
Problem A
Vice City

source: vicecity.c or vicecity.cpp or vicecity.java

Description
�Tommy, there will be a programming contest here in Vice City. One of the coaches has stolen a

copy of the problem set. The chief judge wants it back. Take out the coach guy at his hotel and return
the problems back. The address is taped under the phone. Do it now!�

Not a tough job for you, Tommy Vercetti! Getting the mission at the pay phone, you must head o�
the coach at WK Charriot Hotel before he leaves. You have to get there fast! Get there very fast indeed!
Unfortunately, the vehicle you start with may not run fast enough. But there are some �xed locations
in Vice City at which you can �nd certain vehicles, like Diaz's Mansion where you can �nd an Infernus.
This way, you may change your vehicle on your way to hotel several times. For example, in the �rst
sample input, you ride from `PayPhone' to `CarShowRoom' on a `PCJ600' and drive the rest of the path
in a `HotRingRacer'. Don't forget that it takes one minute each time you change your vehicle.

You are given the names of these locations in the city and the distances between each pair. At each
location you can �nd a certain vehicle anytime you get there. Knowing the top speed of each vehicle,
you want to �nd out the minimum time in which you can reach the hotel. For the sake of simplicity,
assume that you always drive at top speed of your vehicle.

Input
The �rst line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases in

the input. Each test case has three parts. The �rst part consists of m lines (1 ≤ m ≤ 100) of the form
`vehicle speed' where vehicle is the unique name of a vehicle and speed is a positive integer giving the
top speed of the vehicle measured in Km/h.

The next part of the test case identi�es the locations in the city and is separated from the �rst part
by exactly one blank line. It consists of n lines (2 ≤ n ≤ 500) of the form `location vehicle' where
location is the unique name of a location in the city and vehicle is the name of the vehicle available in
that location. The list of locations always includes the starting location `PayPhone' and the destination
`WKCharriot'.

The third part of the test case identi�es the roads between locations and is separated from the
previous part by exactly one blank line. It consists of several lines of the form `loc1 loc2 distance'
indicating there is a (two-way) road of length distance between the locations loc1 and loc2. Distances
are expressed in kilometers and are positive integers. The test case is terminated by a line containing a
single asterisk character (`*').

All names (for vehicles and locations) are strings of at most 100 letters and digits with no space
characters and are considered case sensitive. Items in an input line are separated by one or more
space characters. Also, there may be arbitrary leading or trailing blanks except in empty lines used as
separators.

Output
For each test case, there is one line in the output containing the minimum time (in minutes) you need

to travel from `PayPhone' to `WKCharriot', or the word `UNREACHABLE' if the destination is unreachable
from the starting point. Print the results as numbers with exactly three decimal digits after decimal

1



point. That is, the possible decimal digits after the third one should be ignored, and if there are less
than three digits after decimal point, zero digits should be printed for missing digits.

Sample

Input Output
2

Infernus 280
Cheetah 285
PCJ600 250
Stallion 180
HotRingRacer 300

Mansion Infernus
CarShowRoom HotRingRacer
VicePort Cheetah
NorthPointMall Infernus
PayPhone PCJ600
WKCharriot Stallion

PayPhone CarShowRoom 10
PayPhone VicePort 15
VicePort WKCharriot 20
CarShowRoom Mansion 15
Mansion WKCharriot 15
Mansion NorthPointMall 5
NorthPointMall WKCharriot 5
*
Caddy 80
MrWhoopie 60
Stretch 120
CubanHermes 160
Voodoo 170

CherryPoppy MrWhoopie
Mansion Stretch
PayPhone CubanHermes
LittleHaiti Voodoo
WKCharriot Caddy

PayPhone CherryPoppy 10
CherryPoppy LittleHaiti 15
Mansion WKCharriot 20
*

8.400
UNREACHABLE

2



Problem B
House Numbers

source: house.c or house.cpp or house.java

Description
NarmakSung has a hardware shop that makes new digit plates for house numbers. If a house number

is 195, for example, he has to create one plate for digit 1, one for digit 9, and one for digit 5. But, the
orders are not always that simple. He may get orders to make digit plates, for example, for all houses in
one side of a street.

Since making several plates of the same digit costs much less than making all digits for each house
one by one, he wants to know, for a big order he receives, how many of each digit plate he has to make.

Input
The �rst number in the input line, t (1 ≤ t ≤ 10) is the number of orders. Following this, t orders

are written in the input �le. Each order starts with a line containing a street name, an arbitrary string
of length at most 50 characters. The second line contains a single integer N (1 ≤ N ≤ 10), the number
of sub-orders, followed by N lines of sub-orders. Sub-orders are of three kinds:

• A single house number: in this case, the sub-order line contains only a single integer n (1 ≤ n ≤
9999);

• A series of house numbers: in this case, the sub-order line starts with a `+', followed by three
integer numbers a, b, c (1 ≤ a, b, c ≤ 9999). This means that NarmakSung has to make plates for
house numbers from a up to b with distance of c. That is, digit plates have to be made for house
numbers a, a + c, a + 2c, . . . , b. We assume that a < b, b− a is a multiple of c, and c ≤ b− a;

• A series of house numbers to be excluded: this kind of sub-orders speci�es that a series of house
numbers should not be made. In this case, the sub-order line starts with a `-', followed by three
integer numbers with exactly the same conditions as in the previous case.

Note that if a house number is ordered more than once in two separate sub-orders, it is counted only
once if it is not excluded at all (like number 100 in the second test case in the sample input). Also, if
a house number is excluded somewhere in the test case, it cancels any order for that number, even if it
appears later in the test case (like number 500 in the second sample). Note that it is possible to exclude
some numbers that do not appear in other orders at all. In this case, these numbers are ignored (like
900 in the second sample).

Output
One set of output data is written for each input order consisting of 13 lines. Each set starts with

one line containing the street name exactly as appeared in the input order. The next line must be of
the form `C addresses' where C is the total number of house numbers to be made. In the special case
of C = 1, the output line should be `1 address'. The next 10 lines should be of the following form:
Line i should contain the number of digit plates needed to be made for digit i. These 10 lines are on
the format `Make X digit Y ' where X is how many copies of digit Y they need to make. The last line
states the total number Z of digits needed, on the format `In total Z digits'. If there is only one
digit to produce, it should say, `In total 1 digit', in order to be grammatically correct. The output
should be case-sensitive.

3



Sample

Input Output
2
Azadi Street
2
+ 101 103 2
275
Sharif Highway
3
100
- 500 900 100
+ 100 800 100

Azadi Street
3 addresses
Make 2 digit 0
Make 3 digit 1
Make 1 digit 2
Make 1 digit 3
Make 0 digit 4
Make 1 digit 5
Make 0 digit 6
Make 1 digit 7
Make 0 digit 8
Make 0 digit 9
In total 9 digits
Sharif Highway
4 addresses
Make 8 digit 0
Make 1 digit 1
Make 1 digit 2
Make 1 digit 3
Make 1 digit 4
Make 0 digit 5
Make 0 digit 6
Make 0 digit 7
Make 0 digit 8
Make 0 digit 9
In total 12 digits

4



Problem C
Map Labeler

source: maplabel.c or maplabel.cpp or maplabel.java

Description
Map generation is a di�cult task in cartography. A vital part of such task is automatic labeling of

the cities in a map; where for each city there is text label to be attached to its location, so that no two
labels overlap. In this problem, we are concerned with a simple case of automatic map labeling.

Assume that each city is a point on the plane, and its label is a text bounded in a square with edges
parallel to x and y axis. The label of each city should be located such that the city point appears exactly
in the middle of the top or bottom edges of the label. In a good labeling, the square labels are all of the
same size, and no two labels overlap, although they may share one edge. Figure 1 depicts an example of
a good labeling (the texts of the labels are not shown.)

Given the coordinates of all city points on the map as integer values, you are to �nd the maximum
label size (an integer value) such that a good labeling exists for the map.

Figure 1: Example of labeling.

Input
The �rst line contains a single integer t (1 ≤ t ≤ 10), the number of test cases. Each test case

starts with a line containing an integer m (3 ≤ m ≤ 100), the number of cities, followed by m lines of
data each containing a pair of integers; the �rst integer (X) is the x and the second one (Y ) is the y
coordinates of one city on the map (−10000 ≤ X, Y ≤ 10000). Note that no two cities have the same
(x, y) coordinates.

Output
The output will be one line per each test case containing the maximum possible label size (an integer

value) for a good labeling.

5



Sample

Input Output
1
6
1 1
2 3
3 2
4 4
10 4
2 5

2

6



Problem D
IOI Photos

source: photos.c or photos.cpp or photos.java

Description
Shaborz, Hoidin, Alssein, and Ayan, members of the Olandican IOI team attended the Fall semester

classes the same day they returned from IOI, Athens 2004. During their stay in Athens, they took several
pictures in di�erent places and occasions like Hydra island, opening ceremony, closing award ceremony,
and city of Athens. But, being excited with their �rst university experience, they forgot about the
pictures until the midterm recess, which has coincided with the ACM Regional Contest days. They now
want to make prints of the pictures and each of them makes his own IOI album.

There are several negative rolls, and each contains photos of just a single place or occasion. There
may be more than one roll, containing pictures from the same place or occasion. Each roll may have
36 negatives, numbered from 1 to 36. The team members and their friends want to order photo prints.
Shaborz is to collect all orders and collects a �xed amount of money per each photo print. He makes
a deal with a photo printing shop as follows and saves a good sum of money for himself. Shaborz pays
S Rials for each single print, but printing all photos of a single role costs him R Rials, and printing all
photos from all rolls in one order costs A Rials. Shaborz is provided with a list of orders, and you are
to minimize the overall printing cost. Note that to have the minimum overall cost, Shaborz is allowed
to print more photos than required.

Input
The �rst line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases

in the input. Each test case starts with one line containing four integers: N (1 ≤ N ≤ 100), the number
of orders, S, R, and A, the costs of a single print, all prints from one roll, and all prints of all rolls
respectively. Then follows N lines, each representing an order from one of the clients (team members
and their friends). An order line contains a number of items separated by blank characters. Each item
is of the form `PlaceName:RollNo:FromPhoto..ToPhoto'. PlaceName is the name of a place which
is a string of at most 100 characters (case sensitive). RollNo speci�es the desired roll among several
rolls for the PlaceName and is between 1 and 10 inclusive. FromPhoto and ToPhoto are two numbers
specifying the range of photos to be printed from the speci�ed roll (1 ≤ FromPhoto ≤ ToPhoto ≤ 36).
You may assume there are at most 20 places. If there is only a single photo required from a roll, the
format may be simpli�ed as `PlaceName:RollNo:PhotoNo'. All costs are non-negative integers.

Output
For each test case, there should be one line containing one integer indicating the minimum cost for

printing all photos of the original order set.

Sample

Input Output
1
2 15 100 400
Hydra:2:1..3 Athens:1:12
Delphi:1:4..5 Athens:3:20

105

7



Problem E
Dominoes

source: dominoes.c or dominoes.cpp or dominoes.java

Description
A domino is a �at, thumbsized tile, the face of which is divided into two squares, each left blank or

bearing from one to six dots. There is a row of dominoes laid out on a table, like in Figure 2.

Figure 2: Row of dominoes laid out on a table.

The number of dots in the top line is 6 + 1 + 1 + 1 = 9 and the number of dots in the bottom line
is 1 + 5 + 3 + 2 = 11. The gap between the top line and the bottom line is 2. The gap is the absolute
value of di�erence between two sums.

Each domino can be turned by 180 degrees keeping its face always upwards.
What is the smallest number of turns needed to minimise the gap between the top line and the

bottom line?
For Figure 2 it is su�cient to turn the last domino in the row in order to decrease the gap to 0. In

this case the answer is 1.
Write a program that reads the number of dominoes and their descriptions from the input, computes

the smallest number of turns needed to minimise the gap between the top line and the bottom line, and
writes the result to the output.

Input
The �rst line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases

in the input. Then follow t test cases.
The �rst line of a test case contains an integer n, 1 ≤ n ≤ 1000. This is the number of dominoes

laid out on the table. Each of the next n lines contains two integers a and b separated by a single space,
0 ≤ a, b ≤ 6. The integers a and b written in the line i + 1 of the test case, 1 ≤ i ≤ n, are the numbers
of dots on the i-th domino in the row, respectively, in the top line and in the bottom one.

Output
For each test case, there should be one line in the output, containing the smallest number of turns

needed to minimise the gap between the top line and the bottom line.

8



Sample

Input Output
2
4
6 1
1 5
1 3
1 2
10
1 6
6 0
0 6
0 4
6 4
0 4
6 3
3 2
2 1
5 1

1
2

9



Problem F
Balanced Chemical Equations
source: chemeq.c or chemeq.cpp or chemeq.java

Description
One cumbersome problem in chemistry is the task of making the number of atoms balanced in a

chemical equation. Our problem is concerned with this.
Chemists obey these rules when they present chemical equations:

1. Each element name is abbreviated by at most two letters. The �rst letter is always in upper-case
and the second letter if exists, is a lower-case letter (e.g. Calcium is represented by Ca, Oxygen
by O, and Chlorine by Cl).

2. Each molecule is composed of a number of atoms. To represent a molecule, we concatenate the
abbreviated names of its composite atoms. For example, NaCl represents Sodium Chloride. Each
atom name may be followed by a frequency number. For example, Calcium Chloride CaCl2 consists
of one atom of Calcium and two atoms of Chlorine. If the frequency is not given, it is assumed
to be 1 (so HCl is equivalent to H1Cl1). For the sake of simplicity, you may assume that the
frequency of an occurrence of an atom is at most 9 (so we do not have C11H22O11 in the problem
input). Note that there may be several occurrences of the same atom in the molecule formula, like
H atom in CH3COOH.

3. In ordinary chemical reactions, a number of molecules combine and result in a number of other
molecules. For example a well known sample of neutralization is:

2HCl + CaO2H2 → CaCl2 + 2H2O

This means two molecules of chlorohydric acid (HCl) with one molecule of Calcium Hydroxide
(CaO2H2) results in one molecule of Calcium Chloride (CaCl2) and two molecules of water.

4. In every chemical reaction, the total number of each atom in the right side of the equation equals
the total number of that atom in the left side (that is why it is called an equation!).

Your task is to write a program to �nd appropriate coe�cients x1, x2, . . . , xM and y1, y2, . . . , yN to
balance an (imbalanced) equation like

A1 + A2 + A3 + · · ·+ AM → B1 + B2 + B3 + · · ·+ BN

in the following way:

x1A1 + x2A2 + x3A3 + · · ·+ xMAM → y1B1 + y2B2 + y3B3 + · · ·+ yNBN

Input
The �rst line contains an integer t (1 ≤ t ≤ 10), the number of test cases. Each test case consists of

a single line containing an expression like:

A1 + A2 + A3 + . . . + AM = B1 + B2 + B3 + · · ·+ BN

10



Each Ai or Bi is a formula of a molecule according to the rules given in items 1 and 2.
The input equations are given in a way that if they can be balanced, xi and yi coe�cients can be in

the range of 1 to 9. There are less than 10 molecules and there are less than 10 di�erent types of atoms,
in a given equation. Additionally, you may assume molecules contain no more than 3 di�erent kinds of
atoms. You may also assume that there is no blank character in the input �le, and the maximum length
of the input lines is 200 characters.

Output
The output will be one line per test case containing the list of required coe�cients, separated by

blank characters, in the following order:

x1 x2 . . . xM y1 y2 . . . yN

The coe�cients should be integers in the range of 1..9. Obviously, there may be more than one answer
for a test case. In such situations, print the answer which minimizes the number:

x1x2 . . . xMy1y2 . . . yN

(This is an (M + N)-digit decimal number whose digits are xi and yi coe�cients.) If the equation is
impossible to balance, the output line should be `IMPOSSIBLE'.

Sample

Input Output
3
HCl+CaO2H2=CaCl2+H2O
HCl+H2SO4=NaCl
HCl+NaOH=NaCl+H2O

2 1 1 2
IMPOSSIBLE
1 1 1 1

11



Problem G
Points

source: points.c or points.cpp or points.java

Description
Let p1, p2, . . . , pn be n points on the plane. We have m rules of form pi rel pj , each inform us that

the relation rel holds among the locations of points pi and pj on the plane. For example, �pi NE pj�
indicates that point pj is located NorthEast of point pi. There are eight di�erent relations {N, E, S,
W, NE, NW, SE, SW}, corresponding to the eight directions on the plane. Let (xi, yi) and (xj , yj) be the
coordinates of pi, and pj respectively. Then pi rel pj exactly means one of the following, depending on
the value of rel:

1. N stands for North. This means that xj = xi and yj > yi,

2. E stands for East. This means that xj > xi and yj = yi,

3. S stands for South. This means that xj = xi and yj < yi,

4. W stands for West. This means that xj < xi and yj = yi,

5. NE stands for NorthEast. This means that xj > xi and yj > yi,

6. NW stands for NorthWest. This means that xj < xi and yj > yi,

7. SE stands for SouthEast. This means that xj > xi and yj < yi, and

8. SW stands for SouthWest. This means that xj < xi and yj < yi.

The problem is to determine whether it possible to locate p1, p2, . . . , pn on the plane so that all given
rules are satis�ed.

Input
The �rst line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases

in the input. The �rst line of each test case contains two integers n (2 ≤ n ≤ 500) which is the number
of points and m (1 ≤ m ≤ 104) which is the number of rules. In each of the following m lines, there is
one rule of the form i rel j which means that pi has relation rel with pj .

Output
The output contains one line per each test case containing one of the words `POSSIBLE' or `IMPOSSIBLE'

indicating if the set of points in the test case can be located on the plane according to the given rules.

12



Sample

Input Output
2
3 2
1 N 2
2 N 1
6 6
1 E 2
1 E 3
2 N 4
3 NW 5
4 SW 6
6 NE 5

IMPOSSIBLE
POSSIBLE

13



Problem H
Rotten Ropes

source: ropes.c or ropes.cpp or ropes.java

Description
Suppose we have n ropes of equal length and we want to use them to lift some heavy object. A

tear-o� weight t is associated to each rope, that is, if we try to lift an object, heavier than t with that
rope, it will tear o�. But we can fasten a number of ropes to the heavy object (in parallel), and lift it
with all the fastened ropes. When using k ropes to lift a heavy object with weight w, we assume that
each of the k ropes, regardless of its tear-o� weight, is responsible for lifting a weight of w/k. However,
if w/k > t for some rope with tear-o� weight of t, that rope will tear o�. For example, three ropes with
tear-o� weights of 1, 10, and 15, when all three are fastened to an object, can not lift an object with
weight more than 3, unless the weaker one tears-o�. But the second rope, may lift by itself, an object
with weight at most 10. Given the tear-o� weights of n ropes, your task is to �nd the weight of the
heaviest object that can be lifted by fastening a subset of the given ropes without any of them tearing
o�.

Input
The �rst line of the input �le contains a single integer t (1 ≤ t ≤ 10), the number of test cases,

followed by the input data for each test case. The �rst line of each test case contains a single integer n
(1 ≤ n ≤ 1000) which is the number of ropes. Following the �rst line, there is a single line containing n
integers between 1 and 10000 which are the tear-o� weights of the ropes, separated by blank characters.

Output
Each line of the output �le should contain a single number, which is the largest weight that can be

lifted in the corresponding test case without tearing o� any rope chosen.

Sample

Input Output
2
3
10 1 15
2
10 15

20
20

14



Problem I
Food Cubes

source: food.c or food.cpp or food.java

Description
The spacemen in the space shuttle are waiting for the next escape window to return to the mother

land Earth, where they are expected to fall somewhere in the deep blue waters of the Persian Gulf.
Bored of waiting with nothing to do, they decide to play a game with their unit size food cubes. In
the zero gravity environment of their spaceship, anything can stay motionless where it is placed. One
spaceman places several food cubes in space such that there may be holes between cubes. Others, given
the coordinates of the food cubes, should �nd the number of holes. A hole is a continuous empty space
surrounded by food cubes in all six directions. You are to write a program to read the coordinates of
each food cube and compute the number of holes.

Input
The �rst line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases in

the input. Each test case starts with an integer M , the number of food cubes. Each line i (1 ≤ i ≤ M)
of the M following lines contains integers xi, yi and zi, all between 1 and 100 inclusive, indicating the
three coordinates of a food cube in the 3D space.

Output
For each test case, there is one line containing the number of holes.

15



Sample

Input Output
2
26
1 1 1
1 2 1
1 3 1
2 1 1
2 2 1
2 3 1
3 1 1
3 2 1
3 3 1
1 1 2
1 2 2
1 3 2
2 1 2
2 3 2
3 1 2
3 2 2
3 3 2
1 1 3
1 2 3
1 3 3
2 1 3
2 2 3
2 3 3
3 1 3
3 2 3
3 3 3
7
1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1

1
0

16


