
Software development productivity on a new

platform: an industrial case study

Piotr Tomaszewski*, Lars Lundberg

School of Engineering, Blekinge Institute of Technology, P.O. Box 520, S-372 25 Ronneby, Sweden

Received 3 March 2004; revised 22 August 2004; accepted 23 August 2004

Available online 2 October 2004

Abstract

The high non-functional requirements on mobile telecommunication applications call for new solutions. An example of such a solution can

be a software platform that provides high performance and availability. The introduction of such a platform may, however, affect the

development productivity. In this study, we present experiences from research carried out at Ericsson. The purpose of the research was

productivity improvement and assessment when using the new platform. In this study, we quantify and evaluate the current productivity level

by comparing it with UNIX development. The comparison is based on two large, commercially, available systems. We reveal a factor of four

differences in productivity. Later, we decompose the problem into two issues: code writing speed and average amount of code necessary to

deliver a certain functionality. We assess the impact of both these issues. We describe the nature of the problem by identifying factors that

affect productivity and estimating their importance. To the issues identified we suggest a number of remedies. The main methods used in the

study are interviews and historical data research.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Development environments; Productivity; Software metrics; Improvement; Technology adoption
1. Introduction

Handling the rapid growth of the number of services and

subscribers in telecommunication networks has become a

very challenging engineering task. Apart from high

performance and high capacity, the systems that create the

infrastructure for the mobile telecommunication network

must provide high availability. No downtime is accepted

since it results in huge losses. Different telecom system

developers deal with high availability in different ways.

There are hardware-based solutions, which main purpose is

to avoid a system crash, as well as software-based solutions,

that try to handle the situation after a system crash. As a

result of the latter approach, a new server platform was

introduced by Ericsson. The platform has features that

facilitate development of systems with strong high avail-

ability requirements. The first experiences after the change
0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.08.007

* Corresponding author. Tel.: C46 457 385876; fax: C46 457 27125.

E-mail addresses: piotr.tomaszewski@bth.se (P. Tomaszewski),

lars.lundberg@bth.se (L. Lundberg).
of the platform revealed an increase of development time

and cost. Both of them affect time-to-market, which is a

crucial factor for economically successful software

development.

In this paper, we look at two large industrial projects at

Ericsson. These projects concern the development of similar

products. One project uses the new server platform and the

other one uses a traditional UNIX development environ-

ment. By comparing time reports from the two projects and

conducting interviews, we were able to assess and compare

the productivity for the two environments. A well-known

problem when dealing with productivity measures is

the lack of metrics for measuring the size of the software.

The most commonly used metric is the number of code lines

[3,4,21,30]. We will discuss this and alternative metrics

later in the paper. We also consider ways to measure the

quality and complexity of the code, and not only the size.

Furthermore, we identify some productivity bottlenecks;

one category of these bottlenecks has to do with lack of

experience. It is well known from many application

domains that tacit knowledge, that has to be acquired by
Information and Software Technology 47 (2005) 257–269
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof


P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269258
long term use and experience, is one source of initial

productivity problems when introducing new technology

[10], but as people get more used to the new technology

these problems should go away.

This study was planned as one of the activities aiming at

understanding and improving of the development pro-

ductivity in the new environment. The initial analysis

resulted in formulation of the following research questions:
†

Fig. 1. The hardware configuration of the platform.
How large is the productivity problem? When the study

was started there were no hard proofs that productivity

has actually decreased when the new platform was

introduced. The knowledge about satisfactory pro-

ductivity level and productivity level on the new

platform would allow us to quantify the problem. To

achieve that we must measure the productivity of

software development on the introduced platform and,

to obtain a point of reference, compare it with the

productivity level in another project, in which the

productivity was perceived as good. As discussed

above, two projects were selected for comparison:

B Project A representing UNIX development. The

productivity in that project was perceived as satisfac-

tory. This project resulted in Product A.

B Project B representing the development on the

introduced platform. It resulted in Product B.

Both systems are large (approximately 40–60 man

years, 100–200 KSLOC), commercially available,

high quality systems that are part of mobile telephone

network.
†
 Why does the problem occur? To solve the problem we

must identify the issues that cause it. These issues would

indicate areas in which there are opportunities for

improvement.
†
 What can be done about it? For the issues identified we

suggested the remedies.

This paper is an improved and extended version of a

previous conference paper [27]. In the current paper, we

present new and additional data and expand the discussion

concerning quality aspects and the lessons that can be

learned from our case study. We also include a significantly

expanded discussion about related work.
Fig. 2. Inter-process communication using dialogue objects.
2. Presentation of the platform

The server platform introduced by Ericsson is usually

used in real-time telecommunication applications. This

type of applications is characterized by very strong non-

functional requirements, like the need for scalability, high

availability and efficiency. On the other hand, market

demand for lowering maintenance costs and the best

price/performance ratio forces the use of standard hard-

ware components. The new platform meets these
requirements. The hardware platform, presented in

Fig. 1, comprises:
†
 A number of traffic processors that process pay-load.

These are Intel Pentium III processors, and each of

them has its own memory.
†
 Four I/O processors responsible for the external

communication, maintenance and monitoring of the

whole system. These are standard Sun machines

running Solaris.
†
 Two Ethernet switches and two separate interconnec-

tions via Ethernet networks.

Although the platform offers standard interfaces (APIs)

for Java and CCC, the programming model is unique.

The main execution unit is a process. There are two types

of processes, static ones that are always running and

dynamic ones that are created and destroyed on request.

The inter-process communication is done by dialogue

objects or globally accessible database objects. Dialogue

objects are used for message passing communication

(Fig. 2). In the communicating processes, two correspond-

ing Dialogue type objects have to be created. They

exchange messages using built-in mechanism provided by

the platform.



Fig. 3. Inter-process communication using database objects.

P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269 259
Database objects are the basic units of storage in the

internal database. They can be accessed by any process

running on the platform. They can therefore be used

to implement a shared-memory communication model

(Fig. 3).

In order to assure an efficient load balance, the

programmer has a set of methods for specifying the

allocation of database objects and processes to processor

pools, i.e. sets of traffic processors on which database

objects and processes may end up. The load balancing

within a pool is done by the platform itself.

The platform facilitates programming of the highly

available systems, i.e. every process or database object is

automatically replicated on different machines in the

cluster—a crash of one of them does not affect the correct

operation of the whole system. Additionally, the platform

has built-in features that allow online upgrades of the

applications that operate on the platform.

The two applications examined in our study co-operate

within the same system that works in the service layer of the

mobile telephony network. In each of them the high

availability requirement was provided in a different way.

In Product A, high availability is assured by a backup server

that takes over the work when the main server fails. Product

B uses the new platform features to provide high

availability.

Both applications have similar design structure. The

following subsystems can be identified:
†
 Platform—software that extends functionalities provided

by platform.
†
 Communication—software responsible for handling of

communication protocols.
†
 Functionalities—software that contains actual business

logic of the application.

Both systems are written in CCC. To minimize the

impact of software reuse on the productivity measurement,

only the first versions of both products were taken into

account—both were written ‘from scratch’. Additionally, it

should be noticed that Product B was one of the first projects

done on the new platform by the team of developers

examined in the study. Before taking part in the project
the project members underwent a training program about the

new platform. The training program comprised of a one-

week long course. Additionally, the developers were

provided with a web-based tutorial that covered basic issues

connected with programming on the new platform. They

also produced a number of prototypes to gain practical,

‘hands-on’ knowledge about the platform. According to the

majority of the developers, the quality of the introduction

process was not satisfactory. They suggested that they

would benefit significantly from longer and more advanced

training.
3. Methods

In this section, we present methods used in the study.

Each subsection in this section has a corresponding

subsection in Section 4, where the results are presented.

3.1. Productivity measurement

The first thing that must be done is establishing what

productivity is and how it can be measured. The traditional

productivity definition as a ratio of output units produced

per unit of input effort [1] is not easily applicable to software

development. The input effort is usually defined as the sum

of all resources that were used to produce the output. In the

software development, the biggest part of whole production

cost is the cost of work. Therefore, in the study, person

hours were taken as the input unit of effort. It is much more

difficult to select the metric for the unit of product. Two

perspectives of measuring the size of the system can be

identified:
†
 Internal viewpoint (developer’s perspective)—describes

the amount of code that must be produced to complete

the system.
†
 External viewpoint (customer’s perspective)—refers to

the amount of functionality provided by the system.

The internal point of view metrics usually measure the

physical ‘length’ of the code produced. Typical units of the

internal size are number of source lines of code, number of

classes or number of functions. Internal size measurements

can be easily obtained by the use of automatic tools. The

often mentioned weakness of measuring the system size

using code lines is that result depends on the coding style—

one programmer can write a statement in one line, while

other can consistently spread it among a number of lines. To

check if such a situation took place, the ratio of code lines

per CCC statement was calculated for both projects. This

metric should, to a certain extend, assure that coding style

was similar in both projects.

The internal perspective may be confusing, since one

platform may be ‘more productive’ when it provides a

certain functionality using ‘less code’. The measurement



P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269260
from an internal perspective would not reveal this.

However, the measurement from external perspective is

difficult in real-time systems. This measurement should take

into account not only the ‘amount’ of functionality but also

the complexity, which is very difficult to quantify. There-

fore, existing functional size metrics, like Function Points,

are not recommended for real-time systems size measuring

[26]. Instead of measuring, we decided to estimate the ratio

of functional size of both systems. Since expert judgement is

considered as an acceptable way of performing estimations

[6,19,24], we used it for comparing the functionality of both

systems.

The following data concerning the sizes of both projects

were collected:
†
 Number of person hours spent on each project (h)—only

the development phase of the project was taken into

account (design, implementation, testing). Person hours

contain designers, testers and managers work hours.
†
 Number of code lines in each project (SLOC)—we

counted only lines with CCC code, comments and

blank lines were not counted.
†
 SLOC/CCC statement ratios in both projects.
†
 Number of classes in each project (NoC).
†
 Ratio of amount of the functionality in both projects

(FUNC)—an expert estimation. A total of six experts

were interviewed for the estimation. All of them had

knowledge concerning both projects. The results of the

estimation were analysed by three other experts and a

consensus was achieved.
3.2. Quality aspects

The main weakness of the size measurement methods

is that they do not take any quality factors into account.

The productivity can only be ‘interpreted in context of

overall quality of the product’ [1]. Software product must

meet certain quality requirements (minimum acceptable

requirements) before the productivity metric can be

applied. Therefore, in the study, quality aspects were

kept in mind when evaluating productivity. Big differ-

ences in any aspect of quality may possibly explain the

difference in productivity—in that case lower productivity

could be the price for higher quality.

In the study, we have considered following quality

factors that according to us can have impact on productivity:
†
 Design quality. Quality of application design and quality

of code produced. Better design pays off in testing and

maintenance phases and is more likely to be reused in

other projects in future and therefore can be considered

an added value.
†
 Final product quality. Qualities actually achieved in

the final application. Example of such qualities may be

non-functional requirements. High non-functional
requirements (security, high availability) can be the

important cost driver and therefore can explain relatively

high development time.
†
 Quality of development process. High quality of devel-

opment process does not guarantee high quality of final

product, but makes achieving it more probable.

It is obvious that the lines of code are affected by a

number of things. It is more difficult to produce well

designed, structured and organized code. From the software

metrics suggested by [9,11] that are applicable for object

oriented systems, we selected those that were proven to have

impact on quality of the system [2,7,8,11]. Therefore, a

number of metrics, describing different aspects of design

quality, were applied:
†
 McCabe Cyclomatic Complexity (MCC) metric [11].

This metric measures number of linearly independent

paths through the function. According to [13] ‘Overly

complex modules are more prone to error, are harder to

understand, are harder to test, and are harder to modify.’
†
 Lack of Cohesion (LC). It measures ‘how closely the

local methods are related to the local instance variables

in the class’ [11]. The idea is to measure to what extent

the class is a single abstraction. Chidamber et al. [8]

proved that the Lack of Cohesion metric has impact on

productivity. According to them the implementation of

classes with high LC was difficult and time consuming.

In the study, we counted LC using method suggested by

Graham [14,17], which gives normalized values of LC

(0–100%). We considered normalized values more

applicable for comparison purposes.
†
 Coupling (Coup) [9,11], the metric measuring the

number of classes the class is coupled to. This metric

allows assessing the independence of the class. Coupling

is widely recognized as important factor influencing

productivity [8] and fault proneness [2,7].
†
 Depth of Inheritance Tree (DIT) measures how deep in

inheritance hierarchy the class is. According to [9], high

DIT values resulting in higher complexity make predic-

tion of class behaviour more difficult. Basili et al. [2]

proved that there is relation between DIT and fault

proneness of the class.
†
 Number of Children (NC) defined as ‘number of

immediate subclasses subordinated to a class in the

class hierarchy’ [9]. Chidamber and Kemerer [9] claim

that classes with huge amount of subclasses have

potentially bigger impact on the whole design and

therefore they require more testing (their errors are

propagated).

Other quality aspects, like quality of the final product or

quality of the development process, are difficult to quantify.

Therefore, the opinions about both of them were collected

during interviews. Twenty developers were interviewed in a

semi-formal manner [22]; later an additional 10 informal



Table 1

Example of the importance vector

Bottleneck Importance (%)

Issue 1 (e.g. voice conversation) 30

Issue 2 (e.g. games) 10

Issue 3 (e.g. SMS) 20

P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269 261
interviews were performed. When it comes to the quality of

the final product, the interviews mainly concerned com-

parison of non-functional requirements put on the systems.

The development process quality discussions focused on the

amount of quality assurance activities like testing, inspec-

tions or the level of detail in project documentation.

Issue 4 (e.g. alarm) 15

Issue 5 (e.g. calculator) 15

Issue 6 (e.g. tunes) 10

N.B. importance figures always sum up to 100%.
3.3. Productivity bottlenecks

The next step after estimating the size of the productivity

was the identification of issues that affect productivity. We

were aiming at localization of productivity problems on the

new platform. Therefore, we focused on identifying the

productivity bottlenecks only in Project B. Since pro-

ductivity can be affected by factors of different nature, the

decision was made to take into account all the areas of

productivity bottlenecks localizations, which are [15]:
†
 People. Issues connected with competence level of

people involved in the development process.
†
 Processes. Issues connected with work organization

characteristics.
†

Table 2

Project size and effort ratios

Metric Project A/Project B

Code lines (SLOC) 1.5

Number of classes (NoC) 1.5

Functional size (FUNC) 3.0

Person hours (h) 0.7
Technology. Issues connected with technology used; in

our case mainly different platform shortcomings.

In order to identify the issues that affect the productivity,

we performed interviews with 20 developers directly

involved in the development on the new platform. The

interviews were semi-formal [22]. Apart from reporting

productivity bottlenecks, the interviewees were asked for

suggestions of improvements/remedies. Based on data

collected during the interviews, we created a list of

productivity bottlenecks.

The additional analysis was performed to estimate to

what extend each of the identified issues affects the

productivity. The method selected for that is called Analytic

Hierarchical Process—AHP [23]. Each respondent did pair-

wise comparisons between different issues and based on

those comparisons the final importance of the different

issues was calculated [23]. The comparison was based on

the question ‘Which alternative do you feel affects

productivity more?’. The AHP questionnaires were dis-

tributed among the same group of people that took part in

the interviews. The AHP method made it possible to build

the hierarchy of the importance for each respondent and

assigning weights of importance to alternatives. An example

of importance vector for six issues is presented in Table 1.

Such a vector is an outcome of an AHP analysis performed

by a single respondent.

To ensure that the results really reflect the opinions of the

respondents, each of them was presented with an individual

importance vector and was allowed to change/adjust it. The

individual importance vectors were used to create the

importance vector of the whole group. It was created by

calculating an average importance weight for each issue.

The AHP analysis was performed by the same group of
developers that took part in the interviews during which the

productivity bottlenecks were identified.
4. Results

Each subsection in this section presents results of

application of the methods described in corresponding

subsection in Section 3.

4.1. Productivity measurement

Due to the agreement with the industrial partner, all

measurement results will be presented either as [Project

A/Project B] ratios or [Project AKProject B] differences.

No results will be presented as absolute values.

The results of the size and the effort measurements taken

on both projects are summarized in Table 2. The table

presents relative values only.

To check if similar coding style was used in both

projects, the average number of code lines/CCC statement

was calculated for both projects. It turned out to be similar.

In Project A it was 2,22 lines/statement, while in Project B it

was 2,42 lines/statement. Therefore, we considered code

lines comparable between both projects.

The significant difference (factor of 2) between the

internal viewpoint measurement (code lines, classes) and

the external viewpoint measurement (functionalities)

suggests that UNIX is more successful in providing

functionality—on average half of the code is required to

provide a certain functionality. To explain that phenomena,

the structure of both projects was examined. The structure is

presented in Fig. 4. There is significant difference in the

distribution of code in the subsystems. The large difference

in the amount of code in the Platform part can easily be

explained. In Project A, the own platform extension was

developed on the top of the system, which was not the case



Fig. 4. Product structure.

Table 4

McCabe complexity

Project A Project B

Mean 3.3 2.5

Median 1 1

Maximum 125 96

Minimum 0 1

Std. deviation 5.8 5.0

P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269262
in Project B. The subsystem responsible for the business

logic (Functionalities) is about 3 times bigger in Project A

which meets the expectations—according to the experts

there is 3 times more functionality in Project A. In the

unknown part there is a large difference in the amount of

code for communication handling. We performed a number

of interviews to explain the fact that more code is needed per

average functionality. During the interviews we presented

the diagram from Fig. 4. Three possible explanations of the

phenomena were mentioned:
†

Tab

Pro

Me

SLO

No

FU
In UNIX the support for communication is better—i.e.

there are more third party libraries available or the

system itself provides more.
†
 In general it is more difficult to design systems on the

new platform. The design is more complex; more code

has to be written to complete a certain functionality.
†
 The platform lacks certain tools (for example a good

debugger) and therefore more code must be written to

compensate for that (i.e. debug printouts that help in

tracing faults).

From the information about the size and the effort, the

development productivity ratios were calculated. The

results are presented in Table 3.
4.2. Quality aspects

To compare the design quality in both systems, a number

of measurements (described in Section 3.2) were done. Each

metric will be analysed separately. Since all the metrics are

done either on the function or on the class level (values are

obtained either for each function or for each class) in order

to compare two systems, we will examine the distribution of

the values in each of them. For each metric we will present
le 3

ductivity ratios

tric Project A/Project B

C/PH 2.15

C/PH 2.15

NC/PH 4.30
mean, median, standard deviation and minimal and maximal

values obtained. This way of describing measurements was

presented in [2]. We will also present histograms describing

in graphical form how many percent of the entities (classes,

functions) in the system have certain value of the metric.

Since it is sometimes difficult to assess if the obtained

values are typical or not, where it is possible we will add a

column where the corresponding values from the study

described in [2] will be presented. Other examples of such

values can be found in [7–9,20]. We selected values from

[2] for comparison purposes because measurements there

were taken on relatively large amounts of CCC classes,

which is similar to our study, and the same types of data

were collected as in our study. Values from other studies

mentioned [7–9,20] will be used when discussing the

findings.

The first metric applied was McCabe complexity. Results

were obtained on function level and are presented in

Table 4.

According to [11], McCabe complexity of the function

should not be higher than 10, otherwise the function is

difficult to test. We examined the data from that perspective

(Fig. 5).

In both projects, the vast majority of the functions (95%

in Project A and 97% in Project B) have complexity values

within 0–10 range and therefore we consider both projects

similar from that perspective.

The remaining measurements gave the results on the

class level.

The second metric applied was the Lack of Cohesion.

The results are summarized in Table 5.
Fig. 5. McCabe complexity–distribution.



Table 5

Lack of cohesion

Project A Project B

Mean 49.9 46.8

Median 57 57

Maximum 100 100

Minimum 0 0

Std. deviation 35.5 37.4

Table 6

Coupling

Project A Project B Ref. [2]

Mean 6.0 5.1 6.80

Median 3 3 5

Maximum 82 35 30

Minimum 0 0 0

Std. deviation 8.6 5.7 7.56

P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269 263
The distribution of LC values between classes of both

systems is presented in Fig. 6.

We can observe that trends in distribution are similar in

both systems. Mean and median values are also similar.

Therefore, we consider both systems similar from a Lack of

Cohesion viewpoint.

The next metric applied was Coupling. The results are

summarized in Table 6.

In order to compare to what extend coupling values

obtained in both projects are similar, we looked for data

describing coupling in typical projects. The mean coupling

values reported in [2,7–9,20] are usually between 5 and 7.

The distribution of coupling values in the project classes is

presented in Fig. 7.

We consider the distribution of coupling values similar

for both projects. The values from Table 5 place both our

projects among typical projects from coupling point of

view. Therefore, we consider them similar from that

perspective.

The application of the Depth of Inheritance Tree metric

gave results presented in Table 7.

Compared to [2,9], the mean, median and standard

deviation values obtained in the study are much lower. The

distribution of DIT values is presented in Fig. 8.

From Fig. 8, it can be observed that the difference

between projects is caused by about 20% of the classes that

in Project B have depth 1, while in Project A the depth is 0.

We consider that difference rather small especially because

compared to other studies the average DIT values in both

examined projects are small.

The last metric applied was Number of Children (NoC).

The results are summarized in Table 8.
Fig. 6. Lack of cohesion—distribution.
Compared to the reference project, we can observe that

Project A has similar characteristics, while in Project B

mean value is about twice as small. The median value is in

both cases equal to 0. The distribution of NoC values is

presented in Fig. 9.

As it can be seen in Fig. 9, over 90% of classes in both

projects has NoC equal to 0. The difference in mean value is

caused mostly by 2% of classes that in Project A have 1

child, while in Project B they have 0. Since the distribution

is almost identical, we consider both projects similar from

NoC perspective.

After analysing all the measurements taken, we cannot

observe any major difference in design quality between the

two projects. Therefore, we consider the design quality

similar in both projects.

The measurements presented above describe only design

quality. Equally important for the productivity assessment

are the quality aspects of the system developed (i.e. non-

functional requirements) and the quality aspects of the

development process (i.e. number of the quality assurance

activities). The overall impression was that Project B was

more ambitious in terms of the process quality aspects. Due

to the relative novelty of the platform, and in order to

minimize anticipated influence of the learning effect, much

effort was put on quality assurance (inspections, testing) and

documentation activities. The non-functional requirements

put on the systems were similar, but during interviews the

designers mentioned that they believed the non-functional

characteristics achieved in the project were better in the

system developed on the new platform.

Both systems met the requirements that were put on

them.
Fig. 7. Coupling—distribution.



Table 7

Depth of inheritance

Project A Project B Ref. [2]

Mean 0.62 0.78 1.32

Median 0 1 0

Maximum 4 3 9

Minimum 0 0 0

Std. deviation 0.8 0.7 1.99

Table 8

Number of children

Project A Project B Ref. [2]

Mean 0.35 0.19 0.23

Median 0 0 0

Maximum 24 9 13

Minimum 0 0 0

Std. deviation 1.8 0.9 1.54

P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269264
4.3. Productivity bottlenecks

The nature of the productivity problems was identified

during interviews. As a result of them, the list of nine issues

that negatively affect the productivity in the Project B was

formulated:
†
 Not enough experience sharing (i.e. seminars, meetings)

and training activities. This problem impacts the

productivity in two ways:

B The skills of the staff are not developed as quickly as it

would be possible.

B The ‘reuse’ of ideas is smaller. Better exchange of the

information would prevent the situation when two

people invent a solution to the similar problem

separately.
†
 Staff competence level. The novelty of the platform

causes overhead connected with learning. This is

important because, according to interviewees, the start

up time on the new platform is relatively long compared

to, e.g. UNIX.
†
 Quality of the new platform’s documentation. Certain

problems connected with the documentation’s quality

and availability were mentioned. According to inter-

viewees, a better structured and updated source of

technical information on the new platform would

positively affect the speed and quality of software

development.
†
 Runtime quality of the new platform. Low runtime

quality of the platform makes development and testing

more difficult. Relatively, high amount of faults was

classified as platform related, which means that they
Fig. 8. Depth of inheritance—distribution.
occurred due to the platform error. Therefore, the scope

of potential fault localizations is bigger compared to

more mature platforms, which adds a lot of complexity to

testing.
†
 The platform interface (API) stability. Unexpected

changes in the API in the different platform releases

result in the need of ‘redoing’ parts of the system to meet

the new API specification.
†
 Lack of target platform in the design phase. Designers do

not have access to a real cluster. Instead, they are

working with an emulator, which is not 100% compatible

with the target platform. The faults caused by the

incompatibility are discovered later, in testing phase,

when the cost of correction is much higher.
†
 Too much control in the development process. Due to the

novelty of the platform there was a strong pressure on the

quality assurance activities, like large amount of

inspections or detailed documentation produced on

quite low level. It resulted in heavy and costly

development processes.
†
 Unstable requirements. The unstable requirements make

it necessary to redesign parts of the system, sometimes in

later stages of the project, which is extremely costly.
†
 Too optimistic planning and too big scope of the projects.

Big scope of projects combined with the novelty of the

platform may result in long lead-time. Long lead-time

projects are much more prone to change requests due to

changes of market demands.

It is noticeable that the bottlenecks identified have

different nature. This suggests that the productivity problem

is complex and depends on many factors.
Fig. 9. Number of children—distribution.



Table 9

Productivity bottlenecks prioritization

Bottleneck Importance (%)

Staff competence level 22

Unstable requirements 16

Not enough experience sharing and training

activities

13

Quality of platform’s documentation 10

Runtime quality of the platform 10

Too much control in development process 9

Too optimistic planning, too big scope of projects 8

Lack of target platform in the design phase 7

Platform interface stability (API) 5

P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269 265
The interviewees were asked to prioritize the issues to

show which, according to them, affects productivity most.

Thanks to the use of the AHP method we were able to create

individual importance vectors. For each interviewee, we

calculated the weights of importance that the interviewee

assigned to the issues. Weights were normalized, so they

always sum up to 100%. Based on the individual importance

vectors, the average vector was calculated (see Section 3.3).

Table 9 presents the final ranking of the issues affecting the

productivity of the software development on the new

platform.
5. Discussion

5.1. Related work

In the literature, the software productivity research has

gone in two main directions [21]:
†
 productivity measurement;
†
 identification of factors that affect productivity.

Main point of concern of researchers dealing with

measurements is the lack of a generally accepted metric

for measuring software size. Often the simplest method of

measuring the size is used, which is number of lines of code

[3,4,21,30]. Maxwell et al. [21] performed a study that

involved an evaluation of the lines-of-code productivity

metric. They compared it with Process Productivity, the

complex metric that includes management practices, level

of programming language, skills and experience of the

development team members and the complexity of the

application type. After examining 99 projects, the authors

concluded that the simple lines-of-code metric was superior

to the Process Productivity metric.

The second direction of the productivity research was

identification of factors that affect the productivity. The

continuously increasing cost of software development has

made productivity improvement a very popular topic. It

is usually seen as the way to decrease cost and improve

delivery time. The fact that software projects are often

late and over budget [3,4,28] makes the problem important.
A number of research studies were done within that domain.

Yu et al. [30] created a universal framework for the

improvement process. They identified three steps of the

improvement process: measurement, analysis and improve-

ment. The purpose of the first step was to find out where the

project stands, the second step was devoted to identification

of the factors affecting productivity and the third one was

supposed to minimize their impact. The framework

suggested corresponds well with our strategy. The authors

presented the example of the study aiming into quantifi-

cation and improvement of the productivity in a project

from AT&T Bell Laboratories. One interesting finding in

that project is that the issues affecting productivity are, to a

large extent, similar to the ones described in our research.

Among the issues that were ranked, the highest belong to the

requirements stability and the staff experience, which is

similar to the results obtained in our research.

Many researchers have observed, documented and tried

to solve the productivity problem when adopting new

technology [10,12,16,18,29]. Ever since the learning effect

[25] was described most researchers agree that some of the

initial productivity problems fade away with time due to

growing experience and maturity of the organization. The

question of how to make that time as short as possible

remains unanswered. Edmondson et al. [10] stress the

importance of having as much of the knowledge about new

technology codified as possible. The more of the knowledge

about new technology is tacit; the bigger problem is to

introduce it seamlessly. In the examined project, we have

experienced the situation where lack of easily accessible

source of information about the technology affected the

productivity. Fisher and Wesolkowski [12] present another

view of the initial knowledge problem. It might be

extremely difficult to increase the competence level of the

staff if the staff does not want it. According to them, one of

the key points is the motivation and attitude issue—they

quote the results of the study showing that only 15% of the

population is enthusiastic when it comes to new technology

adoption, 85% is more or less hesitant to it. Harvey et al.

[16] analysed 100 companies to find out how the companies

that successfully adopted new technologies differed from

the others. One of their findings was the huge role of

management in such process. The importance of manage-

ment’s role in facilitating the process of new technology

adoption is also stressed by Vaneman and Trianfis [29].

Among the bottlenecks we have identified there are issues

concerning project planning and organization, which proves

that the role of management was recognized by our

interviewees.

Other researchers also put a lot of effort in localizing

issues affecting the productivity. Productivity issues are

often referred to when discussing delays in software

deliveries [3,4,28]. Although lead-time and productivity

do not always correlate (i.e. adding a new developer may

decrease the productivity, but improve lead-time), the

improvement of productivity is usually seen as a way to



Fig. 10. Productivity problem decomposition.

P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269266
decrease the development time. Blackburn and Scudder [3]

identified number of factors that reduce development time.

The authors examined the data from 40 different projects.

As the most promising technique of development-time

reduction, the Reuse of Code was considered. The second

most promising technique was competence development,

which is similar to the results obtained in our study.

Moreover, in the paper, the authors report that ‘managers

are continually frustrated by changing requirements’—

which directly corresponds to ‘Unstable requirements’, the

issue which is second on our priority list.

A direct comparison of results obtained in the research

studies presented above with results obtained in our study

may seem to be inappropriate—these were usually surveys

in which a large number of projects were examined, and

therefore the results are on higher level of abstraction and to

large extend their generalization would be justified.

However, the fact that conclusions concerning productivity

bottlenecks seem to be similar may indicate that the

problems identified are rather common for the situation

when new technology is adopted.

5.2. Productivity level

The results obtained in the study describe the current

productivity level in the software development on the new

platform. Compared to the UNIX platform, a factor of four

in the productivity measured from an external perspective

was identified. It can be later decomposed into two issues:
†
 Code writing speed. On the new platform, the code is

written slower, on average it takes twice as much time to

deliver 1 line of code (internal perspective measurement

measures the speed of delivering the code).
†

Table 10

Bottleneck localizations importance

Localization Bottlenecks Importance

(%)

People Staff competence level 35

Not enough experience sharing and

training activities

Processes Unstable requirements 40

Too much control in development

process

Too optimistic planning, too big scope

of projects

Lack of target platform in design phase

Technology Quality of platform’s documentation 25

Runtime quality of the platform

Platform interface stability (API)
Code line/functionality. In the new platform, the average

number of code lines per functionality is bigger. Since it

holds the remaining part of responsibility for the

productivity level, its impact may be counted as a factor

of two. It is supported by measurements—on average we

need twice as much code per functionality on the new

platform.

The issues that affect code writing speed are presented in

Table 9. The ones that have impact on high SLOC/function-

ality ratio in the new platform are lack of third party

libraries, missing tools (e.g. debuggers) and platform

complexity. The distribution of responsibility for pro-

ductivity level is summarized in Fig. 10.

5.3. Productivity improvement

The main reason for bottlenecks identification is to find

out where the application of remedies would bring the best

results. In our study it seems obvious, since three highest

ranked issues hold over 50% of responsibility for the

productivity level, and two of them are related to
competence. It is not surprising—competence is usually a

problem when new technology is introduced, especially, a

complex one with long start up time. The picture changes if

localizations of bottlenecks, suggested by Hantos and

Gisbert [15], are considered. Table 10 presents this.

A surprising finding is that platform related issues were

rated quite low both individually and as a group. One

possible explanation could be that the respondents focused

on issues that are internal to the organization, where the

study was performed. Maybe, they tried to focus on issues

that directly depend on them. Platform quality issues do not

belong to that group of issues, while competence and work

organization issues do. Another explanation would be more

straightforward—platform quality is not the main problem.

Additionally, it should be noticed that the competence

issues’ importance is most prone to change over time. It

should decrease with time when the developers will gain



P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269 267
experience. However, it is still a valid issue when the

platform is being introduced to a new organization.

Table 10 clearly suggests that each group of the issues

holds relatively large responsibility for current productivity

level—no ‘silver bullet’ solution to the problem can be

expected. Therefore, remedies to all the productivity

bottlenecks were presented. It is a subject to further research

to suggest the order in which they should be applied. Their

possible effectiveness, estimated in this study, is only one of

the factors that should be taken into consideration when

making that decision—others are the cost of the remedy,

risk connected with its introduction or the time after which

the remedy application will pay off.

There are three ways to improve productivity [5]: work

faster, work smarter and work avoidance. Faster work can

be obtained by development of skills. Therefore, the

following skill development activities were suggested:
†
 Good introduction process. The introduction process

would familiarize the staff with the new technology and

minimize the overhead connected with learning.
†
 Continuous skills development processes, like an

advanced course on programming on the introduced

platform, seminars, meetings and technical discussions

would give the developers a chance to share experiences

and spread knowledge among team members.
†
 Better management of company knowledge

B Set of patterns—set of easily applicable solutions to

the common problems.

B Better documentation of the problems encountered

would help to avoid making the same mistakes in the

future.
The second way of improving productivity, smarter

work, suggests better work organization. The following

possible remedies were suggested to the problems

identified:
†
 Lack of target platform in the design phase

B More automated functional tests run overnight would

provide immediate feedback concerning the appli-

cation’s behaviour on the real platform. The faults

would be detected earlier, which would save a lot of

time connected with, e.g. fault localization.

B Introduction of the target platform in the analysis/de-

sign phase would be an expensive solution, but would

provide designers with immediate and precise

feedback.

B More prototyping in the early stages of the project—

some problems that are encountered in the implemen-

tation phase would never occur if the ideas were tested

on prototypes earlier in the design phase.

B Shorter time between functionality development and

testing would result in faster fault detection. It would

be easier for designer to localize the problem in code
that was recently produced than in code produced long

time ago.
†
 Too optimistic planning, too big scope of projects and

unstable requirements—a smaller scope of the projects

would result in more stable requirements. The main

cause of requirements change is the change of market

demands. If the project had shorter lead-time, the

probability of having change requests would be smaller

and their impact would be minimized.

The last way of productivity improvement, namely ‘work

avoidance’, refers to the idea of acquiring the solution

instead of developing it. One big issue in that topic is the

current lack of third party components for typical purposes,

like handling of the standard communication protocols.

Other issues are the platform quality issues. The following

improvements of the platform were suggested to the

platform developer:
†
 Runtime quality of the platform. The focus should be put

on providing quality to existing functionalities of the

platform instead of developing new features.
†
 Platform programming interface (API) stability. A ‘road-

map’ describing which parts of the platform are subject

to change would solve the problem. In that case, the

designers would not be surprised by API changes.
†
 Quality of platform’s documentation—update documen-

tation. Features that are not documented cannot be used,

so there is no point in developing new features if their

description is not added to the documentation.
6. Conclusions

The objective of the study was to examine the impact of

the change of the platform on the software development

from the development productivity point of view. To

achieve that we at first quantified the productivity of the

software development on the introduced platform, then

identified the nature of the problems encountered and finally

we suggested some productivity improvement methods. The

quantification was done by comparison with an other

project, in which the productivity was perceived as good.

The measurement from the functional perspective

revealed the factor of four difference between the develop-

ment productivity in the two projects. Examination of the

product structure and measurement from the internal

perspective allowed us to select two factors that result in

the factor of four differences between productivity. These

are the code writing speed, twice as small in the new

platform, and the average amount of code necessary to

provide certain functionality, about twice as big in the new

platform.

In order to check to what extend the difference in

productivity between the two projects could have been



P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269268
caused by the difference in quality, we examined different

aspects of quality. We found out that in terms of the design

quality both projects are similar, but in terms of process

quality the project done on the new platform was more

ambitious. In terms of non-functional requirements there

was no significant difference in the requirements put on the

system, but the developers believed that the non-functional

characteristics actually achieved in the project done on the

new platform were better.

Later, we identified factors that affect productivity and

we estimated their importance. It turned out that the

problem is complex—there are many factors of different

origins that affect the current productivity level. The

learning effect, caused by the introduction of the new

platform, had the relatively highest impact on the code

writing speed. However, other factors like the platform

quality and the work organization also have a significant

impact. Lack of third party libraries for the new platform

and the platform complexity result in larger amount of code

necessary to deliver functionality, compared to the UNIX

environment.

Due to the problem complexity, the suggestion of one,

‘silver bullet’ solution was impossible. Therefore, we

suggested a number of remedies to the issues identified.

The individual importance of the issue the remedies address

will be one of the factors taken into consideration when

deciding the order in which the remedies will be applied.

We believe that some general lessons can be learned

from our study. Problems, similar to the ones we have

described, may be experienced every time a company

decides to change platform or technology. If the change is

from a standard, widely used environment, to one used

mainly in specialized application domains, as in our case, it

seems very likely that the bottlenecks we have identified

may appear. The magnitude of their impact may, however,

differ, due to their dependence on individual settings like the

kind of technology introduced, experience of the staff,

characteristics of projects done in the company and many

others.

One of the main issues identified in our study, namely the

learning effect, is always present when a new platform is

introduced. If the platform has a unique programming

model, the learning curve can be very steep. Appropriate

training activities, although expensive, may bring signifi-

cant savings on the project cost. This was clearly pointed by

our interviewees who ranked the competence issues highest.

Therefore, it seems to be extremely important that the

developers are provided with a good source of information

about the new platform. It not only minimizes the learning

effort, but also affects the coding speed even after the

developers have gained a certain level of experience.

Due to the learning effect projects done using the new

technology are prone to delays. In order to minimize the

impact of limited experience on the quality of the product,

often the amount of quality assurance activities is higher

than normally, which makes the project even more delayed.
In the systems like the ones we have examined, it

immediately results in unstable requirements, which

according to our interviewees have significant impact on

productivity. Therefore, the scope of initial projects should

be limited, if possible.

Another issue that may be a consequence of introduction

of a very specialized platform is the lack of convenient add-

ons that are available on standard, widely used platforms.

The number of available tools or third party libraries is

likely to be limited since the relatively small number of

potential customers that would buy those makes their

development questionable from economical perspective.

Considering that among those, there are debuggers, profilers

or CASE tools as well as software libraries; the impact of

their absence should not be underestimated.
Acknowledgements

The authors would like to thank all the members of

Ericsson’s staff thanks to whose participation, patience and

will to help the whole study was possible as well as Daniel

Häggander and Johan Schubert from BTH for their help,

contribution and valuable comments.

This work was partly funded by The Knowledge

Foundation in Sweden under a research grant for the project

‘Blekinge-Engineering Software Qualities (BESQ)’ (http://

www.ipd.bth.se/besq).
References

[1] IEEE Standard for Software Productivity Metrics, IEEE Std,

1045–1992, 1993.

[2] V.R. Basili, L.C. Briand, A validation of object-oriented design

metrics as quality indicators, IEEE Transactions on Software

Engineering 22 (1996) 751–762.

[3] J.D. Blackburn, G.D. Scudder, Time-based software development,

Integrated Manufacturing Systems 7 (1996) 60–66.

[4] J.D. Blackburn, G.D. Scudder, L.N. van Wassenhove, Improving

speed and productivity of software development: a global survey of

software developers, IEEE Transactions on Software Engineering 22

(1996) 875–886.

[5] B. Boehm, Managing software productivity and reuse, Computer 32

(1999) 111–114.

[6] B.W. Boehm, Software Engineering Economics, Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[7] L.C. Briand, et al., Investigating quality factors in object-oriented

designs: an industrial case study, Proceedings of the International

Conference on Software Engineering 1999; 345–354.

[8] S.R. Chidamber, D.P. Darcy, C.F. Kemerer, Managerial use of metrics

for object-oriented software: an exploratory analysis, IEEE Trans-

actions on Software Engineering 24 (1998) 629–639.

[9] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented

design, IEEE Transactions on Software Engineering 20 (1994)

476–494.

[10] A.C. Edmondson, et al., Learning how and learning what: effects of

tacit and codified knowledge on performance improvement following

technology adoption, Decision Sciences 34 (2003) 197–223.

http://www.ipd.bth.se/besq
http://www.ipd.bth.se/besq


P. Tomaszewski, L. Lundberg / Information and Software Technology 47 (2005) 257–269 269
[11] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and

Practical Approach, PWS, London, 1997.

[12] W. Fisher, S. Wesolkowski, How to determine who is impacted by the

introduction of new technology into an organization. Proceedings of

the 1998 International Symposium on Technology and Society,

ISTAS 98, Wiring the World: The Impact of Information Technology

on Society, 1998, pp. 116–122.

[13] S. Gascoyne, Productivity improvements in software testing with

test automation, Electronic Engineering 72 (2000) 65–67.

[14] I. Graham, Migrating to Object Technology, Addison-Wesley,

Reading, MA, 1995.

[15] P. Hantos, M. Gisbert, Identifying software productivity improvement

approaches and risks: construction industry case study, IEEE Software

17 (2000) 48–56.

[16] J. Harvey, L.A. Lefebvre, E. Lefebvre, Exploring the relationship

between productivity problems and technology adoption in small

manufacturing firms, IEEE Transactions on Engineering Management

39 (1992) 352–359.

[17] B. Henderson-Sellers, L.L. Constantine, I.M. Graham, Coupling and

cohesion (towards a valid metrics suite for object-oriented analysis

and design), Object Oriented Systems 3 (1996) 143–158.

[18] M. Huggett, S. Ospina, Does productivity growth fall after the

adoption of new technology?, Journal of Monetary Economics 48

(2001) 173–195.

[19] R.T. Hughes, Expert judgement as an estimating method, Information

and Software Technology 38 (1996) 67–76.

[20] X. Li, et al., A measurement tool for object oriented software and

measurement experiments with it, Tenth International Workshop

New Approaches in Software Measurement, Springer, Berlin, 2001,

pp. 44–54.
[21] K.D. Maxwell, L. Van Wassenhove, S. Dutta, Software develop-

ment productivity of European space, military, and industrial

applications, IEEE Transactions on Software Engineering 22

(1996) 706–718.

[22] C. Robson, Real World Research: A Resource for Social Scientists

and Practitioner-Researchers, Blackwell, Oxford, UK, 2002.

[23] T.L. Saaty, L.G. Vargas, Models, Methods, Concepts and Appli-

cations of the Analytic Hierarchy Process, Kluwer, Boston, 2001.

[24] M. Shepperd, M. Cartwright, Predicting with sparse data, IEEE

Transactions on Software Engineering 27 (2001) 987–998.

[25] G.J. Steven, The learning curve: from aircraft to spacecraft?,

Management Accounting 77 (1999) 64–65.

[26] C.R. Symons, Software Sizing and Estimating: Mk II FPA (Function

Point Analysis), Wiley, Chichester, 1991.

[27] P. Tomaszewski, L. Lundberg, Evaluating Productivity in Software

Development for Telecommunication Applications, The IASTED

International Conference on Software Engineering, IASTED,

Innsbruck, Austria, 2004.

[28] M. van Genuchten, Why is software late? An empirical study of

reasons for delay in software development, IEEE Transactions on

Software Engineering 17 (1991) 582–591.

[29] W.K. Vaneman, K. Trianfis, Planning for technology implementation:

an SD(DEA) approach, PICMET ’01, Portland International Con-

ference on Management of Engineering and Technology, Technology

Management in the Knowledge Era., PICMET—Portland State

University, Portland, OR, USA, 2001.

[30] W.D. Yu, D.P. Smith, S.T. Huang, Software productivity measure-

ments, Computer Software and Applications Conference, COMPSAC

’91, Proceedings of the 15th Annual International, 1991 pp, 558–564.


	Software development productivity on a new platform: an industrial case study
	Introduction
	Presentation of the platform
	Methods
	Productivity measurement
	Quality aspects
	Productivity bottlenecks

	Results
	Productivity measurement
	Quality aspects
	Productivity bottlenecks

	Discussion
	Related work
	Productivity level
	Productivity improvement

	Conclusions
	Acknowledgements
	References


