
2 2 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

Planning for data collection
You can’t benchmark data if you haven’t

collected it. Writing a questionnaire and hav-
ing people complete it is not enough—you
need a vision. It’s similar to getting the re-
quirement specifications right before devel-
oping software: if you learn that something
is wrong with the data after collecting and
analyzing it, your conclusions are meaning-
less, and you have to redo your work. I have
wasted months trying to make sense of data
collected without a clear purpose and with-
out statistical analysis requirements in mind.
If you work for a large company, consider
asking the market or operations research de-
partment to help design your benchmarking
questionnaire. Software managers know
about software; data analysts know about
questionnaire development. Collecting the
right data for your purposes might require a
multifunctional team effort.

Regardless of whether the data concerns
chocolate bar sales, financial indicators, or
software projects, the old maxim “garbage
in equals garbage out” applies uniformly.
Make sure that the variable definitions and
responses are clear before you collect the
data. Typical questions I ask when validat-
ing software project databases include:
What does a zero mean? Does it mean
none, is it a missing value, or was a number
close to zero rounded to zero? And if a
value is missing, does that indicate no
value, don’t know, or, if the question in-
volved choosing from a list, was the correct
response missing? Lists that include Other
as a choice are also problematic, especially
when collecting data for benchmarking. For
example, let’s assume that your company
questionnaire includes a list of case tools.
The case tool used on your project does not
appear in the list, so you select Other. This

focus
Collecting Data for Comparability:
Benchmarking Software
Development Productivity

Katrina D. Maxwell, Datamax

Collecting
comparable
benchmarking
data is not a
straightforward
task. The author
shares her
experience,
acquired over
eight years, in
collecting,
validating,
analyzing, and
benchmarking
software
development
projects.

W
hether you are benchmarking an organization or simply a proj-
ect, it all boils down to one thing—data. Do you have the nec-
essary data in your company, and is that data valid and com-
parable? How can you access data from other organizations?

To help you answer these questions and avoid some common serious mistakes
in the benchmarking process, I’ve summarized my practical real-life experi-
ences with software project data collection and benchmarking efforts in the
following guidelines.

benchmarking

category will thus include many diverse
tools and will mean different things for dif-
ferent organizations.

When I receive a new software project
database, I usually need to spend much
more time understanding and validating the
data than I do actually analyzing it. You can
greatly reduce the risk of collecting the
wrong data and the effort spent validating it
if you spend more time up-front defining
what variables to collect and how to meas-
ure them. Think about how you collect data
in your own company. How careful are
you? Do you ensure that everyone under-
stands the definitions? How do you ensure
uniformity over the years? Has your defini-
tion of effort evolved over time? Have you
always counted support staff effort and
tracked management time? If the person ini-
tially in charge of collecting the data has left
the company, is the current person collect-
ing the data in exactly the same way, using
the same definitions? Even assuming that
you have a high-quality data collection
process for estimating cost and comparing
project productivity within your company,
if you want to benchmark against other
companies, the critical question is: Is your
data comparable?

Benchmarking and data
comparability

You can’t benchmark software develop-
ment productivity if you have not collected
size and effort data for your software proj-
ects. Productivity is typically defined as out-
put divided by the effort required to produce
that output. Although not perfect, we tradi-
tionally use software size as a measure of
output for software development productiv-
ity (size/effort)—for example, 0.2 function
points per hour. This should not be confused
with the project delivery rate, which is also
sometimes referred to as productivity but is
actually the reciprocal of productivity (ef-
fort/size)—five hours per function point.1

Remember to verify the units!
You can measure size in either lines of

code or function points. How do you define
lines of code—do you include comments,
reused code, and blank lines? Additionally,
a variety of function-point counting meth-
ods exist, including IFPUG, Mark II, 3D,
Asset-R, Feature Points, Experience, and
Cosmic.2–5 How are you going to count

them? Variation can also occur when differ-
ent people do the counting—even if it’s for
the same project with the same function-
point counting method.

Another question involves effort. Will
you measure it in hours or months? If you
use months, note that the definition of a
work month can vary in other countries and
companies. Also, will you include manage-
rial time, support staff time, or just devel-
oper time? Will you include unpaid over-
time? Did the customer provide significant
effort, and will you count it? How many
phases are you including—requirements
specification through installation or feasi-
bility study through testing?

Effort is notoriously difficult to measure
accurately, even within a company. In addi-
tion to the problems already mentioned, other
sources of error include late time sheets, miss-
ing cost codes, or misallocation of time for
various reasons. In a recent article,6 Martin
Shepperd and Michelle Cartwright recount
the experience of assisting one organization
with its effort-estimating practices. The total
effort data available for the same project from
three different sources in the company dif-
fered in excess of 30 percent.

Needless to say, if they do not pay attention
to data comparability, two companies measur-
ing the same project can end up with different
sizes and efforts. As productivity is calculated
by dividing these two error-prone terms,
benchmarking productivity is potentially ex-
tremely inaccurate. For example, let’s assume
that Companies A and B have developed the
exact same insurance software application and
used exactly the same effort. However, Com-
pany A uses the IFPUG 4.0 method,7 which
doesn’t count algorithms, and Company B
uses the Experience 2.0 function point
method,5 which does count them. This results
in a 20 percent greater function-point count
for Company B. In addition, Company B does
not count the effort of installation at the cus-
tomer site, whereas company A does, and this
results in a 20 percent lower effort for Com-
pany B. So, for Company A, 100 function
points divided by 400 hours equals .25 func-
tion points per hour. For Company B, 120
function points divided by 320 hours equals
.375 function points per hour. Because Com-
pany B divides a 20 percent larger size by a 20
percent smaller effort, it calculates its produc-
tivity as 50 percent higher than Company A.

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 23

You can’t
benchmark
software

development
productivity if
you have not
collected size
and effort data

for your
software
projects.

Obviously, you need to beware of compa-
rability errors. Unfortunately, we are less
likely to ask questions and more likely to be-
lieve a result when it proves our point. If you
think that comparability errors exist, rather
than calculate a single productivity value,
calculate a probable range of productivity
values assuming an error in both terms.

If you want a dependable benchmark of
software development productivity, make
every effort possible to measure in exactly
the same way. One way to compare your
data to similar benchmarking data is to col-
lect effort in hours by phase and staff type
and to keep the detailed breakdown of the
function-point count so that you can create
the different effort and function-point met-
rics. Another way is to decide in advance
which benchmarking database you want to
use and to collect your data using its defini-
tions. If benchmarking is something you
plan to do on a regular basis, you should
collect your data with a tool used by other
companies that also want to benchmark. In
addition, verify that the benchmarking
database you use contains projects that the
data collector has carefully validated.

Benchmarking and project
comparability

Even if you are measuring productivity in
exactly the same way, you must also bench-
mark against similar projects. It is not
enough to measure a project’s size and effort
and compare it with a large database’s aver-
age productivity. Productivity rates are highly
variable across the software development in-
dustry. Business sector, requirements volatil-
ity, application language, hardware platform,
case tool use, start year, and hundreds of
other parameters can affect productivity. The
identification and interaction of these factors
makes comparing productivity rates very dif-
ficult. This is why software development
databases should be statistically analyzed to
determine the factors that contribute most to

the specific database’s productivity variation.
Once you’ve identified the variables—or
combinations of variables—that explain
most of the database’s productivity variation,
you can limit your comparisons to projects
similar to your own.

For example, if you developed a project
using Cobol on a mainframe, and language
and platform are important factors in ex-
plaining productivity differences in the data-
base, then you should only benchmark your
productivity against other projects using
Cobol on a mainframe platform. On the con-
trary, if your project uses case tools and using
the tools does not explain the differences in
productivity of the database projects, there is
no point in limiting your comparisons to
other projects that also use case tools. So, ei-
ther verify that the benchmarking service sta-
tistically analyzes the data and informs you
of the key factors, or that it provides you
with the raw data so that you can do so your-
self. Also, pay attention to how many proj-
ects the benchmark is based on for each sub-
set of data. You might consider a benchmark
more reliable if it is based on 20 projects
rather than four. Benchmarking against up-
to-date data is also important.

Benchmarking data availability
Although many companies would like to

benchmark projects, few contribute data to
multicompany databases. We need data on a
regular basis to keep these services up-to-date.
Although large companies with well-estab-
lished metrics programs, high project
turnover, and data analysis competency might
be content to benchmark projects internally,
smaller companies do not have this option.
These companies must look to benchmarking
services for access to numerous recent, com-
parable projects. (See the “Sources of Soft-
ware Project Benchmarking Data” sidebar for
some useful sources.) In addition, most cost
estimation tool vendors also have databases
that you can use for benchmarking.

Productivity
rates are highly
variable across

the software
development

industry.

2 4 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

� Experience Benchmarking: www.datamax-france.com
� European Space Agency/INSEAD: http://xrise.insead.fr/risenew/rise_esa.html
� International Software Benchmarking Standards Group: www.isbsg.org.au
� Rubin Systems: www.hrubin.com
� Software Productivity Research: www.spr.com

Sources of Software Project Benchmarking Data

O nce you have a valid and compara-
ble software project database, your
company possesses a valuable asset.

In addition to benchmarking, there are
many other things you can learn from your
data. For example, which factors influence
the productivity of projects in your com-
pany? Which variables affect software de-
velopment duration? Are any of these fac-
tors within your control? How accurate of
an inhouse cost estimation model can you
build with your data? Extract the most
value you can from your data collection ef-
forts, and use this knowledge to guide and
defend your future actions. Recommenda-
tions backed by hard data carry more
weight with upper management.

References
1. The Benchmark, Release 6, Int’l Software Benchmark-

ing Standards Group, Australia, 2000.
2. M. Maya et al., “Measuring the Functional Size of

Real-Time Software,” Proc. 1998 European Software
Control and Metrics Conf., Shaker Publishing BV,
Maastricht, The Netherlands, 1998, pp. 191–199;
www.escom.co.uk (current 26 July 2001).

3. H. Rehesaar, “Software Size: The Past and the Future,”
Proc. 1998 European Software Control and Metrics
Conf., Shaker Publishing BV, Maastricht, The Nether-
lands, 1998, pp. 200–208; www.escom.co.uk (current
26 July 2001).

4. COSMIC-FFP Measurement Manual, Version 2.1, Soft-
ware Eng. Management Research Laboratory, Univ. of
Quebec, Montreal, 2001; www.lrgl.uqam.ca/cosmic-ffp
(current 26 July 2001).

5. Laturi-System Product Manual Version 2.0, Informa-
tion Technology Development Center, Helsinki, Finland,
1996.

6. M. Shepperd and M. Cartwright, “Predicting with
Sparse Data,” Proc. 7th Int’l Software Metrics Sympo-
sium, IEEE CS Press, Los Alamitos, Calif., 2001, pp.
28–39.

7. Function Point Counting Practices Manual, Release 4.0,
Int’l Function Point Users Group, Westerville, Ohio, 1994.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 25

This article is based on the experience I have acquired analyzing soft-
ware metrics databases. You can find the results of my software develop-
ment productivity analyses in the following references.

K. Maxwell, Software Manager’s Statistics, Prentice Hall PTR, Upper Sad-
dle River, N.J., forthcoming 2002. This book leads you through all the
steps necessary to extract the most value from your software project data.
Four case studies, covering software development productivity, time to mar-
ket, cost estimation, and software maintenance cost drivers, provide exam-
ples of statistical methods using real data.

K. Maxwell and P. Forselius, “Benchmarking Software Development Pro-
ductivity,” IEEE Software, vol. 17, no. 1, Jan./Feb. 2000, pp. 80–88.
This article presents the results of a statistical analysis of the productivity
variation of the Experience database, which consists of 206 business
software projects from 26 companies in Finland. It provides productivity
benchmarking equations that are useful both for estimating expected pro-
ductivity at the start of a new project and for providing a benchmark for
a completed project in each business sector.

K. Maxwell, “Benchmarking Software Development Productivity: Statistical
Analysis by Business Sector,” Project Control for 2000 and Beyond, R.
Kusters et al., eds., Shaker Publishing B.V., Maastricht, The Netherlands,
1998, pp. 33–41. This article provides more details about the statistical
analysis of the Experience database.

K. Maxwell, L. Van Wassenhove, and S. Dutta, “Performance Evaluation of
General and Company Specific Models in Software Development Effort
Estimation,” Management Science, vol. 45, no. 6, June 1999, pp.
787–803. This article includes a detailed comparison of several vari-
ables, including language, application type, and seven Cocomo factors,
that explain the productivity of the European Space Agency database
and one company’s database.

K. Maxwell, L. Van Wassenhove, and S. Dutta, “Benchmarking: The Data
Contribution Dilemma,” Proc. 1997 European Software Control and Met-
rics Conf., The ESCOM Conf., Reading, UK, 1997, pp 82–92. This pa-
per compares the productivity analysis results of two very different soft-
ware project databases, the European Space Agency database and the
Experience database, and answers the question, Should your company
contribute data to multicompany databases?

K. Maxwell, L. Van Wassenhove, and S. Dutta, “Software Development
Productivity of European Space, Military and Industrial Applications,”
IEEE Trans. Software Engineering, vol. 22, no. 10, Oct. 1996, pp.
706–718. This paper presents the results of the analysis of a European
Space Agency database consisting of 99 software development projects
from 37 companies in eight European countries. It also provides a compre-
hensive summary of prior software development productivity research publi-
cations.

Related References

About the Author

Katrina D. Maxwell is a cofounder of
Datamax, a company that specializes in adding
value to data. Her research interests include ap-
plied data analysis, software productivity, and ef-
fort estimation. She has taught courses in quanti-
tative methods at the University of Illinois,
INSEAD, and the ESCP Paris School of Manage-
ment. She received a BS in civil engineering from
the University of Illinois and a PhD in mechanical

engineering from Brunel University. She was the program chair of the Euro-
pean Software Control and Metrics conference in 2000 and 2001 and is an
IEEE Computer Society member. Contact her at 7 bis boulevard Foch, 77300
Fontainebleau, France; kmaxwell@datamax-france.com.

