Software Productivity Measurements

Weider D. Yu, D. Paul Smith, and Steel T. Huang

AT&T Bell Laboratories
1200 East Warrenville Road
Naperville, Illinois 60566

ABSTRACT

In the arena of software metrics, measuring productivity
associated with software products and their development has
historically been a difficult process. A reliable set of
operational productivity measurement procedures is needed to
analyze a software product and its development process.
Software productivity measurements are the roots of the tree of
productivity improvement. Without good measurements,
progress is unlikely. To improve the quality of a software
product, and the productivity of the development process,
accurate measurements of input to and output from the
development process must be made and appropriate
productivity factors must be identified and understood.

Standardizing the measurement procedures within a
development organization is a critical step. To achieve
accurate software productivity measurements, the software
development process should be well understood and the
software productivity measurements should be closely linked to
the development process and the development environment.
This paper describes the software productivity measurement
metrics, the important productivity factors, and some
applications of the software productivity data for the SESS®
switch developed for the United States market. The
measurement of production rate and the study of productivity
factors have established a solid foundation for the pursuit of
productivity and quality improvement within the SESS switch
development community.

1. INTRODUCTION

The software industry has been making slower progress in
productivity improvements than the hardware industry. The
problems existing in software production and maintenance,
such as cost and schedule overruns, project cancellations
before completion, and quality problems, have been major
concerns for many large corporations and industries.

In the last decade of the twentieth century, a 20 percent
improvement in software productivity will be worth $90
billion worldwide [1]. Obviously many corporations have been

Reprinted with certain editorial revisions from AT&T Technical Journal, Vol.
69, No. 3, pp. 110-120, May/June 1990. ©1990 AT&T.

558

looking for better technologies to improve software
productivity and quality, effective ways to reduce software
costs, and more reasonable controls to run software
development schedules. However, few good results have been
achieved. Improving software productivity is a difficult
process. The ways to effectively improve software productivity
can be varied in different development environments. It is
risky to pursue productivity improvement process without
understanding where a project stands. Changes to the
development process, or to the environment, that are needed to
improve productivity should be selected based on expected
impact and cost to implement.

Basically there are three major stages in the process of
software productivity improvement: measuring, analyzing, and
improving software productivity. The first stage, software
productivity measurements, is the fundamental basis for the
other two stages. With a set of reliable and operational
software productivity metrics, the software product and its
development environment can be analyzed to identify which
productivity factors have great impact on software productivity
and quality. Furthermore, the appropriate modifications to the
development process and to the environment can then be
chosen on the basis of these metrics and the identified
productivity factors.

This paper describes the specific effort that has been taken
1o establish and improve the measurement of software
productivity in the US S5ESS® Switch project, and also
summaries some of the results of the effort.

2. SOFTWARE DEVELOPMENT
ENVIRONMENT AND METHODOLOGY

The SESS Switch project is one of the most extensive software
projects at AT&T Bell Laboratories. The total size of the
delivered source code and internal support code is several
million lines of code. The software development work for a
typical release usually is about 75 to 80% of the effort
compared to the hardware development work (20-25%).

The SESS Switch has a modem distributed architecture in
software and hardware to better utilize the system resources in
a real-time execution environment. The software architecture

implements a number of proven software engineering
techniques, such as distributed computing, layered
architecture, a relational database, and high level design and
programming languages. The SESS Switch software is
produced in the C programming language environment,
augmented by some high-level design languages (e.g.
Specification and Description Language, or SDL) and special
purpose implementation languages.

Multiple SESS Switch software releases are under
development simultaneously. Each release is an incremental
functional addition to a very large existing base. Due to the
high degree of complexity involved during design and testing,
a feature usually requires fairly extensive effort in verifying
requirement coverage. Typically, several hundred engineers
are involved in a release of switching software.

A waterfall phased methodology is used to plan, design,
code, and test each release of SESS Switch software. The
methodology breaks down the planning and development
process into the following phases:

1. Feature Planning,

Architecture Planning and Design,
Feature Requirements,

Feature Design,

Design Unit Design,

Coding,

Unit Testing,

Feature Testing,

R I L

System Verification, and

10. Site/Acceptance Testing.

The work accomplished at each phase is validated through
formal peer reviews, code inspections, or structured extensive
tests. The exit criteria at each phase must be satisfied before
entering the next phase.

3. SOFTWARE PRODUCTIVITY
MEASUREMENTS

Making improvements in the quality of a software product, and
the productivity of the development process that is used to
produce it, requires the ability to accurately measure software
product atiributes and the productivity factors that affect the
software development process.

3.1 Software Productivity Measures

To measure software productivity, two fundamental measures
must be established:

— The measure of the output from a software development
process

— The measure of the input to a software development
process.

Conceptually, software productivity can be expressed as a ratio
factor derived from ‘“output measure divided by input

measure” [2]. In order to make the software productivity
measure meaningful, clear and objective definitions and
measurement methods on input and output measures are
necessary.

Some typical output from a software development process
are software source programs, internal development and
external user documentations, and delivered software feature
functions. Some typical input to a software development
process are various types of development effort, computing
and networking costs for developing and testing software, and
various costs incurred on employee, such as benefits,
vacations, office rent, education and training, and materials,
etc.

The common measures used for the output can be software
lines of code, documentation pages, and number of delivered
software feature requirements. The common measures used for
the input can be average person-years and dollars. The
selection of input/output measures for software productivity in
a development organization should be based on the availability
of consistent and reliable measurement methods and tools. One
of the purposes of the paper is to illustrate this concept by
focusing software productivity on the effectiveness of direct
software production process. Some cautious steps need to be
taken to understand various factors associated with
input/output measures. For example, if the input measure is
dollars, then the inflation factor should be considered when
computing software productivity data.

In the following sections, the definitions and measurement
methods used for the major input and output measures in the
US 5ESS Switch project will be discussed. The major output
measure used is software program size and the major input
measure used is development effort.

3.2 Software Program Size Measurement

Software productivity measurements require an accurate and
consistent representation of software program size. The lack of
standard software sizing methods for source programs written
for a project could cause confusion and misunderstanding
about the project size.

To establish a common ground for software productivity
and quality studies, it is necessary to select an appropriate
linecounting method for source programs, to decide which
types of source programs should be counted to determine the
size of a software product, and then to standardize it within a
software development organization. Although in some cases,
using lines of code as a measure is inherently paradoxical [3},
it is a measure that can be well-defined and implemented in the
SESS software development environment. In fact, most
corporations in the software industry still use "lines of code” as
the primary measure in doing productivity measurement work.
Furthermore, because most of the source programs of the SESS
software are written in the C language, the paradox caused by
high-level and low-level programming languages does not
apply to the SESS software development in most cases.

The software size measurement can be viewed at project
and at program levels respectively.

—_

3.2.1 Software Size Viewed at Project Level When a
software release is viewed at the project level, there are two
types of code: production code and support code.

Production code is the software code developed for a
release and delivered to customers as a part of a release.
Support code is the software code developed for a release but
not delivered to customers as a part of a release. Most support
code is used for testing and generating production code.
Support code development is an essential part of the
development process. The size of the support code can be 15%
o 25% of the size of the total code developed for arelease.

We distinguish between production and support code
because estimating the total effort required to produce
software, both production code and support code are
important. However, when estimating the memory size for a
SESS release, only production code is important.

When the software code is viewed from the standpoint of
source code structure, it can be further divided into five types
of code: base code, modified code, new code, bug code, and
ported code (see Figure 1). These definitions support the
concept of software production code coupled to the effort
which produces the code.

o Base code is the code developed in the previous releases
and remaining in the current release.

o Modified code is the code originally developed in previous
releases but modified in the current release for functional
enhancement.

New code is the code in new files written in the current
release for new functions.

We distinguish between new code and modified code in
a large embedded software base because it is inherently
more difficult to modify the existing code and test it than to
create new code in new source files which interact with
existing code in more structured ways.

Bug code is the code written to fix bugs in the base,
modified, and new code for the current release.

We distinguish "bug code" from "new code" to allow
the accurate tracking of change activity in the software
source during development. The ability to distinguish bug
code allows the development of objective quality metrics
within the modules of a release.

Ported code is the code developed in other projects or
organizations and used or re-used in the current release.

We distinguish "ported code" from other types of code
to allow for the fact that some of the existing code may be
re-used or delivered from organizations outside the effort
tracking system. Ported code is incorporated into a system
with far less effort in general than new code and modified
code.

Total delivered code is the code actually delivered o
customers in a release. The total delivered code includes
base code, modified code, new code, bug code, and ported
code.

560

o Net developed code of a new release includes modified
code, new code, and bug code.

Most of the effort in developing a new software release
is covered in this definition. The size definition is used in
the study of software productivity and quality.

o Net growth code of a new release is the difference between
the size of the new release and the old release.

Net growth code of a new release is useful for memory
sizing purpose.

3.2.2 Definition of SESS Switch Software Size The
key concepts and definitions of the size of a SESS Switch
software release are illustrated in Figure 1. For a measure of
"software size" to be useful for software productivity and
quality studies, and in the software cost estimation process, it
would have to correlate well with the measure of software
development effort. The "net developed code" was found to
have a strong relationship to the corresponding software
development effort, and so its size was chosen as "software
size.”

Poried
Code
T
Net l
Growth New, I
Code Modifies, Net
and Developed
Bug Fix Code
. Code
Initial
Base Code ____ ¢ Tota
Deleted Delivered
"""""""" Code
Iniuial
Base
Base
Code Code
ol New
Releases Release

Figure 1. Mlustration of SESS Switch release size versus release growth

The size of "net developed production code” has been used
as a standard software size in the SESS Switch development
community for computing productivity and quality metrics
such as release and feature sizes, software production rates,
and fault densities.

3.3 Software Size Viewed at Program Level

The method of counting "lines of code" in a software program
has a number of variations throughout the software industry.
Before knowing how to count “"lines of code” in a software
program, the meaning of "lines of code” needs to be defined.
Without a proper definition of “lines of code," the number of
lines of code of a software program is ambiguous.

Software program size is measured in thousands of non-
commentary source lines (KNCSL). Each physical line (a
source line ended with a carriage control character), that is not

a comment or blank line, is counted as one non-commentary
source line (NCSL).

In general, 2 NCSL may have one or more "logical"
statements, or just a portion of a "logical" statement. It may or
may not have embedded comments. Recognizing that
individual programming style can affect the size and
maintainability of code written in this way, a set of 5ESS
coding standards has been adopted for the project.

The source code for the SESS Switch is managed by using
the Change Management System (CMS) to recognize inserted
and deleted code in new and modified source files, the Initial
Modification Request (IMR) System to record new code and
problems and fault reports, and the Source Code Control
System (SCCS) to count numbers of physical lines inserted
and deleted.

Using these systems, it is possible to recognize the
difference between "new code" and code that subsequenty
modifies existing code (bug fixes) as well as identifying
deleted code. Code counting tools have been developed to
consistently produce metrics for software size. The source
code counting algorithm gives “production credit" for new or
modified software but does not give credit for rework.

3.4 Development Effort Measurements

The measure of input to the development process is
"development effort.” In general the development effort can
include various kinds of effort generated by different activities
(e.g. software development, project management, productivity
and quality study, training), personnel (e.g. technical staff,
administrative staff), and resources (e.g. computing equipment,
communication facilities, office space and supplies). The effort
information can be very complicated in a large development
organization. It can be further complicated by the cost
accounting and reporting schemes used in an organization.

To measure the development effort, it is necessary to
consider the "availability" as well as the "correctness” of the
development effort data in an organization. In the 5ESS
project, the effort classifications are based on the organization
accounting and reporting structure. The major development
effort categories are mapped to a list of different effort
charging numbers, which are used by staff to log their work
hours. The basic measurement unit of effort expenditure is
called the Average Technical Head Count Year (ATHCTY).
Overtime effort is not explicitly accounted in the project.

3.4.1 5ESS Development effort definitions Basic
definitions of SESS development effort are defined as follows:

o Direct hardware development effort represents all effort
expended directly on hardware development, including
circuit design, physical design, diagnostic and resident
software (firmware) development.

« Direct software development effort represents all effort
expended directly on software development from
functional feature requirement through developer testing,
plus post development feature support.

561

« Support effort includes all effort indirect to the hardware
and software development effort, such as architecture,
integration, load building, tools, system verification, field

testing, taining, field documentation, ~ resource
improvement, system labs, management and project
coordination.

Total effort of development includes direct hardware and
software development effort and support effort. The support
effort may in fact exceed the direct software or hardware
development effort in a release.

The "direct software development effort” is the primary
measurement used to keep track of the actual effort expended
on the software development work for a feature, which is a
marketable unit of a SESS Switch release.

The effort expended on the tasks in the category of
“support effort,” such as architecture, integration, syster.n
verification, system labs, quality, project management, etc. 1
added to the direct software development effort. This effort
charging scheme also applies to the "direct hardware
development effort.”

A diagram illustrating the effort charging and loading
scheme is shown in Figure 2.

Aschitecrre
Support Effort
. Dev System Onm Site Field
Design Coding Test . Tes "
[|
I et !
Direct Software Development Effort Suppont Effont
Direct Hardware Development Effort Project Management
Support Effort —
Training
Resource Improvement
Total Development Effort Productivity & Quality
Management
Suppon Effort N

Figure 2. SESS® Effort Charging and Loading Scheme

4. SESS SOFTWARE PRODUCTION RATES

One metric used to measure the development process is called

the software production rate. The software production rate can
be expressed as:

software program size

Software production rate = —;
direct software development effort

The software production rate for a SESS release is defined as
the net developed size of production code, (not including the
code for diagnostic, diagnostic control, and resident software,
which are included in the hardware productivity calculations),
divided by the release "direct software development effort."
The net developed code only includes new code, modified
code, and bug code (base code and ported code are excluded).
Software program size is measured in KNCSL. Direct software
development effort is measured in ATHCTY.

The software production rate is only a small part of the
overall productivity of the R&D development organization.
The overall productivity can be expressed as:

functionality
total R&D cost of development

Overall productivity =

The numerator represents functionality delivered by the R&D
development organization to customers and includes SESS
release software, source information for generation of
customer documents, database specifications for generation of
office data, source information for external training, etc. Since
this product is an aggregate of several different products, there
is no single measurement unit which can be used for
measuring the functionality. The total R&D cost of
development includes hardware and software development
staff effort, support staff effort, computing cost, and testing
laboratory support resources. A S5ESS cost model has been
developed for R&D managers to baseline the costs associated
with the development of software and hardware of a SESS
release. A good understanding of the costs is mecessary to
monitor, control, and reduce them. Currently more and more
cost information has been collected from the project to
facilitate continuing cost and productivity studies.

A relative comparison of SESS Switch release software
production rates are shown in Figure 3. The releases span a
period of 8 years.

i 3

Release & Release 6

Release 2

Release | Release 3 Release §

Figure 3. SESS® Switch Production Rates

The SESS-US software production rate has been stable
over the past six releases. The development environment over
this period of time has undergone continuous improvement,
however the basic effort of the software developer is still
involved with understanding the existing structure, designing
and testing software at the C source level of complexity.

The fact that the software "base" for SESS-US is several
million NCSL makes the job of designing and testing new
software ever more difficult. The improvements in the
development environment are evidently offset by this
increasing complexity.

A feature within a 5ESS release represents a major
functional capability such as Operator Services. A relative
comparison of individual SESS feature software production
rates in a recent release is shown in Figure 4.

562

FP6 FP7 FPS FP1

FP§ FP4 FP2

Figure 4. SESS® Fearure Sofrware Production Rate

Feature software production rates have more variation than
the production rates for entire releases. The software
production rates for features are impacted by productivity
factors such as staff experience and feature interaction
complexity.

4.1 Other Software Production Rate Views

The "net developed production code" used in the computation
of the software production rates for releases and features
includes three types of code by the software size definition
given in the Section 3.1.1, New code, Modified code, and Bug
code. For each release or feature, the source code counting
techniques can generate size information for each of the three
code components.

The software production rate for a release/feature can be
further decomposed into three components for new code,
modified code, and bug code respectively. This view can
provide another level of understanding of the software
production rate. The past experience indicates that modified
code and bug code required more effort to develop than new
code.

The concept of software production rate also can be
extended to the arena of support code to understand the
effectiveness of support code production. The denominator of
the equation for the software production rate needs to be

modified to reflect the related effort for developing the support
code.

5. SESS SOFTWARE PRODUCTIVITY
FACTORS

A list of potential SESS software productivity factors were
identified by a group of experienced project planners, system
engineers, architectural engineers, and software engineers. In
1987, a software productivity study was conducted among five
SESS development laboratories. The study was based on the
well defined productivity metrics: size, effort, software
production rate, and the list of potential productivity factors.
The lead software development engineers and managers were
asked o provide information regarding the impact of
productivity factors on the features which had shown high and
low software production rates using methods similar to those
employed by Jones [2] but adapted to the unique environment
of SESS.

The study found that 5ESS software production rate was
significantly impacted by requirement completeness, staff
experience, software interface complexity, and testing
environment stability.

Table 1 shows the productivity factors and the level of
impact on software productivity as identified in the 1987 study.

SOFTWARE PRODUCTIVITY FACTORS LEVEL OF IMPACT
Feature requirement completeness and stability High
Feature interaction complexity High
Staff experience High
Feature development environment (tools, eic) impact High
Feature hardware application novelty and change Medium
Sofrware architecture impact Medium
Feature novelty and synergy with other features Low
Fearture program complexity Low
Static and dynamic data impact Low
Feature performance constraints Low
Work environment Low

Table 1. SESS Software Productivity Factors

The productivity factors and impact on productivity listed
in Table 1 may be unique to the 5ESS development
environment. Each project and its development environment
may have its own set of productivity factors with different
levels of impact on software productivity.

5.1 Software Productivity Factor Impact

Productivity factor impacts were measured either by
quantitative methods or by qualitative multiple choices.
Quantitative measurements were defined and applied to
objective factors. Qualitative measurements were used to
assess subjective factors. The following two examples
illustrate quantitative and qualitative techniques.

A. Quantitative Measurement
« SESS static database impact?

1. How many new static relations are created for
the feature?

2. How many existing static relations have
population rule changes?

3. How many existing relations have modified
data attributes?

4. How many existing relations have data
tuple/element changes?

B. Qualitative Measurement

« What is development staff experience with this type
of feature?

1. Most development staff are experienced in this
type of feature

2. Half of development staff are experienced in
this type of feature

3. Most development staff are inexperienced in
this type of feature

The sensitivity of two high impact productivity factors are
illustrated in Figures 5 and 6. These factors were identified by
asking experienced managers to rate all the factors in Table 1
for a large number of features whose software production rates
were known. The correlation between software production
rates and productivity factors were then compiled for the
project.

Figure 5 illustrates the impact of staff experience. As
lustrated, the difference in production rate between “most
development staff are experienced” and "most development
staff are new to SESS" is about 100%. Figure 6 illustrates the
impact of feature interaction complexity. As illustrated, the
difference between "minor interactions with other features"
and "significant interactions with other features" is about 40%.

204
Relatve 157
Production
R

10
0.5

0.0 T T T T J

1.0 1.5 20 25 3.0 35

Majority Half Majority Factor Value
Experienced Experienced Inexperienced
Figure 5. Staff Experience Factor
207
Relatve 157
Production
Rate 1y -\\\\

0.5 1

0.0 T T T T 1

1.0 1.5 20 25 3.0 35

Minor Moderate Significant Factor Value
Interaction Interaction Interaction

Figure 6. Feature Interaction Complexiry

6. APPLICATIONS OF SOFTWARE
PRODUCTIVITY MEASUREMENTS

The results of software productivity measurements have been
applied in the following areas:

1. The productivity measurements and the identified
software productivity factors have been used to develop
a SESS estimation model, SESS SIZER [4]. 5ESS

historical data, based on the productivity measurements,
has been used in the estimation model as a reference.
The estimation model has been used in the SESS
planning estimation process to assist project managers
and feature estimators to plan and staff the projects
consistently [5].

Software size measurement has been used extensively as
an important normalizing factor in baselining the major
characteristics of the SESS releases and development
process, such as a variety of code sizes, fault density
profiles, software production rates and test densities [6].
The consistent sizing measurement allows the project to
develop and implement guidelines and entry/exit criteria
with respect to inspection and review preparation effort,
number of tests, testing time in lab hours, number of
errors found per phase, etc. In addition, the size
measurement has been used to derive other important
quality metrics such as chumn rate (frequency of code
changes) and bad fix rate (frequency of fixes caused by
other fixes). The effort measurement has been used by
the project management to keep track of the direct
software/hardware development by feature and by major
development phases.

The identification of high impact productivity factors has
helped the project focus its process improvement efforts.
The following are some examples of improvements
made in the high impact areas shown in Table 1:

o Feature requirement completeness and stability. A
requirement traceability methodology has been
introduced to the SESS development community 0
emphasize requirement specification and requirement
verification. It assists SESS engineers to identify
requirement faults and omissions during the earlier
development stage and to facilitate further feature
design and testing work.

Feature interaction complexity. For some large and
complex features, a feature interaction matrix is
constructed to show all the interactions with other
features. This improves the effectiveness of feature
design and testing.

Staff experience. Critical expertise and shared
resources were reorganized into functional units to
better utilize subject experts. Management is
currently considering a proposal, which gives
additional incentives to engineers who are willing to
stay on the same job function for a specific period of
time.

Feature development environment impact. A number
of development tools have been introduced to
improve the development environment, such as
DOC, which allows multiple engineers to develop a
document simultaneously.

7. CONCLUSIONS
Establishing a reliable and operational software productivity

564

measurement procedure is a critical step in the process of
pursuing software productivity improvement. Productivity
measurements actually are the roots of the tree of productivity
improvement.

While the measurement of "software program size per unit
of development effort” has some known problems as a
productivity metric, it is a useful metric to study the software
development process where the development organizations use
a common source programming language. Studies of those
productivity factors which impact the metric "software
production rate” identified productivity and quality
improvements which could be made in the SESS development
process. Similar studies of other development processes would
be expected to identify other factors which may or may not be
similar to those identified for SESS.

8. REFERENCES

1] [Boehm, 1981]. Barry W. Boehm, Sofiware
Engineering Economics, Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1981

{21 [Albrecht, 1984]. Alan J. Albrecht, ADIM Productivity
Measurement and Estimation Validation - Draft, IBM
Corp., Purchase, New York, 1984

[3] [Jones, 1986). T. Capers Jones, Programming
Productivity, McGraw-Hill, Inc., New York, 1986

{41 [Lehder, Smith, Yu, 1988]. Wilfred E. Lehder, Jr., D.
Paul Smith, Weider D. Yu, Software Estimation
Technology, AT&T Technical Journal, Volume 67,
Number 4, July/August 1988

[5]1 [Yu, 1990]. Weider D. Yu, A Modeling Approach to
Software Cost Estimation, IEEE Joumnal on Selected
Areas in Communications, Volume 8, Number 2,
February 1990

(6] [Yu, 1990]. Weider D. Yu, Software Productivity
Measurements and Estimation, TEEE International
Symposium: Software Quality and Productivity in the
1990’s, Callaway Gardens, Georgia, April 1990

