
Problem H
Necklace Decomposition

source: necklace.c or necklace.cpp or necklace.java

Description
The set of cyclic rotations of a string are the strings obtained by embedding the string clockwise

on a ring, with the �rst character following on the last, starting at any character position and moving
clockwise on the ring until the character preceeding the starting character is reached. A string is a
necklace if it is the lexicographically smallest among all its cyclic rotations. For instance, for the string
01011 the cyclic rotations are (10110, 01101, 11010, 10101, 01011), and furthermore 01011 is the smallest
string and hence, a necklace.

Any string S can be written in a unique way as a concatenation S = T1T2 . . . Tk of necklaces Ti

such that Ti+1 < Ti for all i = 1, . . . , k − 1, and TiTi+1 is not a necklace for any i = 1, . . . , k − 1. This
representation is called the necklace decomposition of the stringS, and your task is to �nd it.

The relation < on two strings is the lexicographical order and has the usual interpretation:A < B if
A is a proper pre�x of B or if A is equal to B in the �rst j − 1 positions but smaller in the jth position
for some j. For instance, 001 < 0010 and 1101011 < 1101100.

Input
On the �rst line of the input is a single positive integer n, telling the number of test scenarios to

follow. Each scenario consists of one line containing a non-empty string of zeros and ones of length at
most 100.

Output
For each scenario, output one line containing the necklace decomposition of the string. The necklaces

should be written as (̀' necklace `)'.

Sample
Input Output
5
0
0101
0001
0010
11101111011

(0)
(0101)
(0001)
(001)(0)
(111)(01111)(011)

11


