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Abstract. Action formalisms like the fluent calculus have been
developed to endow logic-based agents with the abilities to reason
about the effects of actions, to execute high-level strategies, and to
plan. In this paper we extend the fluent calculus by a method for be-
lief change, which allows agents to revise their internal model upon
making observations that contradict this model. Unlike the existing
combination of the situation calculus with belief revision [16], our
formalism satisfies all of the standard postulates for (iterated) belief
change. Furthermore, we have extended the high-level action pro-
gramming language FLUX by a computational approach to belief
change which is provably equivalent to the axiomatic characteriza-
tion in the fluent calculus.

1 INTRODUCTION

Logic-based agents and robots reason about actions for many pur-
poses: to verify the executability of actions, to execute complex
strategies, to plan ahead, etc. A variety of versatile theories of actions
exist, among which are the situation calculus [11, 13] or the fluent
calculus [18], which have recently evolved into the high-level, logic-
based agent programming languages and systems GOLOG [10, 14]
and FLUX [20], respectively. An important extension of basic ac-
tion theories allows agents and robots to reason about their (incom-
plete) knowledge and knowledge-producing actions (i.e., sensing),
e.g., [7, 2, 19, 15]. A crucial limitation of these approaches, however,
is that they all assume agents and robots to have infallible knowledge.
A sensing action can never result in an observation which contradicts
the current world model, or else the whole theory collapses into an
inconsistency. This does not allow for mistakes in the world model,
e.g., due to unexpected changes in the environment. Under such cir-
cumstances agents should have (more or less strong) beliefs rather
than (strict) knowledge.

A mostly independent branch of AI research is concerned with
just these beliefs and how to revise them in the light of new, possi-
bly conflicting information. While formalisms for belief revision tell
agents how to adjust their beliefs given an observation, they do not
deal with issues such as reasoning about preconditions of actions,
high-level agent programming, or planning.

A first combination of belief change with reasoning about ac-
tions has been given in [16] as an extension of the situation calcu-
lus. The basic idea was to rank the set of possible situations. The
agent believes what holds in all situations which are preferred ac-
cording to the ranking. When a new observation contradicts the cur-
rent beliefs, the preferred situations are rendered impossible, and so
other, still possible situations can now become most preferred. This
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revision technique may nonetheless lead to an inconsistent belief
state, namely, when there are no possible situations left: While an
agent could initially believe in some property and then revise this
belief, it cannot happen that later on it makes an observation which
suggests that the property is true after all. From the perspective of
belief revision, this violates the fundamental postulate which says
that consistency is maintained unless the new information is self-
contradictory [1]. The integration of belief change into GOLOG is
also not considered in [16].

In this paper, we integrate belief change into the fluent calculus in
a way which overcomes the limitations of [16]. Our axiomatization
is based on rankings of possible states. Generalizing the concept of
knowledge update axioms [19], the effects of actions are specified
as a modification of the ranking. The extended action theory is jus-
tified in that it satisfies all of the standard postulates for (iterated)
belief revision. Furthermore, we have extended FLUX by the con-
cept of entrenchment bases [21] to encode belief states. Revision is
then realized as a rewriting operation on these bases. It is shown that
this computational approach is equivalent to the axiomatic approach
taken in the fluent calculus.

2 FLUENT CALCULUS

The fluent calculus shares with the classical situation calculus [11]
the basic notion of a situation. The initial situation is usually de-
noted by the constant S0. The function Do(a, s) denotes the situa-
tion which is reached by performing action a in situation s. In order
to specify what holds in a situation, the expression Holds(f, s) is
used, where f is a fluent (i.e., term of sort FLUENT).

Throughout this paper, we will use the following simple scenario,
which has been adopted from [16]: A robot can be in either of two
rooms, and there is a light in each room which can be on or off. Let
the fluent InR1 denote that the robot is in room 1, while the fluents
Light

1
and Light

2
shall denote whether the light is on in the respec-

tive room. The following axiom, e.g., says that initially the robot is
not in room 1 (hence in room 2) and light is on in the first room:

¬Holds(InR1, S0) ∧ Holds(Light
1
, S0) (1)

The fluent calculus extends the situation calculus by the notion
of a state. The term State(s) denotes the state (of the environment
of an agent) in situation s. By definition, every FLUENT term is
a state (i.e., term of sort STATE), and if z1 and z2 are states then
so is z1 ◦ z2, where “◦” is a binary function written in infix nota-
tion. The foundational axioms of the fluent calculus stipulate that
this function shares essential properties with the union operation for
sets (see, e.g., [20] for details). This allows to define the expres-
sion Holds as a mere macro by Holds(f, s)

def
= Holds(f, State(s))

and Holds(f, z)
def
= (∃z′) z = f ◦ z′. With this, specification (1) en-

tails the following equation for State(S0):

(∃z) (State(S0) = Light
1
◦ z ∧ ¬Holds(InR1, z)) (2)



Based on the notion of a state, the frame problem is solved in the
fluent calculus by state update axioms, which define the effects of an
action A in situation s in terms of the difference between State(s)
and the successor State(Do(A, s)). Consider, for example, the action
Leave of our robot to leave the current room and enter the adjacent
one. This action has a conditional effect: If the robot starts in room 1,
then it will no longer be there after the action. Conversely, if the robot
starts in the other room, then it will end up in 1. This is expressed by
the following state update axiom:

Poss(Leave, s) ⊃
Holds(InR1, s) ∧ State(Do(Leave, s)) = State(s) − InR1

∨¬Holds(InR1, s) ∧ State(Do(Leave, s)) = State(s) + InR1

(3)

The standard predicate Poss(a, s) means that action a is possible in
situation s. The functions “−” and “+” denote, respectively, removal
and addition of fluents to states. They have a purely axiomatic char-
acterization in the fluent calculus (we again refer to [20] for details).
For example, tacitly assuming Poss(Leave, S0) and uniqueness-of-
names for the fluents InR1 and Light

1
, the instance {s/S0} of state

update axiom (3) applied to equation (2) yields, with the help of the
foundational axioms, (∃z) State(Do(Leave, S0)) = InR1◦Light

1
◦z.

Representing State Knowledge

The knowledge that an agent has of its environment can be repre-
sented in the fluent calculus via the notion of possible states. The
predicate KState(s, z) has been introduced in [19] with the intended
meaning that, according to the knowledge of the agent, z is a possible
state in situation s. The following axiom, for example, says implic-
itly that in the initial situation the robot knows that it is in room 1
and that the light in room 1 is off, but it does not know whether light
is on in room 2:

(∀z) (KState(S0, z) ≡ Holds(InR1, z) ∧ ¬Holds(Light
1
, z)) (4)

Formally, a property is defined to be known in a situation just in case
it holds in all possible states:

Knows(ϕ, s)
def
= (∀z)(KState(s, z) ⊃ HOLDS(ϕ, z))

Here, ϕ is a knowledge expression, which is composed of flu-
ents and the standard logical connectives. The macro HOLDS(ϕ, z)
stands for the fluent calculus formula which is obtained by replacing,
in ϕ, every occurrence of a fluent f by Holds(f, z). For example,
(4) entails Knows(InR1 ∧¬Light

1
, S0) but not Knows(Light

2
, S0)∨

Knows(¬Light
2
, S0).

The effects of actions, including knowledge-producing actions, on
the knowledge of an agent are specified by knowledge update ax-
ioms. These relate the possible states between successive situations.
Consider, e.g., the action Sense InR1 of our robot to sense whether it
is in room 1:

Poss(Sense InR1, s) ⊃ (KState(Do(Sense InR1, s), z) ≡
KState(s, z) ∧ [Holds(InR1, z) ≡ Holds(InR1, s)] )

(5)

Put in words, a state z is possible after Sense InR1 just in case z was
possible beforehand and InR1 holds in z iff it actually holds in s.

The fluent calculus provides the formal underpinnings of FLUX,
which is a method based on logic programming for the design of
agents that reason about their actions and sensor information in the
presence of incomplete knowledge [20]. Knowledge states of agents
are represented in FLUX by open-ended lists of fluents along with
constraints, as, e.g., in this encoding of (2):

Z0 = [light1|Z], not_holds(inR1,Z)

Agent programs in FLUX are constraint logic programs consisting
of three components Pkernel ∪ Pdomain ∪ Pstrategy providing, respec-
tively, a domain-independent encoding of the foundational axioms
and macros of the fluent calculus, an encoding of the domain ax-
ioms, and a specification of the task-oriented behavior of the agent,
according to which it reasons, plans, and acts.

3 A FLUENT CALCULUS AXIOMATIZATION
OF BELIEF CHANGE

The concept of knowledge in the fluent calculus presupposes that
new information must be consistent with what is previously known.
Recall, for example, axiom (4), which entails Knows(InR1, S0). Tac-
itly assuming Poss(Sense InR1, S0), the knowledge update axiom for
Sense InR1, (5), implies that if the robot were to sense that it is actu-
ally not in room 1 (i.e., ¬Holds(InR1, S0)), then no state z would sat-
isfy KState(Do(Sense InR1, S0), z). In other words, the robot would
be left with an inconsistent knowledge state. In this section, we de-
velop an axiomatic approach to the representation of belief rather
than irrefutable knowledge in the fluent calculus.

3.1 State Ranking

To begin with, the underlying signature is modified by replacing
predicate KState by the function

BState : SIT × STATE 7→ N

Our intention is to represent the belief state of an agent in a situation
by a ranking of states. Intuitively, a high value of BState(s, z) indi-
cates that state z is considered less plausible (in violating a strongly
held belief) in situation s. The most plausible states are therefore
those of rank 0, and the agent is said to believe a property ϕ just in
case ϕ holds in all 0-states:

Believes(ϕ, s)
def
= (∀z) (BState(s, z) = 0 ⊃ HOLDS(ϕ, z))

For later purposes, we define a macro which can be used to deter-
mine the maximal rank of a state in situation s: MaxRank(s) = n

def
=

(∃z) BState(s, z) = n ∧ (∀z) BState(s, z) ≤ n.2 Consider, for ex-
ample, the following specification of an initial belief state:

BState(S0, z) = 0 ≡ Holds(InR1, z) ∧ Holds(Light
1
, z)

BState(S0, z) = 1 ≡ Holds(InR1, z) ∧ ¬Holds(Light
1
, z)

BState(S0, z) = 2 ≡ ¬Holds(InR1, z)
(6)

Put in words, the robot believes that it is in room 1 and that light is
on there. The belief in the former is stronger. This is indicated by the
fact that every state which violates Holds(InR1, z) is of rank 2, while
there are states for which Holds(Light

1
, z) is false whose rank is just

1. Axioms (6) entail, for example, Believes(InR1 ∧ Light
1
, S0) but

not Believes(Light
2
, S0) ∨ Believes(¬Light

2
, S0).

Given a specification of a belief state, agents and robots can use
the standard features of the fluent calculus to reason about whether
an action can be believed to be executable, whether they believe that
a goal condition has been satisfied, etc.

3.2 Belief Change Axioms

Next, we introduce the central notion of belief change axioms as a
means to specify the effects of actions on the belief state of an agent.
We distinguish between sensing actions and actions with physical ef-
fects. In general, sensing actions require agents to revise their beliefs
according to the newly acquired information.

2The use of this macro stipulates that all situations have a maximal rank.



Belief Revision in the Fluent Calculus

The axiomatization of belief change relies on the notion of the rank
of a knowledge expression ϕ in a situation s. Intuitively, the higher
the rank the stronger the belief in ϕ. Formally,

Rank(ϕ, s) = n
def
=(∀z) (BState(s, z) < n ⊃ HOLDS(ϕ, z))

∧
[(∃z) (BState(s, z) = n ∧ ¬HOLDS(ϕ, z))
∨(∀z) HOLDS(ϕ, z) ∧ MaxRank(s) = n − 1]

Put in words, the rank of a formula is the lowest rank of a state
which violates this formula. If no such state exists (that is, ϕ is a
tautology), then the rank of ϕ is defined as the maximal state rank
plus one. It is easy to verify that a formula has rank 0 iff it is not
believed in s. For instance, belief state specification (6) from above
entails that Rank(InR1) = 2 and Rank(InR1 ∧Light

1
, S0) = 1 while

Rank(Light
2
, S0) = Rank(¬Light

2
, S0) = 0.

We are now prepared to define belief change axioms for sensing
actions. From Spohn’s ordinal conditional function [17], we have
learned that a general theory of belief revision requires to supply a
reliability degree to the new formula.3 Let Sense ϕ denote the action
by which an agent learns with reliability e (of sort N) whether or not
knowledge expression ϕ holds. Prior to the formal definition, let us
give an informal justification for the axiomatization of the effect of
Sense ϕ: Suppose m is the rank of some state z in situation s, in
which sensing takes place. Assume, for the sake of argument, that ϕ
has been sensed to be true.

1. If ¬HOLDS(ϕ, z), then z must be “upgraded” wrt. the reliability
of the sensing, because it violates what has just been sensed. The
revised rank of z is therefore m + e.

2. If HOLDS(ϕ, z), then z must be “downgraded,” because z com-
plies with what has just been sensed. The revised rank of z is
m − Rank(¬ϕ, s). Note that this ensures that the agent gives up a
possible belief in ¬ϕ.

This intuition is axiomatized as follows:

BState(Do(Sense ϕ, s), z) = n ≡
(∃m, r) (BState(s, z) = m ∧ Rank(¬ϕ, s) = r∧

[¬HOLDS(ϕ, z) ⊃ n = m + e]∧
[HOLDS(ϕ, z) ⊃ n = m − Rank(¬ϕ, s)])

(Rϕ)

Let R¬ϕ be the exact same formula but with ϕ replaced by ¬ϕ
(defining the case where ϕ is sensed to be false). The two cases are
combined in this central definition of the belief change axiom for
sensing actions:

Poss(Sense ϕ, s) ⊃ (∃e) (Rϕ ∨ R¬ϕ) (7)

Put in words, the effect of sensing is that the agent obtains a relia-
bility degree e and updates its belief state accordingly, depending on
whether ϕ or ¬ϕ has been sensed.

Theorem 1 The axioms (7)∪{Poss(Sense ϕ, s)} for all knowledge
expressions ϕ together are consistent with the foundational axioms.

Agents can execute several sensing actions in sequence, which
corresponds to iterated belief revision [4]. As the main result, it can
be shown that our axiomatization in the fluent calculus satisfies the
standard postulates.

Theorem 2 The fluent calculus axiomatization of (iterated) belief
revision satisfies the modified AGM postulates of [4] as well as the
postulates of iterated belief revision of [4].

3If this information is not available, it can be uniformly set to 1 as in [4].

Recall, for example, belief state specification (6) for our robot. Sup-
pose Sense InR1 results in the observation, with reliability 3, that the
robot is in fact not in room 1. Then R¬InR1

entails,

BState(S1, z) = 3 ≡ Holds(InR1, z) ∧ Holds(Light
1
, z)

BState(S1, z) = 4 ≡ Holds(InR1, z) ∧ ¬Holds(Light
1
, z)

BState(S1, z) = 0 ≡ ¬Holds(InR1, z)
(8)

where S1 = Do(Sense InR1, S0). Hence, the robot now believes
that it is not in room 1. Moreover, the belief in Light

1
is given up

because it was weaker than the belief in InR1.

Belief Update in the Fluent Calculus

Belief change as a consequence of a non-sensing action A is defined
as the usual state update according to the effects of A. Since sev-
eral states may lead to the same updated state, the rank of an up-
dated state is, in general, defined as the minimum of the ranks of all
states that map onto it. Moreover, some states may not be reachable
at all, in which case their rank is defined as the maximum rank in
the preceding situation plus one, thus indicating that they are highly
implausible.

The axiomatization of actions with unconditional effects can be
proved to satisfy the KM postulates for belief update [9]. Due to lack
of space, here we just give the simple example of an action whose
effect defines a one-to-one mapping on states. The action Leave of
our robot (c.f. (3)) gives rise to this belief change axiom:

Poss(Leave, s) ⊃ ( BState(Do(Leave, s), z) = n ≡
(∃z′)(BState(s, z′) = n ∧ [ Holds(InR1, z

′) ∧ z = z′ − InR1

∨¬Holds(InR1, z
′) ∧ z = z′ + InR1]))

Recall, say, initial belief (6) of our robot and suppose that
Poss(Leave, S0). Let S1 = Do(Leave, S0), then

BState(S1, z) = 0 ≡ ¬Holds(InR1, z) ∧ Holds(Light
1
, z)

BState(S1, z) = 1 ≡ ¬Holds(InR1, z) ∧ ¬Holds(Light
1
, z)

BState(S1, z) = 2 ≡ Holds(InR1, z)

Hence, the robot now believes that it is no longer in room 1. Unlike
in (8), however, the belief in Light

1
is still maintained.

4 BELIEF CHANGE IN FLUX

4.1 Computational Belief Revision

Extending FLUX for belief change requires a computational account
of belief revision, which furthermore needs to be equivalent to the
axiomatization in the fluent calculus. To this end, we adopt an ap-
proach originating in [6]. The basic idea is to consider some beliefs
more important than others. We say that these beliefs have higher
degree. When a belief change occurs, the agent prefers to give up
beliefs with lower degree instead of those with higher degree.

Definition 4.1 A belief set is a deductively closed set of formulas.
An epistemic entrenchment (EE) relation ≤K wrt. a belief set K is
a total pre-order over all formulas, which obeys the postulates given
in [6]. If α ≤K β, then β is as epistemically entrenched as α, and
α <K β means α ≤K β and not β ≤K α.

Given an EE relation ≤K , the result K∗

α of revising K with a
formula α can be uniquely determined by the following condition:

(C∗) β ∈ K∗

α iff either |= ¬α or ¬α <K α ⊃ β (9)

The EE relation model is constructive in the sense that it uniquely
determines belief change operations which satisfy all corresponding
AGM postulates [1]. However, as it stands it is not suitable for com-
putation, for two reasons.



1. An EE relation ≤K in general is infinite.
2. Condition (C∗) may have to be checked against infinite number

of formulas.

To tackle the first problem, we adopt a model due to Wobcke [21],
who has suggested to represent an EE relation by a finite base. The
full EE relation can then be induced via the so-called most construc-
tive entrenchment construction.

Definition 4.2 An epistemic entrenchment base B is a set
{F1 : e1, . . . , Fn : en}, where each Fi is a non-tautologous formula
and ei ∈ N is its (explicit) belief degree. Bm is the set of formulas
of B which have at least belief degree m, that is,

Bm = {F |F : e ∈ B and e ≥ m}

Note that B0 is the set of all formulas in B. The corresponding
belief set Bel(B) of B is the deductive closure of B0. A EE base
is consistent iff its corresponding belief set is consistent. From now
on, we only consider consistent EE bases. For any formula ϕ, its
belief degree (also called rank) wrt. a given EE base B is defined as
follows:

Rank(B, ϕ) =







0 if B0 6|= ϕ
n + 1 if |= ϕ
max({m |Bm |= ϕ}) otherwise

where n is the maximal belief degree in B. Any EE base B in-
duces a binary relation ≤B over all formulas by letting α ≤B β iff
Rank(B, α) ≤ Rank(B, β). The following result is due to [21]:

Theorem 3 Given an EE base B, the induced binary relation ≤B

is an EE relation wrt. Bel(B), that is, it satisfies all postulates for
epistemic entrenchment relations.

In addition to the remaining second problem, there is another well-
known problem: Condition (C∗) only tells us what formulas are in
the revised belief set. It does not impose any constraints on the poste-
rior EE relation. This means that we lose extra-logical information by
carrying out a belief contraction; hence, iterated belief change cannot
be handled [4]. Since an EE relation conveys valuable information,
we would like to keep as much EE information as possible. On the
other hand, the change of the EE base should not be minimal in the
sense of [3], in order not to have the undesired properties thereof (see
[4]).

Motivated by the application of FLUX to the control of au-
tonomous agents in dynamic environments, we consider the new for-
mula ϕ and its supplied degree e as additional evidence. Hence, the
revised rank of ϕ is the summation of its old rank and e. We assume
that the revising formula is consistent. Algorithm 1 shows how we
can do belief revision by modifying an EE base. For iterated belief
revision, the algorithm is repeatedly applied.

Input : B = [β1 : e1, . . . , βn : en], ϕ, e

Output : B1 such that B1 = B∗

ϕ,e

begin
B1 = [ ];
r = Rank(B,¬ϕ);
for i = 1 . . . n do

B1 = B1 ∪ {βi : ei − min(ei, r), βi ∨ ϕ : ei + e} ;
end
B1 = B1 ∪ {ϕ : e}

end
Algorithm 1: Algorithm of the EE base revision

The resulting EE base B∗

ϕ,e may be redundant in the sense that
some formula α : e in it has an induced rank which is greater than e.
Such redundant formulas can be detected and removed.

The theorem below says that Algorithm 1 indeed defines a ratio-
nal iterated belief revision operation (for arbitrary e and consistent
B, ϕ).

Lemma 4.3 Let B1 = B∗

ϕ,e and r = Rank(B,¬ϕ), then for any
formula β,

Rank(B1, β) =

{

t − r if t′ = t
min(t′ − r, t + e) otherwise

where t = Rank(B, β) and t′ = Rank(B, ϕ ⊃ β).

Lemma 4.4 For any formula β, we have Rank(B∗

ϕ,e, β) > 0 iff
Rank(B,¬ϕ) < Rank(B, ϕ ⊃ β).

Theorem 4 The belief revision operation on EE bases satisfies all
AGM postulates, provided that both the formula being revised and
the original EE base alone are consistent.

Belief Revision in FLUX

The integration of the computational approach to belief revision
into FLUX requires a decision procedure for the underlying log-
ical language. For the sake of efficiency, we restrict ourselves
to propositional logic and employ an efficient decision procedure
called non-clausal Davis-Putnam [12]. An EE base is encoded as
[F1@E1,...,Fn@En], where Ei ∈ N. Here is an example of re-
vision (where “-” denotes “¬”):

?- B = [inR1 @ 2, light1 @ 1],
revise(B, (-inR1) @ 3, B1).

B = [inR1 @ 2, light1 @ 1]
B1 = [-(inR1) @ 3, -(inR1) v light1 @ 4]

4.2 EQUIVALENCE OF AXIOMATIC AND
OPERATIONAL BELIEF REVISION

The definition of how to change an EE base in the presence of new
information is essentially equivalent to the axiomatizations of belief
revision in the fluent calculus. The formal proof is based on a map-
ping from EE bases onto axioms of the form BState(s, z) ≡ Ψ(z):
Let B = {F1 : e1, . . . , Fn : en} be an EE base, then Ψ defines each
state which satisfies all formulas in B to have value 0. Each other
state z gets the maximal degree ei for which formula Fi does not
hold in z. For example, the EE base {InR1 : 2, Light

1
: 1} maps

onto belief state specification (6).

Due to lack of space we can only state the crucial intermediate results
which lead the correctness theorem.

Lemma 4.5 Let B be an EE base and Σ the fluent calculus axio-
matization for belief including the belief state BState(s, z) ≡ Ψ(z)
determined from B. For any knowledge expression β and n ∈ N,

Σ |= Rank(β, s) = n iff Rank(B, β) = n

What remains to be shown is that belief update axioms character-
ize exactly the way an EE relation is changed in FLUX. Since the
condition in Lemma 4.3 determines uniquely the revised EE base, it
suffices to show that the same condition holds in the fluent calculus.



Lemma 4.6 Let s be a situation and ϕ a knowledge expression. Let
s′ = Do(Sense ϕ, s) and e ∈ N, then (Rϕ) entails, for any β,

Rank(β, s′) =

{

t − r if t′ = t
min(t′ − r, t + e) otherwise

where t = Rank(β, s), t′ = Rank(ϕ ⊃ β, s), and r = Rank(¬ϕ, s).

Theorem 5 Let B be an EE base, Σ the fluent calculus axiomatiza-
tion for belief including the belief state BState(s, z) ≡ Ψ(z) deter-
mined from B, and ϕ a knowledge expression being sensed to be true
with degree e. For any β and n ∈ N,

Σ |= Rank(β, Do(Sense ϕ, s)) = n iff Rank(B∗

ϕ,e, β) = n

5 DISCUSSION

We have presented an integration of belief change into the fluent
calculus. In contrast to the approach of [16], our axiomatization of
sensing actions satisfies all standard postulates of (iterated) belief
revision. Furthermore, the axiomatization of non-sensing (uncondi-
tional) actions satisfies all standard postulates of belief update. The
underlying idea for our belief change axiom can be considered a gen-
eralization of Spohn’s ordinal conditional functions [17]. There, the
resulting rank of the revising formula ϕ is set to the reliability value
e,4 whereas with our belief change axiom ϕ will obtain the summa-
tion of its old rank and e. Another difference is that in general ordi-
nal conditional functions do not satisfy the DP postulates in general.
It is worth mentioning that our belief change axiom can be slightly
modified (with a provably correct computational account) in such a
way that ϕ obtains the maximum of its old rank and e and such that
the AGM and DP postulates are still satisfied. If the reliability value
is fixed to 1 (e.g., in cases where such reliability information is not
available), then our approach is equivalent to the one proposed in [4].
Actually, the idea of our approach has already been informally hinted
at in [4]. So we have not defined a completely new scheme of belief
revision and have rather chosen an existing one which turned out to
be suitable for integration into the fluent calculus and for extennding
FLUX.

In the literature, belief change has been studied in mainly two
ways. One approach is to define the class of so-called rational belief
change operations and properties they should satisfy (that is, postu-
lates), e.g., [1, 9]. The other approach is to give explicit constructions
of belief change operations with desirable properties. Approaches
of the latter kind can be further classified as either model-based or
computational: In the former, a current belief state is represented us-
ing models or deductively closed sets of formulas, as in [6, 8]. This
makes it easy to study formal properties of particular belief change
operations, but is less suited for direct implementation. In computa-
tional approaches to belief change, therefore, a concrete belief state is
represented by a finite base of formulas, and belief change is defined
as rewriting this base, e.g., [5]. We have applied the computational
approach to belief revision to develop an extension of FLUX and
proved its equivalence to the axiomatic approach. As a by-product
we have obtained a model-based characterization of a computational
approach to belief change; or, the other way round, we have imple-
mented efficiently a possible world-based approach of belief revi-
sion.

While the axiomatization in the fluent calculus allows belief states
to be axiomatized using full first-order logic, our current extension of

4Hence, ϕ’s prior rank is simply ignored. Furthermore, consecutive obser-
vations of ϕ do not reinforce the belief in ϕ.

FLUX is restricted to propositional entrenchment bases. Future work
will be to lift this restriction to cover the first-order features of the
standard FLUX state representation [20].
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