
ar
X

iv
:c

s.
A

I/
00

03
04

9 
v1

   
9 

M
ar

 2
00

0

Planning with Incomplete Information

Antonis Kakas
University of Cyprus

antonis@cs.ucy.ac.cy

Rob Miller
University College, U.K.

rsm@ucl.ac.uk

Francesca Toni
Imperial College, U.K.
ft@doc.ic.ac.uk

Abstract

Planning is a natural domain of application
for frameworks of reasoning about actions and
change. In this paper we study how one such
framework, the Language E , can form the ba-
sis for planning under (possibly) incomplete in-
formation. We define two types of plans: weak
and safe plans, and propose a planner, called the
E-Planner, which is often able to extend an ini-
tial weak plan into a safe plan even though the
(explicit) information available is incomplete, e.g.
for cases where the initial state is not completely
known. The E-Planner is based upon a reformu-
lation of the Language E in argumentation terms
and a natural proof theory resulting from the re-
formulation. It uses an extension of this proof the-
ory by means of abduction for the generation of
plans and adopts argumentation-based techniques
for extending weak plans into safe plans. We pro-
vide representative examples illustrating the be-
haviour of the E-Planner, in particular for cases
where the status of fluents is incompletely known.

Introduction

General formalisms of action and change can provide a
natural framework for the problem of planning. They
can offer a high level of expressivity and a basis for the
development of general purpose planning algorithms.

We study how one such formalism, the Language E
(Kakas & Miller 1997b; Kakas & Miller 1997a), can
form a basis for planning. To do this we exploit the
reformulation (Kakas, Miller, & Toni 1999) of the Lan-
guage E into an argumentation framework and the as-
sociated proof theory offered by this reformulation. A
simple extension of this argumentation-based proof the-
ory with abduction forms the basis of planning algo-
rithms within the framework of the Language E .

In this paper we will be particularly interested in ad-
dressing the specific problem of planning under incom-
plete information. This amounts to planning in cases
where some information is missing, as for example when
we do not have full knowledge of the initial state of the
problem. In general, we assume that this missing in-
formation cannot be “filled in” by additional actions in

the plan as it may refer to properties that cannot be
affected by any type of action in the theory or to an
initial time before which no actions can be performed.
Instead, the planner needs to be able to reason despite
this incompleteness and construct plans where this luck
of information does not matter for achieving the final
goal.

We define a planner, call the E-Planner, which is able
to solve this type of planning problems with incomplete
information. It works by first generating a conditional
plan based on one possible set of arguments in the cor-
responding argumentation theory of the planning do-
main. These plans are called weak plans and may not
be successful under every possibility for the missing in-
formation. The planner then uses further argumenta-
tion reasoning to extend the weak plan to a safe plan
which is able to achieve the planning goal irrespective
of the particular status of the missing imformation.

Planning under incomplete information is a relatively
new topic. In (Finzi, Pirri, & Reiter 1999) this prob-
lem is called “Open World Planning” and is studied
within the framework of the situation calculus. The
incomplete information refers to the initial situation
of the problem and a theorem prover is used to rea-
son about properties at this situation. Other related
work on planning within formal frameworks for reason-
ing about actions and change is (Levesque 1996), which
defines a notion of conditional plans, (Shanahan 1997;
Denecker, Missiaen, & Bruynooghe 1992), with a for-
mulation of abductive planning in the event calculus
and (Dimopoulos, Nebel, & Koehler 1997; Lifschitz
1999), which study “answer set planning” within ex-
tended logic programming.

A Review of the Basic Language E

The Language E is really a collection of languages. The
particular vocabulary of each language depends on the
domain being represented, but always includes a set of
fluent constants, a set of action constants, and a par-
tially ordered set 〈Π,�〉 of time-points. For this paper
where we are interested in linear planning we will as-
sume that � is a total order. A fluent literal is either a
fluent constant F or its negation ¬F .



Domain descriptions in the Language E are collec-
tions of statements of three kinds (where A is an ac-
tion constant, T is a time-point, F is a fluent con-
stant, L is a fluent literal and C is a set of flu-
ent literals): t-propositions (“t” for “time-point”), of
the form L holds-at T ; h-propositions (“h” for “hap-
pens”), of the form A happens-at T ; c-propositions
(“c” for “causes”), of the form A initiates F when C
or A terminates F when C. When C is empty, the
c-propositions are written as “A initiates F” and
“A terminates F”, resp.

The semantics of E is based on simple defini-
tions of interpretations, defining the truth value of t-
propositions at each particular time-point, and models.
Briefly, (see (Kakas & Miller 1997a; Kakas & Miller
1997b) for more details) these are given as follows:

• An interpretation is a mapping H : Φ × Π 7→
{true, false}, where Φ is the set of fluent constants
and Π is the set of time-points in E . Given a set of
fluent literals C and a time-point T , an interpretation
H satisfies C at T iff for each fluent constant F ∈ C,
H(F, T ) = true, and for each fluent constant F ′ such
that ¬F ′ ∈ C, H(F ′, T ) = false.

• Given a time-point T , a fluent constant F and an in-
terpretation H , T is an initiation-point (termination-
point resp.) for F in H relative to a domain descrip-
tionD iff there is an action constantA such that (i)D
contains both an h-proposition A happens-at T and
a c-proposition A initiates (terminates, resp.) F
when C, and (ii) H satisfies C at T . Then, an inter-
pretation H is a model of a given domain description
D iff, for every fluent constant F and time-points
T1 ≺ T3:

1. If there is no initiation- or termination-point T2 for
F in H relative to D such that T1 � T2 ≺ T3, then
H(F, T1) = H(F, T3).

2. If T1 is an initiation-point for F in H relative to
D, and there is no termination-point T2 for F in
H relative to D such that T1 ≺ T2 ≺ T3, then
H(F, T3) = true.

3. If T1 is a termination-point for F in H relative
to D, and there is no initiation-point T2 for F in
H relative to D such that T1 ≺ T2 ≺ T3, then
H(F, T3) = false.

4. For all t-propositions F holds-at T in D,
H(F, T ) = true, and for all t-propositions “¬F
holds-at T ′” in D, H(F, T ′) = false.

• A domain description D is consistent iff it has a
model. Also, D entails (written |=) the t-proposition
F holds-at T (¬F holds-at T , resp.), iff for every
model H of D, H(F, T ) = true (H(F, T ) = false,
resp.).

Note that the t-propositions, in effect, are like “static”
constraints that interpretations must satisfy in order
to be deemed models. We can extend the language E
with ramification statements, called r-propositions, of

the form L whenever C, where L is a fluent literal and
C is a set of fluent literals. These are also understood
as constraints on the interpretations, but with the dif-
ference of being “universal”, i.e. applying to every time
point. Formally, the definition of a model is extended
with:

5. For all r-propositions L whenever C, in D, and for
all time-points T , if H satisfies C at T then H
satisfies {L} at T .

In addition, the complete formalization of ramification
statements requires a suitable extension of the defini-
tions of initiation- and termination-point. The inter-
ested reader is refered to (Kakas & Miller 1997a) for
the details.

As an example, consider the following simple “car
engine domain” Dc, with action constants TurnOn and
Empty and fluents Running and Petrol :

TurnOn initiates Running when {Petrol} (Dc1)
Empty terminates Petrol (Dc2)
TurnOn happens-at 5 (Dc3)
Petrol holds-at 1 (Dc4)

It is easy to see, for example, that Dc entails Running
holds-at 7 and that Dc extended via the h-proposition
Empty happens-at 3 does not.

Planning with E
The language E with its explicit reference to actions as
h-propositions in its basic ontology is naturally suited
for the problem of planning. Let a goal be a set of t-
propositions. Then, given a domain description D and
a goal G, planning amounts to constructing a set ∆ of
h-propositions such that D ∪∆ entails G.

In general, however, the extension of D via the plan
∆ might be required to respect some given precondi-
tions for the actions in ∆. These preconditions can
be represented by a new kind of statements, called p-
propositions (“p” for “preconditions”), of the form A
needs C, where A is an action constant and C is a
non-empty set of fluent literals. Intuitively, the fluents
in C are conditions that must hold at any time that the
action A is performed. Note that, alternatively, pre-
conditions could be encoded via additional conditions
in c-propositions already appearing in the domain de-
scriptions. The use of p-propositions is though simpler
and more modular.

Definition 1 An (E-)planning domain is a pair
〈D,P 〉, where D is a domain description and P is a
set of p-propositions.

The semantic interpretation of the new type of sen-
tences is that of integrity constraints on the domain
descriptions.

Definition 2 Given a planning domain 〈D,P 〉, D sat-
isfies P , written D |= P , iff for all p-propositions A
needs C in P , and for all h-propositions A happens-
at T in D, D entails C(T ), where C(T ) denotes the set



of t-propositions obtained by transforming every fluent
literal in C into the respective t-proposition at T .

The planning problem is then defined as follows.

Definition 3 Given a planning domain 〈D,P 〉 and a
goal G, a (safe) plan for G in D is a set ∆ of h-
propositions such that D ∪∆ is consistent and :
• D ∪∆ |= G,
• D ∪∆ |= P .

Note that the initial state of the planning problem is
assumed to be contained in the given domain descrip-
tion, and might amount to a set of t-propositions at
some initial time point, or, more generally a set of t-
propositions over several time points, not necessarily all
coinciding with a unique initial time point.

The above definition of (safe) plan provides the for-
mal foundation of the E-planner. It is easy to see that,
through the properties of the model-theoretic seman-
tics of E , a safe plan satisfies the requirements that (i)
it achieves the given goal, and (ii) it is executable.

As an example, let us consider the simple “car en-
gine planning domain” 〈D′

c, Pc〉, with D′
c consisting of

statements (Dc1), (Dc2) and (Dc4) from the previous
section as well as:

Fill initiates Petrol (Dc5)
¬Running holds-at 1 (Dc6)

and Pc consisitng of the p-proposition

Fill needs ¬Running (Pc1)

Let the goal be G = Running holds-at Tf for some
(final) time Tf . Then, a plan for G is given by the set
∆1 = {TurnOn happens-at T1} where T1 ≺ Tf . This
is a safe plan in the sense that if we add ∆1 to D′

c,
then both the goal G and the p-proposition in Pc are
entailed by the augmented domain.

Consider now the domain D′′
c obtained from D′

c

by removing (Dc4). Note that then D′′
c has in-

complete (initial) information about Petrol . Then,
the above plan ∆1 is no longer a safe plan for
G as there is no guarantee that the car will have
petrol at the time T1 when the TurnOn action is as-
sumed to take place. A safe plan is now given by
∆2 = {TurnOn happens-at T1,Fill happens-at T2}
with T2 ≺ T1 ≺ Tf . In the context of D′′

c , the origi-
nal plan ∆1 will be called a weak plan. A weak plan is
a set of h-propositions such that the extension it forms
of the given domain description might not entail the
given goal, but there is at least one model of the aug-
mented domain description in which the goal holds true.
A weak plan depends upon a set of assumptions, in the
form of t-propositions, such that, if these assumptions
were true (or could be made true) then the weak plan
would be (or would become) a safe plan. In the example
above ∆1 is weak as it depends on the set of assump-
tions A = {Petrol holds-at T1}. ∆2 is obtained from

∆1 by adding the additional action Fill happens-at T2,
ensuring that A is entailed by D′′

c ∪∆2.

Definition 4 Given a planning domain 〈D,P 〉 and a
goal G, a weak plan for G in D is a set ∆ of h-
propositions s.t. there exists a model M of D∪∆ where:
• M |= G, and
• M |= P .

∆ is conditional or depends on the set of assump-
tions A iff A is a set of t-propositions such that ∆ is
not a safe plan for G in D but it is a safe plan for G
in D ∪A.

Note that a safe plan is always a weak plan and that if
a weak plan is not conditional on any assumptions then
it is necessarily a safe plan.

Computing conditional weak plans will form the basis
for computing safe plans in the E-planner that we will
develop in section . In general, if we have a weak plan
for a given goal G, conditional on a set of assumptions
A, then the original planning problem for G is reduced
to the subsidiary problem of generating a plan for A.
In effect, this process allows to actively fill in by further
actions the incompleteness in the domain description.

However, in some cases we may have incomplete in-
formation on fluents that can not be affected by any
further actions or at a time point (e.g. an initial time
point) before which we cannot perform actions. In this
paper we will concentrate on incompleteness of this
kind, and we will study how to appropriately generate
safe plans from weak plans despite the luck of informa-
tion.

Of course, this may not always be possible, but there
are many interesting cases, such as the following “vac-
cine” domain Dv, where a safe plan exists:

InjectA initiates Protected when {TypeO} (Dv1)
InjectB initiates Protected when {¬TypeO} (Dv2)

Here, the fluent TypeO cannot be affected by any of
action (we cannot change the blood type) and although
its truth value is not known (we have incomplete infor-
mation on this) we can still generate a safe plan for the
goal, G = Protected holds-at Tf , by performing both
actions InjectA and InjectB before time Tf .

An Argumentation Formulation of E
Argumentation has recently proved to be a unifying
mechanism for most existing non-monotonic formalisms
(Bondarenko et al. 1997; Dung 1995). In (Kakas,
Miller, & Toni 1999), we have adapted the LPwNF
(Dimopoulos & Kakas 1995) argumentation framework
to provide an equivalent reformulation of the original
Language E presented in section and to develop a
proof theory for computing entailment of t-propositions
in domain descriptions. This will form the computa-
tional basis for our E-Planner. In this section, we give
a brief review of the argumentation formulation for E
concentrating on the methods and results that would
be needed for the E-Planner.



Let a monotonic logic be a pair (L,`) consisting of
a formal language L (equipped with a negation opera-
tor ¬) and a monotonic derivability notion ` between
sentences of the formal language. Then, an abstract ar-
gumentation program, relative to (L,`)), is a quadruple
(B,A,A′, <) consisting of

• a background theory B, i.e. a (possibly empty) set of
sentences in L,

• an argumentation theory A, i.e. a set of sentences in
L (the argument rules),

• an argument base A′ ⊆ A, and

• a priority relation, < on the ground instances of the
argument rules, where φ < ψ means that φ has lower
priority than ψ.

Intuitively, any subset of the argument base can serve
as a non-monotonic extension of the (monotonic) back-
ground theory, if this extension satisfies some require-
ments. The sentences in the background theory can be
seen as non-defeasible argument rules which must be-
long to any extension. One possible requirement that
extensions of the background theory must satisfy is that
they are admissible, namely that they are:

• non-self-attacking and

• able to counterattack any (set of) argument rules at-
tacking it.

Informally, a set of argument rules from A attacks an-
other such set if the two sets are in conflict, by deriving
in the underlying logic complimentary literals λ and ¬λ,
respectively, and the subset of the attacking set (mini-
mally) responsible for the derivation of λ is not overall
lower in priority than the subset of the attacked set
(minimally) responsible for the derivation of ¬λ. A set
of rules A is of lower priority than another set B if it
has a rule of lower priority than some rule in B and
does not contain any rule of higher priority than some
rule in B.

Then any given sentence σ of L is a credulous (scep-
tical, resp.) non-monotonic consequence of an argu-
mentation program iff B ∪ ∆ ` σ for some (all, resp.)
maximally admissible extension(s) ∆ of the program.

A domain description D without t-propositions
can be translated into an argumentation program
(B(D),AE ,AE

′, <E), referred to as PE(D), such that
there is a one-to-one correspondance between:

i) models of D and maximally admissible sets of ar-
guments of PE(D);

ii) entailment in E and sceptical non-monotonic con-
sequences of PE (D).
These equivalence results continue to hold when D con-
tains t-propositions or r-propositions by simply consid-
ering only the admissible sets that confirm the truth of
all such propositions in D.

The basic elements of the translation of domain de-
scriptions D into argumentation programs PE (D) are
as follows. All individual h- and c-proposition transla-
tions as well as the relationships between time-points

are included in the background theory B(D), so that
for all time-points T , T ′ and action constants A,

• B(D) ` T ≺ T ′ iff T ≺ T ′

• B(D) ` HappensAt(A, T ) iff A happens-at T is in
D,

• for each c-proposition
A initiates F when {L1, . . . , Ln} in D
(resp. A terminates F when {L1, . . . , Ln}),
B(D) contains the rule
Initiation(F, t)←HappensAt(A, t),Λ(L1),. . . ,Λ(Ln)
(Termination(F, t) ← HappensAt(A, t),. . . ,Λ(Ln)
resp.), where Λ(Li) = (¬)HoldsAt(Fi, t) if Li =
(¬)Fi, for some fluent constant Fi.

As an example, consider the domain description
Dc in section . Then, B(Dc) contains the fact
HappensAt(TurnOn, 5) and B(Dc) contains the rules
Initiation(Running, t)←

HappensAt(TurnOn, t),HoldsAt(Petrol, t)
Termination(Petrol, t)← HappensAt(Empty, t).

The remaining components of PE(D) are independent
of the chosen domain D:

• AE consists of

Generation rules:
HoldsAt(f, t2)←Initiation(f, t1), t1≺ t2 (PG [f, t2; t1])
¬HoldsAt(f, t2)←Termination(f, t1), t1≺t2 (NG[f,t2;t1])

Persistence rules:
HoldsAt(f, t2)←HoldsAt(f, t1), t1≺ t2 (PP [f, t2; t1])
¬HoldsAt(f, t2)←¬HoldsAt(f, t1), t1≺t2 (NP [f, t2; t1])

Assumptions: HoldsAt(f, t) (PA[f, t])
¬HoldsAt(f, t) (NA[f, t])

• AE
′ consists of all the generation rules and assump-

tions only.

• <E is such that the effects of later events take pri-
ority over the effects of earlier ones. Thus per-
sistence rules have lower priority than “conflicting”
and “later” generation rules, and “earlier” gener-
ation rules have lower priority than “conflicting”
and “later” generation rules. In addition, assump-
tions have lower priority than “conflicting” genera-
tion rules. For example, given the vocabulary of Dc

in section , PA[Running, 5] <E NG[Running, 5; 3]
and NG[Running, 7; 3] <E PG[Running, 7; 5].

Given this translation of the language E a proof
theory can be developed by adapting the ab-
stract, argumentation-based computational framework
in (Kakas & Toni 1999) to the argumentation programs
PE(D). The resulting proof theory is defined in terms of
derivations of trees, whose nodes are sets of arguments
in AE attacking the arguments in their parent nodes.
Let S0 be a (non-self-attacking) set of arguments in AE

′

such that B(D) ∪ S0 ` (¬)HoldsAt(F, T ), for some lit-
eral (¬) F holds-at T that we want to prove to be
entailed by D (S0 can be easily built by backward rea-
soning). Then, two kinds of derivations are defined:



- Successful derivations, building, from a tree consist-
ing only of the root S0, a tree whose root S is an
admissible subset of AE

′ such that S ⊇ S0.

- Finately failed derivations, guaranteeing the absence
of any admissible set of arguments containing S0.

Then, the given literal is entailed by D if there exists a
successful derivation with inital tree consisting only of
the root S0 and, for every set S′

0
of argument rules in

AE
′ such that B(D) ∪ S′

0
derives (in ` the complement

of the given literal, every derivation for S′
0

is finitely
failed.

This method is extended in the obvious way to handle
conjunctions of literals rather than individual literals by
choosing S0 and S′

0
appropriately. Also when a domain

D contains t-propositions we simply conjoin these to
the literals S0 and S′

0
. A similar extension of requiring

that all the r-propositions are satisfied together with
the goal at hand is applied for the domains containing
such ramification statements.

The details of the derivations are not needed for the
purposes of this paper. Informally, both kinds of deriva-
tion incrementally consider all attacks (sets of argu-
ments in AE) against S0 and, whenever the root does
not itself counterattack one of its attacks, a new a new
set of arguments in AE

′ that can attack back this at-
tack is generated and added to the root. Then, the
process is repeated, until every attack has been coun-
terattacked successfully (successful derivation) by the
extended root or until some attack cannot be possibly
counterattacked by any extension of the root (finitely
failed derivations) During this process, the counterat-
tacks are chosen in such a way that they do not attack
the root. For example, for the domain Dc in section ,
given S0 = {PG[Running, 7; 5], PA[Petrol, 5]}, mono-
tonically deriving HoldsAt(Running, 7), a successful
derivation is constructed as follows:

S0 S0

K

S0

K

S0

S0 is attacked by K = {NA[Petrol, 5]}, trivially coun-
terattacked by S0 itself. Thus, in this simple example,
no extension of the root is required.

The E-Planner

The argumentation-based techniques discussed in the
previous section can be directly extended to compute
plans for goals. (In the sequel, we will sometimes mix
the original Language E formulation of problems and
their corresponding formulation in the argumentation
reformulation.) First, given a goal G, in order to derive
the (translation (Λ(G) of the) goal in the underlying
monotonic logic, a preliminary step needs to compute
not only a set of argument rules S0, but (possibly) also
a set action facts ∆0 ⊆ H where
H = {HappensAt(F, T )| F is a fluent constant and

T is a time-point}
∆0 can be seen as a preliminary plan for the goal, that

needs to be extended first to a weak plan and then to
a safe plan. Every time a new action fact is added to a
plan, any preconditions of the action need to be checked
and, possibly, enforced, by adding further action facts.
The computation of safe plans from weak ones requires
blocking, if needed, any (weak) plan for the complement
of any literal in the goal.

The following is a high-level definition of the E-
Planner in terms of the argumentation-based re-
formulation of the E-language:

Definition 5 Given a planning domain 〈D,P 〉 and a
goal G, an E-plan for G is a set h-propositions ∆E such
that ∆E = {A happens-at T |HappensAt(A, T ) ∈ ∆},
where ∆ ⊆ H is derived as follows:

1) Find a set of arguments S0 ⊆ AE
′ and a set of action

facts ∆0 ⊆ H such that B(D) ∪∆0 ∪ S0 ` G;

2) Construct a set of arguments S ⊆ AE
′ and a set

of action facts ∆w ⊆ H such that (i) S0 ⊆ S and
∆0 ⊆ ∆w, and (ii) S is an admissible set of ar-
guments wrt the augmented argumentation program
PE(D′ ∪∆w) = (B(D′) ∪∆w,AE ,AE

′, <E), where
D′ = D ∪ {Λ(C(T ))|A needs C ∈
P,HappensAt(A, T ) ∈ ∆w}.

3) If every assumption in S is a sceptical non-monotonic
consequence of the augmented argumentation pro-
gram PE(D′ ∪∆w) then ∆ = ∆w.

4) Otherwise, ∆ is a set of action facts such that ∆w ⊂
∆ and:

4.1) For every set of arguments R ⊆ AE
′ such that

B(D) ∪ ∆ ∪ R ` ¬G, where ¬G stands for the
complement of some literal in G, there exists no
R′ ⊆ AE

′ such that R ⊆ R′ and R′ is admis-
sible wrt the augmented argumentation program
PE(D′′ ∪∆) = (B(D′′) ∪∆,AE ,AE

′, <E), where
D′′ = D ∪ {Λ(C(T ))|A needs C ∈
P,HappensAt(A, T ) ∈ ∆}.

4.2) There exists a set S′ ⊆ AE
′ such that S ⊆ S′ and

S′ is admissible wrt PE(D′′ ∪∆).

In the first two steps, the E-Planner computes a weak
plan for the given goal. If this does not depend on any
assumptions (step 3) then it is a safe plan, as no plan
for the complement of the goal is possible. Otherwise
(step 4), the planner attempts to extend the weak plan
in order to block the derivation of the complement, ¬G,
of the goal. In order to do so, it considers each possi-
ble set of arguments, R, which would derive ¬G (in the
augmented background theory) and extends the plan so
that R can not belong to any admissible set of the re-
sulting theory. A successful completion of step 4 means
that the weak plan ∆w has been rendered into a safe
plan ∆.

The correctness of the planner is a direct consequence
of the correctness of the argumentation proof theory on
which it is based.

Theorem 1 Given a planning domain 〈D,P 〉 and a
goal G, let ∆w be the set of action facts computed at
step 2 in definition 5. Then, the set



∆E
w={A happens-at T |Happens(A, T ) ∈ ∆w}

is a weak plan for G.

Proof: As every admissible set of arguments is con-
tained in some maximally admissible set (Kakas, Miller,
& Toni 1999) and, as discussed in section , every maxi-
mally admissible extension of the argumentation-based
reformulation of a domain description in E corresponds
to a model of the original domain, S computed at step
2 in definition 5 corresponds to a model M of D′ ∪∆E

w

entailing G. Because of the way t-propositions in do-
mains are handled, as additional conjuncts in goals, this
implies that M satisfies all preconditions of actions in
∆E

w. Thus, M is a model of D ∪∆E
w such that M |= G

and M |= P and the theorem is proven.
The following theorem can be proven in a similar way:

Theorem 2 Given a planning domain 〈D,P 〉 and a
goal G, let ∆E be an E-plan for G. Then, ∆E is a safe
plan for G.

The high-level definition of the E-Planner given above
in definition 5 can be mapped onto a more concrete
planner by suitably extending the argumentation-based
proof theory proposed in (Kakas, Miller, & Toni 1999).
∆0 can be computed directly while computing S0, by an
abductive process which reasons backwards with the
sentences in the background theory. Also, one needs to
define suitable:

- extended successful derivations, for computing
incrementally ∆w from ∆0 at step 2 and the final ∆
at step 4.2 from the extension of ∆w computed at
step 4.1;

- extended finitely failed derivations, for comput-
ing incrementally the required extension of ∆w at
step 4.1.

As the original derivations, the extended ones incremen-
tally consider all attacks against the root of the trees
they build and augment the root so that all such at-
tacks are counterattacked, until every attack has been
counterattacked (successful derivations) or some attack
cannot be counterattacked (failed derivations). Again,
all nodes of trees are sets of arguments.

In addition, both new kinds of derivation are inte-
grated with abduction to generate action facts so that
success and failure are guaranteed, respectively. The ac-
tion facts are chosen to allow for counterattacks to exist
(successful derivations) or for additional attacks to be
generated (failed derivations). Thus, extended success-
ful derivations return both a set of argument rules in
AE

′ and a set of action facts, wherever extended failed
derivations just return a set of action facts (the ones
needed to guarantee failure).

Both kinds of derivations need to add to the given
background theory (domain) the t-propositions that are
preconditions of any abduced action. By the way t-
propositions are handled, this amounts to extending
dynamically the given goal to prove or disprove, respec-
tively.

Finally, both kinds of derivation require the use of
suspended nodes, namely that could potentially at-
tack or counterattack their parent node if some action
facts were part of the domain. These nodes become
actual attacks and counterattacks if and when the ac-
tion facts are added to the accumulated set. If, at the
end of the derivations, these action facts are not added,
then suspended nodes remain so and do not affect the
outcome of the derivations.

Let us illustrate the intended behaviour of the ex-
tended derivations with a simple example. Consider
the simple “car engine” domain D′

c in section , and
let G = HoldsAt(Running, Tf) for some fixed fi-
nal time Tf . We will show how the safe ∆w =
{HappensAt(TurnOn, T1)}, with T1 ≺ Tf , is com-
puted.

1) S0 = {PG[Running, Tf ;T1], PA[Petrol, T1]} and
∆w = HappensAt(TurnOn, T1), with T1 ≺ Tf .

2) The only possible attack against S0 is
{NA[Petrol, T1]}, which is trivially counterattacked
by S0 itself. Thus S0 is admissible.

3) Let us examine the only assumption PA[Petrol, T1]
in S0, and try to prove that it holds in all admissi-
ble extensions of the given domain extended by ∆w.
Consider the complement NA[Petrol, T1] of the as-
sumption, and let us prove that it holds in no admis-
sible extension. This can be achieved by an ordinary
finitely failed derivation (without abducing any addi-
tional action fact in order to do so), as there is an at-
tack, {PP [Petrol, T1; 1], PA[Petrol, 1]}, against the
above complement, which cannot be counterattacked.

Thus, ∆w is a safe plan forG. Consider now the domain
D′′

c = D′
c − {(Dc4)}. Then, step 3 above fails to prove

that the given assumption is a sceptical non-monotonic
consequence of the augmented domain, and thus ∆w is
just a weak plan.

4.1) ¬G = ¬HoldsAt(Running, Tf) is derivable via
R = {NA[Running, Tf ]}. This is attacked
by {PG[Running, Tf ;T1], PA[Petrol, T1]}, which
is counterattacked by {NA[Petrol, T1]}, which, if
added to R, would provide an admissible extension in
which ¬G holds. An extended finitely failed deriva-
tion can be constructed to prevent this as follows:
the extended root R ∪ {NA[Petrol, T1]} is attacked
by {PG[Petrol, T1;T2]} if ∆w is augmented to give
∆ = ∆w ∪ {HappensAt(Fill, T2)}, with T2 ≺ T1.
As the new attack cannot be counterattacked, the
derivation fails.

Thus, ∆ is a safe plan for G (for simplicity we omit step
4.2 here).

Note that the method outlined above relies upon
the explicit treatment of non-ground arithmetical con-
straints over time-points (see (Kakas, Michael, &
Mourlas 1998)).



Incomplete planning problems
In this section we will illustrate through a series of ex-
amples the ability of the E − Planner to produce safe
plans for incompletely specified problems. In particu-
lar, we will consider problems where the incompleteness
on some of the fluents is such that it cannot be affected
by actions and hence our knowledge of them cannot be
(suitably) completed by adding action facts to plans.

Let us consider again the “vaccine” domain Dv at the
end of section , and the goal G = {Protected holds-at

Tf}, for some final time Tf . We will show how, in this
example, the E-planner reasons correctly with the “ex-
cluded middle rule” to produce a safe plan for G, de-
spite the fact that it is not known whether the blood if of
Type0 or not. A weak plan for the goal is given by ∆w =
{HappensAt(InjectA, T1)} with T1 ≺ Tf . Indeed:
given S0 = {PG[Protected, Tf ;T1], PA[Type0, T1]},
B(Dv) ∪ S0 ∪ ∆w ` G, S0 is admissible (steps 1 and
2). The plan ∆w is conditional on the set of as-
sumptions {PA[Type0, T1]} (step 3). Note that there
is no action that can affect the fluent Type0, so ∆w

cannot be extended so that it can derive the as-
sumption. Nevertheless, we can extend ∆w to a safe
plan ∆ by constructing failed derivations for ¬G =
{¬HoldsAt(Protected , Tf)}, as illustrated below (step
4.1).

The only way to derive ¬G is by means of the set of
arguments R1 = {NA[Protected, Tf ]}. This is attacked
by S0 itself, which can be counterattacked (only) if the
root R1 is extended via the assumption NA[Type0, T1].

The initial root R1 and thus the extended
root R2 are attacked by the set of arguments
{PG[Protected, Tf ;T2], NA[Type0, T2]} with T2 ≺
Tf , provided we add to ∆w the action fact
HappensAt(InjectB, T2) to give a new plan ∆ =
{HappensAt(InjectA, T1), HappensAt(InjectB, T2)}.
In order to successfully counterattack the new attack
we need to add further to the root the argument
PA[Type0, T2], obtaining a new root R3.
R3 is (newly) attacked by {PP [Type0, T1;T2],

PA[Type0, T2]}, if T2 ≺ T1, and by {NP [Type0, T2;T1],
NA[Type0, T1]}, if T1 ≺ T2. (Note also that neces-
sarily T1 6= T2 as otherwise R3 would attack itself.)
These attacks can only be counterattacked via one
generation rule for ¬HoldsAt(Type0, T1) and one for
HoldsAt(Type0, T2), respectively. But no such genera-
tion rules are possible.

This concludes the construction of the only required
finitely failed extended derivation for ¬G. (Again, we
omit step 4.2.) The computed E-plan ∆ is indeed a safe
plan for G. Note that no p-propositions are present in
this example and thus no extended domain is generated.

The following example illustrate the use of observa-
tions (in the form of t-propositions) to provide some
(partial) implicit information on the domain. Consider
the domain Di:

InjectC initiates Protected when {TypeA} (Di1)
InjectD initiates Protected when {Weak} (Di2)

Bite initiates Infected when {TypeA} (Di3)
Expose initiates Infected when {Weak} (Di4)
¬Infected holds-at 1 (Di5)
Infected holds-at 4 (Di6)

and the goal G = Protected holds-at Tf , for some final
time 4 ≺ Tf . The fluents TypeA and Weak are incom-
pletely specified. but the observations (t-propositions)
essentially give indirectly the information that either
TypeA or Weak must hold. This then allows, similarly
to the previous example, to generate a safe plan for G
by applying both actions InjectC and InjectD .

A weak plan ∆w = {HappensAt(InjectC, T1)}
with T1 ≺ Tf is first generated (steps 1 and 2),
conditional on the assumption set {PA[TypeA, T1]}
(step 3). Then, step 4.1 generates R =
{NA[Protected, Tf ]}, proving ¬G. R is attacked
by {PG[Protected, Tf ;T1], PA[TypeA, T1]} and can
only be defended if R is extended to R′ =
R ∪ {NA[TypeA, T1]}, which is admissible. How-
ever, R′ needs to be extended to confirm the t-
propositions. To confirm (Di5), the assumption
NA[Infected, 1] needs to be added to R′. More-
over, to confirm (Di6), we need to add either
R1 = {PG[Infected, Tf ;T2], PA[TypeA, T2]} or R2 =
{PG[Infected, Tf ;T2], PA[Weak, T2]}, with T2 ≺ 4.
But adding the fist such set would render the result-
ing set non-admissible (as both PA[TypeA, T2] and
NA[TypeA, T1] belong to it). Hence, the only vi-
able extension is R′′ = R′ ∪ R2 ∪ {NA[Infected, 1]}.
This set is admissible (if we also abduce the action
HappensAt(Expose, T2)). To prevent that, we find
an attack that cannot be counterattacked successfully:
{PG[Protected, Tf ;T3], PA[Weak, T3]}, T3 ≺ Tf , ex-
tending ∆w to ∆ = ∆w ∪ {HappensAt(InjectD, T3)}.
This attack can only be counterattacked by adding
the assumption NA[Weak, T3], rendering the root self-
attacking (as PA[Weak, T2] belongs to it). Thus, ∆ is
a safe plan.

The next example shows how the E-planner exploits
ramification information to generate safe plans for in-
completely specified problems. Let Dr be:

InjectB initiates Protected when {¬TypeO} (Dr1)
InjectE initiates Protected when {Strong} (Dr2)
Strong whenever {TypeO} (Dr3)

and G = Protected holds-at Tf , for some final
time 4 ≺ Tf . The fluents TypeO and Strong are
incompletely specified. The ramification statement
requires that either ¬TypeO or Strong must hold
(at any time). Then, similarly to the above ex-
amples, the E − planner can generate the safe plan
{HappensAt(InjectB, T1), HappensAt(InjectE, T2)},
with T1, T2 ≺ Tf . During the computation of this plan,
to render the only proof of ¬G non-admissible we gen-
erate, in addition to the attack given by the weak plan
{HappensAt(InjectB, T1)}, an extra attack by adding
the action HappensAt(InjectE, T2). The first attack



can only be counterattacked by {PA[Type0, T1]} and
the second only by {NA[Strong, T2]}. As these as-
sumptions persist, it is not possible to satisfy the ramifi-
cation statement at any time between T1 and T2. Hence
there is no admissible extensions that can prove ¬G and
the plan is safe.

Conclusions

We have shown how we can formulate planning within
the framework of the Language E and have used the ar-
gumentation reformulation of this framework to define
a planner that is able to solve problems with incomplete
information.

A planner with similar aims has been defined in
(Finzi, Pirri, & Reiter 1999). Both this planner and
our E-planner regress to a set of assumptions which,
when entailed by the incomplete theory, guarantees the
plan to be safe. However, (Finzi, Pirri, & Reiter 1999)
uses a classical theorem prover to check explicitly this
entailment at the initial situation (in general, the re-
quired entailment is the non-monotonic entailment of
the action framework in which the planning problems
are formulated). Instead, in the E-planner the incom-
pleteness, and hence the assumptions to which one re-
gresses, need not refer to the initial state only. More-
over, the E-planner uses these assumptions in the com-
putation of the initial possibly weak plan and then to
help in the extension of this to a safe plan. We are
studying other planning algorithms (within the same
argumentation formulation of the language E) which
use more actively the assumptions on which weak plans
are conditional. One such possibility is to try to extend
the plan so as to re-prove the goal but now assuming
a-priori the contrary of these assumptions. The search
space of this type of planning algorithm is different and
comparative studies of effeciency can be made.

(Smith & Weld 1998) introduce the notion of confor-
mant planning for problems with incomplete informa-
tion about the initial state and for problems where the
outcome of actions may be uncertain. Our safe plans
correspond to conformant plans for problems of the first
type. The emphasis of this work is on the development
of an efficient extension of Graphplan to compute con-
formant plans, by first considering all possible worlds
and, in each world, all possible plans, and then extract-
ing a conformant plan by considering the interactions
between these different plans and worlds.

(Giunchiglia 2000) considers the problem of planning
with incomplete information on the initial state within
the action language C. This is an expessive language
that allows concurrent and non-deterministic actions
together with ramification and qualification statements.
Our safe plans correspond to the notion of valid plans
which in turn are conformant plans. To find a valid
plan, the C-Planner generates a possible plan and then
tests, using a SAT solver, whether the generated plan
can be executed in all the possible models. Possible
plans can be seen as weak plans, but we allow in the

“testing phase” for the dynamic expansion of the weak
plan into a safe plan.

A general difference with both (Smith & Weld 1998;
Giunchiglia 2000) is that the E-planner is goal-oriented,
with an active search for actions both for the satisfac-
tion of the goal and for ensuring that the generated plan
is executable in any of the many possible worlds for the
problem.

Another difference is at the level of expressivenes, in
that we allow observations (not only at an initial state)
and can exploit indirect information given by them to
help handle the incompleteness.

We are currently developing an implementation of
the E-planner based on an earlier implmentation of the
language E and aim to carry out experiments with stan-
dard planning domains. In this initial phase of our
study we have not considered efficiency issues, concen-
trating specifically on the problem of planning under
incompletness. In future work we need to address these
issues by studying the problem of effective search in
the space of solutions. One way to do this is to con-
sider the integration of constraint solving in the plan-
ner as in constraint logic programming and its exten-
sion with abduction (Kakas, Michael, & Mourlas 1998;
Kowalski, Toni, & Wetzel 1998).

We are considering several extensions of the E-
planner to allow for more general plans e.g. contain-
ing non-deterministic actions (or actions with uncertain
effects). These extensions would require correspond-
ing extensions of the expressiveness of the Language E .
Also, the extension of the E-planner to accommodate
sensing, in the form of accepting further observations
(t-propositions) in the problem description, is a natu-
ral problem for future work.

Acknowledgements

This research has been partially supported by the EC
Keep-In-Touch Project “Computational Logic for Flex-
ible Solutions to Applications”. The third author has
been supported by the UK EPSRC Project “Logic-
based multi-agent systems”.

References

[Bondarenko et al. 1997] Bondarenko, A.; Dung, P. M.;
Kowalski, R. A.; and Toni, F. 1997. An abstract,
argumentation-theoretic framework for default reason-
ing. Journal of Artificial Inelligence 93(1-2):63–101.

[Denecker, Missiaen, & Bruynooghe 1992]
Denecker, M.; Missiaen, L.; and Bruynooghe, M. 1992.
Temporal reasoning with abductive event calculus. In
Proceedings of ECAI’92.

[Dimopoulos & Kakas 1995] Dimopoulos, Y., and
Kakas, A. 1995. Logic programming without nega-
tion as failure. In Proceedings of ILPS’95, 369–383.

[Dimopoulos, Nebel, & Koehler 1997] Dimopoulos, Y.;
Nebel, B.; and Koehler, J. 1997. Encoding planning
problems in nonmonotonic logic programs. In Proceed-
ings of ECP’97, Springer Verlag, 169–181.



[Dung 1995] Dung, P. 1995. The acceptability of ar-
guments and its fundamental role in non-monotonic
reasoning and logic programming and n-person game.
Journal of Artificial Inelligence 77:321–357.

[Finzi, Pirri, & Reiter 1999] Finzi, A.; Pirri, F.; and
Reiter, R. 1999. Open world planning in the situation
calculus. In Technical Report, University of Toronto.

[Giunchiglia 2000] Giunchiglia, E. 2000. Planning as
satisfiability with expressive action languages: Con-
currency, constraints and nondeterminism. In Proceed-
ings of KR’2000.

[Kakas & Miller 1997a] Kakas, A., and Miller, R.
1997a. Reasoning about actions, narratives and
ramifications. In J. of Electronic Transactions
on A.I. 1(4), Linkoping University E. Press,
http://www.ep.liu.se/ea/cis/1997/012/.

[Kakas & Miller 1997b] Kakas, A., and Miller, R.
1997b. A simple declarative language for describing
narratives with actions. In JLP 31(1–3), 157–200.

[Kakas & Toni 1999] Kakas, A., and Toni, F. 1999.
Computing argumentation in logic programming. In
JLC 9(4), 515–562, O.U.P.

[Kakas, Michael, & Mourlas 1998] Kakas, A.; Michael,
A.; and Mourlas, C. 1998. Aclp: a aase for non-
monotonic reasoning. In Proceedings of NMR98, 46–
56.

[Kakas, Miller, & Toni 1999] Kakas, A.; Miller, R.; and
Toni, F. 1999. An argumentation framework for rea-
soning about actions and change. In LPNMR’99, 78–
91, Springer Verlag.

[Kowalski, Toni, & Wetzel 1998] Kowalski, R.; Toni,
F.; and Wetzel, G. 1998. Executing suspended
logic programs. Journal of Foundamenta Informati-
cae 34(3):203–224.

[Levesque 1996] Levesque, H. 1996. What is planning
in the presence of sensing? In Proceedings of AAAI’96,
1139–1146.

[Lifschitz 1999] Lifschitz, V. 1999. Answer set plan-
ning. In Proceedings of ICLP’99, 23–37.

[Shanahan 1997] Shanahan, M. 1997. Event calculus
planning revisited. In Proceedings of ECP’97, Springer
Verlag, 390–402.

[Smith & Weld 1998] Smith, D., and Weld, D. 1998.
Conformant graphplan. In Proceedings of AAAI’98.


