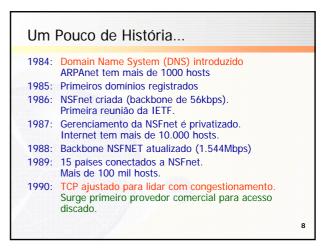
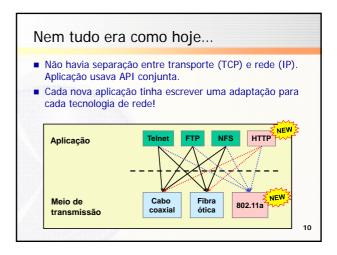
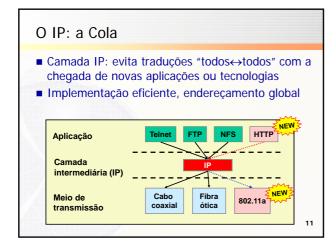

2

Objetivos do Minicurso ■ Ajudar os participantes a ... → Compreender a necessidade de mudanças na arquitetura da Internet para suportar novos serviços → Compreender a complexidade de se mudar a Internet → Identificar os principios básicos do projeto da Internet → Identificar os principais problemas atuais da arquitetura da Internet e a sua dificuldade para cumprir novos objetivos → Conhecer as principais propostas da comunidade científica para mudanças arquiteturais na Internet → Identificar impacto dessas propostas sobre a Internet atual → Perceber que freqüentemente novas propostas novas são propostas antigas revestidas de nova roupagem. → Perceber as dificuldades de se promover grandes

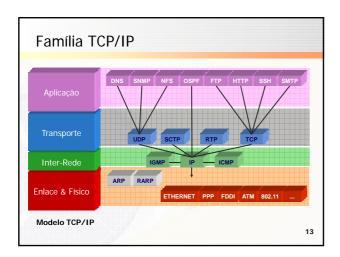
modificações na Internet atual

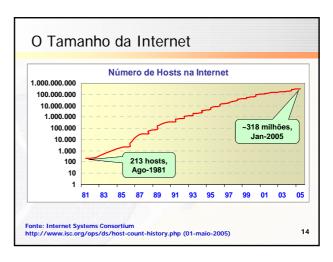

Roteiro Introdução Princípios da Arquitetura da Internet Principais Questões de Projeto Propostas de Mudança da Arquitetura da Internet Síntese das Propostas Comentários Finais

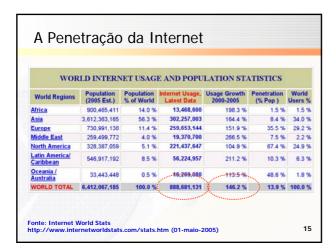


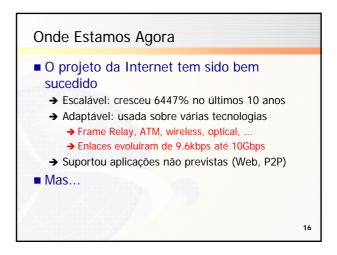

Um Pouco de História... 1961: Leonard Kleinrock (UCLA) introduz o conceito de "Packet Switching" 1966: Projeto ARPAnet se inicia 1968: Bob Karn constrói um *Interface Message Processor* (IMP), depois conhecido como o primeiro "roteador" 1969: A primeira RFC é escrita. ARPAnet tem 4 hosts. 1970: ARPAnet começa a usar o Network Control Protocol (NCP), o primeiro protocolo host-a-host. ARPAnet se "espalha" nos EUA: 10 hosts

Um Pouco de História... 1971: ARPAnet com 23 hosts 1972: Primeira aplicação de E-mail. ARPAnet tem 40 hosts. RFC 318 especifica o Telnet. 1973: Bob Metcalfe (Xerox) projeta o Ethernet. RFC 454 especifica o embrião do FTP. E-mail é 75% do tráfego da ARPAnet. 1974: Publicada a primeira versão do TCP. Telenet: versão comercial da ARPAnet. 1975: Enlaces de satélite conectam Havaí e Stanford para testes do TCP 1976: Surge o UUCP (Unix-to-Unix CoPy) (Bell Labs)


Um Pouco de História... 1978: TCP é dividido em TCP e IP 1980: ARPAnet se divide em NSFnet e MILNET Vírus acidentalmente propagado pára a ARPAnet. 1981: BITNET: "Because It's Time NETwork" 1982: ARPANET adota oficialmente o TCP e o IP e os chama de TCP/IP. Nome "Internet" é usado para redes conectadas via TCP/IP. 1983: Name Server desenvolvido: usuários não precisavam mais saber endereços dos hosts 1983: UC Berkeley integra o TCP/IP no UNIX 4.2 BSD e desenvolve utilitários de rede e a API sockets.







Por que a Internet não Evolui mais ■ A Internet cresceu muito, mas evoluiu pouco → Modificações não são profundas ■ Internet passou de flexível para "engessada" → Grande dependência social (Bancos, notícias, entretenimento, ciência, ...) → É preciso preservar a estabilidade da Internet → É preciso preservar investimentos ■ Soluções paliativas para problemas pontuais → A Internet é uma "colcha de retalhos" → Modificações não são "limpas" → Violam os seus própios preceitos básicos ■ Perda da coerência técnica (vide adiante)

Novos Desafios para a Arquitetura Internet comercial Modelos de negócios -- ISPs precisam ganhar dinheiro Apenas a competição acirrada leva à inovação Cuestões legais, políticas, sociais Desgaste da confiança (perda da inocência) Spam/virus/worms/Ataques de DDos/... Novas demandas: tecnologias, aplicações, requisitos Optical networking IP telephony Integração com Rede Celular: 3G, 4G Mobilidade, ubiquidade Redes Ad Hoc, Redes de Sensores Sem Fio Quality of Service Segurança

Princípios da Arquitetura da Internet

- Existe uma Arquitetura da Internet?
- O Argumento Fim a Fim
- O Princípio da Mudança Constante
- Objetivos de Projeto da Internet
- O Princípio da Simplicidade e o Modelo da Ampulheta

19

Princípios da Arquitetura da Internet

- Grande lacuna filosófica
- Engenheiros de Telecom dizem:
 - → A Internet é mal projetada: ela não resolve todos os problemas de maneira ótima e controlável
 - → Nós gostamos de certeza e complexidade
- Projetistas da Internet dizem:
 - → Otimalidade não é a questão. A adaptabilidade a novas tecnologias e serviços requerem que não projetemos mecanismos em excesso
 - → Nós gostamos de simplicidade (e alguma elegância). Toleramos a incerteza e convivemos com ela.

20

Princípios da Arquitetura da Internet

- Multiplexação
- Sobrevivência
- Conectividade Universal
- Generalidade de Servicos
- Diversidade de subredes
- Argumento Fim-a-Fim
- Alocação de CapacidadeEnderecamento Global
- Roteamento
- Segurança
- Mobilidade
- Modelo em Camadas
- (outras)

→ OS INVARIANTS

21

Princípios da Arquitetura da Internet

- Multiplexação
 - → A Internet é baseada na comutação de pacotes
 - → A unidade de transmissão de dados entre os sistemas finais é o "pacote"
 - → Utilização multiplexada rede

22

Princípios da Arquitetura da Internet

■ Sobrevivência

- → Deve continuar operando mesmo na presença de falhas (enlace, roteador)
- → Enquanto a rede n\u00e3o estiver completamente particionada dois hosts devem poder se comunicar
- → Falhas devem ser transparentes para os hosts finais
- → Decisão: manter "estados" apenas nos hosts finais evita restauração de estados em casos de falha
- → Internet: arquitetura de rede sem estados → sem memória

23

Princípios da Arquitetura da Internet

Conectividade Universal

- → "Conectividade é a própria recompensa"
 - → Quanto mais usuários conectados, mais valiosa é a Internet
- → Planejamento pragmático:
 - → Suporte para todas as plataformas
 - → Padrões *de facto* ajudam
 - → Requer "consenso aproximado e código rodando" (rough consensus and running code)
 - → Qualquer um pode participar do processo de padronização

Princípios da Arquitetura da Internet

- Generalidade de Serviços
 - → Deve permitir variedade de aplicações
 - → Se o TCP não atende, use outro protocolo
 - → Exemplo: UDP para aplicações "real-time"
 - → Este foi o principal argumento para separar o TCP do IP (vide adiante)

25

Princípios da Arquitetura da Internet

- Diversidade de Subredes
 - → "IP over everything"
 - → IP é Um protocolo de interconexão de redes
 - → Deve trabalhar indistintamente sobre todas as tecnologias
 - → Provê um modelo de serviços único para o usuário
 - → Interface do usuário não depende da tecnologia de rede
 - → IP requer poucos serviços da camada inferior
 - → Encaminhamento sem estado
 - → Não requer confiabilidade nem ordenação

26

Princípios da Arquitetura da Internet

- Argumento Fim-a-Fim
 - → A base da arquitetura da Internet
 - → "Dumb network, smart end systems"
 - → Exatamente o contrário da rede de telefonia
 - → Dumb network: Oferece um servico simples
 - → Serviço Datagrama: sem estado das conexões nos roteadores
 - → Pacotes encaminhados da melhor forma possível: Pode perder, duplicar, reordenar
 - → KISS Keep it Simple, Stupid
 - → Smart hosts:
 - → Mantêm estados para otimizar o serviço da rede (ex: confiabilidade, reordenação)

27

Princípios da Arquitetura da Internet

- Implicações do Argumento Fim-a-Fim
 - → A rede não modifica pacotes
 - → Novas aplicações: implantação e funcionamento apenas nos sistemas finais
 - → Nenhuma modificação no núcleo da rede!
 - → Um dos grandes responsáveis pela explosão da Internet

28

Princípios da Arquitetura da Internet

- Alocação de Capacidade
 - → Deve dividir os recursos de forma justa
 - → TCP tenta fazer isso
 - → Algum nível de injustiça pode ser desejável
 - → Aplicações militares
 - → Aplicações comerciais: QoS, SLA
 - → IP tentou fazer isso (lembra do TOS, hoje DSField?)
 - → Engenharia de tráfego

29

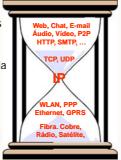
Princípios da Arquitetura da Internet

- Mobilidade
 - → Internet deve suportar a mudança do ponto de conexão de um host
 - → Não foi uma premissa importante
 - → Não havia hosts móveis em 1970-1980
 - → Vide outras questões adiante
- Segurança
 - → Cada componente (software, hardware) deve se preocupar com segurança (autenticação, integridade, privacidade)
 - → OSI-RM nível de apesentação!!

Princípios da Arquitetura da Internet

- Modelo em Camadas
 - → Camada N oferece serviços à camada N+1
 - → Metadados Controle individual da camada (cabeçalho)
 - → Modularidade blocos independentes
 - → Encapsulamento ocultação de informação, clareza
 - → Ordenação do processamento dos cabeçalhos
 - → Último cabeçalho adicionado é o primeiro a ser removido

31


Arquitetura da Internet: resumo 1/2

- Rede de comutação de pacotes
 - → A unidade de dados é o pacote
 - → Pacotes são estatisticamente multiplexados (não TDM!)
- Encaminhamento Hop-by-hop
 - → Mais robusto do que source-routed ou orientado a conexão
- Sem estados
 - → Não há estados por fluxo dentro da rede
- Modelo em camadas
 - → Funcionalidades distribuídas em camadas
 - → Encapsulamento
 - → Cabeçalhos adicionados/removidos ao passar pelas camadas
 - → LIFO Last in, First Out

22

Arquitetura da Internet: resumo 2/2 ■ Modelo da Ampulheta → Todos os hosts e roteadores rodam IP ■ Nova tecnologia? → Crie adaptação IP-Tecnologia

- Nova Aplicação?
 - → Use serviços de transporte oferecidos
- IP é a cola
 - → IP é um overlay na camada de rede (sobre tecnologias de enlace)

Princípios da Arquitetura da Internet

- Muitos dos princípios usados na Internet estão sendo violados
 - → Por razões comerciais
 - → Para adicionar funcionalidade
 - → Otimizações com efeitos colaterais
 - → Para consertar falhas ou requisitos não atendidos
 - → Modificações sugeridas por pesquisadores
 - → Modificações sugeridas por ISP
- Vamos discutir alguns problemas ...

34

Principais Questões de Projeto

- Premissas usadas no início da Internet +
- Ajustes localizados e soluções paliativas =
- Problemas:
 - → Endereçamento e Nomeação
 - → Roteamento
 - → Segurança
 - → Mobilidade
 - → Transparência Fim a Fim
 - → Modelo em Camadas

35

Endereçamento e Nomeação

1/2

- Na camada IP o endereçamento e a identificação estão em um único atributo: o Endereço IP
 - → Endereçamento → localização do host na rede
 - → Identificação → identidade do host
- OK para hosts estacionários
- Problema para hosts móveis
 - → Mudam também de identidade quando precisam mudar apenas de endereço
 - → Solução: IP Móvel requer "agentes" intermediários (middleboxes) Home Agent, Foreign Agent

Endereçamento e Nomeação

- NAT usado para estender endereçamento IP
 - → Boa solução, mas atrapalha aplicações (ex: multicast, VoIP)
 - → Complexidade e delay adicionais
- DNS não prevê replicação de conteúdo na Web
 - → Característica da URL: acopla o serviço com o servidor
 - → Content Distribution Network (CDN) é usado para encontrar o repositório (mirror) geograficamente mais próximo do usuário (ex: akamai)
 - → Solução mascarada com um mecanismo adicional

37

2/2

Roteamento

1/2

- Endereçamento plano evoluiu para hierárquico
- Características:
 - → Troca de informações de roteamento: Algoritmos Vetor-Distância
 - → Forma de encaminhamento: hop-by-hop
- Problemas
 - → BGP: problemas com o crescimento da Internet
 - → Crescimento exponencial das rotas: Escalabilidade comprometida, mesmo com o CIDR
 - → Instabilidade
 - → Convergência
 - → Segurança BGP (falhas no TCP)
 - Não é um problema da arquitetura, mas de um protocolo em particular

38

Roteamento

2/2

- Alguns problemas (cont.)
 - → Rotas selecionadas entre ISP se baseiam em critérios econômicos (ex: acordos)
 - → Pacotes são roteados em nível de SA
 - → Usuário não tem controle sobre as rotas
 - → Usuário não escolhe o "provedor de longa distância" independentemente do "provedor local"
 - → Exemplo: telefonia o usuário escolhe
 - → Implicações: rotas nem sempre são as melhores

39

Segurança

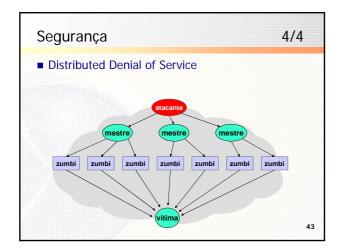
1/4

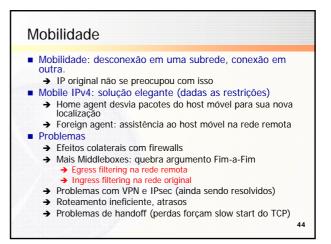
- Internet: projetada sem segurança em mente
 - → Poucos hosts em ambiente controlado: poucas ameaças
 - → Além disso, o mundo era inocente...
- Hoje: 800 milhões de usuários tentando entrar no computador da sua casa!
- Vulnerabilidades:
 - → Estão: nas aplicações ou nos protocolos
 - → Origem: falhas de projeto, implementação ou configuração
 - → Existentes na Internet ou exploradas através da Internet
 - → Discutiremos as vulnerabilidades Existentes na Internet

40

Segurança

2/4


- Problemas no protocolo TCP
 - → Projetado há 20 anos
 - → Incorpora poucos mecanismos de segurança
 - → Ataque "Blind Reset"
 - → Atacante adivinha número de sequência do segmento, envia um RST (reset) e mata a conexão
 - → Blind = não precisa capturar o tráfego
 - → Ataque "Blind Data Injection"
 - → Atacante adivinha número de sequência do segmento, envia dados falsos
 - → Pode causar DoS em conexões BGP


41

Segurança

3/4

- Problemas no protocolo IP
 - → Caraterísticas:
 - → qualquer host A pode mandar pacotes para qualquer host B a qualquer hora
 - → Spoofing → pacotes com "IP origem" falso
 - → Resultado: Ataques de Denial of Service (DoS)
 - → Causam exaustão do enlace ou da CPU
 - → Muito difíciceis de combater
 - → Prevenção: Ingress & Egress filtering
 - → Detecção: mudança abrupta no tráfego
 - → Combate: fechar portas no caminho
 - → Tudo isso atrapalha o tráfego legítimo!

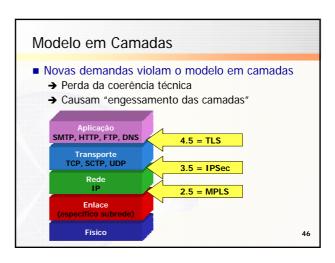
Transparência Fim-a-Fim

■ "Middle boxes" processam pacotes dentro da rede.

→ Web caches e Proxies,

→ Firewalls,

→ NAT,


→ Home Agents, Foreign Agents,

→ Proxies para otimização de performance, caches, ...

■ Eles executam tarefas úteis, mas violam deliberadamente o Argumento Fim-a-Fim

■ Perda da Coerência Técnica

■ Reduzem robustez, generalidade, extensibilidade e simplicidade

Propostas de Mudança na Arquitetura

■ Como uma nova arquitetura poderia ...

→ Restaurar a coerência técnica?

→ Atender antigos e novos requisitos?

■ Várias propostas tentam responder:

→ E se soubéssemos em 1980 o que sabemos hoje, qual seria a arquitetura da Internet?

■ De que forma?

→ Revolucionária – outra arquitetura

→ Esqueçer a compatibilidade

→ Evolucionária – ajustes gradativos na arquitetura atual

→ Requer incentivo para trocar infraestrutura e aplicações

■ Outros aspectos atuais: econômicos, sociais e políticos

■ Vamos analisar algumas propostas...

Propostas de Mudança na Arquitetura

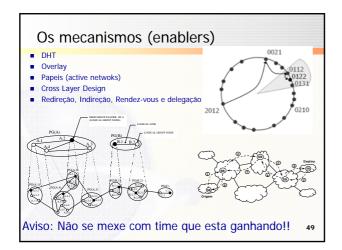
Arquitetura de Nomes em Camadas

Arquitetura FARA

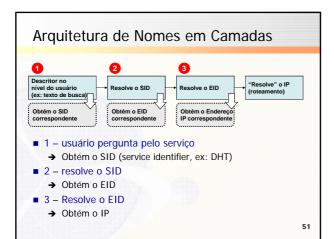
Arquitetura NIRA

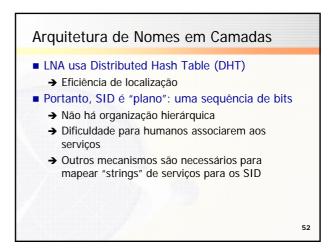
Arquitetura IPNL

Arquitetura RBA


Arquitetura Plutarch

Infra-estrutura SFR


Infra-estrutura I3


Arquitetura SOS

Prevenção de DoS através de "Aptidão para uso de Recursos"

Arquitetura de Nomes em Camadas (LNA) ■ DNS converte nomes em endereços IP → Apenas um nível de indireção ■ URL associa o servidor ao dados (ou serviço) → Se os dados forem replicados ou movidos, não podem ser localizados ■ Solução: Layered Naming Architecture (LNA) → Separação o serviço do servidor → SID = Service identifier → EID = Endpoint identifier

Arquitetura FARA ■ Forwarding directive, Association, and Rendezvous Architecture → Objetivo de tentar aliviar a sobrecarga do IP → Como localizador da rede e identificador do sistema final → Define um conjunto abstrato de componentes e suas relações (arcabouço) → Arquiteturas específicas podem ser derivadas

Arquitetura FARA - Componentes

- Comunicação entre sistemas finais (entidades)
 - → Sobre um substrato de comunicação
 - → Entidade é um conceito abstrato
 - → Pode ser processo, thread, computador, agrupamento de computadores
- Comunicação entre entidades feita por conexões lógicas (associações)
 - → Mantêm estados persistentes de comunicação
- Em cada pacote existe um identificador
 - → Identificador de associação (AId)

55

Arquitetura FARA - Componentes

- Diretiva de Encaminhamento (Forwarding Directive FD)
 - → Campo de cabeçalho usado pelo substrato de comunicação
 - → Contém informações de roteamento
- O componente FD substitui o endereço IP no roteamento de pacotes
- IP da arquitetura atual faz o papel da FD e do Ald
- Consegüências da modularidade da arquitetura:
 - → Separa os mecanismos de encaminhamento
 - → no substrato de comunicação (FD)
 - → das funções de comunicação fim-a-fim
 - → executadas pelas entidades (AId)

56

Arquitetura FARA - suposições

- Toda entidade é móvel
 - → carrega os estados da aplicação e de comunicação
- Não existe um espaço de nomes global para as associações
 - → Ald é único e local
- Não existe conjunto global de nomes para as entidades
- Assim, uma associação entre A e B implica
 - → entidade A envia uma mensagem para a entidade B
 - → supondo que A possui uma FD para alcançar B
- Um problema de inicialização surge:
 - → Como o primeiro pacote irá carregar um Ald, se os Ald são locais às entidades ?

57

Arquitetura FARA

- mecanismo Rendezveous
 - → primeiro pacote é especial
 - → ao invés de carregar o Ald destino
 - → carrega um Rendezvous Information String (RI)
 - → consiste de duas fases
 - → Descoberta
 - → retorna um par (FD, RI)
 - → Iniciação
 - → RI é usado no destino para criar a associação

58

Arquitetura FARA

- Sistema de Diretório FARA (FARA Directory System fDS)
 - → "descoberta" pode ser realizada por serviços de alto nível
 - → E.g., similar ao DNS
- não define especificamente a maneira como o processo de descoberta pode ser realizado
 - → Detalhes fica na instanciação

59

Arquitetura FARA

Características

• Genérica

Vantagen

• Heterogeniedade, separa servidor e serviço

Desvantagens

 Usa servidores de resolução, interpoerabilidade entre implementações

Arquitetura NIRA

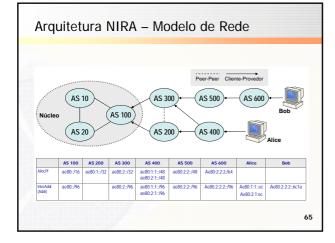
- NIRA: New Internet Routing Architecture
 - → projetada para possibilitar ao usuário a escolha de rotas no nível de domínio
 - → seqüência de domínios que um pacote atravessa
- Abordagem
 - → Descobrimento das rotas
 - → Representação das rotas
 - → aspectos de ordem econômica
- requisitos considerados
 - → escalabilidade
 - → robustez
 - → eficiência
 - → heterogeneidade das escolhas do usuário
 - → compensação para os provedores de serviços

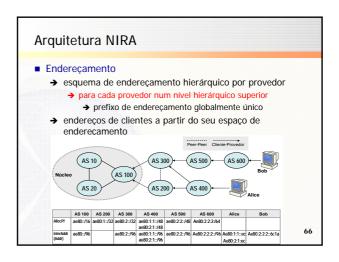
61

Arquitetura NIRA - Visão Geral

- mecanismo de descoberta de rotas
 - → elementos só precisam conhecer sua parte da rede
 → Fonte ou Destino
 - → usuário descobre as informações da topologia do seu domínio
- fonte busca informações da topologia do provedor de destino.
 - → Sob demanda
- combinação das duas informações especificam uma rota que alcance o destino desejado

62


Arquitetura NIRA - Soluções Propostas


- Modelo de rede
- Endereçamento
- Representação de rotas
- Descoberta de rotas
- Aspectos econômicos

63

Arquitetura NIRA

- Modelo de Rede
- Definições:
 - → valley-free: rota típica no nível de domínio
 - → pacote é "empurrado" em direção à estrutura de seu provedor
 - → fluindo depois em direção à cadeia do provedor de destino
 - → Núcleo da Internet: região da rede onde pacotes não podem ser "empurrados"
 - → low-level peering link: conectam as cadeias dos provedores da fonte e destino (atalhos)

Arquitetura NIRA

- Representação de Rotas
 - → baseia-se no prefixo do endereço que identifica um segmento de rota (rota parcial)
- Rotas consistem de dois segmentos
 - → cadeia dos provedores que aloca o endereço fonte
 - → cadeia que aloca o endereço de destino
 - → dois segmentos alcançam um provedor em comum (ou o núcleo da Internet)
- Encaminhamento
 - → algoritmo de encaminhamento precisa olhar ambos os endereços (fonte e destino)

67

Arquitetura NIRA

- Encaminhamento (cont.)
 - → observando o endereço de destino
 - → roteador sabe se o destino foi alcançado
 - → Se não, roteador decide se o "ponto de retorno" foi atingido ou não, ao verificar o endereço da fonte
 - → Antes do "ponto de retorno",
 - → pacotes são encaminhados "para cima"
 - → de acordo com endereço da fonte.
 - → Após o "ponto de retorno",
 - → pacotes são encaminhados "para baixo"
 - → de acordo com o endereço de destino

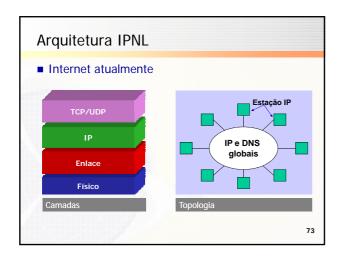
68

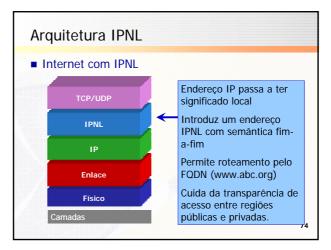
Arquitetura NIRA

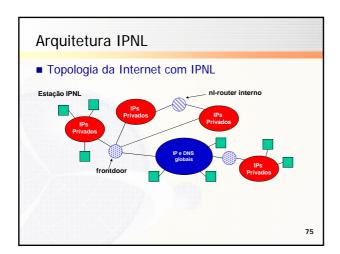
- Descoberta de rotas
- Dois servicos
 - → Protocolo de Propagação de Informação de Topologia (Topology Information Propagation Protocol - TIPP)
 - → objetivo é facilitar a descoberta de informações de topologia nos domínios que fornece serviços para o sistema final
 - → Serviço de Resolução Nome-para-Rota (*Name-to-Route Resolution Service* NRRS)
 - → ajuda um sistema final a solucionar o problema de
 - → como enviar o primeiro pacote para um outro sistema final ?
 - → projetado como um serviço distribuído de busca de nomes
 - → Estilo DNS

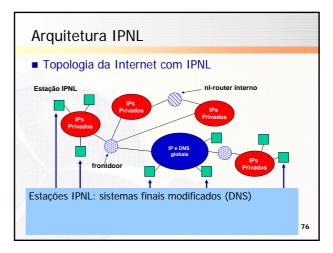
69

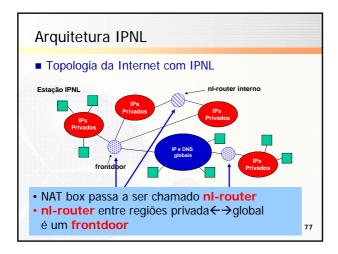
Arquitetura NIRA

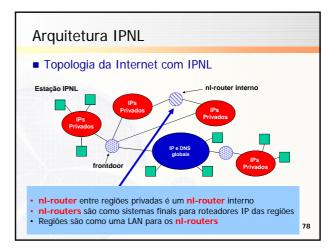

- Aspectos Econômicos
 - → dois modelos de compensação
 - → Direct Business Relationships DBR
 - → Indirect Business Relationships IBR
- DBR
 - → acordos contratuais são negociados diretamente entre as entidades conectadas
 - → considera custo de permitir a escolha de rotas
- IBR
 - → usuário negocia com provedores de serviços não diretamente conectados a ele

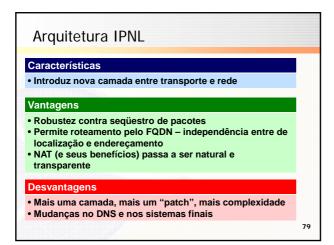

70

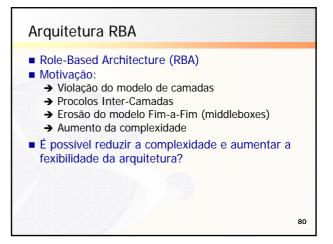

Arquitetura NIRA Características Vanta FALTA FAZER Desva

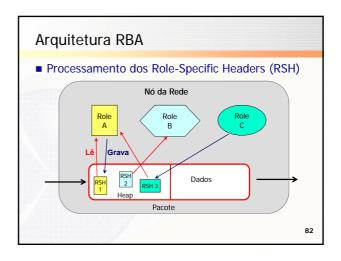

Arquitetura IPNL

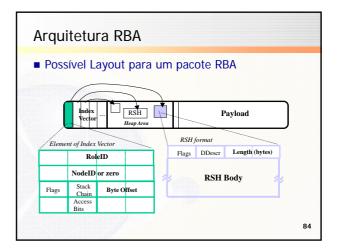

- IPNL IP Next Layer
- Propõe uma extensão à Internet atual para incorporar NAT de forma natural
- Isolamento de redes para evitar renumereção em caso de troca de provedor
- Retira a semântica Fim-a-Fim do IPv4 e cria uma uma nova camada: IPNL
- Permite que hosts atrás de NAT sejam acessados
 - → Transparência mesmo com isolamento

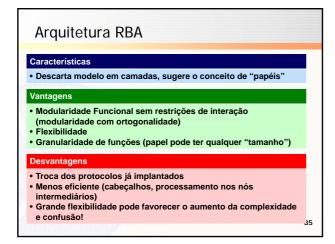









Arquitetura RBA ■ Troca o tradicional paradigma do modelo de camadas por um mais geral ("from stack to heap") Anexa aos pacotes alguns metadados para os middleboxes ■ Proposta: criação de "papéis" → Papel é a especificação funcional de um elemento modular para comunicação → A instância de um papel (num nó do caminho) é um ATOR. Role-Specific Header (RSH) são sub-cabeçalhos que contêm dados para serem processados pelos atores. → O pacote contém uma coleção de RSH → Cada RSH é dirigido aos atores correspondentes ■ Papéis podem ser acoplados em pares → {Encrypt, Decrypt}; {Compress, Expand}; {Fragment, Reassemble} 81



Arquitetura RBA

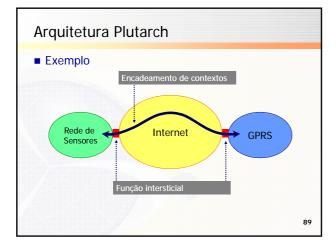
■ Alguns argumentos dos autores:
■ Clareza:

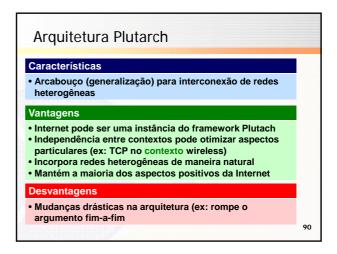
→ "interação de papéis" ao invés de "violação de camadas"
■ Flexibilidade:
→ Papéis permitem relacionamentos mais flexíveis do que camadas
■ Extensibilidade: Papéis são modulares e ortogonais
→ Ortogonal = podem ser combinados (sem as restrições de camadas)
■ RSH podem ser usados para sinalização entre middleboxes
■ Auditoria
→ Nós do caminho podem "consumir" RSH, ou
→ Podem deixar sinais para nós adiante, avisando que a função foi executada.
■ Segurança: RSH podem ser criptografados separadamente

Arquitetura Plutarch

- Arcabouço para redes de próxima geração
- Arquitetura atual da Internet baseia-se na homogeneidade da camada de rede
 - → IP sobre tudo e tudo sobre IP
 - → Ex: não permite uma rede de sensores como uma sub-rede
 - → sensores não têm capacidade de implementar uma pilha TCP/IP.
- Plutarch assume um modelo abstrato onde é possível interoperar entre redes Heterogêneas

86


Arquitetura Plutarch


- Define os conceitos de contexto e Funções intersticiais
- Contexto → uma região de endereçamento autônomo
- endereços podem ser completamente distintos dentro de cada contexto.
- Funções intersticiais → mapeamento entre contextos
- Permite redes heterogêneas conectando-se vários contextos diferentes
 - → Homogeneidade é esperada apenas dentro de cada contexto
 - → Formato de pacote, endereçamento, serviço de nomes, ...
- Internet atual pode ser modelada facilmente pelo Plutarch

87

Arquitetura Plutarch

- Algumas questões devem ser suportadas fim-a-fim entre redes heterogêneas através de interações explícitas:
 - → Endereçamento (Internet atual: NAT)
 - → Nomeação (Internet atual: DNS)
 - → Roteamento (Internet atual: BGP)
 - → Transporte (Internet atual: proxies, gateways)
- Plutarch discute essas questões de mapeamento e sugere algumas abordagens

Infra-estrutura SFR

- Semantic Free References SFR
- Objetivo
 - → Flexibilizar migração e replicação de conteúdo
- Motivo
 - → forte relação da Web com o serviço DNS tem engessado esses servicos
- Requisitos
 - → Referência persistente a objetos
 - → Referência livre de disputa
- Propõe
 - → implantação de um novo serviço de resolução de referências (*Reference Resolution Service* – RRS)
 - → substitui o DNS

91

Infra-estrutura SFR

- SFR é um RRS de propósito geral
- Princípios
 - → Espaço de nomes sem semântica
 - → referências não devem conter informações sobre instituições, domínios ou provedores onde elas estão localizadas, ou serem legíveis ao usuário;
 - → RRS com interface mínima
 - → serviços oferecidos restritos a apenas resolução de referências.
 - → sistemas auxiliares mapeam entre nomes legíveis e a respectiva referência

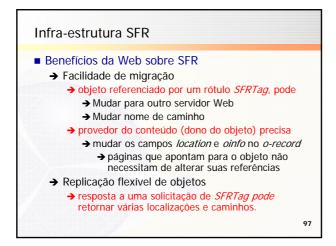
92

Infra-estrutura SFR

- Descrição
- SFR usa DHT (Distributed Hash Table)
 - → mapeia strings de 160 bits, <u>SFRTags</u>, para registros de objetos, <u>o-records</u>
- campo *location*
 - → definido no momento de inserção do *o-record*
 - → mantêm valores que descrevem a localização do dado correspondente ao SFRTag
 - → pode ser
 - → par endereço IP e porta
 - → nome de domínio
 - → outro SFRTag

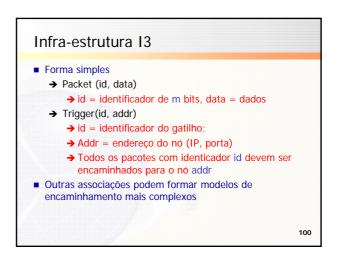
a,	g						
•	SFRTag: 0xf01212099abcab678ac345ba4d						
	location: (ip, port), (DNS name, port), SFRTag						
	oinfo: App-specific meta-data						
	ttl: time-to-live: a caching hint						
	93						

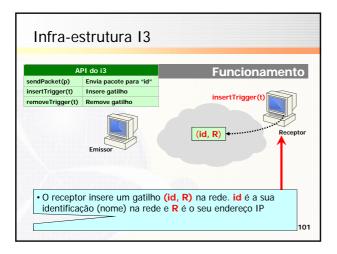
Infra-estrutura SFR Componentes Servidores (portal) Clientes relays SFR Relay Org. store Cliente Cliente Organização 94

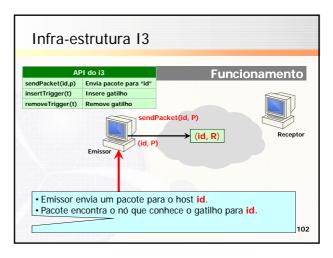

Infra-estrutura SFR

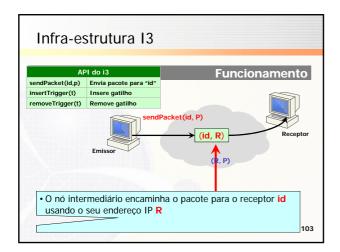
- Processo de busca
 - → aplicação envia solicitação de SFRTag para seu Portal ou Relay
 - → Se o rótulo está na infra-estrutura, o nó DHT responsável retorna o o-record
 - → Relays podem fazer cache de o-records
 - → nós DHT podem fazer cache de localização
 - → Portais podem fazer *cache* de objetos
 - → Org-store: cópia dos o-records criados dentro da organização

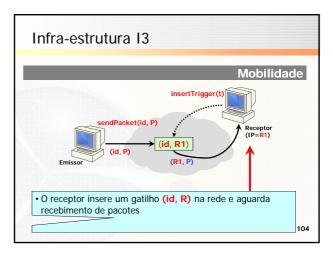
95

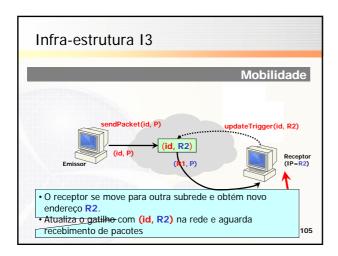

Infra-estrutura SFR

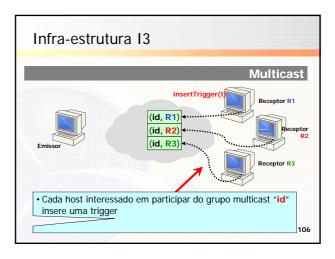

- Exemplo de Aplicação: Web sobre SFR
 - → nomes inteligíveis para o usuário tratado fora do RRS
 - → portais de busca retornariam rótulos sem semântica ao invés de URL baseadas no DNS
- Vantagen
 - → permitir migração e replicação nativa de objetos
 - → informações para alcançar objeto na Web (IP, porta, caminho) são encapsuladas pelo SFRTag

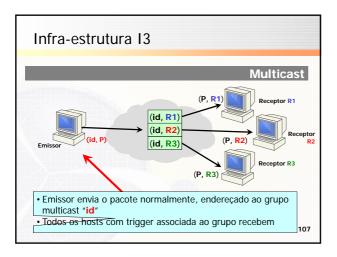


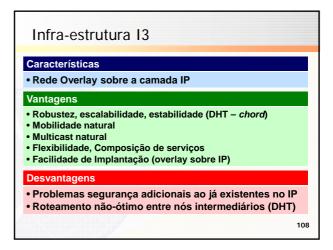


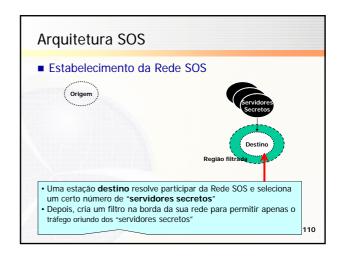

Infra-estrutura 13 ■ i3 = Internet Indirection Infrastructure ■ Rede sobreposta ao IP (IP Overlay) → Rede i3 consiste de um conjunto de nós que armazenam "triggers" e encaminham pacotes (usando IP) ■ Funcionamento → Hosts inserem na rede i3 um identificador lógico associado ao seu endereço IP → Origem envía pacotes para o identificador lógico → Origem não conhece o endereço IP do destino → Associação ID → IP é feita inserindo um "gatilho" → Identificadores e triggers têm significado apenas na rede overlay ■ Comunicação baseada em Rendezvous → Mobilidade natural → Unicast, Anycast e Multicast tratados uniformemente

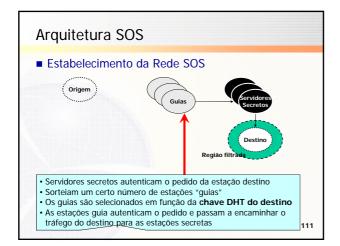


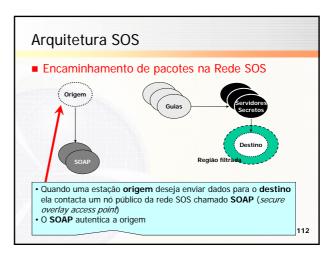


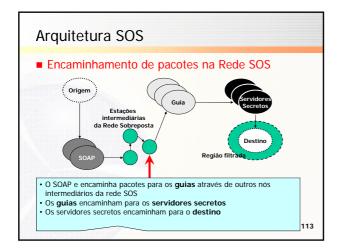


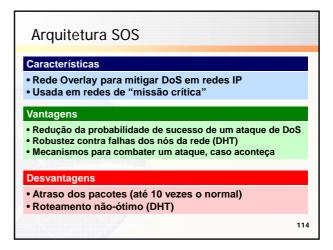


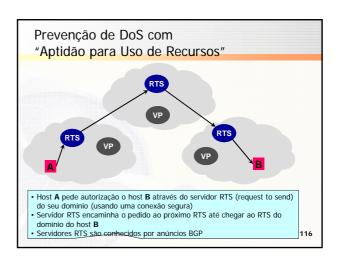


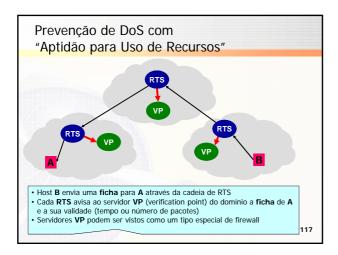


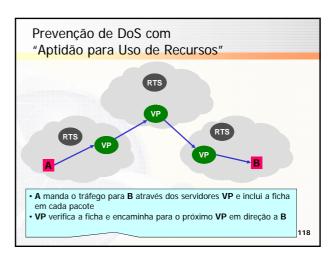


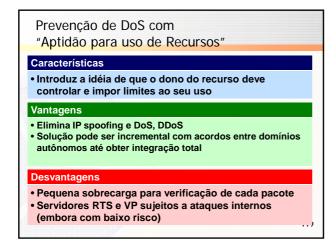



Arquitetura SOS SOS = Secure Overlay Services Propõe uma rede sobreposta ao IP (overlay network) como solução para reduzir problemas de DoS e DDoS → Usa Distributed Hash Tables (DHT) Objetivo é distinguir entre tráfego autorizado e não autorizado. Sos nós da rede assumem papéis "secretos" → Filtragem de tráfego → Encaminhamento SOS = um tipo de "Firewall distribuído"

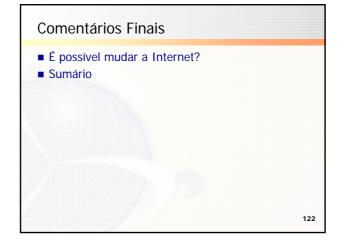


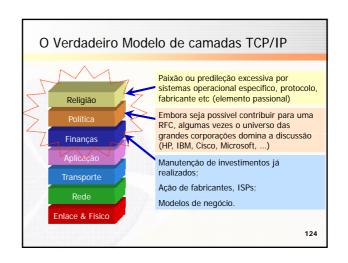






Prevenção de DoS com "Aptidão para Uso de Recursos" ■ Internet atual: host **A** pode mandar pacote para qualquer host **B** a qualquer momento → Resultado: vulnerabilidade a DoS, DDoS ■ Mecanismo "Aptidão para Uso de Recursos" (AUR) → A deve obter permissão de B antes → B concede ou não → controla o uso do recurso → Concessão consiste em enviar uma ficha para A → A ficha é obtida via uma conexão segura → A ficha tem validade de n pacotes ou t segundos → O host A deve usar a ficha em cada pacote para B → A ficha pode ser renovada ■ Argumento: Solução para DoS deve permitir o controle do recuso pelo seu proprietário 115





Síntese das Propostas								
	Função							
Proposta	Endereçamento, Nomeação	Roteamento	Segurança	Mobilidade	Transparência	Camadas		
LNA	*			*	*			
FARA	*	*		*				
NIRA		*						
IPNL	*	*			*			
RBA					*	*		
Plutarch	*	*			*			
SFR	*							
i3	*	*		*				
sos			*					
AUR			*					

É possível mudar a Internet? ■ Necessidade de mudanças é forte → Novas demandas, novos modelos de negócio → Vide explosão de propostas da comunidade científica → NIRA, IPNL, DOA, RBA, Plutarch, i3, SOS, FARA, ... → E muitas outras ■ É difícil reestruturar a Internet → Internet precisa de Evolução ou Revolução? → O nível de intervenção depende do preço que se dispõe a pagar → Por que o IPv6 não foi amplamente implantado? → Não é só uma questão técnica! → Questões econômicas, Estabilidade (mudar o núcleo da rede)

Sumário

- Internet é um sucesso, mas está longe do ideal
 - → Fantástica penetração social
 - → Cresceu muito, evoluiu pouco, incorporou soluções paliativas com efeitos colaterais
 - → Algumas alterações violam seus preceitos originais
 - → Resultado: inconsistência técnica
- Necessidade de mudanças é forte
 - → Novas demandas, novos modelos de negócio
 - → Vide explosão de propostas da comunidade científica

125

Sumário

- É difícil reestruturar a Internet
- E propostas existentes funcionam na prática?
 - → "...we believe in rough consensus and running code"
 - → "Keep it simple, stupid"
- Muitas "Novas arquiteturas" são na verdade conceitos antigos com nova roupagem
 - → Soluções velhas para problemas novos...
- E afinal, qual a "nova arquitetura" da Internet ?
 - → Talvez uma combinação de conceitos ao invés de uma única solução para tudo
 - → Muita, muita, muita discussão à frente

Sumário

Se fosse possível começar de novo, considerando as lições já aprendidas e as perspectivas de uso que o futuro aponta, como re-projetar a Internet?

