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Shape-Based Hand Recognition
Erdem Yörük, Ender Konukoğlu, Bülent Sankur, Senior Member, IEEE, and Jérôme Darbon

Abstract—The problem of person recognition and verification
based on their hand images has been addressed. The system is
based on the images of the right hands of the subjects, captured
by a flatbed scanner in an unconstrained pose at 45 dpi. In a pre-
processing stage of the algorithm, the silhouettes of hand images
are registered to a fixed pose, which involves both rotation and
translation of the hand and, separately, of the individual fingers.
Two feature sets have been comparatively assessed, Hausdorff dis-
tance of the hand contours and independent component features of
the hand silhouette images. Both the classification and the verifica-
tion performances are found to be very satisfactory as it was shown
that, at least for groups of about five hundred subjects, hand-based
recognition is a viable secure access control scheme.

Index Terms—Independent component analysis, modified Haus-
dorff distance, pose registration.

I. INTRODUCTION

THE emerging field of biometric technology addresses
the automated identification of individuals, based on

their physiological and behavioral traits. The broad category
of human authentication schemes, denoted as biometrics en-
compasses many techniques from computer vision and pattern
recognition. The personal attributes used in a biometric iden-
tification system can be physiological, such as facial features,
fingerprints, iris, retinal scans, hand and finger geometry;
or behavioral, traits idiosyncratic of an individual, such as
voice print, gait, signature, and keystroke style. Depending
on the complexity or the security level of the application, one
will opt to use one or more of these personal characteristics,
possibly under a multimodal fusion scheme for performance
enhancing [14].

In this paper, we investigate the shape of the hand silhouette
as a distinctive personal attribute for an authentication task. De-
spite the fact that the use of hands as biometric evidence is not
very new, and that there are an increasing number of commer-
cial products actually deployed, the documentation in the lit-
erature is scarce as compared to other modalities like face or
voice. One distinct advantage the hand modality offers is that its
imaging conditions are less complex, for example a relatively
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simple digital camera or flatbed scanner would suffice. Con-
sequently, hand-based biometry is user-friendlier and it is less
prone to disturbances and more robust to environmental condi-
tions and to individual anomalies. In contrast, face modality is
known to be quite sensitive to pose, facial accessories, expres-
sion, and lighting variations; iris or retina-based identification
requires special illumination and is much less friendly; finger-
print imaging requires good frictional skin, etc., and up to 4%
of the population may fail to get enrolled [14]. Therefore, au-
thentication based on hand shape can be an attractive alternative
due to its unobtrusiveness, low-cost, easy interface, and low data
storage requirements. Some of the presently deployed access
control schemes based on hand geometry range from passport
control in airports to international banks, from parents’ access to
child daycare centers to university student meal programs, from
hospitals, prisons, to nuclear power plants [27]. In fact, there
exist a number of patents on hand information-based personnel
identification, using either geometrical features or on hand pro-
file [27].

Most of the hand-based biometric schemes in the literature
fall into the broad category of geometric features of the hand.
For example, Sanchez-Reillo et al. [22] select 25 features, such
as finger widths at different latitudes, finger and palm heights,
finger deviations and the angles of the interfinger valleys with
the horizontal, and model them with Gaussian mixtures. Jain et
al. [21] have used a peg-based imaging scheme and obtained
16 features, which include length and width of the fingers, as-
pect ratio of the palm to fingers, and thickness of the hand. The
prototype system they developed was tested in a verification ex-
periment for web access over for a group of ten people [20].
Kumar et al. [2], [28] extract geometric features similar to [19],
[21], and [22]. Öden et al. [19], in addition to geometric features
such as finger widths at various positions and palm size, have
made use of finger shapes. These shapes have been represented
with fourth degree implicit polynomials, and the resulting six-
teen features are compared with the Mahalanobis distance. A
recent work utilizes both hand geometry and palm print infor-
mation as in Kumar et al. [17], which use decision level fusion.
Finally, there are schemes that employ solely palmprint infor-
mation, such as in Han et al. [11] and Zhang [26].

In our paper, we employ a global hand shape-based approach
for person identification and verification. The algorithm is piv-
oted on the normalization of the deformable hand shape. In other
words, “hand shape normalization” involves the registration of
fingers by separate rotations to standard orientations as well as
the rotation and translation of the whole hand. Subsequently,
person identification is based on the comparison of the hand
silhouette shapes using Hausdorff distance or on the distance
of feature vectors, namely the independent component analysis
(ICA) features. The first part of the method of Jain and Duta [8] is
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TABLE I
CHARACTERISTICS AND POPULATION SIZES OF THE HAND-BASED RECOGNITION ALGORITHMS

Fig. 1. Sample hand images with unconstrained pose and accessories.

somewhat similar to ours in that they compare the contour shape
difference via the mean square error, and it involves finger align-
ment. The features used and the data sizes in different algorithms
are summarized in Table I.

We assume that the user of this system will be cooperative,
as he/she would be demanding for access. In other words, the

user would have no interest in invalidating the access mecha-
nism by moving or jittering his/her hand or by having fingers
crumpled or sticking to each other. On the other hand, the im-
plementation does not assume or force the user to any particular
orientation. A variety of hand postures are illustrated in Fig. 1,
where the only assumption is that the fingers are not touching
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Fig. 2. Two superposed contours of the hand of the same individual: (a) rigid hand registration only and (b) finger alignment after hand registration.

or curved around knuckles. The orientation information of the
hand/fingers is automatically recovered from the scanned image
and then the hand is normalized.

The paper is organized as follows. In Section II, the segmen-
tation of hand images and their normalization to compensate for
their deformable shape are given. Section III discusses the com-
putation of features from the normalized hand silhouettes. The
experimental setup and the classification results are discussed
in Section IV, and conclusions are drawn in Section V.

II. NORMALIZATION OF HAND CONTOURS

A. Hand Segmentation

The hand segmentation aims to extract the hand region from
the background. At first sight, segmentation of a two-object
scene, consisting of a hand and the background, seems a rela-
tively easy task. However, segmentation accuracy may suffer
from artifacts due to rings, overlapping cuffs or wristwatch
belts/chains, or creases around the borders from too light or
heavy pressing. Furthermore, the delineation of the hand con-
tour must be very accurate, since the differences between hands
of different individuals are often minute. We have compara-
tively evaluated two alternate methods of segmentation, namely,
clustering followed by morphological operations and the water-
shed transform-based segmentation. Since both methods work
competitively well, we preferred the less complex clustering
approach. Interestingly enough, the Canny edge-based segmen-
tation with snake completion [4], [25] did not work well due
to the difficulty of fitting snakes to the very sharp concavities
between fingers. Snake algorithms performed adequately only
if they were properly initialized at the extremities.

We have used the K-means clustering algorithm on both the
gray-level pixels and the RGB color components to separate
the hand foreground and the darker background. Both gave
identical results, hence the simpler gray-level clustering was
preferred. However, without any postprocessing the resulting
maps may end up having holes and isolated foreground blobs,

as well as severed fingers due to accessories. We therefore find
the largest connected components in the foreground, and then
remove the debris by using area-based size filtering. However,
lest a smaller connected components be a severed finger due
to ring artifacts, we check for the second up to sixth ranking
components. The “ring artifact removal” algorithm (explained
in Section II-C) then corrects any straights or isthmuses caused
by the presence of rings. Similarly, we accept as background
the largest connected component obtained from the reverse
image. This background image is similarly processed with
area-based filtering.

The normalization of hand images involves the registering of
hand images, that is global rotation and translation, as well as
re-orienting fingers individually along standardized directions,
without causing any shape distortions. This is, in fact, the most
critical operation for a hand-shape based biometry application
whenever global features are used. There are however schemes
that use only local features [2], [19], for example separate con-
tours of fingers, for which such a normalization is not warranted.
The necessity of finger re-orientation is illustrated in Fig. 2, and
it was also pointed out in [8]. This figure shows hand images
of the same person taken on two different sessions. The left
figure is the contour after global hand registration (but not yet
finger registration), while the figure on the right is the outcome
after registration of fingers. The registration process involves
two steps: 1) translation to the centroid of the hand such that it
coincides with the center of the image; 2) rotation toward the
direction of the larger eigenvector, that is the eigenvector cor-
responding to the larger eigenvalue of the inertia matrix. The
inertia matrix is simply the 2 2 matrix of the second-order
centered moments of the binary hand pixel distances from their
centroid. A brief reminder of the inertial matrix is as follows.
Consider the moments of a binary image

(1)
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Fig. 3. (a) Radial distance function for finger extraction and (b) a hand contour with marked extremities.

where the summation is over the object pixels. The centroid is
defined as

(2)

(3)

Therefore, the central moments can be written as

(4)

The inertial matrix (i.e., sample covariance matrix of the object
coordinates) then becomes

(5)

and the orientation of the object is given by the direction of the
major eigenvalue. It can be shown that this angle is given by [24]

(6)

Obviously, unless fingers have been set to standard orienta-
tions, recognition performance will remain very poor, as the rel-
ative distance or shape discrepancy between these two superim-
posed images (intra-difference) can easily exceed the distance
between hands belonging to different individuals (interdiffer-
ence). The steps of the hand normalization algorithm are given
in Section II-D and E.

B. Localization of Hand Extremities

Detecting and localizing the hand extremities, that is, the fin-
gertips and the valley between the fingers is the first step for
hand normalization. Since both types of extremities are char-
acterized by their high curvature, we first experimented with
curvegram of the contour, that is, the plot of the curvature of the
contour at various scales along the path length parameter. The
nine maxima in the curvegram, which were consistent across all
scales, were taken as the sought after hand extremities. How-
ever, we observed that this technique was rather sensitive to

contour irregularities, such as spurious cavities and kinks, es-
pecially around the ill-defined wrist region.

A more robust alternative technique was provided by the plot
of the radial distance with respect to a reference point around the
wrist region. This reference point was taken as the first intersec-
tion point of the major axis (the larger eigenvector of the inertial
matrix) with the wrist line. The resulting sequence of radial dis-
tances yields minima and maxima corresponding to the sought
extremum points. The resulting extrema are very stable since
the definition of the five maxima (fingertips) and four minima
are not affected by the contour irregularities. The radial distance
function and a typical hand contour with extremities marked on
it are given in Fig. 3.

C. Ring Artifact Removal

The presence of rings may cause severance of the finger from
the palm or may create an isthmus on the finger [Fig. 4(a)].
First, an isolated finger can be detected simply by the size of its
connected component since on one side, its size is far larger than
any background debris removed with morphological filtering,
and on the other side it is always smaller than the main body
of the hand. A severed finger can be reconnected to its hand by
prolonging its sides in straight lines till it meets the palm. These
straight lines skim past the sides of the finger parallel to its major
axis direction.

Second, the presence of an isthmus due to faulty segmenta-
tion of a ring [see Fig. 4(b)] can be detected by monitoring the
contour distance to the finger’s major axis. Any local minimum
on the left and/or right side of a finger, that is any time the dis-
tance exceeds a threshold, it is assumed to be a cavity caused by
the ring. We have set this threshold to one quarter of the distance
median between the major axis and the left and right profiles of
a finger. The isthmus effect is eventually repaired by bridging
over the cavities with straight lines and filling in inside the bays
by interpolation.

D. Finger Registration

Having located all five fingers by the extremities on the radial
sequence one can start dealing with the hand normalization. The
hand normalization algorithm consists of the following steps
(see Fig. 5).
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Fig. 4. (a) Severed middle finger and a ring finger with isthmus, (b) detail of finger isthmus; and (c) hand image after ring artifact removal.

Fig. 5. (a) Fingers extracted by a sickle sweep, finger axes, finger pivots, and definition of hand pivotal axis; (b) thumbs of the same person overlapped after
rotation; and (c) thumbs of the same person overlapped after rotation and pivotal translation.

1) Extracting Fingers: Starting from the finger extremities
found in Section II-B, one draws segments from the tip along
the finger side toward the two adjacent valley points. The shorter
of these two segments is chosen, and then it is swung like a
pendulum toward the other side. This sickle sweep delineates
neatly the finger and its length can thus be computed [Fig. 5(a)].
This extraction operation, however, is somewhat different for
the thumb.

2) Finger Pivots: Fingers rotate around the joint between
proximal phalanx and the corresponding metacarpal bone. Re-
call that the metacarpus is the skeleton of the hand between the
wrist and the five fingers. This skeleton consists of five long
bones, which take place between the wrist bones and the finger
bones (phalanges), as in [3]. These joints are somewhat below
the line joining the interfinger valleys. Therefore, the major axis
of each finger is prolonged toward the palm by 20% in excess of
the corresponding finger length (determined in part a), as shown
in Fig. 5(a). The ensemble of end-points of the four fingers axes
(index, middle, ring, little) establishes a line, which depends on
the size and orientation of the hand.

3) Hand Pivotal Axis: The set of four finger pivots (index,
middle, ring, little) constitute a good reference for all sub-

sequent hand processing steps. A pivotal line is established
that passes through these four points by least squares or by
simply joining together the pivots of the index and little fingers
[Fig. 5(a)]. We call this line, the pivot line of the hand. The
pivot line serves several purposes: first, to register all hand
images to a chosen pivot line angle (this angle was chosen as
80 ith respect to the axis). Second, the rotation angles of
the finger axes are always computed with respect to the pivot
line. Finally, the orientation and size of the pivot line helps us
to register the thumb and to establish the wrist region.

Rotation of the fingers: We calculate the major axis of each
finger from its own inertial matrix and calculate its orientation
angle . Each finger is rotated by the angle ,
for index, middle, ring, little, and where is the goal ori-
entation of that finger. The finger rotations are effected by mul-
tiplying the position vector of the finger pixels by the rotation
matrix

(7)

around their pivot. The standard angles of the fingers are de-
duced from an average hand and are given in Table II. Note
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TABLE II
ANGLES FOR THE FINGERS OF THE PROTO-HAND GIVEN IN DEGREES

again that the subject is free to place his hand with arbitrary
finger postures, and our algorithm will register them to the stan-
dard angles. Obviously any other angle set would work equally
well in our algorithm, provided the alternative angle set leaves
the fingers apart. However, the angles recommended in Table II
correspond to a natural posture: extreme angles could strain and
distort the hand image.

4) Processing for the Thumb: The motion of the thumb is
somewhat more complicated since it involves rotations with re-
spect to two separate joints. In fact, both the metacarpal-phalanx
joint as well as the trapezium-metacarpal joint play a role in the
thumb motion. We have compensated for this relatively more
complicated displacement by a rotation followed by a transla-
tion. A concomitant difficulty is the fact that the stretched skin
between the thumb and the index finger confuses the valley de-
termination and thumb extraction. For this purpose, e rely on the
basic hand anatomy, and the thumb is assumed to measure the
same length as the person’s little finger. A line along the major
axis of the thumb is drawn and a point on this line, which mea-
sures from the tip of the thumb by 120% of the size of the little
finger, forms the thumb pivot. The thumb is then translated so
that its pivot coincides with the tip of the hand pivot line, when
the latter is swung 90 clockwise. The thumb is finally rotated to
its final orientation and merged back into the hand [Fig. 5(a)].
Two of the thumb images, before and after normalization, are
shown in Fig. 5(b). Notice that the thumb can potentially arrive
in a curved posture that would make the processing more com-
plicated. However, the pressure that the subject exerts on the
platen, even a light one, helps to straighten out all fingers. In
any case, among the 3000 hand images an invalid thumb did not
occur.

After normalizing finger orientations, the hand is translated
so that its centroid, defined as the mean of the four pivot points,
is moved to a fixed reference point in the image plane. Finally,
he whole hand image is rotated so that its pivot line aligns with a
fixed chosen orientation. Alternatively, the hands could be reg-
istered with respect to their major inertial axis and centered with
respect to the centroid of the hand contours (and not the pivotal
centroid).

One can envision enforcing the subject to have identical finger
orientations via the use, e.g., of pegs. However, pegs not only
bring in additional constraint precluding, for example, noncon-
tact image capture, but also desired precision cannot be attained
due to varying pressure of the hand on the platen or tension in
the fingers. Furthermore, even with pegs one needs some re-ori-
entation and normalization.

E. Wrist Completion

The hand contours we obtain after segmentation have irregu-
larities in the wrist regions, which occur due to clothing or the
difference in the angle of the forearm and the pressure exerted

on the imaging device. These irregularities cause different wrist
segments in every hand image taken, which can adversely affect
the recognition rate. The solution to this problem is to create a
uniform wrist region consistent for every hand image and com-
mensurate with its size.

We investigated two approaches to synthesize a wrist
boundary. The first approach is a curve completion algorithm
called the Euler spiral [16]. The Euler spiral furnishes a natural
completion of a contour, when certain parts of this contour are
missing, e.g., due to occlusion. The information needed for
the filling of the contour gap is the two end points and their
respective slopes. In the Euler spiral reconstitution of the wrist
the two endpoints were taken at a distance of 1.5 times the
length of the thumb and of the little finger, as measured from
their respective fingertips. The endpoint slopes were computed
by averaging the slope over 15 contour elements upstream from
the endpoints. An example of the “Euler wrist” is shown in
Fig. 6(b).

A simpler alternative would be to guillotine the hand at the
same latitudes, in other words to connect the two sides of the
palm by a straight line at the latitude of one pivot line length, par-
allel and below the pivot line. An example of guillotined wrist is
shown in Fig. 6(c). Although both alternatives result in visually
plausible wrists, we observed that in experiments there resides
still some uncertainty adversely affecting correct recognition.
We therefore decided to discount the wrist region by attaching
a low weight [18] in the recognition using Hausdorff distance.
Similarly, for the hand images [Fig. 6(d)], e applied a cosine
taper starting from the half distance between the pivot line and
the wrist line.

III. FEATURE EXTRACTION AND RECOGNITION

There are several choices for the selection of features in order
to discriminate between hands in a biometric application. We
used comparatively two hand recognition schemes that are quite
different in nature. The first method is based on distance mea-
sure between the contours representing the hands, and hence it
is shape-based. The second recognition scheme considers the
whole scene image containing the normalized hand and its back-
ground, and applies subspace methods. Thus, the second method
can be considered as an appearance-based method, albeit the
scene is binary consisting of the silhouette of the normalized
hand. However, this approach can equally be applied to gray-
level hand images, which would include hand texture and palm
print patterns.

A. Modified Hausdorff Distance

In order to compare different hand geometries, the Hausdorff
distance is an effective method. This metric has been used in
binary image and shape comparison and computer vision for
a long time [7]. The advantage of Hausdorff distance over bi-
nary correlation is the fact that this distance measures prox-
imity rather than exact superposition; thus, it is more tolerant
to perturbations in the locations of points. Given the sets

and , where and
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Fig. 6. (a) Hand after finger normalization and global rotation, (b) completion of the wrist based on Euler spiral, (c) wrist formed with a guillotine cut, and (d)
wrist tapered after guillotine cut with square of cosine function.

denote contour pixels of two hands for and
, the Hausdorff distance is defined as

(8)

where

(9)

In this formula, is a norm over the elements of the
two sets and obviously the contour pixels run over the
set of indexes and . In our case,
this norm is taken to be the Euclidean distance between the two
points. Since the original definition of the Hausdorff distance is
rather sensitive to noise, we opted to use a more robust version
of this metric, namely the modified Hausdorff distance, defined
as in [7] and [23]

(10)

(11)

where and are the numbers of points in sets and ,
respectively.

B. Features From Independent Component Analysis

The Independent Component Analysis (ICA) is a technique
for extracting statistically independent variables from a mixture
of them. It has been successfully used in many different appli-
cations for finding hidden factors within data to be analyzed or
decomposing it into the original source signals. In the context
of natural images, it also serves as a useful tool for feature ex-
traction and person authentication tasks [1], [6]. In this paper,
we apply the ICA tool on binary images to extract and summa-
rize prototypical shape information. Notice that this is a novel
application of this decomposition technique, in that the applica-
tions in the literature are almost always on gray-level images.
In other words, while the applications [1], [6] use both shape
and texture information for decomposition, we use solely bi-
nary silhouettes as the input to the source separation algorithm.
The ICA algorithm, however, has been applied on one-dimen-
sional binary source signals, which were mixed via OR opera-
tion in [12].

ICA assumes that each one of the observed signals
is a mixture of a set of unknown

independent source signals , through an unknown mixing
matrix . With and forming the rows
of the matrices and , respectively, we have the
following model:

(12)

The data vectors for the ICA decomposition are the lexico-
graphically ordered hand image pixels. The dimension of these
vectors is (for example, , if we assume a 200

200 hand image). More specifically, the matrix consists
of columns, which are formed from the lexicographically
ordered segmented hand image scenes, that is, hand plus the
background. In other words, each column corresponds to one
whole image. Thus, the data matrix consists of (number
of subjects) columns and rows (number of pixels in the
segmented image. Despite the fact that the binary image, and as
a matter of fact the gray-level image may contain any number
of zero rows/columns, the whole lexicographic reading of the
image is never a zero vector due to the two-class clustering in
Section II-A. Therefore, there is never any risk for the covari-
ance matrix to be singular or the basis vectors to be identical
in the mixing matrix. The only vanishingly improbable case of
a singular covariance matrix might occur if one long (e.g.,
40 000 long) binary vector is a linear combination of some
other ones.

Briefly, ICA aims to find a linear transformation for the
inputs that minimizes the statistical dependence between the
output components , the latter being estimates of the hypoth-
esized independent sources

(13)

In order to find such a transformation , which is also called
separating or de-mixing matrix, we implemented the fastICA
algorithm [13] that maximizes the statistical independence be-
tween the output components using maximization of their ne-
gentropy. There exists two possible formulation of ICA [1],
whether one wants to obtain the basis images or their mixing
coefficients to be independent. These two approaches are called,
respectively, and architectures [1].

1) Architecture: In this architecture, each of indi-
vidual hand-data is assumed to be a linear mixture of an un-
known set of statistically independent source hands. For this
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Fig. 7. Decomposition of hand images into ICA patterns: (a) patterns in ICA architecture and (b) patterns in ICA architecture.

model, images of normalized hands, of size 200 200, are raster
scanned to yield data vectors of size 40 000. Note that the data
matrix will be dimensional. This matrix is decom-
posed into independent source components , which will
take place along the rows of the output matrix . Each row of the
mixing matrix will contain weighting coefficients
specific to a given hand. These weights show the relative con-
tribution of the source hands to synthesize a given sample hand
[Fig. 7(a)]. It follows then that, for the hand , the row of
will constitute an -dimensional feature vector. In our work,
was equal to the number of subjects, that is, of “hand sources.”
In the recognition stage, assuming that the test set follows the
same synthesis model with the same independent components,
we project a normalized test hand (1 40 000), onto the
set of predetermined basis functions and compare the resulting
vector of projection coefficients given by

(14)

Finally, the individual to be tested is recognized as the individual
when is closest to the feature vector and where the

distance is measured with L1 metric

(15)

2) Architecture: In this second architecture, the super-
position coefficients are assumed to be independent, but not the
basis images. Thus, this model assumes that, each of pixels
of the hand images result from independent mixtures of random
variables, that is the “pixel sources.” For this purpose, we start
considering the transpose of the data matrix: . However, the
huge dimensionality of pixel vectors (typically ) neces-
sitates a PCA reduction stage prior to ICA.

In fact, the eigenvectors of the covariance matrix

(16)

where each row of is centered, can be calculated by using
the eigenvectors of the much smaller matrix .

Let be the ranked eigenvectors with eigen-
values of the matrix .
Then, by SVD theorem [10], the orthonormal eigenvectors

of corresponding to the largest
eigenvalues are

(17)

where . After the projection of input vector onto
the eigenvector , we obtain the feature as

(18)

Thus, the feature vector is given by

(19)

where represents the projection operator formed by
’s in its rows. The hand image data is reduced after being pro-

jected on the few principal components and thus forms
the square data matrix . Finally we decompose

to source and mixing coefficients according to the model
in Fig. 7(b), we obtain our basis functions (the hand images) in
the columns of the estimated mixing matrix , which is .
Conversely, the coefficients in the estimated source matrix are
statistically independent. The synthesis of a hand in the data set

, from superposition of hand “basis images” as in the columns
of , is illustrated in Fig. 7(b).

In the recognition stage, assuming again that test hands follow
the same model, they are also size reduced with , and
multiplied by the de-mixing matrix

(20)

The resulting coefficient vector of a test hand ,
found as

(21)

which is then compared with predetermined feature vectors of
the training stage. Notice that we use a different symbol for
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the demixing outputs in the model denoting “hand pixel
sources” as compared to the model, where was used to
denote “hand shape sources.” Finally, the individual to be tested
is simply recognized as the person with the closest feature
vector , where distance is measured in terms of cosine of the
angle between them

(22)

Let us recall again the parameters: the number of pixels in
the hand images was , and the dimension of the
subspace, , was taken equal to the number of individuals, that
is, .

IV. EXPERIMENTAL RESULTS

A. Data Acquisition

Our hand database contained 1374 images of hands of 458
different persons, as we collected from each person three im-
ages both of the right hands [9]. The images were acquired with
a HP Scanjet 5300 c scanner at 45-dpi resolution; hence, the im-
ages measured 383 526 pixels in the preprocessing stage. The
segmentation, pose normalization and ring removal algorithms
were run on this resolution images. The images were further re-
duced to 20-dpi resolution (and cropped to 200 200 pixels)
at the feature extraction stage, that is, when the ICA parameters
were extracted. There were no control pegs to orient the fingers,
and there were no restrictions on hand accessories, like rings.
In our case, the imaging conditions that yielded the desired im-
ages were the pressure, albeit slight, that the subjects exerted on
the platen, plus the awareness of keeping fingers apart. Notice
that all other schemes in the literature demand that the fingers
be kept apart. None of the hands and/or images had to be dis-
carded. The subjects were Turkish and French students and staff
members from various levels, departments and universities in
the age span of 20–50. They were not habituated to the system
beforehand, and they were told simply to keep their fingers apart
and their hands off from the boundaries. In a real-life situation,
we believe a user would be even more cooperating if the sub-
ject were confronted with actual denial of access. Each person
underwent three hand scan sessions within intervals of five to
ten minutes, and between the sessions the subject could add or
remove, at will, rings, or roll up or down sleeves. We also ac-
quired hand images after about six months from a subset of the
subjects that we could track, in order to assess the accuracy of
the system after a long time interval.

First, the hand recognition experiments, based on normalized
hand images, were performed on five selected population sizes,
namely, population subsets consisting of 20, 35, 50, 100, and
458 individuals. The rationale of the choice of these subpopula-
tions was that they were the enrollment sizes used in the litera-
ture. Different population sizes help us perceive the recognition
performance with increasing number of individuals. A boosting
algorithm was applied so that several different formations of
subsets (of sizes of 20, 35, 50, and 100) were created by random
choice and their performance scores were averaged.

TABLE III
CORRECT IDENTIFICATION PERFORMANCE AS A FUNCTION

ENROLLMENT SIZE (DOUBLE TRAINING SET)

B. Identification Results

The modified Hausdorff distance-based recognition yields the
results shown in Table III, where the numbers of contour ele-
ments were made equal to via interpola-
tion and resampling. We have noticed that most of the errors
occur due to the guillotined artifact of the wrist. We tried dif-
ferent weights to counter the effect of the wrist ambiguity [18],
and it turned out that discounting the wrist area completely re-
sulted in the best performance. The Hausdorff results are shown
in the bar charts in Fig. 8 with one variance-long whisker. The
correct recognition results using ICA features are given also
in Table III. These feature vectors correspond, respectively, to
mixture coefficients of independent hand shape sources and to
source pixels of hand images. In the architecture we used
not necessarily -dimensional features but the feature dimen-
sion yielding the best score. For example, for the enrollment
size of 458 the feature dimensionality was 200, and not 458.
We have noticed that the second ICA architecture per-
formed better than the first architectures, namely, . The sat-
isfactory results indicate that the independent component anal-
ysis features, whether in the form of mixture coefficients or in
the form of source hands, capture in a small subspace, the infor-
mation necessary for person discrimination.

Second, we wanted to see the effect of training sample size,
that is, the impact of multiple independent recordings of the in-
dividual’s hand. Thus, we ran the recognition experiments with
a single training and then with the double training set, both in a
round robin fashion. More explicitly, let the three sets of hand
images subjects be referred to as the sets A, B, C. In the single
set experiments, the ordering of the test and training sets were
{(A,B), (B,A), (A,C), (C,A), (B,C), (C,B)}. In other words, set
A hands were tested against the training set of set B etc. In the
double training set, the ordering of the test and training sets were
{(A, BC), (B, AC), (C, AB)}, e.g., hands in the test set A were
recognized using hands both in the sets B and C. Finally, the
recognition scores were averaged from these training and test
set combinations. Table IV indicates that there is significant im-
provement when one shifts from single-training set to the double
training set. One can notice that the increase in the size of the
training set has a nonnegligible effect on the identification per-
formance. The effect becomes more pronounced for increasing
enrollment sizes and the contribution is higher in the case of the
Hausdorff-based technique.

C. Verification Results

We ran verification experiments where the “genuine hands”
had to be differentiated from the “impostor hands.” We calcu-
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Fig. 8. Bar charts of average recognition accuracy as a function of test size for the ICA , ICA and Hausdorff schemes. The whiskers have the size of one
variance (double training set).

TABLE IV
EFFECT OF TRAINING SET SIZE ON THE IDENTIFICATION PERFORMANCE:

THE PERCENT POINT IMPROVEMENT SHOWN BETWEEN

THE SINGLE- AND DOUBLE-TRAINING SET

late the distances between the hand shape of the applicant and
the hand shapes collected in the database of the subject that he
claims to be, and then comparing this score against a threshold.
If this distance is below the threshold than the claimant is ac-
cepted as true; otherwise he is rejected. In the case an impostor
presents himself and his distance to the claimed hands is below
the threshold, then we have a false acceptance. Conversely, if
the distance between the applicant’s hand and those registered
in the database is above the threshold we have a case of false re-
jection. In Figs. 9 and 10, we plot the distance histograms for the
two approaches, namely the histogram of Hausdorff distances as
in (10) and (11), and the histogram of the Euclidean distances
of the feature, as in Section IV-B, that is, ,

. In both figures, the left histogram describes
the distribution of intra distances (genuine hands), while the
right histogram is the distribution of inter differences (impostor
hands). The receiver operating characteristic (ROC) curves are
plotted in Figs. 9(b) and 10(b). The verification comparisons
between the three feature modalities are given in Table V as a
function of enrollment size. Notice that for smaller populations
(sizes 20, 35, 50 and 100, 458), the performance is calculated as
the average of several randomly chosen subject sets. If snap-
shots are stored in the database from each of the enrolled
individuals, then the genuine distance histograms are calculated
by genuine (intra) measurements, and the
impostor (inter) distance histograms by
measurements. For example, in our case the enrollment size is

and the number of snapshots is ; hence, the
number of distance pairs computed to obtain genuine distance

histograms is 1374, and the number is 941 877 for the impostor
distance histograms.

D. Comparison of Identification and Verification Performances
With Existing Algorithms

We have compared the performance of our algorithm with
that of the other algorithms in the literature. These scores were
gleaned from the papers in the literature or read off from their
ROC curves. In Table VI, we compare the identification perfor-
mances, while, in Table VII, verification performance figures
are provided. While these comparisons gives an idea about the
state of the art, one caveat is that the images are acquired with
different techniques, namely with digital scanner and digital
camera, albeit at approximately the same resolution. Also no-
tice that we have adapted our population sizes to those available
in the literature, but some methods were excluded, e.g., [19],
since their ROC curves were not available.

One can observe that in both identification and verification
tasks, our scheme based on architecture outperforms all
of its competitors in the literature, except for [17], which uses
in addition to shape features, texture features as well.

E. Accuracy of Hand Biometry Over Time

In realistic environments, enrolled subjects can present them-
selves at arbitrary intervals. We wanted to test if the hand-
biometry system can maintain its accuracy over larger lapses
of time. From a subset of 74 subjects that we could track, we
recorded hand images after an average interval of six months,
time lapses actually varying between 20 and 30 weeks. Fig. 11(a)
shows the box-and-whisker plots of feature distances,
while Fig. 11(b) illustrates the identification performance.
One can see that the intra-distances between hands recorded
within an interval of six months almost overlaps with those
recorded within the same day. For this subset, there was no per-
formance difference in identification or verification. However,
as the time-elapsed subset is augmented, one can expect some
performance deterioration as hinted by the slight shift of the
intra-distance statistics toward the interdistance histogram.
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Fig. 9. Verification results of the Hausdorff-distance based method: (a) genuine and impostor distributions and (b) ROC curve.

Fig. 10. Verification results of the ICA -based method: (a) genuine and impostor distance histograms and (b) ROC curve.

TABLE V
VERIFICATION PERFORMANCE AS A FUNCTION

OF ENROLLMENT SIZE (EQUAL ERROR RATE)

TABLE VI
COMPARISON OF RECOGNITION PERFORMANCE OF ALGORITHMS

FOR GIVEN ENROLLMENT SIZES (AVAILABLE RESULTS)

TABLE VII
COMPARISON OF THE VERIFICATION PERFORMANCE OF ALGORITHMS FOR

DIFFERENT POPULATION SIZES (THE FIGURES QUOTED ARE AT THE

EQUAL FALSE ALARM-FALSE REJECT POINT)

V. CONCLUSION

We have shown that hand shape can be a viable scheme
for recognizing people with high accuracy, at least for pop-
ulation of sizes within hundreds. In that respect we believe
the scorecard of the hand geometry modality can be promoted
to “high” in the distinctiveness and performance attributes, in
the comparison in [14]. Furthermore, the biometric modality
based on the hand geometry constitutes an unobtrusive method
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Fig. 11. (a) Genuine and impostor distributions with various time lapses and (b) ICA mean identification performances for a population of 74 people with
various time lapses.

of person recognition in that the interface is user-friendly and
it is not subject to variability to the extent faces are under
confounding factors of accessories, illumination effects and
expression. Preliminary tests indicate that hand biometric ac-
curacy is maintained over span of time. For any hand-based
recognition scheme, it is imperative, however, that the hand
image be preprocessed for normalization so that hand attitude
in general, and fingers in particular be aligned to standard po-
sitions. Presently a straightforward Matlab code requires 5–6
s to process hands; which implies that with an optimized C
code, the recognition and/or verification system can run at real
time, that is, under 1 s.

Several other paths of research remain to be explored. For
example, other feature extraction schemes such as axial radial
transform (ART) [15], Fisher hands or kernelized versions of
principal component analysis or linear discriminant analysis can
be tried. Normalization of hands based on active contours [5],
provided reliable landmarks can be initially obtained, is an-
other alternative. Fusion schemes at the data, feature and deci-
sion level with multiple snapshots, multiple units (right and left
hands) and multiple matchers (e.g., ICA and ART) can be envi-
sioned. The hand color and texture and/or the palm print [11],
[26], in addition to the hand shape could be judiciously com-
bined to enhance recognition. We believe the ICA representa-
tion will be a method to capture both hand-shape information
and palmprint patterns in one scheme.

In this study, only the right hands of people have taken a role.
The improvement in the recognition rate with the use of the im-
ages of both hands or with a more extended set of training im-
ages, i.e., more than two images per person must be studied.
More challenging imaging scenarios can be considered that ob-
viate physical contact between the hand and the imaging de-
vice, but in turn introducing additional variability in lighting,
hand orientation and distance. Finally, building the system and
testing under real-life conditions can prove more rigorously the
viability of hand-based access scheme, including the execution
time for preprocessing and comparisons.
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