Hopcroft-Karp algorithm for matching in bipartite graphs

Let $G=\left(V_{1}, V_{2}, E\right)$ be a bipartite graph. Let M be a matching in G.

Constructing a shortest paths DAG

The algorithm below constructs a layered DAG H such that i is the shortest path distance from the source to all the vertices in layer i. It also computes for each vertex u, except those at layer 0 , the number of incoming edges to u. This construction is done using a modified breadth-first traversal of G. Let L_{i} denote the vertices in layer i.

1. Add all free vertices from V_{1} to L_{0}.
2. $i=0$.
3. Repeat Until all vertices have been classified or a layer with free vertices of V_{2} is found:
(a) For all $u \in L_{i}$
i. For all w adjacent to u using an unmatched edge do
A. If w is not from an earlier layer add w to L_{i+1} if it is not already included.
B. indegree $(w) \leftarrow \operatorname{indegree}(w)+1$.
(b) (All vertices in L_{i+1} are from V_{2}.)

If any of the vertex in L_{i+1} is a free vertex in V_{2} then
i. Delete all matched vertices from $L i+1$.
ii. Let $t=i+1$.
iii. Go to Augment Stage.
(c) (None of the vertices in L_{i+1} are free vertices of V_{2}.)

For all $u \in L_{i+1}$
i. For w that is adjacent to u using a matched edge do
A. If w is not from an earlier layer add w to L_{i+2} if it is not already included.
(d) $i \leftarrow i+2$.
4. No augmenting paths in G with respect to M and hence M is maximum.

Finding augmenting paths in the shortest paths DAG H

The DAG H is a layered graph with layer 0 consisting of free vertices from V_{1} and layer t consisting of free vertices from V_{2}. The algorithm below constructs a set \mathcal{P} of vertex-disjoint minimum length augmenting paths.
(If there is a vertex u in L_{t} then there is a path (an augmenting path) from some vertex in L_{0} to u. If there is a vertex w in L_{0} it is not guaranteed that there is a path from w to a vertex in L_{t}. Hence, to find an augmenting path in H, we start from a vertex in L_{t} and trace back.)

1. While there is a vertex u in L_{t} do:
(a) Trace backwards from u to a free vertex in L_{0} to obtain an augmenting path; place this path in the set \mathcal{P}.
(b) Place all the vertices along this path on a deletion queue.
(c) While the deletion queue is non-empty do:
i. Remove a vertex and all its outgoing edges.
ii. Whenever an edge (u, w) in H is deleted, $\operatorname{indegree}(w)$ is decremented. (This is because from w we cannot trace back to u anymore since u is deleted.) If $\operatorname{indegree}(w)$ becomes 0 then place w on the deletion queue.

Time taken by this algorithm

We will use the following two lemmas:
Lemma 1: The length of the shortest augmenting path increases in each phase.
(Proof omitted)
Lemma 2: Let M be a matching that is not maximum. Let M^{*} be a maximum matching. Let $\left|M^{*}\right|-|M|=k$. Then, there are k vertex-disjoint augmenting paths in $M^{*} \oplus M$.

Proof:

- Observe that in $M^{*} \oplus M$, the number of M^{*}-edges is k more than the number of M-edges.

In $M^{*} \oplus M$, the number of M^{*}-edges is $\left|M^{*}-M\right|$ and the number of M-edges is $\left|M-M^{*}\right|$. We have,

$$
\begin{aligned}
\left|M^{*}-M\right| & =\left|M^{*}\right|-\left|M^{*} \cap M\right| \\
& =|M|+k-\left|M^{*} \cap M\right| \\
& =\left|M-M^{*}\right|+k .
\end{aligned}
$$

- The edges in $M^{*} \oplus M$ can be classified as one or more of the following categories with edges alternating from M^{*} and M : (a) even length cycles, (b) even-length paths and odd-length paths.

No vertex can have more than two incident edges from $M^{*} \oplus M$.

- Note that no odd-length path in $M^{*} \oplus M$ can start (and hence end with) an edge from M.

Such a path would be an augmenting path with respect to M^{*}. But, M^{*} is a maximum matching.

- Note that the collection of all odd-length paths are vertex-disjoint augmenting paths with respect to M each contributing one more M^{*}-edge than M-edge. Since there are k more M^{*}-edges than M-edges, the number of such augmenting paths must be k.

Claim: The running time for this algorithm is $O(\sqrt{n} m)$.
Proof: First note that each phase can be executed in $O(m)$ time. It remains to show that the number of phases is $O(\sqrt{n})$.

Let M be the matching after \sqrt{n} phases. Suppose M is not maximum. Let M^{*} be a maximum matching. By Lemma 2, $M^{*} \oplus M$ has $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths. By Lemma 1, each of these augmenting paths has length $\geq 2 \sqrt{n}+1$. Therefore, the number of augmenting paths in $M^{*} \oplus M$ is $\leq \frac{\sqrt{n}}{2}$. (This is because the number of vertices is n.) Each phase increases the size of the matching by at least 1 . Therefore, there are at most $\frac{\sqrt{n}}{2}$ more phases before a maximum matching is computed. Hence, there are at most $O(\sqrt{n})$ phases.

