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1 Introduction

The research area of Cognitive Robotics is concerned with the design of robots that are capable
of task planning on a high level. Similar to the evolution of machine-oriented programming into
modern languages, a central goal of Cognitive Robotics is to provide programming methodologies
for robots which allow to abstract as far as possible from concrete physical platforms and the
specifics of concrete environments [29]. High-level robotics thus enables the design, maintenance,
and adaptability and portability of large, complex systems for robot control.
Yet unlike programming a stationary computer, whose interaction with the environment is

restricted to a few, clear-cut input/output facilities, autonomous robots are embedded in and
constantly interact with a complex, dynamic environment. This raises two major challenges
for the programmer. First, it is generally difficult if not impossible to program suitable action
sequences for all possible tasks and situations. On the high level, this requires an autonomous
robot to be capable of searching on its own for plans tailored to the current situation.
The second major challenge for programming an autonomous robot is that one cannot assume

the robot to have full control over the environment. In particular, autonomous robots hardly
ever have complete information about the state of their environment. On a high level, imprecise
and incomplete state knowledge requires the capability of reasoning when devising a plan in
order to ensure that such a plan achieves the given task under any circumstances.
Putting together these two challenges, a high-level programming methodology for autonomous

robots requires the programmer to provide a formal, suitably abstract specification of both a
type of robot and a class of environments. The former consists in a description of the basic
actions a robot can undertake while the latter contains a specification of the dynamics of the
environment and in particular how a robot can manipulate it by its actions. The programming
methodology then needs to provide means of computing with such specifications with the goal
of generating and executing suitable plans for concrete tasks in concrete situations.
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The development of an expressive methodology for Cognitive Robotics is made intricate by
the fact that robots in real-world environments face a variety of complications besides having
to cope with incomplete information.

1. Nondeterminism and Uncertainty. Even if a robot has precise knowledge of, e.g., its
current position, the result of an action like moving forward for a certain amount of time
may be predictable only with some uncertainty.

2. Knowledge and Sensing Actions. Robots may lack sufficient state knowledge to come
up with a unique sequence of actions by which is guaranteed that a given task is achieved.
A robot then needs to gather additional information by actively sensing, e.g., whether a
particular door is open. To plan this ahead, a robot needs to reason about what it knows
and how knowledge is gained by sensing actions. Moreover, the planning methodology
must provide means to condition actions on the result of sensing.

3. Ramifications. A simple direct effect of an action, such as picking up an object and
moving it, may cause a number of additional effects, e.g., the simultaneous relocation
of all objects on top of, attached to, or inside of the primary one. All these indirect
effects need to be respected in order not to jump to false conclusions as to the positions
of seemingly unaffected objects.

4. Concurrency. Certain goals may be achievable only by performing actions concurrently,
such as lifting a larger object from two sides. This requires to distinguish between the
usual effect of actions and synergic effects. On the other hand, concurrent actions may
interfere by canceling effects.

Research into Cognitive Robotics has progressed rapidly in the recent past: Launched in the
early nineties by new, solid solutions1 to the most fundamental modeling problem, the Frame
Problem [43], a great number of theories have been developed for reasoning agents in complex
environments. However, the existence of theoretical accounts for all of the abovementioned
aspects does not imply that there be a unique model, let alone an executable specification
language, which covers them all. Rather, these issues have mostly been investigated in isolation.
As a consequence, combining co-existing models for different phenomena is often a problem as
challenging as addressing further aspects.
In this paper, we present the Fluent Calculus as a specification language and system for

robots which meets the requirement to address all of the aspects listed above in a uniform way.
The calculus roots in the logic programming formalism of [21], which in [18] has been proved
equivalent to approaches to the Frame Problem that appeal to non-classical logics, namely,
linearized versions of the connection method [3] and Gentzen’s sequent calculus [37], resp. All
three frameworks have been designed especially to address not only the representational but also
the inferential aspect of the Frame Problem [4]. These approaches have thus been characterized
as attempts to reconcile the expressive power of logical reasoning with the classical procedural
solution to the Frame Problem of Strips [9]. The Fluent Calculus as will be presented in this
paper comes closest to this goal since it provides a direct characterization of Strips-style state
update in pure first-order logic. On the other hand, with the full expressive power of first-order
logic, the Fluent Calculus can be viewed as a development of the Situation Calculus [40] and in
particular the concept of successor state axioms [52, 65].

1An excellent overview of today’s established action formalisms is provided by the set of reference articles
published in [56].
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Our major achievements in this paper are the following.

1. We provide the Fluent Calculus, which roots in the logic programming formalism of [21],
with a new, simpler algebraic foundation. In so doing, we overcome a limitation of the
existing axiomatization, which does not permit domain-specific equalities [65].

2. We present the programming language Flux (the Fluent Calculus Executor), which im-
plements the Fluent Calculus using constraint logic programming [23, 11]. The core of
this implementation is formally verified against the new algebraic theory of the Fluent
Calculus. In relation to existing systems, the big achievement of Flux is that incom-
plete knowledge of states is dealt with in a way that is both conceptually simple and
computationally efficient.

3. We present a novel theory of knowledge and sensing and reconcile it with the Fluent Calcu-
lus. The approach is distinguished by its simple inference scheme for calculating the effects
of actions on knowledge and a comparatively simple account of non-knowledge. Moreover,
we show how sensing actions can be specified and computed in Flux by exploiting the
simple representation of incomplete states. As an outstanding feature, planning problems
can be solved with Flux where the goal is to acquire knowledge.

4. We reconcile isolated existing accounts of nondeterministic actions [67], ramifications [63],
and concurrency [66] with the new Fluent Calculus. As a result we obtain the first theory
which uniformly covers all of these aspects. Moreover, it is shown how nondeterminism,
indirect effects, and the concurrent execution of actions can be programmed in Flux.

The paper is organized as follows. After brief preliminaries on notational conventions, we
introduce and formally discuss the new algebraic foundation of the Fluent Calculus in Section 2,
show how actions and their effects are formalized so as to solve the Frame Problem (Section 3),
and present basic Flux in Section 4. The second part of the paper is devoted to successive
extensions of the simple Fluent Calculus and Flux, namely, nondeterminism (Section 5), sensing
(Section 6), ramifications (Section 7), and concurrency (Section 8). Throughout the paper, we
use the model of a delivery robot as example. The full Flux program is shown in the appendix.

Preliminaries

The general Fluent Calculus is a second-order logic language with equality. The latter means
to consider only interpretations in which the equality predicate “=” is interpreted as identity
among the domain elements.2 We also use the formal concept of sorts. This amounts to requiring
the domain of an interpretation to contain at least one element of each sort and to assign to
sorted variables, functions, and predicates, resp., only domain elements, functions among domain
elements, and relations among domain elements, resp., of the right sort.3 Sorts are generally
disjoint, except for cases where one sort σ1 is designated as sub-sort of another one, σ2, written
σ1 < σ2.
We will use the standard logical connectives “¬” (negation), “∧” (conjunction), “∨” (disjunc-

tion), “⊃” (implication), “≡” (equivalence), “∀” (universal quantification), and “∃” (existential
quantification). Predicate and function symbols, including constants, start with a capital letter

2see, e.g., [7], Section 7.
3ibid., Section 4.
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whereas variables are in lower case, sometimes with sub- or superscripts. Free variables in for-
mulas are assumed universally quantified. Sequences x1, . . . , xn of pairwise different variables
are often written as ~x. By ~x = ~y we then mean x1 = y1 ∧ . . . ∧ xn = yn.
For notational convenience, we adopt from [1] the following notation for sets of equational

axioms expressing uniqueness of names:

UNA[h1, . . . , hn]
def
=

∧

i<j

hi(~x) 6= hj(~y) ∧
∧

i

[hi(~x) = hi(~y) ⊃ ~x = ~y ]

For example, UNA[Alley ,R401 ,R402 ] is Alley 6= R401 ∧ Alley 6= R402 ∧ R401 6= R402 , and
UNA[Closed ] is Closed(x) = Closed(y) ⊃ x = y.

2 State Terms

The name Fluent Calculus derives from the theory’s most fundamental entity, namely, the fluent.
A fluent represents a single atomic property of the physical world which may change in the course
of time, in particular through manipulation by the robot. Examples of such properties can be
the location of a movable object, the status of a door (i.e., whether open or closed), or the
position of the robot. Being a logic with sorts, the Fluent Calculus contains the reserved sort
fluent for these entities. Thus, formally speaking, fluents are terms in the language. This
technique of representing properties as terms, generally known as reification [50], introduces a
great deal of flexibility as regards reasoning about the manipulation of these properties, which
is essentially what a robot has to do. An example for fluent definitions as part of a domain
signature is depicted in Figure 1. Throughout the paper, variables of sort fluent are denoted
by the letter f , possibly with sub- or superscripts.
Based on the notion of fluents, a so-called state is a snapshot of the environment at a certain

moment. The reserved sort state is used for terms denoting states. State terms are often mere
abstract denotations like InitialState . On the other hand, given a definition of the fluents of
a domain, each fluent constitutes a particular state, namely, the one in which just this fluent
holds. Thus, formally speaking, fluent is a sub-sort of state.
State terms, in particular fluents, can be composed to new states with the reserved func-

tion “◦” of type state × state 7→ state. Written in infix notation, this function maps
two states into a state in which the fluents of both arguments hold. For example, the term
InitialState ◦ Carries(Projector) denotes the state which is exactly like the initial one but the
robot has picked up the projector. Another example is the state term (InRoom(Office(Alice)) ◦
Carries(x)) ◦ z with variables x and z being of sort object and state, resp.; this term de-
scribes a state in which the robot is in Alice’s office carrying something and in which arbitrary
other fluents, summarized in z, hold. For technical reasons, the Fluent Calculus includes the
pre-defined state constant ∅ denoting the empty state, i.e., in which—intuitively—no fluent
is true. Throughout the paper, variables of sort state are denoted by the letter z, possibly
with sub- or superscripts.
A fundamental notion is that of a fluent to hold in a state. Fluent f is said to hold in state z

if z can be decomposed into two states one of which is the singleton f . Conversely, f does
not hold in z if the latter cannot be decomposed in this way. For notational convenience, we
introduce the macro Holds(f, z) as an abbreviation for the corresponding equality formula:

Holds(f, z)
def
= (∃z′) z = f ◦ z′ (1)
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R404
(Bob)

R403R402
(Alice)

R401

Alley

DA4DA3DA2DA1

D34D23D12 domain sorts
room Alley ,R401 ,Office(Alice), . . .
door DA1 ,DA2 ,D12 , . . .
object Projector ,DocumentFolder , . . .
person Alice,Bob, . . .

function type meaning
Office person 7→ room office of person x
InRoom room 7→ fluent the robot is in room x
AtDoor door 7→ fluent the robot is at door x
Closed door 7→ fluent door x is closed
HasKeyCode door 7→ fluent robot has the key code for door x
Carries object 7→ fluent robot carries object x
Request room× object× room there is a request to deliver

7→ fluent object x2 from room x1 to room x3

Figure 1: A delivery scenario. The signature consists of four domain-specific sorts, for which
some example terms are shown. States are described on the basis of six functions whose range is
the reserved sort fluent. Examples of fluent terms are, Closed(DA2 ), InRoom(Office(Alice)),
or Request(R401 , x,R404 ) with variable x being of sort object.

This fundamental notion of truth and falsity of fluents in states requires a special theory of
equality of state terms. The following new fundamental axioms of the Fluent Calculus serve this
purpose.

Definition 1 Assume a signature which includes the sorts fluent < state and the functions
◦, ∅ of sorts as above. The set Fstate comprises these equational axioms:

1. Axioms ACI1 (associativity, commutativity, idempotency, unit element),

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)
z1 ◦ z2 = z2 ◦ z1
z ◦ z = z
z ◦ ∅ = z

(2)

2. Decomposition axiom

Holds(f, f1 ◦ z) ⊃ f = f1 ∨Holds(f, z) (3)

2

Axioms ACI1 essentially characterize “◦” as the union operation with ∅ as the empty set of
fluents. (Associativity allows to omit parentheses in nested applications of “◦”.) The decompo-
sition axiom relates equality of states to equality of fluents; note that (3) is just a representation
of an equality formula according to (1).
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Although the explicit, fundamental notion of a state is the characteristic feature of the Fluent
Calculus, we do not assume that a robot has complete knowledge of the state of its environment.
Rather, (partial) knowledge about states is represented by formulas talking about abstract state
denotations, like InitialState. The following, for example, may be a suitable description of what
is known about a state in our delivery scenario (cf. Figure 1):

Holds(InRoom(R401 ), InitialState) ∧Holds(AtDoor(D12 ), InitialState)∧
Holds(Closed(D12 ), InitialState) ∧ ¬Holds(Closed(DA1 ), InitialState)∧
(∀y)¬Holds(Carries(y), InitialState)∧
(∀d) (Holds(HasKeyCode(d), InitialState) ≡ d = D12 ∨ d = DA4 )∧
(∃x)(∀r1, r2, y) (Holds(Request(r1, y, r2), InitialState) ≡

r1 = Office(Alice) ∧ y = x ∧ r2 = Office(Bob))

(4)

That is to say, given are the robot’s location, the status of doors D12 and DA1 , the fact that
the tray of the robot is clear, that it possesses two and no more key codes, and that there is
a single request. Notice that in particular nothing is known about the states of other doors
besides the two leading out of room R401 .
Formulas about states may stipulate an unbounded or even infinite number of fluents to hold

in a state, as in (∀x)Holds(Closed(x), z) or (∀n) (n ≥ 2001 ⊃ Holds(FutureYear(n), z)) where
FutureYear is of type nat (natural numbers) 7→ fluent. The possibility of formulas which
require states to comprise infinitely many fluents raises the issue of consistency of such formulas
wrt. our foundational axioms. Theorem 3 below ensures that Fstate is indeed consistent with
any formula about a state provided the formula is not self-contradictory. Prior to formalizing
and proving this, we need to make precise the notion of a formula about a state:

Definition 2 A pure state formula in z is a first-order formula Φ(z) with just one free state
variable z and which is composed of atomic formulas of the form

1. Holds(φ, z), where φ is of sort fluent;4

2. atoms which do not use any of the reserved predicates or sorts of the Fluent Calculus.

2

The idea behind the proof that our axiomatization of states is consistent, is quite a simple
one: If a pure state formula admits a model M, then a concrete state can always be obtained
by letting it contain precisely those fluents that hold in it according to M.

Theorem 3 Let ζ be a constant of sort state and let Φ(z) be a pure state formula in z.
If Φ(ζ) is satisfiable then Fstate ∪ {Φ(ζ)} is satisfiable.

Proof: Let M be a model of Φ(ζ). We construct a model M∗ of Fstate∪{Φ(ζ)} as follows.
Let M∗ be as M except that

1. the domain for sort fluent consists of all singleton sets {F} where F is a domain
element for sort fluent in M;

2. the domain for sort state consists of all sets over the domain for sort fluent in M;

3. constant ∅ is interpreted by the empty set;
4Notice that by (1) these atoms are actually equality sentences.
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function type meaning
Go door 7→ action go to door x
Open door 7→ action open door x
Enter room 7→ action enter room x
Pickup object 7→ action pick up object x
Drop object 7→ action drop object x
Connects door× room× room door x1 connects rooms x2 and x3

Office(Alice) = R402 ∧ Office(Bob) = R404
Connects(d, x, y) ≡ d = D12 ∧ x = R401 ∧ y = R402 ∨

d = D12 ∧ x = R402 ∧ y = R401 ∨
d = DA1 ∧ x = Alley ∧ y = R401 ∨
. . .

r = Alley ∨ r = R401 ∨ . . . ∨ r = R404
d = DA1 ∨ d = D12 ∨ . . . ∨ d = DA4
UNA[DA1 , . . . ,D34 ] ∧ UNA[Alley ,R401 , . . . ,R404 ]
UNA[InRoom,AtDoor ,Closed ,HasKeyCode,Carries ,Request ]
UNA[Go,Open,Enter ,Pickup,Drop]

Figure 2: Additions to the signature for the delivery scenario. The robot can perform five high-
level actions. The floor plan is specified with the help of the domain predicate Connects . The
domain axiomatization also contains domain closure axioms and axioms on uniqueness of names
as depicted.

4. function ◦ is interpreted by the union operation;

5. constant ζ is interpreted as the set of all F such that M |= HoldsM(F, ζM).

To prove that M∗, too, is a model of Φ(ζ), it suffices to show that M∗ |= HoldsM
∗

({F}, ζM
∗

)
iff M |= HoldsM(F, ζM): Following (1), M∗ |= HoldsM

∗

({F}, ζM
∗

) iff there exists a set Z ′

such that ζM
∗

= {F} ∪ Z ′, hence iff F is an element of ζM
∗

, hence iff M |= HoldsM(F, ζM)
according to item 5 above.
To prove that M∗ is a model of ACI1, it suffices to note that set union is an associative-

commutative and idempotent operation with the empty set as its unit element.
To prove that decomposition holds, suppose HoldsM

∗

({F1}, {F2} ∪ Z), that is, {F2} ∪ Z =
{F1}∪Z

′ for some Z ′. Then F1 = F2 or there exists some Z
′′ such that Z = {F1}∪Z

′′, that
is, HoldsM

∗

({F1},Z).

3 Simple State Update Axioms

Actions are the second fundamental entity, besides fluents, in the Fluent Calculus. Actions are
denoted by terms of the reserved sort action. To our delivery robot of Figure 1, for example,
we ascribe the ability to perform five kinds of high-level actions, namely, finding its way to a
door, opening a door by sending out they key code, entering a room through an open door,
picking up a requested object, and dropping an object which it carries on its tray. The formal
definition of these actions as an extension of the domain signature, along with some foundational
domain axioms, is shown in Figure 2.
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For the formalization of action preconditions, the Fluent Calculus provides the pre-defined
predicate Poss : action × state. The intended reading is that its first argument is an action
which is possible in the state denoted by the second argument.

Definition 4 Let A be a function symbol with range action. A simple action precondition
axiom for A is of the form

Poss(A(~x), z) ≡ ΠA(~x, z)

where ΠA(~x, z) is a pure state formula in z. 2

For example, the precondition axioms for the actions of our robot shall be as follows:

Poss(Go(d), z) ≡ (∃r, r′) (Holds(InRoom(r), z) ∧ Connects(d, r, r′))

Poss(Open(d), z) ≡ Holds(AtDoor(d), z)
∧ [Holds(HasKeyCode(d), z) ∨ ¬Holds(Closed(d), z)]

Poss(Enter(r), z) ≡ (∃d, r′) (Holds(AtDoor(d), z) ∧Holds(InRoom(r′), z)

∧Connects(d, r′, r) ∧ ¬Holds(Closed(d), z))

Poss(Pickup(x), z) ≡ (∃r1, r2) (Holds(Request(r1, x, r2), z) ∧Holds(InRoom(r1), z)
∧¬Holds(Carries(x), z))

Poss(Drop(x), z) ≡ Holds(Carries(x), z)
∧ (∃r1, r2) (Holds(Request(r1, x, r2), z) ∧Holds(InRoom(r2), z))

(5)

Based on the notion of actions, a so-called situation is a history of action performances [40, 28].
Situations are represented by terms of the reserved sort sit. The standard function Do :
action × sit 7→ sit maps into a new situation a pair consisting of an action and a situation,
which may be a constant like, e.g., S0 denoting a particular, initial situation. For example, the
situation term Do(Pickup(x),Do(Enter(R402 ),Do(Open(D12 ), S0))) represents the beginning
of a potential plan for our delivery robot starting in situation S0.
The reserved function State : sit 7→ state maps each situation to the state of the environment

in that situation. However, since complete descriptions of states are not assumed, the expression
State(s) is a mere abstract denotation of a world state. Knowledge about situations is then
formalized by referring to the associated state term. An example are the following two macros,
which denote, resp., that a fluent holds in a situation and that an action is possible:

Holds(f, s)
def
= Holds(f,State(s))

Poss(a, s)
def
= Poss(a,State(s))

(6)

Suppose, for example, we define State(S0) = InitialState as specified with formula (4), then
(∃r, r′) (Holds(InRoom(r), S0) ∧ Connects(DA1 , r, r

′)). Hence, Poss(Go(DA1 ), S0) according
to (5).
A further example of talking about situations in terms of the corresponding state are the

so-called state constraints, which formalize properties a state term must satisfy in order to
represent a state that can actually occur in the world.

Definition 5 Let Γ(z) be a pure state formula in z, then Γ(State(s)) is a state constraint .
2
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Our example domain of the delivery robot calls for these constraints, which should be self-
explanatory:

(∃r)Holds(InRoom(r), s)

Holds(InRoom(r), s) ∧Holds(InRoom(r′), s) ⊃ r = r′

Holds(AtDoor(d), s) ∧Holds(AtDoor(d′), s) ⊃ d = d′

Holds(InRoom(r), s) ∧Holds(AtDoor(d), s) ⊃ (∃r′)Connects(d, r, r′)

Holds(Request(r1, x, r2), s) ∧Holds(Request(r
′
1, x, r

′
2), s) ⊃ r1 = r′1 ∧ r2 = r′2

(7)

(With the last constraint we reject contradicting requests concerning the same object.)
Reasoning about actions essentially means to reason about the effects of performing them. A

crucial advantage when specifying effects lies in the fact that actions almost always affect only
very few fluents and thus leave most of a state unchanged.5 Hence, actions should be conveniently
describable by saying which fluents under which circumstances are changed by each action, while
the vast majority of fluents is not explicitly mentioned and assumed unchanged. On the other
hand, it is precisely this desire for ‘focused’ action specifications that brings about the famous
Frame Problem, which has been uncovered as early as in [39] and is recognized as one of the
most important modeling problems in computer science [60].
The Frame Problem is to find a representation formalism which allows for specifying actions

solely in terms of effects in a way that all unchanged knowledge about a state still follows
about the successor state. This representational aspect of the Frame Problem is linked with an
inferential perspective concerned with the efficient computation of non-changes, which essentially
means to not apply separate inference steps for each unaffected piece of knowledge.
The Fluent Calculus approach to the Frame Problem exploits the explicit notion of states.

Change is modeled by specifying the difference between two states. The simple Fluent Calculus
is restricted to deterministic actions which are performed in isolation and which have a bounded
number of direct and no indirect effects. Positive effects are modeled by adding them to a state,
negative effects are modeled by removing them. We denote removal of a fluent by z − f ; the
axiomatic characterization of this operation is as follows:

z − f = z′
def
= ¬Holds(f, z′) ∧ [z′ ◦ f = z ∨ z′ = z] (8)

Put in words, removing f from z results in z′ just in case ¬Holds(f, z′) and either z′ plus
f equals z (in case Holds(f, z)) or z′ equals z (in case ¬Holds(f, z)). It is easy to see that
the macro can be generalized to removal of finite collections of fluents:

z′ = z − ∅
def
= z′ = z

z′ = z − f1 ◦ . . . ◦ fn ◦ fn+1
def
= (∃z′′) (z′′ = z − f1 ◦ . . . ◦ fn ∧ z

′ = z′′ − fn+1)
(9)

On this basis, effects of actions in the simple Fluent Calculus are specified as follows:

Definition 6 A fluent collection is either the empty state ∅ or a state term of the form
F1(~τ1)◦ . . .◦Fn(~τn) where each Fi is a function symbol with range fluent (1 ≤ i ≤ n; n ≥ 1).
Let A be a function symbol with range action. A simple state update axiom for A is of

the form

Poss(A(~x), s) ∧ ∆(~x,State(s)) ⊃ State(Do(A(~x), s)) = State(s) ◦ ϑ+ − ϑ−

5In the words of [46], actions are “local surgeries.”
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where ∆(~x, z) is a pure state formula in z and ϑ+ (the positive effects) and ϑ− (the negative
effects) are fluent collections. 2

Besides the presupposition that the action is possible, sub-formula ∆ may represent additional
conditions under which the equation in the consequent of a state update axiom defines the
relation between a state and its successor. Thus actions can be specified by more than one
update axiom, each one of which specifies the action’s effect in different circumstances.
Under the assumption that positive and negative effects are disjoint, state update axioms

are a provably correct solution to the Frame Problem. More specifically, the following theorem
establishes that all positive and negative effects materialize, provided they do not cancel out,
and that all other fluents hold in the resulting state just in case they hold in the original state.

Theorem 7 Consider the fluent collections ϑ+ = f+
1 ◦ . . . ◦ f

+
m and ϑ− = f−1 ◦ . . . ◦ f

−
n

(m ≥ 0, n ≥ 0). Then Fstate ∪ {
∧

i

∧

j f
+
i 6= f−j } ∪ {znew = zold ◦ ϑ

+ − ϑ−} entails,

1. Holds(f+
i , znew ) for all i = 1, . . . ,m

2. ¬Holds(f−j , znew ) for all j = 1, . . . , n

3. (∀f) (
∧

i f 6= f+
i ∧

∧

j f 6= f−j ⊃ [Holds(f, znew ) ≡ Holds(f, zold )] )

Proof:

1. Consider any i ∈ {1, . . . ,m}. Let z = zold ◦ϑ
+, then Holds(f+

i , z). After n-fold applica-
tion of (9), decomposition in conjunction with f+

i 6= f−j implies Holds(f+
i , z−ϑ

−), hence

Holds(f+
i , znew ).

2. Follows immediately by n-fold application of (9).

3. Suppose
∧

i f 6= f+
i . Let z = zold ◦ ϑ

+, then by m-fold application of decomposition,
Holds(f, z) ≡ Holds(f, zold ). After n-fold application of (9) to znew = z − ϑ−, decompo-
sition and

∧

j f 6= f−j imply that Holds(f, znew ) ≡ Holds(f, z). Hence, Holds(f, znew ) ≡
Holds(f, zold ).

To illustrate the design and use of state update axioms, we recall the five actions of our delivery
scenario. Taking into account the precondition axioms of (5), the actions can be specified by
this collection of state update axioms:

Poss(Go(d), s) ∧Holds(AtDoor(d′), s) ∧ d′ 6= d ⊃

State(Do(Go(d), s)) = State(s) ◦AtDoor(d)−AtDoor(d′)

Poss(Go(d), s) ∧ [Holds(AtDoor(d), s) ∨ ¬(∃d′)Holds(AtDoor(d′), s) ] ⊃
State(Do(Go(d), s)) = State(s) ◦AtDoor(d)

Poss(Open(d), s) ⊃ State(Do(Open(d), s)) = State(s)− Closed(d)

Poss(Enter(r), s) ∧Holds(InRoom(r′), s) ⊃

State(Do(Enter(r), s)) = State(s) ◦ InRoom(r)− InRoom(r′)

Poss(Pickup(x), s) ⊃ State(Do(Pickup(x), s)) = State(s) ◦ Carries(x)

Poss(Drop(x), s) ∧Holds(Request(r1, x, r2), s) ⊃
State(Do(Drop(x), s)) = State(s)− Carries(x)− Request(r1, x, r2)

(10)
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Action Go has a conditional effect, depending on whether the robot happens to be at some
other door initially. The reader may further notice that by executing a Drop action the robot
successfully completes the corresponding delivery request.
State update axioms meet the representational requirements of the Frame Problem since the

state equation in their consequent mentions only fluents that change. Moreover, state update
axioms lay the foundation for efficiently inferring the result of actions if constrained equations
of the following form are used to encode state knowledge:

(∃~x, z) (State(s) = f1 ◦ . . . ◦ fn ◦ z) ∧ Φ(~x, z) ) (11)

where Φ(~x, z) is a pure state formula in z. For example, recall State(S0) = InitialState . The
following formula is logically equivalent to the macro expansion of (4):

(∃x, z) (State(S0) = InRoom(R401 ) ◦AtDoor(D12 ) ◦ Closed(D12 ) ◦
HasKeyCode(D12 ) ◦HasKeyCode(DA4 ) ◦
Request(Office(Alice), x,Office(Bob)) ◦
z

∧¬Holds(Closed(DA1 ), z)
∧ (∀y)¬Holds(Carries(y), z)
∧ (∀d)¬Holds(HasKeyCode(d), z)
∧ (∀r1, y, r2)¬Holds(Request(r1, y, r2), z) )

(12)

(Equivalence to (4) follows by decomposition and the axioms concerning uniqueness-of-names of
Figure 2.) We have already derived Poss(Go(DA1 ), S0). Furthermore, Holds(AtDoor(D12 ), S0)
(by (12)) and D12 6= DA1 . Thus the instance {d/DA1 , d′/D12 , s/S0} of the first update axiom
in (10) for Go implies

State(Do(Go(DA1 ), S0)) = State(S0) ◦AtDoor(DA1 )−AtDoor(D12 )

Let S1 = Do(Go(DA1 ), S0). Since Holds(AtDoor(D12 ),State(S0)), macro definition (8) im-
plies

State(S1) ◦AtDoor(D12 ) = State(S0) ◦AtDoor(DA1 ) ∧ ¬Holds(AtDoor(D12 ),State(S1))

Replacing sub-term State(S0) by an equal term according to (12) yields

(∃x, z)State(S1) ◦AtDoor(D12 ) = InRoom(R401 ) ◦AtDoor(D12 ) ◦ Closed(D12 ) ◦
HasKeyCode(D12 ) ◦HasKeyCode(DA4 ) ◦
Request(Office(Alice), x,Office(Bob)) ◦
z ◦
AtDoor(DA1 )

∧¬Holds(AtDoor(D12 ),State(S1))

Since ¬Holds(AtDoor(D12 ),State(S1)) and because state variable z in (12) can be chosen
such that ¬Holds(AtDoor(D12 ), z), fluent AtDoor(D12 ) can be canceled out on both sides of
the equation, which yields

(∃x, z) (State(S1) = InRoom(R401 ) ◦AtDoor(DA1 ) ◦ Closed(D12 ) ◦
HasKeyCode(D12 ) ◦HasKeyCode(DA4 ) ◦
Request(Office(Alice), x,Office(Bob)) ◦
z

∧¬Holds(AtDoor(D12 ), z) )

11



Besides the positive effect AtDoor(DA1 ), the right hand side of the equation includes all
fluents which remain unchanged by the action. Moreover, knowledge specified in (12) as to
which fluents do not hold in z applies to the new state, which includes z, just as well. Thus
all unchanged knowledge continues to hold without the need to apply extra inference steps.
Automated reasoning with equational theories is, however, known to be notoriously difficult.

An efficient implementation of the Fluent Calculus therefore requires special techniques for
dealing with both state equations and constraints on state variables. We will present such an
implementation in the following Section 4.
The core concepts of the Fluent Calculus are summarized in the two notions of its basic

signature and of axiomatizations of simple action domains as follows.

Definition 8 The simple Fluent Calculus is a sorted first-order logic language with equality
which includes

1. Sorts
fluent < state, action, sit

2. Functions

∅ : 7→ state State : sit 7→ state

◦ : state× state 7→ state Do : action× sit 7→ sit

3. Predicate
Poss : action× state

A simple Fluent Calculus domain axiomatization consists of a set of state constraints, a unique
simple action precondition axiom for each function symbol with range action, a set of simple
state update axioms, foundational axioms Fstate , and possibly further domain-specific axioms.

2

Axiomatizations of domains in the Fluent Calculus serve a variety of purposes.

• Entailing statements about situations, a domain theory can be used to predict the outcome
of given action sequences. Our axiomatization of the delivery robot, for instance, entails

(∃x)Holds(Carries(x),Do(Pickup(x),Do(Enter(Office(Alice)),Do(Open(D12 ), S0))))

by which a sequence of three actions is predicted to execute the task of picking up some-
thing in Alice’s office.

• Entailing relational statements among situations, a domain theory can be used to explain
observations. For instance, this is a valid implication in our example domain:

Poss(Enter(R404 ),Do(Go(DA4 ),Do(Enter(Alley),Do(Go(DA1 ), S0))))
⊃ ¬Holds(Closed(DA4 ), S0)

(13)

It says that if the robot was able to enter R404 right after walking to DA4 , then that
door must have been open.

12



• Finally, the planning problem can be modeled as the problem of finding a situation in which
certain goal conditions are met. Our axiomatization of the delivery robot, for instance,
entails that

(∃s)¬(∃r1, r2, x)Holds(Request(r1, x, r2), s)

A constructive proof of this statement should yield a plan by which all given requests are
met. A correct solution is,

s/Do(Drop(x),Do(Enter(R404 ),Do(Open(DA4 ),Do(Go(DA4 ),
Do(Enter(Alley),Do(Go(DA1 ),Do(Enter(R401 ),Do(Pickup(x),
Do(Enter(R402 ),Do(Open(D12 ), S0))))))))))

(14)

Notice that in order to be entailed, the plan must be successful under any circumstances,
that is, under any initial state of affairs which is consistent with our partial knowledge of
it (cf. (4)). This is achieved only by letting the robot leave R402 through R401 and by
having it open DA4 .

Meta-statements about non-achievability of goals6 can be proved with the help of the founda-
tional axioms on situations, which include induction on situations, introduced in [53] in the
context of the Situation Calculus.

4 FLUX—A Constraint Logic Programming Implementation

Flux—the Fluent Calculus Executor—is based on the logic programming paradigm [24] with
constraints [23]. Flux is distinguished by a conceptually simple and computationally efficient
way of dealing with incomplete states. An open state description with finitely many fluents
known to hold, z = f1 ◦ . . . ◦ fn ◦ z1 (n ≥ 0), is encoded by a list whose tail is a variable:

Z = [F1,...,Fn | Z1] (15)

In addition, the fact that a certain fluent does not hold in a state, ¬Holds(f, z), is encoded as
constraint of the form

not_holds(F, Z)

Due to the incompleteness of state descriptions, a special constraint handling mechanism is
needed which stores constraints in the background and checks their satisfiability whenever new
bindings, e.g., for the tail variable in (15), become effective.

4.1 Constraint Handling Rules

Prolog systems with Constraint Handling Rules [11] support high-level programming of con-
straint solvers. Constraints are processed on the basis of declarative rules of the following kind.

Definition 9 Consider a signature for constraints, consisting of predicate and function symbols
plus variables, which includes the special constraint false. A constraint handling rule (CHR)
is an expression of the form

H1,...,Hm <=> G1,...,Gk | B1,...,Bn. (16)

where
6An example would be to prove that the robot can never solve a request from or to room R403 if doors DA3

and D34 are closed.
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• the head H1, . . . , Hm are constraints (m ≥ 1);

• the guard G1, . . . , Gk are Prolog literals (k ≥ 0);

• the body B1, . . . , Bn are constraints (n ≥ 0).

An empty guard is omitted; the empty body is denoted by true. 2

As an example, consider the constraint Neq(f1, f2) with the intended meaning that the argu-
ments are two unequal terms. Suitable CHRs for this constraint are,

neq(F,F) <=> false.

neq(F1,F2) <=> \+ F1=F2 | true.
(17)

Informally speaking, the first rule causes Neq(f1, f2) to fail if the two arguments are equal,
whereas by the second rule, Neq(f1, f2) is solved if the two arguments cannot be unified. In
case of insufficiently instantiated arguments, neither of the two rules applies and the evaluation
of the constraint is delayed.
The declarative interpretation of a CHR of the form (16) is given by the formula

(∀~x) (G1 ∧ . . . ∧Gk ⊃ [H1 ∧ . . . ∧Hm ≡ (∃~y) (B1 ∧ . . . ∧Bn)] ) (18)

where ~x are the variables in both guard and head and ~y are the variables which additionally
occur in the body. Thus the two rules in (17), for instance, mean the following, which shows
that the rules agree with the intuition behind the constraint Neq :

True ⊃ [Neq(f, f) ≡ False ]

f1 6= f2 ⊃ [Neq(f1, f2) ≡ True ]

The procedural interpretation of a CHR is given by a transition in a constraint store. If the
head can be matched against elements of the constraint store and the guard can thereafter be
derived without binding variables in the head , then the constraints of the head are replaced by
the constraints of the body. More formally, consider a set of constraints C and suppose there
exists a CHR (16) along with two substitutions σ and θ such that

1. H1σ, . . . ,Hmσ ∈ C ;

2. θ is a computed answer substitution for G1σ, . . . , Gkσ;

3. Hiσθ = Hiσ (for i = 1, . . . ,m).

Then a transition is possible from C to (C \ {H1σ, . . . ,Hmσ}) ∪ {B1σθ, . . . , Bnσθ}.
For example, the constraint Neq(Closed(x),Closed(x)) evaluates to False according to the

first one of our CHRs in (17) whereas Neq(Closed(x), InRoom(y)) leads to the empty constraint
store following our second rule. The constraint Neq(Closed(x),Closed(DA1 )), on the other
hand, cannot be rewritten by either rule because the head of the first rule does not match
while the instantiated guard \+Closed(x) = Closed(DA1 ) of the second rule fails. Hence the
constraint is kept in store for later evaluation.
The basic computation mechanism for logic programs with CHRs is standard SLDNF-resolu-

tion (see, e.g., [35]). Constraints that are selected in the course of a derivation are added to
the constraint store. At any stage, the store is processed using the given CHRs until no further
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handler fluent.

constraints neq/2, neq_all/3, not_holds/2, not_holds_all/3, duplicate_free/1.

neq(F,F) <=> false.

neq(F1,F2) <=> \+ F1=F2 | true.

not_holds(F,[F1|Z]) <=> neq(F,F1), not_holds(F,Z).

not_holds(_,[]) <=> true.

neq_all(X,F1,F2) <=> copy_term_vars(X,F1,F), F=F2 | false.

neq_all(X,F1,F2) <=> \+ F1=F2 | true.

not_holds_all(X,F,[F1|Z]) <=> neq_all(X,F,F1), not_holds_all(X,F,Z).

not_holds_all(_,_,[]) <=> true.

duplicate_free([F|Z]) <=> not_holds(F,Z), duplicate_free(Z).

duplicate_free([]) <=> true.

not_holds_all(X,F1,Z) \ not_holds(F2,Z) <=> copy_term_vars(X,F1,F), F=F2 | true.

not_holds_all(X1,F1,Z) \ not_holds_all(_,F2,Z) <=> copy_term_vars(X1,F1,F), F=F2

| true.

Figure 3: The module fluent.chr contains the fundamental CHRs for Flux.7

transition applies. If the special constraint “false” is introduced into the constraint store, then
the entire derivation fails. If a derivation is successful, then the computed answer substitution
is accompanied by all constraints that have remained in the store. The declarative reading of
such an answer is that the instantiated query is entailed under the provision that the constraints
hold [23].

4.2 Constraint Handling Rules for Flux

The complete constraint handling core of Flux is shown in Figure 3.

4.2.1 NotHolds/2

Representing states by lists, the fundamental constraint in Flux, NotHolds , requires a list to
not contain a particular element. E.g., NotHolds(InRoom(x), [InRoom(Alley),AtDoor(y) | z])
yields the pending constraints Neq(InRoom(x), InRoom(Alley)) and NotHolds(InRoom(x), z).
These constraints may fail later, e.g., if x becomes Alley or if z is bound to [InRoom(x) | z ′].
The CHR for this constraint can be justified, on the basis of its declarative interpretation

(cf. (18)), by the foundational axioms of the Fluent Calculus, as the following proposition shows.

Proposition 10 Fstate entails,

¬Holds(f, f1 ◦ z) ≡ f 6= f1 ∧ ¬Holds(f, z)

Proof: We prove that Holds(f, f1 ◦ z) ≡ f = f1 ∨Holds(f, z):

“⇒”: Follows by the decomposition axiom (3).
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“⇐”: If f = f1, then f1 ◦ z = f ◦ z, hence Holds(f, f1 ◦ z). Likewise, if Holds(f, z), then
z = f ◦ z′ for some z′, hence f1 ◦ z = f1 ◦ f ◦ z

′, hence Holds(f, f1 ◦ z).

4.2.2 NotHoldsAll/3

Variables in constraints are generally treated as existentially quantified. To model universal
quantification in negative Holds statements, e.g., as in (∀y)¬Holds(Carries(y), z), the con-
straint NotHoldsAll([x1, . . . , xn], f, z) encodes the formula (∀~x)¬Holds(f, z). The auxiliary
constraint NeqAll(~x, f1, f2) denotes that no instance of f1 wrt. variables ~x equals f2. The
Eclipse built-in CopyTermVars(~x, f1, f) used in the first CHR for this constraint means that f
is a variant of f1 in which all variables of list ~x have been renamed. Hence the guard succeeds
without binding variables in the head just in case f1σ = f2 for some σ whose domain is a sub-
set of ~x. E.g., the constraint NotHoldsAll([r, x],Request(r, x,R402 ), [Request(R401 , x′, r′) | z])
succeeds with NeqAll([r, x],Request(r, x,R402 ),Request(R401 , x′, r′)) among the pending con-
straints. The latter is solved if, say, r′ becomes R404 whereas failure occurs if r′ is bound
to R402 .

4.2.3 DuplicateFree/2

The third and final foundational constraint of Flux is used to prevent multiple occurrence of
fluents in lists representing a state. E.g., processing DuplicateFree([Closed(DA1 ),Closed(x) | z])
yields the four delayed constraints Neq(Closed(DA1 ),Closed(x)), NotHolds(Closed(DA1 ), z),
NotHolds(Closed(x), z), and DuplicateFree(z).

4.3 The Basic Flux Language

Building on the constraint solving core, the basic Flux system shown in Figure 4 consists
of further clauses reflecting the algebraic foundation of the Fluent Calculus. The program
culminates in a definition for updating states by which the inferential Frame Problem is solved.

4.3.1 Holds/2

The two clauses defining this standard predicate are justified by

Fstate |= Holds(f, z) ⊂ (∃z1) z = f ◦ z1 ∨ (∃f1, z1) (z = f1 ◦ z1 ∧Holds(f, z1))

which follows from Proposition 10. The Prolog built-in NonVar(z) used in the second clause
avoids non-terminating recursion by making sure that the state argument z is reducible.
A query of successive Holds atoms all appealing to the same state variable, results in an

incomplete state description of the form (15). In this way, Flux expands a state specification
into a representation of the form (11), which enables a solution to the inferential Frame Problem.
If the arguments of fluent terms are not fully instantiated, then there may be several ways of

having a fluent hold in a state. E.g., the query Holds(Closed(DA1 ), z0), Holds(Closed(x), z0)
admits the two answers {z0/[Closed(DA1 ) | z], x/DA1} and {z0/[Closed(DA1 ),Closed(x) | z]}.
(In the latter case, constraint DuplicateFree(z0) would ensure Neq(Closed(DA1 ),Closed(x)).)

7The last two rules are used to remove subsumed constraints. They follow the syntax H1 \ H2 <=> G | B,
which is an abbreviation for H1,H2 <=> G | H1,B.
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:- lib(chr).

:- chr2pl(fluent), [fluent].

holds(F, [F|_]).

holds(F, Z) :- nonvar(Z), Z=[F1|Z1], \+ F==F1, holds(F, Z1).

holds(F, [F|Z], Z).

holds(F, Z, [F1|Zp]) :- nonvar(Z), Z=[F1|Z1], \+ F==F1, holds(F, Z1, Zp).

equal(Z1, Z2) :- (var(Z1) ; var(Z2)), Z1=Z2.

equal(Z1, Z2) :-

nonvar(Z1), nonvar(Z2), ( Z1=[F|Z3], holds(F, Z2, Z4), equal(Z3, Z4) ;

Z1=[], Z2=[] ).

plus(Z, [], Z).

plus(Z, [F|Fs], Zp) :- (not_holds(F, Z), Z1=[F|Z] ; holds(F, Z), Z1=Z),

plus(Z1, Fs, Zp).

minus(Z, [], Z).

minus(Z, [F|Fs], Zp) :- (holds(F, Z, Z1) ; not_holds(F, Z), Z1=Z),

minus(Z1, Fs, Zp).

update(Z1, ThetaP, ThetaN, Z2) :-

plus(Z1, ThetaP, Z), minus(Z, ThetaN, Zp), equal(Zp, Z2).

Figure 4: The core of flux.pl, into which also the fundamental CHRs are loaded.

4.3.2 Holds/3

Predicate Holds(f, z, z1) means Holds(f, z) ∧ z1 ◦ f = z ∧ ¬Holds(f, z1). The two clauses
are justified under the assumption that the list representing state z does not contain multiple
occurrences of f .

4.3.3 Equal/2

Predicate Equal(z1, z2) means that the arguments denote equal states. The Prolog built-ins used
in the clauses defining this predicate ensure that the fluent-wise comparison is performed only
in case neither of the arguments is a variable. The second clause is justified by this implication,
which is self-evident:

z1 = z2 ⊂ z1 = f ◦ z3 ∧ z2 = f ◦ z4 ∧ z3 = z4

4.3.4 Update/4

Predicate Update(z1, ϑ
+, ϑ−, z2) means z2 = z1◦ϑ

+−ϑ−, that is, update of state z1 to state z2
by means of positive and negative, resp., effects ϑ+, ϑ−. Its clause uses the auxiliary predicates
Plus/3 and Minus/3, whose definitions preserve the property of lists not containing multiple
occurrences of fluents.
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The clauses defining Plus are justified by

z ◦ ∅ = ∅

z ◦ f ◦ ϑ = z′ ⊂ (∃z1) ( [¬Holds(f, z) ⊃ z1 = f ◦ z]∧
[Holds(f, z) ⊃ z1 = z]∧

z′ = z1 ◦ ϑ )

which follows from ACI1.
The clauses defining Minus are justified by

z − ∅ = ∅

z − f ◦ ϑ = z′ ⊂ (∃z1) ( [Holds(f, z) ⊃ z1 ◦ f = z ∧ ¬Holds(f, z1)]∧
[¬Holds(f, z) ⊃ z1 = z]∧

z′ = z1 − ϑ )

which follows from ACI1 and (9), (8).
The clause defining Update is justified by

z2 = z1 ◦ ϑ
+ − ϑ− ⊂ (∃z, z′) (z = z1 ◦ ϑ

+ ∧ z′ = z − ϑ− ∧ z′ = z2)

The definition of Update implements the solution to the inferential Frame Problem of the
Fluent Calculus: Provided that argument z2 is not substituted by an explicit list description
of a state when using the head in a resolution step, z2 can be directly bound, via the first
clause for Equal , to the result of addition and removal of positive and negative effects. These
operations leave all unaffected fluents in the list. Moreover, the original and the updated state
share their tail variable. Hence, all knowledge of the form that a fluent does not hold, represented
by delayed constraints on this tail variable, applies to the successor state just as well.
It is important to note, however, that if variable z2 in the clause defining Update is already

bound to an explicit description of a state, then the definition for Equal requires element-wise
comparison of this list and the update result. Hence, the above definition of state update should
be used in a progression-like reasoning mode, which means to start with an initial state and
to successively infer the result of action sequences. For the reverse operation of regression, a
different but analogous clause defining Update is more suited in which z1 is inferred from a
given open list z2.

4.4 Programming in Flux

Based on the general Flux module of Figures 3 and 4, domain axiomatizations in the simple
Fluent Calculus can be encoded according to the following programming scheme. (See Appen-
dices A.1 and A.2 for the complete Flux specification of our example of a delivery robot.)
Prolog in general and our CHRs for the constraint Neq in particular take two terms as unequal

whenever they are not unifiable. In so doing, Flux assumes universal uniqueness of names.
The state constraints of a domain are summarized in a clause of the form Consistent(z) ←

Γ1(z), . . . ,Γn(z). Some state constraints require the introduction of domain-specific CHRs.
Examples are the last three of the axioms (7) for our delivery scenario: They are encoded by the
constraints AtDoorUnique(z), DoorOfRoom(r, z), and RequestUnique(z) along with the CHRs
shown in Appendix A.1.
A simple action precondition axiom is encoded as Poss(A(~x), z) ← ΠA(~x, z) along with

NotPoss(A(~x), z) ← ¬ΠA(~x, z). The latter is necessary because in the presence of incomplete
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state knowledge, non-executability cannot simply be inferred by negation-as-failure. A simple
state update axiom is encoded as StateUpdate(z1, A(~x), z2) ← ∆(~x, z1), Update(z1, ϑ

+, ϑ−, z2).
Since it is often necessary to verify action preconditions independently from applying a state
update axiom, its body does not include this check. Rather it is assumed that the axiom is
applied only in a context where the preconditions hold (cf. (19) below).
Based on a specification of preconditions and effects for each single action, the result of

sequences of actions may be inferred using the following clauses, which define the predicate
DO(s, z0, z) with the intended meaning that s is a (possibly empty) list of actions [a1, . . . , an]
such that z0 = State(S0) and z = State(Do(an, . . . ,Do(a1, S0) . . .)):

do([], Z, Z).

do([A|S], Z0, Z) :- poss(A, Z0), state_update(Z0, A, Z1), do(S, Z1, Z).
(19)

For the sake of efficiency, satisfaction of state constraints is not verified within this definition.
Rather the state update axioms are assumed to preserve state consistency. It then suffices to
stipulate consistency, as well as freeness of duplicates, of initial states only, assuming clauses (19)
are used for progressing a state z0.
It is important to realize that successful derivations of queries with incomplete states indicate

mere satisfiability. For example, the query

Holds(InRoom(R401 ), z0), Holds(AtDoor(D12 ), z0), Consistent(z0), DuplicateFree(z0),
DO([a], z0, z1), Holds(InRoom(R402 ), z1), Holds(Carries(Projector), z1)

has a successful derivation, whose answer substitution includes the bindings a/Enter(R402 )
and z0/[InRoom(R401 ),AtDoor(D12 ),Carries(Projector) | z] and is accompanied by the con-
straint NotHolds(Closed(D12 ), z). The initial state has thus been ‘tuned’ in view of the goal
by stipulating that the robot carries the projector already and that door D12 is open. Prov-
ing that a statement is a logical consequence therefore requires to ensure that the negation of
the statement is unsatisfiable. In turn, unsatisfiability can be easily expressed using Prolog’s
negation-as-failure. Recall, for instance, implication (13) at the end of Section 3. To prove that
door DA4 must have been open, we ask whether assuming the contrary is unsatisfiable:

Holds(InRoom(R401 ), z0), NotHolds(Closed(DA1 ), z0), Consistent(z0), DuplicateFree(z0),
DO([Go(DA1 ),Enter(Alley),Go(DA4 )], z0, z1),
Poss(Enter(R404 ), z1), \+Holds(Closed(DA4 ), z0)

This query is successful if posed to our program of Appendix A.2.
A similar double-check needs to be performed in the context of planning problems. Having

established a plan which satisfies the goal, this action sequence should be verified against both
not achieving the goal and not being executable at all. The latter means the existence of a
model such that at some point during the execution of the plan, the action to be performed next
fails.8 This is encoded in the following clause, which defines the predicate NonExecutable(s, z)
where s is a sequence of actions and z a state:

non_executable([A|S], Z0) :-

not_poss(A, Z0) ;

poss(A, Z0), state_update(Z0, A, Z1), non_executable(S, Z1).

(20)

8In case of nondeterministic actions, the unsatisfiability check also concerns alternative outcomes of such
actions as a cause for a plan to fail; see Section 5.
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As an example, consider the following specification of the initial state of a planning problem
(c.f. (4)):

Init(z0, x) ← Holds(InRoom(R401 ), z0), Holds(AtDoor(D12 ), z0), Holds(Closed(D12 ), z0),
Holds(HasKeyCode(D12 ), z0, z

′), Holds(HasKeyCode(DA4 ), z′, z′′),
NotHoldsAll([d],HasKeyCode(d), z′′),
Holds(Request(R402 , x,R404 ), z0, z

′′′),
NotHoldsAll([r1, y, r2],Request(r1, y, r2), z

′′′),
NotHolds(Closed(DA1 ), z0), NotHoldsAll([y],Carries(y), z0),
Consistent(z0), DuplicateFree(z0)

Notice how we encode, for instance, the fact that the robot has two and no more key codes by
two Holds/3 atoms followed by a NotHoldsAll constraint. The planning problem at the end
of Section 3 can be formalized as the following query:

Init(z0, x), DO(s, z0, z), NotHoldsAll([r1, y, r2],Request(r1, y, r2), z),
Init(z′0, x), \+NonExecutable(s, z

′
0), \+(DO(s, z

′
0, z

′), Holds(Request(r1, y, r2), z
′))

This query admits a successful derivation which yields a substitution for s that corresponds to
the situation term of (14).
In Prolog systems, naive planning—which means to search the whole space of executable ac-

tion sequences—requires to either restrict the search depth or to perform breadth-first search.
For planning problems of practical size, it is essential to add heuristics to cut down considerably
the search space. One of the most intuitive and expressive ways of doing so is by writing non-
deterministic high-level robot programs [30], which can be easily adapted to Flux. A further
improvement regarding efficiency concerns the executability check of plans generated by satisfi-
ability. Rather than performing it subsequently, each chosen action can immediately be verified
to be necessarily possible in order to avoid unnecessary search. We will raise this issue in the
context of knowledge and sensing actions (Section 6).

5 Nondeterministic Actions

Actions are nondeterministic if there are always several possible outcomes or if some general
vagueness is involved with their effect. In this sense, actions in the simple Fluent Calculus are
deterministic because their effect is determined solely by the fluent values of the current state.
A straightforward generalization of simple state update axioms uses disjunction, along the lines
of [33, 67], and existential quantification as means to express uncertainty about effects.

Definition 11 Let A be a function symbol with range action. A simple disjunctive state
update axiom for A is of the form

Poss(A(~x), s) ∧ ∆(~x,State(s)) ⊃ (∃~y1) (State(Do(A(~x), s)) = State(s) ◦ ϑ
+
1 − ϑ

−
1 ∧Θ1)

∨ . . . ∨
(∃~yn) (State(Do(A(~x), s)) = State(s) ◦ ϑ

+
n − ϑ

−
n ∧Θn)

where ∆(~x, z) is a pure state formula in z, ϑ+
i and ϑ−i are fluent collections, and Θi is a

first-order formula without terms of any reserved sort (1 ≤ i ≤ n; n ≥ 1). 2
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Alternative outcomes of actions are thus modeled by a finite disjunction of possible equational
relations between a state and its successor. Vagueness is modeled by existentially quantifying
(and possibly restricting by sub-formula Θ) one or more parameters of the effects.
As an example for the first kind of nondeterminism, suppose that our delivery robot can

perform the action of asking a person for access to the room she is sending it, provided that
that room is adjacent to her office and that the connecting door is closed and the robot does
not have the code. She will then either tell the robot the key code or open the door in question.
Let Ask : person× door 7→ action denote this action. Its precondition is defined by

Poss(Ask(p, d), z) ≡ Holds(InRoom(Office(p)), z)∧
(∃d, r, x) (Holds(Request(Office(p), x, r), z) ∧ Connects(d,Office(p), r)∧

Holds(Closed(d), z) ∧ ¬Holds(HasKeyCode(d), z) )

The following disjunctive state update axiom specifies the uncertain outcome of performing an
Ask action:

Poss(Ask(p, d), s) ⊃ State(Do(Ask(p, d), z)) = State(s) ◦HasKeyCode(d)
∨
State(Do(Ask(p, d), z)) = State(s)− Closed(d)

As an example for the second kind of nondeterminism, suppose the exact physical position
of the robot is modeled using a two-dimensional, real-valued coordinate system in conjunction
with the fluent Position : real×real 7→ fluent. Consider the action Move : real×real 7→
action of moving towards a specific point in space. Since the effectors of real robots will never
be absolutely precise, the effect of this action is vague insofar as the actual resulting position of
the robot differs from the position it is aiming at up to an uncertainty factor ς . This uncertainty
is captured by the following state update axiom:

Poss(Move(x, y), s) ∧Holds(Position(x0, y0), s) ⊃
(∃x′, y′) (State(Do(Move(x, y), s)) = State(s) ◦ Position(x′, y′)− Position(x0, y0)

∧
√

(x′ − x)2 + (y′ − y)2 ≤ ς )

Planning problems in domains with nondeterministic actions require to find plans that solve
the problem under any outcome of the intended actions. For example, our axiomatization of the
delivery robot entails

Holds(InRoom(R402 ), S0) ∧Holds(AtDoor(D23 ), S0) ∧Holds(Closed(D23 ), S0)
∧Holds(Request(R402 ,Projector ,R403 ), S0)
∧¬Holds(HasKeyCode(D23 ), S0) ∧ ¬Holds(Carries(Projector), S0)
⊃ ¬Holds(Request(R402 ,Projector ,R403 ), s)

under the substitution

s/Do(Drop(Projector),Do(Enter(R403 ),
Do(Open(D23 ),Do(Ask(Alice,D23 ),Do(Pickup(Projector), S0)))))

(21)

Notice that omitting action Open(D23 ) from this situation would not yield a correct plan
since the actual effect of asking Alice cannot be predicted with certainty. While this example
of a planning problem with nondeterministic actions can thus be solved by a plain sequence of
actions, a more elaborate concept of a plan is needed in general which allows a robot to condition
its actions on the actual outcome of a nondeterministic action. We will raise this issue in the
context of modeling knowledge and sensing actions (Section 6).
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Nondeterministic Actions in Flux

State update axioms of the form of Definition 11 are encoded in Flux by a clause

StateUpdate(z1, A(~x), z2) ← ∆(z1), ( Update(z1, ϑ
+
1 , ϑ

−
1 , z2), Θ1 ;

. . . ;
Update(z1, ϑ

+
n , ϑ

−
n , z2), Θn )

For illustration, the program for the delivery robot of Appendix A.2 includes the formalization
of our example action of asking for access.
As in the simple case, solving planning problems includes verifying that a generated plan

does not admit a model in which it is not executable or does not achieve the goal. Correctness
of a plan is thus established also as regards alternative outcomes of nondeterministic actions.
Consider, for example, the initial specification

Init(z0) ← Holds(InRoom(R402 ), z0), Holds(AtDoor(D23 ), z0), Holds(Closed(D23 ), z0),
Holds(Request(R402 ,Projector ,R403 ), z0),
NotHolds(HasKeyCode(D23 ), z0), NotHolds(Carries(Projector), z0),
Consistent(z0), DuplicateFree(z0)

The query

Init(z0), DO(s, z0, z), NotHolds(Request(R402 ,Projector ,R403 ), z),
Init(z′0), \+NonExecutable(s, z

′
0),

\+(DO(s, z′0, z
′), Holds(Request(R402 ,Projector ,R403 ), z′))

admits a successful derivation which yields a substitution for s that corresponds to the situation
term of (21).

6 Knowledge and Sensing

Autonomous, mobile robots often have to condition their actions on the state of their environ-
ment. As their knowledge of the world state is limited, robots are equipped with sensors for the
purpose of acquiring information about the external world. The use of sensing actions is often
an integral part of a successful plan, and in order to devise these plans robots need an explicit
representation of what they know of a state and how sensing affects their knowledge [45].
Our delivery robot, for example, thus far performs an Open action whenever it does not

know whether a door is closed or not, in order to guarantee that a subsequent Enter action
be possible. Yet suppose a slightly different setting in which the robot does not have the key
codes but the electronic door system is designed in such a way that by sending out a special
identification code the robot can alter the state of any door. While in principle this should
provide access to any room, the robot always needs to know if a particular door is currently
closed in order to decide whether to send out the identification. This poses planning problems
that go beyond the simple Fluent Calculus. To see why, consider the action SendId : 7→ action,
which shall be possible at any time (that is, Poss(SendId , z) ≡ True), along with these three
state update axioms:

Poss(SendId , s) ∧Holds(AtDoor(d), s) ∧Holds(Closed(d), s) ⊃
State(Do(SendId , s)) = State(s)− Closed(d)

Poss(SendId , s) ∧Holds(AtDoor(d), s) ∧ ¬Holds(Closed(d), s) ⊃
State(Do(SendId , s)) = State(s) ◦ Closed(d)

Poss(SendId , s) ∧ (¬∃d)Holds(AtDoor(d), s) ⊃ State(Do(SendId , s)) = State(s)

(22)
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Put in words, if the robot happens to be at a door which is closed (resp. open) then the door
opens (resp. closes), otherwise nothing happens. Suppose, for instance, that the robot is in the
alley at door DA3 :

Holds(InRoom(Alley), S0) ∧Holds(AtDoor(DA3 ), S0)

Since the state of DA3 is not known, there is no provably executable sequence of actions by
which the robot is guaranteed to achieve the goal of being in room R403 . For, simply perform-
ing Enter(R403 ) is not possible in case Holds(Closed(DA3 ), S0) while Enter(R403 ) after
a SendId action is not possible in case ¬Holds(Closed(DA3 ), S0). Solving this problem thus
requires the ability to sense the states of doors and to condition actions on the (unpredictable)
outcome of sensing.

6.1 State Knowledge

From the perspective of a non-omniscient robot, there are always several possible states of the
world, constrained only by what the robot currently knows. Whenever the value of a certain
fluent is unknown to the robot, then both states in which it is true and states in which it is false
are conceivable. Knowledge, on the other hand, emerges if all states considered possible satisfy
a certain property.
In order to formally represent this notion of a possible state, the signature of the simple Fluent

Calculus is extended by the predicate KState(s, z), which denotes that in situation s the robot
considers z to be a possible world state. An example is depicted in Figure 5, where at the
beginning the robot knows it is in front of door DA3 but does not know the state of this door.
Hence, only those states are considered possible which are in accordance with this knowledge.
After sensing that the door is closed, the set of possible states shrinks due to the newly acquired
information. Finally, after transmitting the identification code, the possible states are those in
which door DA3 is now open, assuming that the robot is aware of the effect of its action.
With the help of the KState relation, we can define a property of the world state to be known

in s iff the property holds in all possible states for s. To this end, the macro Knows(ψ, s) is
introduced where ψ is a so-called fluent formula:

Definition 12 A fluent formula is an expression composed of

1. non-variable terms of sort fluent and

2. atoms without terms of any reserved sort

joined together with the standard logical connectives. 2

The notion of a fluent formula is just syntactic sugar, which allows to conveniently express
statements like, “The robot knows it is at some open door that leads to the alley.” The macro
is inductively defined as follows:

Knows(ψ, s)
def
= (∀z) (KState(s, z) ⊃ HOLDS (ψ, z))

HOLDS (f, z)
def
= Holds(f, z) if f is a fluent

HOLDS (A, z)
def
= A if A is an atom

HOLDS (¬ψ, z)
def
= ¬HOLDS (ψ, z)

HOLDS (ψ1 ∧ ψ2, z)
def
= HOLDS (ψ1, z) ∧HOLDS (ψ2, z)

HOLDS ((∀x)ψ, z)
def
= (∀x)HOLDS (ψ, z)

(23)
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KState(S0, z) ⊃

Holds(AtDoor(DA3 ), z)

KState(S1, z) ⊃

Holds(AtDoor(DA3 ), z)

∧Holds(Closed(DA3 ), z)

KState(S2, z) ⊃

Holds(AtDoor(DA3 ), z)

∧¬Holds(Closed(DA3 ), z)

Figure 5: The set of states in our delivery world can be divided into four categories, namely,
those in which the robot is at DA3 with this door being closed (upper left quarter), those in
which the door is closed but the robot is elsewhere (upper right quarter), and those two in which
DA3 is open and the robot is present (lower left quarter) and absent (lower right quarter), resp.
The three pictures represent different mental states, characterizing, resp., the situation S0 prior
to sensing whether the door is closed, the situation S1 = Do(Sense(Closed(DA3 )), S0) after
sensing that the door is closed, and the situation S2 = Do(SendId , S1) after further sending
the identification code to change the state of the door.

(Likewise for the other connectives.) For example, Knows((∃d) (AtDoor(d) ∧ ¬Closed(d) ∧
(∃r)Connects(d, r,Alley)), S0) expands into (∀z) (KState(S0, z) ⊃ (∃d) (Holds(AtDoor(d), z) ∧
¬Holds(Closed(d), z) ∧ (∃r)Connects(d, r,Alley))).
It is worth mentioning that by different quantifier structures it can be distinguished between

knowledge de re and mere knowledge de dicto; for instance, knowing of some closed door—
(∃d)Knows(Closed(d), s)—implies to know some door is closed—Knows((∃d)Closed(d), s)—but
not vice versa. It is convenient to also introduce the macro Kwhether(ψ, s), indicating whether
the truth value of a statement is known:

Kwhether(ψ, s)
def
= Knows(ψ, s) ∨Knows(¬ψ, s) (24)

With an atomic foundational axiom Fknows we establish the basic property of knowledge to
be true:

KState(s,State(s))

Hence, by requiring that the actual state shall always be among those that are considered possi-
ble, every statement known by the robot indeed holds in the actual world. A further consequence
of the foundational axiom is consistency of mental states, as the following proposition shows.

Proposition 13 Fknows |= ¬(∃f, s) (Knows(f, s) ∧Knows(¬f, s)).

Proof: Suppose Knows(f, s) ∧Knows(¬f, s) for some f and s, that is,

(∀z) (KState(s, z) ⊃ Holds(f, z)) ∧ (∀z) (KState(s, z) ⊃ ¬Holds(f, z))

This implies (∀z)¬KState(s, z), which contradicts Fknows .
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The concept of possible states leaves open the possibility to specify robots that have arbitrarily
limited knowledge of state constraints. To stipulate that the robot is aware of a particular
constraint Γ(z), the axiom KState(s, z) ⊃ Γ(z) needs to be added.

6.2 Only Knowing

When specifying the initial knowledge of a robot, one usually wishes to make some completeness
assumption to be able to derive statements also as to what a robot does not know. With the
help of the fundamental relation KState , this notion of “only knowing” (so named by [26]) can
be modeled by a specification of the form

KState(σ, z) ≡ Σ(z)

Put in words, in situation σ the robot knows Σ, and this is all it knows since every state is
possible if only it satisfies Σ. Assuming that knowledge is given in this form, a property of the
world state can be defined as unknown just in case there is at least one possible state in which
the statement is true and one in which it is false:

Unknown(ψ, s)
def
= (∃z1) (KState(s, z1)∧HOLDS (ψ, z1))∧(∃z2) (KState(s, z2)∧HOLDS (¬ψ, z2))

(where ψ is a fluent formula). However, this definition alone is insufficient because models may
not contain enough states to ensure that a certain proposition can go both ways. Suppose, for
example, the robot only knows that no year before 2001 lies in the future. It should then be
unknown to the robot whether all other years are in the future. Yet this does not follow:

Observation 14 Let σ be a constant of sort sit, then Fstate plus

KState(σ, z) ≡ (∀n) (n < 2001 ⊃ ¬Holds(FutureYear(n), z)) (25)

and ¬Unknown((∀n) (n ≥ 2001 ⊃ FutureYear(n)), σ) is satisfiable.

Proof: We construct a model M as follows. Let the domain elements of sort fluent be
all singleton sets of the form {FutureYear(n)} and let the domain elements of sort state be
all finite sets of elements of the form FutureYear(n), where n is a natural number. Let ∅ and
◦ be interpreted by the empty set and the union operation, resp. Then M is a model of Fstate

(cf. the proof for Theorem 3). Furthermore, let KStateM consist of all pairs (σM,Z) such
that Z is a finite (possibly empty) set containing only fluents FutureYear(n) with n ≥ 2001.
Then M is a model of (25). Finiteness of all states implies

M |= ¬(∃z)(KState(σ, z) ∧ (∀n) (n ≥ 2001 ⊃ Holds(FutureYear(n), z))

which proves the claim.

To achieve the intended result, a second-order axiom is needed by which is guaranteed the
existence of sufficiently many states. Let F1, . . . , Fn be all functions of a domain with range
fluent, then the following axiom stipulates that for all truth-value distributions a corresponding
state exists:

(∀Φ1, . . . ,Φn)(∃z)(∀~x1, . . . , ~xn)











[ Φ1(~x1) ≡ Holds(F1(~x1), z) ]
∧ . . . ∧

[ Φn(~xn) ≡ Holds(Fn(~xn), z) ]











(26)

This axiom is consistent with our foundational axioms on states, as the following theorem shows.
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Theorem 15 Fstate ∪ {(26)} is consistent.

Proof: We construct a model M as follows. Let the domain elements of sort fluent be all
singleton sets over an arbitrary, non-empty set F and let the domain elements of sort state

be all sets over F . Let ∅ and ◦ be interpreted by the empty set and the union operation, resp.
Then M is a model of Fstate (cf. the proof for Theorem 3). Furthermore, for each truth-value
distribution of fluents, there exists a set containing just the true fluents; hence, M is also a
model of (26).

It is worth noting that, unlike the approach of [26, 27], no presuppositions are made regarding
the domain objects inhabiting a world. As a consequence, universally quantified statements
can be proved unknown only if the domain axioms stipulate the existence of sufficiently many
objects of a certain sort. Consider, for example, the fluent Out : person 7→ fluent, denoting
whether a person is out of office, along with

KState(S0, z) ≡ Holds(Out(Alice), z) ∧Holds(Out(Bob), z)

It does not follow, then, that Unknown((∀p)Out(p), S0). For we might live in a world with
Alice and Bob being the only inhabitants, in which case knowing that the two are out suffices
to know that everybody is out; hence, the latter is not necessarily unknown.
For practical purposes, it is important to note that in settings in which consistent states consist

of finitely many fluents only, the second-order axiom (26) can be omitted since all necessary states
can be constructed by connecting fluents via “◦”. As an example, suppose the robot knows that
in situation S0 it is in the alley and at least one of DA3 and DA4 is not closed, but it is
unknown which of the two. This combination of knowledge with ignorance is formally specified
by,

KState(S0, z) ≡
Holds(InRoom(Alley), z) ∧ [¬Holds(Closed(DA3 ), z) ∨ ¬Holds(Closed(DA4 ), z) ]

(27)

Then the robot knows that some door is open, that is, Knows((∃d)¬Closed(d), S0). This can
be easily seen from the macro expansion

(∀z) (KState(S0, z) ⊃ (∃d)¬Holds(Closed(d), z))

which follows directly from (27). However, the robot does not know of any particular open door,
that is, (∀d)Unknown(Closed(d), S0). This follows from the macro expansion

(∀d) ((∃z1) (KState(S0, z1) ∧Holds(Closed(d), z1))∧
(∃z2) (KState(S0, z2) ∧ ¬Holds(Closed(d), z2)) )

For in case d = DA3 the states z1 = InRoom(Alley) ◦ Closed(DA3 ) and z2 = InRoom(Alley)
satisfy the conjunct; in case d = DA4 the states z1 = InRoom(Alley) ◦ Closed(DA4 ) and
z2 = InRoom(Alley) satisfy the conjunct; and in case d 6= DA3 and d 6= DA4 the states
z1 = InRoom(Alley) ◦ Closed(x) and z2 = InRoom(Alley) satisfy the conjunct.

6.3 Knowledge Update Axioms

Generally, the effect of an action a on the mental state of a robot in a situation s is specified
by an update axiom which defines how the states satisfying KState(s, z) relate to the states
satisfying KState(Do(a, s), z). Actions can be both sensing and actively manipulating the world.
We will discuss their effect on knowledge in turn.
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6.3.1 Knowledge update by sensing actions

The effect of sensing on the mental state of a robot is to reduce the set of possible states to the
effect that whatever is sensed becomes known.

Definition 16 Let A be a function symbol with range action. A knowledge update axiom
for accurate sensing for A is of the form

Poss(A(~x), s) ∧ ∆(~x,State(s)) ⊃
[KState(Do(A(~x), s), z) ≡ KState(s, z) ∧ (∀~y) (Ψ(~x, ~y, z) ≡ Ψ(~x, ~y,State(s))) ]

(28)

where ∆(~x, z) and Ψ(~x, ~y, z) are pure state formulas in z.
A state update axiom for sensing has the form Poss(A(~x), s) ⊃ State(Do(A(~x), s)) = State(s).

2

Put in words, among all states considered possible prior to sensing only those are still possible
afterwards which agree with the actual value of the sensed property, Ψ. Sensing does not affect
the actual world state.
A crucial consequence of our definition is that after accurate sensing, the sensed property is

known, as the following proposition shows.

Proposition 17 Let Ψ(~x, ~y, z) be a pure state formula in z and ψ the fluent formula
obtained from Ψ be replacing each Holds(f, z) by f . For any knowledge update axiom (28),

Poss(A(~x), s) ∧∆(~x,State(s)) ⊃ (∀~y)Kwhether(ψ,Do(A(~x), s))

Proof: Assume Poss(A(~x), s) ∧∆(~x,State(s)), then (28) entails

KState(Do(A(~x), s), z) ⊃ (∀~y) (HOLDS (ψ, z) ≡ Ψ(~x, ~y,State(s)))

Therefore, if Ψ(~x, ~y,State(s)) then (∀z) (KState(Do(A(~x), s), z) ⊃ HOLDS (ψ, z)), otherwise
if ¬Ψ(~x, ~y,State(s)) then (∀z) (KState(Do(A(~x), s), z) ⊃ ¬HOLDS (ψ, z)). Put together, we
obtain Knows(ψ,Do(A(~x), s)) ∨Knows(¬ψ,Do(A(~x), s)), which proves the claim.

As an example, suppose that our delivery robot can sense (Sense : fluent 7→ action)
whether a door is closed if being next to the door. This sensing action can be axiomatized as
follows:

Poss(Sense(f), z) ≡ (∃d) (f = Closed(d) ∧Holds(AtDoor(d), z))

Poss(Sense(f), s) ⊃
[KState(Do(Sense(f), s), z) ≡ KState(s, z) ∧ (Holds(f, z) ≡ Holds(f, s)) ]

Poss(Sense(f), s) ⊃ State(Do(Sense(f), s)) = State(s)

(29)

Sensing as considered in Definition 16 is called accurate because it results in full knowledge
of the sensed property. Much like effectors in the real world, however, the sensing apparatus
of real robots is never absolutely precise. Hence, if it is a quantitative property that is being
sensed, then we cannot expect to gain perfect knowledge.

Definition 18 Let A be a function symbol with range action. A knowledge update axiom
for sensing for A is of the form

Poss(A(~x), s) ∧ ∆(~x,State(s)) ⊃
[KState(Do(A(~x), s), z) ≡ KState(s, z) ∧Ψ(~x, z,State(s)) ]

(30)

where ∆(~x, z) is a pure state formula in z and Ψ(~x, z, z ′) is a first-order formula whose atomic
sub-formulas are each pure in z or z′. 2
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As an example, consider the action Readpos of sensing the current (two-dimensional) physical
position of a robot. Assuming that the inaccuracy of the sensors is given by an uncertainty
factor %, this is a suitable knowledge update axiom for this action:

Poss(Readpos, s) ⊃
[KState(Do(Readpos, s), z) ≡
KState(s, z) ∧ (∀x, y, x′, y′) (Holds(Position(x, y), s) ∧Holds(Position(x′, y′), z)

⊃ |x− x′| ≤ % ∧ |y − y′| ≤ %) ]

The crucial property of general knowledge update axioms for sensing is that they solve the
representational Frame Problem for knowledge in that everything known before a sensing action
is still known afterwards, as the following proposition shows.

Proposition 19 Let ψ be a fluent formula. For any knowledge update axiom (30),

Poss(A(~x), s) ∧∆(~x,State(s)) ⊃ Knows(ψ, s) ⊃ Knows(ψ,Do(A(~x), s))

Proof: Assume Poss(A(~x), s) ∧∆(~x,State(s)), then (30) entails

(∀z) (KState(Do(A(~x), s), z) ⊃ KState(s, z))

Suppose Knows(ψ, s), then (∀z) (KState(s, z) ⊃ HOLDS (ψ, z)). Combining the two implica-
tions we obtain (∀z) (KState(Do(A(~x), s), z) ⊃ HOLDS (ψ, z)), which proves the claim.

6.3.2 Knowledge update by physical actions

Knowledge update axioms for physical actions should reflect what a robot knows about the
effects of the respective action. To this end, the possible states after acting are obtained by
considering all previously possible states and inferring the effect of the action on them. If the
action is nondeterministic, then all conceivable outcomes lead to possible states. A knowledge
update axiom also combines all conditional effects of an action. Finally, besides knowing that
one of the possible effects must materialize, a robot may learn other things about the state by
performing an action, which is reflected in the following definition by the additional condition ∆.

Definition 20 Let A be a function symbol with range action. A knowledge update axiom
for A is of the form

Poss(A(~x), s) ⊃
[KState(Do(A(~x), s), z) ≡ (∃z′) ( KState(s, z′) ∧∆(~x, z, z′,State(s))∧

[∆1(~x, z
′) ⊃ Υ1(~x, z, z

′) ]
∧ . . . ∧
[∆m(~x, z

′) ⊃ Υm(~x, z, z
′) ] ]

(31)

where ∆(~x, z, z′, z′′) is a first-order formula whose atomic sub-formulas are each pure in z,
z′, or z′′; ∆i(~x, z) is a pure state formula in z (1 ≤ i ≤ m; m ≥ 1) and each (possibly
nondeterministic) update Υi(~x, z, z

′) is of the form

(∃~y1) (z = z′ ◦ ϑ+
1 − ϑ

−
1 ∧Θ1)

∨ . . . ∨
(∃~yn) z = z′ ◦ ϑ+

n − ϑ
−
n ∧Θn)

where ϑ+
j and ϑ−j are fluent collections and Θj is a first-order formula without terms of any

reserved sort (1 ≤ j ≤ n; n ≥ 1). 2
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It should be noted that knowledge update axioms for sensing (Definition 18) are obtained as a
special case by taking ∆(~x, z, z′,State(s)) as Ψ(~x, z′,State(s)) and setting m = n = 1 and
ϑ+

1 = ϑ−1 = ∅.
Since the formalization of knowledge update is separated from state update axioms, it is

possible to specify robots that are arbitrarily limited in what they know about the effects of
their actions. This feature supports reasoning about possibly restricted goal achievability of a
robot in the sense of [34] but without the need for a meta-theory.
On the other hand, when designing robots with accurate knowledge of the effects of an action,

a knowledge update axiom (31) should reflect the underlying specification of state update in
that there is a one-to-one correspondence to the conditions ∆i, the effects ϑ

+
j , ϑ

−
j , and the

constraining formulas Θj of the m ≥ 1 (disjunctive) state update axioms (cf. Definition 11).
Moreover, in case of accurate knowledge the mere executability of an action teaches the robot
that the action must have been possible, hence that its precondition must have held in the
previous state. This is stipulated by setting condition ∆ in (31) to Poss(A(~x), z ′). For example,
the following axiom specifies the knowledge update for an informed robot when sending out the
identification code (cf. (22)):

Poss(SendId , s) ⊃
(∀z) (KState(Do(SendId , s), z) ≡

(∃z′) (KState(s, z′) ∧ Poss(SendId , z′)∧
[Holds(AtDoor(d), z′) ∧Holds(Closed(d), z′) ⊃ z = z′ − Closed(d) ]∧
[Holds(AtDoor(d), z′) ∧ ¬Holds(Closed(d), z′) ⊃ z = z′ ◦ Closed(d) ]∧
[ (¬∃d)Holds(AtDoor(d), z′) ⊃ z = z′ ] )

(32)

6.3.3 The inferential Frame Problem for knowledge

Much like state update axioms, knowledge update axioms lay the foundation for a solution to
the inferential Frame Problem for knowledge. Consider, for example, a scenario in which the
robot knows it is in the alley at door DA3 and that DA4 is open. Suppose further that in
fact, unknown to the robot, DA3 is closed:

[KState(S0, z) ≡
Holds(InRoom(Alley), z) ∧Holds(AtDoor(DA3 ), z) ∧ ¬Holds(Closed(DA4 ), z) ]

∧Holds(Closed(DA3 ), S0)

(33)

Consider the action of sensing whether or not door DA3 is closed. From (29) we conclude
Poss(Sense(Closed(DA3 )), S0). Thus the knowledge update axiom for Sense(f) in (29) entails,
after replacing the instance KState(S0, z) by the equivalent formula given in (33),

KState(Do(Sense(Closed(DA3 )), S0), z) ≡
Holds(InRoom(Alley), z) ∧Holds(AtDoor(DA3 ), z) ∧ ¬Holds(Closed(DA4 ), z)
∧ [Holds(Closed(DA3 ), z) ≡ Holds(Closed(DA3 ), S0) ] )

From (33), Holds(Closed(DA3 ), S0); hence,

KState(Do(Sense(Closed(DA3 )), S0), z) ≡
Holds(InRoom(Alley), z) ∧Holds(AtDoor(DA3 ), z) ∧ ¬Holds(Closed(DA4 ), z)
∧Holds(Closed(DA3 ), z)
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Besides the newly acquired information, Closed(DA3 ), the right hand side of the equivalence
includes all previously available knowledge of the state. Thus all unaffected knowledge continues
to hold without the need to apply extra inference steps.
The reader may verify that we can likewise infer the knowledge state after a subsequent

physical SendId action using knowledge update axiom (32):

KState(Do(SendId ,Do(Sense(Closed(DA3 )), S0)), z) ≡
Holds(InRoom(Alley), z) ∧Holds(AtDoor(DA3 ), z)
∧¬Holds(Closed(DA3 ), z) ∧ ¬Holds(Closed(DA4 ), z)

6.4 Conditional Actions

Considering plans as mere sequences of elementary actions is insufficient for planning with
sensing actions, as we have illustrated at the beginning of this section. Robots need to be
able to condition their course of actions on the outcome of sensing. To this end, we further
extend the signature of the basic Fluent Calculus by elements that support the representation of
branching actions. For the sake of simplicity, we confine ourselves to conditioning on the value
of single fluents. The generalization to arbitrary fluent formulas is straightforward but requires
to formally introduce the concept of fluent formulas into the signature.

Definition 21 The Fluent Calculus for sensing is a sorted second-order logic language which
extends the language of the simple Fluent Calculus by the predicates

KState : sit× state Poss : action× sit

and the functions
ε : 7→ action

; : action× action 7→ action

If : fluent× action× action 7→ action

2

Note that Poss is overloaded (cf. Definition 8); the expression Poss(a, s), which thus far
has been used as a mere macro (recall (6)), becomes part of the language because the pos-
sibility to execute actions may depend on the mental state of the robot and not just on the
world state as in the simple Fluent Calculus.9 The constant “ε” (read: “no-op”) shall de-
note the empty action. The symbol “;” shall denote the consecutive performance of two
actions. Performing the conditional action If (f, a1, a2) means to perform a1 if f holds
and to perform a2 otherwise. An example of an action in the extended delivery domain is,
Sense(Closed(DA3 )); If (Closed(DA3 ),SendId , ε);Enter(R403 ).
Preconditions and effects of the special actions are characterized by the foundational axiom

set Fcond :

Poss(ε, s) ≡ True
Poss(a1; a2, s) ≡ Poss(a1, s) ∧ Poss(a2,Do(a1, s))

Poss(If (f, a1, a2), s) ≡ Kwhether(f, s)∧
[Holds(f, s) ⊃ Poss(a1, s) ] ∧ [¬Holds(f, s) ⊃ Poss(a2, s) ]

9In what follows, for each action A(~x) not accompanied by an explicit axiom for Poss(A(~x), s), we tacitly
assume given the axiom Poss(A(~x), s) ≡ Poss(A(~x),State(s)).
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State(Do(ε, s)) = State(s) ∧ [KState(Do(ε, s), z) ≡ KState(s, z)]

Poss(a1; a2, s) ⊃ State(Do(a1; a2, s)) = State(Do(a2,Do(a1, s)))∧
[KState(Do(a1; a2, s), z) ≡ KState(Do(a2,Do(a1, s)), z)]

Poss(If (f, a1, a2), s) ⊃
[Holds(f, s) ⊃ State(Do(If (f, a1, a2), s)) = State(Do(a1, s))∧

[KState(Do(If (f, a1, a2), s), z) ≡ KState(Do(a1, s), z)] ]∧
[¬Holds(f, s) ⊃ State(Do(If (f, a1, a2), s)) = State(Do(a2, s)) ]∧

[KState(Do(If (f, a1, a2), s), z) ≡ KState(Do(a2, s), z)] ]

Notice in particular that a conditional action is possible only if the truth-value of the condition
is known at the time of performance because otherwise the robot would not know what to
do. With the help of conditionals it is possible to devise plans that provably achieve goals in a
setting where incomplete knowledge requires active sensing and where considering a single action
sequence is insufficient. As an example, recall the initial state (33), where the robot knows it is
in the alley at door DA3 . We prove that this plan achieves the goal of being in room R403 :

Do(Sense(Closed(DA3 )); If (Closed(DA3 ),SendId , ε);Enter(R403 ), S0) (34)

From (29) and Fknows we conclude that Poss(Sense(Closed(DA3 )), S0) . Then according
to (29), Kwhether(Closed(DA3 ),Do(Sense(Closed(DA3 )), S0)). Thus, since ε and SendId are
always possible, Poss(If (Closed(DA3 ),SendId , ε),Do(Sense(Closed(DA3 )), S0)). From (29) it
follows that

Holds(Closed(DA3 ),Do(Sense(Closed(DA3 )), S0)) ⊃
¬Holds(Closed(DA3 ),Do(SendId ,Do(Sense(Closed(DA3 )), S0)))

and ¬Holds(Closed(DA3 ),Do(Sense(Closed(DA3 )), S0)) ⊃
¬Holds(Closed(DA3 ),Do(ε,Do(Sense(Closed(DA3 )), S0)))

Therefore, Poss(Enter(R403 ),Do(If (Closed(DA3 ),SendId , ε),Do(Sense(Closed(DA3 ), S0)))).
Then (10) and Fcond entail,

Holds(InRoom(R403 ),
Do(Sense(Closed(DA3 )); If (Closed(DA3 ),SendId , ε);Enter(R403 ), S0))

Our account of knowledge and sensing is summarized in the following extension of the notion
of a domain axiomatization in the Fluent Calculus.

Definition 22 A Fluent Calculus domain axiomatization with knowledge and sensing consists
of a set of state constraints, a unique simple action precondition axiom as well as a unique
knowledge update axiom for each function symbol with range action, a set of state update
axioms, foundational axioms Fstate , Fknows , Fcond and possibly (26), plus possible further
domain-specific axioms. 2

6.5 Knowledge in FLUX

For the sake of simplicity and efficiency, the encoding of knowledge and sensing in Flux presented
in the following concentrates on the major purpose to program a planning agent. We presuppose
that the robot is aware of all preconditions and effects of its action and of all state constraints.
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Moreover, we assume the strictly reflective stance regarding state knowledge: A property is
known just in case it can be derived from an incomplete state specification. With these two
assumptions it is possible to avoid the separate introduction of knowledge update. It rather
suffices to extend the existing state update computation by a definition of knowledge wrt. state
representations and of how sensing affects this representation. This leads to a clean and effective
computation mechanism for knowledge.

6.5.1 Inferring state knowledge

The reflective stance concerning state knowledge means to take a given state specification
Σ(State(S)) as what the robot knows in situation S , that is, KState(S, z) ≡ Σ(z). Justi-
fied by definitions (23) and (24), we can thus define the value of a fluent to be known just
in case Σ entails either the fluent or its negation. Speaking in terms of Flux, a fluent f is
entailed to hold in a state z iff adding the constraint NotHolds(f, z) leads to failure. Likewise,
the fluent is entailed to not hold iff the goal Holds(f, z) fails.
Consider, for example, the initial state specification

Init(z0) ← Holds(InRoom(Alley), z0), Holds(AtDoor(DA3 ), z0),
NotHolds(Closed(DA4 ), z0), Consistent(z0), DuplicateFree(z0)

(35)

then the robot knows that initially it is at door DA3 and door DA4 is not closed; accord-
ingly, both Init(z0), \+NotHolds(AtDoor(DA3 ), z0) and Init(z0), \+Holds(Closed(DA4 ), z0)
succeed. On the other hand, the robot does not know whether door DA3 is closed or not; accord-
ingly, Init(z0), \+NotHolds(Closed(DA3 ), z0) and Init(z0), \+Holds(Closed(DA3 ), z0) both
fail. The robot is also aware of all state constraints: Query Init(z0), \+Holds(AtDoor(DA4 ), z0)
succeeds—the robot knows it cannot be at door DA4 because it knows it is in front of DA3
and cannot be at both places simultaneously.
Identifying state specifications with knowledge, the effect of sensing the value of a fluent is to

leave a state itself unchanged but to affect the specification:

state_update(Z, sense(F), Z, SV) :-

holds(F, Z), SV = F ; not_holds(F, Z), SV = -(F).

(For later purposes we record the sensed value in an additional argument of StateUpdate for all
sensing actions.)
A consequence of this clause is that after a Sense(f) action the value of fluent f is known.

For example, if Init(z0),StateUpdate(z0,Sense(Closed(DA3 )), z1, ) is queried wrt. (35), then
two answers result, one of which includes z1/[InRoom(Alley),AtDoor(DA3 ),Closed(DA3 )|z],
whereas the other one includes z1/[InRoom(Alley),AtDoor(DA3 )|z] along with the constraint
NotHolds(Closed(DA3 ), z). In both cases it becomes known whether Closed(DA3 ) holds while
the state itself does not change.
A correct account of knowledge as derivability requires, however, to resolve a conflict caused

by the way actions with conditional effects are treated in Flux. Consider, for example, the
following encoding of the SendId action (cf. (22)):

StateUpdate(z1,SendId , z2) ←
Holds(AtDoor(d), z1), Holds(Closed(d), z1), Update(z1, [ ], [Closed(d)], z2) ;
Holds(AtDoor(d), z1), NotHolds(Closed(d), z1), Update(z1, [Closed(d)], [ ], z2) ;
NotHoldsAll([d],AtDoor(d), z1), Equal(z1, z2).
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The disjunctive body may cause knowledge to emerge as a side-effect of applying this clause.
If, for instance, Init(z0),StateUpdate(z0,SendId , z1) is queried wrt. (35), then two answers
result, the first of which includes the substitution z1/[InRoom(Alley),AtDoor(DA3 )|z] along
with the constraint NotHolds(Closed(DA3 ), z), while the second one includes the substitution
z1/[Closed(DA3 ), InRoom(Alley),AtDoor(DA3 )|z]. In both cases Closed(DA3 ) is known wrt.
the respective state representations.
Knowledge therefore depends not only on the current state representation but also on the

previously performed actions. For this reason, the predicate Kwhether(f, z, s) used in Flux

carries the situation argument, represented as a list of actions. Fluent f is defined to be known
if it is either true or false in state z and if it cannot go both ways wrt. the actions in s under
the same results of all performed sensing actions:

kwhether(F, Z, S) :-

is_fluent(F),

(\+ not_holds(F, Z) ; \+ holds(F, Z)),

\+ ( init(Z0a), result(S, SensedValues, Z0a, Z1), holds(F, Z1),

init(Z0b), result(S, SensedValues, Z0b, Z2), not_holds(F, Z2) ).

result([], [], Z, Z).

result([A|S], SensedValues, Z0, Z) :-

state_update(Z0, A, Z1), result(S, SensedValues, Z1, Z).

result([A|S], [SV|SensedValues], Z0, Z) :-

state_update(Z0, A, Z1, SV), result(S, SensedValues, Z1, Z).

For instance, the query Init(z0),Kwhether(Closed(DA3 ), z0, [ ]) fails wrt. (35) just like the query
Init(z0),StateUpdate(z0,SendId , z1),Kwhether(Closed(DA3 ), z1, [SendId ]) does; whereas

Init(z0), StateUpdate(z0,Sense(Closed(DA3 )), z1),
Kwhether(Closed(DA3 ), z1, [Sense(Closed(DA3 ))])

is successful just like

Init(z0), StateUpdate(z0,Sense(Closed(DA3 )), z1), StateUpdate(z1,SendId , z2),
Kwhether(Closed(DA3 ), z2, [Sense(Closed(DA3 )),SendId ])

It is worth stressing that our encoding supports indirect sensing; e.g., figuring out whether
a solution is acidic by sensing whether a litmus strip turned red, to mention a well-known
example [45].

6.5.2 Planning with conditional actions

Plans involving conditional actions and branching are represented in Flux as nested lists of
actions. Focusing on the planning problem, the previously used predicate DO is modified to
the effect that actions are only considered if they are known to be possible at the time of their
performance. This avoids considering plan steps which are not provably possible and which
thus would be refuted during the subsequent verification of a plan. Moreover, to be able to
verify that the condition of a conditional action is known, the argument structure is extended
to DO(s, s0, z0, sn, zn) with the intended reading that the actions of situation s are provably
executable in situation s0 with world state z0, and that the execution may lead to situation sn

with world state zn:
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do([], S, Z, S, Z).

do([if(F,S1,S2)|S], S0, Z0, Sn, Zn) :-

kwhether(F, Z0, S0),

( holds(F, Z0), append(S1, S, S1S), do(S1S, S0, Z0, Sn, Zn) ;

not_holds(F, Z0), append(S2, S, S2S), do(S2S, S0, Z0, Sn, Zn) ).

do([A|S], S0, Z0, Sn, Zn) :-

primitive_action(A),

\+ not_poss(A, Z0), append(S0, [A], S1),

( state_update(Z0, A, Z1) ; state_update(Z0, A, Z1, _) ),

do(S, S1, Z1, Sn, Zn).

Predicate PrimitiveAction is used to define the domain-specific robot actions. In order to test
correctness of a conditional plan, the predicate NonExecutable(s, s0, z0) is extended (c.f. (20)),
now representing that action sequence s is not executable in situation s0 with state z0:

non_executable([if(F,S1,S2)|S], S0, Z0) :-

\+ kwhether(F, Z0, S0) ;

holds(F, Z0), append(S1, S, S1S), non_executable(S1S, S0, Z0) ;

not_holds(F, Z0), append(S2, S, S2S), non_executable(S2S, S0, Z0).

non_executable([A|S], S0, Z0) :-

primitive_action(A),

( not_poss(A, Z0) ;

poss(A, Z0), ( state_update(Z0, A, Z1) ; state_update(Z0, A, Z1, _) ),

append(S0, [A], S1), non_executable(S, S1, Z1) ).

For illustration, Appendix A.3 includes the modified Flux program for our sensing delivery
robot. Recall, for example, specification (35). The query

Init(z0), DO(s, [ ], z0, sn, zn), Holds(InRoom(R403 ), zn),
Init(z′0), \+NonExecutable(s, [ ], z

′
0),

\+(DO(s, [ ], z′0, s
′
n, z

′
n), NotHolds(InRoom(R403 ), z

′
n))

admits a successful derivation whose answer includes the substitution (cf. (34))

s/[Sense(Closed(DA3 )), If (Closed(DA3 ), [SendId ], [ ]),Enter(R403 )]

6.5.3 Knowledge goals

An outstanding feature of our approach, e.g., in comparison to [14, 25, 54], is that planning
problems can be solved where the goal is to gain knowledge. A simple example is the task to
figure out whether a door, say DA1 , is closed:

Init(z0), DO(s, [ ], z0, sn, zn), Kwhether(Closed(DA1 ), zn),
Init(z′0), \+NonExecutable(s, [ ], z

′
0)

with the straightforward solution s/[Sense(Closed(DA1 )),Go(DA1 )].

7 Ramifications: Indirect Effects

A specification of update by means of explicit collections of positive and negative effects, as in
simple (disjunctive) state update axioms, always formalizes the entire effect of an action. In
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State(σ) z

State(Do(α, σ))

direct effect
of α

indirect effects

Figure 6: Ramifications as causal chains: The result of the direct effect of action α, state z, is
the root of a path through several intermediate states, linked by a causal relation. An example
would be the robot picking up an object in State(σ), in which case this object is carried in z.
The further states are obtained by concluding, one-by-one, that the robot carries all objects
directly or indirectly attached to the primary one.

many circumstances, however, it is desirable to distinguish between direct changes and further,
indirect effects [55]: Firstly, axiomatizations of large domains can be structured much better,
hence be made more concise and elaboration tolerant. Secondly, actions may cause unbounded
chains of effects, which are generally difficult to summarize in a direct formalization of update.
As an example, consider the possibility that objects are somehow attached to other objects, like
a cable being plugged into an adapter which is in turn connected to an Ethernet card. The
effect of picking up, say, the card is then not only to carry the card itself but also the adapter,
hence also the cable. Likewise, dropping one of them means to get rid of the other two at the
same time as indirect effect, which may in turn cause the completion of a request concerning
the attached objects. Since attachment between objects may vary freely, the effect of moving
things cannot be specified as a fixed effect of an action.
The challenge of extending solutions to the Frame Problem so as to cope with indirect effects

is known as the Ramification Problem [15]. Adapting our general theory of [63], the approach
taken in the Fluent Calculus is to infer indirect effects with the help of causal chains: Starting
with the direct effect of an action, further changes are successively determined on the basis of a
causal relation. Figure 6 gives a schematic illustration of this approach.
The various causal relations of a domain are axiomatized with the help of the expression

Causes(ε, %, z) where ε (the triggering effect) and % (the ramification) are possibly negated
atomic fluent formulas and z is a state. The intuitive meaning is that in state z, indirect
effect % is triggered by a preceding effect ε. As an example, consider the fluent Attached :
object× object 7→ fluent along with the state constraints

Holds(Attached(x, y), s) ≡ Holds(Attached(y, x), s)

Holds(Attached(x, y), s) ⊃ [Holds(Carries(x), s) ≡ Holds(Carries(y), s)]
(36)

The dynamic aspect of the extended domain is expressed by these four axioms:

Holds(Attached(x, y), z) ⊃ Causes(Carries(x),Carries(y), z)

Holds(Attached(x, y), z) ⊃ Causes(¬Carries(x),¬Carries(y), z)

Holds(Request(r1, x, r2), z) ⊃ Causes(¬Carries(x),¬Request(r1, x, r2), z)

Holds(InRoom(r), z) ∧ r 6= r2 ⊃ Causes(¬Request(r1, x, r2), z),Request(r, x, r2), z)

(37)

Put in words, if x and y are attached, then the positive effect Carries(x) causes the indirect
effect Carries(y). Conversely, if again x and y are attached, then the negative effect of
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Carries(x) becoming false causes Carries(y) to not hold, too. Dropping an object incidentally
cancels a possible request concerning this object. If, however, the object is dropped in the wrong
office, then a new request is caused, which asks for taking the object from its current location
to the desired one.
The distinction between a context of a causal relation and a triggering effect (which represent

a kind of ‘momentum’) is essential when considering intermediate states. To appreciate this,
consider a state z in which two objects a and b are attached and neither is carried. If then
Carries(a) occurs as direct or indirect effect, we expect Carries(b) to be additionally caused,
that is,

z −→ z ◦ Carries(a) −→ z ◦ Carries(a) ◦ Carries(b) (38)

On the other hand, if a and b are attached in z ◦ Carries(a) ◦ Carries(b) and Carries(b)
becomes false, then we expect Carries(a) to no longer hold, that is,

z ◦ Carries(a) ◦ Carries(b) −→ z ◦ Carries(a) −→ z (39)

Since the intermediate states in (38) and (39) are identical, getting the indirect effect right relies
on knowing the preceding effect.
The expression Causes as used above is just syntactic sugar to allow for convenient spec-

ifications of cause-effect pairs. Actually, the extended signature of the Fluent Calculus for
ramifications is as follows.

Definition 23 The Fluent Calculus with ramifications is a sorted second-order logic language
which includes the reserved predicates

Causes : state× state× state× state× state× state

Ramify : state× state× state× state

2

An instance Causes(z1, e
+
1 , e

−
1 , z2, e

+
2 , e

−
2 ) means that if state z1 is the result of positive ef-

fects e+1 and negative effects e−1 , then an additional effect is caused which leads to state z2

(now the result of positive and negative effects e+2 , e
−
2 , resp.).

10 This predicate is used to define
the ternary macro Causes(ε, %, z) as follows:

Causes(f, f ′, z1)
def
= (∀e+, e−)Causes(z1, e

+ ◦ f, e−, z1 ◦ f
′, e+ ◦ f ◦ f ′, e− − f ′)

Causes(f,¬f ′, z1)
def
= (∀e+, e−)Causes(z1, e

+ ◦ f, e−, z1 − f
′, e+ ◦ f − f ′, e− ◦ f ′)

Causes(¬f, f ′, z1)
def
= (∀e+, e−)Causes(z1, e

+, e− ◦ f, z1 ◦ f
′, e+ ◦ f ′, e− ◦ f − f ′)

Causes(¬f,¬f ′, z1)
def
= (∀e+, e−)Causes(z1, e

+, e− ◦ f, z1 − f
′, e+ − f ′, e− ◦ f ◦ f ′)

(40)

Notice how the collections of negative and positive effects are guaranteed to remain disjoint by
subtracting, if necessary, a newly established positive (resp. negative) indirect effect from the
preceding negative (resp. positive) effects.
The second predicate introduced in Definition 23, Ramify(z, e+, e−, z′), shall mean that

state z′ can be reached by iterated application of the underlying causal relation, starting in

10While formally collections of effects are terms of sort state, they should not be viewed as corresponding
to an actual complete state of the world. In what follows, all variables e with sub- or superscripts are of sort
state.
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state z with ‘momentum’ e+, e−. A foundational axiom Framify defines Ramify as fixpoints
of Causes :

Ramify(z1, e
+
1 , e

−
1 , z2) ≡ (∃e

+
2 , e

−
2 ) (z1, e

+
1 , e

−
1 , z2, e

+
2 , e

−
2 ) ∈ µ[Causes]

where (~x, ~y) ∈ µ[P ] abbreviates the following formula, which is a standard second-order schema
to axiomatize that (~x, ~y) belongs to the reflexive and transitive closure of predicate P and that
~y is a fixpoint:

∀Φ

{

(∀~u) Φ(~u, ~u) ∧ (∀~u,~v, ~w) [ Φ(~u,~v) ∧ P (~v, ~w) ⊃ Φ(~u, ~w) ]
⊃ Φ(~x, ~y)

}

∧ (∀~z) (P (~y, ~z) ⊃ ~y = ~z)

Using the transitive closure relies on the assumption that the underlying Causes relation is
completely specified. To this end, we circumscribe [41] this predicate wrt. a given axiomatization
of cause-effect pairs. If in these axioms Causes occurs only as the single consequent of implica-
tions, like in (37), then second-order circumscription is equivalent to first-order completion [31].
On the basis of a causal relation and its closure, the following generalization of simple state

update axioms accounts for actions with ramifications.

Definition 24 Let A be a function symbol with range action. A state update axiom with
ramifications for A is of the form

Poss(A(~x), s) ∧ ∆(~x,State(s)) ⊃
(∃z) ( z = State(s) ◦ ϑ+ − ϑ− ∧ Ramify(z, ϑ+, ϑ−,State(Do(A(~x), s))) )

where ∆(~x, z) is a pure state formula in z and ϑ+ and ϑ− are fluent collections.
A disjunctive state update axiom with ramifications for A is of the form

Poss(A(~x), s) ∧ ∆(~x,State(s)) ⊃ (∃~y1, z) (z = State(s) ◦ ϑ
+
1 − ϑ

−
1 ∧Θ1 ∧

Ramify(z, ϑ+
1 , ϑ

−
1 ,State(Do(A(~x), s))) )

∨ . . . ∨
(∃~yn, z) (z = State(s) ◦ ϑ

+
n − ϑ

−
n ∧Θn ∧

Ramify(z, ϑ+
n , ϑ

−
n ,State(Do(A(~x), s))) )

where ∆(~x, z) is a pure state formula in z, ϑ+
i and ϑ−i are fluent collections, and Θi is a

first-order formula without terms of any reserved sort (1 ≤ i ≤ n; n ≥ 1). 2

It is worth mentioning that there might be more than one successor state satisfying Ramify such
state so that actions with ramifications can be nondeterministic even in case of a non-disjunctive
update axiom.11

As an example, recall the two actions Pickup and Drop of our delivery robot. To account
for possible indirect effects, they are generalized as follows:

Poss(Pickup(x), s) ⊃
(∃z) (z = State(s) ◦ Carries(x) ∧ Ramify(z,Carries(x), ∅,State(Do(Pickup(x), s))) )

Poss(Drop(x), s) ⊃
(∃z) (z = State(s)− Carries(x) ∧ Ramify(z, ∅,Carries(x),State(Do(Drop(x), s))) )

11Suppose, for instance, we add to (37) the possible indirect effect that Attached(x, y) becomes false if
Carries(x) occurs as positive effect while y is not carried. With this extension, picking up an object attached to
another one may result either in both being carried, or in the two objects becoming detached as indirect effect.
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Notice that the power of ramification allows us to simplify the direct update for Drop by
ignoring the (now indirect) effect that a request is completed. The following, for instance, is a
logical consequence of our extended delivery scenario:

[Holds(Attached(x, y), S0) ≡
x = Cable ∧ y = Adapter ∨ x = Adapter ∧ y = EthernetCard ∨
x = Adapter ∧ y = Cable ∨ x = EthernetCard ∧ y = Adapter ]

∧ (∀x)¬Holds(Carries(x), S0)
⊃ Holds(Carries(Cable),Do(Pickup(EthernetCard), S0))∧
¬Holds(Carries(EthernetCard),Do(Drop(Adapter),Do(Pickup(EthernetCard), S0)))

(41)

Our solution to the Ramification Problem is summarized in the following extension of the
notion of a domain axiomatization in the Fluent Calculus.

Definition 25 A Fluent Calculus domain axiomatization with ramifications consists of a set
of state constraints, a circumscribed axiomatization of causal relations, a unique simple action
precondition axiom for each function symbol with range action, a set of state update ax-
ioms, possibly with ramifications, foundational axioms Fstate and Framify , plus possible further
domain-specific axioms. 2

The notion of knowledge update axioms according to Definition 20 can be straightforwardly
generalized to include ramifications known by the robot. On this basis, Definition 22 for domains
with knowledge and sensing can be easily reconciled with Definition 25.

Ramifications in Flux

The causal relations of a domain are encoded in Flux by defining the ternary predicate Causes .
To infer fixpoints of causal chains, an additional clause is needed which defines the predicate
NotCauses(z, e+, e−), representing that no further indirect effects apply in state z wrt. ef-
fects e+, e−. The encoding of the indirect effects in the extended delivery scenario (cf. (37)),
together with the additional state constraints, is shown in Appendix A.4.
Positive and negative indirect effects define the predicate Causes(z1, e

+
1 , e

−
1 , z2, e

+
2 , e

−
2 ) as

follows (c.f. (40)):

causes(Z1, EP1, EN1, EP2, EN2, Z2) :-

causes(EF, RA, Z),

( \+ EF = -(_), \+ RA = -(_), holds(EF, EP1),

plus(Z1, [RA], Z2), plus(EP1, [RA], EP2), minus(EN1, [RA], EN2) ;

\+ EF = -(_), RA = -(R), holds(EF, EP1)

minus(Z1, [R], Z2), minus(EP1, [R], EP2), plus(EN1, [R], EN2) ;

EF = -(E), \+ RA = -(_), holds(E, EN1),

plus(Z1, [RA], Z2), plus(EP1, [RA], EP2), minus(EN1, [RA], EN2) ;

EF = -(E), RA = -(R), holds(E, EN1)

minus(Z1, [R], Z2), minus(EP1, [R], EP2), plus(EN1, [R], EN2) ).

Based on the specification of a causal relation, ramification is defined recursively:
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ramify(Z1, EP, EN, Z2) :- not_causes(Z1, EP, EN), equal(Z1, Z2).

ramify(Z1, EP1, EN1, Z) :-

causes(Z1, EP1, EN1, Z2, EP2, EN2), ramify(Z2, EP2, EN2, Z).

Let our running example program be augmented by an encoding of the state constraints
in (36), represented by the constraints AttachedSymmetric(z) and CarriesSymmetric(z) along
with the corresponding CHRs shown in Appendix A.1, and let the update axioms for Pickup
and Drop be modified as shown in Appendix A.4. The following query (cf. (41)) has a successful
derivation wrt. the extended program:

Holds(Attached(Cable,Adapter), z0, z
′), Holds(Attached(Adapter ,EthernetCard), z′, z′′)

Holds(Attached(Adapter ,Cable), z′′, z′′′), Holds(Attached(EthernetCard ,Adapter), z′′′, z′′′′),
NotHoldsAll([x, y],Attached(x, y), z′′′′),
NotHoldsAll([x],Carries(x), z0), Consistent(z0), DuplicateFree(z0),
StateUpdate(z0,Pickup(EthernetCard), z1), \+NotHolds(Carries(Cable), z1),
StateUpdate(z1,Drop(Adapter), z2), \+Holds(Carries(EthernetCard), z2)

8 Concurrency

It may be desirable to have a robot execute several actions concurrently, for two reasons. Firstly,
performing actions in parallel whenever possible leads to shorter plans with less execution time.
Secondly, certain effects may be achievable only by simultaneous execution of actions. Suppose,
for example, that all doors are equipped with a springlock which our delivery robot can open
only by running into them and at the same time sending out the identification code to unlock
the mechanism.
Concurrent actions are represented in the Fluent Calculus using a binary function, denoted “·”,

by which singleton actions are joined together to denote their simultaneous execution. The
constant “ε” (“no-op”), introduced in Section 6.4, will play the role as the empty concurrent
action when decomposing a compound one. In the concurrent setting, the standard function
Do and predicate Poss both range over the new sort of concurrent actions. Furthermore, the
predicate Affects(c, c1) is introduced to denote that concurrent action c affects the usual effect
of concurrent action c1. Finally, to model actions with ramifications, the functions DirState ,
DirEffect+, and DirEffect− map a concurrent action and a situation to, resp., the resulting
state after the direct effects, all positive, and all negative effects of a concurrent action. These
modifications of the signature are summarized in the following definition.

Definition 26 The Fluent Calculus for concurrency is a sorted second-order logic language
which includes

1. Sort concurrent such that action < concurrent

2. Functions

ε : 7→ concurrent

· : concurrent× concurrent 7→ concurrent

Do : concurrent× sit 7→ sit

DirState,DirEffect+,DirEffect− : concurrent× sit 7→ state
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3. Predicates

Poss : concurrent× state Affects : concurrent× concurrent

2

In what follows, variables of sort concurrent are denoted by the letter c, possibly with
sub- or superscripts. For example, Pickup(Projector) · SendId · c denotes a concurrent action.
Similar to abbreviation (1) we will use the macro In(c1, c) to denote that concurrent action c1
is included in concurrent action c:

In(c1, c)
def
= (∃c′) c = c1 · c

′

To capture the intended properties of the connection function which combines single actions
into concurrent ones, we add axioms for · and ε which have the same form as the foundational
axioms for states:

(c1 · c2) · c3 = c1 · (c2 · c3)
c1 · c2 = c2 · c1
c · c = c
c · ε = c

In(a, a1 · c) ⊃ a = a1 ∨ In(a, c)

The foundational axioms Fconc of the Fluent Calculus for concurrency comprises this equational
theory along with the following axioms, which stipulate that doing nothing has no effect and
that a successor state is the result of ramifying the direct effects of a concurrent action:

DirState(ε, s) = State(s) ∧ DirEffect+(ε, s) = ∅ ∧ DirEffect−(ε, s) = ∅

Ramify(DirState(c, s),DirEffect+(c, s),DirEffect−(c, s),State(Do(c, s)))

The possibility to perform actions concurrently is specified using a combined precondition
axiom.

Definition 27 A concurrent action precondition axiom is of the form

Poss(c, z) ≡ Π(c, z)

where Π(c, z) is a pure state formula in z. 2

For example, let RunInto : door 7→ action denote the action of running into a door, and
consider the simple action precondition axiom Poss(RunInto(d), z) ≡ Holds(Closed(d), z) ∧
Holds(AtDoor(d), z), that is, running into a door is possible only if the door is closed and
the robot is next to it. Regarding our robot, we may assume that it can always send out
the identification code simultaneously with any other action, hence the following precondition
axiom:

Poss(c, z) ≡ (∃a) (c = a ∨ c = SendId · a) ∧ (∀a) (In(a, c) ⊃ Poss(a, z)) (42)

In case two or more actions are performed simultaneously and do not interfere, the combined
effect is the sum of the effects of the singleton actions. The accumulation of effects is modeled
on the basis of recursive effect specifications [66]. This notion allows for specifying the (direct)
effect of an action relative to the effect of arbitrary other actions performed concurrently.
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Definition 28 Let A1, . . . , Ak be function symbols with range action (k ≥ 1). A recursive
update axiom for A1, . . . , Ak is of the form

Poss(α(~x) · c, s) ∧ ∆(~x,State(s)) ⊃
DirState(α(~x) · c, s) = DirState(c, s) ◦ ϑ+ − ϑ− ∧
DirEffect+(α(~x) · c, s) = DirEffect+(c, s) ◦ ϑ+ ∧
DirEffect−(α(~x) · c, s) = DirEffect−(c, s) ◦ ϑ−

(43)

where α(~x) = A1(~x1) · . . . · Ak(~xk), ∆(~x, z) is a pure state formula in z and ϑ− and ϑ+ are
fluent collections.
A disjunctive recursive update axiom is of the form

Poss(α(~x) · c, s) ∧ ∆(~x,State(s)) ⊃
(∃~y1) (DirState(α(~x) · c, s) = DirState(c, s) ◦ ϑ

+
1 − ϑ

−
1 ∧

DirEffect+(α(~x) · c, s) = DirEffect+(c, s) ◦ ϑ+
1 ∧

DirEffect−(α(~x) · c, s) = DirEffect−(c, s) ◦ ϑ−1 ∧ Θ1 )
∨ . . . ∨
(∃~yn) (DirState(α(~x) · c, s) = DirState(c, s) ◦ ϑ

+
n − ϑ

−
n ∧

DirEffect+(α(~x) · c, s) = DirEffect+(c, s) ◦ ϑ+
n ∧

DirEffect−(α(~x) · c, s) = DirEffect−(c, s) ◦ ϑ−n ∧ Θn )

where α(~x) = A1(~x1) · . . . · Ak(~xk), ∆(~x, z) is a pure state formula in z, ϑ+
i and ϑ−i are

fluent collections, and Θi is a first-order formula without terms of any reserved sort (1 ≤ i ≤ n;
n ≥ 1). 2

Put in words, ϑ+ and ϑ− are the additional positive and negative, resp., effects which occur if
A1, . . . , Ak are performed besides c. Since under specific circumstances actions may interfere
when performed simultaneously, the condition ∆ of a recursive update axiom may include
qualifications based on the Affects predicate. The combined effect of interfering actions can
then be specified by a separate update axiom.
For example, the only interference among actions in our modified delivery domain (where

doors are equipped with a springlock) happens when SendId and RunInto are performed
concurrently:

Affects(c, c1) ≡
(∃d) c1 = RunInto(d) ∧ In(SendId , c) ∨ c1 = SendId ∧ (∃d) In(RunInto(d), c)

(44)

Consider the actions Pickup , SendId , and RunInto , which in view of concurrent execution are
suitably specified by the following collection of (deterministic) recursive update axioms:

Poss(Pickup(x) · c, s) ⊃
DirState(Pickup(x) · c, s) = DirState(c, s) ◦ Carries(x)∧

DirEffect+(Pickup(x) · c, s) = DirEffect+(c, s) ◦ Carries(x)∧

DirEffect−(Pickup(x) · c, s) = DirEffect−(c, s)

Poss(RunInto(d) · c, s) ∧ ¬Affects(c,RunInto(d)) ⊃
DirState(RunInto(d) · c, s) = DirState(c, s)∧

DirEffect+(RunInto(d) · c, s) = DirEffect+(c, s)∧

DirEffect−(RunInto(d) · c, s) = DirEffect−(c, s)
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Poss(SendId · c, s) ∧Holds(AtDoor(d), s) ∧ ¬Holds(Closed(d), s) ⊃
DirState(SendId · c, s) = DirState(c, s) ◦ Closed(d)∧

DirEffect+(SendId · c, s) = DirEffect+(c, s) ◦ Closed(d)∧

DirEffect−(SendId · c, s) = DirEffect−(c, s)

Poss(SendId · c, s) ∧ [ ¬(∃d)Holds(AtDoor(d), s)∨
Holds(AtDoor(d), s) ∧Holds(Closed(d), s) ∧ ¬Affects(c,SendId)] ⊃

DirState(SendId · c, s) = DirState(c, s)∧

DirEffect+(SendId · c, s) = DirEffect+(c, s)∧

DirEffect−(SendId · c, s) = DirEffect−(c, s)

Poss(RunInto(d) · SendId · c, s) ⊃
DirState(RunInto(d) · SendId · c, s) = DirState(c, s)− Closed(d)∧

DirEffect+(RunInto(d) · SendId · c, s) = DirEffect+(c, s)∧

DirEffect−(RunInto(d) · SendId · c, s) = DirEffect−(c, s) ◦ Closed(d)

That is, picking up an object has the usual effect no matter what actions are performed con-
currently. (The other actions Go , Enter , Drop of our robot can be reformulated in a similar
fashion.) Running into a door does not have any effect if not affected by a concurrent action.
Transmitting the identification code at an open door causes the latter to close; otherwise, the
action has no effect if not affected by some concurrent action. Finally, running into a door and
sending out the code simultaneously has the effect that the door opens.
The overall direct effect of a concurrent action is determined by a set of recursive equations

which are obtained as the consequents of instances of the appropriate update axioms. For
example, consider the initial specification

Holds(InRoom(R403 ), S0) ∧Holds(AtDoor(D23 ), S0)
∧Holds(Request(R403 ,Projector ,R404 ), S0) ∧ ¬Holds(Closed(D23 ), S0)
∧ (∀x)¬Holds(Carries(x), S0) ∧ (∀x)¬Holds(Attached(x,Projector), S0) )

and the concurrent action Pickup(Projector)·SendId , whose executability in S0 is given by (42)
in conjunction with (5). Because of ¬Affects(Pickup(Projector),SendId), which is due to (44),
from the above recursive update axioms we can set up these state equations:

DirState(Pickup(Projector) · SendId , S0) = DirState(SendId , S0) ◦ Carries(Projector)

DirEffect+(Pickup(Projector) · SendId , S0) = DirEffect
+(SendId , S0) ◦ Carries(Projector)

DirEffect−(Pickup(Projector) · SendId , S0) = DirEffect
−(SendId , S0)

DirState(SendId , S0) = DirState(ε, S0) ◦ Closed(D23 )

DirEffect+(SendId , S0) = DirEffect
+(ε, S0) ◦ Closed(D23 )

DirEffect−(SendId , S0) = DirEffect
−(ε, S0)

Hence, the result of the concurrent action is inferred by decomposing the latter and successively
inferring the effects of the components. From Fconc and the above initial specification it then
follows that

(∃z) State(Do(Pickup(Projector) · SendId , S0)) =
InRoom(R403 ) ◦AtDoor(D23 ) ◦ Request(R403 ,Projector ,R404 ) ◦
Carries(Projector) ◦ Closed(D23 ) ◦ z

(45)

Our approach to concurrency is summarized in the following extended definition of axiomati-
zations of concurrent worlds.
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Definition 29 A Fluent Calculus domain axiomatization with concurrency and ramifications
consists of a set of state constraints, a circumscribed axiomatization of causal relations, a unique
simple action precondition axiom for each function symbol with range action, a concurrent
action precondition axiom, a set of recursive update axioms, foundational axioms Fstate , Framify ,
and Fconc , plus possible further domain-specific axioms. 2

Again, this definition can easily be reconciled with our approach to knowledge and sensing if
the concept of knowledge update is suitably generalized to account for concurrent actions.

Concurrency in Flux

Concurrent actions are modeled in Flux as lists of action terms. As opposed to states, we
can reasonably assume that a robot has complete knowledge of its concurrent actions, which
considerably simplifies their treatment.
A concurrent action precondition axiom Poss(c, z) ≡ Π(c, z) is encoded by the clause

Poss(c, z) ← Π(c, z)

Action interference is encoded by a clause with head Affects ; Appendix A.5 shows the encoding
of (44) as example. For efficiency reasons, the state update is inferred only once, on the basis of
the combined positive and negative direct effects. To this end, recursive update axioms (43) are
encoded by clauses of the following form, where DirEffect(c, z, e+, e−) means that in state z
concurrent action c has positive and negative, resp., direct effects e+, e−:12

DirEffect(c, z, e+, e−) ←
Subset([A1(~x1), . . . , Ak(~xk)], c), Subtract(c, [A1(~x1), . . . , Ak(~xk)], c1),
∆(~x1, . . . , ~xk, z), DirEffect(c1, z, e

+
1 , e

−
1 ), Plus(e

+
1 , ϑ

+, e+), Plus(e−1 , ϑ
−, e−)

(Appendix A.5 shows the Flux encodings for the actions of our robot tailored to concurrency.)
The base case of this recursion reflects foundational axioms Fconc :

dir_effect([], _, [], []).

Disjunctive recursive update axioms are encoded along the same line. Finally, a general clause
defines the update caused by concurrent actions:

state_update(Z1, C, Z2) :-

dir_effect(C, Z1, ThetaP, ThetaN),

update(Z1, ThetaP, ThetaN, Z), ramify(Z, ThetaP, ThetaN, Z2).

As an example, the modified Flux program and the query

Holds(InRoom(R403 ), z0), Holds(AtDoor(D23 ), z0),
Holds(Request(R403 ,Projector ,R404 ), z0),
NotHolds(Closed(D23 ), z0), NotHoldsAll([x],Carries(x), z0),
NotHoldsAll([x],Attached(x,Projector), z0), Consistent(z0), DuplicateFree(z0)
Poss([Pickup(Projector),SendId ], z0), StateUpdate(z0, [Pickup(Projector),SendId ], z1)

yield the answer (cf. (45)),

z1 = [Closed(D23 ),Carries(Projector),
InRoom(R403 ),AtDoor(D23 ),Request(R403 ,Projector ,R404 ) | z]

12The standard Eclipse predicates Subset(l1, l2) and Subtract(l2, l1, l3) used below denote, resp., that all
elements in list l1 occur in list l2 and that list l3 contains all elements in l2 but those in l1 .
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9 Summary and Discussion

We have presented the Fluent Calculus as a comprehensive specification and programming lan-
guage for Cognitive Robotics in which are combined a variety of challenging aspects of complex
environments. Furnishing the calculus with a new axiomatic foundation, we have first of all
overcome an important limitation of [65] caused by relying on the notion of unification com-
pleteness [62, 22]: Defining inequality of state terms as non-unifiability wrt. AC1 did not permit
any domain-specific equalities like Office(Alice) = R402 since this leads to a contradiction given
that, e.g., the state terms InRoom(Office(Alice)) and InRoom(R402 ) are not AC1-unifiable.
The new, conceptually even simpler axiomatic foundation relates equality of state terms to equal-
ity of fluents, thus allowing the latter to be defined independently. Moreover, states directly
correspond to sets of fluents under the new foundational axioms, whereas previously multisets
of fluents have been used to represent states [21, 65].
We have proved that state update axioms solve the Frame Problem under the new algebraic

foundation (Theorem 7). Moreover, the axiomatic characterization of states has also paved the
way towards the system Flux. The underlying constraint handling rules as well as the core
logic program have been formally verified against the foundations of the Fluent Calculus.
Flux is distinguished mainly by two features. First, it is especially designed for specifying and

computing with incomplete state specifications. Second, it exploits the solution to the inferential
Frame Problem of the Fluent Calculus: Effects of actions are computed as “local surgeries” [46]
on a list of fluents and the accompanying constraints so that most of a state remains unchanged,
which is the essence of a computationally effective solution to the Frame Problem.
The most well-known existing language for Cognitive Robotics, Golog [30],13 is based on

successor state axioms in the Situation Calculus. Golog includes the concept of high-level robot
control programs to guide search, which is essential for solving problems of practical size. This
concept furnishes a ready approach to programming heuristics for planning in Flux as well. The
main advantage of Flux in comparison is that plain Golog as well as its extensions [13, 25, 5]
apply the closed-world assumption [51] to an initial state specification, hence do not support
incomplete state knowledge. This limitation is overcome in the two versions introduced in [10],
where either a propositional theorem prover is used to establish entailment of formulas about the
initial situation, or where an incomplete specification is compiled into a set of so-called prime
implicates, which are then used for the same purpose. As it stands, either approach is restricted
to essentially propositional domains and to incomplete knowledge of the initial situation only,
although it seems feasible to extend both approaches in such a way that knowledge about other
situations is first regressed to the initial situation and then processed analogously.
A further fundamental difference between Flux and Golog concerns the way in which the

value of a fluent in a particular situation is determined, e.g., in order to verify an action pre-
condition or the satisfaction of a goal condition. While in Flux the value is readily available
from the current list of fluents and constraints, in Golog the current situation term needs to
be unfolded either until the situation is reached where the fluent was caused true or false by the
preceding action or completely down to the initial situation. An analogous difference applies to
other existing systems for Cognitive Robotics, like those based on the Event Calculus [58, 59].
We have shown how disjunctive state update axioms along the line of [33, 67] and existen-

tial quantification can be used to model nondeterministic actions and uncertainty in the Fluent
Calculus and Flux. A related extension of Golog supports reasoning with probability distri-

13Among others, a recent robotics application of this system was the high-level end of an autonomous museum
tour guide [20, 6].
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butions over a discrete space of alternative results of actions [5]. Augmenting Flux by elements
of decision theory along this line is a promising direction of future.
We have developed and integrated into the Fluent Calculus a formal account of a robot’s

knowledge about the state of its environment. Our approach is kept representationally and
inferentially simple in that it avoids non-classical extensions to standard predicate logic. The
formalism accounts for both knowledge preconditions of actions and information gathering ac-
tions which enhance the state knowledge of a robot. Our theory also provides simple means
to reason about what a robot does not know and about branching plans based on conditional
actions. The effect of actions on the mental state of a robot is specified by so-called knowledge
update axioms, by which is solved the representational Frame Problem for knowledge. Moreover,
knowledge update axioms have been shown to lay the foundations for overcoming the inferential
aspect of this variant of the Frame Problem, too.
Knowledge and sensing actions were first investigated in [45] in the context of the Situation

Calculus, and in [57] this approach was combined with the solution to the Frame Problem
provided by successor state axioms. Other approaches to planning with sensing exist using
special-purpose logics, e.g., [17, 12]. The basic idea of [45, 57] is to represent state knowledge
by a binary situation-situation relation K(s, s′), meaning that as far as the robot knows in
situation s it could as well be in situation s′. Hence, every given fact about any such s′

is considered possible by the robot. Having readily available the explicit notion of a state in
the Fluent Calculus, our formalization avoids this indirect encoding of state knowledge, which
is intuitively less appealing because it seems that a robot should always know exactly which
situation it is in, that is, which sequence of actions it has taken. Apart from this clash of
intuitions, there is a more crucial difference between our approach and that of [45, 57]: The latter
defines the effect of a non-sensing action a on the robot’s state knowledge via the equivalence
relation K(Do(a, s), s′′) ≡ (∃s′) (K(s, s′)∧s′′ = Do(a, s′)). Hence, the very same successor state
axioms apply to both the state update (when moving from s to Do(a, s)) and the knowledge
update (when moving from s′ to s′′ = Do(a, s′)). In contrast, with independent specifications
of state and knowledge update, our formalism furnishes a ready approach for representing and
reasoning about the ability to achieve goals based on possibly limited knowledge of the effects of
actions. This separating what a user knows from what a robot knows distinguishes our theory
from other existing accounts of sensing action and knowledge, too, such as [36, 2], where also
non-sensing actions have identical effect on the external and internal states. On the other hand,
knowledge in terms of possible situations allows nested application of the knowledge modality,
as in Knows(Knows(Closed(d), s2), s1), which is not a valid expression in our theory. This
feature is of particular interest in multi-agent settings. Knowledge of other robot’s knowledge
can, however, be achieved in our approach by extending the Knows macro and the underlying
KState relation by a third argument to distinguish the knowledge states of different robots.
Representing and reasoning about non-knowledge has previously been investigated in the

context of the Situation Calculus [26, 27]. Two approaches to ‘only knowing’ have been offered,
one of which is by a non-standard semantics while the other one is an axiomatization in classical
logic but with two complex second-order axioms involved. Exploiting the reification of fluents
and states, knowledge and non-knowledge can be expressed in our approach by comparatively
simple equivalences based on a straightforward second-order sentence along with the standard
semantics of classical logic. A further difference is that in [26, 27] the set of objects inhabiting
a domain is fixed (namely, the set of natural numbers), whereas our formalization does not
make any presuppositions in this regard. Our notion of a branching plan was inspired by the
conditional action trees of [25]. A minor difference is that the latter are introduced as a new
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sort while our conditional actions and sequences are just pre-defined actions.
We have shown how sensing actions can be specified in Flux and, by exploiting the represen-

tation technique for incomplete states, generated and verified as elements of plans. By assuming
the reflective stance on knowledge, we have obtained an effective test of whether a property is
known at the current state of the computation. As an outstanding feature, our implementation
thus allows to solve planning problems with knowledge goals. In contrast, existing accounts
of sensing in logic programming, such as [14, 25], suffer from the closed world assumption to
the effect that it is not possible to verify whether a condition is known in a situation. As a
consequence, it is left to the responsibility of the programmer to restrict the search space in
such a way that only correct plans are generated. In particular, it is not possible to solve fully
automatically planning problems where the goal is to acquire knowledge.
For the sake of simplicity, we have only considered off-line sensing. In [14] it has been argued

that robots cannot fully plan ahead solutions to large, complex tasks. This requires interleav-
ing off-line planning with sometimes committing to certain actions based on local criteria and
without foreseeing the consequences in every detail.
Finally, we have shown how indirect effects and concurrent actions can be uniformly modeled

in the Fluent Calculus and programmed in Flux. To this end, we have adapted our theory [63]
based on causal propagation—a concept which provides the most general solution to the Ram-
ification Problem known today [55]. In particular cyclic causal dependencies [8] are dealt with
correctly, which goes beyond most alternative theories, e.g., [32, 19, 61, 44]. We refer to [63] for
a detailed discussion and comparison with some of these approaches as well as the one of [38],
which has evolved into [16, 68]. In the series of papers [47, 48, 49], the attempt is made to
define a unifying semantics for approaches to ramifications, which covers causal propagation
and in particular our causal relationships. The notion of recursive update axioms for concur-
rency has been introduced in [66] in the context of modeling continuous change with the Fluent
Calculus [64].
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A The Delivery Domain

A.1 delivery constraints.chr

handler delivery_constraints.

constraints at_door_unique/1, request_unique/1, door_of_room/2,

attached_symmetric/1,

carries_implies/3, carries_symmetric/1, carries_symmetric/2.

% Robot cannot be at two doors simultaneously

at_door_unique([F1|Z1]) <=> \+ F1=at_door(_) | at_door_unique(Z1).

at_door_unique([at_door(_)|Z1]) <=> not_holds_all(D, at_door(D), Z1).

% Robot cannot be at door not belonging to the room it is in

door_of_room(R,[F1|Z1]) <=> \+ F1=at_door(_) | door_of_room(Z1).

door_of_room(R,[at_door(D)|_]) <=> connects(D,R,_) | true.

door_of_room(R,[at_door(D)|_]) <=> \+ connects(D,R,_) | false.

% No two request for the same object

request_unique([F1|Z1]) <=> \+ F1=request(_,_,_) | request_unique(Z1).

request_unique([request(_,X,_)|Z1]) <=> not_holds_all([R1,R2], request(R1,X,R2), Z1),

request_unique(Z1).

% CHRs for ramification

% Whenever attached(x,y) then also attached(y,x)

attached_symmetric([F1|Z1]) <=> \+ F1=attached(_,_)

| attached_symmetric(Z1).

attached_symmetric([attached(X,Y)|Z1]) <=> holds(attached(Y,X), Z1, Z2),

attached_symmetric(Z2).

% Whenever carries(x) then also carries(y)

carries_implies(X,Y,[F1|Z1]) <=> \+ F1=carries(_) | carries_implies(X,Y,Z1).

carries_implies(X,Y,[carries(X)|Z1]) <=> holds(carries(Y), Z1).

carries_implies(X,Y,[carries(Y)|_] <=> true.

carries_implies(X,Y,[carries(W)|Z1]) <=> \+ X=W | carries_implies(X,Y,Z1).

% Whenever attached(x,y) then carries_implies(x,y,z),

% where z includes all fluents carries(_) of a state

carries_symmetric(Z) <=> carries_symmetric(Z, []).

carries_symmetric([F1|Z1], Zp) <=> \+ F1=carries(_), \+ F1=attached(_,_)

| carries_symmetric(Z1, Zp).

carries_symmetric([carries(X)|Z1], Zp) <=> carries_symmetric(Z1, [carries(X)|Zp]).

carries_symmetric([attached(X,Y)|Z1], Zp) <=> append(Zp, Z1, Z2)

| carries_implies(X, Y, Z2),

carries_symmetric(Z1, Zp).
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A.2 delivery.pl

:- [flux].

:- chr2pl(delivery_constraints), [delivery_constraints].

c(d12, r401, r402).

c(d23, r402, r403).

c(d34, r403, r404).

c(da1, alley, r401).

c(da2, alley, r402).

c(da3, alley, r403).

c(da4, alley, r404).

connects(D, X, Y) :- c(D, X, Y) ; c(D, Y, X).

office(alice, r402).

office(bob, r404).

consistent(Z) :- holds(in_room(R), Z, Z1), not_holds_all(R, in_room(R), Z1),

at_door_unique(Z),

door_of_room(R, Z),

request_unique(Z).

poss(go(D), Z) :-

holds(in_room(R), Z), connects(D, R, _).

poss(open(D), Z) :-

holds(at_door(D), Z), ( holds(has_key_code(D), Z) ; not_holds(closed(D), Z) ).

poss(enter(R), Z) :-

holds(at_door(D), Z), holds(in_room(R1), Z),

connects(D, R1, R), not_holds(closed(D), Z).

poss(pickup(X), Z) :-

holds(request(R,X,_), Z), holds(in_room(R), Z), not_holds(carries(X), Z).

poss(drop(X), Z) :-

holds(carries(X), Z), holds(request(_,X,R), Z), holds(in_room(R), Z).

poss(ask(P, D), Z) :-

office(P, R1), holds(in_room(R1), Z), holds(request(R1,_,R2), Z),

connects(D, R1, R2), holds(closed(D), Z), not_holds(has_key_code(D), Z).

not_poss(go(D), Z) :-

holds(in_room(R), Z), \+ connects(D, R, _).

not_poss(open(D), Z) :-

not_holds(at_door(D), Z) ; not_holds(has_key_code(D), Z), holds(closed(D), Z).

not_poss(enter(R), Z) :-

holds(in_room(R), Z) ; not_holds_all(D, at_door(D), Z) ;

holds(at_door(D), Z), ( holds(closed(D), Z) ; \+ connects(D, _, R) ).

not_poss(pickup(X), Z) :-

holds(carries(X), Z) ; not_holds_all([R1,R2], request(R1,X,R2), Z) ;

holds(request(R,X,_), Z), not_holds(in_room(R), Z).

not_poss(drop(X), Z) :-

not_holds(carries(X), Z) ;

holds(request(_, X, R), Z), not_holds(in_room(R), Z).

not_poss(ask(P, D), Z) :-

office(P, R1),

( \+ connects(D, R1, _) ;
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connects(D, R1, R2), ( not_holds(in_room(R1), Z) ;

not_holds_all(X, request(R1,X,R2), Z) ;

not_holds(closed(D), Z) ; holds(has_key_code(D), Z)

) ).

state_update(Z1, go(D), Z2) :-

holds(at_door(D1), Z1), neq(D1, D), update(Z1, [at_door(D)], [at_door(D1)], Z2) ;

( holds(at_door(D), Z1) ; not_holds_all(D1, at_door(D1), Z1) ),

update(Z1, [at_door(D)], [], Z2).

state_update(Z1, open(D), Z2) :-

holds(closed(D), Z1), update(Z1, [], [closed(D)], Z2) ;

not_holds(closed(D), Z1), equal(Z1, Z2).

state_update(Z1, enter(R), Z2) :-

holds(in_room(R1), Z1), update(Z1, [in_room(R)], [in_room(R1)], Z2).

state_update(Z1, pickup(X), Z2) :-

update(Z1, [carries(X)], [], Z2).

state_update(Z1, drop(X), Z2) :-

update(Z1, [], [carries(X),request(_,X,_)], Z2).

state_update(Z1, ask(_, D), Z2) :-

update(Z1, [has_key_code(D)], [], Z2) ;

update(Z1, [], [closed(D)], Z2).

A.3 delivery sense.pl

is_room(alley). is_room(r401). is_room(r402). is_room(r403). is_room(r404).

is_door(da1). is_door(da2). is_door(da3). is_door(da4).

is_door(d12). is_door(d23). is_door(d34).

is_object(projector). is_object(document_folder).

is_person(alice). is_person(bob).

is_fluent(in_room(R)) :- is_room(R).

is_fluent(at_door(D)) :- is_door(D).

is_fluent(closed(D)) :- is_door(D).

is_fluent(has_key_code(D)) :- is_door(D).

is_fluent(carries(X)) :- is_object(X).

is_fluent(request(R1,X,R2)) :- is_room(R1), is_object(X), is_room(R2).

primitive_action(go(D)) :- is_door(D).

primitive_action(enter(R)) :- is_room(R).

primitive_action(pickup(X)) :- is_object(X).

primitive_action(drop(X)) :- is_object(X).

primitive_action(ask(P,D)) :- is_person(P), is_door(D).

primitive_action(send_id).

primitive_action(sense(closed(D))) :- is_door(D).

poss(send_id, _).

poss(sense(F), Z) :- F=closed(D), holds(at_door(D), Z).

not_poss(sense(F), Z) :- \+ F=closed(_) ; F=closed(D), not_holds(at_door(D), Z).
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state_update(Z, sense(F), Z, SV) :-

holds(F, Z), SV = F ; not_holds(F, Z), SV = -(F).

state_update(Z1, send_id, Z2) :-

holds(at_door(D), Z1), holds(closed(D), Z1), update(Z1, [], [closed(D)], Z2) ;

holds(at_door(D), Z1), not_holds(closed(D), Z1), update(Z1, [closed(D)], [], Z2) ;

not_holds_all(D, at_door(D), Z1), equal(Z1, Z2).

A.4 delivery ramification.pl

consistent(Z) :- holds(in_room(_), Z, Z1), not_holds_all(R, in_room(R), Z1),

at_door_unique(Z),

door_of_room(R, Z),

request_unique(Z),

attached_symmetric(Z),

carries_symmetric(Z).

causes(carries(X), carries(Y), Z) :- holds(attached(X,Y), Z).

causes(-(carries(X)), -(carries(Y)), Z) :- holds(attached(X,Y), Z).

causes(-(carries(X), -(request(R1,X,R2)), Z) :- holds(request(R1,X,R2), Z).

causes(-(request(_,X,R2), request(R,X,R2), Z) :- holds(in_room(R), Z), neq(R, R2).

not_causes(Z, EP, [E|EN]) :-

( \+ E=carries(_), \+ E=request(_,_,_) ;

E=carries(X),

(not_holds_all([R1,R2], request(R1,X,R2), Z); holds(request(_,X,_), EN)) ;

E=request(_,X,R), (holds(in_room(R), Z); holds(request(_,X,_), EP)) ),

not_causes(Z, EP, EN).

not_causes(Z, _, []) :- carries_symmetric(Z).

state_update(Z1, pickup(X), Z2) :-

update(Z1, [carries(X)], [], Z), ramify(Z, [carries(X)], [], Z2).

state_update(Z1, drop(X), Z2) :-

update(Z1, [], [carries(X)], Z),

ramify(Z, [], [carries(X)], Z2).

A.5 delivery concurrency.pl

affects(C, C1) :- subset([run_into(_)], C), C1=send_id ;

subset([send_id], C), C1=run_into(_).

poss(send_id, _).

poss(run_into(D), Z) :- holds(closed(D), Z), holds(at_door(D), Z).

not_poss(run_into(D), Z) :- not_holds(closed(D), Z) ; not_holds(at_door(D), Z).

poss(C, Z) :- ( C=[A] ; C=[send_id,A] ; C=[A,send_id] ),

\+ (member(A, C), not_poss(A, Z)).
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dir_effect(C, Z, Ep, En) :-

subset([go(D)], C), subtract(C, [go(D)], C1),

dir_effect(C1, Z, Ep1, En1),

( holds(at_door(D1), Z), neq(D1, D), append([at_door(D1)], En1, En) ;

(holds(at_door(D), Z) ; not_holds_all(D1, at_door(D1), Z)), En=En1 ),

append([at_door(D)], Ep1, Ep).

dir_effect(C, Z, Ep, En) :-

subset([enter(R)], C), subtract(C, [enter(R)], C1),

dir_effect(C1, Z, Ep1, En1),

holds(in_room(R1), Z),

append([in_room(R1)], En1, En), append([in_room(R)], Ep1, Ep).

dir_effect(C, Z, Ep, En) :-

subset([pickup(X)], C), subtract(C, [pickup(X)], C1),

dir_effect(C1, Z, Ep1, En), append([carries(X)], Ep1, Ep).

dir_effect(C, Z, Ep, En) :-

subset([drop(X)], C), subtract(C, [drop(X)], C1),

dir_effect(C1, Z, Ep, En1),

append([carries(X),request(_,X,_)], En1, En).

dir_effect(C, Z, Ep, En) :-

subset([run_into(D)], C), subtract(C, [run_into(D)], C1),

\+ affects(run_into(D), C1), dir_effect(C1, Z, Ep, En).

dir_effect(C, Z, Ep, En) :-

subset([send_id], C), subtract(C, [send_id], C1),

dir_effect(C1, Z, Ep1, En1),

( holds(at_door(D), Z), not_holds(closed(D), Z),

En=En1, append([closed(D)], Ep1, Ep) ) ;

( ( not_holds_all(D, at_door(D), Z) ;

(holds(at_door(D), Z), holds(closed(D), Z), \+ affects(send_id, C1)) ),

En=En1, Ep=Ep1 ).

dir_effect(C, Z, Ep, En) :-

subset([run_into(D),send_id], C), subtract(C, [run_into(D),send_id], C1),

dir_effect(C1, Z, Ep, En1), append([closed(D)], En, En1).
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