Seminar 1

Functional principal component analysis and regression

1. Functional PCA

Functional data occurs when we observe curves or paths from a stochastic process Xt .

The generalization of principal components analysis to describe functional data relies on the Karhunen-Loeve decomposition. The principal component analysis (PCA) of the stochastic process (Xt ) consists in representing Xt as:
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where the principal components 
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 are obtained through the eigenfunctions of the covariance operator: 
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2. Regression with a functional predictor


The functional linear model considers a predictor which may be expressed as an integral sum: 
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The problem is not new and comes back to Fisher (1924) who used the expression “integral regression”. It is well known that this regression model yields to an ill-posed problem: the least squares criterion leads to the Wiener-Hopf equation which in general has not an unique solution.
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and the problem is even worse when we try to estimate the regression coefficient function 
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with a finite number of observations. 


Since the works of Ramsay & Silverman (1997), many techniques have been applied to solve these kind of problem, mostly by using explicit regularization techniques. High dimensionality and multicollinearity also involves some smoothing. In the functional linear approach, functional data (the predictor) and functional parameter can be modelled as linear combinations of a basis functions from a given functional family. Literature on that subject essentially differs in the choice of the basis and the way parameters are estimated. Basis functions should be chosen to reflect the characteristics of the data: for example, Fourier basis are usually used to model periodic data, while B-spline basis functions are chosen as they have the advantage of finite support. We will focus here on linear methods based on an orthogonal decomposition of the predictors. 

2.1 Linear regression on principal components (Preda & Saporta, 2005a)

The use of components derived from the Karhunen-Loeve expansion is, for functional data, the equivalent of principal components regression (PCR). In practice we need to choose an approximation of order q : 
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But the use of principal components for prediction is heuristic because they are computed independently of the response: the components corresponding to the q largest eigenvalues are not necessarily the q most predictive, but it is difficult to rank an infinite number of components according to R2...
2.2 Functional PLS regression


PLS regression offers a good alternative to the PCR method by replacing the least squares criterion with that of maximal covariance between (Xt ) and Y . 


[image: image8.wmf]2

0

maxcov(,())

wt

YwtXdt

¥

ò

with
[image: image9.wmf]2

1

w

=


The first PLS component is given by 
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The PLS regression is iterative and further PLS components are obtained by maximizing the covariance criterion between the residuals of both Y and (Xt) with the previous components.

The PLS approximation is given by:
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and for functional data the same property than in finite dimension holds: “PLS fits closer than PCR” 
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 since PCR  components are obtained irrespective of the response. In Preda & Saporta (2002) we show the convergence of the PLS approximation to the approximation given by the classical linear regression: 
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In practice, the number of PLS components used for regression is determined by crossvalidation.

. 
2.3 Clusterwise PLS regression 


Clusterwise regression may be used when heterogeneity in the data is present. This corresponds to a mixture of several regression models, that is, there exists a latent categorical variable G with k categories defining the clusters such that:
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k is supposed to be known, but not the clusters. 


Let us remind of the classical case for a finite number of predictors : for n observations, the cluster linear algorithm finds an optimal partition of the n points, and the regression models for each cluster (element of partition) which minimize the criterion:
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The minimization is achieved by an alternated least squares algortihm of the k-means family alternating an OLS for each group (supposed known) and an allocation of each unit to the closest regression surface ie the model where the residual is minimal. Under the hypothesis that residuals within each cluster are independent and normally distributed, this criterion is equivalent to maximization of the likelihood function (Hennig, 2000).


For functional regression, the previous model is not adequate and we propose to estimate the local models in each cluster by PLS regression in order to overcome this problem. The convergence of this algorithm has been discussed in (Preda & Saporta, 2005b) and clusterwise PLS functional regression has been applied to predict the behavior of shares of the Paris stock market on a certain lapse of time.
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