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Performing Feature Selection
With Multilayer Perceptrons

Enrique Romero and Josep Maria Sopena

Abstract—An experimental study on two decision issues for
wrapper feature selection (FS) with multilayer perceptrons and
the sequential backward selection (SBS) procedure is presented.
The decision issues studied are the stopping criterion and the
network retraining before computing the saliency. Experimental
results indicate that the increase in the computational cost associ-
ated with retraining the network with every feature temporarily
removed before computing the saliency is rewarded with a signifi-
cant performance improvement. Despite being quite intuitive, this
idea has been hardly used in practice. A somehow nonintuitive
conclusion can be drawn by looking at the stopping criterion,
suggesting that forcing overtraining may be as useful as early
stopping. A significant improvement in the overall results with
respect to learning with the whole set of variables is observed.

Index Terms—Experimental work, feature selection (FS), multi-
layer perceptrons, wrapper approach.

I. INTRODUCTION

EATURE SELECTION (FS) procedures control the bias/
F variance decomposition by means of the input dimension,
establishing a clear connection with the curse of dimensionality
[24]. It has been known for a long time that, in addition to re-
ducing the storage requirements and the computational cost, FS
leads to improve generalization results [19], [38]. Today, FS is
still an active line of research [14], [15]. We will focus on FS
with multilayer perceptrons (MLPs).

In the situations where MLPs are sensitive to overfitting,
the assumption that FS helps to improve the generalization
performance by a reduction of the dimensionality and by elim-
inating irrelevant variables is, according to the bias/variance
decomposition, theoretically sound. However, as far as we
know, the results obtained by MLPs using different methods of
FS do not show this improvement. We carefully reviewed the
most common approaches in the literature of FS with MLPs
(we found more than 60 papers, briefly described in Section II).
Many of them do not report the differences between the models
obtained with the whole set of features and those obtained
after FS is carried out. When these differences are reported,
the results are, in general, similar (if not worse) to the ones
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obtained without performing FS. Significant improvements are
obtained in very few cases.

The motivation of this work is to study the methodology car-
ried out for FS with MLPs. One of the reasons that can explain
why after performing FS with MLPs the results usually do not
improve is that many saliencies (the saliency is the measure of
importance of a feature) are computed on the basis of a net-
work trained with the whole set of features. This implicitly as-
sumes that networks trained with the whole set of features are
good models, which is not true when irrelevant variables are
present. An MLP with irrelevant variables is more flexible than
the same model without them, leading to better approximations
in the training set. However, an MLP that uses irrelevant vari-
ables will have poor generalization. This problem can be allevi-
ated if there are enough data to filter irrelevant variables, but this
is not usually the case. In addition, the number of features sub-
sets with irrelevant variables is 2"V¢ — 1 times larger than that
without them, where NV; is the number of irrelevant variables.
Since irrelevant variables may interact in a nonlinear and com-
plex way with the rest of variables, we cannot expect to obtain
useful information for the detection of irrelevant variables from
networks trained with them. A simple way to adequately detect
irrelevant variables is to retrain the network without the candi-
date subset of irrelevant variables. In addition, other issues in
the whole process of FS with MLPs may also have a great im-
pact on the final results.

The main contribution of this paper is to study the influence of
some important decision issues in the methodology carried out
for FS with MLPs within the wrapper approach [17]. Specifi-
cally, an experimental study on two decision issues when per-
forming FS with MLPs and the sequential backward selection
(SBS) procedure is presented. The decision issues studied are
the convenience of retraining the network before computing the
saliency and the stopping criteria for the training phase. To the
best of our knowledge, this is the first time that this assessment
is carried out. For practical purposes, this is a very important
issue.

Experimental results indicate that, for complex problems, the
increase in the computational cost associated with retraining the
network with every feature temporarily removed before com-
puting its saliency is rewarded with a significant performance
improvement. The network retraining turns out to be a crit-
ical issue, although it has been hardly used in practice (most
models found in the literature do not retrain the network before
computing the saliency). A somehow nonintuitive conclusion is
drawn by looking at the stopping criterion, where forcing over-
training is shown to be potentially as useful as early stopping.

1045-9227/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:25 from IEEE Xplore. Restrictions apply.



432

After performing FS, we have obtained a significant improve-
ment in the overall results with respect to learning with the
whole set of variables in most of the data sets tested. To the best
of our knowledge, these results would rank among the top pub-
lished ones with MLPs for these data sets. However, we point
out that these improvements are only obtained when adequate
criteria for FS with MLPs are used. Although we have focused
on FS with MLPs and the SBS procedure, we claim that the re-
sults can be extended to other neural models and other search
strategies.

The rest of this paper is organized as follows. Section II de-
scribes several existing FS procedures for MLPs. A basic SBS
scheme for FS with MLPs and its decision issues are discussed
in Section III. The experimental work is described in Section IV
and discussed in Section V. Finally, Section VI concludes and
outlines some directions for further research.

II. FEATURE SELECTION WITH MLPS

According to the bias/variance decomposition, either high
bias or variance can contribute to poor performance [12], [8].
Typically, very flexible models, such as MLPs, may lead to un-
biased estimators but probably with high variance (due to over-
fitting). A rigid model, in contrast, may lead to small variance
but high bias. There is a tradeoff between the bias and vari-
ance contributions to the error, where the optimal performance
is achieved.

When too many variables are considered, there are many dif-
ferent solutions capable of fitting the same data set, but only a
few of these solutions will lead to good generalization. If the
system gives some importance to irrelevant variables it will use
this information for new data, leading to poor generalization
even if we try to control the overfitting. This is one of the most
important motivations for FS from a machine learning point of
view.

The problem of FS can be defined as follows: Given a set of
N features, select a subset that performs the best under certain
evaluation criterion. From a computational point of view, the
definition of FS leads to a search problem in a space of 27/ ele-
ments. Therefore, two components must be specified: the search
procedure through the space of feature subsets and the feature
subset evaluation criterion.

A. The Most Common Approach for FS With MLPs: SBS as
Search Procedure and Loss Function as Saliency

Regarding the search procedure, most FS algorithms for
MLPs use the SBS algorithm, also known as sequential back-
ward elimination. SBS is a top—down process. Starting from
the complete set of available features, one feature is deleted
at every step of the algorithm, chosen on the basis of which
the available candidates gives rise, together with the remaining
features, to the best value of the evaluation criterion. Ideally,
the performance of the system is expected to improve until a
subset of features remains for which the elimination of further
variables results in performance degradation. In general, SBS
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helps to detect irrelevant! variables in the first steps, trying to
maintain the interactions among the variables [9]. The SBS
procedure with MLPs starts by training a network with the
whole set of features. Then, the saliencies (see the following)
are computed and the feature with the lowest saliency is re-
moved. The weights of the network are modified and the loop
starts again until a certain criterion is satisfied.

With respect to the feature subset evaluation criterion, FS
algorithms for MLPs with the SBS procedure use different
variations of the concept of saliency. The concept of saliency
is also present in some pruning methods [33]. Features with
large saliencies are considered more important than features
with small ones, so that features with small saliencies can be
eliminated. Following the wrapper approach, the most com-
monly used saliency of a feature is the difference in the values
of the loss function, usually the sum-of-squares error (SSE), in
presence and absence of that feature. This is surely the optimal
criterion for FS from a machine learning point of view [24].

Several variations of FS methods for MLPs and the SBS pro-
cedure for which the saliency is computed as the value of the
loss function can be found in the literature, as explained in the
following.

Some works compute an approximation to the difference in
the SSE when the feature is removed from the network [28], [25]
or its weights are set to zero [6], [7], [40]. The latter models are
based on the optimal brain damage [22] and optimal brain sur-
geon [16] procedures that approximate the difference in the SSE
when a weight is removed from a trained network. These values
are obtained under several assumptions, such as approximating
the difference by the derivative or discarding the nondiagonal
terms in the Hessian matrix.

In other studies [37], [35], [44], [46], the saliency of a fea-
ture is directly computed as the value of the loss function when
the feature is removed from the network (or, equivalently, its
weights are set to zero). In [37] and [46], the cross entropy
with a penalty function is used as a loss function. In [37], the
penalty function encourages small weights to converge to zero
and prevents the weights from taking values too large. In [46],
the penalty function constrains the derivatives of the output and
hidden units, looking for good generalization properties. In [44],
anew network is analytically constructed, starting from the orig-
inal one, to approximate the network that would be obtained if
the feature was eliminated. The analytical construction is based
on finding a new neural network with similar activations in the
hidden layer to those on the original network.

An alternative to setting to zero the values of a feature is sub-
stituting them by their average value [1], [27], assuming that
the influence of the feature on the network output will be re-
moved. In [9] and [10], the input value is replaced by a value
estimated from its least mean square regression parameters, so
that it is possible to compute a lower bound of the accuracy of
the network.

IThere is no commonly accepted definition of the relevance of a variable [4],
[24]. Given a data set, we consider that a variable is irrelevant for a machine
learning system when its optimal performance is not affected negatively by the
absence of that variable, following [24, p. 29]. Note that this is a dynamic defini-
tion, since the relevance of a variable may be affected by the presence or absence
of other ones.
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B. Other Saliencies Different From the Loss Function

The derivative of the outputs with respect to the input units
is the motivating idea of the saliency defined in [31] and [36].
With the same underlying idea, three measures of sensitivity are
defined in [48] (the squares average, the absolute value average,
and the maximum of the derivative). The saliency defined in [11]
is the variance of the mean derivative.

In [41], the definition of saliency in [36] is used to compare
an artificially introduced noisy variable with the original fea-
tures. Assuming normality on the saliency of the noisy variable,
features whose saliency falls inside a certain confidence interval
are removed. In [13], the input values are perturbed with the in-
jection of Gaussian noise. The variance of the injected noise is
allowed to be different for every feature and it is modified during
the training procedure. The saliency of a feature is the inverse
of its relative variance at the end of the training process.

C. Other Search Schemes Different From SBS

Starting from a full network, hidden and input units are se-
quentially removed in [42] whenever the performance of the re-
duced network improves. The procedure stops when the elimi-
nation of any feature does not lead to a better performance.

The classical sequential forward selection procedure is per-
formed in [29] with the SSE as saliency.

In [20], the Taguchi method is used to construct an orthogonal
array where every row is associated with a subset of features (in-
dicating presence/absence). These subsets of features are fixed
a priori, previous to the training of the networks. The Taguchi
method is a procedure to set up experiments that only require
a fraction of the whole (factorial) combinations [43]. With this
method, only O(N) MLPs are trained.

Classical genetic algorithms guide the search process in [47].
The fitness of every chromosome (the subset of features) is
computed taking into account the accuracy of the model ob-
tained with that chromosome. In [21], multiobjective genetic
algorithms are performed to simultaneously minimize the error
rate and the number of features.

The sequential forward floating selection search algorithm
[32] is used in [23] with piecewise linear networks and the or-
thogonal least squares procedure [5]. First, the number of clus-
ters for the piecewise linear network model is determined. Then,
the sequential forward floating selection algorithm is used to
guide the search. At every step, the saliency is the error reduc-
tion ratio after adding or removing a feature, which is computed
with the orthogonal least squares procedure. Since each cluster
is modeled by a linear network, the algorithm is computation-
ally efficient.

III. DECISION ISSUES IN A BASIC SBS SCHEME
FOR FS WITH MLPS

The assumption that FS helps to improve the generalization
performance by a reduction of the dimensionality and by elim-
inating irrelevant variables is, according to the bias/variance
decomposition, theoretically sound. However, as far as we
know, the results obtained by MLPs using different methods of
FS do not show this improvement. We carefully reviewed the
most common approaches in the literature of FS with MLPs
(we found more than 60 papers, briefly described in Section II).

Many of them do not report the differences between the models
obtained with the whole set of features and those obtained
after FS are carried out. When these differences are reported,
the results are, in general, similar (if not worse) to the ones
obtained without performing FS. Significant improvements are
obtained in very few cases.

Many saliencies aim to remove the features that contribute
more to the error of a network trained with the whole set of
features. This implicitly assumes that networks trained with the
whole set of features are good models, which is not true when
irrelevant variables are present. An MLP with irrelevant vari-
ables is more flexible than the same model without them, leading
to better approximations in the training set. However, an MLP
that uses irrelevant variables will have poor generalization. This
problem can be alleviated if there are enough data to filter irrel-
evant variables, but this is not usually the case. In addition, the
number of features subsets with irrelevant variables is 2V: — 1
times larger than that without them, where N; is the number of
irrelevant variables. Other saliencies are based on the hypothesis
that irrelevant features produce smaller variations in the output
values than relevant ones. Since irrelevant variables may interact
in a nonlinear and complex way with the rest of variables, we
cannot expect to obtain useful information for the detection of
irrelevant variables from networks trained with them.

As stated in Section II, the most common approach for FS
with MLPs is based on the SBS search procedure and it uses
the SSE as evaluation criterion. This approach involves taking
a number of decisions that have not been always addressed in
the literature. In general, there are neither a commonly accepted
criterion nor comparative studies about the following issues.

1) Whether or not the network should be retrained at every
step with every feature temporarily removed before com-
puting its saliency. To the best of our knowledge, the only
methods that retrain the network at every step with every
feature temporarily removed/added before computing its
saliency are those described in [20], [21], [23], [29], [35],
[42], and [47]. Among them, only the model presented in
[35] is a pure SBS procedure. See Section II for a brief de-
scription of these methods.

2) The stopping criterion for the training phase. Usually, net-
works are trained until a local minimum of the loss func-
tion for the training set is found, although this point is
not always addressed in the literature. We assume that the
training process under expressions like “train a network for
a number of epochs . ..” or “after the network was trained
...” tries to find a local minimum of the loss function for
the training set. There are several exceptions, where an
early stopping procedure is performed, usually with a val-
idation set (see, for example, [1], [11], [44], and [46]).

When we analyzed the literature in depth, we observed that
the improvement of the results may be correlated with these
decision issues. The main motivation of this paper is to study
their influence when performing FS with MLPs.

A basic SBS scheme for FS with MLPs using the SSE as the
saliency of a feature is presented in Fig. 1. This scheme will be
the basis for the experiments presented in Section IV. The outer
loop follows the scheme of the classical SBS procedure, where
a feature is permanently eliminated at every step. The inner loop
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Algorithm
Let V1 the whole set of Ny features
for N =1up to Ny —1 do

Train the network with Vy until a certain stopping criterion is satisfied (decision issue, see text for details),

and keep its generalization performance
for each v € Vi do
Set V=Vy— {U}

Optionally, retrain the network with V' (decision issue, see text for details)

Obtain the saliency of v by computing the value of the sum-of-squares error E, on a validation data set

end for

Set Va1 = Vn — {v*}, where v* corresponds to the lowest value of E, in the previous loop

end for

Return Viy+, where N* corresponds to the best generalization performance of the network in the previous loop

end Algorithm

Fig. 1. Basic SBS procedure for FS with MLPs using the SSE as evaluation criterion (saliency).

selects the variable to eliminate the following: 1) the network is
trained with the whole set of available features until a certain
stopping criterion is satisfied, 2) every feature is temporarily
removed, 3) the network is optionally retrained (with the same
stopping criterion), and 4) the value of the SSE is computed (on
a validation data set). The variable corresponding to the lowest
value of the SSE is permanently eliminated.

The two aforementioned decision issues are highlighted in
the algorithm in Fig. 1. Several configurations were tested in
our experiments, as explained in the following.

The first decision issue involves whether the network is re-
trained or not after the feature is temporarily removed before
computing its saliency. Therefore, the saliency of a feature can
be computed following two approaches.

1) First, the network is trained with the whole set of avail-
able features. Then, every feature is temporarily removed
and the SSE is computed. The saliency of every feature is
computed in the same trained network. This procedure in-
volves training Ny — 1 networks.

2) For every feature, the network is retrained with that fea-
ture temporarily removed. For every trained network, the
SSE is computed. This procedure is computationally more
expensive than the previous one, since it involves training
N¢(Ny+1)/2 networks (in this case, the training prior to
the inner loop can be omitted).

Both possibilities were tested. Note that these two ways of
computing the saliency will yield very different results for the
same feature, since the corresponding output functions of the
trained networks will be very different as well. Suppose that
a trained network uses a certain feature to fit the data and a
new network is trained without it. The new network will use
other features to fit the data. There is no reason to think that
the relative saliencies of every feature remain unchanged with
respect to those obtained in the original network without re-
training it. The same happens if the feature values are substi-
tuted by its average value. Intuitively, a more reliable estima-
tion of the saliency should be obtained by retraining the net-

work with every feature temporarily removed. The good results
obtained (in general) by models that retrain the network before
computing the saliency seem to validate this intuition.

The second decision issue is the stopping criterion in the
training phase. Two different stopping criteria were tested. The
first one is to train until a minimum of the SSE for the training
set is achieved. The second one is to stop where a minimum
for a validation set is obtained. Suppose that the properties of
the data set allow the negative effect of overfitting to appear. It
seems that performing early stopping with a validation set could
be the most promising idea. However, it can also be argued that
overtraining the network until a local minimum of the SSE for
the training set is achieved forces the system to use all the avail-
able variables as much as possible. In this situation, irrelevant
variables should be more outstanding when the system is not al-
lowed to use them, as pointed out in [35].

In summary, four configurations with different combinations
of network retraining/stopping criterion will be tested and
compared.

IV. EXPERIMENTS

Some experiments on both artificial (Section IV-B) and stan-
dard benchmark data sets (Section IV-C) for classification prob-
lems were performed. For every data set, the four aforemen-
tioned configurations were tested with the SBS procedure for
MLPs described in Fig. 1, showing important differences.

A. Experimental Setting

All the experiments were performed with stratified cross val-
idation (CV). Prior to every CV, the examples in the data set
were randomly shuffled. Five runs of a double five-fourfold CV
[34] were performed as follows. A fivefold CV (the outer CV)
was performed to obtain five folds (four folds to “learn” and one
fold to test). Then, a fourfold CV (the inner CV) was performed
with the four folds of the “learning set” of the outer CV (three
folds to train and one fold to validate). Therefore, the number
of trained networks in every double five-fourfold CV was 20,
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ARCHITECTURES, LEARNING PARAMETERS, AND EXECUTIgIVA ?III:/EESI OF A DOUBLE FIVE-FOURFOLD CV FOR EVERY DATA SET
Data Set # Hidden Units | # Epochs | Weights Range Learning Rates Time
Augmented XOR 20 500 I-H:3.0 H-0:0.001 | I-H:0.2 H-O:0.002 56”
Augmented Two Spirals 40 1500 1-H:5.0 H-0:0.001 | I-H:0.002 H-0:0.0002 | 5° 32~
Australian Credit 3 1500 I-H:0.5 H-0:0.001 | I-H:0.02 H-0:0.0001 217
Cleveland Heart 20 1000 I-H:2.0 H-0:0.02 I-H:0.2 H-0:0.002 1’ 487
Hepatitis 20 300 I-H:3.0 H-0:0.001 | I-H:0.2 H-0:0.005 38”
lonosphere 20 300 I-H:1.0 H-O:0.1 I-H:0.05 H-0:0.005 1’ 107
Sonar 35 150 I-H:2.0 H-0:0.1 1-H:0.05 H-0:0.005 56”
Vehicle 25 2000 I-H:3.0 H-0:0.001 | I-H:0.01 H-O:0.00005 | 3* 38”
Voting 10 500 I-H:2.0 H-0:0.001 | I-H:0.1 H-0O:0.005 17
Lung Cancer 10 500 1-H:2.0 H-0:0.02 I-H:0.02 H-0:0.01 43”
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giving a total of 100 runs for each training step. The saliency
of every feature was computed as the average SSE over the 100
validation folds.

A computational cost as small as possible for the whole
process was required. We used MLPs with one hidden layer
of sinusoidal units and hyperbolic tangents in the output layer,
trained with standard backpropagation (BP) in online mode.
MLPs using sine activation functions (and an appropriate
choice of initial parameters) usually need less hidden units and
learn faster than MLPs with sigmoid functions when both types
are trained with BP [39].

The number of hidden units and learning rates was chosen,
for every data set, so as to achieve a small and smoothly de-
creasing training error in a reasonable number of epochs. Table I
shows, for every data set, the architectures and learning param-
eters chosen. Weights were initialized randomly within a cer-
tain interval [—-W/2,+W/2], different for every layer. This is
shown in Table I as I-H:W for the “input-to-hidden” layer and
H-O:W for the “hidden-to-output” layer. Learning rates were
also different for every layer. Momentum was set to 0. The exe-
cution times of a double five-fourfold CV on a Pentium 4 CPU at
1.8 GHz are also shown (our program was implemented in C).

In order to introduce the least external variability in the ex-
periments, all the configurations were tested with the same (al-
though different for every data set) network architecture and
parameters.

For every data set, we applied a paired ¢-test (confidence level
a = 0.05) to determine if the mean accuracy of the four config-
urations tested was significantly different. The percentages of
correctly classified patterns on the CV test sets were used for
the paired ¢-test. The group of the best results that are not sig-
nificantly different from each other but significantly better than
the rest are shown in boldface in Tables IIT and IV.

B. Experiments on Artificial Data Sets

The artificial data consisted of augmented versions of the two
well-known data sets: XOR and two spirals. These data sets were
chosen as two prototypes of an easy and a difficult problems for
FS, respectively. Irrelevant variables were added to the original
ones, prior to test the aforementioned configurations. Therefore,

TABLE II
ADDED VARIABLES FOR THE AUGMENTED XOR (LEFT) AND AUGMENTED TWO
SPIRALS (RIGHT) DATA SETS. A" AND I/ ARE THE NORMAL AND UNIFORM
DISTRIBUTIONS, RESPECTIVELY. THE REASON WHY 75 WAS NOT ADDED
TO THE AUGMENTED XOR DATA SET IS THAT THIS VARIABLE ALONE
ALLOWS TO CORRECTLY CLASSIFY THE WHOLE DATA SET.
ITs NOISY VERSION 19 WAS NOT INCLUDED

Variable Augmented XOR Augmented Two Spirals
T3 z? z?
T4 z3 x3
Ts - T1-T2
Te T+ 2 T+ T2
x7 r1 — X2 1 — X2
zs z? + N(0,1) z? + N (0,1)
z9 2% + N(0,1) z3 + N(0,1)
Z10 - z1 - 2 + N(0,1)
T11 1 + z2 + N(0,1) 1 + z2 + N(0,1)
T12 1 — z2 + N(0,1) z1 —z2 + N(0,1)
x13 u(o,1) u,1)
T14 N(0,1) N(0,1)
x15 N(0,5) N(0,5)

the optimal subsets of variables (there were equivalent ones)
were known a priori.

1) Augmented XOR Data Set: An augmented version of the
XOR data set was created as follows. First, a symmetric data
set was constructed as an extension of the 2-D XOR data set to
[-1,41] x [—1,+1], with 150 points for each class. The input
values of the two original variables (z1,x2) were taken from

{(z:i + 6(zi,¢),2zj + 6(25,¢)) | 4,5 =0,...,9, c=0,1,2}

where z, = —(9/10) + ((2.k/10)) and 6(z,¢) =
—(c.sign(z)/30). The target value is the sign of z; - mo.
Second, 11 new variables were artificially added to the two
original ones. The whole set of added variables can be seen in
Table II. These new variables were defined to be redundant or
independent of the original ones (and, therefore, irrelevant).
Some of them were noisy. When needed, input variables were
linearly scaled in [—1, +1].
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TABLE III
RESULTS OF DIFFERENT CONFIGURATIONS OF RETRAINING/STOPPING CRITERION TESTED FOR ARTIFICIAL DATA SETS.
FIGURES IN BOLDFACE INDICATE SIGNIFICANT DIFFERENCES OF THE BEST RESULTS

Augmented XOR Augmented Two Spirals
Retrain | Stopping Criterion Test MSE | NVar Retrain | Stopping Criterion Test MSE | NVar
No Training 99.28% | 0.06 3 Yes Training 99.89% | 0.01 3
Yes Training 99.22% | 0.05 3 Yes Validation 99.66% | 0.02 3
No Validation 99.15% | 0.07 2 No Training 92.30% | 0.25 6
Yes Validation 99.08% | 0.06 2 No Validation 87.10% | 0.39 6
TABLE IV

DESCRIPTION OF THE BENCHMARK DATA SETS. COLUMN “NVAR” SHOWS THE NUMBER OF VARIABLES, COLUMN “NCLA” THE NUMBER OF CLASSES,
AND COLUMN “NEXA” THE NUMBER OF EXAMPLES. SEVERAL RESULTS FOUND IN THE LITERATURE FOR THESE DATA SETS WITH THE WHOLE
SET OF FEATURES ARE ALSO SHOWN (COLUMNS “ML ALG,” “TEST,” “SAMPLING,” AND “REF.”). COLUMN “ML ALG” INDICATES
THE MACHINE LEARNING ALGORITHM USED. MLP + BP MEANS “MLPSs TRAINED WITH BP”

Data Set NVar | NCla | NExa ML Alg Sampling Test Ref.
Australian Credit 15 2 690 MLP+BP 10-fold CV | 85.2% [30]
Cleveland Heart 13 2 303 MLP+BP | 10-fold CV | 81.4% [30]

Hepatitis 19 2 155 MLP+BP 10-fold CV | 79.9% [30]

lonosphere 33 2 351 MLP+BP | 10-fold CV | 90.3% [30]
Sonar 60 2 208 MLP+BP | 10-fold CV | 83.4% [30]
Vehicle 18 4 846 MLP+BP | 10-fold CV | 75.1% [30]
Voting 16 2 435 MLP+BP | 10-fold CV | 95.1% [30]

Lung Cancer 56 3 32 MLP+BP | 5-4-fold CV | 40.0% | This work

The data can be correctly classified only by looking at the sign
of the first two variables. This can be easily done by combining
sines and cosines, the activation functions used in the experi-
ments. This is the reason why we consider this data set an easy
one for FS.

The results of the four aforementioned configurations tested
are shown in Table IIT (column “test”) as the average percentage
of correctly classified patterns on the respective test sets in the
networks with minimum validation set error after every variable
is permanently eliminated. Column “MSE” indicates the mean
SSE on the test set and column “NVar” the number of variables
where these results were obtained (see Fig. 1).

2) Augmented Two Spirals Data Set: In a similar way to the
one used to create the augmented XOR data set, an augmented
version of the well-known two spirals data set? was constructed,
where 13 irrelevant variables were artificially added to (x1, ),
the two original ones. Some of them were noisy. The whole set
of added variables can be seen in Table II. The values of the
input variables were linearly scaled in [—6.5, +6.5] (the range
of the original variables) when they were not in this range. The
target value was that as (21, z2) in the original data set. Each
of the original training, validation, and test sets comprises 194
2-D points with balanced classes. In order to perform the exper-
iments with CV, the three data sets were joined into a single data
set. Results are shown in Table III.

2C source code available in the Carnegie Mellon University Artificial Intelli-
gence Repository [18].

C. Experiments on Benchmark Data Sets

Several widely used data sets for classification problems were
selected from the University of California at Irvine (UCI) [3]
and Statlog [26] repositories. A brief description of these data
sets can be found in Table IV, together with several results found
in the literature for MLPs with these data sets and the whole set
of features.

A summary of the results obtained for every configuration
tested with the SBS procedure for MLPs described in Fig. 1 is
shown in Table V. Detailed results are shown in Table VI.

V. DISCUSSION

A different behavior was observed for the two artificial data
sets (see Section IV-B). Whereas for the augmented XOR data
set no difference was observed among the configurations under
study, only two configurations showed good results in the aug-
mented two spirals data set. The experiments on benchmark data
sets (see Section IV-C) confirmed that the behavior observed in
the augmented XOR data set is not the general rule. However,
it shows that in some cases any of these configurations can be
successfully used. A detailed analysis comparing the behavior
along the FS process is given in this section, providing an ex-
planation of the observed differences.

A. Artificial Data Sets

Fig. 2 shows, for every configuration, the evolution of the
percentage of correct examples in the training and test sets with
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TABLE V
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SUMMARY (FROM TABLE VI) OF THE BEST RESULTS OF DIFFERENT CONFIGURATIONS OF RETRAINING/STOPPING CRITERION TESTED FOR BENCHMARK DATA SETS

Data Set Retrain | Stopping Criterion Test Mse | NVar
Australian Credit Yes Training 87.41% | 0.39 5
Cleveland Heart No Validation 82.85% | 0.53 12

Hepatitis Yes Training 93.90% | 0.24 3

Ionosphere Yes Training 93.61% | 0.22 5

Sonar Yes Validation 89.73% | 0.33 14

Vehicle Yes Validation 79.98% | 0.29 9

Voting Yes Validation 96.69% | 0.11 6

Lung Cancer Yes Validation 86.88% | 0.31 9
TABLE VI

RESULTS OF DIFFERENT CONFIGURATIONS OF RETRAINING/STOPPING CRITERION TESTED FOR BENCHMARK DATA SETS.
FIGURES IN BOLDFACE INDICATE SIGNIFICANT DIFFERENCES OF THE BEST RESULTS

Australian Credit Cleveland Heart

Retrain | Stopping Criterion Test Mse | NVvar Retrain | Stopping Criterion Test Mse | NVar
Yes Training 87.41% | 0.39 5 No Validation 82.85% | 0.53 12
Yes Validation 87.33% | 0.39 6 No Training 82.65% | 0.53 11
No Validation 86.79% | 0.40 7 Yes Training 82.63% | 0.53 12
No Training 86.51% | 0.41 8 Yes Validation 82.58% | 0.53 4

Hepatitis lonosphere

Retrain | Stopping Criterion Test Mse | NVar Retrain | Stopping Criterion Test Mse | NVar
Yes Training 93.90% | 0.24 3 Yes Training 93.61% | 0.22 5
Yes Validation 93.77% | 0.25 3 No Validation 92.77% | 0.24 5
No Validation 88.97% | 0.40 1 Yes Validation 92.73% | 0.24 S
No Training 88.26% | 0.36 3 No Training 92.57% | 0.24 5

Sonar Vehicle

Retrain | Stopping Criterion Test Mse | NVar Retrain | Stopping Criterion Test Mse | NVar
Yes Validation 89.73% | 0.33 14 Yes Validation 79.98% | 0.29 9
Yes Training 87.95% | 0.36 11 Yes Training 79.51% | 0.30 8
No Training 85.02% | 0.46 46 No Validation 78.86% | 0.31 14
No Validation 84.49% | 0.47 50 No Training 78.79% | 0.31 14

Voting Lung Cancer

Retrain | Stopping Criterion Test Mse | NVar Retrain | Stopping Criterion Test Mse | NVar
Yes Validation 96.69% | 0.11 6 Yes Validation 86.88% | 0.31 9
Yes Training 96.43% | 0.12 6 Yes Training 85.30% | 0.33 10
No Training 96.18% | 0.12 8 No Validation 71.41% | 0.57 5
No Validation 96.15% | 0.12 12 No Training 7191% | 0.54 7

respect to the number of eliminated variables in the artificial
data sets.

As expected, the addition of irrelevant features affects very
negatively the performance of sinusoidal MLPs in this problem,
even if overfitting is tried to be controlled. The information
needed to learn the problem is present, but the system is not able
to use it in a proper way. The reason for this fact probably is the
relatively small number of examples in the data set that does not
allow to filter irrelevant features. As far as variables are elimi-

nated, performance improves. However, many variables must be
eliminated to obtain good performance.

1) Augmented XOR Data Set: Results in Table III seem to
indicate that there is no difference among the different config-
urations under study, but this behavior is not the general rule
(see the experiments with the augmented two spirals data set
and benchmark data sets in Section IV-C). As previously men-
tioned, this data set was constructed as a prototype of an easy
FS problem.
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Fig.2. Percentage of correct examples for the artificial data sets in the training and test sets with respect to the number of eliminated variables in the SBS procedure

for MLPs with retraining (top) and without it (bottom).

TABLE VII

ORDER OF VARIABLE ELIMINATION (FROM LEFT, FIRST, TO RIGHT, LAST) FOR THE AUGMENTED TWO SPIRALS DATA SET. FOR EVERY CONFIGURATION,
VARIABLES ON THE RIGHT-HAND SIDE ARE THE MOST IMPORTANT CONSIDERED ONES. THE SYMBOL » INDICATES THE POINT
FROM WHICH THE VARIABLES HAVE BEEN SELECTED

Retrain | Stopping Criterion Order of Variable Elimination
Yes Training T4 T11 T13 T14 T15 T12 T10 L9 T§ T3 T5 T2 B T1 Te X7
Yes Validation X9 T7 T15 T13 T14 T12 T11 T10 T8 T4 T3 T5 P Te T1 X2
No Training X9 1 T13 14 T15 T11 T12 T10 Ts P T2 Te L7 T4 T8 X3
No Validation Z14 T1s Ts T13 T11 12 10 T2 T1 P Te To L7 T4 T T3

2) Augmented Two Spirals Data Set: Different from the aug-
mented XOR data set, the best results were obtained retraining the
network with every feature temporarily removed before com-
puting its saliency. This positive effect can be seen both in the
number of selected features and the overall performance. There
was no significant difference with regard to the stopping crite-
rion. The evolution of the training set error was also better when
retraining is present than without it (see Fig. 2).

3) Comparative Analysis: The order of variable elimination
for the augmented two spirals data set can be seen in Table VII.
Ideally, variables =13, 14, and 215 should never be considered
as important, and variables from z; to z7 should be more im-
portant than variables from zg to x12. The claim about x13, 214,
and z15 is satisfied by all the configurations. However, when re-
training is not performed, several noisy variables (xg or xg, for
example) were considered to be important. This did not happen
when retraining was present and it was not observed for the aug-
mented XOR data set. These results can be explained by looking
at the behavior of every configuration during the SBS procedure,
as explained in the following.

Without retraining, the temporary elimination of any variable
leads to large errors in the training set when compared to the
training error with the whole set of features. The third column
in Table VIII shows this fact for the first step of the SBS pro-
cedure in the augmented two spirals data set. This happened

because the obtained solution after the training process used all
the variables in a significant way. Therefore, the elimination of
a feature substantially modified the obtained function. In addi-
tion, noise-free variables (from x; to x7) did not seem to be
used more than the rest in order to learn the data set. The same
behavior was observed in several subsequent steps. Therefore,
when retraining is not performed the permanent elimination of
a variable is decided in quite a random way. For the augmented
XOR problem, in contrast, a line can be drawn which clearly sep-
arates variables x; to x7 from the rest (see the second column in
Table VIII). The reason for this different behavior is not clear,
but it is probably related to the respective percentages of cor-
rect examples in the test set during the first steps of the SBS
procedure (the augmented two spirals suffers a much stronger
performance degradation than the augmented XOR problem; see
Fig. 2), indicating that irrelevant variables are not equally im-
portant in the respective obtained solutions.

B. Benchmark Data Sets

Similar to the augmented two spirals data set, the best re-
sults for benchmark data sets were obtained by retraining the
network with every feature temporarily removed before com-
puting its saliency (recall that figures in boldface indicate sig-
nificant differences). The retraining of the network turns out to
be critical, although, as previously mentioned, it is hardly used
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TABLE VIII
PERCENTAGE OF CORRECT EXAMPLES IN THE TRAINING SET AFTER THE
TEMPORARY ELIMINATION OF EVERY VARIABLE IN THE FIRST STEP OF
THE SBS PROCEDURE WITHOUT RETRAINING. THE FIRST COLUMN
INDICATES THE TEMPORARILY ELIMINATED VARIABLE. VARIABLES
WITH LARGE PERCENTAGES CAN BE INTERPRETED AS VARIABLES
THAT ARE NOT VERY IMPORTANT IN THE OBTAINED SOLUTION.
NOTE THAT THE WHOLE SET OF FEATURES ALLOWS
THE TRAINING SET TO FIT PERFECTLY

Variable | Augmented XOR | Augmented Two Spirals
1 84.55% 60.56%
T2 83.38% 59.58%
T3 84.40% 51.34%
T4 82.70% 52.39%
s - 66.27%
Te 90.60% 59.08%
7 88.97% 57.59%
g 98.30% 54.17%
g 97.90% 52.95%
10 - 65.12%
T11 96.25% 61.40%
T12 94.73% 59.86%
T13 94.53% 54.94%
T14 97.92% 61.87%
15 96.32% 61.23%

None 100.0% 100.0%

in practice. Therefore, the increase in the computational cost
associated with this scheme is rewarded with a significant per-
formance improvement.

Regarding the stopping criterion, it is unclear which is the
best choice. For the sonar data set, the “validation™ strategy
worked best. For the ionosphere data set, in contrast, the
“training” strategy selected a better subset of variables.3 For
the rest of the problems, both configurations can be considered
as equivalent. The goodness of the “validation” configuration
can be intuitively explained, since it tries to obtain the best
possible generalization results at every step. The “training”
configuration, in contrast, improves performance by forcing
overtraining (and measuring the SSE in a validation set). This
is a nonintuitive result. The explanation pointed out in [35] is
that forcing the system to use all the available features as much
as possible makes irrelevant variables more outstanding when
the system is not allowed to use them, since it leads to larger
saliency differences.

Although in a different scale, a similar behavior to that of the
augmented two spirals data set was observed. First, the training
set could be fitted with a much smaller subset of features than
the original one. Regarding generalization results, performance
improved until a subset of features remained for which the elimi-
nation of further variables resulted in performance degradation.
This behavior seems to reveal the existence of irrelevant vari-
ables that the SBS procedure has detected and eliminated. How-
ever, the differences among the different configurations suggest
that, as in the augmented two spirals data set, there are several

3Equal number of variables does not imply the same variables.

variables that allow to fit the training set, but do not provide
good generalization. The number of available examples is not
large enough to filter these variables.

Finally, an important improvement in the overall results can
be appreciated with respect to learning with the whole set of
variables (see Tables IV and V) An important reduction in the
final number of selected variables is also observed. The good
results obtained when retraining is present are mainly due, in
our opinion, to a proper detection of irrelevant variables.

VI. CONCLUSION AND FUTURE WORK

An experimental study comparing different criteria to per-
form FS with MLPs and the SBS procedure within the wrapper
approach has been carried out. Two decision issues have been
highlighted and studied, namely, the stopping criterion for the
network training and the network retraining before computing
the saliency.

Experimental results on artificial and benchmark data sets
indicate that the increase in the computational cost associated
with retraining the network with every feature temporarily re-
moved before computing its saliency is rewarded with a signif-
icant performance improvement. Despite being quite intuitive,
this strategy has been hardly used in practice, probably because
of its high computational cost. This issue turns out to be critical.
A somehow nonintuitive conclusion can be drawn by looking at
the stopping criterion, where it is suggested that forcing over-
training may be as useful as early stopping.

A significant improvement in the overall results with respect
to learning with the whole set of variables has been obtained,
with an important reduction in the final number of selected vari-
ables. To our knowledge, the obtained results would rank among
the top results with MLPs for the data sets tested. Parentheti-
cally, this confirms that FS plays a very important role for MLPs,
specially when the number of available examples is small. In our
opinion, the good results obtained are mainly due to a proper de-
tection of irrelevant variables.

In summary, for FS with MLPs using the SBS procedure and
the SSE as evaluation criterion, we recommend to retrain the
network with every feature temporarily removed before com-
puting its saliency, specially, for complex problems. A literature
review indicates that this is not the most common approach.

We claim that these recommendations can be extended to
other neural models and other search strategies that could be
adjusted to the required specifications. For example, it could
be performed with support vector machines [45] using some
function of the margin as saliency and different hardness of the
margin as the stopping criterion.

The main drawback of the SBS procedure for MLPs pre-
sented in this work is its computational cost, particularly when
retraining is performed. Training algorithms faster than BP may
obviously be used, but BP was not the main source of the com-
putational cost in our experiments. The algorithm is quadratic
with respect to the number of variables, and the first steps of
the algorithm, when many irrelevant variables still remain, take
most of the computational time. Several heuristics can be de-
signed to eliminate the most clearly irrelevant variables with
a low computational cost. Then, when a reasonable number of
features remains, the whole procedure will start. An alternative
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solution can be to parallelize the process of elimination of one
variable (that is, the retraining of the network with every feature
temporarily removed).

The network architecture can also be considered as part of the
process, since it might happen that different set of variables need
different network parameters. Constructive or adaptive learning
algorithms can be used to this end.

The analysis of the experiments on artificial data sets sug-
gests that the number of examples (with respect to the input
dimension) can explain the different behavior of the different
configurations tested. This issue deserves further research. Sev-
eral experiments can be designed in order to study whether the
differences observed among the configurations are maintained
or not when the number of examples vary.

A theoretical analysis, that could shed light on how and why
a particular combination is better than others or whether there
is any relationship between the selection of a combination of
network retraining/stopping criterion and the bias/variance
tradeoff, would also be interesting.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable suggestions.

REFERENCES

[1] B.Baesens, S. Viaene, J. Vanthienen, and G. Dedene, “Wrapped feature
selection by means of guided neural network optimisation,” in Proc.
Int. Conf. Pattern Recognit., 2000, vol. 2, pp. 113-116.

[2] C. M. Bishop, Neural Networks for Pattern Recognition. New York:
Oxford Univ. Press, 1995.

[3] C. L. Blake and C. J. Merz, “UCI repository of machine learning

databases,” Dept. Inf. Comput. Sci., Univ. California, Irvine, CA,

1998 [Online]. Available: http://www.ics.uci.edu/mlearn/MLReposi-

tory.html

A. L. Blum and P. Langley, “Selection of relevant features and exam-

ples in machine learning,” Artif. Intell., vol. 97, no. 1-2, pp. 245-271,

1997.

[5] S.Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their applications to non-linear system identification,” Int. J. Con-
trol, vol. 50, no. 5, pp. 1873-1896, 1989.

[6] T. Cibas, F. F. Soulié, P. Gallinari, and S. Raudys, “Variable selection
with optimal cell damage,” in Proc. Int. Conf. Artif. Neural Netw., 1994,
vol. 1, pp. 727-730. .

[7] T. Cibas, F. F. Soulié, P. Gallinari, and S. Raudys, “Variable selection
with neural networks,” Neurocomputing, vol. 12, no. 2-3, pp. 223-248,
1996.

[8] P. Domingos, “A unified bias-variance decomposition and its applica-
tions,” in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 231-238.

[9] M. Egmont-Petersen, W. R. M. Dassen, and J. H. C. Reiber, “Sequen-
tial selection of discrete features for neural networks—A Bayesian
approach to building a cascade,” Pattern Recognit. Lett., vol. 20, no.
11-13, pp. 1439-1448, 1999.

[10] M. Egmont-Petersen, J. L. Talmon, A. Hasman, and A. W. Ambergen,
“Assessing the importance of features for multi-layer perceptrons,”
Neural Netw., vol. 11, no. 4, pp. 623-635, 1998.

[11] A.P.Engelbrecht, “A new pruning heuristic based on variance analysis
of sensitivity information,” IEEE Trans. Neural Netw., vol. 12, no. 6,
pp. 1386-1399, Nov. 2001.

[12] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Comput., vol. 4, no. 1, pp. 1-58, 1992.

[13] Y. Grandvalet, “Anisotropic noise injection for input variables rele-
vance determination,” /EEE Trans. Neural Netw., vol. 11, no. 6, pp.
1201-1212, Nov. 2000.

[14] 1. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.

[15] 1. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the
NIPS 2003 feature selection challenge,” in Advances in Neural Infor-
mation Processing Systems. Cambridge, MA: MIT Press, 2005, vol.
17, pp. 545-552.

[4

=

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008

[16] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information
Processing Systems. San Mateo, CA: Morgan Kaufmann, 1993, vol.
S, pp. 164-171.

[17] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the
subset selection problem,” in Proc. 11th Int. Conf. Mach. Learn., 1994,
pp. 121-129.

[18] M. Kantrowitz, “CMU artificial intelligence repository,” Schl.
Comput. Sci., Univ. Carnegie Mellon, Pittsburgh, PA, 1993 [Online].
Available: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-reposi-
tory/ai/areas/n% eural/bench/cmu

[19] J. Kittler, “Feature set search algorithms,” in Pattern Recognition and
Signal Processing, C. H. Chen, Ed.  Alphen ann den Rijn, The Nether-
lands: Sijthoff & Noordhoff, 1978, pp. 41-60.

[20] N. Kwak and C. H. Choi, “Input feature selection for classification
problems,” IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 143-159, Jan.
2002.

[21] H. C. Lac and D. A. Stacey, “Feature subset selection via multi-objec-
tive genetic algorithm,” in Proc. Int. Joint Conf. Neural Netw., 2005,
vol. 3, pp. 1349-1354.

[22] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,”
in Advances in Neural Information Processing Systems. San Mateo,
CA: Morgan Kaufmann, 1990, vol. 2, pp. 598-605.

[23] J. Li, M. T. Manry, P. L. Narasimha, and C. Yu, “Feature selection
using a piecewise linear network,” IEEE Trans. Neural Netw., vol. 17,
no. 5, pp. 1101-1115, Sep. 2006.

[24] H.Liu and H. Motoda, Feature Selection for Knowledge Discovery and
Data Mining. Norwell, MA: Kluwer, 1998.

[25] J. Mao, K. Mohiuddin, and A. K. Jain, “Parsimonious network design
and feature selection through node pruning,” in Proc. Int. Conf. Pattern
Recognit., 1994, vol. 2, pp. 622-624.

[26] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine Learning,
Neural and Statistical Classification. Chichester, U.K.: Ellin Hor-
wood, 1994 [Online]. Available: http://www.amsta.leeds.ac.uk/
~charles/statlog

[27] J.Moody andJ. Utans, “Principled architecture selection for neural net-
works: Application to corporate bond rating prediction,” in Advances
in Neural Information Processing Systems. San Mateo, CA: Morgan
Kaufmann, 1992, vol. 4, pp. 683-690.

[28] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for trim-
ming the fat from a network via relevance assessment,” in Advances
in Neural Information Processing Systems. San Mateo, CA: Morgan
Kaufmann, 1989, vol. 1, pp. 107-115.

[29] V. Onnia, M. Tico, and J. Saarinen, “Feature selection method using
neural network,” in Proc. Int. Conf. Image Process., 2001, vol. 1, pp.
513-516.

[30] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical
study,” J. Artif. Intell. Res., vol. 11, pp. 169-198, 1999.

[31] K. L. Priddy, S. E. Rogers, D. W. Ruck, and G. L. Tarr, “Bayesian
selection of important features for feedforward neural networks,” Neu-
rocomputing, vol. 5, no. 2-3, pp. 91-103, 1993.

[32] P.Pudil, J. Novovicov4, and J. Kittler, “Floating search methods in fea-
ture selection,” Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119-1125,
1994.

[33] R. Reed, “Pruning algorithms—A survey,” IEEE Trans. Neural Net-
works, vol. 4, no. 5, pp. 740-747, Sep. 1993.

[34] B. D. Ripley, “Statistical ideas for selecting network architectures,” in
Neural Networks: Artificial Intelligence and Industrial Applications,
B. Kappen and S. Gielen, Eds. London, U.K.: Springer-Verlag, 1995,
pp. 183-190.

[35] E. Romero, J. M. Sopena, G. Navarrete, and R. Alquézar, “Feature
selection forcing overtraining may help to improve performance,” in
Proc. Int. Joint Conf. Neural Netw., 2003, vol. 3, pp. 2181-2186.

[36] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using
a multilayer perceptron,” J. Neural Netw. Comput., vol. 2, no. 2, pp.
40-48, 1990.

[37] R. Setiono and H. Liu, “Neural-network feature selector,” IEEE Trans.
Neural Netw., vol. 8, no. 3, pp. 654-662, May 1997.

[38] W. Siedlecki and J. Sklansky, “On automatic feature selection,” Int. J.
Pattern Recognit. Artif. Intell., vol. 2, no. 2, pp. 197-220, 1988.

[39] J. M. Sopena, E. Romero, and R. Alquézar, “Neural networks with
periodic and monotonic activation functions: A comparative study in
classification problems,” in Proc. 9th Int. Conf. Artif. Neural Netw.,
1999, vol. 1, pp. 323-328.

[40] A. Stahlberger and M. Riedmiller, “Fast network pruning and feature
extraction using the Unit-OBS algorithm,” in Advances in Neural Infor-
mation Processing Systems. Cambridge, MA: MIT Press, 1997, vol.
9, pp. 655-661.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:25 from IEEE Xplore. Restrictions apply.



ROMERO AND SOPENA: PERFORMING FEATURE SELECTION WITH MULTILAYER PERCEPTRONS

[41]

[42]

[43]

[44]

[45]
[46]

(471

(48]

J. M. Steppe and K. W. Bauer, “Improved feature screening in feed-
forward neural networks,” Neurocomputing, vol. 13, no. 1, pp. 47-58,
1996.

J. M. Steppe, K. W. Bauer, and S. K. Rogers, “Integrated feature and
architecture selection,” IEEE Trans. Neural Netw., vol. 7, no. 4, pp.
1007-1013, Jul. 1996.

G. Taguchi, Taguchi on Robust Technology Development: Bringing
Quality Engineering Upstream. New York: ASME, 1993.

P. Van de Laar, T. Heskes, and S. Gielen, “Partial retraining: A new
approach to input relevance determination,” Int. J. Neural Syst., vol. 9,
no. 1, pp. 75-85, 1999.

V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

A. Verikas and M. Bacauskiene, “Feature selection with neural net-
works,” Pattern Recognit. Lett., vol. 23, no. 11, pp. 1323-1335, 2002.
P. Zhang, B. Verma, and K. Kumar, “A neural-genetic algorithm for
feature selection and breast abnormality classification in digital mam-
mography,” in Proc. Int. Joint Conf. Neural Netw., 2004, vol. 3, pp.
2303-2308.

J. M. Zurada, A. Malinowski, and S. Usui, “Perturbation method for
deleting redundant inputs of perceptron networks,” Neurocomputing,
vol. 14, no. 2, pp. 177-193, 1997.

441

Enrique Romero received the B.Sc. degree in
mathematics from the Universitat Autonoma de
Barcelona, Barcelona, Spain, in 1989, and the B.Sc.
and Ph.D. degrees in computer science from the Uni-
versitat Politecnica de Catalunya (UPC), Barcelona,
Spain, in 1994 and 2004, respectively.

In 1996, he joined the Department of Llenguatges
i Sistemes Informatics, UPC, as an Assistant
Professor. His research interests include pattern
recognition, neural networks, support vector ma-
chines, and feature selection.

Josep Maria Sopena received the B.S. and Ph.D.
degrees in psychology from the Universitat de
Barcelona, Barcelona, Spain, in 1980 and 1985,
respectively.

Since 1986, he has been an Associate Professor at
the Universitat de Barcelona. His research interests
include machine learning, pattern recognition, neural
networks, and computational linguistics.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:25 from IEEE Xplore. Restrictions apply.



