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A Run-Based Two-Scan Labeling Algorithm
Lifeng He, Yuyan Chao, and Kenji Suzuki, Senior Member, IEEE

Abstract—We present an efficient run-based two-scan algorithm
for labeling connected components in a binary image. Unlike
conventional label-equivalence-based algorithms, which resolve
label equivalences between provisional labels, our algorithm
resolves label equivalences between provisional label sets. At any
time, all provisional labels that are assigned to a connected com-
ponent are combined in a set, and the smallest label is used as the
representative label. The corresponding relation of a provisional
label and its representative label is recorded in a table. Whenever
different connected components are found to be connected, all
provisional label sets concerned with these connected components
are merged together, and the smallest provisional label is taken
as the representative label. When the first scan is finished, all
provisional labels that were assigned to each connected compo-
nent in the given image will have a unique representative label.
During the second scan, we need only to replace each provisional
label by its representative label. Experimental results on various
types of images demonstrate that our algorithm outperforms all
conventional labeling algorithms.

Index Terms—Connected components, labeling algorithm,
linear-time algorithm, pattern recognition, run-length encoding.

I. INTRODUCTION

LABELING connected components in a binary image is
one of the most fundamental operations in pattern anal-

ysis (recognition) and computer (robot) vision [8], [32]. For
example, labeling is indispensable in almost all image-based
applications, such as fingerprint identification, character
recognition, automated inspection, target recognition, face
identification, medical image analysis, and computer-aided
diagnosis. Because connected components in an image may
have complicated geometric shapes and complex connectivity,
labeling is said to be more time-consuming than any other
fundamental operations such as noise reduction, interpola-
tion, thresholding, and edge detection. Labeling cannot be
completed by mere parallel local operation [23], but needs
sequential operations [30], [32].
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Many labeling algorithms have been proposed for addressing
this issue. For ordinary computer architectures and pixel repre-
sentation images, there are three kinds of labeling algorithms:
1) raster-scan and label-equivalence-resolving algorithms,
2) searching and label propagation algorithms, and 3) con-
tour-tracing and label propagation algorithms.

Raster-scan and label-equivalence-resolving algorithms scan
an image in the raster direction, and they assign a provisional
label to a new pixel that is not connected to other previously
scanned pixels. Provisional labels assigned to the same con-
nected component are called equivalent labels. There are three
methods for resolving label equivalences.

i) Multiscans [11], [13]. These algorithms scan the image
in forward and backward raster directions alternately to
propagate the label equivalences until no label changes.
The number of scans depends on the geometrical com-
plexity of connected components. For example, for an

-step stair-like connected component, 2 scans
are necessary [43].

ii) Two scans [9], [12], [19]–[21], [24], [30], [31], [40].
These algorithms store the label equivalences that are
found in the first scan in a 1-D or 2-D table array. After
the first scan, the label equivalences are resolved by use
of a search algorithm. The resolved results are generally
stored in a 1-D table. Then, the provisional labels are
replaced by the smallest equivalent label with use of the
table during the second scan. To label an object pixel,
these algorithms need to compute the minimal label in
the mask corresponding to the pixel, and the same label
equivalence may be stored multiple times [32], or a very
large memory, i.e., an -size memory, is necessary
for storing label equivalences, where is the number of
provisional labels assigned to an image [9]. Moreover,
the computational complexity of the search algorithms
proposed so far is usually proportional to the order of

, where is also the number of provisional labels
assigned to an image [10].

iii) Four scans. This algorithm [43] is a hybrid between mul-
tiscan algorithms and two-scan algorithms. Like multi-
scan algorithms, the hybrid algorithm scans an image in
the forward and backward raster directions alternately.
During the scans, as in two-scan algorithms, a 1-D table is
used for recording and resolving label equivalences. Ac-
cording to the results in [43], four is the upper limit on the
number of scans, and the algorithm was faster than other
raster-scan and label equivalence resolving algorithms.

Searching and label propagation algorithms [32], [39] search
an image until an unlabeled object is found, and they assign
a new label to it. Then the label is repeatedly propagated to
neighboring connected objects until the whole component is
labeled. Such processings are executed iteratively until there is
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no unlabeled object in the image; they process an image in an
irregular way.

Contour tracing and label propagation algorithms [2], [4]
are somewhat similar to searching and label propagation al-
gorithms. They first search an unlabeled border pixel of a
component, and they assign a new label to it. Then they trace
the whole border of the components, and mark all pixels in the
border with the same labels. Such processings are executed
iteratively until there is no unlabeled border pixel in the image.
Moreover, at each row, all pixels that are consecutive from a
labeled border pixel are assigned the same label as the border
pixel. They also process an image in an irregular way.

On the other hand, some labeling algorithms [1], [3], [5],
[16], [22], [25], [28], [38], [45] have been proposed for par-
allel machine models, such as a mesh-connected massively par-
allel processor. Other algorithms [6], [7], [15], [33], [35]–[37],
[44], [46] have been proposed for the images represented by hi-
erarchical tree [42], [17], [34], i.e., n-ary trees such as bintree,
quadtree, octree, etc. Moreover, the hardware implementation
of the above raster scan label-equivalence-resolving algorithms
were also studied [1], [14], [26], [27], [47].

In this paper, we propose a run-based, efficient two-scan con-
nected-component labeling algorithm. The run data that are ob-
tained during the first scan are recorded in a queue, and are used
for detecting the connectivity in the further processing. At any
time, all provisional labels that are assigned to a connected com-
ponent so far during the first scan are combined in a provisional
label set, and the smallest label is used as the representative
label. For each current run, if it is not connected to any previous
runs in the row above the scan row, the pixels in the current run
are assigned a new provisional label; otherwise, i.e., if there are
some runs in the row above the scan row that are connected to
the current run, the pixels in the current run is assigned the same
provisional label that was assigned to the leftmost one, and all
provisional label sets corresponding to these runs are merged
with the smallest label as the representative label. Thus, when
the first scan is finished, all provisional labels that were assigned
to each connected component in the given image will be com-
bined in the same provisional label set, and will have a unique
representative label. During the second scan, each provisional
label is replaced by its representative label.

Like other raster-scan labeling algorithms (multiscan al-
gorithms, two-scan algorithms, and hybrid algorithm), our
algorithm is based on label equivalence. However, unlike these
conventional algorithms, which resolve the label equivalences
between provisional labels, we resolve the label equivalences
between provisional label sets. This leads our algorithm to be
more efficient than others.

Two run-based connected-component labeling algorithms
have been proposed for compressed images with run-length
encoding. One, proposed in [39], is an improvement of the
propagation-type algorithm proposed in [32] by use of block
sorting and tracing of runs, and label propagation to the con-
nected runs. It performs a searching step and a propagation step
iteratively on the run data. In the searching step, the image is
scanned until an unlabeled run is found; then the run is assigned
a new label. In the propagation step, the new label propagates
to neighbor runs above or below the current row until all the

runs that belong to the connected component are labeled with
the same label.

The other algorithm, proposed in [41], is a run-based con-
tour-tracing algorithm. It records run data in the order of raster
scanning and performs labeling by local and global run tracing
(contour tracing). In the local run tracking, the next run for run
tracking along the contour is determined. In global run tracing,
the run is labeled by tracing the contour at each run.

The above two run-based labeling algorithms are tracing-type
and need preprocessing; thus, they are not suitable for pipeline
processing and parallel implementation.

In comparison with the two conventional run-based labeling
algorithms, our algorithm is much simpler, is raster-scan-based
(i.e., processes an image in a regular way), needs no prepro-
cessing, and is suitable for parallel implementation.

Experimental results on various types of images, as well as
various-sized noise images show that our algorithm is faster than
the fastest raster-scan labeling algorithm, as found in [43], and
the fastest labeling algorithm, as found in [4].

The rest of this paper is organized as follows. We introduce
our algorithm in the next section and consider its efficient im-
plementation in Section III. In Section IV, we show the exper-
imental results. We compare our algorithm with conventional
two-scan labeling algorithms and the contour-tracing algorithm
in Section V and give our concluding remarks in Section VI.

II. OUTLINE OF OUR PROPOSED ALGORITHM

For an binary image (where the original image is bi-
narized into the object and the background, and is the matrix
size), we use to denote the pixel value at in
the image, where and , and for the
pixel value for the object (called object pixels) and for that
of the background (called background pixels). We assume that

and are larger than any possible number of provisional
labels (a safe method, for example, is using a number larger than
the largest possible number of provisional labels, i.e., ,
for an image), and . Similar to most labeling
algorithms, we assume that all pixels on the border of an image
are background pixels.

A run is a block of contiguous object pixels in a row. A run
from to in an image is described by .
The run data can easily be obtained and recorded during the first
scan.

Let be the current run. Then, by eight-connected con-
nectivity, all runs in the row above the scan row such that one of
their pixels occurs between and are
connected to the current run, as shown in Fig. 1. In other words,
a run such that and
is eight-connected with the current run . All such runs,
including the current run itself, belong to the same connected
component. On the other hand, if there is no such run existing
in the previous row above the scan row, the current run is not
connected to any previous run.

In our algorithm, at any point, all provisional labels that are
assigned to a connected component found so far during the first
scan are combined in a set , where is the smallest label and
is referred to as the representative label. We use a table , called
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Fig. 1. Eight-connected connectivity for the current run. (a) Eight-connected pixel region for the current run; (b), (c) samples of runs eight-connected with the
current run; (d) sample of no run eight-connected with the current run.

Fig. 2. Operations for label equivalence resolving: (a) before processing the
current run; (b) after processing the current run.

the representative label table, to record the relation between a
label in and its representative label as follows:

In the first scan, from , our algorithm scans pixel
one by one in the given image in the raster scan direction. When
a new run is found, the run data are recorded. At the same
time, the eight-connected area with the current run in the above
row is detected. If there is no run eight-connected with the cur-
rent run in the row above the scan row, the current run belongs
to a new connected component that was not found so far. All
pixels in the current run are assigned a new label , the provi-
sional label set corresponding to the connected component, i.e.,
the current run, is established as , and the represen-
tative label of is set to , i.e., .

On the other hand, if there are some runs eight-connected
with the current run in the row above the scan row. Sup-
pose that , , and are the provisional label
sets corresponding to those runs from left to right. Because,

, and the current run belong to the same con-
nected component, , and are merged to ,
where , and all pixels in the current run
are assigned the same provisional label as the upper left-most
run, i.e., .

For example, Fig. 2(a) shows a case before processing the
current run and Fig. 2(b) shows the case after processing the
current run.

Because whenever temporary connected components are
found to be connected, all corresponding provisional label sets
are merged with a single representative label, when the first
scan finished, all provisional labels that belong to a connected
component in a given image are merged in a corresponding set,
and they have the same representative label. Thus, during the
second scan, we need only to replace each provisional label
with its representative label.

The correctness of our algorithm is quite straightforward
from the above explanation.

III. IMPLEMENTATION

In our algorithm, we need to merge provisional label sets. By
use of the connection-list data structure, we can complete the
mergence of two sets in constant steps.

Because, in our algorithm, every provisional label belongs to
only one provisional label set, and for an -size image,
the maximum number of provisional labels is , we can
use two -size 1-D arrays to realize connection lists for
all provisional label sets. For convenience, hereafter we will use
the term provisional label lists instead of provisional label sets.

One array, denoted , is used to represent the label next
to the previous label in the list. means that the
label next to label is . In particular, we use
for indicating that label is the tail label of the list, i.e., there is
no label next to label . The other array, denoted , is used
for indicating the tail label of a provisional label set.
means that the tail label of the provisional label list is .

On the other hand, the representative label table can also be
implemented easily by use of an -size 1-D array,

. Setting the representative label of a provisional label
to can be made easily by the operation , and for
any provisional label , its representative label can be found
simply by the operation .

When we connect two provisional label lists and ,
the head label of is connected to the tail label of ,
and the resulting provisional label list is ;
otherwise, i.e., if , the head label of is connected to
the tail of . Therefore, for any provisional label list ,
the representative label certainly occurs as its head label.

In this way, with any member of a provisional label list
, we can simply find its head label (the representative label)

by , and its tail label by .
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Moreover, from the head label , by using , we can find
all of the members of the list one by one until we reach .

With and the creation and connecting
of equivalent label lists can be made easily. The creation of a
new equivalent label list can be made by the
following operations:

;

;

.

On the other hand, to connect two provisional label lists, say,
and , without loss of generality, suppose that

, i.e., is merged into , we should connect the head
of to the tail of , set the tail of as the tail of

, and set as the representative label for every label in list
. For doing this, the following simple operations, denoted

merge-operation , are performed:

;

while do

;

;

end of while

;

.

Let and be the provisional labels assigned to pixels in
two runs and , respectively. If and are found to be
connected. The operations for resolving the equivalence of two
provisional label sets that contain and , respectively, denoted
to resolve , are as follows:

;

if

merge-operation ;

else if

merge-operation ;

end of if

Notice that if , which means that the two provisional
labels and have the same representative label, i.e., they be-
long the same provisional label set, nothing needs to be done.

After the first scan, each object pixel is labeled with a
provisional label , i.e., . If we set
in advance, the process of replacing a provisional label with its
representative label in the second scan can be completed easily
by the following operation:

.

TABLE I
ALGORITHMS USED IN THE COMPARISONS

Now we consider how to record and use run data. In our
algorithm, because we scan an image in the raster scan direc-
tion, the run that is found first will be used first. Therefore,
we use queue data structures (called start-queue)
and (called end-queue) to record the starting pixel
number and ending pixel number, respectively.

Moreover, for the current run , any run such
that it ends before/at , i.e., , is impos-
sible to be connected with any coming run, the related data can
be deleted from the start-queue and end-queue after the current
run is processed. In other words, after the current run is
processed, only the runs that end after/at , need be
recorded. Therefore, both the start-queue and end-queue can be
realized by an -size 1-D-array circular buffer.

The operations for processing the current run in an
image can be summaried as follows: we first record and in
the start-queue and the end-queue, respectively. Then we check
the runs that are recorded in the start-queue and end-queue one
by one until a run that ends after/at is found (at
least the current run satisfies the condition, and all runs
that end before do not connect with the current run).
If run starts before/at , it connects to the current
run , we label every pixel in with the same label as
that with which the pixel was labeled. Moreover, because
all following runs such that they end before/at connect to
the current run, we resolve the label equivalences between them
and the current run (such runs do not connect to the next current
run and, therefore, are no longer necessary). Last, we check the
next run, which ends after/at (again, at least, the current
run is such a run). If it starts before/at , it connects the
current run; we resolve the label equivalence between it and the
current run. Moreover, this run might connect to the next current
run; its data and are kept in the program for consecutive
processing.

On the other hand, if the run starts after , it
does not connect to the current run . In other words, the
current run does not connect to any run that was found before.
We label every pixel in the current run with a new label , and
increase by one for the consecutive processing. Because run

might connect to the next current run, its data and are
kept in the program for the consecutive processing.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm with the C language on a
PC-based workstation (Intel Pentium D 3.0 GHz 3.0 GHz
CPUs, 2-GB Memory, Mandriva Linux OS). All data in this sec-
tion were obtained by averaging of the execution time for 10 000
runs.
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TABLE II
COMPARISON OF VARIOUS EXECUTION TIMES [msec] ON VARIOUS KIND IMAGES

Test images are composed of 50 natural images (including
landscape images, aerial images, fingerprint images, portrait im-
ages, still-life images, snap shot images, and text images, ob-
tained from the Standard Image Database (SIDBA) developed
by the University of Tokyo1 and the image database of the Uni-
versity of Southern California2 were used for realistic testing
of labeling algorithms. In addition, seven texture images, which
were downloaded from the Columbia-Utrecht Reflectance and
Texture Database,3 and 25 medical images obtained from a med-
ical image database of The University of Chicago were used
for testing. All of these images were transformed into binary
images by means of Otsu’s threshold selection method [29].
Moreover, specialized pattern (stair-like, spiral-like, saw-tooth-
like, checker-board-like, and honeycomb-like connected com-
ponents) images are used for testing. All of these images are
512 512 in size.

The algorithms used for comparison are listed in Table I. The
comparison results are listed in Table II.

The results for six representative images are illustrated in
Fig. 3, where the object pixels are displayed in black.

On the other hand, 41 noise images of each of six sizes
(32 32, 64 64, 128 128, 256 256, 400 400, and
512 512 pixels) (a total of 246 images) were used for fur-
ther comparing our algorithm and the fastest conventional
raster-scan algorithm, i.e., the hybrid algorithm, as well as the
fastest conventional algorithm, i.e., the contour-tracing labeling
algorithm. For each size, the 41 noise images were generated
by thresholding the images containing uniform random noise
with 41 different threshold values from 0 to 1000 with a step of
25. Because connected components in such noise images have
a complicated geometrical shape and complex connectivity,
serious evaluation of labeling algorithms can be performed
with these images.

Noise images of various sizes were used for testing the per-
formance of the execution time versus the image size. As shown
in Fig. 4, all three algorithms have the ideal linear characteris-
tics which are plotted against the image size. It should be noted
that, for all images, the maximum running time of our algorithm
was smaller than the average time of the hybrid algorithm and
the contour-tracing algorithm.

1http://sampl.ece.ohio- state.edu/data/stills/sidba/index.htm
2http://sipi.usc.edu/database/
3http://www1.cs.columbia.edu/CAVE/software/curet/index.php

Noise images with a size of 512 512 pixels were used for
testing the execution time versus the number of object pixels
in a given image. The results are shown in Fig. 5. The results
show that our algorithm was at least four times faster than the the
hybrid algorithm for any number of object pixels in an image,
and was faster than the contour-tracing algorithm for all images,
and in the worst case (maximum running time), our algorithm
was 1.8 times faster than the contour-tracing algorithm.

V. COMPARISONS

We compared our algorithm with conventional two-scan
labeling algorithms and the fastest conventional labeling
algorithm, i.e., the contour-tracing labeling algorithm pro-
posed in [4].

A. Comparisons With Conventional Two-Scan Labeling
Algorithms

All conventional two-scan labeling algorithms are pixel-
based (as opposed to run-based). In the first scan of conven-
tional algorithms, the minimum provisional label in the mask
shown in Fig. 6 is assigned to the object pixel; thus, calcula-
tion of the minimum provisional label in the mask is needed,
whereas our algorithm is run-based; thus, all pixels in a run are
assigned the same label without calculation of the minimum
provisional label. Suppose that there are object pixels and

runs in an image, where . For an image that contains
large connected components, i.e., , our algorithm
should be much faster than conventional two-scan labeling
algorithms. The results shown in Fig. 3 confirm this analysis,
i.e., for the complicated image shown in Fig. 3(a), our algorithm
is 20 times faster than the Shirai algorithm, whereas for the
simple image shown in Fig. 3(b), which contains longer runs,
our algorithm is 30 times faster than the same conventional
two-scan algorithm.

In conventional two-scan labeling algorithms, an object pixel
is assigned a new provisional label if there is not any object pixel
in the mask, whereas in our method, any object pixel in the cur-
rent run is not assigned a new provisional label only if there is
not any run connected to the current run in the previous row.
Obviously, the condition for assigning a new label in our algo-
rithm is more strict than that in conventional two-scan labeling
algorithms; thus, in general, the number of times for assigning
provisional labels in our algorithm should be smaller than that in
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Fig. 3. Execution time [msec] of labeling algorithms for six representative images: (a) an animal image; (b) a still-life image; (c) a fingerprint image; (d) a Japanese
text image; (e) a medical image; (f) a texture image.

Fig. 4. Execution time versus image size.

conventional two-scan labeling algorithms. A simple example is
shown in Fig. 7. Fig. 7(a) and (b) shows the provisional labels
assigned to a connected component by a conventional two-scan
algorithm and those assigned to the same connected component
by our algorithm. The number of provisional labels assigned by

Fig. 5. Execution time versus the number of object pixels in an image.

the conventional raster-scan algorithm is larger than that by our
algorithm.

Fig. 8 shows the number of provisional labels assigned by
the conventional two-scan algorithm and our algorithm for dif-
ferent 512 512-pixel noise images. The number of provisional
labels assigned by our algorithm is smaller than that by the con-
ventional two-scan algorithm for any images.

The reduction in the number of provisional labels reduces not
only the time for marking new labels, but also that for resolving
label equivalences and, thus, leads to faster labeling.



HE et al.: RUN-BASED TWO-SCAN LABELING ALGORITHM 755

Fig. 6. Mask for the eight-connected connectivity.

Fig. 7. Provisional labels assigned to a connected component after first scan
(a) by a conventional two-scan algorithm and (b) by our algorithm.

Fig. 8. Number of provisional labels assigned by different algorithms.

Moreover, conventional two-scan labeling algorithms record
label equivalences during the the first scan, and then, i.e., after
completion of the first scan, they resolve the label equivalences.
After completion of resolving process for all label equivalences,
the second scan can be started.

In comparison, our algorithm resolves any label equivalence
as soon as it is found in the first scan. The label-equivalence
resolving processing is independent from the provisional label
assignment. At the same time of completion of the first scan,
all label equivalences have been resolved; thus, the second scan
can be started immediately after the first scan. Therefore, our al-
gorithm is more suitable for pipeline processing and/or parallel
implementation by use of the systolic array architecture [46].

B. Comparisons With the Contour-Tracing Labeling Algorithm

The contour-tracing labeling algorithm proposed in [4] is the
fastest and newest conventional algorithm. It completes labeling
by one scan (i.e., no re-labeling is required). Moreover, during
labeling, it can extract connected-component contours and the
sequential orders of contour points, which are also important
for some image processing and pattern recognition. However, it
need put an image in a larger array to avoid checking whether a

pixel is on the boundary of the image. Moreover, because it ac-
cesses an image in an irregular way, it is not suitable for pipeline
processing or parallel implementation. In comparison, our al-
gorithm processes an image in the raster-scan order; therefore,
it is suitable for pipeline processing and parallel implementa-
tion. Moreover, our algorithm is faster than the contour-tracing
algorithm. On the other hand, for an -size image, our
algorithm requires three -size 1-D arrays and two

-size 1-D arrays for resolving label equivalences. In
addition, our algorithm does not provide connected-component
contours and the sequential orders of contour points.

VI. CONCLUSION

In this paper, we proposed a run-based two-scan con-
nected-component-labeling algorithm. Unlike conventional
label-equivalence-resolving algorithms, which resolve label
equivalences between provisional labels, we resolve label
equivalences between provisional label sets. For resolving label
equivalences, only three -size and two -size
1-D arrays are needed. Our algorithm is very simple, and
experimental results demonstrated that our algorithm is faster
than all conventional labeling algorithms.
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