Bruce Eckel's Thinking in Java Contents | Prev | Next

You must create

all the objects

When you create a handle, you want to connect it with a new object. You do so, in general, with the new keyword. new says, “Make me a new one of these objects.” So in the above example, you can say:

String s = new String("asdf");

Not only does this mean “Make me a new String,” but it also gives information about how to make the String by supplying an initial character string.

Of course, String is not the only type that exists. Java comes with a plethora of ready-made types. What’s more important is that you can create your own types. In fact, that’s the fundamental activity in Java programming, and it’s what you’ll be learning about in the rest of this book.

Where storage lives

It’s useful to visualize some aspects of how things are laid out while the program is running, in particular how memory is arranged. There are six different places to store data:

  1. Registers. This is the fastest storage because it exists in a place different than that of other storage: inside the processor. However, the number of registers is severely limited, so registers are allocated by the compiler according to its needs. You don’t have direct control, nor do you see any evidence in your programs that registers even exist.
  2. The stack . This lives in the general RAM (random-access memory) area, but has direct support from the processor via its stack pointer . The stack pointer is moved down to create new memory and moved up to release that memory. This is an extremely fast and efficient way to allocate storage, second only to registers. The Java compiler must know, while it is creating the program, the exact size and lifetime of all the data that is stored on the stack, because it must generate the code to move the stack pointer up and down. This constraint places limits on the flexibility of your programs, so while some Java storage exists on the stack – in particular, object handles – Java objects are not placed on the stack.
  3. The heap . This is a general-purpose pool of memory (also in the RAM area) where all Java objects live. The nice thing about the heap is that, unlike the stack, the compiler doesn’t need to know how much storage it needs to allocate from the heap or how long that storage must stay on the heap. Thus, there’s a great deal of flexibility in using storage on the heap. Whenever you need to create an object, you simply write the code to create it using new and the storage is allocated on the heap when that code is executed. And of course there’s a price you pay for this flexibility: it takes more time to allocate heap storage.
  4. Static storage . “Static” is used here in the sense of “in a fixed location” (although it’s also in RAM). Static storage contains data that is available for the entire time a program is running. You can use the static keyword to specify that a particular element of an object is static, but Java objects themselves are never placed in static storage.
  5. Constant storage . Constant values are often placed directly in the program code, which is safe since they can never change. Sometimes constants are cordoned off by themselves so that they can be optionally placed in read-only memory (ROM).
  6. Non-RAM storage . If data lives completely outside a program it can exist while the program is not running, outside the control of the program. The two primary examples of this are streamed objects, in which objects are turned into streams of bytes, generally to be sent to another machine, and persistent objects, in which the objects are placed on disk so they will hold their state even when the program is terminated. The trick with these types of storage is turning the objects into something that can exist on the other medium, and yet can be resurrected into a regular RAM-based object when necessary. Java 1.1 provides support for lightweight persistence , and future versions of Java might provide more complete solutions for persistence.

Special case: primitive types

There is a group of types that gets special treatment; you can think of these as “primitive” types that you use quite often in your programming. The reason for the special treatment is that to create an object with new, especially a small, simple variable, isn’t very efficient because new places objects on the heap. For these types Java falls back on the approach taken by C and C++. That is, instead of creating the variable using new, an “automatic” variable is created that is not a handle . The variable holds the value, and it’s placed on the stack so it’s much more efficient.

Java determines the size of each primitive type. These sizes don’t change from one machine architecture to another as they do in most languages. This size invariance is one reason Java programs are so portable.

Primitive type

Size

Minimum

Maximum

Wrapper type

boolean

1-bit

Boolean

char

16-bit

Unicode 0

Unicode 2 16- 1

Character

byte

8-bit

-128

+127

Byte[11]

short

16-bit

-215

+215 – 1

Short1

int

32-bit

-231

+231 – 1

Integer

long

64-bit

-263

+263 – 1

Long

float

32-bit

IEEE754

IEEE754

Float

double

64-bit

IEEE754

IEEE754

Double

void

Void1

All numeric types are signed, so don’t go looking for unsigned types.

The primitive data types also have “wrapper” classes for them. That means that if you want to make a non-primitive object on the heap to represent that primitive type, you use the associated wrapper. For example:

char c = 'x';

Character C = new Character(c);

or you could also use:

Character C = new Character('x');

The reasons for doing this will be shown in a later chapter.

High-precision numbers

Java 1.1 has added two classes for performing high-precision arithmetic: BigInteger and BigDecimal. Although these approximately fit into the same category as the “wrapper” classes, neither one has a primitive analogue.

Both classes have methods that provide analogues for the operations that you perform on primitive types. That is, you can do anything with a BigInteger or BigDecimal that you can with an int or float, it’s just that you must use method calls instead of operators. Also, since there’s more involved, the operations will be slower. You’re exchanging speed for accuracy.

BigInteger supports arbitrary-precision integers. This means that you can accurately represent integral values of any size without losing any information during operations.

BigDecimal is for arbitrary-precision fixed-point numbers; you can use these for accurate monetary calculations, for example.

Consult your online documentation for details about the constructors and methods you can call for these two classes.

Arrays in Java

Virtually all programming languages support arrays. Using arrays in C and C++ is perilous because those arrays are only blocks of memory. If a program accesses the array outside of its memory block or uses the memory before initialization (common programming errors) there will be unpredictable results. [12]

One of the primary goals of Java is safety, so many of the problems that plague programmers in C and C++ are not repeated in Java. A Java array is guaranteed to be initialized and cannot be accessed outside of its range. The range checking comes at the price of having a small amount of memory overhead on each array as well as verifying the index at run time, but the assumption is that the safety and increased productivity is worth the expense.

When you create an array of objects, you are really creating an array of handles, and each of those handles is automatically initialized to a special value with its own keyword: null. When Java sees null, it recognizes that the handle in question isn’t pointing to an object. You must assign an object to each handle before you use it, and if you try to use a handle that’s still null, the problem will be reported at run-time. Thus, typical array errors are prevented in Java.

You can also create an array of primitives. Again, the compiler guarantees initialization because it zeroes the memory for that array.

Arrays will be covered in detail in later chapters.


[11] In Java version 1.1 only, not in 1.0.

[12] In C++ you should often use the safer containers in the Standard Template Library as an alternative to arrays.

Contents | Prev | Next