

1

UPGRADE

 is the European Journal for the
Informatics Professional, published bimonthly at
<http://www.upgrade-cepis.org/>

Publisher

UPGRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
<http://www.cepis.org/>) by NOVÁTICA
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS
society ATI (Asociación de Técnicos de Informática
<http://www.ati.es/>).
UPGRADE is also published in Spanish (full issue printed, some
articles online) by NOVÁTICA, and in Italian (abstracts and some
articles online) by the Italian CEPIS society ALSI
<http://www.alsi.it> and the Italian IT portal Tecnoteca
<http://www.tecnoteca.it/>.
UPGRADE was created in October 2000 by CEPIS and was first
published by NOVÁTICA and INFORMATIK/INFORMATIQUE,
bimonthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>).

Editorial Team

Chief Editor: Rafael Fernández Calvo, Spain <rfcalvo@ati.es>
Associate Editors:
• François Louis Nicolet, Switzerland, <nicolet@acm.org>
• Roberto Carniel, Italy, <carniel@dgt.uniud.it>

Editorial Board

Prof. Wolffried Stucky, CEPIS President
Fernando Piera Gómez and
Rafael Fernández Calvo, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

English Editors:

 Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green, Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson.

Cover page

 designed by Antonio Crespo Foix, © ATI 2003

Layout:

 Pascale Schürmann

E-mail addresses for editorial correspondence:
<nicolet@acm.org> and <rfcalvo@ati.es>

E-mail address for advertising correspondence:
<novatica@ati.es>

Upgrade Newslist

 available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright

© NOVÀTICA 2003. All rights reserved. Abstracting is permitted
with credit to the source. For copying, reprint, or republication
permission, write to the editors.

The opinions expressed by the authors are their exclusive
responsibility.

ISSN 1684-5285

Vol. IV, No. 4, August 2003

Joint issue with N

OVÁTICA

2 Presentation: Software Engineering. A Dream Coming True?
–

Luis Fernández-Sanz

The guest editor presents the issue, that focuses on a really broad field like Software Engineering
(SE) which has been driving the evolution of software development since the late sixties of the past
century. The papers cover different areas of interest related to the application of engineering
principles to software development and maintenance. As usual, a list of useful references is also
included for those interested in knowing more about this subject.

5 Software Project Management. Adding Stakeholder Metrics to Agile Projects

 – Tom Gilb

In this article the author offers an analysis of the implications of the new agile methods in the field
of software development.

10 Model-Driven Development and UML 2.0. The End of Programming as We
Know It?

 – Morgan Björkander

This paper focuses on the idea of a truly model-driven software and analyses the influence that the
new version of UML (Unified Modeling Language) is having on this process.

15 Component-Based Software Engineering

 – Alejandra Cechich and Mario
Piattini-Velthuis

This paper studies the important role that components play in the field of Software Engineering.

21 An Overview of Software Quality

 – Margaret Ross

The author reviews important issues concerning quality in software development and also deals with
the issues of users with disabilities and the influence of legislation regulating this aspect.

26 Lessons Learned in Software Process Improvement

 – José-Antonio Calvo-
Manzano Villalón, Gonzalo Cuevas-Agustín, Tomás San Feliu-Gilabert, Antonio
de Amescua-Seco, Mª Magdalena Arcilla-Cobián, and José-Antonio Cerrada-
Somolinos

This paper describes the lessons learned by SOMEPRO, a Software Engineering R & D group in the
Universidad Politécnica de Madrid, in more than ten software process improvement projects.

30 A New Method for Simultaneous Application of ISO/IEC 15504 and ISO
9001:2000 in Software SME’s

 – Antònia Mas-Pichaco and Esperança
Amengual-Alcover

The authors offer their view, based on practical experiences, of the always thorny problem of
applying best software development practices to organizations where resources are especially
limited.

37 Empirically-based Software Engineering

 – Martin Shepperd

This paper presents an overview of empirical Software Engineering and its implications for
practitioners and researchers in four areas (object-orientation, inspections, formal specification
and project failure factors.)

42 Software Engineering Professionalism

 – Luis Fernández-Sanz and María-José
García-García

The aim of this paper is to provide a brief overview of what goes into making up our true perception
of software engineers as specialised professionals within the field of Information Technologies.

47 Searching for the Holy Grail of Software Engineering

 – Robert L. Glass

In this article, the author defends eclecticism in development methods and the contribution that
Software Engineering should make in this respect whenever the nature of a project demands flexible
methods in order to be successful.

49 Free Software Engineering: A Field to Explore

 – Jesús M. González-Barahona
and Gregorio Robles

This article analises the existing points of contact between Software Engineering and the
development of free software, and puts forward a few future lines of research in this respect.

Software Engineering – State of an Art

Guest Editor:

Luis Fernández-Sanz

Next issue (Oct. 2003):
“e-Learning – Borderless
Education”

http://www.upgrade-cepis.org
http://www.ati.es/novatica/infonovatica_eng.html

Software Engineering – State of an Art

© Novática UPGRADE Vol. IV, No. 4, August 2003 49

Free Software Engineering: A Field to Explore

Jesús M. González-Barahona and Gregorio Robles

The challenge of free software is not that of a new competitor who, under the same rules, produces software
faster, cheaper and of a better quality. Free software differs from ‘traditional’ software in more fundamental
aspects, starting with philosophical reasons and motivations, continuing with new economic and market
rules and ending up with a different way of producing software. Software Engineering cannot ignore this
phenomenon, and the last five years or so has seen ever more research into all these issues. This article takes
a look at the most significant studies in this field and the results they are producing, with a view to providing
the reader with a vision of the state of the art and the future prospects of what we have come to call free
Software Engineering.

Keywords: Software Engineering, free Software Engineer-
ing, free software.

Introduction
Although free software1 has been developed for several

decades, only for the last few years have we begun to pay atten-
tion to its development models and processes from the point of
view of Software Engineering. Just as there is no single devel-
opment model for proprietary software, neither is there only
one in the free software world [11], but, that said, some inter-
esting features are shared by a large number of the projects we
have looked at, features which may be at the root of free soft-
ware.

In 1997 Eric S. Raymond published his first, widely read
article “The cathedral and the bazaar” [18], in which he
describes some characteristics of free software development
models, laying great stress on what differentiates these models
from proprietary development models. Since then that article
has become one of the best known (and most criticised) in the
free software world, and to a certain extent, was the starting
pistol for the development of free Software Engineering.

The Cathedral and the Bazaar
Raymond makes an analogy between the way mediaeval

cathedrals were built and the classic way of producing soft-
ware. He argues that in both cases there is a clear distribution
of tasks and roles, with the designer on top of everything,
controlling the process from beginning to end. Planning is
strictly controlled in both cases, giving rise to clearly defined
processes in which, ideally, everyone taking part in the activity
has a very limited and specific role to play.

Included in what Raymond views as the cathedral building
model are not only the heavyweight processes of the software
industry (the classic cascade model, the different aspects of the
Rational Unified Process, etc.), but also some free software
projects, as is the case of GNU, <http://www.gnu.org/>, and
NetBSD, <http://www.NetBSD.org/>. According to Raymond,
these projects are highly centralized, since only a few people
are responsible for the design and implementation of the soft-
ware. The tasks these people perform and the roles they play
are perfectly defined, and anyone wanting to join the develop-
ment team would need to be assigned a task and a role accord-
ing to the needs of the project. Another feature is that releases
of this type of programme tend to be spaced out over time,
following a fairly strict schedule. This leads to having few
releases of the software with lengthy intervals between each

1. Note from the Editor of Upgrade: Our editorial policy is to
continue to use, in English, the term ‘free software’, though we
are aware that the term ‘open source software’, or simply ‘open
source’, appears to be winning the battle; ‘libre software’ is also
gaining popularity because it avoids the ambiguity of the English
word ‘free’.

1

2

Jesús M. González Barahona is a professor at the Universidad
Rey Juan Carlos, Madrid, Spain. He researches in the field of
distributed systems and large scale peer to peer computing. He is
also interested in free / open source Software Engineering. He
began working on the promotion of free software in 1991. He is
currently collaborating on several free software projects (includ-
ing Debian), and he collaborates with associations such as His-
palinux and EuroLinux, writes in several media on free software
related matters, and advises companies on their strategies related
to these issues. He is a member of ATI, coordinator of the Free
Software section of Novática, and has also been a guest editor of
several monographs in Novática and Upgrade.
<jgb@gsyc.escet.urjc.es>

Gregorio Robles is a professor at the Universidad Rey Juan
Carlos, Madrid, Spain. His research work is centred on the study
of free software development from an engineering point of view
and especially with regard to quantitative issues. He has devel-
oped or collaborated on the design of programmes to automate
the analysis of free software and the tools used to produce them.
He was also involved in the FLOSS study of free software
financed by the European Commission IST programme.
<grex@gsyc.escet.urjc.es>

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

Software Engineering – State of an Art

50 UPGRADE Vol. IV, No. 4, August 2003 © Novática

one, and means that the programmes have clearly defined
stages.

The opposite to the cathedral model is the bazaar. According
to Raymond, some free software programmes, especially the
Linux kernel, have been developed along similar lines to an
oriental bazaar. In a bazaar there is no governing authority
controlling the processes being developed or carefully planning
each move. And the roles of those taking part can change
constantly (sellers can become customers) without any instruc-
tions from outside.

But perhaps the most novel thing about Raymond’s book
[18] is how he describes the process that has turned Linux into
a success story in the free software world; it is a series of ‘good
methods’ to take full advantage of the possibilities afforded by
the availability of source code and interactivity through the use
of telematic systems and tools.

A free software project tends to be born as a result of a purely
personal action; it starts with a developer who finds him or
herself unable to solve a problem fully. The developer must
have the knowledge required to at least begin to solve it. Once
he or she has managed to get something usable, simple, with
some functionality, if possible, well designed or written, the
best thing they can do is to share that solution with the free soft-
ware community. This is what is known in the free software
world as releasing early and it has the effect of attracting the
attention of other people (generally developers) who have the
same problem and who may be interested in the solution.

One of the basic principles of this development model is to
consider users as co-developers. They need to pampered, not
only because they can provide publicity by word of mouth, but
also because they will carry out one of the most expensive tasks
that there is in software production: the testing. Unlike co-
development, which is not readily scalable, debugging and
testing are by nature highly parallelable. It’s the user who takes
the software and tests it on his or her machine under specific
conditions (an architecture, some tools, etc.), a task which,
multiplied by a large number of architectures and environ-
ments, would require a major effort from the development
team.

If users are treated as developers then there is the possibility
that one of them will find an error, correct it, and send a patch
to the developer of the project so that the problem will be
solved in the next version. It may also happen that, for example,
the problem is eventually understood and corrected by a differ-
ent person from the one who original pinpointed the error.
Whatever the case, all of these scenarios are clearly very advan-
tageous to the development of the software, and a dynamic of
this nature is highly beneficial to software development.

This situation becomes even more effective with frequent
releases, since the motivation to find, notify and correct errors
is high as problems are seen to be addressed immediately.
There are also spin-off advantages, such as the fact that as inte-
gration is performed frequently – ideally at least once a day – a
final phase of integration of the modules making up the
programme is rendered unnecessary. This principle is known as
releasing often and allows for great modularity [17] while
maximizing the publicity effect of releasing a new version of

the software. As can be seen in [5], release management in
large scale projects tends to follow a well-defined and some-
what complex process.

To prevent frequent releasing from putting off users who
value stability over speed of software evolution, some free soft-
ware projects have several branches of development running in
parallel. The best known case is the Linux kernel, which has a
stable branch – aimed at those people who value its reliability
– and another, unstable branch – targeting developers – with the
latest innovations and features.

Leadership and Decision Taking in the Bazaar
Raymond assumes that every free software project must

have a ‘benevolent dictator’, a kind of leader – who is usually
the project’s founder –, responsible for guiding the project and
who always has the last word at decision taking time. The skills
this person needs to have are mainly the ability to motivate and
coordinate a project, understand the users and co-developers,
reach consensuses and integrate anything that might contribute
something to the project. Readers may notice that we haven’t
mentioned technical competence as one of the most important
requirements, though that wouldn’t come amiss either.

With the growth in size of and number of developers involved
in some free software projects, new ways of organizing the
decision taking process have begun to emerge. Linux, for
example, has a hierarchical structure based on the delegation of
responsibilities by Linus Torvalds, the ‘benevolent dictator’
(see <http://www.linux.org/>.) This leads to a situation where
there are parts of Linux with their own ‘benevolent dictators’,
although their ‘power’ is limited by the fact that Linus Torvalds
will always have the last word. This case is a clear example of
how the high degree of modularity that exists in a free software
project has given rise to a specific organizational and decision
taking process [17].

The Apache Foundation, <http://www.apache.org/>, on the
other hand is more of a ‘meritocracy’, since it has a manage-
ment committee made up of people who have made significant
contributions to the project. It is not in fact a meritocracy in the
strictest sense of the word, one in which those who contribute
the most have most say in what goes on, since the management
committee is democratically elected every so often by
members of the Apache Foundation (who are responsible for
the management of several free software projects, including
Apache, Jakarta, etc.). To become a member of the Apache
Foundation you need to have made a continuous and major
contribution to one or more projects of the foundation. This
system is also used in other large scale projects, such as
FreeBSD, <http://www.freebsd.org/>, or GNOME,
<http://www.gnome.org/>.

Another interesting instance of formal organization is the
GCC Steering Commitee, <http://gcc.gnu.org/steering.html>.
It was created in 1998 to prevent anyone from taking control of
the GCC project (GNU Compiler Collection, GNU’s compila-
tion system) and backed by the FSF (Free Software Founda-
tion, <http://www.fsf.org>), a promoter of the GNU project, a
few months later. In a sense it is a committee which follows in
the tradition of a similar one governing the egcs project (which

3

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

Software Engineering – State of an Art

© Novática UPGRADE Vol. IV, No. 4, August 2003 51

for a time ran parallel to the GCC project, but later came to join
it). Its basic mission is to ensure that the GCC project respects
its own ‘Mission Statement’. The committee members are
elected on an individual basis by the project itself, so that to a
greater or lesser extent they represent the various communities
collaborating in the development of GCC (language support
developers, kernel developers, groups interested in embedded
programming, etc.).

A person’s leadership of a free software project does not have
to be carved in stone. There are two basic reasons why a project
leader should stand down. The first reason is through lack of
interest, time or motivation to carry on. In this case he or she
should pass the baton to another developer to take on the role
of project leader. Recent studies [7] show that the leadership of
projects tends to change hands frequently, with several ‘gener-
ations’ of developers leading projects over a period of time.
The second reason is more problematical: code forking. Free
software licences allow anyone to take the code, modify it and
redistribute it without the approval of the project leader. This
does not tend to happen as a rule, except in cases when it is
done deliberately to outflank the project leader (and prevent his
or her possible veto of a contribution). This is a clear case of a
kind of ‘coup d’état’, however legal and legitimate such an
action might be. For this reason one of the main reasons why a
project leader tries to keep his co-developers happy is to mini-
mize the risk of code forking.

Processes in Free Software
Although free software is not necessarily associated with

any specific software development process, there is a broad
consensus on the most common processes used. That is not to
say that there are not free software projects created using
classic processes such as the cascade model. But generally
speaking, the development model of free software projects
tends to be more informal, largely due to the fact that the devel-
opment team performs the tasks voluntarily and for no financial
gain, at least none of a direct nature.

The way requirements are captured in the free software world
depends both on the ‘age’ and the size of the project. In the
early stages, the project founder and user tend to be one and the
same person. Later, if the project grows, requirements capture
tends to take place via e-mailing lists and there is usually a
clear distinction between the development team – or at least the
most active developers – and the users. For major projects, with
a great many users and developers, requirements are captured
via the same tool used for error management. In this case, we
talk about activities rather than errors, although the mechanism
used to manage them is the same as is used for error correction
(they are classified by importance, dependence, etc. and can be
used to monitor whether errors have been corrected or not). The
use of this planning tool is a relatively recent innovation, and is
a clear indication that in the free software world there has been
an evolution from a total lack of any management system to a
centralized system of engineering management, albeit a fairly
limited one. However, the typical requirements capture docu-
ment of a cascade model is not normally seen

As for a system’s overall design, normally this is only
exhaustively documented for major projects. For smaller
projects, the main developer or developers will probably be the
only ones in possession of the overall design – often only in
their heads – or it will come together in later versions of the
software. The lack of any overall design does not only mean
limitations in terms of the possible reuse of modules, but it is
also a great handicap when it comes to inviting in new develop-
ers, since they will have a slow and costly learning curve ahead
of them. And it isn’t so easy to find detailed design either,
which means that a great many opportunities to reuse code are
lost.

It is in the implementation phase where free software devel-
opers concentrate most of their efforts, mainly because, in the
eyes of developers, this is where most fun is to be had. In this
phase the prevalent programming paradigm tends to be the
classic one of trial and error until the desired results are
achieved from the subjective point of view of the programmer.
In the past, unit tests have rarely been included with the code,
even though this would have been an aid to other developers
needing to modify existing code or include new code. In the
case of some large scale projects, Mozilla for example, there
are machines dedicated exclusively to downloading the reposi-
tories containing the most up to date code in order to compile
it for different architectures [19]. The errors detected are posted
on a developers’ mailing list.

However, automatic testing is not very well established.
Normally it will be the users themselves who perform the test-
ing, within a great variety of uses, architectures and combina-
tions. This has the advantage of parallelizing at a minimum cost
to the development team. The downside of this model is the
problem of how to organize things so that there is user feed-
back, and that this feedback is as efficient as possible. With
regard to maintenance of software in the free software world –
by this we mean the maintenance of earlier versions– this task
may or may not exist depending on the project. In projects
requiring great stability, such as operating system kernels, etc.,
earlier versions of the project are maintained, since a change to
a newer version can be traumatic. But, as a rule, in most free
software projects, if there is an earlier version and an error is
found in it, the developers tend not to try and correct it, but
instead advise users to use the most up to date version in the
hope that it will have disappeared as a result of the software’s
evolution.

Criticism of the Cathedral and the Bazaar
Raymond’s book [18] suffers from a lack of systematicity

and rigour, to be expected from its somewhat essayistic and
admittedly not very scientific nature. The most frequent criti-
cisms refer to the fact that it is basically describing one isolated
experience – Linux – and tries to extrapolate the conclusions
reached to all free software projects, when, as can be seen in
[14], the existence of such an extensive community as the
Linux kernel has, is the exception rather than the rule.

More critical still are those who think Linux is an example of
a development which follows the cathedral model of develop-
ment. They argue that there is obviously an intellectual leader,

4

5

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

Software Engineering – State of an Art

52 UPGRADE Vol. IV, No. 4, August 2003 © Novática

or at least someone at the top in power, and a hierarchical
system through delegation of responsibilities right down to the
worker-programmers. There is also a division of tasks, albeit
implicitly. In [2] the criticism goes further, maintaining – not
without a certain degree of acrimony and arrogance in the rea-
soning – that the metaphor of the bazaar is self-contradictory.

Another of the most criticized points in Raymond’s book
[18] is his claim that Brooks’s law, which states that “Adding
manpower to a late software project makes it later” [4] is not
valid in the free software world. In [12] we can read that the
truth of the matter is that we are talking about a different envi-
ronment, and what at first sight appears to be an incongruity
with Brooks’s law is, after a more exhaustive study, merely an
illusion.

Quantitative Studies
Free software enables developers to make full use of the

quantitative analysis of code and all the other parameters
involved in its production, thanks to their accessibility. This
may benefit traditional Software Engineering areas – such as
empirical Software Engineering – due to the existence of a
massive amount of information that can be accessed without
the need for any major interference with free software develop-
ment. The authors are convinced that this vision may be of
enormous assistance in the analysis and understanding of the
phenomena involved in the creation of free software (and of
software in general) and, among other possibilities, may even
lead to us having predictive models of software with real time
feedback.

The idea behind this is very simple: as we have the chance to
study the evolution of a huge number of software projects, let’s
do it. Especially since not only is the current state of a project
public, but so is all its past development, which means that all
this information can be extracted, analysed and packaged to be
used as a knowledge base allowing us to assess a project’s
‘health’, facilitate decision taking and predict current and
future complications.

The first quantitative analysis of some importance in the free
software world dates back to 1998, although it was only
published in early 2000 [10]. Its purpose was to gain empirical
knowledge of the participation of developers in the free soft-
ware world. To this end they made a statistical study of the
authorship attribution which writers tend to include in their
source code header files. It was shown that developers’ partici-
pation followed Pareto’s law: 80% of the code corresponds to
the 20% most active developers, while the remaining 80% of
developers contribute 20% of the total. Many later studies have
confirmed this and extended the validity of the result to other
forms of participation apart from source code contribution
(messages to mailing lists, error notification, etc.). The tool
used to carry out this study was published by the authors under
a free licence, thereby providing the possibility of reproducing
its results or performing new studies.

In a later study, Koch [13] took things a step further and also
analysed the interactions carried out in a free software project.
The source of information in this case was the mailing list and
the version repository of the GNOME project. But the most

interesting aspect of Koch’s study is his economic analysis.
Koch focuses on checking the validity of classic cost prediction
(function points, COCOMO – COnstructive COst Model –
model, etc.) and shows the problems involved in its application,
although he does admit that the results obtained –used with due
caution – are at least partially reliable. He concludes that free
software requires its own study methods and models, since the
ones we have now are not suitable. However, it would seem
obvious that the chance to obtain a great deal of the data related
to the development of free software publicly should allow us to
be optimistic that in a not to distant future such methods and
models will be available. Koch’s study can be considered as the
first complete quantitative analysis, even though it may lack a
clear methodology and, above all, ad hoc tools enabling results
to be checked and other projects to be studied.

In the year 2000 Mockus et al. presented the first study of
free software projects to include the complete description of the
development process and organizational structures, including
both qualitative and quantitative evidence [16]. To do this they
used the log of changes to the software and the error reports to
quantify such aspects as the participation of developers, the
size of the core, the authorship of the code, productivity, defect
density and error resolution intervals. In a sense, this study is
still a classic Software Engineering study, except for the fact
that the data collection was carried out entirely by means of the
semi-automatic inspection of data that projects offer publicly
on the Internet. As in [13], this article provides no tool or auto-
matic process to allow the method to be reused in the future by
other research teams.

[23] and [24] deal with the quantitative analysis of the lines
of code and programming languages used in the Red Hat distri-
bution, <http://www.redhat.com/>. Barahona et al. have fol-
lowed in their footsteps in a series of articles on the Debian dis-
tribution, <http://www.debian.org/> (see for example [6] and
[8]). All of them provide a kind of ‘x-ray’ of these two popular
GNU/Linux distributions using data supplied by a tool which
counts the number of physical lines (the lines of code which are
neither blank nor commentaries) in a programme. Apart from
the spectacular result in terms of total lines of code (the latest
stable version to date, Debian 2.2 – known as Woody – has over
one hundred million lines of code), you can also see the distri-
bution of the number of lines in each programming language.
The possibility of studying the evolution of the different
versions of Debian over time throws up some interesting results
[8], among which is the fact that the average size of packets has
remained practically constant over the last five years, which
means that the natural tendency of packets to grow has been
neutralized by the inclusion of smaller packets. It is also possi-
ble to see how the importance of the programming language C,
while still predominant, is decreasing over time, while script
languages such as Python, PHP and Perl, and Java are showing
an explosive growth. ‘Classic’ compiled languages (Pascal,
Lisp, Ada, Modula...) are clearly in decline. Finally, these arti-
cles include a section which shows the results obtained if the
COCOMO model – a classic effort estimation model dating
back to the early eighties [3] and used in proprietary software

6

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

Software Engineering – State of an Art

© Novática UPGRADE Vol. IV, No. 4, August 2003 53

projects – is applied to perform an estimation of effort, project
duration and cost.

Although they are forerunners, most of the studies presented
in this section are more or less limited to the projects they
analyse. The methodology used has been designed to suit the
project being studied, is partially manual and only on rare
occasions can the automated part be used in any general way in
other free software projects. This means that a very great effort
is required to study any new project, since the method used
needs to be adapted and all the manual actions performed need
to be repeated.

For this reason the latest efforts ([20] or [9]) have concentrat-
ed on creating an analysis infrastructure integrating several
tools in such a way that the process is as automated as possible.
There are two very obvious reasons for doing this. The first is
that once a lot of time and effort has been invested in creating
a tool to analyse a project – putting great stress on its genericity
–, using it for other free software projects involves the mini-
mum of effort. And secondly, analysis by means of a series of
tools which analyse programmes from different points of view
– sometimes complementary to one another, other times not –
allows us to get a broader perspective of the project. In [15]
these initiatives can be studied in greater depth.

Future Work and Conclusions
After this brief but intense history of Software Engineer-

ing applied to free software, we can say that free Software
Engineering is still in its infancy. There are several very impor-
tant aspects still needing to be carefully studied and examined
in great depth in order to come up with a model explaining, if
only in part, how to create free software. The issues that need
to be addressed in the near future are the following: the classi-
fication of free software projects, the creation of a methodology
based as much as possible on automated analysis and the use of
the knowledge thus acquired to create models enabling us to
understand free software development while facilitating deci-
sion taking based on acquired experience.

Currently one of the most important weaknesses is the lack
of any strict classification of free software enabling projects to
be put into different categories. At the moment classification
criteria are too rough and ready: projects having widely dispa-
rate organizational, technical, and other kinds of features are all
lumped together. The argument that Linux, with an extensive
developer community and a large number of users, is by nature
different and behaves differently from a much more limited
project in terms of number of developers and users, cannot be
denied. What is clear is that more exhaustive classification
would enable the experience acquired in similar projects (that
is to say, with similar characteristics) to be reused, would make
predictions easier, would enable risk forecasting, etc.

The second important issue that free Software Engineering
has to address, closely linked to the point above and to current
trends, is the creation of a methodology and tools to support it.

A clear and concise methodology will enable us to study all
projects using the same yardstick, to verify their current state,
know their evolution and, of course, classify them. Tools are
essential for tackling this problem, since, once created, they
will allow us to analyse thousands of projects with a minimal
additional effort. One of the aims of free Software Engineering
is that from a small number of parameters indicating where to
find information about the project on the net (the address of the
software version repository, the place where the mailing list
archives are stored, the location of the error management
system and a brief survey) an exhaustive analysis can be made
of the project. Project managers would only be one button away
from a complete analysis, a kind of ‘clinical analysis’ which
would enable them to judge the project’s ‘health’ and have an
indication of the aspects that needed improving.

Once we have methods, classification and models, the possi-
bilities afforded by simulation – and, to be more specific, by
intelligent agents – could be enormous. Bearing in mind that
our starting point is a system of notorious complexity, the
creation of dynamic models in which the different agents
participating in software production can be modelled is of great
interest. Clearly the more we know about the different compo-
nents, the closer to reality the model will be. Although we are
aware of several proposals for simulations for free software,
they are a little too simple and incomplete. This is due to a
certain extent to the fact that there is still a great dearth of
knowledge concerning the interactions which take place in the
generation of free software. If project information can be
appropriately packaged and processed throughout its entire
history, intelligent agents may be crucial to knowing how the
project will evolve in the future. Although there are a number
of proposals about how this problem needs to be approached,
currently one of the most advanced proposals can be found at
[1].

To sum up, in this article we have seen how free Software
Engineering is a young and as yet largely unexplored field. Its
first steps were made in essayistic writings in which a more
efficient development model was proposed – not without a
certain lack of scientific rigour –, but gradual progress has been
made in the systematic study of free software from an engineer-
ing viewpoint. Currently, after several years of reports and
complete quantitative and qualitative analyses of free software
projects, an enormous effort is being made to obtain an overall
infrastructure enabling projects to be classified, analysed and
modelled in a limited space of time and an at least partially
automated way. When the analysis of free software projects
ceases to be as costly in terms of time and effort as it is today,
an exciting new phase of free Software Engineering is likely to
begin, in which another type of techniques will take centre
stage, techniques whose main purpose will be to predict the
evolution of software and anticipate possible complications.

Translation by Steve Turpin

7

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

Software Engineering – State of an Art

54 UPGRADE Vol. IV, No. 4, August 2003 © Novática

References
[1]

Antoniades Ioannis, Samoladas Ioannis, Stamelos Ioannis, and
G. L. Bleris. Dynamical simulation models of the Open Source
Development process, 2003, pending publication in Free/Open
Source Software Development, published by Stefan Koch, Idea
Inc, Vienna.

[2]
Nikolai Bezroukov. A Second Look at the Cathedral and the Ba-
zaar, December 1998. <http://www.firstmonday.dk/issues/
issue4_12/bezroukov/index.html>.

[3]
Barry W. Boehm, 1981. Software Engineering Economics,
Prentice Hall.

[4]
Frederick P. Brooks Jr., 1975. The Mythical Man-Month: Essays
on Software Engineering, Addison-Wesley.

[5]
Justin R. Ehrenkrantz. Release Management Within Open Source
Projects, May 2003. <http://opensource.ucc.ie/icse2003/3rd-
WS-on-OSS-Engineering.pdf>.

[6]
Jesús M. González Barahona, Miguel A. Ortuño Pérez, Pedro de
las Heras Quirós, José Centeno González, and Vicente Matellán
Olivera. Counting potatoes. The size of Debian 2.2, Upgrade, vol.
2, issue 6, December 2001. <http://upgrade-cepis.org/issues/
2001/6/up2-6Gonzalez.pdf>. Also available at <http://people.
debian.org/~jgb/debian-counting/>.

[7]
Jesús M. González Barahona and Gregorio Robles. Unmounting
the code god assumption, Mayo 2003, Proceedings of the Fourth
International Conference on eXtreme Programming and Agile
Processes in Software Engineering (Genoa, Italia). <http://
libresoft.dat.escet.urjc.es/html/downloads/xp2003-barahona-
robles.pdf>.

[8]
Jesús M. González Barahona, Gregorio Robles, Miguel A.
Ortuño Pérez, Luis Rodero Merino, José Centeno González,
Vicente Matellán Olivera, Eva M. Castro Barbero, and Pedro de
las Heras Quirós. Anatomy of two GNU/Linux distributions,
2003”, pending publication in “Free/Open Source Software
Development, published by Stefan Koch, Idea Inc, Vienna.

[9]
Daniel Germán and Audris Mockus. Automating the Measure-
ment of Open Source Projects, May 2003. <http://
opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf >.

[10]
Rishab Aiyer Ghosh and Vipul Ved Prakash, The Orbiten Free
Software Survey, May 2000.
<http://www.firstmonday.dk/issues/issue5_7/ghosh/index.html>.

[11]
Kieran Healy and Alan Schussman, The Ecology of Open Source
Software Development, January 2003.
<http://opensource.mit.edu/papers/healyschussman.pdf>.

[12]
Paul Jones. Brooks’ Law and open source: The more the merrier?,
May 2000, <http://www-106.ibm.com/developerworks/
opensource/library/os-merrier.html?dwzone=opensource>.

[13]
Stefan Koch and Georg Schneider. Results from Software Engi-
neering Research into Open Source Development Projects Using
Public Data, 2000. <http://wwwai.wu-wien.ac.at/~koch/
forschung/sw-eng/wp22.pdf >.

[14]
Sandeep Krishnamurthy. Cave or Community? An Empirical
Examination of 100 Mature Open Source Projects, May 2002.
<http://opensource.mit.edu/papers/krishnamurthy.pdf>.

[15]
Jesús M. González Barahona and Gregorio Robles Martínez.
Libre Software Engineering. <http://libresoft.dat.escet.urjc.es/>.

[16]
Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two
Case Studies of Open Source Software Development: Apache
and Mozilla, Junio 2000. <http://www.research.avayalabs.com/
techreport/ALR-2002-003-paper.pdf>.

[17]
Alessandro Narduzzo and Alessandro Rossi. Modularity in
Action: GNU/Linux and Free/Open Source Software Develop-
ment Model Unleashed, May 2003.
<http://opensource.mit.edu/papers/narduzzorossi.pdf >.

[18]
Eric S. Raymond. The Cathedral and the Bazaar, Musings on
Linux and Open Source by an Accidental Revolutionary, May
1997. <http://catb.org/~esr/writings/cathedral-bazaar/>.

[19]
Christian Robottom Reis and Renata Pontin de Mattos Fortes. An
Overview of the Software Engineering Process and Tools in the
Mozilla Project, February 2002.
<http://opensource.mit.edu/papers/reismozilla.pdf>.

[20]
Gregorio Robles, Jesús González Barahona, José Centeno
González, Vicente Matellán Olivera, and Luis Rodero Merino.
Studying the evolution of libre software projects using publicly
available data, May 2003, Proceedings of the 3rd Workshop on
Open Source Software Engineering at the 25th International Con-
ference on Software Engineering. <http://opensource.ucc.ie/
icse2003/3rd-WS-on-OSS-Engineering.pdf >.

[21]
Ilkka Tuomi. Internet, Innovation, and Open Source: Actors in the
Network, 2001.
<http://www.firstmonday.dk/issues/issue6_1/tuomi/>.

[22]
Paul Vixie. Software Engineering, 1999.
<http://www.oreilly.com/catalog/opensources/book/vixie.html>.

[23]
David A. Wheeler. Estimating Linux’s Size, July 2000.
<http://www.dwheeler.com/sloc>.

[24]
David A. Wheeler. More Than a Gigabuck: Estimating
GNU/Linux’s Size, June 2001.
<http://www.dwheeler.com/sloc>.

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

