
The Impact
of Tools on
3ottware

Productivity
TILMANN BRUCKHAUS , McGill University
NAZIM H. MADHAVJI, McGill University

INGRID JANSSEN, IBM Canada
JOHN HENSHAW, IBM Canada

t’s common knowledge that to stay competitive, your software organization must contin-
uously improve product quality and customer satisfaction, as well as lower software
development costs and shorten delivery time-all critical variables for software engineer-
ing practice.’ You can pursue these challenges in many ways. One such way is to improve
your development processes and organizational structures using frameworks such as the
SEI’S Capability Maturity Model,’ Total Quality Management,3 the Quality

Improvement Paradigm,4 or the Process Cycle.5 Another option is to adopt appropriate software
tools. Tools have long been recognized as an effective way to improve software development vari-
ables such as productivity and product quality. However, to make effective use of specific tools you
should first understand how a tool will affect these critical variables in your project.

I E E E S O F T W A R E 0740 7459/96/$05 00 Q 1996 I E E E

Tools can help improve your devel-
opment processes by facilitating activi-
ties you didn’t practice before. For
example, a testing tool can help intro-
duce new testing activities such as
branch-coverage analysis. Tools can
also help increase productivity by sup-
porting software development activities
that are usually carried out with little
or no tool support. However, in certain
situations, the introduction of a tool
can also decrease your productivity.
T h s can happen when a tool increases
your effort on specific activities or
introduces new activities into the
process, such as generating and main-
taining new data.

Because we don’t know how to ana-
lyze a tool’s impact on specific pro-
j e c t ~ , ~ , ~ we generally adopt them based
on an intuitive understanding of their
expected impact. In many cases, the
actual results of this practice are disap-
pointing.* The problem is aggravated
because tool adoption often brings con-
siderable costs; in addition to acquisi-
tion costs, there are many other related
expenses that can amount to 5 to 10
times the price of the tool itself.’

BEYOND INTUITION

The industry has made great strides
in making more development tools
available. It’s now time toJind ways
to consistently, o@ectively evaluate a
tool’s utility and appropriateness.

-Theme ofIEEE Software’s
May 1992 special issue on
tools assessment

Four years have passed since Elliot
Chikofsky made &us call for consistent
and objective tool evaluation methods.
During that time we have been involved
in a collaborative research effort in soft-
ware productivity between McGill
University and IBM Software Solutions
Toronto Laboratory. As part of that
research, we did a case study on the
impact of tool insertion in ongoing soft-
ware projects. The result of our case
study was a method that organizations
can use to assess the impact of tool
insertion on software productivity.”J

We wanted to find out how using spe-
cific requirements-management tools
affected the productivity of requirements
planners in several projects. The projects
were of different sizes and used different
processes. Our goal was to see whch pro-
jects would benefit from tool insertion.

Our results show that, depending on
project characteristics, the same tool can
have vastly different effects on produc-
tivity. In one case, due only to differ-
ences in project size, the t00l’~ impact
ranged from a productivity decrease of
more than 80 percent to a productivity
increase of almost 75 percent. In anoth-
er case, differences in the development
process alone resulted in a productivity
decrease of more than 80 percent on one
project and an increase of almost 600
percent on another.

There were other surprising results
as well. For example, a t00l’~ perfor-
mance can peak when you use it on pro-
jects of a particular size, but it can be
less productive in larger as well as small-
er projects. Also, depending on the
complexity of the development process,
using a tool may require more effort
than working with a less sophisticated
tool (or technology) such as operating-
system commands or simply paper and
pen. Further, we found that when tools
are used to support a rather simple
development process, they tend to be
more appropriate for small projects.

Our results indicate that to increase
productivity, you should select a tool
with your project size and development
process in mind. Ignoring these factors
can lead to higher software costs and
slower time to market.

CHOOSING THE RIGHT TOOL

A tool’s impact is not solely governed
by its inherent properties, but also by
the characteristics of the adopting pro-
ject. Two characteristics-project size
and development activities-are particu-
larly important because they govern
which tool functions you use and how
often you use them. Thus, a tool’s effect
on productivity will vary depending
upon the specifics of your project.

Tables 1 and 2 show two examples
from our case study. Both examples

-3-0 S E P T E M B E R 1996

Fixed project size (10 features)-Varying process (regular process and advanced process)

.
without tool

unit execu- total
Effot -tions ,I effort

66 12 I I 792
... ,

. ,-... . .-

- - - -

with tool
r - .. - -

unit execu-
effort tions

1.5 12 180
...

Requirements
planning process

activities
-- __. . - . - .

Captiirc raw rcquircincnt

Simple process: regdur process

with tool

12 5s2 I 0 j 12 I 108

without tool
unit j execu- total unit ’ execu- I total

e*ot
46

_.effort- _ t!oRQ!effoct _E?!--L !ions - I

Resolve raw requirements
Rcsolve problem StateIiicnt
Resolve features

...........
26.7 10.4 ’ 89

224 2.9 32
83 ;.2 10

..
6.8 80 1 1 605.2 13.2 89

10.9 . 32 1 ’ 318.8
97.4 10 t ;74

........................
Develop release plan
‘l’otai effort
.

* this activity does not invcilvc siil)anivities affe~rcd by mol insen-ioii.

contain data from the requirements-
planning process we studied. This
process has five subactivities, of which
each subactivity also has subactivities,
omitted here for simplicity.

The tables show effort and produc-
tivity data on two pairs of projects before
and after tool insertion. Each table
includes the effort required for one exe-
cution of an activity (unit efort), the
number of executions of an activity
throughout a release cycle (executions),
the total effort required for all execu-
tions of an activity during one release
cycle (total efiyt>, and productivity and
impact data.

Size. Table 1 shows data from two
projects of different sizes that use the
same development process. The data on
the left is from a requirements-planning
process for a small product where five
features are added per release cycle. The
data on the right is from a larger project,
with about 80 added features per release.
Clearly, for the larger project more data
must be processed, and thus activities
must be carried out more frequently.
However, as the “executions” column
shows, although the number of execu-
tions for the listed activities differs across
the two projects, it is constant for each
project before and after the tool insertion.

The effort for each individual execu-
tion of an activity (“unit effort”) differs
in each of the projects because of the
tool insertion, as can be seen by com-
paring the “without tool” and “with
tool” columns. Finally, the unit effort
also differs from the small to the large
project when comparing the respective

+ 56.4%

“without tool” columns as well as when
comparing the respective “with tool”
columns. This is because the subactivi-
ties are carried out with varying fre-
quency depending upon project size.

The difference in project size affects
the impact of the tool: In the smaller
project, productivity increased by more
than 100 percent because of the tool
insertion; in the larger project produc-
tivity declined by almost 25 percent.

It is tempting to think that a tool that
improves productivity in a small project
would lead to a similar-if not greater-
increase in a larger, similar project.
However, even though the tool intro-
duction facilitates some activities, others
may require more effort when the tool is
used. In our example, more effort is
required to resolve a raw requirement
(13.2 versus 6.8 minutes) whde all other
activities require less effort. Thus, pro-
ductivity will improve only if you can
save more effort on the facilitated activi-
ties than you have to invest in activities
that require more effort. This is the case
in the smaller project in Table 1. If the
activities that require more effort are
carried out often in a project, as in the
larger project in our example, then the
tool may curtail productivity.

As our results show, project size can
tip the scales of success or failure in
tool adoption.

Process. Table 2 shows the impor-
tance of the development process in
determining the effects of tool insertion.
Here, both projects are of the same size
(10 features) but use different develop-
ment processes. The first project uses a

simple process, regular process, while the
second project uses advanced process,
which is more complex. (The specific
differences between these processes are
in the subactivities which are not shown.)

In the project with the more complex
process, you generally have to cany out a
larger set of subactivities to accomplish
the listed activities (see ‘‘unit effort”).
However, in these projects, each of the
listed activities is carried out with the
same frequency (see L‘executions’’). Here,
due only to the different development
processes, the effect of tool insertion on
productivity is again drastically different.
Whereas the project with the simpler
process showed a productivity drop of
more than 25 percent, the project with
the more complex process showed an
increase of more than 50 percent.

Choosing wisely. Our study gave us a
wealth of data on which tool is right
for which project. If your main goals
are short time t o market and low
development cost, you can select the
tool that promises the greatest produc-
tivity boost. When you select a tool for
other reasons, you can make sure that
using the tool does not lower produc-
tivity to the point where you cannot
afford to use it. For example,

+ a tool that is used in the upstream
part of the development process may
locally decrease productivity but help
improve product quality or increase
productivity downstream;

+ an analysis tool may help you bet-
ter understand and document software
requirements;

+ a reverse engineering tool may

I E E E S O F T W A R E 33

provide new information about a prod-
uct, such as design abstraction, that
simply did not exist prior to the inser-
tion of the tool.

Such tools may also improve quality
and reduce rework in your design and
coding processes. T o reap these bene-
fits, it is important that you understand
the tool’s impact on productivity.

Regardless of which is more impor-
tant in your project-quality or pro-
ductivity-quantitative analysis of a
tool’s impact can help you decide if
you should adopt a tool or pass it by.

CASE STUDY

We chose to do a case study rather
than an experiment because we had no
control over the industcia1 environment
where we planned to investigate the
impact of tool insertion on software pro-
ductivity.’* Also, because there is little
quantitative data on the effect of tools
on software productivity, our study was
necessarily exploratory rather than
aimed a t replicating prior studies or
probing existing theories.

Our hypothesis was that the size of a
project and the development process
practiced can influence the effect of tool
insertion. Our goal was to test this
hypothesis. We also wanted to know if
improvement in process and productivi-
ty could be achieved at the same time.
That is, we were interested in finding
out if it was possible to adopt a more rig-
orous process (which typically requires

more resources), and at the same time
increase productivity by supporting that
process with an appropriate tool.

Study specifics. Our unit of analysis was
the insertion of a requirements-manage-
ment tool into a requirements-planning
process. The subunits of analysis were
the alternative development processes,
project sizes, and technologies, and their
impact on sobape-productivity. They
thus constituted O‘ur three independent
variables and software productivity was
our dependent variable.

Our case study focused on the
requirements-planning process of 17
ongoing projects. These projects were
different with respect to their size and
the processes and tools they used; we
studied three different processes, five
project sizes, and four tools.

4 Of the three processes, one
process was in use in some of the stud-
ied projects; management considered
the other two for adoption after a new
tool was inserted.

+ The five project sizes represent
the typical project sizes in our 17
sample projects.

4 Of the four technologies, one-
referred to as “OS”-was in use in
some of the studied projects and one-
simply called “Tool”-was being con-
sidered for adoption. The two remain-
ing tools-“Prototype” and TOO^+"-
were alternative versions of Tool; we
studied these versions to better under-
stand how different tool characteristics
affect productivity.

For the analysis, we used the Soft-
ware Productivity Analysis Method
(SPAMJ’oJ1 whch let us model different
project sizes, development processes,
and technologies separately. We then
combined these partial models into pro-
ductivity models, whch we analyzed for
effort requirements and productivity.

T o develop our size, process, and
technology models we used field stud-
ies consisting of participant observa-
tion, direct observation, document
analysis, and various types of inter-

views.’* T o model processes and tech-
nologies not in use, we relied on field
pilot studies and laboratory studies:
professional planners and researchers
used the new processes and tools for a
limited time on actual project data.

W e then used SPAM to combine
the 12 (3 + 5 + 4) partial models into 60
(3 x 5 x 4) productivity models and to
compute effort requirements and pro-
ductivity data. Thus, we obtained data
on 60 different ways of requirements
planning. The effort and productivity
figures were validated by the require-
ments planners and managers in the
participating projects as well as by the
individuals who had participated in the
field pilots and laboratory studies. We
are thus confident that the 60 data-
points we obtained are valid and useful
to support decision making.

Context. The requirements-planning
process determines which require-
ments to add in a product’s future
releases to best meet market needs. In
this process, planners gather require-
ments from a variety of sources such as
customers, user groups, advisory coun-
cils, competitive analyses, conferences,
and literature. They then analyze raw
requirements and create problem state-
ments to describe different sets of
related raw requirements in a more
formal manner.

T o address the most important
problem statements, the planners then
suggest new system features. The most
valuable of these features will be incor-
porated into future product releases. In
the organization we studied, require-
ments planning had been done using
the AIX file and operating system utili-
ties, and data was also captured by tak-
ing notes on paper or simply by
remembering it.

T h e planning managers wanted a
tool that would help requirements
planners process, document, and access
requirements information in a struc-
tured and convenient way. They also
wanted a tool that would let the plan-

S E P T E M B E R 1 9 9 6

ners cooperatively build and maintain a
comprehensive database of require-
ments information that could be used
to make decisions about future product
releases. Thus, the tool should also
facilitate information sharing among
all planners and across different phases
of product development.

T h e organization preselected a
requirements-management tool with
integrated problem-traclung facilities.
The tool facilitated capturing require-
ments data in a database, managing
versions of requirements items, con-
trolling the process of resolving
requirements, reviewing requirements,
querying for and communicating
requirements information, and retain-
ing relationships among different
requirements items.

T h e company’s main objectives
were to render the requirements
process more structured and to
improve the quality of the deliverables.
Yet, it was not clear whether using the
tool would let them meet these
improvement goals while maintaining
a high level of productivity. A key con-
cern was that the process changes
could lead to many new activities, and
thus more effort would be required to
plan requirements. In this situation,
the data from a quantitative productivi-
ty analysis was just what was needed.

Modeling the problem. T o begin, we
had to first model and analyze the
industrial setting. The SPAM method
allowed us to separately model the
development process, project size, and
technology. W e then used SPAM’s
productivity evaluation algorithm to
calculate the productivity of all possi-
ble combinations of process, project
size, and technology.

The effort and productivity data we
derived concerned only activities that
were directly affected by tool inser-
tion-planning activities that are relat-
ed to documenting, accessing, and
sharing requirements information.
However, planners must expend sub-

I Process

Re Advanced
Activity type ’ .

~_
I

12 Docunicntation I 5
I 4

I
Access

1

- .

~- -

Sharing and .. .-

Subtoil -- 7

I 34

21
27 33

.5 4

. _ _ _ . _ - __ .-. .

__ ~-
Other . activities
Total activities

I

Complete

15
18
49
82
65

14’7

Project size in features
of artifact_

‘ 5 10 20 40 80 .+- . . .

23 89 3 41 1331 5141 Raw requirernents
Prohlein statements 32 ’ 89 2.53 716

. .. __ - - _

Features i o i 20 40 I 8 0

stantial effort on activities that are not
supported by the requirements-man-
agement tool, such as discussing prod-
uct strategies and meeting customers
and vendors. Thus , the data we
obtained represents only a specific part
of the overall effort required for plan-
ning requirements.

Processes. W e expected-and in-
tended-that inserting the require-
ments-management tool would change
the process in three main areas:

+ documentation of requirements
information,

+ accessing requirements inforrna-
tion, and

+ sharing requirements and quality
assurance informa tion.
The three alternative processes incor-

porated activities in these areas to vary-
ing degrees. Thus, each process was
modeled separately as regular process,
advanced process, and complete process.

+ Regular process: planners docu-
ment, access, and share requirements
data to a minimal extent; a lightweight
process to maximize productivity.

+ Advancedprocess: represents an inter-
mediate solution; all vital requirements
informanon is documented, shared, and
accessed, making it more rigorous than
the regular process but requiring less
effort than the complete process.

+ Complete process: all requirements
information is documented, accessed,

and shared whenever it appears useful;
designed to ensure maximum product
quality regardless of the required effort.

Table 3 shows how many activities
are included in different processes in
the areas mentioned above (documen-
tation, access, and sharing of require-
ments information).

Project sizes. Project size vaned widely
across projects. We measured project
size by counting how many features
planners expected to add to a product
during one release cycle. T o represent
typical project sizes, we chose project
sizes of 5 , 10, 20,40, and 80 committed
features. We also specified the number
of raw requirements as a measure of the
input amount and modeled the number
of problem statements as a third measure
of project size. Table 4 shows the result-
ing project-size models. The impact
analysis method SPAM uses these pro-
ject size specifications to assess how often
process activities are executed.

Tools and technologies. T o support the
requirements-planning process , we
selected four technologies: OS, Prototype,
Tool, and Tool+.

With OS technology, planners use
AIX operating-system commands, the
AIX file system, and paper and pen.
They document requirements infor-
mation by appending ASCII files, e-
mail messages, or notes on paper. This

I E E E S O F T W A R E 33

_. -

I .

_. .
Productivity analysis

. - ___
Project size in features f Technology

P __ .

60 I 17.10 I 10.82 6.1 _ - _ _ ~
.82 20.-1 11.87 6.43 3.41

.. -
2.1 ~. 9 1 . roo1 , 15.84 12.18 7.91 4.63 ~ 2.57

...........

30.88 14.47

............

is a simple, straightforward technology
that does not require much effort to
document requirements information.
However, accessing this information is
quite cumbersome.

The Tool technology was preselect-
ed by the organization for require-
ments-management. It allows planners
to carry out all documentation, access,
and communication activities by select-
ing one or more functions from the
tool's graphical user interface. T h e
tool stores the requirements informa-
tion in a relational database that plan-
ners can conveniently query for specif-

ic information on any item. The main
drawback of this technology in terms
of productivity is that planners must
enter requirements information into
the tool. This incl des rekeying the

whenlhey don't have access to the
tool. O n the other hand, Tool makes
accessing requirements information
almost effortless.

The Prototype technology consists of
a collection of AIX shell scripts. The
scripts let planners document require-
ments information in a database of
structured plain-text files stored in the

notes they make on ? raw requirements

AIX file system. Because the file system
is used as the database and because the
prototype has a somewhat clumsy com-
mand-line interface, carrying out activi-
ties requires more effort than with
Tool. The Tool+ technology improves
on Tool in that, while it has the same
functionality and interface as the regu-
lar tool, performance is improved and
thus activities require less user time.

With each technology, a planner
must carry out various steps to com-
plete a planning process activity. On
average, OS requires 5.5 steps using
OS commands; Prototype requires 4.9
steps using AIX shell scripts; and Tool
and Tool+ each require 2.3 steps using
the GUI controls.

Data analysis and raw results. For the
effort and productivity analysis, we
combined the three processes, five pro-
ject sizes, and four technologies in all
possible permutations. From this we
derived 60 distinct productivity models,
each of which describes a different
method of planning requirements for a
project of a specific size, using a specific
process and technology. We then ana-
lyzed each productivity model for the
user effort required and productivity
yielded. In this analysis, the process
specifies the detailed activities that must
be carried out for requirements plan-
ning, the project size governs how often
these activities are carried out, and the
technology determines how much effort
is required to accomplish these activities
using a certain tool.

Table 5 shows the raw effort data,
with the five columns representing the
project sizes in number of features for
each (5, 10, 20, 40, and SO). In each of
the process sections-regular, advanced,
and completeare four rows that show
the technology used. The table cells
show the effort, measured in person-
weeks, required to carry out the
requirements-planning activities with
each combination of process, technolo-
gy, and project size.

From this effort analysis, we could

3 4 S E P T E M B E R 1 9 9 6

350

I " 5 Project size

~~

Figwe 1. Effoort analysis using OS and Tool+: an overvim of 30 data points.

easily produce productivity data. We
derived the productivity figures,
shown in Table 6, by dividing the
number of features produced by the
effort required and normalizing to a
features-per-week measure.

This effort and productivity data is
the raw result of our case study. If you
examine this data from different view-
points, you can gain insight into a tool's
impact on different situations. For
example, you can analyze how different
processes and technologies affect specific
projects, how the productivity of a spe-
cific process is affected by different tech-
nologies and project sizes, or how differ-
ent processes and project sizes affect the
productivity of a specific technology.

RESULTS INTERPRETATION

W e focus our interpretation on
comparing effort requirements of alter-
native processes and technologies to
project-specific resource constraints.
Thus, after evaluating the 60 produc-
tivity models, we set out to determine
which process and which technology
would be appropriate for projects of a
given size with specific quality require-
ments and resource constraints.

We anticipated that moving from a
simple to a more complex process would
increase resource consumption-thus,
we expected to see a trade-off between
productivity and process sophistication.
However, we also believed that tool
insertion would counteract the expected
productivity loss and therefore make
such process improvements less costly.

Figure 1 shows an overview of the
effort data for OS and Tool+. Given
these results, OS technology seems
grossly inadequate for the complete
process and the project size of 80 fea-
tures; when Tool+ is used with the same
process and project size, the investment
is only one-seventh as much. This is
also m e for all other project sizes.

Data for Prototype and Tool tend to
be similar to that of Tool+: Tool always
requires more effort than Tool+, but
less effort than Prototype. The same is
not m e for OS; depending on project
size and development process, it can
require more or less effort than Tool+,
as Table 5 shows.

Figure 2 shows all 60 data points con-
verted to productivity in features per
week. From both the effort and produc-
tivity data, we observed two expected
trends: required effort increases with
project size, and productivity decreases

with process complexity. However, we
did not foresee that when you use OS
technology with any process, or the com-
plete process with any technology, that
productivity would peak a t medium-
sized projects; nor, conversely, that when
you use Prototype, Tool, or Tool+ with
the regular or advanced process that pro-
ductivity would peak for small projects.

Application. When it's time to decide
on a tool and you know the size of the
project, you first calculate the effort
required by the various technologies and
processes you are considering. Based on
the actual resource constraints, you can
then eliminate process/technology com-
binations that exceed these constraints.

Figure 3 shows the effort required
with different processes and technolo-
gies for a five-feature project. Based on
this, you would select Tool+; i t
demands the least effort for all three
processes. If Tool+ is unavailable, Tool
should be selected because it requires
less effort than either OS or Prototype.

Using the analysis data, you can also
select the most sophisticated process
feasible under your project's resource
constraints. For instance, if you do not
want to invest more than one person-
week into documentation, access, and

I E E E S O F T W A R E

p r e 2. Productivity analysis: an overview of 30 data points.

I improvement without a tool recluires a

Process

Figure 3. Effoort. analysis for project size S.

QA in the planning process, and if you
prefer a process that is more sophsticat-
ed than the regular process, then you
should adopt the Tool or Tool+ tech-
nology and use the advanced process.

Because you are adding only five
features, you can more or less maintain

the same level of effort (0.21 weeks)
required by OS and the regular process
if you move to the advanced process
(0.23 weeks with Tool+). Adopting
Tool+ lets you move to the advanced
process with about 10 percent more
effort; whereas the same process

2 16 percent effort increase. This shows
that adopting Tool is a good choice
when you want to improve your
process, even though productivity suf-
fers a slight decrease.

This data highlights the danger of
adopting tools without studying process
changes. You might not be aware that the
adoption of Tool+ triggered a process
improvement, and might thus discard the
tool because of the productivity loss. But,
although using Tool+ would cost you an
additional 10 percent of effort, not using
it would triple your effort. Knowing &s,
you may choose to use Tool+ in spite of
the productivity loss.

On larger projects, we reahzed that the
choice of the best tool changes with pro-
ject size. In a project with 10 added fea-
tures, we discovered an intereshg phe-
nomenon: for the regular process, using
the OS technology would be less expen-
sive than using Tool! It costs less to do the
same activities using the regular process
with OS than with any of the three “more
advanced” technologies. Although it is
true that tools partially automate software
development, the conclusion that adopt-
ing a tool will always save effort or
increase productivity is a fallacy.

In a project with 20 added features,

S E P T E M B E R 1 9 9 6

the simple OS technology continues to
gain ground against the more sophisti-
cated tools when you use the regular or
advanced process. If you select the com-
plete process, however, Tool+ is more
efficient. This trend was amplified as
project size increased. For a project with
40 added features that uses the advanced
process, the OS technology demands the
same resources as Tool+. When using
the advanced process with 80 added fea-
tures , OS is even cheaper than Tool+.

Overall, if you choose the regular
process, OS demands the least effort
(with the exception of a project adding
only five features); with the complete
process, Tool+ will save you the most
effort on all project sizes. Results using
advanced processes were more variable:
OS is better for large projects and the
more sophisticated technologies are
more efficient for small projects. Thus,
it’s important to keep in mind that the
development process will affect tool
choice differently depending on the size
of your project.

PROCESS IMPROVEMENT COSTS

One of the key questions we wanted
to investigate was: Can we make a
process more rigorous whle maintaining
or increasing productivity through tool
insertion? To find an answer, we first
examined two types of process improve-
ment using OS: moving from the regular
to the advanced process and moving
from the advanced to the complete
process. We then compared the addi-
tional labor costs of the improvement
without tool insertion to the costs of the
same improvement accompanied by the
adoption of Tool+. (This comparison
can also be made for Prototype or Tool.)

Table 7 shows the data we gathered
on process improvement, derived by
multiplying the effort data with a cost
index of $75 per staff hour. The first
row of each half of the table is the
“base cost”: the cost of the regular and
advanced processes using OS.

._ .~
Improvement: regular process to odvancedprocess

. __ - __ ~ ..

Project size in features __ - . - . I

10 20 , 40 80
-i .

5

Cost of Regular/OS S630 S1,080 $2,190 $4,
- ._ . -.. .

Addit ional cost of Advanced/OS , S1,320 $2,760 $6,660 $18,600 Si8,080

Additional cost of Advanced/Tool+ , $60 I $990 I S4,5W $18,600 $73,770

Savings through insertion of Tool+ I SI,26O Sl,770 $2.130 0 -$li,h90

Savings through insertion ofTool+ 05°K 64% 32% 0 -27%

..

.

- - ____ -. .

.- _. ___ - _ - ._ _._ _ __ ._ -. . .

mprovement:: regulor process to advon
-. . ~

Project size in features
. - . . .

5 10 20 40 80
_. - .. -. . -. ..- . - -

840 i S8.850 $23,580 $70,500 Cost of Advanced/OS

Addit ional cost of Complete/OS ,210 s100,830 I $264.570 S8.1(,,600
. . . . - - .

_ __ ._ .

Addit ional cost of CornpleLe/Tool+ 4; $40 %I.X-lJ Slh.llf)O $61 i00

Savingsthraua insertionofTool+ \;0.43) .540.’)3I \O:!Yi) 52 I0 .q-f) 5->{.’)lf)
- . . . - . - . -. . - . .

__
Savings thwgh insertion of Tool+ OII . 0 2 . 0 : 0; ’ , ()i I

As the data in the top of the table
shows, when you move from the regu-
lar to the advanced process effort levels
will increase, even with Tool+. In the
three smaller projects, it is cheaper to
adopt a tool than to advance without
one; the savings through tool insertion
are quite substantial. However, when
you add 40 features or more, tool
insertion does not result in any savings;
at 80 features, process improvements
actually cost more with tool insertion.
Thus, for larger projects, tool insertion
brings a loss in productivity.

In the change from the advanced to
the complete process, the results were
slightly different. Here too, you cainnot
avoid expending more effort when you
advance to a more sophisticated
process. However, across all project
sizes-even those with 40 and 80 added
features-this process improvement is
substantially less expensive when Tool+
is inserted. As the lower portion of
Table 7 shows, inserting Tool+ can
consistently save you between 90 and
93 percent of the additional labor cost
of process improvement.

EMERGING PRINCIPLES

On the basis of our case study results,

+ The less complex your process
we formulated four tentative rules.

and the larger your project, the higher
the probability that tool insertion will
curtail your productivity.

+ When you adopt a more rigorous
process, be prepared to increase
resources even if you are improving
tool support at the same time.

+ A tool’s performance can peak
when used in projects of a certain size,
while being less productive in larger or
smaller projects.

+ In terms of effort, adopting a rig-
orous process can be substantially less
expensive if you also adopt the appro-
priate tools.

ool insertion seems best justified
when you plan to adopt a sophis-

ticated process and when you are pre-
pared to put in the extra effort that
process requires. How much more
effort is required can be determined
through a quantitative analysis of tool-
insertion impact. Without this, your
only choice is to wait and see.

The results we present here pertain
to a specific case study; more studies are
needed before such experiences can be
generalized into principles. However, it
is clear that quantitative process model-
ing and analysis can be valuable tools
for making decisions about tool assess-
ment and adoption. Such methods can
help make your software process mo
effective and efficient.

I E E E S O F T W A R E

ACKNOWLEDGMENT
e are indebted to Jacob Slonim, John Botsford, Jack Dawson, John Robichaud, David

in, Allan Friedman, and Sam Dalal of IBM Canada Ltd. for facilitaang this research.
This work would not have been possible without their t”, effort, and slalls

REFERENCES
1 R.S Pressman, Sofiware Engzneerzng-A Practznoner’s Approach, 3rd ed., McGraw-Hill,

New York, 1992
2 M Paulk et al., “Capability Maturity Model, Version 1 1,” IEEE Sofhuare, July 1993, pp 18-27
3 G.G Schulmeyer and J I McManus, Total Quaky Managementfir Sofhuare, Van Nostrmd Reinhold,

New York, 1993
4 V Basili, “Software Development A Paradigm for the Future,” Proc I?th Int’l Comp Sofhuare

Applzcunonr Conf, IEEE CS Press, Los Alamitos, Calif, 1989, pp 471-485
5 N.H Madhayi, “The Process Cycle,” IEE/BCS Sofhuare Eng 3 , Sept. 1991, pp 234-242
6 L M Garro, Computer-Azded Sofhuare Enpneerzng (CASE) and Produchvzg, master’s thesis, The

American Umv , Washington, D C , 1993, available through UMI at 1-800 52 1 0600
7 W Scacchi, “Understanding Software Producuvlty,” in Softmare Enpneenng and Knowledge

Engzneenng Trendsfir the Next Decade, Vol 4, World Scienufic Press, Singapore, 1995, available at
hap //cwis usc edu/dept/ATRrLJM/Software_Producavity ps

8 E Chikofsky, D A Marun, and H Chang, “Assessing the State of Tools Assessment,” IEEE Sofiware,
May 1992, pp 18-21

9 C C Huff, “Elements of a Realism Case Tool Adopaon Budget,” Comm ACM, Apr 1992, pp 45-54
10 T Bruckhaus, “Analyzing CASE Impact,” Proc 1994 Centrefir Advanced S d z e s Conference, IBM

Canada Ltd and Nauonal Research Council Canada, Toronto, 1995, pp 179-194.
11 T. Bruckhaus, A Qnantztanve ApproucbfirAnalyzzng the Impact of Tools on Sofhuare Productzvzty,

doctoral dmertauon, McGi11 Univ , Montreal, forthcoming
12 R K Ym, Applied Soczal Research Methods Serzes Case Study, Sage Publicauons, London, 1994

Northrop Grumman is recognized for its leadership and achievement in the design and
development of real-time, embedded software and is a maior midwest manufacturer of
advanced electronics systems We are an SEI level 3 organization committed to further
development in software process and technology.
Applicahons include active RF and IR systems Positions at various levels from individual
contributor to project leaders. BS Physics/EE/CS/Math and a minimum of 3 years “C1I
programming, software development for real-time multi-tasking/multi-processor, embed-
ded systems experience required Electronics warfare industry experience a plus

ADA & c Experience in design, implementation, test, integration of real-time embedded
Softuuare and non-embedded software. ADA or C language required Knowledge of mod-

To initiate design projects and perform requirements analyses, algorithm de-
velopment and high level design. Requires an advanced technical degree and

w t I ” u e a minimum of 5 years experience in the development of large-scale real time
Architects embedded software systems. Knowledge of computer hardware architectures,

performance simulation, modeling and exposure to knowledge based expert
systems and object-oriented programming techniques, a plus.

Embedded Detailed design, coding, testing and integration of embedded real-time
Software software implementation experience using modern software design meth-

Developers ern software design methodologies necessary.

Developer odologies

For detailed additional openings, view us through the net:
http://www.cweb.com/resources/northropgrum/ o r send resumes as ASCII
text to: resumes@dsd.northrop.com or fax (847) 590-3189 or mail r e sume to:
Manager- Staffing, Northrop Grumman EIWS Dept MM/TSl , 600 Hicks Road,
Rolling Meadows, IL 60008
We offer a competitive salary/benefits package including Health/major
medical/dental/life insurance, 401(k) and pension plans Excellent relocation
package We are a smoke-free workplace U S

An equal opportunity employer m/f/d/v
citizenship required for most positions NORTHROP GRUNMAN

Tilmann Bruckhaus is a
software process analyst at
Sun Microsystems. His
research interests are in
software quality and pro-
ductivity, and software
engineering tools and
environments. He has
designed and implemented
learning systems, modeling
and opamizauon tools,

management informauon systems, and graphical
user interfaces. He is currently a PhD candidate in
computer science at McGill University, Montreal,
Canada, where he held a Centre for Advanced
Studies fellowshp &om IBM Canada
Tilmann received an MSc in computer suence from
Rhemisch-Westfalische Technische Hochschule in
Aachen, Germany, in 1992.

cia1 issues on software
process in IEE/BCS Software Engzneenng3oumal
(Sept. 1991) and IEEE Transactzons on Software
Engzneerzng (Dec. 1993) He also served on the
admsory editorial board of the youma1 of Sofhuare
Maintenance From 1993 to 1995, Madhavli was
research director of the Software Process
Programme at Centre de Recherche Informauque
de Montreal.

Ingrid Janssen is manager of the applicauon and
data soluuons team at the IBM Canada Toronto
Laboratory She has more than 18 years’ experience
m apphcauon and software development m various
IBM dimsions Her areas of mterest are software
engineering, project management, and women in
computer science.

John Henshaw is a development manager in the
Networked Applicauons Development Center at
the IBM Canada Laboratory Prior to this assign-
ment, he managed the lab’s software engineering
process group His technical interests are in reverse
engineering, software engineering, and program-
ming languages and environments

from the University of Western Ontario
Henshaw recieved an MSc in computer science

Address quesuons about thts aracle to Bruckhaus at
Sun Akcrosystems, 2550 Garcia Ave., M / S
UMPK17-307, Mountain View, CA 94043,415-
786-7229, fax, 415-786-5734,
Tilmann Brnckhaus@Eng Sun Com, or Madhayi at
the School of Computer Saence, McGi11
University, 3480 University Street, Montreal,
Quebec, Canada, H3A 2A7,514-398-6730, fax,
514-398-3883, madhayi@cs mcgill ca

S E P T E M B E R 1 9 9 6

http://www.cweb.com/resources/northropgrum
mailto:resumes@dsd.northrop.com

