 
878 40 86 41 167 
1037 74 82 66 222 
4612 24 I2 78 I14 
3208 42 213 80 335 
2202 150 411 202 763 
II57 50 271 77 398 
II57 34 307 68 409 
3452 72 524 63 659 

0.0628 
0.3928 
0.1869 
0.3087 
0.2120 
0.3649 
0.2641 
0.0364 
0.1379 
0.1056 
0.0359 
0.1819 
0.3987 
0.3955 
0.8042 
2.1576 
0.1174 
0.0408 
0.2470 
0.3542 
0.8344 
I.0143 
0.0048 
0.0072 
0.1165 
0.5333 
0.4318 
0.5710 
0.5792 
0.1791 
0.0309 
0.0911 
0.2178 
0.3107 
0.1635 
0.8882 
0.0413 
0.1902 
0.2141 
0.0247 
0.1044 
0.3465 
0.3440 
0.3535 
0.1909 
14.5887 

15.9184 
2.5457 
5.3492 
3.2398 
4.7179 
2.7407 
3.7870 

27.5000 
7.2494 
9.4706 
27.8392 
5.4990 
2.5081 
2.5287 
1.2434 
0.4635 
8.5158 
24.5029 
4.0479 
2.8230 
I.1985 
0.9859 

206.3333 
139.0000 
8.5860 
1.8750 
2.3158 
1.7513 
1.7265 
5.5833 
32.3271 
10.9810 
4.5911 
3.2188 
6.1163 
1.1259 

24.2245 
5.2575 
4.6712 
40.4561 
9.5761 
2.8860 
2.9070 
2.8289 
5.2382 

688.2515 

Summary 
Rc 234,786 8,019 19,748 10,885 38,652 0.1646 6.0744 
Rb Not Available Not Available 2,306 2,790 5,096 
Ra Not Available Not Available 2,649 2,309 4,958 

COSf Release C Release B Release A 

De& 8,825,OOO 3,437,OOO 8,264,OOO 
Imps 24,116,OOO 9,602,OOO 9,051,OOo 
Test% 9,606.OOO 2,900,OOO 6.096,OOO 
PE 42,547,OOO 15,939,OOO 23.411.000 

Figure 10. The data. (” Total LOC for new, modified, and affected modules. b Change Concentration. ’ Change Spread.) 
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STAGE 

Design 

Test 

PRODUCTIVITY INTERFERENCE EFFECTIVENESS 

1 Ra: 0.739@ 

CLDCPIP% 

Release C 
0.0002 

Release B Release A 

Modules’ 5339 4438 4394 
Modulesnmo 3076 

Complexi~ 
Density’ 
Densitynmo 
Dispersal’ 
Dispersalnma 
Scope 
Compactness 

7.2396 1.1483 1.1284 
12.5657 
0.1381 
0.0796 

858.9333 
0.0012 

SCP 930x 1185” 
17442 

Figure 11. The measures. (“After 6 quarters. *After 11 quarters. ’ Total modules. nma New + modified + affected modules.) 

design, and this will add expense as compared with 
the past. A likely result is that the productivity 
measurements for design will show decreasing pro- 
ductivity for a while (how long I cannot say), and this 
is GOODNESS: the expected net result should be 
improved effectiveness and/or reduced total cost. 
Often, the issue is not whether particular measure- 
ments go up or down, but whether they are where 
we expect them to be, and if not, what understand- 
ing we have of why they are not. 

4.2.2 Znteference metric. RCCP/CLD,CP is es- 
sentially a requirements (in)stability indicator; it 
shows whether the requirements changed (were aug- 
mented or reduced). 

4.2.3 Effectiveness metrics. DCCP/CLD,CP (zero 
in Figure 11) is essentially a high-level design (in> 
stability indicator; it shows that a poor design was 
produced or that the requirements were incomplete 
or not well specified. CLD,CP/CP is essentially a 
high-level design quality/completeness indicator. It 
is sensitive to effects from incomplete, unclear, or 
changing requirements, because it does not factor 
out the net CHANGE-POINT count for design 

changes (included in CLDCP) from CP. Design ef- 
fectiveness, CLD,CP/CP, in Figure 11 suggests the 
need for considerable work to improve the effec- 
tiveness of this activity for this product. Although it 
is not possible to pinpoint design as the key area for 
concern based on the data available, it does require 
examination. 

4.3 Implementation 

This section discusses the implementation metrics 
included in the PIE matrix. 

4.3.1 Productivity metrics. CLDCP/Imp$ is 
straightforward; it is simply the final number of 
outputs divided by the cost to produce them. During 
a project, cumulative ZmpCP,/Imp$, would let us 
see how implementation productivity is changing in 
a life cycle fashion. If we have life cycle history, we 
can compare the current project to history as we go 
along, to see if it is typical or shows expected changes, 
and attempt to investigate and understand any atypi- 
cal or unexpected results. For an organization, we 
can sum ZmpCP, and sum Imp$, for its various 
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products for a period and thus compute implementa- 
tion productivity for the period. 

4.3.2 Interference metric. Growth in total 
CHANGE-POINT count relative to CLD,CP repre- 
sents incomplete or unstable high-level design and is 
an interference on implementation by high-level de- 
sign. 

4.3.3 Effectiveness metric. Implementation effec- 
tiveness in Figure 11 suggests this as an area for 
concern. The data do not allow us to target just 
design or just implementation as the key problem 
area; however, obviously, the development process 
for this product is quite dependent on test effec- 
tiveness being extremely high. 

4.4 Formal Test 

This section discusses the formal test metrics in- 
cluded in the PIE matrix. 

4.4.1 Productivity metrics. CLDCP/Test$ is 
straightforward; it is simply the final number of 
outputs divided by the cost to produce them. During 
a project, cumulative TestCP,/Test$, would let us 
see how formal test productrvtty is changing in a life 
cycle fashion. If we have life cycle history, we can 
compare the current project to history as we go 
along to see if it is typical or shows expected changes, 
and attempt to investigate and understand any atypi- 
cal or unexpected results. For an organization, we 
can sum TestCPp and sum Test$, for its various 
products for a period and thus compute test produc- 
tivity for the period. 

4.4.2 Interference metrics. Clearly, software defects 
interfere with test productivity. 

4.4.2. I Counting FTCP. FTCP (ptmcP + ff ” from 
Figure 10) includes forward fit? and therefore gives 
substantial weight to problems shipped in prior re- 
leases in the effectiveness measurements for design 
and implementation. Forward fits need separate 
tracking to allow isolation of their effect from other 
software defect repairs. 

At least two options exist for counting FTCP: (1) 
count 1 for each new, modified, deleted, and af- 
fected module due to a software defect fix, (2) count 
1 only for instances that increase or decrease the 
module set for an AWI (1 for each module added or 
deleted) where the reference module set changes 
with each added or deleted module. 

Option (2) is the purist approach. I have selected 
option (1) for counting both FTCP and SCP (see 
Section 4.4.3); this avoids a need for additional ef- 
fectiveness and interference metrics. Option (1) puts 
heavy emphasis on software defects in the effec- 
tiveness measurements for design and implementa- 
tion and in the interference measurements for test. 
One can think of this counting approach, (1) above, 
as saying CP includes changes to CHANGE-POINT 
implementation as well as additional or deleted 
CHANGE-POINTS.~~ 

4.4.3 Effectiveness metrics. CP/(SCP + CP) re- 
flects growth in total CHANGE-POINT count after 
formal test completion. The theory is that test should 
validate function as well as find design and imple- 
mentation errors. SCP is counted in the same man- 
ner as FTCP (see Section 4.4.2.1.); this gives signif- 
icant weight to problems found after ship. 

Reducing SCP by increasing FTCP, i.e., finding 
more software defects during formal test, will in- 
crease test effectiveness, but this will decrease im- 
plementation effectiveness and decrease design ef- 
fectiveness (CLD,CP/CP). For example, reducing 
SCP for Ra (see Figure 11) by a factor of 10 in- 
creases CP, thus reducing the effectiveness value for 
implementation. 

It is important to note that CP/(SCP + CP) ad- 
dresses defect removal, not defect prevention. This 
means that simple comparisons of test effectiveness 
can be misleading: avoiding high test interference is 
important, so considering FTCP/CP is necessary. 
This suggests that trade-offs between design, imple- 
mentation, and test effectiveness are a necessary 
part of process improvement. 

Without CLDCP data for Ra or Rb, it is difficult 
to reach any firm conclusions, but reviewing Figure 
11 and using ptmCP + ffcp as CP suggests that test 
effectiveness did not improve significantly, because 
the computed values are worst case. 

I do not have SCP data for Rc. However, we can 
expect that if test effectiveness is not at least 96%, 
then SCP for Rc will exceed SCP for Ra and Rb. 

=A software defect repair included in an enhancement project 
(new release) because of a seruice software defect repair in a 
released product (predecessor release). 

24 For zero-defect software (i.e., FTCP = 0 and SCP = O), both 
approaches result in the same CP count. 
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Table 1. Key Differences for CP, LOC, and FP 

Attribute 

Continuous count 
Bounded count 
Scale 
Available before ship 
Zero condition 

Imposes technology constraints 

Automated counting 

CHANGE-POINTS 
(CP Measure) 

Yes 
No 
Absolute 
Yes 
Comment text only changes 

No 

Some manual effort required 

Shipped, 
new + modified-LOC 

Yes 
No 
Absolute 
No 
No new or modified LOC 

No, but redefinition of 
LOC may be necessary 
Easy 

Function Points 

No 
Yes 
Views vary 
Yes 
User function types unchanged 
(UFP is zero) 
Yes 

Difficult 

4.5 Overall Metrics 

This section discusses metrics that encompass all the 
activities included in the PIE matrix. 

4.5.1 Project productiveness. CLDCP/P$ is 
straightforward; it is simply the final number of 
outputs divided by the cost to produce them. 

4.5.2 Periodic productivity. The theory here is that 
we can add De&P,, ImpCP,, and Test CPr for a 
given period. This is not double counting: for many 
projects in a given period, these represent differ- 
ent CHANGE-POINTS; even in a zero-interference 
world, these are additive from a process point of 
view. To help clarify the latter point, consider a 
message sent from point A to point B to point C. 
From an end-product point of view, one message 
went from A to C. From a process point of view, one 
message went from A to B, and another from B to C 
(two messages total); it makes no difference that B 
did not modify the message sent from A before 
sending it to C. 

So, by totaling DesCP,,, ZmpCP,, and TestCP, for 
the period (call this PCP,: process net CHANGE- 
POINT count for the period), then dividing by P$, 
for the period, we have process productivity for the 
period. Of course, there is leakage period to period, 
but over many periods this should smooth out. 

5. CONCLUSION 

This article has presented a conceptual approach to 
productivity measurement at a higher level than the 
individual development activity (Design, Implemen- 
tation, and Test). It has described the concept of 
CHANGE-POINTS as a common output that per- 
mits both a combined and individual measurement 
of productivity for all three development activities. 
Admittedly, this metric does not encompass impor- 
tant activities, such as publications development and 
the many indirect activities required in a software 
development project. The focus is on the primary 

elements of direct expense. Inclusion of the other 
dimensions requires higher level conceptualizations. 

Although this article has not attempted to 
define an implementation process or a set of proced- 
ures, clearly, any implementation of the CHANGE- 
POINT approach will need configuration manage- 
ment tools (for example, the IMS TU or the DB2 
line item workbook). 

The perspective provided by the PIE matrix should 
allow management to balance effectiveness with ef- 
ficiency and emphasize one or the other at the 
appropriate times for the appropriate activity. 

The CHANGE-POINT approach does not at- 
tempt to prescribe the design, implementation, or 
test processes or technology to use, and, in this 
sense, is process and technology independent; the 
CHANGE-POINT approach requires only that the 
project development process used identity where 
and when to perform the CHANGE-POINT counts 
for the design, implementation, and test techniques 
used. Table 1 is a summary of key differences be- 
tween the CP, LOC, and FP measures. 

I hope this article has presented enough regarding 
CHANGE-POINTS to encourage implementation 
and test of the concepts provided. 
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APPENDIX 1: The Paradox of LOC 

Assume (1) the hypothetical projects in Jones (1986) 
begin l/1/1990; (2) the number of developers as- 
signed to each task (requirements, design, coding, 
documentation, and integration/testing) for the As- 
sembler project is no greater than the number as- 
signed to the same task for the APL project; and (3) 
available time to work on the project is the same for 
developers performing the same tasks for each pro- 
ject. Given the seven-times ratio between person- 
months for coding and integration/testing for the 
AF’L versus the Assembler project, we can conclude 
that the calendar time to complete these two pro- 
jects will differ. For simplicity, assume the APL 
project completes 12/31/1990; thus, the Assembler 
project takes longer than one year to complete. 
Measured by use of LOC produced, 1990 production 
for the APL project is 10,000 LOC (productivity is 
125 LOC per person-month). Measured by use of 
LOC produced, 1990 production for the Assembler 
project is unknown, as is productivity, because the 
number of lines of source code produced is only 
specified as of project completion. 

Given the assumptions above, we can conclude 
that the Assembler project, as of 12/31/1990, will 
have expended for each task, at most, the same 
number of person-months as needed for the same 
task for the APL project. Assuming the person- 
months expended are equal,‘* any difference in 
1990 production (and productivity) is because of 
differences in the number of lines of source code 
produced in 1990. The number of lines of source 
code produced in 1990 will be a function of “coding 
speed” (Jones, 1986). Therefore, any difference in 
1990 production (and productivity) will not be be- 

‘*There is reason to believe that integration/testing might 
be less for the Assembler project, but this does not affect the 
fundamental conclusion. 
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cause of identical levels of fixed or inelastic costs 
(requirements, design, and documentation) as sug- 
gested by Jones (19861, but will be due to variable 
cost activity differences (coding or integration/test- 
ing), and, as Jones (1986) noted, “high-level lan- 
guages actually do improve coding speed.“2A 

APPENDIX 2: Using Function Points in the 
PIE Matrix 

Consider two projects: (1) our C compiler manufac- 
turer has added a switch that will set up register 
linkage between modules, i.e., cause parameters to 
be passed via registers instead of storage, so for 
speed improvement we want to recompile our appli- 
cation using this new switch; (2) because of new tax 
laws, we must increase the top federal income tax 
rate and the salary limit for FICA withholding in our 
payroll application. 

For both projects, UFP will be zero, so productiv- 
ity will be zero. Use of the CHANGE-POINT ap- 
proach for Project 1, even considered as only a test 
exercise, will generate nonzero CLD,CP (and thus 
nonzero CLDCP). This is because to implement the 
AWI (expressed as “register linkage between mod- 
ules” {the result} by recompiling the appropriate 
application modules using the new compiler switch 
{the set ofactions}), there are many affected (recom- 
piled) modules. Note that while physical source text 
changes are not required, nevertheless the set of 
effects needed in/from the program units does 
change: if a culled module is recompiled with the 
new switch but a CUB& module is not recompiled 
with the new switch, then the software will not 
operate correctly. These changes would be more 
obvious if the example were an application written 
in assembler language, and thus the required link- 
ages had to be coded by hand; or the compiler 
required a specific keyword in the function proto- 
types; or the compiler required the use of a #pragma 
statement in affected source modules. 

Project 2 requires source text changes and will 
generate a nonzero CHANGE-POINT count, be- 
cause the AWI (expressed as “update the payroll 
application to reflect the new tax laws”) affects at 
least two definitions and perhaps several modules. 
(If we consider a case where the program is driven 
by tax rates in an external file, then, depending on 
the extent of testing of the original AWI, the rele- 
vant CHANGE-POINT count will be less than or 

2A”The assembler example. . proceeded at.. ,870 lines per 
month, while the . APL [example]. . proceeded at.. . 1,000 lines 
per month” (Jones, 1986). 

equal to the CHANGE-POINT count for the origi- 
nal AWI.) 

APPENDIX 3: Glossary 

Some of the terms in this paper are as follows. 

Design. Product level design and component level 
design. This usage varies from Programming Pro- 
cess Architecture (1986) and Radice et al. (1985), 
but is the terminology of the STL Productivity 
Task Force. 

Effectiveness. Extent to which requirements for an 
activity/area are met. An effectiveness metric at- 
tempts to quantify attainment of an area goal 
(e.g., “zero defects”). “Goodness” may mean an 
increase or decrease in the measurement, which- 
ever is most convenient (and must be stated or 
self-evident). Ideally, when productivity is increas- 
ing, the effectiveness measurements should be 
going in the direction of “goodness.” Aherna- 
tively, improvement in the effectiveness measure- 
ments may be combined with stable or decreasing 
productivity, but this should come about as a 
result of an explicit trade-off and not be “dis- 
covered.” There are many facets to effectiveness, 
and in the PIE matrix I have chosen to identify 
metrics relating to quality/defects, i.e., reliability 
(Glass, 1992); there is no intent to exclude other 
possible metrics for effectiveness. 

Formal test. See Test. 

High-level design. See Design. 

Implementation. Module level design through unit 
test. This usage varies from Programming Process 
Architecture (1986) and Radice et al. (19851, but is 
the terminology of the STL Productivity Task 
Force. 

Zntetierence. An effect due to not performing a 
task/activity with “zero defects.” Normally, this 
affects the productivity of another group, but may 
also affect the performer’s productivity. In gen- 
eral, the productivity measurement for the af- 
fected group would have been better if the affect- 
ing group had performed its task/activity with 
zero defects. 

Productivity. The ratio between what is produced 
and what is consumed to produce it. 

PTM. A program trouble memorandum is the means 
for reporting and recording defects found during 
formal test. 

Test. The testing family in Progrumming Process Ar- 
chitecture (1986) and Radice et al. (1985). 


