Hopcroft-Karp algorithm for matching in bipartite graphs

Let G = (V4,V3, E) be a bipartite graph. Let M be a matching in G.

Constructing a shortest paths DAG

The algorithm below constructs a layered DAG H such that ¢ is the shortest path distance from the source
to all the vertices in layer 7. It also computes for each vertex u, except those at layer 0, the number of incoming
edges to u. This construction is done using a modified breadth-first traversal of G. Let L; denote the vertices in

layer 1.
1. Add all free vertices from V; to Lyg.
2.1 = 0.
3. Repeat Until all vertices have been classified or a layer with free vertices of V5 is found:

(a) Forallu € L;
i. For all w adjacent to u using an unmatched edge do
A. If w is not from an earlier layer add w to L;y1 if it is not already included.
B. indegree(w) <« indegree(w) + 1.
(b) (All vertices in L;11 are from V5.)
If any of the vertex in L;y; is a free vertex in Vo then
i. Delete all matched vertices from Li + 1.
ii. Lett = i+ 1.
iii. Go to Augment Stage.
(¢) (None of the vertices in L;11 are free vertices of V53.)
Forallu € L;1,
i. For w that is adjacent to u using a matched edge do
A. If w is not from an earlier layer add w to L;i9 if it is not already included.

(d) i « i + 2.

4. No augmenting paths in G with respect to M and hence M is maximum.



Finding augmenting paths in the shortest paths DAG H

The DAG H is a layered graph with layer 0 consisting of free vertices from V7 and layer ¢ consisting of free
vertices from V5. The algorithm below constructs a set P of vertex-disjoint minimum length augmenting paths.

(If there is a vertex u in L; then there is a path (an augmenting path) from some vertex in Lg to u. If there is
a vertex w in Lg it is not guaranteed that there is a path from w to a vertex in L;. Hence, to find an augmenting

path in H, we start from a vertex in L; and trace back. )

1. While there is a vertex u in L; do:

(a) Trace backwards from u to a free vertex in Lo to obtain an augmenting path; place this path in the set
P.
(b) Place all the vertices along this path on a deletion queue.
(c) While the deletion queue is non-empty do:
i. Remove a vertex and all its outgoing edges.

ii. Whenever an edge (u,w) in H is deleted, indegree(w) is decremented. (This is because from w we
cannot trace back to u anymore since u is deleted.) If indegree(w) becomes 0 then place w on the

deletion queue.



Time taken by this algorithm

We will use the following two lemmas:

Lemma 1: The length of the shortest augmenting path increases in each phase.

(Proof omitted)

Lemma 2: Let M be a matching that is not maximum. Let M* be a maximum matching. Let |[M*| — |[M| = k.
Then, there are k vertex-disjoint augmenting paths in M* & M.

Proof:

e Observe that in M* & M, the number of M*-edges is k more than the the number of M-edges.

In M* @ M, the number of M*-edges is |[M* — M]| and the number of M-edges is |[M — M*|. We have,

\M* — M| = |M*| — |[M* N M|
= |M| + k — |M* n M|
= |M — M*| + k.

e The edges in M* @& M can be classified as one or more of the following categories with edges alternating

from M* and M: (a) even length cycles, (b) even-length paths and odd-length paths.
No vertex can have more than two incident edges from M* & M.
e Note that no odd-length path in M* @ M can start (and hence end with) an edge from M.
Such a path would be an augmenting path with respect to M*. But, M* is a maximum matching.

e Note that the collection of all odd-length paths are vertex-disjoint augmenting paths with respect to M each
contributing one more M*-edge than M-edge. Since there are k more M *-edges than M-edges, the number

of such augmenting paths must be k.

Claim: The running time for this algorithm is O(y/nm).

Proof: First note that each phase can be executed in O(m) time. It remains to show that the number of
phases is O(y/n).

Let M be the matching after \/n phases. Suppose M is not maximum. Let M* be a maximum matching. By
Lemma 2, M* @& M has |[M*| — |M]| vertex-disjoint augmenting paths. By Lemma 1, each of these augmenting
paths has length > 2,/n+ 1. Therefore, the number of augmenting paths in M*@& M is < 4 (This is because
the number of vertices is n.) Each phase increases the size of the matching by at least 1. Therefore, there are at

most 4 more phases before a maximum matching is computed. Hence, there are at most O(y/n) phases.



