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Abstract
In [], Roscoe described a prototype compiler that allowed straightforward shared variable programs to be analysed using FDR [], by writing a compiler in its CSPM language.  This allowed, for example, a high degree of control over atomicity but lacked a proper input language and an interpreter for and counter-examples found. In this paper, we first propose a concrete syntax for the input language, and then describe a GUI which takes this as input, drives a modified compiler and FDR, and then provides a clear explanation of counter-examples in suitable format for users of the language.  We study techniques by which certain programs with infinite value spaces, such as Lamport’s Bakery Algorithm, can be modelled within finite data-types and, to this end, extend the compiler so it is able to model prioritised execution.

1 Introduction

The purpose of this paper is to describe extensions to Roscoe’s share2.csp “compiler” that was described in [].  These extensions turn it from a difficult to use kernel into a tool that can be used straightforwardly in practise, teaching etc, and consider how it might be used to handle classes of infinite-state systems such as Lamport’s Bakery Algorithm.

The tool described in [] is not a compiler in the conventional sense of the word.  Rather, it is a CSP program which takes a simple shared variable program and simulates its execution by creating a network of processes which run in parallel as a communicating-process model of the execution of the object program.  It was envisaged that this simulation would then be checked on FDR for properties that were appropriate codifications of properties desired of the original.  The expectation was that these would be traces or sometimes traces-and-divergence refinement checks. 

CSPM is a language which combines Hoare’s CSP with a simple functional programming language with similarities to Haskell.  Its main innovation is the inclusion of sets as a primitive type – a decision driven by the frequent use of sets in CSP.  It was designed to facilitate the creation of CSP models and the data objects that these use as parameters and communications.  Its power to do this is well illustrated by the models devised for cryptographic protocols in, for example [].  It was not, however, designed to be a general-purpose language and therefore lacks standard features such as string operations or file input/output.  It follows that the CSP program share2.csp cannot process programs written in a conventional style.  Rather, its “input” is an object in a complex data-type that represents programs and the simulation is the application of a function to this object.

The first thing we do in this paper is present a more natural ASCII syntax for the language and tools to parse it and translate it into the form described above.  This includes some syntax for expressing assertions about programs for subsequent analysis, though it is also possible to create assertions in CSP.

We then describe a GUI which manages the process of compiling and checking, whose main benefit is the way it interprets the complex traces that FDR generates as counter-examples into a readily understandable form.

The tool we have described can only verify finite‑state systems.  In the final section of this paper we discuss techniques by which certain infinite state systems such as Lamport’s bakery algorithm can be brought within its range by dynamic operations on underlying data types.

This paper had its origins in a third-year undergraduate project undertaken by Hopkins under Roscoe’s supervision.

2 Background

In order to follow the rest of this paper it is important to understand certain features of the share2.csp compiler.  We give a summary here; a full description can be found in [].

It is a CSPM script defining functions that map a data type representing a shared variable program into a network of CSP processes.  Users define their shared variable programs as instances of this data type in CSPM scripts that include the file share2.csp and invoke the function Compile.  Such files can be loaded into FDR, which constructs the resulting CSP processes and analyses them as required.

As already mentioned the compiler takes its input in the form of a sequence of CSPM data structures, each one representing a single process.  The main Cmd data-type of sequential programs is defined by:

datatype Cmd = 

Skip | 



do nothing
Sq.(Cmd,Cmd) |             
combine two commands in sequence
SQ.Seq(Cmd) |           
combine a list of commands in sequence
Iter.Cmd | 



iterate a command (for ever)
While.(BExpr,Cmd) |  

standard while loop
Cond.(BExpr,Cmd,Cmd) |        if – then - else

Iassign.(ivnames,IExpr) | 
assignment to an integer variable
Bassign.(bvnames,BExpr)|      assignment to a Boolean variable
Sig.Signals | 


a plain signal
ISig.(ISignals,IExpr) |     
an integer-valued signal
Atomic.Cmd



make Cmd atomic
Here, a signal is an event that this process communicates to the external environment to indicate what state it is in, or communicate its result.  So in a mutual exclusion implementation there might be signals css.j and cse_j to indicate that process index j has started or ended a critical section.  

A complete program is defined by a sequence of sequential programs, each representing a separate thread, together with declarations of the variables (which include arrays) and constants that are used in them.  The default mode of operation is for the programs to proceed with their steps interleaved arbitrarily.  The Atomic.P  construct declared that the code P is to be executed without any of the other programs in the system doing anything until P is finished.  Again, by default, the evaluation of an expression is carried out in a number of steps of acquiring values from variables and evaluating the expression.  However the compiler allows a flag atomic_exprs to be set, in which case these evaluations are all treated as single steps.  For example the expression term representing x-x will always evaluate to 0 under this flag, but not necessarily of x’s value can change between its two fetches.             

There are similar data types IExpr and Bexpr representing integer and Boolean expressions.  The user of share2.csp is expected to declare a number of constants such as the numbers of Boolean and integer variables, and the number and sizes of arrays. While the type of integers is used, programs are only permitted to use the part of it between the constants MinI and MaxI.  If a variable goes out of range at run time, the special signal outofrange occurs. Under normal circumstances the user will want to check (using FDR) that this does not occur during the execution of the program.  The user must declare signals as CSP channels (null type or a subtype of integer as appropriate) and declare the sets of them to share2.csp.
The compiler creates one process for each variable, non-trivial expression and thread in the shared variable language.  If the atomic command is used then the compiler also creates an atomic regulator for each of the thread processes to block that process from performing any actions while another process is in an atomic section.  If atomic expression evaluation is used then the compiler creates a single additional process to control the order events are allowed to occur.  Each non-trivial expression (one which is not a constant or a single variable) has a name assigned to it by the compiler.

When a thread requires the computation of a non-trivial expression, it signals the process implementing the latter, which in turn queries the processes implementing the variables or array components used, before evaluating the expression and communicating it back to the thread.

3  ASCII language
In order to make share2.csp it needed a front end allowing it to have a more conventional input syntax for describing shared-variable programs.  The ASCII syntax we devised used conventional notation for variable declaration, assignment, while loops and sequential composition, plus Boolean and integer operations within expressions.  We added straightforward constructs for iteration, atomic evaluation, and signals.  A complete description of the syntax can be found in an Appendix.  The parser/translator was created using JFlex and BYACC/J. 

An easy-to-understand example program that calculates gcd(18,15) is
isig output;

int a,b,c; 

P(m,n) = {
a := m; b := n;



while b > 0 do skip;



isig(output, a)}


Q() = {iter if b > 0 then



{c := a % b; a := b;b := c;}}

Prog = <P(18,15),Q()>

Here, P just sets the two variables and waits for the calculation by Q to complete.  The parser/translator generates the following input for share2.csp from this:

P(m,n) = Sq.(Iassign.(I.1,Const.m),Sq.(Iassign.(I.2,Const.n),Sq.(While.(Gt.IVar.I.2.Const.0,Skip),ISig.(output,IVar.I.1))))

Q() = Iter.Cond.(Gt.IVar.I.2.Const.0,Sq.(Iassign.(I.3,Mod.IVar.I.1.IVar.I.2),Sq.(Iassign.(I.1,IVar.I.2),Iassign.(I.2,IVar.I.3))),Skip)

Prog = Compile((<Q(),P(18,15)>, (<>,<>)))  

A much more interesting program doing the same thing is

isig output;

int a = 18, b = 15;

P1() = iter if a>b then a := a-b

P2() = iter if b>a then b := b-a

P3() = iter if a=b then isig(output, a)

Prog = <P1(),P2(),P3()>

Note that since expressions are evaluated non-atomically, the assignments can be made when one of the processes is in the middle of evaluating an expression and may have already read one or both of the variables.  Hence the correctness of this algorithm is not immediately obvious.  However, we can use FDR to check that it can only output the correct answer (in this case three) and that the integer values never go out of bounds.

The parser maps each process into a syntax tree closely resembling the data structure used by the share2.csp compiler.  The output is then easily produced from that, but the tree itself will be used again later when we interpret counter-examples.

The parser requires all variables to be declared outside the processes before they are used.  It creates a map from variable names to index numbers which is used when creating the output.  Optionally they can be given initial values which get passed to the compiler every time anything is compiled. Raw CSP (for example for creating specifications) can be included in a script by prefixing it with %%.

This device can be used to include specifications written in CSP directly in the script. For example one using the signals described earlier that expresses mutual exclusion is

%% Mutex = css?x -> cse!x -> Mutex

Two forms of specification have been included directly in the language.  These are assert respectively that a set S of signals never occurs and that a Boolean expression b is always true.  These are written

assert nosignal S in Prog
assert always b in Prog

The first of  these is implemented as the obvious refinement check.  The second works by running atomic if b then skip else sig(assertionfailed) in parallel with the program and checking that assertionfailed never occurs.
4    Trace interpreter and GUI
If the output of the parser/translator is run with share2.csp and a counter-example is found, then FDR generates an extremely elaborate description of it using the event names and communications that share2.csp uses to create its simulation.  We need an explanation which is more succinct, which uses the identifier names used in the user’s program, which uses language that is easy to understand, and which attributes each action to the process that performs it.

The structure of events used by share2.csp allowed this to be done reasonably straightforwardly except for two issues:

· The way share2.csp treats optimises its handling of simple expressions, and consequently the indices it will give to expressions, is subtle and can depend on parameter values.  This meant that the trace interpreter needed to be given more information than might at first have seemed necessary so that it could predict these indices.

· There was sometimes insufficient information in an event to decide which of the component processes caused it.  This was overcome by modifying share2.csp so that it added further tags.

It was now possible to produce a detailed explanation of each event that occurs in the trace.  For example, checking assert nosignal {output.3} in Prog  in the second gcd example generates the following output.

P1()                      P2()                      P3()                      

---------------------------------------------------------------------

Evaluation of a > b starts

a is 18

b is 15

a(18) > b(15) is true

                          Evaluation of b > a starts

Evaluation of a-b starts

a is 18

b is 15

a(18)-b(15) is 3

                          b is 15

a assigned 3

                          a is 3

                          b(15) > a(3) is true

                          Evaluation of b-a starts

                          b is 15

                          a is 3

                          b(15)-a(3) is 12

                          b assigned 12

                          Evaluation of b > a starts

                          b is 12

                          a is 3

                          b(12) > a(3) is true

                          Evaluation of b-a starts

                          b is 12

                          a is 3

                          b(12)-a(3) is 9

                          b assigned 9

                          Evaluation of b > a starts

                          b is 9

                          a is 3

                          b(9) > a(3) is true

                          Evaluation of b-a starts

                          b is 9

                          a is 3

                          b(9)-a(3) is 6

                          b assigned 6

                          Evaluation of b > a starts

                          b is 6

                          a is 3

                          b(6) > a(3) is true

                          Evaluation of b-a starts

                          b is 6

                          a is 3

                          b(6)-a(3) is 3

                          b assigned 3

                                                    Evaluation of a = b starts

                                                    a is 3

                                                    b is 3

                                                    a(3) = b(3) is true

                                                    a is 3

                                                    output.3

A Swing-based GUI was then developed to manage the steps of analysing a program, including displaying its output.  This allows you to load a file, run FDR on the CSPM script output by the parser and then view the results of each assertion.  For every assertion which produces a counte-rexample, the interpreted form of the trace is displayed in a table, with the trace split into columns corresponding to the different threads, as in the example above.  Since the output often contains more information than we need in order to follow the execution path of a program, we also included options to hide variable reads, the starts of expression evaluations and the starts/ends of atomic sections.  Hiding these simplifies the trace and can make it easier to read.  For example, in the trace above, the first time a > b is calculated we have the four events:

Evaluation of a > b starts

a is 18

b is 15

a(18) > b(15) is true

With variable reads and the starts of expression evaluations hidden, this reduces to a single line: a(18) > b(15) is true

This will always give sufficient information if all expressions are evaluated atomically, but can lose information if other processes affect the values of an expression’s variables while it is being evaluated.  The screen shot below shows the GUI in action on the first gcd algorithm.  The list at the top left allows you to select which assertion you are viewing the result of.  The result is printed immediately [image: image1.png]Testslged. o
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below, with the counterexample, if the assertion is false, in the table beneath. 

While testing the trace interpreter it was useful to save time and use cached FDR results rather than running FDR each time.  Hence we included an option in the GUI to load/save results.

As a result we have a tool that is capable of exploring and verifying shared variable programs and the consequences of  atomicity or otherwise.  We hope that this will be usable both in practice and as an aid to teaching.

The checks illustrated above show how our gcd programs can calculate the right answer to a problem.  They do not show that they always calculate the right answer.

In fact, for this to be guaranteed, we need to make a fairness assumption about how our processes proceed.  Specifically, we require that, in any infinite execution, all the thread processes have infinitely many “turns” provided they are enabled infinitely often (a thread is not enabled when another one is performing an atomic section).  This is not guaranteed by the CSP simulation under it’s standard semantics – rather it is an external assumption we would have to make in addition.  While the analysis of systems under fairness assumptions is well understood, involving, for example, the use of Buchi automata, there is at present only limited support for this in FDR.  We expect that this situation will soon change thanks to a current project that is incorporating a much wider range of state machine techniques into it, but meanwhile it has the consequences that our tool is only able to analyse safety as opposed to liveness properties of programs.

So the best we can hope to prove at present is that our gcd programs never produce a wrong answer, and never generate a run-time error such as outofrange.  This is straightforward for a fixed initialisation: all we have to do is run

 assert nosignal diff({|output,outofrange|},{output.3}) in Prog

It is, however, much more challenging to try to do it in general since this involves checking an infinite state system with an infinite alphabet.    We will discuss ways in which this might be done after examining a slightly simpler infinite-state case study.

5    Case study: Lamport’s bakery algorithm
Lamport's bakery algorithm [5], is a mutual exclusion algorithm.  (Other mutual exclusion algorithms were studied using share2.csp in [].) It thus seeks to ensure that at most one of a set of processes can be in a critical section at a time, while also ensuring that, provided no process stays in a critical section indefinitely, any process that wants to perform one will be allowed to. The thread processes that implement a three-node version (i in {0,1,2}) are the following

P(i)=iter{
turn[i] := 1;



turn[i] := max (turn[0],max(turn[1],turn[2])) + 1;



while (  (turn[0] > 0 && turn[i] > turn[0]) || (0 < i &&

turn[i] = turn[0]) 

|| (turn[1] > 0 && turn[i] > turn[1]) || (1 < i &&

turn[i] = turn[1])




|| (turn[2] > 0 && turn[i] > turn[2])) do skip;


count := count + 1; isig(css, i);


//Critical section


isig(cse, i); count := count -1; turn[i]:= 0;

}

Prog = < P(0), P(1), P(2)>

Each process has a ticket represented by turn[i].  If this is zero then that process is not in the queue.  If it is one, then the process is about to join the queue but have yet to calculate the correct ticket value. To calculate this value they compare everyone's tickets and add one to the maximum.  They then wait until they have the lowest ticket.  It should be noted that since tickets are assigned non-atomically it is possible for more than one process to get the same ticket value.  If this occurs we say the process with the lower index has priority.  

Once it is its turn, a process enters the critical section.   After leaving it, it sets its ticket value to zero and starts again.  The integer variable count holds the value of the number of processes inside the critical section.  The check needed to satisfy the mutual exclusion condition is then either the refinement check set out earlier or

assert always 0 <= count && count <= 1 in Prog

There is no need to have both the variable count and the signals in our program, but this does give us the choice of two approaches to verification.

The problem with this program is that it can be shown to require arbitrarily large ticket values, whereas in our model we only allow integers within a fixed finite range. Thus any instance of this program with a finite range of integers generates the signal outofrange.

We decided, like [], to approach this problem by observing that all that matters in the control flow of the threads is whether the turn[i] are equal to 0 and 1, and what the order on them is.  Intuitively, any transformation on these values that does not change these things will not affect the externally visible (i.e. count, css, cse) behaviour of our system.   We proposed to take advantage of this by running the threads in parallel with a monitor process with the duty to decrease ticket values whenever this can be done without changing the essential details listed above.  We would expect this to be possible whenever a ticket value turn[i] is at least 3 and there is no index j such that turn[j] = turn[i]-1.   Seemingly, this should be possible for at least one turn[i] whenever (in our case of 3 threads) there is some turn[k] at least 5, and after running this process as often as possible there will never be any turn[j] greater than 4.  Therefore, if we could bring this about, we ought to be able to run the bakery algorithm in a finite type.   Bringing this about created several problems, however, as will see below.

6    Priority

One problem with this approach is that, implemented as an extra thread, there is nothing to guarantee that the monitor described above will perform its actions in an arbitrary run.,  Any (at least finite) trace that is possible for a process with one collection of threads is still possible when we add some more.  It will only work as intended if the monitor thread is given priority: whenever it can perform some non-waiting action, it does.

To signal that a process is willing to allow the lower levels to perform an action we introduced the idle statement: in a particular thread it is equivalent to skip.  This generates a noop event in the CSPM representation.  Whenever all the processes in a level synchronise on a noop event it allows the level below to perform one action.  Here one action is taken to mean one event in the CSPM interpretation of the process, with the exception that the entirety of an atomic section counts as one event.  

As an example, consider processes

P1() = iter { i := i + 1 }

P2() = iter { if i > 0 then i := i - 1 else idle }

If we run these two processes in parallel normally, P1() will be able to keep incrementing i until overflow occurs.  However, if we run them with P2() at a higher priority level, then P1() is only allowed to take a step when P2() allows it to.  As P2 always ensures i = 0 before executing its idle statement, this keeps i bounded and overflow does not occur.
The implementation of priority as an extension to our tool and shared2.csp was, in the most part, straightforward and followed the approach already used for the priorities implicit in Statecharts [Harel]. There was, however, a new challenge, namely that once a lower priority process has started an atomic section, this should be allowed to proceed even though noop from higher levels is no longer available.  We can look at this as follows: the action of a low level process starting an atomic section must synchronise with noop , but the subsequent actions it makes up to and including the one ending the atomic section must not.   This may sound impossible to achieve within CSP, but in fact it can be solved using the relatively sophisticated idea of double renaming introduced in [roscoe]: all actions of the low-level process are renamed to two distinct events, a regulator process permits one to occur in circumstances where sychronisation with noop is required, the other where it is not.  After the synchronisation, they may both be renamed back to the same event.

With priorities it also became necessary to change the way by which boolean assertions were made.  Since we wanted them to always detect if their condition became true/false they had to be placed in the top priority level.  Being in the top level, though, meant they would have to continually generate noop events or they would block the lower levels.  Hence the new process had to have the form 

iter { atomic if !b then sig(assertionfailed); idle; }
We experimented with priorities in the bakery algorithm, using the following high priority process that compresses the turn[i] variables when it can see that they are spread over a range (namely extending to 5) such that we can guarantee some that there must be space to reduce one.

Demon() = iter 

if turn[1] < 5 && turn[2] < 5 && turn[0] < 5 then 


idle

else

{if turn[1] > 2 then if (!turn[2] = turn[1] - 1) && (!turn[0] = turn[1] - 1) then 


turn[1] := turn[1] - 1;  

if turn[2] > 2 then if (!turn[1] = turn[2] - 1) && (!turn[0] = turn[2] - 1) then 
turn[2] := turn[2] - 1;

if turn[0] > 2 then if (!turn[1] = turn[0] - 1) && (!turn[2] = turn[0] - 1) then 
turn[0] := turn[0] - 1}

Unfortunately this revealed two problems: one practical and one conceptual.  The practical one is that the implementation checks the expression turn[1] < 5 && turn[2] < 5 && turn[0] < 5 after even the smallest step that any of the processes actually implementing the algorithm perform at the lower level.  This means that the model goes through unreasonably long traces in checks and that these take longer than is actually necessary.  

For any high-priority process that, like the one above, can only cease idling when a particular Boolean expression b becomes true, it is evidently only necessary to re-calculate the expression when another process has assigned to one of the variables used in b. 
To get round this problem, we introduce the notion of a monitor process.  This watches a set of variables and whenever the value of any of them changes, the monitor runs to completion.  Since the demon’s check can only start to fail when one of its variables changes value, this should have the same effect as using priorities while requiring much shorter traces. We allow a single monitor process that can use watch any set of variables.

Our example of the incrementing and decrementing processes becomes: 

P1() = iter { i := i + 1 }

P2() = if i > 0 then i := i - 1

Prog = <P1()> with P2() watching { i }

Previously P2() had to perform its check before every action of P1().  Since P1() had to take four actions for each assignment (start evaluation of i + 1, read the value of i, calculate the value of i + 1, assign that value to i), P2()'s check was running four times as often as it needed to be.  In the new version, P2() only runs after P1() makes the assignment.  In fact, since after P1()'s assignment i will always be greater than zero, we can remove the conditional statement and simplify to P2() = i := i – 1 and it still does not cause overflow or underflow.  

This new construct is closely related to the priority model described above, and its implementation is based on the same ideas: in particular it needs the same treatment of atomicity: an atomic section that assigns to variables relevant to the guard is allowed to complete.

The second problem in the prioritised treatment of the bakery algorithm shows a limitation in the use of high-level processes that manipulate the variables only.  That is, when the value of a variable is changed, it does not change any copies that are held within any of the thread or expression evaluation processes, or values that have been calculated from the pre-transformation version and are about to be written back.   In fact the prioritised model described above fails to satisfy mutual exclusion because of a “false” counter-example, namely one that arises only because of the type of issue described in this paragraph, that has no analogue in the untransformed system. This idea is very familiar to those who build finite models of naturally infinite-state systems such as cryptographic protocols: sometimes one finds a counter-example in the finite system that is not there in the original.

There are a number of approaches to getting round this issue:

1) We could attempt to modify the internal states of all the processes, not just those implementing variables.  This would be very complex since every value that such a process held would have to be auditable to how it was calculated, such as by representing it symbolically rather than numerically. We decided that this was impractical to perform automatically.

2) One could attempt to restrict the transformation of any given turn[i] to moments when that variable was not relevant to any of the threads.  While this strategy will work in some cases, it does not do so in our case because in some executions there are not enough such moments and these values still go outofrange.

3) We could implement non-atomic expression evaluation and assignments that involve values our monitor changes differently: breaking them up into a sequence of equivalent atomic steps, introducing temporary variables to hold values of “old” instances of these values. This is the approach adopted and described below.

We will think of our monitor as affecting values in some type T: in our case these will be the values in the linear order of turn values.   In our case this means treating integers used as turn values as though they were in a different type from integers used, for example, for count. In fact we will think of them as being values in an abstract discrete linear order, where 0 and 1 are the two least members, and the “+1” operation simply selects the next bigger member of the order. Expressions and commands that are independent of this type T are not affected by the monitor, so we may continue to evaluate them non-atomically.  We need, however, to avoid T values pre- and post-monitor operation getting mixed up in a non-atomic operation.  This can only be a problem if the operation accesses such values at least twice.  It follows that any such operation needs to be split up into an equivalent sequence of atomic operations.

Suppose we have such an operation op that makes accesses <a1,..,an> to shared variables. We can assume that only an, if any, is a write, with all the others being reads.  There can only be a difference between executing op atomically and non-atomically if another thread can write to any of these between a1 and an.   Suppose the (read) accesses to such externally-writable variables strictly prior to an are to v1,…,vr (with r<n) .  Then op is equivalent to v1’:=v1;…;vr’:=vr; op’, where the vi’ are new local variables to hold “old” values of the vi, and op’ is obtained from op by substituting all the (necessarily read) accesses v1 the by the corresponding v1’.  None of this sequence of operations can give a different result executed atomically – so we have succeeded in our aim to split op into an equivalent sequence of atomic operations.

Our strategy for transforming a thread is thus to identify those assignments, signals and expression evaluations embedded within conditionals and loop guards that make at least two accesses to type T variables, and then split them up as identified in the last paragraph.  

So our thread process is transformed to

P(i)=iter{
turn[i] := 1;



L(i); 

atomic(turn[i] := max (t0[i],max(t1[i],t2[i])) + 1;

       ZL(i));



L(i)



while ((t0[i]>0 && turn[i]>t0[i]) || (0<i&&turn[i]=t0[i]) 

   ||
 (t1[i]>0 && turn[i]>t1[i]) || (1<i&&turn[i]=t1[i])



   ||  (t2[i]>0 && turn[i]>t2[i])) do L(i);

          
atomic(ZL(i))


count := count + 1; isig(css, i));


//Critical section


isig(cse, i); count := count-1; turn[i]:= 0; L(i)

}
where L(i) abbreviates


atomic(t0[i] := turn[0]);  atomic(t1[i] := turn[1]); 

atomic(t2[i] := turn[2]);

and ZL(i) zeroes the temporary variables:


t0[i] := 0; t1[i]:=0 t2[i]:= 0

This revised thread P(i) is used with atomicexprs set to true, so that the while guard is evaluated this way, noting that the expressions such as count + 1 that are thereby made atomic are ones where this does not change the semantics.  Our model of the bakery algorithm becomes

<P(0),P(1),P(2)> with M watching 

{turn[i],t0[i],t1[i],t2[i] | i <- {0,1,2}}

M seeks values k < r from 2 to MaxInt such that none of the watched set of variables takes value k to r-1 and there is at least one taking value r.  For each such pair it decrements all those with value r to k.  M terminates when there are no such values left.    A single pass through all the values from 2 to MaxInt can implement this.

Now that we are leaving room for all the potentially different values of our turn type type that might arise, including all the temporary copies held within threads’ execution, it is not so obvious how many integers are required to ensure that outofrange does not occur.  Naively, we can be sure that MaxInt = 14 will work (that is, the constants 0 and 1, one value for each of the 12 variables representing turn numbers or copies thereof, and one space.  We can reduce MaxInt to 11 on realising that the three variables t0[0], t1[1] and t2[2] are always – except in the middle of an atomic section, when the monitor is unable to run – equal either to the corresponding turn[i] or to 0. Beyond this the best way of proceeding is by experimenting, which shows that, in fact, it is sufficient to have MaxInt=???.

.

7   Analysing correctness

The system described above passes the tests for correctness on FDR, which demonstrates that it satisfies the mutual exclusion property.  As explained earlier, FDR is for the time being not capable of establishing liveness results based on abstract fairness assumptions, since these are very uncommon in applications of CSP.  Of course it can do so for any finite-state refinement of fairness, such as stating that every thread process gets at least one action in every 10 of the thread processes, with an atomic section counting as one action.  Another option is to show that once a thread process has assigned its turn[i] to a value greater than 1, no other thread can have more than one critical section before our one does: this can easily be verified by inserting an extra signal into the atomic section where turn[i] is assigned max()+1.

As stated earlier, we expect that FDR will soon be able to handle fairness-based correctness properties.  We will then make appropriate modifications to SVA to encompass this – there is further discussion of this in the Conclusions.  

It is obvious that it is necessary to run something like our monitor at a higher priority to prevent the integers in the bakery algorithm exceeding any finite limit.  In complex examples like our modified implementation, running in this prioritised way is also very useful for identifying what MaxI value is needed to allow the monitor the room to map each run to one where outofrange does not appear.

Suppose, however, that we know MaxI is sufficiently large for this purpose and that we run the process  Mstar = iter {atomic M } in parallel with the thread processes in an unprioritised way.  There is nothing that forces Mstar to do anything in any finite time, so certainly outofrange can occur.  On the other hand, neither is there anything to prevent Mstar starting M exactly when the prioritised model would have done.  It follows that every behaviour of the prioritised implementation with M is also one of the Mstar version. It follows that any property that holds of all behaviours of the former also holds of the latter.  We can therefore prove our version of the bakery algorithm in two ways: either run the prioritised version checking neither outofrange nor an undesirable application-specific behaviour occurs, or running the unprioritised version checking only for the application-specific behaviours in a context where we are sure that MaxI is sufficiently large.

3 Conclusion

The parser and interpreter tools developed provide a more natural input syntax and a much more understandable output for the share2.csp compiler.

The notion of priority has been left in the compiler and it may prove useful in very simple cases.  However, as was discovered with the above case study, in situations of any complexity it can get messy and require very long traces.

The monitor process idea proved more useful if action is only required after a variable is assigned to.  In cases where it is the order rather than the actual value of the variables that matter it can be used to adjust the values to keep them within a finite range, as required by FDR.  However, care does need to be taken to avoid errors resulting from making changes while processes are in the middle of calculating the value of an expression.

Further development that could be done on these tools include having more complicated assert statements, possibly using LTL, the ability to have more than one monitor process (care would need to be taken to ensure these operated correctly if they were watching the same variables), extending the range of allowed types and providing more information when a syntax error occurs (currently the parser just provides the line number where the error was found).
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It is natural to expect the monitor to satisfy the following transparency properties:

a) No monitor action affects any values of T used as constants in a thread.

b) A monitor action performed before evaluating an expression that outputs a value of another type (e.g. Boolean) will not change that value.

c) A monitor action performed before evaluating an expression e that outputs a value of type T will generate a value 

M = 

{k := 2; r := 2; gap:= false; 

while k <= MaxInt do

            
{



if turn[0]=k || turn[1]=k || turn[2]=k then found := true



else if t0[1]=k || t0[2]=k then found := true 



else if t1[0]=k || t1[2]=k then found := true



else if t2[0]=k || t2[1]=k then found := true

            
else found := false;

   

if found then if gap then {decrement; k:=k+1; r:=r+1}

                                              else {k:=k+1;r:=r+1}



else {gap:=true; k:=k+1}} 

}

decrement  =

{if turn[0] = k then turn[0] := r;

if turn[1] = k then turn[1] := r;

if turn[2] = k then turn[2] := r; 

if t0[0] = k then t0[0] := r;

if t0[1] = k the t0[1] := r;

if t0[2] = k then t0[2] := r;

if t1[0] = k then t1[0] := r;

if t1[1] = k the t1[1] := r;

if t1[2] = k then t1[2] := r;

if t2[0] = k then t1[0] := r;

if t2[1] = k the t1[1] := r;

if t2[2] = k then t1[2] := r}

