
NOKIH-HOI&AND

Controversy Corner

It is the intention of the Journal of Systems and
Software to publish, from time to time, articles cut
from a different mold. This is one in that series.

The object of the CONTROVERSY CORNER
articles is both to present information and to stimu-
late thought. Topics chosen for this coverage are not
just traditional formal discussions of research work,
but also contain ideas at the fringes of the field’s
“conventional wisdom.”

This series will succeed only to the extent that it
stimulates not just thought, but action. If you have a
strong reaction to the article that follows, either
positive or negative, write to Robert L. Glass, Edi-
tor, Journal of Systems and Software, Computing
Trends, 1416 Sare Road, Bloomington IN 47401. We
will publish the best of the responses as CONTRO-
VERSY REVISITED.

CHANGE-POINTS: A Proposal for
Software Productivity Measurement

Vernon V. Chatman, III

This article describes a productivity measurement ap-
proach based on a common output for design, imple-
mentation, and testing. It relies on the traditional defi-
nition of productivity: Output + Input = Productivity. It
presents the concept of a unit of work- an abstract
work item-which reflects that, to manage a develop-
ment project, we must make logical subdivisions of
the work effort. The notion of CHANGE-POINTS is
derived from these subdivisions. Because we need to
view productivity within the context of effectiveness,
the article introduces the productivity, interference,
and effectiveness matrix for that purpose.

1. INTRODUCTION

In 1985, Dr. Ed Altman, then IBM General Prod-
ucts Division Vice-President, Software, commis-
sioned a task force at IBM’s Santa Teresa Lab-
oratory (STL) to look into the issue of software
productivity measurement. The task force leaders

Address correspondence to Vernon V. Chatman, III, 5984 Via
Madero Driue, San Jose, CA 95120. E-mail address:
vvchatm@IBM.net. Mr. Chatman recently retired from IBM.

were Dr. Ursula Richter, who came to STL in 1984
from IBM Research to work on this problem, and
myself. Dr. Altman wrote in an internal memoran-
dum in 1984:

The traditional measure of productivity (CSI/PY[‘]) is
of marginal use to management as it does not equitably
measure many of development’s variables. CSI/PY
does not address the considerable investment in testing
for large products such as IMS and DB2, nor does it
fairly measure the testing effort required for products
built for multiple operating environments.

Dr. Altman’s remarks raise two fundamental pro-
ductivity measurement issues. First, a productivity
metric must address the mission of the activity to
which it applies, that is, managers and performers of
that activity must believe the metric relates to their
responsibilities. Second, to aggregate productivity
measurements across project activities, the metric
must have a common “output” for the activities

‘CSI means “new and changed executable source instructions.”
PY means “person years.”

J. SYSTEMS SOFTWARE 1995; 31:71-91
0 1995 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/95/%9.50
SSDI 0164-1212t94)00088-5

72 J. SYSTEMS SOFTWARE
1995; 31:71-91

V. V. Chatman

included in its scope. CHANGE-POINTS addresses
these and other important productivity measure-
ment issues. Additionally, this article makes the
point that we need to view productivity within the
context of effectiveness.

2. PRELIMINARY MAlTERS

Before presenting the ideas and metrics associated
with CHANGE-POINTS, there are some topics that
must be dealt with to put these notions in context.
This section addresses those topics.

2.1 The Meaning of Productivity

Discussion of “productivity” in the literature of soft-
ware metrics has strayed from the traditional for-
mula for productivity2 and the traditional inter-
pretation of productivity as a period metric3. The
paradox of lines of code (LOC) as a productivity
indicator (Jones 1986, 1991) is no paradox. As im-
plied by Arthur (19851, given the same start date, the
same number of developers assigned to each task,
and equal available time to work on each project,
the project using the higher level language will com-
plete in less calendar (elapsed) time.4 Comparison
of productivity ratios should deal with calendar time
differences; thus, there is a fallacy in the so-called
paradox. “The tendency to use ‘productivity’ loosely
as a synonym for other concepts can create con-
fusion and misdirect improvement efforts” (Heyel,
1982).

As Packer (1983) noted: “While outputs are usu-
ally easier to quantify than outcomes, we often care
more about outcomes than outputs.” “Outcomes”
lead us to another concept:

The distinction between output and outcome is mir-
rored in the twin concepts of efficiency and effective-
ness. Efficiency refers to how well the enterprise con-
verts its input resources into immediate outputs-how
productive the organization is in doing whatever it does.
Effectiveness, on the other hand, relates to how well
the enterprise uses its input resources to meet its

*Post hoc ergo propter hoc. Assume a high-level design is pro-
duced, but no source code is produced, and the design is sold to
another company. For this example, lines of code metrics would
seem to preclude measurement of design effort productivity, or
imply that design effort productivity is zero. In general, any
“output” that is dependent on attributes of the implementation
source code suffers from this problem.

31t is common to compare annual productivity rates. Productiv-
ity comparisons should be normalized for calendar (elapsed) time
intervals.

4The examples in Jones (1986, 1991) bear this out. See Ap-
pendix 1 for a more detailed discussion.

ultimate goals and purpose-how productiue the orga-
nization is in accomplishing what it should be doing
[(Packer, 1983); emphasis added].

If effectiveness is improved (e.g., reduced total de-
velopment cost), then reduced efficiency (e.g., LOC
per person-month) is acceptable.

The key problem with many uses of LOC per
person-month as a productivity metric is that “pro-
gramming development [involves]. . . a significant
amount of.. . [effort] not affected by source lan-
guage” (Jones, 1986); thus, LOC are not an oz&ptput
of those efforts. In addition, as in Arthur (19851,
seemingly incorrect results arise from merging the
concepts of efficiency and effectiveness, i.e., an ex-
pectation that productivity metrics should reflect
how well an organization is accomplishing what it
should be doing: e.g., “the aim of this paper is to
explore a variety of measures.. . which have been
advocated for measuring IS productivity; i.e., their
efficiency and effectiveness” (Scudder and Kucic,
1991).

The CHANGE-POINT approach does not merge
the concepts of efficiency and effectiveness; it de-
fines separate metrics for each concept (and one
other covered later). “Traditional formulas for mea-
suring productivity stress efficiency and neglect ef-
fectiveness” (Packer, 1983). This keeps productivity
analysis distinct from productivity measurement.

2.2 LOC in Language x is Not Equal to LOC in
Language x

This section’s heading does not contain a typograph-
ical error. It correctly reads “language X” in both
cases and applies when using the same LOC count-
ing convention. The point is that while some “items”
are not equal, this fact may not prevent us from
combining, manipulating, or comparing them; the
significance of any differences must be proven. Fig-
ure 1 shows three semantically identical sets of code
(in C). The first example is three LOC, the second
example is one LOC, and the third example is five
LOC. Clearly, there is no useful counting rule that
will yield the same count for the three sets of code.
Thus, even when there is semantic identity, it is
difficult to argue that a LOC in language x equals a
LOC in language x. 5 Inspection of programs written

‘Some projects use multiple languages [e.g., Grady and Caswell
(19871, pp. 21-221. Adding LOC in different source languages
may be more like adding US 2% and US 1Oe coins to make a
purchase than it is like adding US dollars and British pounds to
make the same purchase (however, even the latter can be done in
some places of trade).

CHANGE-POINTS J. SYSTEMS SOFTWARE 73
1995; 31:71-91

if(I==l)

spec_code(A,B.C);
J= 2;

else

J = 3;

J = (I == 1) ‘! (spec_code(A,B,C),2) : 3;

switch (I)

case 1:
spec_code(A,B.C);
J= 2;
break;

default:
J= 3;
break;

Figure 1. Semantic identity.

in other languages will also reveal inequalities of
LOC.

To repeat the point, it is acceptable to add apples
and oranges if one is counting fruit. Simply observ-
ing that counted elements are different is not a
conclusive objection: a valid objection requires the
demonstration of-the significance of any differences,
within the context of the purpose being served. As
a practical matter, we count, add, and manipulate
unequal things all the time, e.g., planets, people,
cars, planes, words, papers, books, etc.

2.3 Productivity Measurement versus
Cost Estimating

Estimating the cost for a project is an important
activity, but this is distinguishable from measure-
ment of the efficiency of the project. Cost estimating
involves a prognostic use of a productivity metric. In
cases where estimated cost is incorrect, the error
may be due to misunderstandings regarding factors
affecting cost (e.g., particular design or implementa-
tion errors), and not a deficiency in the productivity
metric for measuring efficiency. Thus, attempts to
evaluate a productivity metric based on its use in
estimating cost may not be appropriate and perhaps
arise “out of a . . . misconception that a software mea-
sure must always be part of a prediction system” (Baker
et al., 1990). The situation may be that “productivity”
relates primarily to the number of potatoes in
Campbell’s sack of potatoes (the quantity of output),

and cost estimating involves also understanding
whether the potatoes are “good cookers” [the quali-
ties of the output (Campbell, 1921)]. This would
support the conclusion that generally “one software
development environment.. . [cannot] use the algo-
rithms developed at another environment to predict
resource consumption” (Bailey and Basili, 1981).

2.4 The Meaning of Size

“Researchers in software measurement have failed
to take advantage of measuremen-t theory” (Fenton
and Melton, 1990). “From the standpoint of mea-
surement theory, many of the derived measurements
of software that have been proposed.. . are mean-
ingless” (DeMillo and Lipton, 1981). “Size,” espe-
cially as it relates to “effort,” has been “a compo-
nent of almost all [software] cost and productivity
models” (Baker et al., 1990): e.g., “we will take the
system size scale to be related explicitly to the efsort
to analyze, design, and develop the functions of the
system” (Symons, 1988); “for a measure of software
size to be useful for software productivity and.. .
software cost estimation.. . it would have to corre-
late well with the measure of software development
effort” (Yu et al., 1990); “if we have a generally
accepted product (size) metric P we can estimate
the process (cost) metric C” (Rask et al., 1993).

The view that size should correlate with effort in
some predictable (formula) way preempts an aim of
software measurement, namely, to find which of the
competing alternatives is most effective for produc-
ing a given program of size s. Thus, size and effort
should be independent. We cannot assume that a
specification of size for a program predetermines the
effort required for its creation (or the reverse).
Effort should be dependent on the techniques and
technology (e.g., COBOL versus Assembler) used
for the creation of the program.

An additional observation concerning size is that
the unit of size might not be the unit of output for a
productivity metric. An example outside the soft-
ware arena is a shoe factory that produces shoes in a
variety of shoe sizes. Shoe factory productivity mea-
surement will use the number of pairs of shoes
produced, not the sum of the shoe sizes.

In this article I do not intend to cover all of the
many issues in the software metric area. I do share
the view that “many misunderstandings surrounding
software measures are due to the failure to make
clear the distinction between a> product/ process/
resource attributes and measures, and b) internal
and external attributes and measures” (Fenton,
1991).

74 J. SYSTEMS SOFIWAFG
1995; 31:71-91

Program Product

V. V. Chatman

Component I

I

1 /
Sub-Component

I
Module

Figure 2. Program structure.

3. UNIT OF WORK

Figure 2 is a common picture of how we describe a
program product or system and is accurate for what
we ship. It does not, however, best represent what
we work on; Figure 3 is a better representation.
What we work on is formal [an abstraction (Brooks,

Program Product

198611; this is illustrated by the rectangle outside the
hierarchical product structure in Figure 3. The 8
symbol shown inside the module level of the hierar-
chical structure represents the embodiment of this
abstract work item; implementation of the abstract
work item requires each 8. Of course, we work on

Component

I

Sub-Component

1

I 1 I

1

1

Module

I
8 => change for work Item xx

Figure 3. Work item.

work Item xx I

J. SYSTEMS SOFTWARE 75
1995: 31:71b91

CHANGE-POINTS

Program Product

Component

I

I I
Sub-Component

I-- Work Iem YY II

e => Change for Work I&m Xx

0 => Change for Work Item W

Figure 4. Multiple work items.

multiple items in a release, and they may have an
impact on the same modules; Figure 4 shows this.

Figure 5 is an excerpt from what IMS calls a TU
(transferable unit) and is a description of work for
XRF Restart: “backup” system MFS block load/re-
lease. The important things to notice are: (1) there
are several program units involved (three new, five
modified {REPLACE}, and three affected {REAS-
SEM}); (2) the work involves multiple individuals,
here two (TF and JFW); and (3) some modules
require zero new or modified LOC.

Figure 6 is a higher level view that illustrates that
we work on multiple abstract work items in a re-
lease. The example is from the DB2 Release 2
System Plan, and it is a summary of one of their line
item workbooks, which contain more detailed infor-
mation. A line item (abstract work item) can require
work in multiple components (sets of modules) within
a product that may not all be integrated into the
product simultaneously.6 Some abstract work items

6A “spin” represents an integration point for selected function-
ality (see Figure 6).

may require actions in other products. For example,
certain capabilities in DB2 require changes in MVS.
We normally call these dependencies. I make this
observation merely for completeness and, in this
article, make no special use of this characteristic.

In summary, our unit of work

l is a management- or organization-defined abstract
work item;

l is a definable set of changes to a definable set of
modules (and may involve the creation of new
modules);

l can require changes/additions in multiple ele-
ments (products, subsystems, etc.);

l may be subdivided if experience suggests that is
prudent (usually when we get into trouble).

Additionally, in each of these cases, IMS and DB2,
the GPD Programming Development Process Hand-
book does not even refer to TUs or line item work-
books. These things exist because the organization
believes them to be necessary to manage its work.
The common thread here is that each organization
is attempting to manage change. To fulfill their

76 J.SYSTEMSSOFIWARE
1995; 31:71-91

V. V. Chatman

hbptu.DO5 HS RESTART 1212 0
hbpt."Backup" System WPS Block Load/Release
hmp.FUNCTION:
rp.Provide for the loading and releasing of the WFS BMCKS
by the "backup" system based upon the events occurring
in the Yactive* system.
Ltupreq. TUDOl TUDO2
sltuopreq.
&mp.DESCRIPTION:
ep.Based upon the user Terminal activity
occurring in the “active" system, the "backup* will
mirror the loading and releasing of the WFS Blocks.
This is driven by the x831' Communication Message Queue Get Unique and
the ~'35' Communication Message Queue Rnqueue log records.

===> We have a requirement that WFS support multiple TCBs
because this.is running under the Restart TCB concurrent with
Communication during the CONTINUOUS TRACKING PHASE.

&mp.RBSTRICTIONS:
&P.
&mp.TESTING SUGGESTIONS:
hp.Cancel with a dump a "backup" system which was tracking terminal
events occurring on an 'active". Inspect the 'FRE's to determine
whether the MFS Blocks were correctly loaded and released.
Also, check all 'CIB's for correctness.
&tufpfs.‘I/20/03’ ‘-’ ‘I/20/03’
htulogic.‘3/01/03’ ‘-’ ‘3/10/03’
htucode.*4/01/03g 1-t ‘3/31/03’
htuut.‘4/15/03’ ‘4/29/03’ ‘4/29/03’
&tuxfer.'4/15/03' '4/29/03' '5/a/03'
htudr2.*1/20/03' 'l/31/03' 'l/31/03'
&tudr3.'3/15/03' '-' '3/10/03*
&tui0.'3/15/03' '-' '3/10/03'
&tuil.DFSCRSPO '4/15/03' '4/22/03' '4/29/03'
&tui2.'4/15/03' '4/22/03' '4/29/03'
Ltuutc.'4/15/03' '4/29/03' '4/29/03'

l ******t
&tuil.QLGGENQU '4/15/03' '4/22/03' '4/29/03'
&tui2.'4/15/03' '4/22/03' '4/29/03'
&tuutc.'4/15/03' '4/29/03' '4/29/03'
&tumm.DFSCRSPO MODULE -10 REP&B TF

&tmwn.DF0ICV50 MODULE 40 REPLACE JFW
&tumm.DFSIINFO MODULE 62 REPLACE JFW

t.t..tet
&tumm.DFSQLOGO MODULE 76 REPLACE TF
&tuamt.DFSFRT MACRO 202 NEW JFW

l **z****

i
‘&tumm.DFSCRPOO MODULB 0 RRASSBM TF

l *******

&tumm.DFSQRSTO MODULE 0 RBASSRM TF

Figure 5. IMS ‘IV-Replica.

responsibilities, organizations factor and document
these responsibilities to whatever degree thought
required for the success of the organization. Change
management is extremely important to success; thus,
organizations create work breakdown structures.’

Let me call this unit of work an AWI (abstract
work item). A working definition for an AWI is as
follows: the intended result of a set of actions on a
software product’s source text. The result is vitalized

‘“The purpose of a WBS {work breakdown structure) is to divide
the total project into small pieces, sometimes called work puck-
ages. Dividing the project into work packages makes it possible to
prepare project schedules and cost estimates and to assign man-
agement and task responsibility” (Nicholas, 1990).

through a set of internal or external product at-
tributes; the actions are process activities performed
to achieve the desired product attributes. The level
of detail (degree of factoring) in a project’s docu-
mented work breakdown structure may not always
explicitly reveal the result (AWI) as specific product
attributes (e.g., “update the payroll to reflect the
new tax laws” or “improve performance by 5%“).
Thus, the documented expression of an AWI may be
subject to some ambiguity; nevertheless, clearly, such
decomposition must occur.

3.1 CHANGE-POINTS

The use of AWI as the unit of output in the produc-
tivity metric has a certain appeal. However, to man-

CHANGE-POINTS

DB22PLhN

J.SYSTEMS SOFTWARE 77
1995; 31:71-91

JlIm II”BM (CO~IN’WDl.

(DB22LINE)
DEPT LINE ITEM DESCRIPTION LCK!

LI40 SPUFI as a DSN Subcommand -- Spin 3
SPUFI (TAC) 1157

LI Total 1157,
L141 ISPF Panel Restructure -- Spins 2.3

ISPF/DB21 Panels (TAC) a 5038
Installation & 414
Precompiler/Parser & 555

LI Total a 6007
L152 Interpreter Rework -- Spin 3

RDSM 28
RDSI h 409

LI Total a 437.
M92 L161 RNCODE/DECODE Exit Support -- Spin 5 I
cant RDSI & 2205

RDSM a 2238
PC & 265
UC h 1157
BMC & 344
CAT 6 546

LI Total h 5650,
Department Total & 40977,

MO9 LIO2 Sequential Prefetch -- Spin 2
Data Manager 11
RDSM 214
Utilities 20
Buffer Manager 56
SPMC 200

LI Total 501,
LIO5 Restartable Load w/o logging -- Spin 3

Utilities 641

I I
_- _

Utilities 79 I

I I
LIll Discard File for Load -- Spins 2,4 I

Utilities 600
TAC f 20

1 LI Total 6 620
1 L112 Delete Keyword -- SDin 1 I

I I Utilities
I

490
Data Manager 9

Figure 6. DB2 System Plan-Replica.

age change, there clearly are many more elements to
deal with than are represented by a count of AWI.
As shown in Figure 5, an AWI implementation
might use multiple program units. Specific program
units will be created and/or used in support of
implementing that AWI. Those program units are
expected to produce certain effects (under specific
conditions) within the program in support of that
AWI.

Thus, recalling Figure 3, we can recognize the
building blocks of an AWI-what I call CHANGE-
POINTS. Please review Figure 5. Each new module
will have a set of execution-time effects. Each modi-
fied module will have its set of execution-time ef-
fects altered to accommodate the new AWI. Each

macro will have a set of compile-time effects8 Each
reassembled module will have its set of execution-
time effects modified in some way that accommo-
dates this new AWI.,If the correct set of effects
needed from any of these program units is not
specified or implemented, then there is an error in
the AWI design or implementation. If not all the
needed new, modified, or affected program units are
identified or implemented, then there is an error in
the AWI design or implementation. Each of these
program units is a locus of change in support of this

'Some macros are conditional; some header files are condi-
tional.

78 J. SYSTEMS SOFTWARE
1995; 31:71-91

V. V. Chatman

AWI. A CHANGE-POINT is defined as the in-
tended result of a set of actions on a single new,
modified, affected, or deleted program unit used to
materialize a particular AWI. The result is vitalized
through a set of internal or external program unit
attributes; the actions are process activities per-
formed to achieve the desired program unit at-
tributes. More specifically, a CHANGE-POINT is
vitalized through a subset of (possible) ejjfects within
the set of (possible) effects in or from a single new,
modified, affected, or deleted program unit used to
materialize a particular AWI.9 Context (internal
and/or external) affects which effects are expected
to occur (e.g., is a particular symbol defined? is the
value of a particular variable equal to l? did a divide
exception occur? did the user click on “Close File”?),
and these expectations will be used to judge the
correctness of the AWI and CHANGE-POINT de-
sign and implementation.”

“Program unit” is imprecise, because it can refer-
ence any level of the hierarchy shown in Figure 3,
but mixing of levels should not occur. Within the
context of this article, “program unit” and “module”
are synonyms and refer to the lowest level of the
hierarchy, assumed to be source modules (including
merely definitional source, e.g., DSECT, INCLUDE,
#include, and macro files). “Source modules” is also
imprecise; I discuss this shortly. New, modified, af-
fected, and deleted program units have somewhat
different roles regarding change in a program; this is
discussed below.

3.1.1 Affected modules. Figure 7 shows some C
code modules; for the moment, just consider Mod-
uleA and ModuleB. ModuleA is purely definitional.
Assume that the design for some new AWI requires
J and I to be long instead of int. To support im-
plementation of the new AWI, we must modify
ModuleA by changing “int” to “long.” Merely
changing ModuleA is not sufficient: ModuleB is
affected by this AWI design.” For this AWI imple-
mentation, the (compile-time) effect in ModuleA is
new semantics for aTYPE (and for paTYPE), and
the (compile-time) effect(s) in ModuleB from Mod-
uleA ensure that the (execution-time) effects from
ModuleB statements using I or J remain valid.

‘Cf. C/C+ + usage of “side effect(s)” and “side effect opera-
tor.”

“See testing suggestions in Figure 5.
“If the size of int is smaller than the size of long, tests of I and

assignments to J can be erroneous if ModuleB is not recompiled.

Module&
typedcf int aTYPE:
lypedef aTYPE *paTYPE;

ModuleB:
#include “ModuleA’
extcm aTYPE J. aTYPE I;
void functionl(void)

if(l==l)

spec_code();
J=2;

else
J = 3;

ModulcB’:

#inch& “ModuleA”
cxtem aTYPE 1. aTYPE 1;
void function I(void)

I

t
J = (I == 1) ? (spec_code(),2) : 3;

#include "Module A”
extem aTYPE I. aTYPE I;
void functionI(void)

I
switch (I)

1
case 1:
spec_wdeo;
J = 2;
break;

default:
J= 3;
break;

Figure 7. C code.

Affected program units are altered in support of
some AWI that changes the product design or im-
plementation, but the alteration is of a different
nature than for modified modules. The source text
of an affected module remains the same (e.g., Mod-
uleB12), whereas the source text for a modified mod-
ule does not (e.g., ModuleA). The action taken with
an affected module is intended to preserve (restore)
its integrity and in some cases will add or remove
capability.

3.1.2 New or modified modules. New or modified
program units are created in support of some AWI
that changes the product design or implementation.
A program unit may have overlapping or nonover-
lapping subsets of effects regarding multiple AWI. A

12Preprocessor output will differ, as will the object code, but
like the object code, preprocessor output is not the source text for
ModuleB.

CHANGE-POINTS .I. SYSTEMS SOFIWARE 79
199s: 31:71-91

module might contain some entry points used only
in support of a particular AWI and others that are
used only in support of another AWI. As a practical
matter, there are many reasons to combine into a
single module the needs of multiple AWI, for exam-
ple, (1) performance improvements from internal
subroutine sharing, (2) much of the module is reus-
able without replication, or (3) storage savings from
sharing static data.

3.1.3 Deleted modules. Design and implementation
of an AWI can require deletion of program units.
Deleted program units are alterations to the pro-
gram (structure) intended to have a null set of
effects (e.g., removing support for old devices).
Sometimes deleting a program unit merely means
allocating to other (new or modified) modules what-
ever was previously done using the deleted module.
Splitting a program unit can be desirable for many
reasons, one of which is simply to create units of
more manageable length. Not deleting unneeded
program units is not always benign.

The designers and implementors of OS/2 2.1
Special Edition had to strip out Windows; testing
had to verify that the actual deletions did not have
undesirable effects. For legal reasons, Borland has
to delete any modules whose only purpose is to
support Lotus l-2-3 emulation in their spreadsheet
product.

3.2 Design, Implementation, and Test of Change

High-level design (see Appendix 3) identifies
CHANGE-POINTS by (1) assigning a set of respon-
sibilities to a new, modified, or affected program
unit relative to an AWI, or (2) indicating actions
needed (e.g., recompile) for an affected program
unit relative to an AWI, or (3) indicating deletion of
specific program units relative to an AWI. According
to Programming Process Architecture (1986), compo-
nent level design “defines: all new, changed, and
affected modules, macros, and their function&] con-
trol and function flow to the intermodule level[;] all
intermodule interfaces, including parameter value&
and] all data definitions.” In this sense, high-level
design produces specified CHANGE-POINTS, so in
the context of productivity, it makes sense to think
of CHANGE-POINTS as an output of design effort.

During implementation (see Appendix 31, a
CHANGE-POINT is materialized by a set of source
text (in one or more languages13) within a program
unit, or by an action performed with a program unit
relative to an AWI (e.g., recompile because of a
change in a data structure shared with another pro-

gram unit). Assume ModuleB in Figure 7 is created
in support of some new AWI. ModuleB’ and Mod-
uleB” are semantically identical to ModuleB and
invoked identically. They are examples of possible
alternative materializations of the CHANGE-POINT
ModuleB implements; ModuleB, ModuleB’, and
ModuleB” produce the same set of effects. An opti-
mizing compiler might generate identical object code
for these variations. Materialization of a particular
CHANGE-POINT might use alternative sets of
source text; in this sense a CHANGE-POINT is
LOC independent (see also Appendix 2). It is impor-
tant to note that the source text used to implement a
CHANGE-POINT might not be contiguous within a
program unit. Furthermore, because source text
changes used to implement a CHANGE-POINT in a
modified module often take advantage of surround-
ing source text, a CHANGE-POINT is not, in gen-
eral, materialized only by new source text.

The implementation technology and the design
that selected the technology determine what makes
up source or source modules. For example, the input
to an application generator or report writer (e.g.,
RPG) can be considered a higher level of source
than input to a compiler (e.g., PL/I). Currently,
great interest exists in raising the level of implemen-
tation above high-level languages (HLL) to get ben-
efits above and beyond what is achievable with cur-
rent HLL.

Mixing of implementation technology also occurs.
It is common, for example, for development projects
to use both assembler and one or more HLL. In
theory, designers should minimize the number of
CHANGE-POINTS for a project (set of AWIs), but
practical trade-offs can exert an upward push on the
number of CHANGE-POINTS needed to implement
a project.

Test (see Appendix 3) validates specified and im-
plemented CHANGE-POINTS for an AWI using a
set of test cases. Currently, validation uses machine
execution of the developed product, and I speak
about test in this context. I leave proofs and other
techniques to the future.

Test does not produce CHANGE-POINTS except
in the undesirable sense of detecting incomplete
design. In the ideal case, test should execute suffi-
cient test cases to ensure that the CHANGE-POINT
implementations accomplish the intended objective,
the AWI (function test, system test), without unde-
sirable side effects (function test, regression test,

13Some high-level language compilers support embedded as-
sembler language, e.g., IBM’s proprietary PL/AS and Borland’s C.

80 J. SYSTEMS SOFTWARE
1995; 31:71-91

system test). In this sense, test produces validated
CHANGE-POINTS, so in the context of productiv-
ity, it makes sense to think of CHANGE-POINTS as
an output of test effort.

During a project, a CHANGE-POINT is one of
the sets of changes that management and the re-
sponsible developers must design, implement, and
test (on schedule, with high quality, and at lowest
cost). A CHANGE-POINT is more granular than an
AWI (in that by definition it relates only to a single
program unit) but more global than a LOC (in
that implementation might use multiple LO0
CHANGE-POINTS seem usable as the unit of out-
put in our productivity metric.14

3.2.1 Counting CHANGE-POINTS. To have con-
sistent and repeatable CHANGE-POINT counts for
a given design, we need a counting rule. The rule
should be simple and seem consistent with the num-
ber of changes made and managed. The rule to be
used is this: for each AWI, count 1 for each module
modified, created (new), deleted, or affected that is
used to vitalize that AWI; only count a module once
for that AWI.” Summing gives the total CHANGE-
POINT count for the design; total CHANGE-POINT

14Design, implementation, or testing of a CHANGE-POINT
could each be a work package (or subcategory) in a work break-
down structure, because these are activities with a duration and a
timing/position relative to other activities in a project, but
CHANGE-POINTS are not themselves elements (work packages
or subcategories) of a work breakdown structure; rather, they are
lo$cal elements of the software product.

New, modified, affected, and deleted assume some reference
program structure (e.g., as in Figure 2) and program unit proper-
ties (e.g., deleted assumes the module is in the reference program
structure; affected assumes the module is in the structure and
does nor have certain properties). The CHANGE-POINT count
for an AWI is (should be) relative to the program structure and
program unit properties assumed in the AWI design.

V. V. Chatman

count less the sum of the counts for deleted modules
gives the net CHANGE-POINT count. Summing the
total or net CHANGE-POINT counts of multiple
AWI gives, respectively, the total or net CHANGE-
POINT count for that set of AWI (Figure 8).

Total and net CHANGE-POINT counts for multi-
ple AWI are distinguishable from a simple count of
unique modified, new, deleted, and affected modules
for that set of AWI. Given the above counting rule,
it should be clear that, generally, total and net
CHANGE-POINT counts will exceed a simple mod-
ule count. One reason to go beyond a simple module
count is that such a count would not necessarily
reflect any or significant change because of removal
or addition of an AWI.

3.2.2 CHANGE-POINTS and function points. Be-
cause many readers may have heard of function
points, I must comment on some distinctions be-
tween CHANGE-POINTS and the function point
concept as described by Albrecht and Gaffney (1983).

Five user function types are the building blocks
for a function point count: (1) external input; (2)
external output; (3) logical internal file; (4) external
interface file; and (5) external inquiry. Fundamental
to identifying the user function types is the notion
of “the external boundary of the application being
measured” (Albrecht and Gaffney, 1983). “The
amount of the ‘function’ the software is to perform
. . . is quantified as ‘function points,’ essentially, a

weighted sum of the number of ‘inputs,’ ‘outputs,’
‘master files,’ and ‘inquiries’ provided to, or gener-
ated by, the software” (Albrecht and Gaffney, 1983).

Total and net CHANGE-POINT counts, on the
other hand, depend on the partitioning of the AWIs
for the application or program being measured and
have no dependency on recognition of the user

.

Figure 8. Counting.

CHANGE-POINTS J. SYSTEMS SOFTWARE 81
1995; 31:71-91

function types. Certain classes of rework of an oper-
ational application would result in zero [Mark II
(Symons, 198811 function points but nonzero total
and net CHANGE-POINT counts: for example, per-
formance enhancements.

“Albrecht.. . developed a methodology to esti-
mate the amount of the ‘function’. . . software is to
perform . . . quantified as ‘function points’ ” (Albre-
cht and Gaffney, 1983). CHANGE-POINTS relate to
change in the software and its structure.‘6 Function
points are widely accepted as a size metric by both
practioners and academic researchers (Kemerer and
Porter, 1992) and have approached the position of
being a de facto standard as a size metric (Symons,
19881, although Albrecht and Gaffney (1983) pro-
posed function points “as an alternative to ‘size.“’

Symons (1988) identified limitations of function
points (including Mark II function points). Kemerer
and Porter (1992) addressed reliability of function-
point counts. An additional difficulty with function
points is as follows: the meaningfulness of computa-
tions using the simple (low), average (medium), and
complex (high) weights, and the degrees of influence
(impact), is not well specified (by definition, these
are classifications and so might be better repre-
sented as letters). Furthermore, even if these factors
can be reliably assigned, this does not mean that
total unadjusted function points WFP) or total de-
gree of influence are meaningful (e.g., summing [l]
the result of a length in inches times a factor that
converts it to feet and [2] the result of a length in
centimeters times a factor that converts it to meters
can produce a numeral {[l] + [2] = [?I), but this
numeral is not meaningful, although the factors can
be reliably assigned).

Symons (1988) considered “function points. . . di-
mensionless numbers on an arbitrary scale.” This
seems inconsistent with the use of weights. The
presumed purpose of the weights is to convert items
to a common scale (e.g., L number of low-complex-
ity external inputs is equal to M number of
medium-complexity external outputs and H number
of high-complexity logical files, on some nonarbi-
trary scale). If the scale is arbitrary, then, at least,
each triplet of weights is independent of the others
(e.g., there is no reason for the weights for external
inputs and external inquiries to be identical) and,
therefore, different sets of triplets are usable to
compute UFP; this means UFP and FP are not
unique for a given design.

lhJust as a software entity is an abstraction (Brook, 1986), so,
too, are CHANGE-POINTS.

Convention might lead to a completely reliable
method for counting user function types and for the
assignment of weights, and thus for computing func-
tion points. If, as Symons (1988) maintained, differ-
ent technologies require the use of different weights
for FP, then relating FPr, to FPTZ requires some
function N to map FPri to FPr2 or some function ??
to map FPr* to FP,,, to be meaningful; the scales
involved may be complex, but they cannot be arbi-
trary.

If FP does not require different weights for dif-
ferent technologies (and/or one maintains that FP
is itself a scale), then we still have the zero UFP
problem: whenever UFP is zero, FP is also zero, thus
implying that productivity is zero; this can occur for
certain classes of work, e.g., software defect repairs
that do not affect the definition of or quantity or
complexity of user function types, and some changes
to macros in C #include files.17 Also, user function
counts are integers, so the current standard weights
cause UFP to be a discontinuous count that sets an
upper and lower bound on UFP for all possible
technologies usable for implementation of all possi-
ble applications that have the same counts for each
of the five user function types.18 The view of soft-
ware leading to these features requires explanation;
“measurement without an underlying theme can
leave the experimentalist, the theorist, and the prac-
titioner very confused” (Chillarege et al., 1992).

A major tenet of Albrecht and Gaffney (1983) is
that function points have a high correlation with the
eventual LOC. They suggest using “ ‘function points’
to estimate ‘SLOC,’ and then using ‘SLOC’ to esti-
mate the work-effort.” Jones (1991) considers back-
firing a reliable method for converting LOC to func-
tion points. Converting function points to LOC and
converting LOC to function points are not valid
resealings, in part because LOC is a continuous
(unbounded) count. Furthermore, most such conver-
sion factors vary according to the coding and project

“AIbrecht and Gaffney (1983) refer to “counting the function
points.. . changed by the development.. project,” but this can
only mean changed user function types from which UFP is
derived [“ChgA” and “ChgB” (Albrecht and Gaffney, 1983)].
Ellipsis when speaking of added or deleted function points, while
problematic, is not nearly as dangerous as when speaking of
changed function points.

‘“For example, for the function point calculator application in
Jones (1991), valid UFP values are {18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,35}, not 34, and no value < 18 or
> 35 is valid for any technology or application that keeps EI, EO,
ILF, EIF, and EQ the same. Note also that the current standard
UFP weights can be reduced to four (3, 4, 5, and 7-the unique
simple (low) weights}, perhaps three (3, 4, and 51, and just possibly
to one (3).

82 J. SYSTEMS SOFTWARE
1995; 31:71-91

V. V. Chatman

styles used in particular organizations and thus are
not general. In addition, for mixed-language applica-
tions, backfiring requires adding LOC in different
source languages, without adjustment [see Jones
(19911, pp. 77-781.

Using the same function point count for different
languages in prediction models [or “‘formula’ esti-
mates” Wbrecht and Gaffney, 198311 for effort
might be misleading: if effort varies with source
language, then using different source languages to
develop the same application might imply diflerent
function point counts (due to different designs)
should be used for the application in some of the
languages as one way to eliminate or reverse the
differences in effort. Rejecting this view forces one
to accept that for evev application, there is some
function point count, f, for some least effort design
in a particular language” such that f is the function
point count for some least effort design for that
application in each of all possible languages.*’ If
there is no shared function point count among least
effort designs for all possible languages for an appli-
cation, then function points do roof “stay constant
regardless of the programming language used”
(Jones, 1991) for purposes of comparison of least
effort among languages. Thus, predictions of effort
using a common function point count are not suffi-
cient to make least-total-effort evaluations: for a
specific application, least effort rankings might not
correspond to function-point rankings-a language
that does not have the smallest function point count
might need the least effort, or the effort for design
D in language L could be less than the effort for all
designs that have a common function point count in
all languages.

3.3 Issues and Questions

This section addresses a few issues and questions
that may be on the minds of readers.

3.3.1 LOC not factored into count. Because LOC
are not outputs of Design or Test, including LOC
means we cannot use CHANGE-POINTS as a com-

19This assumes an optimal work breakdown structure for im-
plementing that design. It is noteworthy that empirically derived
cost prediction models may be plagued by less-than-optimal
matches between designs and project work breakdown structure.

2oThls is not to say that there is no single design with the same
function point count in each language, nor that there cannot be a
collection of designs such that, although they may differ by
language, their function point count is the same, nor that all least
effort designs in each of all possible languages for an application
must have the same function point count.

mon output. Furthermore, current indications are
that coding is only lo-20% of Implementation ef-
fort.

3.3.2 Different managers or developers, given the
same implementation or enhancement task, will define
different sets of AW and thus generate different
CHANGE-POINT counts. Exactly. “The hardest sin-
gle part of building a software system is deciding
precisely what to build” (Brooks, 1986). One hopes
that software science can provide metrics useful for
comparing such decisions. “Software construction is
a creative process” (Brooks, 1986). “Design and pro-
gramming are human activities; forget that and all
is lost)’ (Stroustrup, 1991). Using total or net
CHANGE-POINT count alone will not determine
what to design; no mere count will suffice for that
purpose, but prediction models or assessment for-
mulas that use that count (or its components) may
help. If we consider a case where different designs
for the same system or application result in the same
total and net CHANGE-POINT counts, then the
selection of one design over the other will depend
on other factors (e.g., elapsed-time target, total re-
sources needed, usability, skills available, etc.).

3.3.3 How is “Set of effects” difSerent from “states”
or “‘set of states”? States in software systems seem
best related to an execution time view of programs.
CHANGE-POINTS also relate to purely definitional
program units. Even header files that only enable
the use of convenient symbols require change man-
agement. Modification of such modules can have
serious development and execution-time conse-
quences. However, I do not think it is useful to talk
about such a module as a “component [that] deals
with a small number of cases” in the sense intended
in Parnas (1985). The CHANGE-POINT approach
integrates a construction-time (design, build, and
test) view and an execution-time view of the soft-
ware system. Development organizations must deal
with the complexities of both the construction and
execution contexts.

3.3.4 Complexity not factored into count. To the
extent this is true and a problem, it is not unique to
this approach. LOC counts, for example, do not
factor in differences resulting from variations in
complexity. Furthermore, because total and net
CHANGE-POINT counts are not merely counts of
unique modules, total and net CHANGE-POINT
counts reflect complexity. A lOO-LOC change might
be more or less complex than one-hundred l-LOC
changes, but the latter are likely to be more difficult

CHANGE-POINTS

to manage, which could result in differences in pro-
ductivity.

I do not know the “right” way to measure com-
plexity, but some indicators might be as follows21:

l CP/Module (change density-structure)

l Modules/CP (change dispersal-structure)

l CP/AWI (change scope-structure)

l AWI/CP (change compactness-structure)

l CP/LOC (change concentration-implementa-
tion)

l LOC/CP (change spread-implementation)

Summing CPawi, cpa,i/Loc,+vi> or Loc,,,/cpa,i
yields an indicator that increases or decreases when
adding or deleting AWIs.

As noted earlier, a simple counting rule is desir-
able. Complex counting rules tend to be impractical
and subjective. Setting up elaborate weighting proce-
dures without factual knowledge about the influence
of things factored in could be misleading and coun-
terproductive.

3.3.5 External integaces not factored into count.
First, this is primarily a problem regarding modules
that have multiple entry ,points or multiple types for
a single argument. Second, external module refer-
ences imply a count of at least two for the relevant
AWI, so total and net CHANGE-POINT counts
reflect such references. Module recompiles required
because of control block modifications allow total
and net CHANGE-POINT counts to reflect such
interface changes.

3.3.6 Why not just use LOC? Each LOC is a change.
LOC is implementation dependent and varies be-
cause of compiler facilities, skill level, etc.; again, it
is not applicable to Design and Test.

3.3.7 CHANGE-POINT counts ignore the size/
complexity of a change (e.g., a IO-LOC change is not
equal to a 50-LOC change or a lOO-LOC change).
Neither “size” nor “complexity” of a change has a
uniform relationship to LOC. A l-LOC change can
be complex because of all the things and relation-
ships that one must know and keep in mind before
or when making that change. A lo-LOC change can
be “larger” than a lOO-LOC change because the
lo-LOC change spans 1,000 LOC, more than one
module, and has substantial potential for system side

21”Module(s)” means either “total” or “new + modified +
affected.”

J. SYSTEMS SOFTWARE 83
1995; 31:71-91

effects, whereas the lOO-LOC change is contiguous
and has no potential for substantial system side
effects.

Part of this problem is that we are used to sizing
changes with LOC. Our reaction to a lo-LOC change
is that it is a small change, easy and quickly done.
LOC is only one dimension. Test impact, documen-
tation impact, performance impact, service impact,
etc., influence the size of a change. The size of a
change is distinct from the count of its implementa-
tion LOC.

The issue seems to be that we don’t now know the
effects of all the things someone may think are
important, so we should do nothing. Isn’t it better to
do something that will allow us to start finding out
these effects (with data)? Otherwise, the issue must
be whether total or net CHANGE-POINT counts
are useful for productivity measurement, which is
different, but permitted.

3.4 CHANGE-POINT Count: What Good Is It?

Several characteristics of a CHANGE-POINT count
commend it for use in a productivity metric:

CHANGE-POINT counts are usable before
product ship as an actual value (not something
that is part actual and part projection). For exam-
ple, once we have an established component level
design baseline, the number of CHANGE-
POINTS specified is a known value, not, as with
lines of code, a number not yet determined. De-
pending on the tracking system, we can even get
intermediate counts of completed CHANGE-
POINTS based on the status of the component
design documentation. Having a number that is a
known value enables us to evaluate productivity
as we go along, and thereby helps us take actions
that will potentially affect the final productivity of
the project.
CHANGE-POINT counts are probably more sta-
ble than LOC counts. We are all, no doubt,
familiar with the fluctuations (growth) in LOC as
projects progress through development phases. A
fluctuating CHANGE-POINT count shows design
instability or error.
Because CHANGE-POINTS relate to a logical
organization of our work, CHANGE-POINT
counts are usable even when process steps over-
lap. This is because process overlap, when suc-
cessful, maintains a logical structure that allows
us to track the status of an AWI. At any particu-
lar process step, we know the relationship of the

84 J. SYSTEMS SOFTWARE

4.

5.

6.

7.

8.

1995; 31:71-91

items being handled to their overall purpose (the
AWI).
We know that change management is essential.
Improvement in productivity using CHANGE-
POINT counts reflects management efficiency,
not just worker efficiency. The way we plan to
handle change affects the potential for productiv-
ity improvement.
Specified CHANGE-POINTS are independent of
implementation source language; the implemen-
tation language used for individual modules need
not affect the CHANGE-POINT count.** This
avoids the usual problems associated with differ-
ent implementation languages, e.g., conversion of
LOC counts in language x to LOC counts in
language y.
CHANGE-POINT counts are usable for compar-
ing different languages: selection of a language
that allows a high-level design with a different
CHANGE-POINT count could represent an op-
portunity for productivity or effectiveness im-
provement.
CHANGE-POINT counts are usable for periods
of one year or less. Thus, periodic productivity
assessments are possible; because of (3) above,
these can include work in process.
Automation of counting of CHANGE-POINTS is
possible. Version and modification control identi-
fies new or modified LOC (by sequence number
or other indicators). It is not a complicated mat-
ter to identify the AWI(s) associated with new,
modified, affected, or deleted modules. A high-
level design should indicate each module created,
modified, affected, or deleted in support of each
AWI; if this AWI information is in machine-
readable form, then automation of counting
CHANGE-POINTS is possible.

4. THE METRICS

This section discusses productivity, interference, and
effectiveness metrics (the PIE matrix) for each de-
velopment activity (Figure 9). Appendix 3 contains
additional discussion of the terms “interference”
and “effectiveness” and other terms used in this
article. The focus here is on illustrating analysis that

22 Interlanguage communication in modern compilers makes
mixing of languages a practical consideration. It is true that
selection of a particular language might affect the product high-
level design and thus the CHANGE-POINT count for a project;
however, it is not true that a high-level design must be language
specific (any module written in a high-level language could be
written in assembler).

V. V. Chatman

uses CHANGE-POINT counts for assessment, as
opposed to prediction. The reason for this focus is
that it is probably true that predictions of project
productivity or effort will have large variances from
actual results, unless effectiveness for Design, Im-
plementation, and Test is at a high level.

4.1 The Data

Figures 10 and 11 present data collected for three
releases of a product developed at STL (Ra, Rb, and
Rc; Rc is the most recent release, Rb is its predeces-
sor, and Ra is Rb’s predecessor). Current data re-
tention does not preserve all the data implied by the
CHANGE-POINT approach, so the results shown in
Figure 11 are incomplete. In particular, there is no
AWI level data for Ra and Rb. In addition, the Rc
values in Figure 11 use cldCP (new, modified, and
affected modules at the end of formal test) from
Figure 10 as a surrogate for CLDCP and CLD,CP
(this is equivalent to assuming no new, modified, or
affected modules were added after design comple-
tion, i.e., RCCP and DCCP are zero). This is a
best-case assumption (e.g., no implementation inter-
ference) and results in effectiveness values for De-
sign that may be better than actual data would
produce.

The cost data for Design used in Figure 11 are for
effort through 11 (detailed design) and not IO (com-
ponent level design). This is because the Financial
Accounting Standards Board’s (FASB) rules treat
cost through 11 as design, and the current data
retention system meets this requirement. The result
is that design productivity as shown may be less than
actual data would produce, and implementation pro-
ductivity as shown may be better than actual data
would produce.

Cost data by activity name may not be comparable
from one company to another, or even within the
same company over time, because the recorded clas-
sification of departments and activities will vary. To
deal with this problem, I have related cost to stan-
dard FASB accounting classifications in the follow-
ing manner: as stated above, Des% is per FASB;
Test$ is formal test or performance amortized ex-
pense; Imp$ is amortized expense less Test$ and less
expense associated with departments or functions
that do not have responsibility for writing or design-
ing source text (e.g., publications and assurance).
Programming productivity analysis and measure-
ment will have this type of ambiguity until establish-
ment of FASB-like standards for classification of
activities, and this will occur only when such stan-
dards appear to have importance to project success.

CHANGE-POINTS J. SYSTEMS SOFTWARE 85
1995; 31:71-91

OVERALL: CLDCP/P$; PCP,/P$p

DEFINITIONS:
ClBC P: Net CHANGE-POINT count from final Component Level Design.
CZ,D&P: Net CHANGE-POINT count from the base Component Level Design.
Cp: CLDCP + FTCP.
DCCP:

DesCPp:

D&j:
Desgip:
FTCP:

ImpCPp:

imp%

Imp$p:
P$:
P$p:
PCPp:
RCCP:

SCP:

TestCPp:
Test$:
Test$p:

Figure 9. The metrics.

Total CHANGE-POINT count for Design Changes after the base Component
Level Design is established.
Net CHANGE-POINT count for completed Component Level Design activities
within a period.
Design total expense.
Incremental Design total expense between two periods.
Sum of fix module counts (during Formal Test, count I for each new, modified,
deleted, or affected module due to a software-defect repair).
Net CHANGE-POINT count for completed Implementation activities within a
period.
Implementation total expense.
Incremental Implementation total expense between two periods.
De&$ + lmp$ + Tests.
Des$p + lmp$p + Test$p.
DesCPp + ImpCPp + TestCPp.
Total CHANGE-POINT count for Requirements Changes after Lhc requirements
or objectives hase is established.
Sum of fix module counts (after release, count 1 for each new, modified, deleted,
or affected module due to a Service software-defect repair).
Net CHANGE-POINT count for completed Test activities within a period.
Formal Test total expense.
Incremental Formal Test total expense between two periods.

4.2 Design

This section discusses the design metrics included in
the PIE matrix.

4.2.1 Productivity metrics. CLDCP/Des$ is
straightforward; it is simply the final number of
outputs divided by the cost to produce them. During
a project, cumulative DesCP,/Des$, would let us
see how design productivity is changing in a life
cycle fashion. If we have life cycle history, we can

compare the current project to history to see if the
project is typical or shows expected changes, and
attempt to investigate and understand any atypical
or unexpected results. For an organization, we can
sum DesCPp and sum Des$, for its various products
for a period (year or month or quarter) and thus
compute the high-level design productivity of the
organization for that period.

Currently, there is a strong feeling (which I share)
that much more needs to be done in the area of

86 J.SYSTEMSSOFTWARE
1995;31:71-91

V. V. Chatman

ReleaseC(Rc)
AWI LO@ cldCP ptmCP fP CP CP/LOCb LOCYCPC

I

2
3
4
5
6
7
8
9
IO
II
I2
I3
I4
IS
I6
I7
18
I9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1630
1632
1633
1640
1790
1820
1830
1840
1850
1890
1892
1910
1920
1970
1980
1990
2000
2010
2030
2040
2080
2090
2100
2102
2103
2140
2150
2160
2170
2180
2190
2192
2200
2220
2261
2310
2320
2340
2342
2380
2430
2490
2500
2501
2550

E Complexity,,,

42741 371 1838 476 2,685
1670 93 441 122 656

13127 375 1687 392 2,454
1743 66 335 137 538
5067 304 390 380 1,074
3160 259 445 449 1,153
1742 I48 179 133 460
2310 I4 I3 57 84
3284 72 149 232 453

42741 957 2165 1391 4,513
8658 83 190 38 311
8155 278 772 433 1,483
1239 59 258 177 494
397 23 65 69 157
424 56 122 163 341
II36 519 II77 755 2,451
3236 49 231 100 380

25483 369 655 I6 1,040
1773 92 I40 206 438
1372 43 347 96 486
3182 677 996 982 2,655
70 7 50 I4 71

3095 4 9 2 I5
5143 I6 I2 9 37
5143 I41 311 I47 599
345 36 93 55 184
44 2 I4 3 I9

2028 261 594 303 1,158
770 70 177 199 446
8040 320 746 374 1,440
3459 I5 54 38 107
3459 90 II8 107 315
2167 80 245 I47 472
1265 63 I51 179 393
1841 43 176 82 301
6387 1450 2483 1740 5,673
II87 28 I4 7 49
878 40 86 41 167
1037 74 82 66 222
4612 24 I2 78 I14
3208 42 213 80 335
2202 150 411 202 763
II57 50 271 77 398
II57 34 307 68 409
3452 72 524 63 659

0.0628
0.3928
0.1869
0.3087
0.2120
0.3649
0.2641
0.0364
0.1379
0.1056
0.0359
0.1819
0.3987
0.3955
0.8042
2.1576
0.1174
0.0408
0.2470
0.3542
0.8344
I.0143
0.0048
0.0072
0.1165
0.5333
0.4318
0.5710
0.5792
0.1791
0.0309
0.0911
0.2178
0.3107
0.1635
0.8882
0.0413
0.1902
0.2141
0.0247
0.1044
0.3465
0.3440
0.3535
0.1909
14.5887

15.9184
2.5457
5.3492
3.2398
4.7179
2.7407
3.7870

27.5000
7.2494
9.4706
27.8392
5.4990
2.5081
2.5287
1.2434
0.4635
8.5158
24.5029
4.0479
2.8230
I.1985
0.9859

206.3333
139.0000
8.5860
1.8750
2.3158
1.7513
1.7265
5.5833
32.3271
10.9810
4.5911
3.2188
6.1163
1.1259

24.2245
5.2575
4.6712
40.4561
9.5761
2.8860
2.9070
2.8289
5.2382

688.2515

Summary
Rc 234,786 8,019 19,748 10,885 38,652 0.1646 6.0744
Rb Not Available Not Available 2,306 2,790 5,096
Ra Not Available Not Available 2,649 2,309 4,958

COSf Release C Release B Release A

De& 8,825,OOO 3,437,OOO 8,264,OOO
Imps 24,116,OOO 9,602,OOO 9,051,OOo
Test% 9,606.OOO 2,900,OOO 6.096,OOO
PE 42,547,OOO 15,939,OOO 23.411.000

Figure 10. The data. (” Total LOC for new, modified, and affected modules. b Change Concentration. ’ Change Spread.)

CHANGE-POINTS J. SYSTEMS SOFTWARE 87

STAGE

Design

Test

PRODUCTIVITY INTERFERENCE EFFECTIVENESS

1 Ra: 0.739@

CLDCPIP%

Release C
0.0002

Release B Release A

Modules’ 5339 4438 4394
Modulesnmo 3076

Complexi~
Density’
Densitynmo
Dispersal’
Dispersalnma
Scope
Compactness

7.2396 1.1483 1.1284
12.5657
0.1381
0.0796

858.9333
0.0012

SCP 930x 1185”
17442

Figure 11. The measures. (“After 6 quarters. *After 11 quarters. ’ Total modules. nma New + modified + affected modules.)

design, and this will add expense as compared with
the past. A likely result is that the productivity
measurements for design will show decreasing pro-
ductivity for a while (how long I cannot say), and this
is GOODNESS: the expected net result should be
improved effectiveness and/or reduced total cost.
Often, the issue is not whether particular measure-
ments go up or down, but whether they are where
we expect them to be, and if not, what understand-
ing we have of why they are not.

4.2.2 Znteference metric. RCCP/CLD,CP is es-
sentially a requirements (in)stability indicator; it
shows whether the requirements changed (were aug-
mented or reduced).

4.2.3 Effectiveness metrics. DCCP/CLD,CP (zero
in Figure 11) is essentially a high-level design (in>
stability indicator; it shows that a poor design was
produced or that the requirements were incomplete
or not well specified. CLD,CP/CP is essentially a
high-level design quality/completeness indicator. It
is sensitive to effects from incomplete, unclear, or
changing requirements, because it does not factor
out the net CHANGE-POINT count for design

changes (included in CLDCP) from CP. Design ef-
fectiveness, CLD,CP/CP, in Figure 11 suggests the
need for considerable work to improve the effec-
tiveness of this activity for this product. Although it
is not possible to pinpoint design as the key area for
concern based on the data available, it does require
examination.

4.3 Implementation

This section discusses the implementation metrics
included in the PIE matrix.

4.3.1 Productivity metrics. CLDCP/Imp$ is
straightforward; it is simply the final number of
outputs divided by the cost to produce them. During
a project, cumulative ZmpCP,/Imp$, would let us
see how implementation productivity is changing in
a life cycle fashion. If we have life cycle history, we
can compare the current project to history as we go
along, to see if it is typical or shows expected changes,
and attempt to investigate and understand any atypi-
cal or unexpected results. For an organization, we
can sum ZmpCP, and sum Imp$, for its various

88 J. SYSTEMS SOFTWARE
1995; 31:71-91

V. V. Chatman

products for a period and thus compute implementa-
tion productivity for the period.

4.3.2 Interference metric. Growth in total
CHANGE-POINT count relative to CLD,CP repre-
sents incomplete or unstable high-level design and is
an interference on implementation by high-level de-
sign.

4.3.3 Effectiveness metric. Implementation effec-
tiveness in Figure 11 suggests this as an area for
concern. The data do not allow us to target just
design or just implementation as the key problem
area; however, obviously, the development process
for this product is quite dependent on test effec-
tiveness being extremely high.

4.4 Formal Test

This section discusses the formal test metrics in-
cluded in the PIE matrix.

4.4.1 Productivity metrics. CLDCP/Test$ is
straightforward; it is simply the final number of
outputs divided by the cost to produce them. During
a project, cumulative TestCP,/Test$, would let us
see how formal test productrvtty is changing in a life
cycle fashion. If we have life cycle history, we can
compare the current project to history as we go
along to see if it is typical or shows expected changes,
and attempt to investigate and understand any atypi-
cal or unexpected results. For an organization, we
can sum TestCPp and sum Test$, for its various
products for a period and thus compute test produc-
tivity for the period.

4.4.2 Interference metrics. Clearly, software defects
interfere with test productivity.

4.4.2. I Counting FTCP. FTCP (ptmcP + ff ” from
Figure 10) includes forward fit? and therefore gives
substantial weight to problems shipped in prior re-
leases in the effectiveness measurements for design
and implementation. Forward fits need separate
tracking to allow isolation of their effect from other
software defect repairs.

At least two options exist for counting FTCP: (1)
count 1 for each new, modified, deleted, and af-
fected module due to a software defect fix, (2) count
1 only for instances that increase or decrease the
module set for an AWI (1 for each module added or
deleted) where the reference module set changes
with each added or deleted module.

Option (2) is the purist approach. I have selected
option (1) for counting both FTCP and SCP (see
Section 4.4.3); this avoids a need for additional ef-
fectiveness and interference metrics. Option (1) puts
heavy emphasis on software defects in the effec-
tiveness measurements for design and implementa-
tion and in the interference measurements for test.
One can think of this counting approach, (1) above,
as saying CP includes changes to CHANGE-POINT
implementation as well as additional or deleted
CHANGE-POINTS.~~

4.4.3 Effectiveness metrics. CP/(SCP + CP) re-
flects growth in total CHANGE-POINT count after
formal test completion. The theory is that test should
validate function as well as find design and imple-
mentation errors. SCP is counted in the same man-
ner as FTCP (see Section 4.4.2.1.); this gives signif-
icant weight to problems found after ship.

Reducing SCP by increasing FTCP, i.e., finding
more software defects during formal test, will in-
crease test effectiveness, but this will decrease im-
plementation effectiveness and decrease design ef-
fectiveness (CLD,CP/CP). For example, reducing
SCP for Ra (see Figure 11) by a factor of 10 in-
creases CP, thus reducing the effectiveness value for
implementation.

It is important to note that CP/(SCP + CP) ad-
dresses defect removal, not defect prevention. This
means that simple comparisons of test effectiveness
can be misleading: avoiding high test interference is
important, so considering FTCP/CP is necessary.
This suggests that trade-offs between design, imple-
mentation, and test effectiveness are a necessary
part of process improvement.

Without CLDCP data for Ra or Rb, it is difficult
to reach any firm conclusions, but reviewing Figure
11 and using ptmCP + ffcp as CP suggests that test
effectiveness did not improve significantly, because
the computed values are worst case.

I do not have SCP data for Rc. However, we can
expect that if test effectiveness is not at least 96%,
then SCP for Rc will exceed SCP for Ra and Rb.

=A software defect repair included in an enhancement project
(new release) because of a seruice software defect repair in a
released product (predecessor release).

24 For zero-defect software (i.e., FTCP = 0 and SCP = O), both
approaches result in the same CP count.

CHANGE-POINTS J. SYSTEMS SOFTWARE 89
1995; 31:71-91

Table 1. Key Differences for CP, LOC, and FP

Attribute

Continuous count
Bounded count
Scale
Available before ship
Zero condition

Imposes technology constraints

Automated counting

CHANGE-POINTS
(CP Measure)

Yes
No
Absolute
Yes
Comment text only changes

No

Some manual effort required

Shipped,
new + modified-LOC

Yes
No
Absolute
No
No new or modified LOC

No, but redefinition of
LOC may be necessary
Easy

Function Points

No
Yes
Views vary
Yes
User function types unchanged
(UFP is zero)
Yes

Difficult

4.5 Overall Metrics

This section discusses metrics that encompass all the
activities included in the PIE matrix.

4.5.1 Project productiveness. CLDCP/P$ is
straightforward; it is simply the final number of
outputs divided by the cost to produce them.

4.5.2 Periodic productivity. The theory here is that
we can add De&P,, ImpCP,, and Test CPr for a
given period. This is not double counting: for many
projects in a given period, these represent differ-
ent CHANGE-POINTS; even in a zero-interference
world, these are additive from a process point of
view. To help clarify the latter point, consider a
message sent from point A to point B to point C.
From an end-product point of view, one message
went from A to C. From a process point of view, one
message went from A to B, and another from B to C
(two messages total); it makes no difference that B
did not modify the message sent from A before
sending it to C.

So, by totaling DesCP,,, ZmpCP,, and TestCP, for
the period (call this PCP,: process net CHANGE-
POINT count for the period), then dividing by P$,
for the period, we have process productivity for the
period. Of course, there is leakage period to period,
but over many periods this should smooth out.

5. CONCLUSION

This article has presented a conceptual approach to
productivity measurement at a higher level than the
individual development activity (Design, Implemen-
tation, and Test). It has described the concept of
CHANGE-POINTS as a common output that per-
mits both a combined and individual measurement
of productivity for all three development activities.
Admittedly, this metric does not encompass impor-
tant activities, such as publications development and
the many indirect activities required in a software
development project. The focus is on the primary

elements of direct expense. Inclusion of the other
dimensions requires higher level conceptualizations.

Although this article has not attempted to
define an implementation process or a set of proced-
ures, clearly, any implementation of the CHANGE-
POINT approach will need configuration manage-
ment tools (for example, the IMS TU or the DB2
line item workbook).

The perspective provided by the PIE matrix should
allow management to balance effectiveness with ef-
ficiency and emphasize one or the other at the
appropriate times for the appropriate activity.

The CHANGE-POINT approach does not at-
tempt to prescribe the design, implementation, or
test processes or technology to use, and, in this
sense, is process and technology independent; the
CHANGE-POINT approach requires only that the
project development process used identity where
and when to perform the CHANGE-POINT counts
for the design, implementation, and test techniques
used. Table 1 is a summary of key differences be-
tween the CP, LOC, and FP measures.

I hope this article has presented enough regarding
CHANGE-POINTS to encourage implementation
and test of the concepts provided.

ACKNOWLEDGMENTS

Each member of the STL Productivity Task Force contributed
to my thinking on this subject. Others who played a signifi-
cant role include Joel D. Aron. Marilyn Bohl, Mance Drum-
mond, Walt Fant, Janet Gregory, John Hardy, Ed Lassettre,
Dr. Peter Lazarus, Baron McDonald, Horst Remus, and Vern
Watts. I owe special thanks to Gary Davidson for supplying
most of the data in Figures 10 and 11, and especially to Dr.
Ursula Richter, whose criticism and encouragement have
been invaluable.

REFERENCES

Albrecht, A. J., and Gaffney, J. E., Jr., Software Function,
Source Lines of Code and Development Effort Predic-
tion: A Software Science Validation, IEEE Tram. Soft-
ware Eng. SE-9, 639-648 (1983).

90 J. SYSTEMS SOF’IWARE
1995; 31:71-91

V. V. Chatman

Arthur, L. J., Measuring Programmer Productivity and Soft-
ware Quality, John Wiley & Sons, 1985.

Bailey, J. W., and Basili, V. R., A Meta-Model for Soft-
ware Development Resource Expenditures, in Proceed-
ings of the Fifth International Conference on Software
Engineering, 1981, pp. 107-116. [Reprinted in Software
State-of-the-Art: Selected Papers. (T. DeMarco and T.
Lister, eds.), Dorset House, 1990.1

Baker, A. L., Bieman, J. M., Fenton, N., Gustafson, D. A.,
Melton, A., and Whiny, R., A Philosophy for Software
Measurement, J. Syst. Software 12, 227-281 (1990).

Brooks, F. P., No Silver Bullet: Essence and Accidents of
Software Engineering, Znfo. Proc. (1986). [Reprinted in
Software State-of-the-Art: Selected Papers. (T. DeMarco
and T. Lister, eds.), Dorset House, 1990.1

Campbell, N. R., Measurement in What is Science? Dover
Publications, 1921 [Reprinted in The World of Mathe-
matics (J. R. Newman, ed.), Simon and Schuster, New
York, 1956.1

Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moe-
bus, D., Ray, B., and Wang, M.-Y., Orthogonal Defect
Classification-A Concept for In-Process Measure-
ments, IEEE Trans. Software Eng. l&943-956 (1992).

DeMillo, R. A., and Lipton, R. J., Software project fore-
casting, in Software Metrics: An Analysis and Evaluation
(A. Perlis, F. Sayward, and M. Shaw, eds.), The MIT
Press, 1981.

Fenton, N. E., Software Metrics: A Rigorous Approach,
Chapman & Hall, 1991.

Fenton, N., and Melton, A., Deriving Structurally Based
Software Measures, J. Syst. Software 12,177-187 (1990).

Glass, R. L., Building Quality Sofhyare, Prentice-Hall, 1992.
GPD Programming Development Process Handbook, TR

03.136-03.143, IBM.
Grady, R. B., and Caswell, D. L., Sofiare Metics: Estab-

lishing A Company-Wide Program, Prentice-Hall, 1987.
Heyel, C., 7’he Encyclopedia of Management, 3rd edition,

Van Nostrand Reinhold, 1982.
Jones, C., Programming Productivity, McGraw-Hill, 1986.
Jones, C., Applied Software Measurement, McGraw-Hill,

1991.
Kemerer, C. F., and Porter, B. S., Improving the Reliabil-

ity of Function Point Measurement: An Empirical Study,
IEEE Trans. Software Eng. 18, 1011-1024 (1992).

Nicholas, J. M., Managing Business and Engineering Pro-
jects: Concepts and Implementation, Prentice-Hall, 1990.

Packer, M. B., Measuring the Intangible in Productivity,
Technol. Rev. 48-57 (1983).

Parnas, D. L., Software Aspects of Strategic Defense Sys-
tems, Commun. ACM 28, 1326-1335 (1985).

Programming Process Architecture, Version 2.1, 2nd edition,
2227-1989-l, IBM, 1986.

Radice, R. A., Roth, N. K., O’Hara, A. C., Jr., and Ciar-
fella, W. A., A Programming Process Architecture, IBM
Syst. J. 24, 79-90 (1985).

Rask, R., Laamanen, P., and Lyytinen, K., Simulation and
Comparison of Albrecht’s Function Point and De-
Marco’s Function Bang Metrics in a CASE Environ-
ment, IEEE Trans. Software Eng. 19, 661-671 (1993).

Scudder, R. A., and Kucic, A. R., Productivity Measures
for Information Systems. Info. Manag. 20, 343-354
(1991).

Stroustrup, B., The C+ + Programming Language, 2nd
edition, Addison-Wesley, 1991.

Symons, C. R., Function Point Analysis: Difficulties and
Improvements, IEEE Trans. Sofhvare Eng. 14, 2-11
(1988). [Reprinted in Software State-of-the-Art: Selected
Papers (T. DeMarco and T. Lister, eds.), Dorset House,
1990.1

Yu, W. D., Smith, D. P., and Huang, S. T., Software
Productivity Measurements AT & T Tech. J. 69,110-120
(1990).

APPENDIX 1: The Paradox of LOC

Assume (1) the hypothetical projects in Jones (1986)
begin l/1/1990; (2) the number of developers as-
signed to each task (requirements, design, coding,
documentation, and integration/testing) for the As-
sembler project is no greater than the number as-
signed to the same task for the APL project; and (3)
available time to work on the project is the same for
developers performing the same tasks for each pro-
ject. Given the seven-times ratio between person-
months for coding and integration/testing for the
AF’L versus the Assembler project, we can conclude
that the calendar time to complete these two pro-
jects will differ. For simplicity, assume the APL
project completes 12/31/1990; thus, the Assembler
project takes longer than one year to complete.
Measured by use of LOC produced, 1990 production
for the APL project is 10,000 LOC (productivity is
125 LOC per person-month). Measured by use of
LOC produced, 1990 production for the Assembler
project is unknown, as is productivity, because the
number of lines of source code produced is only
specified as of project completion.

Given the assumptions above, we can conclude
that the Assembler project, as of 12/31/1990, will
have expended for each task, at most, the same
number of person-months as needed for the same
task for the APL project. Assuming the person-
months expended are equal,‘* any difference in
1990 production (and productivity) is because of
differences in the number of lines of source code
produced in 1990. The number of lines of source
code produced in 1990 will be a function of “coding
speed” (Jones, 1986). Therefore, any difference in
1990 production (and productivity) will not be be-

‘*There is reason to believe that integration/testing might
be less for the Assembler project, but this does not affect the
fundamental conclusion.

CHANGE-POINTS J. SYSTEMS SOFTWARE 91
1995; 31:71-91

cause of identical levels of fixed or inelastic costs
(requirements, design, and documentation) as sug-
gested by Jones (19861, but will be due to variable
cost activity differences (coding or integration/test-
ing), and, as Jones (1986) noted, “high-level lan-
guages actually do improve coding speed.“2A

APPENDIX 2: Using Function Points in the
PIE Matrix

Consider two projects: (1) our C compiler manufac-
turer has added a switch that will set up register
linkage between modules, i.e., cause parameters to
be passed via registers instead of storage, so for
speed improvement we want to recompile our appli-
cation using this new switch; (2) because of new tax
laws, we must increase the top federal income tax
rate and the salary limit for FICA withholding in our
payroll application.

For both projects, UFP will be zero, so productiv-
ity will be zero. Use of the CHANGE-POINT ap-
proach for Project 1, even considered as only a test
exercise, will generate nonzero CLD,CP (and thus
nonzero CLDCP). This is because to implement the
AWI (expressed as “register linkage between mod-
ules” {the result} by recompiling the appropriate
application modules using the new compiler switch
{the set ofactions}), there are many affected (recom-
piled) modules. Note that while physical source text
changes are not required, nevertheless the set of
effects needed in/from the program units does
change: if a culled module is recompiled with the
new switch but a CUB& module is not recompiled
with the new switch, then the software will not
operate correctly. These changes would be more
obvious if the example were an application written
in assembler language, and thus the required link-
ages had to be coded by hand; or the compiler
required a specific keyword in the function proto-
types; or the compiler required the use of a #pragma
statement in affected source modules.

Project 2 requires source text changes and will
generate a nonzero CHANGE-POINT count, be-
cause the AWI (expressed as “update the payroll
application to reflect the new tax laws”) affects at
least two definitions and perhaps several modules.
(If we consider a case where the program is driven
by tax rates in an external file, then, depending on
the extent of testing of the original AWI, the rele-
vant CHANGE-POINT count will be less than or

2A”The assembler example. . proceeded at.. ,870 lines per
month, while the . APL [example]. . proceeded at.. . 1,000 lines
per month” (Jones, 1986).

equal to the CHANGE-POINT count for the origi-
nal AWI.)

APPENDIX 3: Glossary

Some of the terms in this paper are as follows.

Design. Product level design and component level
design. This usage varies from Programming Pro-
cess Architecture (1986) and Radice et al. (1985),
but is the terminology of the STL Productivity
Task Force.

Effectiveness. Extent to which requirements for an
activity/area are met. An effectiveness metric at-
tempts to quantify attainment of an area goal
(e.g., “zero defects”). “Goodness” may mean an
increase or decrease in the measurement, which-
ever is most convenient (and must be stated or
self-evident). Ideally, when productivity is increas-
ing, the effectiveness measurements should be
going in the direction of “goodness.” Aherna-
tively, improvement in the effectiveness measure-
ments may be combined with stable or decreasing
productivity, but this should come about as a
result of an explicit trade-off and not be “dis-
covered.” There are many facets to effectiveness,
and in the PIE matrix I have chosen to identify
metrics relating to quality/defects, i.e., reliability
(Glass, 1992); there is no intent to exclude other
possible metrics for effectiveness.

Formal test. See Test.

High-level design. See Design.

Implementation. Module level design through unit
test. This usage varies from Programming Process
Architecture (1986) and Radice et al. (19851, but is
the terminology of the STL Productivity Task
Force.

Zntetierence. An effect due to not performing a
task/activity with “zero defects.” Normally, this
affects the productivity of another group, but may
also affect the performer’s productivity. In gen-
eral, the productivity measurement for the af-
fected group would have been better if the affect-
ing group had performed its task/activity with
zero defects.

Productivity. The ratio between what is produced
and what is consumed to produce it.

PTM. A program trouble memorandum is the means
for reporting and recording defects found during
formal test.

Test. The testing family in Progrumming Process Ar-
chitecture (1986) and Radice et al. (1985).

