Do Programming Languages Affect Productivity?
A Case Study Using Data from Open Source Projects

Daniel P. Delorey
Brigham Young University
Provo, UT

pierce@cs.byu.edu

Abstract

Brooks and others long ago suggested that on aver-
age computer programmers write the same number of
lines of code in a given amount of time regardless of
the programming language used. We examine data col-
lected from the CVS repositories of 9,999 open source
projects hosted on SourceForge.net to test this assump-
tion for 10 of the most popular programming languages
in use in the open source community. We find that for
24 of the 45 pairwise comparisons, the programming
language is a significant factor in determining the rate
at which source code is written, even after accounting
for variations between programmers and projects.

1 Introduction

Brooks is generally credited with the assertion that
annual lines-of-code programmer productivity is con-
stant, independent of programming language. In mak-
ing this assertion, Brooks cites multiple authors includ-
ing [7] and [8]. Brooks states, “Productivity seems con-
stant in terms of elementary statements, a conclusion
that is reasonable in terms of the thought a statement
requires and the errors it may include.” [1] (p. 94) This
statement, as well as the works it cites, however, ap-
pears to be based primarily on anecdotal evidence. We
test this assertion across ten programming languages
using data from open source software projects.

2 Related Work

Various studies of productivity in software develop-
ment have been reported, including [5, 4, 6, 3].

Empirical studies of programmer productivity differ
in the productivity measures used, the types and quan-
tities of data used, the explanatory factors considered,

Charles D. Knutson
Brigham Young University
Provo, UT
knutson@cs.byu.edu

Scott Chun
Brigham Young University
Provo, UT
chun@cs.byu.edu

the goals of the study, and the conclusions reached.

The most common productivity metrics are lines of
code per unit time [5] and function points per unit time
[4, 6, 3]. While compelling arguments are made in the
literature for both of these metrics, we use lines of code
both because the assertion we are testing was stated in
terms of lines of code.

Studies of software development productivity tend
to rely on observational data collected from commer-
cial projects. Maxwell et al. use data collected from 99
projects from 37 companies in eight European countries
[5] and data gathered from 206 projects from 26 com-
panies in Finland [4]. Premraj et al. use an updated
version of the same data set with over 600 projects [6].
Liebchen et al. use a data set representing more than
25,000 projects from a single company [3]. Our data
set was collected from the CVS repositories of 9,999
open source projects hosted on SourceForge.

The data sets used in these studies were each com-
piled manually with some level of subjectivity and
transformation. Given this level of human involve-
ment, the factors they consider are at a high level of
abstraction. For example, the data set in [5] contains
among its variables seven COCOMO factors, includ-
ing required reliability, execution time constraints, and
main storage constraints, each with discrete ordinal
values between 1 and 6. Our data set contains only
those features that can be calculated from the data in
a CVS repository. As such, our data is limited concep-
tually but has the advantages of being concrete, objec-
tive, and simple to gather.

In each of the papers cited, the stated goal of the
study was to identify the major factors influencing pro-
grammer productivity. The models developed in these
studies were intended to be either predictive, explana-
tory, or both. Our goal is not to construct a predictive
or explanatory model. Rather, we seek only to develop
a model that sufficiently accounts for the variation in
our data so that we may test the significance of the

IEE l-:

COMPUTER
SOCIETY

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007 IEEE

Table 1. Top ten programming languages by
popularity rankings

Project Author File Revision LOC Final
Rank Rank Rank Rank Rank Rank

C 1 1 2 2 1 1
Java 2 2 1 1 2 2
C++ 4 3 4 4 3 3
PHP 5 4 3 3 4 4
Python 7 7 5 5 5 5
Perl 3 5 9 9 6 6
JavaScript 6 6 6 8 10 7
C# 9 9 7 6 7 8
Pascal 8 10 8 7 8 9
Tcl 11 8 10 10 9 10

estimated effect of programming language.

3 Data Collection

The data we use in our analysis comes from the CVS
repositories of open source projects hosted on Source-
Forge. The tools we developed and methods we em-
ployed in collecting the data are described in [2].

As CVS manages individual changes (called revi-
sions) it records the author of the change, the date
and time the change happened, the number of lines
that were added to and removed from the file, and a
mandatory free-form message supplied by the author.
These minimal data can be combined to produce a rich
set of values describing the environment in which the
change was made.

We collected data from the CV'S repositories of 9,999
projects hosted on SourceForge. Our population for
the data collection was the set of projects that met
the following criteria: 1) the project’s development
stage is set as Production/Stable or Maintenance; 2)
the project is active; 3) the project uses CVS; 4) the
project is open source.

We gathered the entire history for each of the 9,999
CVS repositories and stored the resulting data in a
MySQL relational database using a tool we developed
called cvs2mysql [2]. The resulting raw data contains
records for 7,244,201 files and 26,559,460 changes to
those files made by 23,838 developers.

3.1 Data Preparation

Of the more than 19,000 different file extensions rep-
resented in the SourceForge database, we identified 107
unique programming language extensions. In order to
limit the scope of our study to the languages that are
most widely used, we produced an ordered list of the
most popular programming languages represented in
the database. Popularity is defined here in terms of:
1) total number of projects using the language; 2) to-
tal number of authors writing in the language; 3) total

number of files written in the language; 4) total num-
ber of revisions to files written in the language; and
5) total number of lines written in the language. We
ranked each language using these five metrics and cal-
culated the average ranking for each language. We then
ranked the languages by their average rankings to de-
termine an overall ranking. We chose to focus on the
top 10 programming languages which are listed along
with their rankings in Table 1. These 10 languages are
used in 89% of all projects, by 92% of all authors, and
account for 98% of the files, 98% of the revisions, 99%
of the lines of code in our data set. The next three
most popular languages are Prolog, Lisp, and Scheme,
none of which can be easily compared to imperative
and object-oriented languages on a line by line basis
given the differences in programming paradigm.

We compare annual productions per programmer
per language in an effort to limit the impact of normal
variations in the amount of time individual program-
mers commit to development over smaller time peri-
ods. Data collection was limited to the time period
from January 1, 2000 to December 31, 2005.

Our model of aggregating the lines written across
authors, programming languages, and years assumes
that every line committed to CVS by an author was
written by that author during the year in which it was
committed. However, we identified six ways in which
this assumption can be violated:

e Migration — An existing CVS repository created
by multiple authors and/or over multiple years is
migrated to SourceForge by a single author.

e Dead File Restoration — When a dead file is re-
stored in CVS, the contents are not differenced
against the pre-removal version.

e Multi-Project Files — Authors may contribute the
same file to multiple projects.

o Gatekeepers — Gatekeepers receive credit for all
the lines they commit even if they were not the
author.

e Batch Commits — An author may work for more
than a year before committing the changes.

e Automatic Code Generation — The tools an author
uses to program may automatically generate lines
of code which the author then commits to CVS.

While the data collected by CVS does not allow us
to definitively identify all cases that violate our as-
sumptions, we have taken steps to exclude as many
offending cases as possible while sacrificing as few of
the cases that do not violate our assumptions as is rea-
sonable. To remove the migration cases, we excluded
initial revisions for all files in our data set. To re-
move the dead file restoration cases, we excluded all

IEE l-:

COMPUTER
SOCIETY

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007 IEEE

Table 2. Potential explanatory factors considered

Language Related Factors Per Year
For the Current Year
Months since first recorded use
Active projects using this language
Active authors using this language
Current files written in this language
Total number of lines written in this language
Aggregated Over Prior Years
Total projects having used this language
Total authors having used this language
Total files written in this language
Total number of lines written in this language

Author Related Factors Per Year

For the Current Year
Months since first contribution
Active projects with contributions
Number of programming languages used
Current files edited
Total number of lines written
Aggregated Over Prior Years
Total projects with contributions
Total number of programming languages used
Total files edited by this author
Total number of lines written by this author

Language Specific Author Related Factors Per Year

For the Current Year
Months since first contribution
Active projects with contributions
Current files edited

Temporal Factor Calendar Year

Aggregated Over Prior Years
Total number of lines written
Total projects with contributions
Total files edited by this author

revisions that followed a “dead” revision. After re-
moving these, however, significant unrealistic outliers
remained in our data set. To remove these outliers, we
limited our population to those authors who had writ-
ten fewer than 80,000 lines of source code in a single
year. Since we believe that those authors who wrote
more than 80,000 lines in a single year are exhibiting
one of the non-population behaviors described above,
we also exclude from our analysis the projects to which
they contributed.

After limiting target programming languages and re-
moving observations deemed to be outside our popula-
tion, our target data contains records of 673,528 files,
4,198,724 revisions, and 16,197 authors. These data
are aggregated across author, programming language,
and year into 34,566 observations in our final data set.

4 Data Analysis

The goal of our data analysis is to determine
whether there is evidence in the data we have collected
that programming languages affect annual programmer
productivity. Our dependant variable in this analysis
is the lines of code committed to the CVS repositories
of selected SourceForge projects by an individual au-
thor in a single year. Our independent variable is the
programming language being used. We test all pair-
wise differences between the languages, adjusting our
confidence intervals using the Tukey-Kramer Honest
Significant Difference for multiple comparisons.

Clearly there are factors other than programming
language that affect programmer productivity. Before
testing the significance of the programming language

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)

0-7695-2961-5/07 $20.00 © 2007 IEEE

effect, we must account for the effects of these con-
founding variables. We do this by including the con-
founding factors in a multiple linear regression analy-
sis along with the independent variables so that their
effects can be separated. The potential confounding
factors we consider in this analysis are listed in Table
2. It is important to note that our goal is only to sepa-
rate confounding effects before testing our independent
variable. Our model is not intended to be predictive
or explanatory. Therefore, we do not report the coeffi-
cients or the p-values of the confounding factors.

We develop our model by first excluding the pro-
gramming language and considering only the confound-
ing factors as independent variables. We systematically
remove independent variables until we achieve the sim-
plest model that still explains a significant portion of
the variation in our data. To this model we then add
the programming language factor and test its signif-
icance. The procedure for reducing the model is ex-
plained below.

We begin by removing independent variables that
are highly correlated. Using correlated independent
variables in a multiple regression leads to a condition
known as multicolinearity which can affect the preci-
sion of estimates in unexpected ways. The Variance
Inflation Factor (VIF) is a measure of multicolinear-
ity. A VIF value grater than 10 is considered large.
Using multicollinearity analysis we remove five of the
independent variables. These variables along with their
VIF values are listed in Table 3.

We next remove independent variables that have no
explanatory power. To be useful as an independent
variable in a multiple linear regression, a variable must
have a linear relationship with the dependent variable.

IEE l-:

COMPUTER
SOCIETY

Table 3. Explanatory factors excluded from our analysis

Factors Excluded Due to High Variance Inflation Factors (VIF Value)
Total authors having used the programming language in prior years (1860)
Total authors using the programming language in the current year (258)
Total projects having used the programming language in prior years (68)
Files written in the programming language in the current year (51)

Active projects using the programming language in current years (12)

Factors Excluded Due to Low Correlation with the Dependant Variable (Correlation)
Months since the first recorded use of the programming language (0.0071)

Calendar Year (0.0093)

Factors Excluded Due to Practically Insignificant Coefficients (Coefficient)
Total number of lines written in the language during the current year (0.0000)
Total number of lines written in the language during prior years (0.0001)

Factors Removed During Variable Selection Using the Cp Statistic
Total number of languages used by the author during prior years
Total number of files written in the language during prior years

Correlation is a measure of linear relationship. Using
the correlation between each independent variable and
the dependant variable methods we are able to remove
two of the independent variables. These variables along
with their correlation coefficients are listed in Table 3.

Fitting a regression on the remaining variables we
find that two of the variables have an estimate coeffi-
cient equal to or near zero. These coefficients are not
statistically significant, but more importantly, they are
not practically significant either, so they are removed.
These variables along with their estimated coefficients
are listed in Table 3.

Finally, the last step in reducing our model is to
fit regressions using all possible subsets of the remain-
ing variables and pick the model that best satisfies a
model-fitting criterion. The model fitting criterion we
use is the Cp statistic. The Cp statistic focuses directly
on the trade-off between bias due to excluding impor-
tant independent variables and extra variance due to
the inclusion of too many variables. Using Cp selec-
tion on the remaining 16 independent variables, we
find the model with the lowest Cp statistic in which
all independent variables are significant contains 14 in-
dependent variables. The two independent variables
excluded from this model are listed in Table 3.

Our final model contains 14 independent variables.
Again, the goal of our analysis is not to create a pre-
dictive or an explanatory model but rather to control
as much of the variation in the data as possible before
testing the significance of the effect of programming
language on average annual programmer productivity.
Therefore, we do not explicitly present the independent
variables included in our model to prevent the casual
reader from interpreting our model as explanatory or
predictive. For the curious reader, the independent
variables included in our model can be determined us-

ing Table 2 and Table 3. The R? for our model is 0.80
meaning that it explains 80% of the variation in our
data. All the independent variables are statistically
significant at p < 0.05. The model is significant at
p < 0.0001.

5 Results

To test the assertion that programmer productivity
is constant in terms of lines of code per year regardless
of the programming language being used, we fit a model
consisting of the 14 independent variables selected in
Section 4 to adjust for variation in programmer ability
and programming language use. To this model, we add
indicator variables for the programming languages we
are considering. By running the analysis nine times and
using a different language as the reference each time, we
are able to determine the estimated differences between
the languages and the standard errors for each of those
estimates which we then use to test the significance of
the differences.

The null hypothesis for our tests is that there will be
no difference in estimated average annual productions
per programmer for any of the languages. However, we
find evidence in the data to reject the null hypothesis
for 24 of the 45 pair-wise comparisons. The p-values
for the comparisons, adjusted using the Tukey-Kramer
Honest Significant Difference for multiple comparisons
are listed in Table 4. The shaded cells are the com-
parisons for which we reject the null hypothesis with
95% confidence or greater. To clarify the magnitudes
of the differences, Figure 1 shows the estimated average
annual productions for each language.

Using Table 4 and Figure 1 together we can observe
groupings in the languages. Python, which sits near the

IEE l-:

COMPUTER
SOCIETY

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007 IEEE

Table 4. Pair-wise language comparisons

JavaScript Perl Tecl Python PHP Java C C++ C#
Perl 0.46
Tcl 0.60 1.00
Python 0.00 0.00 0.76
PHP 0.00 0.00 0.08 0.72
Java 0.00 0.00 0.02 0.18 1.00
C 0.00 0.00 0.00 0.01 0.53 1.00
C++ 0.00 0.00 0.00 0.00 0.01 0.07 0.59
C# 0.00 0.00 0.00 0.02 0.26 050 0.83 1.00
Pascal 0.00 0.00 0.00 0.00 0.10 0.26 0.60 0.99 1.00
PHP the trade-offs between the power provided by languages
JavaScript Perl Tcl Python Java C C#+ C# Pascal

¢ ———— o ———
2000 2200 2400 2800 2800 3000 3200 3400

Figure 1. Estimated Average Productions

middle of the range of estimated annual productions,
for example, follows a different paradigm from the lan-
guages on each end of the range (JavaScript and Perl
on the left and C, C++, C#, and Pascal on the right),
but it is not significantly different from the other lan-
guages near the middle (Tcl, PHP, and Java). Further
analysis may reveal that programming language para-
digm influences programmer productivity.

6 Conclusions

We find significant evidence in our data that, even
after accounting for variations in programmers and

with higher levels of abstraction and the cognitive load
placed on their users.

We expect that this model of using large-scale, longi-
tudinal studies of Open Source projects to empirically
test long-held assumptions in software engineering re-
search will become more prevalent as the tools and
methods for collecting and analyzing data from soft-
ware repositories mature. Such studies are necessary
in order to build a more firm foundation for under-
standing the similarities and differences between Open
Source and other software development models.

References

[1] F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison Wesley, Boston, MA,
1995.

environments, programming languages are associated 2] D. Delo@)’y C. Kf_lUtsony and A’- MacLean. A com-
with significant differences in annual programmer pro- prel.lenswe evaluation of productlon phase sourceforge
ductivity. The reader must be careful, however, not to projects: A case st}ldy using Cvszmysql and the source-
. . . . forge research archive. Manuscript Under Review, 2007.
infer a Cause-and—effect ?elatlonshlp bas.ed solely on this [3] G. A.Liebchen and M. Shepperd. Software productivity
study. Our analysis relies on observational data gath- analysis of a large data set and issues of confidential-
ered from SourceForge.net CVS repositories. This is a ity and data quality. In Proceedings of the 11th IEEE
strength in that the data represent an unaltered soft- International Software Metrics Symposium (METRICS
ware development environment. However, it does limit 2005), 2005.
the inferences we can make both in terms of cause-and- [4] K.D. Maxwell and P. Forselius. Benchmarking software
effect and generalization. development productivity. IEEE Software, pages 80-88,
Nevertheless, the results of this study suggest a January 2000.
. . [5] K. D. Maxwell, L. V. Wassenhove, and S. Dutta. Soft-
number of interesting avenues for future research. For . L
. L. ; ware development productivity of european space, mili-
examplez there is a general progression in Figure 1 from tary, and industrial applications. IEEE Transactions on
newer, higher-level interpreted languages to older, com- Software Engineering, 22(10):706-718, October 1996.
piled languages. This progression may imply a rela- [6] R. Premraj, M. Shepperd, B. Kitchenham, and
tionship between the level of abstraction of a language P. Forselius. An empirical analysis of software pro-
and the speed at which developers can write source ductivity over time. In Proceedings of the 11th IEEE
code in that language. Brooks supported the assump- International Software Metrics Symposium (METRICS
tion of constant productivity as “reasonable in terms 2005), 2005. .
of the thought a statement requires and the errors it (77 W. M’.Tahaﬁero’ Modularity. the key to system growth
may include.” However, it is quite possible that to- potential. IEEE Software, 1(3):245-257, July 1971.
’ [8] R. W. Wolverton. The cost of developing large-

day’s higher-level languages require more thought per
line or allow more errors per line than their predeces-
sors. More research is needed to better understand

scale software. IEFEE Transactions on Computers, C-
23(6):615—636, June 1974.

IEE l-:

COMPUTER
SOCIETY

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007 IEEE

