Hopcroft-Karp algorithm for matching in bipartite graphs

Let $G = (V_1, V_2, E)$ be a bipartite graph. Let M be a matching in G.

Constructing a shortest paths DAG

The algorithm below constructs a layered DAG H such that i is the shortest path distance from the source to all the vertices in layer i. It also computes for each vertex u, except those at layer 0, the number of incoming edges to u. This construction is done using a modified breadth-first traversal of G. Let L_i denote the vertices in layer i.

- 1. Add all free vertices from V_1 to L_0 .
- 2. i = 0.
- 3. Repeat Until all vertices have been classified or a layer with free vertices of V_2 is found:
 - (a) For all $u \in L_i$
 - i. For all w adjacent to u using an unmatched edge do
 - A. If w is not from an earlier layer add w to L_{i+1} if it is not already included.

B. $indegree(w) \leftarrow indegree(w) + 1$.

(b) (All vertices in L_{i+1} are from V_2 .)

If any of the vertex in L_{i+1} is a free vertex in V_2 then

- i. Delete all matched vertices from Li + 1.
- ii. Let t = i + 1.
- iii. Go to Augment Stage.
- (c) (None of the vertices in L_{i+1} are free vertices of V_2 .)

For all $u \in L_{i+1}$

i. For w that is adjacent to u using a matched edge do

A. If w is not from an earlier layer add w to L_{i+2} if it is not already included.

- (d) $i \leftarrow i + 2$.
- 4. No augmenting paths in G with respect to M and hence M is maximum.

Finding augmenting paths in the shortest paths DAG H

The DAG H is a layered graph with layer 0 consisting of free vertices from V_1 and layer t consisting of free vertices from V_2 . The algorithm below constructs a set \mathcal{P} of vertex-disjoint minimum length augmenting paths.

(If there is a vertex u in L_t then there is a path (an augmenting path) from some vertex in L_0 to u. If there is a vertex w in L_0 it is not guaranteed that there is a path from w to a vertex in L_t . Hence, to find an augmenting path in H, we start from a vertex in L_t and trace back.)

- 1. While there is a vertex u in L_t do:
 - (a) Trace backwards from u to a free vertex in L_0 to obtain an augmenting path; place this path in the set \mathcal{P} .
 - (b) Place all the vertices along this path on a deletion queue.
 - (c) While the deletion queue is non-empty do:
 - i. Remove a vertex and all its outgoing edges.
 - ii. Whenever an edge (u, w) in H is deleted, indegree(w) is decremented. (This is because from w we cannot trace back to u anymore since u is deleted.) If indegree(w) becomes 0 then place w on the deletion queue.

Time taken by this algorithm

We will use the following two lemmas:

Lemma 1: The length of the shortest augmenting path increases in each phase.

(Proof omitted)

Lemma 2: Let M be a matching that is not maximum. Let M^* be a maximum matching. Let $|M^*| - |M| = k$. Then, there are k vertex-disjoint augmenting paths in $M^* \oplus M$.

Proof:

• Observe that in $M^* \oplus M$, the number of M^* -edges is k more than the the number of M-edges.

In $M^* \oplus M$, the number of M^* -edges is $|M^* - M|$ and the number of M-edges is $|M - M^*|$. We have,

$$|M^* - M| = |M^*| - |M^* \cap M|$$

= |M| + k - |M^* \cap M|
= |M - M^*| + k.

• The edges in $M^* \oplus M$ can be classified as one or more of the following categories with edges alternating from M^* and M: (a) even length cycles, (b) even-length paths and odd-length paths.

No vertex can have more than two incident edges from $M^* \oplus M$.

• Note that no odd-length path in $M^* \oplus M$ can start (and hence end with) an edge from M.

Such a path would be an augmenting path with respect to M^* . But, M^* is a maximum matching.

• Note that the collection of all odd-length paths are vertex-disjoint augmenting paths with respect to M each contributing one more M^* -edge than M-edge. Since there are k more M^* -edges than M-edges, the number of such augmenting paths must be k.

Claim: The running time for this algorithm is $O(\sqrt{nm})$.

Proof: First note that each phase can be executed in O(m) time. It remains to show that the number of phases is $O(\sqrt{n})$.

Let M be the matching after \sqrt{n} phases. Suppose M is not maximum. Let M^* be a maximum matching. By Lemma 2, $M^* \oplus M$ has $|M^*| - |M|$ vertex-disjoint augmenting paths. By Lemma 1, each of these augmenting paths has length $\geq 2\sqrt{n}+1$. Therefore, the number of augmenting paths in $M^* \oplus M$ is $\leq \frac{\sqrt{n}}{2}$. (This is because the number of vertices is n.) Each phase increases the size of the matching by at least 1. Therefore, there are at most $\frac{\sqrt{n}}{2}$ more phases before a maximum matching is computed. Hence, there are at most $O(\sqrt{n})$ phases.