
Function Points -- A Productivity Measure Benefits APL
Kevin R. Weaver

Consultant
Avery Road, Box 319
Garrison, NY 10524

As APL users and developers we all know that APL is a
productivity language. We’ve known this since the 1960s.
The original marketing literature promoting APL shouted to
the computing world that APL was akin to Superman: faster
(to program) than a speeding bullet, more powerful (for
applications) than a locomotive, and able to leap tall buildings
(of systems) in a single bound. When STSC and IPSA began
marketing APL in 1969, the claim was that APL was “10
times more powerful” than other traditional high level
languages. Hundreds and even thousands around the world
were convinced of the potential and climbed on the band-
wagon. Most of us on this bandwagon have continued to
promote the Superman-like qualities of APL. We slowly but
surely convince/convert a few more each year. More often
than not, however, we leave behind hundreds wondering who
dazzled them and how it was done. Worse than that, we
leave behind tens of thousands who simply don’t believe in
miracles, never aspire to Superman heights, or who feel that
Superman is only a fantasy.These tens of thousands never
seem to give up hope that a real Superman will eventually
come along and save the computing world. They continue to
search, and the APL community continues to hide or be
ignored. The searching uncovers new easy-to-use and
easy-to-learn software, Nth-generation applications and/or
languages, problem/solution specific application software, and
always new methods for evaluating, justifying, and proving
that Superman has been uncovered. The APL community
manages to bypass these searches, quietly goes about its
business, saves a few souls from time to time, and sometimes
gets a mention in the Daily Planet, page 2.

The time has come (or is well overdue) for the APL com-
munity to jOin Lois Lane and the computing professionals in
the search for Superman. If we jOin this effort rather than
ignore it or run head-long against it, we all will win. We
need to take time out from writing new prime number
generators, postpone the next implementation of

quaddingdong, stop bending steel with our bare hands, and
be measured for the Superman suit. Too many pretenders
have taken credit where credit isn’t due.

The Superman suit is already made-to-measure. What have
the computing professionals accepted as their measure of
productivity? For nearly 10 years, Function Points have been
measuring productivity for major corporations, including IBM.
Function Points have been measuring application develop-
ment, development groups, and languages. And, almost
without exception, APL has been ignored in this effort --
probably because the APL community has been hiding (for
what reasons?) from the measurement tools. Let’s join the
measurement effort and see how we stack up against the big
players. Fighting application by application only wins small
battles. We need to win the war. Sure, we’re a different
sort of folk (haven’t you heard or said that yourself?), proud
of our accomplishments, convinced that our productivity
method is or should be obvious to the common person, and
we may be a real exception to this measurement business
anyway. We’re in a different domain. Right, Domain Error.
Function Point Analysis may bc our ticket to legitimately
joining the data processing community without being accused
of printing the tickets. They have accepted this measurement
technique; we should be willing to be treated like all the
mortals, take our lumps, if necessary, but expose ourselves to
this careful evaluation and scrutiny.

Function Points were developed in 1979 by AJ. Albrecht of
IBM. While they’re an “abstract metric similar in concept to
the Dow Jones industrial average,” they are becoming a
standard measurement tool adopted by hundreds of major
corporations world-wide. The International Function Point
Users Group lists in its membership hundreds of major
corporations from various industries:

Manufacturing: IBM, GE, GTE, DuPont, Amoco, Exxon,
3M, Nissan, Xerox

Insurance: CNA, USAA, Mutual of Omaha, Travellers, Blue
Cross, Aetna

Utilities: Pacific Bell, AT&T, Bell Canada, Ontario Hydro,
Ohio Edison

APL QUOTE QUAD 377 Kevin R. Weaver

Banks: Royal Bank of Canada, Harris Bank, First National
Bank of C&ago, Chemical Bahk, Manufact&ers Hanover,
Marine Midland.

Transportation: American Airlines, Air Canada, Quantas,
Canadian National Railway.

Function Points are made up of a weighted combination of
the number of inputs, outputs, inquiries, logical data files,
and interfaces associated with an application. These are
characteristics which provide functionality in an application
for the USER. To measure a program, the developer counts
these items and multiplies the total by weighting factors that
adjust for complexity. The adjusted function point then
becomes the unit of measurement for that application. Since
function points are independent of the language used to
implement the application, it is free of the paradox associated
with counting lines of code as a productivity measure.
Function points also consider the efficiency of operation
versus development. And, as I noted above, function points
consider and measure the functionality delivered to the
USER. Isn’t that what it’s ail about?

The first step in function point analysis is to measure system
complexity by examining the following application characteris-
tics:

1. Data Communications: to what extent are communi-
cations faciiit:ies used?

2. Distributed Functions: does the application prepare data
for end-user processing on another component of the system?

3. Perfornvance: do application performance objectives
influence the design, development, installation, and support
of the system?

4. Heavily Used Configuration: are special design con-
siderations a ‘characteristic of this application -- e.g., does the
application run on a heavily used system?

5. Transaction Rate: is it high; does it influence the design,
development, installation and support of the application?

6. On-Line Data Entry: what percent of the application?

7. Design for End-User Effkiency: was this considered in
the initial pia.nning and design of the system because of a
user requirement?

8. On-Line Update: is volume high or low; recovery easy
or difflcuit or not a concern?

9. Complex Processing: logical or math processes?

10. Usable in Other Applications: was the code developed
specifically to be used in future applications?

11. Installation Ease: were tools provided for and tested
during the system test phase?

12. Operation Ease: effective start-up, hack-up, recovery
procedures; minimal need for manual activities?

13. Multiple Sites: will the application be used by multiple
users from different locations?

14. Facilitate Change: the application has been specifically
designed, developed, and supported to facilitate change such
as flexible query capability, business control data grouped in
tables maintained by the user, etc. Is this a default charac-
teristic of development in APL?

Once these points are evaluated, the video screens are
evaluated for the level of information processing by each of
five components:

1. External Inputs (i.e., the user)
2. External Output (what does the user see on the screen)
3. External Inquiry (what questions are asked)
4. Logical Internal Files
5. External Interface Files (other applications)

Simple weights are given all of the above, trivial computation
is performed, and a function point count is the result. Other
levels of complexity can and are factored into the application,
but most of this detail is the subject of a full course on
counting function points (an introductory course takes a day).
One of the reported major benefits from using function
points is the ability to easily estimate software development
effort, i.e., productivity rate. Over 150 businesses use
function points this way. Simply stated, one merely finds the
ratio of function points to working months for the develop-
ment of an application. There are a number of published
articles and references describing how to count function
points (see bibliography). Therefore, I will only address
statistics and results rather than go into more detail than I
have about specifically counting the function points in an
application. Let’s examine some of the industry information,
and try to put APL into the picture.

The International Function Point Users Group measured 375
development projects from many different companies. None
of the projects was developed in APL. They found a wide
variation in the resulting rates partly due to large differences
in counting the effort actually spent on each project. The
median of their rates for large projects was 8 function points
(FPs) per work month (WM). For small projects of 10 WMs
or less, it was 26 FPs/WM.

Charles Behrens, a consultant and researcher, found that
productivity rates vary also by the size of the system being
developed. He analyzed 26 business systems developed in
various languages (again, none written in APL). Behrens
concluded that productivity rates varied not only by the
system size but also that the language used and the develop-
ment environment were major determinants of the rate. His
findings are shown in Figure 1.

Measure Productivity: Use a Generally Accepted Metric 37% APL89

30

20

10

0

Figure 1

Software Development Productivity
Rate vs. Size of System

Productivity rate: FP/work-month

0.7

28

0 100 200 300 400 500 600 700

System size in Function Pofnts

Figure 2

NON-COMMENTARY SOURCE CODE STATEMENTS

PER FUNCTION POINT

COBOL 00 105

PL/l 00 80

ADA 00000000000000000000000000000000000 71

NATURAL 00000000000000000000000000 53

c++ 00000000000000 z9

SQL ooooo 11

APL QUOTE QUAD 379 Kevin Fi. Weaver

GE’s Medic;&1 Systems measured five recent development
projects. Same were developed using IBM’s DMS Applica-
tion Generator for CICS IBM applications and some were
batch COBOL. Both used TSO ISPF as a major develop-
ment tool. Their productivity rates varied between 27 and 47
Fp/wM.

With these results in mind, let’s now look at two APL-based
applications and the function point analysis. First, STSC
reported at its October 1988 Client Conference a function
point delivery rate by their consulting group of approximately
300 FPWM. Second, GE’s financial reporting and consolida-
tion system, LEX, is an APL-based, multi-site, multi-user
system. The development and support team for this applica-
tion has a productivity rate of 450 FP/WM.

Cost of development (per function point) might also be a
serious consideration. One of the largest applications at GE
is CPARS, their corporate payroll system. Development cost
has been estimated between $18-25 million. The CPARS
function point is roughly 102,000. LEX is estimated at
costing $3 mikion to develop, and has a function point count
of 60,000. CPARS development cost per function point is
approximately $200, while the LEX cost per function point is
approximately $50.

Capers Jones, chairman of Software Productivity Research,
Inc. in Camlbridge, MA, has taken yet another look at
function points in relationship to the productivity of program-
ming languages. He has observed that languages have
varying but characteristic levels. He defines “level” as the
average number of statements required to implement one
function point. While this form of research is new and the
findings are preliminary, the results are being considered by
many in the industry. He reports that COBOL seemed to
require about: 105 noncommentary source code statements to
implement olne FP. PUl seemed to require approximately
80. Others are noted in Figure 2. Jones ranked APL at 10.
Feeling this APL ranking was worthy of more careful
examination, I examined some of the components of the LEX
application at GE. The system administrator module
required about 4 nonxommentary code statements, the PC
version of LEX required 3, and the LEX reporting module
required 2. The LEX reporting module also contains the
code for the LEX input module. When combined these two
components of the system contain approximately 7000 lines
of code and have been counted with XKKI function points, or
1.4 code statements per FP.

What does this mean for the APL community? Didn’t we
believe this all along? Now, using an accepted industry
metric, we have an opportunity to re-introduce APL as a
productivity tool. Rather than changing into our Superman
outfit in the phone booth, we can now approach the MIS
and traditional data processing groups on their terms, mere
mortals. We may not fully believe in this measurement ap-
proach, but it’s the best tool available today and the only
one that is widely accepted. It might take some of us longer
to count the function points in our application than it does
to write the application, but the end result will accomplish the
Superman feat. I encourage APLers to learn more about
function points, and have this technique play a role in evalu-
ating your APL application development for users versus the
development of an application in another language or
software product. We can become mild-mannered, stand up
against the alternatives facing our users, and APL will take
over as we always expected it would.

BIBLIOGRAPHY

1. Function Point Mathematics -- GUIDE 68, Session No.
MP-5OOOE, Speaker: Allan Albrecht, IBM Corporation, July
20, 1987.

2. Roving Productivity - The Fun in Function Points, William
Hufschmidt, Development Support Center, Inc. 16435 Tia
Court, Brookfield, WI 53005

3. Computing Technoloa NEWS -- Corporate Information
Technology, GE Corporation.

4. Counting Practices Manual, International Function Point
Users Group, Release 2.0, April 4, 1988.

5. Albrecht, A.J., Measuring Application Development
Productivity, Proceedings of the Joint SHARE, GUIDE, and
IBM Application Development Symposium, pp 83-92,
October 1979.

6. Jones, T. Capers, Productivity Gauge Changing, Com-
puterworld, November 9, 1984.

7. Behrens, CA., Measuring the Productivity of Computer
Systems Development Activities with Function Points, IEEE
Transactions on Software Engineering, Vol. SE-9 No. 6,
Introduction

Measure Productivity: Use a Generally Accepted Metric 380 APL89

