
A FLUX Agent for the Wumpus World

Michael Thielscher
Dresden University of Technology
mit@inf.tu-dresden.de

Abstract

FLUX is a programming method for the design of
agents that reason logically about their actions and
sensor information in the presence of incomplete
knowledge. We show how FLUX can be used to
program an agent for the Wumpus World.1 Ex-
perimental results show how the agent performs
in terms of the reward function and how well the
FLUX program scales up.

1 Introduction

The paradigm of Cognitive Robotics [1] is to endow agents
with the high-level cognitive capability of reasoning. Explor-
ing their environment, agents need to reason when they in-
terpret sensor information, memorize it, and draw inferences
from combined sensor data. Acting under incomplete infor-
mation, agents employ their reasoning facilities for selecting
the right actions. To this end, intelligent agents form a mental
model of their environment, which they constantly update to
reflect the changes they have effected and the sensor infor-
mation they have acquired. The Wumpus World [2] is a good
example of an environment where an agent needs to choose
its actions not only on the basis of the current status of its sen-
sors but also on the basis of what it has previously observed
or done. Moreover, some properties of the environment can
only be observed indirectly and require the agent to combine
observations made at different stages.

FLUX [4; 5] is a high-level programming method for the
design of intelligent agents that reason about their actions on
the basis of the fluent calculus [3]. A constraint logic pro-
gram, FLUX comprises a method for encoding incomplete
states along with a technique of updating these states accord-
ing to a declarative specification of the elementary actions and
sensing capabilities of an agent. Incomplete states are repre-
sented by lists (of fluents) with variable tail, and negative and
disjunctive state knowledge is encoded by constraints.

FLUX programs consist of three parts: A kernel provides
the general reasoning facilities by encoding the foundational

1Parts of an earlier version of the FLUX program were previ-
ously presented at the International Conference on Principles of
Knowledge Representation and Reasoning 2002.

� � � � �
�

�

�

�

�

Figure 1: An example scenario in a Wumpus World where
the ����� -cave features four pits, the Wumpus in cell 	�
����� ,
and gold in cell 	�������� .

axioms of the fluent calculus. The domain-specific back-
ground theory contains the formal specification of the under-
lying environment, including effect axioms for the actions of
the agent. Finally, the strategy specifies the intended behav-
ior of the agent. Space limitations do not permit us to fully
recapitulate syntax and semantics of FLUX; we refer to [4;
5] for details. In the following section, we present a FLUX
background theory for the Wumpus World, and in Section 3
we give a FLUX program that implements a particular strat-
egy for an agent that systematically explores an unknown grid
with the goal to find and bring home the gold. We conclude
in Section 4 by reporting on some experiments and outlining
possible ways of improving the basic strategy.

2 The Background Theory
A background theory describes the general properties of the
environment and the actions of the agent. Following the spec-
ification laid out in [2], the Wumpus World agent moves in a
rectangular grid of cells. An example scenario is depicted in
Figure 1: There is a heap of gold somewhere in the grid, some
of the cells contain bottomless pits, and one them houses the
hostile Wumpus. The agent perceives a breeze (a stench,
respectively) if it is adjacent to a cell containing a pit (the
Wumpus, respectively), and the agent notices a glitter in any
cell containing gold and it hears a scream if the Wumpus gets
killed (through the arrow shot by the agent). Figure 2 shows

� � � � �
�

�

�

�

�

Figure 2: Perceptions corresponding to the scenario of Fig-
ure 1.

where the agent will sense a breeze, stench, and glitter, re-
spectively, wrt. the scenario of Figure 1.

To axiomatize the Wumpus World, we use the follow-
ing nine fluents. At 	�� ��� � and Facing 	�� � represent, respec-
tively, that the agent is in cell 	�� ��� � and faces direction ���	�
 ��� �
 ���� (north, east, south, or west); Gold 	�� ��� � , Pit 	�� �� � ,
and Wumpus 	�� ��� � represent that square 	�� ��� � houses, re-
spectively, gold, a pit, or the Wumpus; Dead represents
that the Wumpus is dead; Has 	�� � represents that the agent
has ��� 	

Gold � Arrow � ; and Ydim 	�� � and Xdim 	�� � , represent
the (initially unknown) extent of the grid. The agent does not
need a fluent to represent its own status of being alive or not,
because we intend to write a cautious strategy by which the
agent never takes the risk to fall into a pit or to enter the sqare
with the Wumpus (unless the latter is known to be dead).

FLUX allows to combine physical and sensing effects in
single action specifications, which we have exploited here:
Update axioms are encoded in FLUX as definitions of the
predicate StateUpdate 	���� ��� 	��� � ���� ���� describing the update
of state ��� to ��� according to the physical effects of ac-
tion � 	��� � and the sensing result � . We assume that when exe-
cuting any of its physical action, the agent perceives a vector
with five truth-values:

[stench,breeze,glitter,bump,scream]
The actions of the Wumpus World agent are then encoded as
follows:
state_update(Z1,go,Z2,[S,B,G,Bump,_]) :-

holds(at(X,Y),Z1), holds(facing(D),Z1),
adjacent(X,Y,D,X1,Y1),
(Bump=false ->

update(Z1,[at(X1,Y1)],[at(X,Y)],Z2),
stench_perception(X1,Y1,S,Z2),
breeze_perception(X1,Y1,B,Z2),
glitter_perception(X1,Y1,G,Z2)

; Bump=true,
Z2=Z1, bump_perception(X,Y,D,Z2)).

state_update(Z1,turn_left,Z2,[S,B,G,_,_]):-
holds(facing(D),Z1),
(D#>1 #/\ D1#=D-1) #\/ (D#=1 #/\ D1#=4),
update(Z1,[facing(D1)],[facing(D)],Z2),
holds(at(X,Y),Z2),
stench_perception(X,Y,S,Z2),
breeze_perception(X,Y,B,Z2),

glitter_perception(X,Y,G,Z2).

state_update(Z1,turn_right,Z2,_) :-
holds(facing(D),Z1),
(D#<4 #/\ D1#=D+1) #\/ (D#=4 #/\ D1#=1),
update(Z1,[facing(D1)],[facing(D)],Z2).

state_update(Z1,grab,Z2,_) :-
holds(at(X,Y),Z1),
update(Z1,[has(gold)],[gold(X,Y)],Z2).

state_update(Z1,shoot,Z2,[_,_,_,_,S]) :-
(S=true ->

update(Z1,[dead],[has(arrow)],Z2)
; S=false,

update(Z1,[],[has(arrow)],Z2)).

state_update(Z,exit,Z,_).

In the effect axiom for Go, for instance, the first four com-
ponents of the sensory input are evaluated: If the agent does
not perceive a bump, then the physical effect is to reach the
adjacent location, and the stench, breeze, and glitter percepts
are then evaluated against the updated (incomplete) state. The
auxiliary predicates used in this and the other update axioms
employ the two constraints NotHolds and OrHolds, for which
the FLUX kernel contains a constraint solver:

stench_perception(X,Y,Percept,Z) :-
XE#=X+1, XW#=X-1, YN#=Y+1, YS#=Y-1,
(Percept=false ->

not_holds(wumpus(XE,Y),Z),
not_holds(wumpus(XW,Y),Z),
not_holds(wumpus(X,YN),Z),
not_holds(wumpus(X,YS),Z)

; Percept=true,
or_holds([wumpus(XE,Y),wumpus(X,YN),

wumpus(XW,Y),wumpus(X,YS)]
,Z)).

breeze_perception(X,Y,Percept,Z) :-
XE#=X+1, XW#=X-1, YN#=Y+1, YS#=Y-1,
(Percept=false ->

not_holds(pit(XE,Y),Z),
not_holds(pit(XW,Y),Z),
not_holds(pit(X,YN),Z),
not_holds(pit(X,YS),Z)

; Percept=true,
or_holds([pit(XE,Y),pit(X,YN),

pit(XW,Y),pit(X,YS)],Z)).

glitter_perception(X,Y,Percept,Z) :-
Percept=false -> not_holds(gold(X,Y),Z)
; Percept=true, holds(gold(X,Y),Z).

bump_perception(X,Y,D,Z) :-
D#=1 -> holds(ydim(Y),Z)

; holds(xdim(X),Z).

adjacent(X,Y,D,X1,Y1) :-
D :: 1..4, X1#>0, Y1#>0,

(D#=1)#/\(X1#=X) #/\(Y1#=Y+1) % north
#\/(D#=3)#/\(X1#=X) #/\(Y1#=Y-1) % south
#\/(D#=2)#/\(X1#=X+1)#/\(Y1#=Y) % east
#\/(D#=4)#/\(X1#=X-1)#/\(Y1#=Y). % west

The update axioms for the two Turn actions use standard
predicates for FD-constraints (finite domains), preceded by

the symbol “#”.2 The update clauses are direct encodings of
the corresponding knowledge update axioms for the Wumpus
World [4].

For the sake of simplicity, our FLUX program for the
Wumpus World agent does not include precondition axioms,
since going and turning is always possible while the precon-
ditions for Grab, Shoot, and Exit are implicitly verified as
part of the strategy (see Section 3). In addition to the specifi-
cations of the actions, a FLUX background theory consists of
domain constraints and an initial state specification. Initially,
the agent is at 	
 �
 � , faces west (that is, �) and possesses an
arrow. Moreover, the agent knows that the Wumpus is still
alive and that the home square is safe. The agent does not
know the extension of the grid, nor the locations of the gold,
the Wumpus, or any of the pits. The domain constraints are
summarized in a clause defining consistency of states, which
adds range and other constraints to the initial knowledge of
the agent:

init(Z0) :-
Z0 = [at(1,1),facing(2),has(arrow) | Z],
not_holds(dead,Z),
not_holds(wumpus(1,1),Z0),
not_holds(pit(1,1),Z),
consistent(Z).

consistent(Z) :-
% uniqueness constraints
holds(xdim(X),Z,Z1),

not_holds_all(xdim(_),Z1),
holds(ydim(Y),Z,Z2),

not_holds_all(ydim(_),Z2),
holds(at(AX,AY),Z,Z3),

not_holds_all(at(_,_),Z3),
holds(facing(D),Z,Z4),

not_holds_all(facing(_),Z4),
holds(gold(GX,GY),Z,Z5),

not_holds_all(gold(_,_),Z5),
holds(wumpus(WX,WY),Z,Z6),

not_holds_all(wumpus(_,_),Z6),

% range constraints
[X,Y] :: [1..100], D :: [1..4],
AX #>= 1, AX #<= X, AY #>= 1, AY #<= Y,
GX #>= 1, GX #<= X, GY #>= 1, GY #<= Y,
WX #>= 1, WX #<= X, WY #>= 1, WY #<= Y,

% constraints for pits (boundary etc.)
not_holds_all(pit(_,0),Z),
not_holds_all(pit(0,_),Z),
Y1 #= Y+1, not_holds_all(pit(_,Y1),Z),
X1 #= X+1, not_holds_all(pit(X1,_),Z),
not_holds(pit(GX,GY),Z),
not_holds(pit(WX,WY),Z),

duplicate_free(Z).

Here, the FLUX kernel predicate Holds 	�� �� �� � � means that
fluent � holds in state � , and ��� is � without � . The kernel
constraint DuplicateFree 	�� � is used to ensure that fluents do
not occur twice in state list � .

2The update specification of TurnLeft includes the evaluation of
some of the percepts, as this will be the very first action of the
agent to acquire knowledge of the two cells surrounding its home
square (1,1).

3 The Strategy
Strategy programs are based on the following pre-defined
FLUX predicates:

� Knows 	�� ��� � (respectively, KnowsNot 	�� �� �), meaning
that fluent � is known to hold (respectively, known not
to hold) in incomplete state � .

� KnowsVal 	��� ��� �� � , meaning that fluent � is known to
hold for arguments �� in incomplete state � .

� Execute 	�� ���� ���� � , meaning that the actual execution of
action � in state ��� leads to state � � .

These predicates are used in the followin sample control pro-
gram for a cautious Wumpus World agent:

main :-
init(Z0), execute(turn_left,Z0,Z1),
Cpts=[1,1,[1,2]], Vis=[[1,1]], Btr=[],
main_loop(Cpts,Vis,Btr,Z1).

main_loop([X,Y,Choices|Cpts],Vis,Btr,Z) :-
Choices=[Dir|Dirs] ->

(explore(X,Y,Dir,Vis,Z,Z1) ->
(knows(at(X,Y),Z1) ->

main_loop([X,Y,Dirs|Cpts],
Vis,Btr,Z1)

; knows_val([X1,Y1],at(X1,Y1),Z1),
(knows(gold(X1,Y1),Z1) ->

execute(grab,Z1,Z2),
go_home(Z2)

; hunt_wumpus(X1,Y1,Z1,Z2,
Vis,Vis2,_,_),

Cpts1=[X1,Y1,[1,2,3,4],
X,Y,Dirs|Cpts],

Vis1=[[X1,Y1]|Vis2],
Btr1=[Dir|Btr],
main_loop(Cpts1,Vis1,Btr1,Z2)

)
)

; main_loop([X,Y,Dirs|Cpts],Vis,Btr,Z)
)

; backtrack(Cpts,Vis,Btr,Z).

explore(X,Y,D,V,Z1,Z2) :-
adjacent(X,Y,D,X1,Y1),
\+ member([X1,Y1],V),
(D#=1 -> \+ knows(ydim(Y),Z1)
;
D#=2 -> \+ knows(xdim(X),Z1)
; true),

knows_not(pit(X1,Y1),Z1),
(knows_not(wumpus(X1,Y1),Z1)

; knows(dead,Z1)),
turn_to(D,Z1,Z), execute(go,Z,Z2).

backtrack(_,_,[],_) :- execute(exit,_,_).

backtrack(Cpts,Vis,[D|Btr],Z) :-
R is (D+1) mod 4 + 1,
turn_to(R,Z,Z1), execute(go,Z1,Z2),
knows_val([X,Y],at(X,Y),Z2),
hunt_wumpus(X,Y,Z2,Z3,

Vis,Vis1,Cpts,Cpts1),
main_loop(Cpts1,Vis1,Btr,Z3).

turn_to(D,Z1,Z2) :-
knows(facing(D),Z1) -> Z2=Z1

;
knows_val([D1],facing(D1),Z1),
((D-D1#=1 ; D1-D#=3) ->

execute(turn_right,Z1,Z)
; execute(turn_left,Z1,Z)),

turn_to(D,Z,Z2).

After the initialization of the world model and the execution
of a TurnLeft action at the home square (to acquire the first
sensory input), the main loop is entered by which the agent
systematically explores the environment. To this end, the
program employs three parameters containing, respectively,
choice points yet to be explored, the squares that have been
visited, and the current path. The latter is used to backtrack
from a location once all choices have been considered. A
choice point is a list of directions, which are encoded by

(for north) to � (for west) as usual. The path is represented
by the sequence, in reverse order, of the directions the agent
took in each step.

In the main loop, the agent selects the first element of the
current choices. If this direction could indeed be explored
(predicate Explore) and the agent did not end in the same
square (indicating that it actually bumped into a wall), then it
checks whether it has found the gold. If so, it takes the quick-
est rout home (see below), else it sees if the Wumpus can be
hunted down, and then a new choice point is created while
augmenting the backtrack path by the direction into which
the agent just went. If, on the other hand, the chosen direction
cannot be taken, then the main loop is called with a reduced
list of current choices. In case no more choices are left, the
agent backtracks (predicate Backtrack).

The auxiliary predicate Explore 	�� ��� �� ��� �� � �� � � succeeds
if the agent can safely go into direction � from its current lo-
cation 	�� ��� � in state ��� , ending up in state � � . A direction
is only explored if the adjacent square both does not occur
in the list � of visited cells and is not known to lie outside
the boundaries. Moreover, and most importantly, the adjacent
location must be known to be safe. Thus the strategy imple-
ments a cautious agent, who never runs the risk to fall into a
pit or to be eaten by the Wumpus. By the auxiliary predicate
Backtrack, the agent takes back one step on its current path
by reversing the direction. The program terminates once this
path is empty, which implies that the agent has returned to
its home after it has visited and cleaned as many locations as
possible.

Here are the definitions of the missing parts of the strategy,
that is, how to hunt the Wumpus and how to get home once
gold has been found:

hunt_wumpus(X,Y,Z1,Z2,
Vis1,Vis2,Cpts1,Cpts2) :-

\+ knows(dead,Z1),
knows_val([WX,WY],wumpus(WX,WY),Z1),
in_direction(X,Y,D,WX,WY)
-> turn_to(D,Z1,Z), execute(shoot,Z,Z2),

path(X,Y,WX,WY,Vis),
subtract(Vis1,Vis,Vis2),
(Cpts1=[X,Y,Dirs1|Cpts] ->

union(Dirs1,[D],Dirs2),
Cpts2=[X,Y,Dirs2|Cpts]

; Cpts2=Cpts1)
; Z2=Z1, Vis2=Vis1, Cpts2=Cpts1.

in_direction(X,Y,D,X1,Y1) :-
D :: 1..4,

(D#=1)#/\(X1#=X)#/\(Y1#>Y) % north
#\/(D#=3)#/\(X1#=X)#/\(Y1#<Y) % south
#\/(D#=2)#/\(X1#>X)#/\(Y1#=Y) % east
#\/(D#=4)#/\(X1#<X)#/\(Y1#=Y). % west

go_home(Z) :-
a_star_plan(Z,S),
execute(S,Z,Z1), execute(exit,Z1,_).

The agent hunts the Wumpus only in case the location
is known and, for the sake of simplicity, only when the
agent happens to be in the same row or column (predicate
InDirection). When the Wumpus has been killed, the agent
can explore areas which it may have rejected earlier. There-
fore, all cells that lie on the path �� between the agent and the
Wumpus (predicate Path 	�� ��� ����� ����� ������) may be re-vistited.
To this end, it is ensured that the current list of choice points
includes the direction in which the agent has shot the arrow.

After it has found the gold, the auxiliary predicate GoHome
directs the agent to the exit square on a shortest safe path.
Predicate AStarPlan 	����� � is defined in such a way that
the agent employs A

	
-search to find a plan, i.e., sequence

of actions � , that from the current location in state � to
square 	
 �
 � . As the heuristic function, we use the Manhattan
distance. We omit the details here; the complete FLUX pro-
gram is available for download at www.fluxagent.org.

The following table illustrates what happens in the first
nine calls to the main loop when running the program with
the scenario depicted in Figure 1:

At Cpts Btr Actions
 ��� ��
[[1,2,3,4]] [] �
 ��� ��

[[1,2,3,4],[2,3,4]] [1] –
 ��� ��
[[2,3,4],[2,3,4]] [1] –
 ��� ��

[[3,4],[2,3,4]] [1] –
 ��� ��
[[4],[2,3,4]] [1] –
 ��� ��
[[],[2,3,4]] [1] �����
 ��� ��

[[2,3,4]] [] ���
 ��� ��
[[1,2,3,4],[3,4]] [] ���
 ��� ��

[[1,2,3,4],[2,3,4],[3,4]] [] –

The letters � ��� are abbreviations for the actions Go and
TurnLeft, respectively. After going north to 	
 � ��� , the agent
cannot continue in direction

or � because both 	
 �
 � and

	 � ����� may be occupied by a pit according to the agent’s
current knowledge. Direction
 is not explored since loca-
tion 	
 �
 � has already been visited, and direction � is ruled
out as 	������� is outside of the boundaries. Hence, the agent
backtracks to 	
 �
 � and continues with the next choice there,
direction � , which brings it to location 	 � �
 � . From there it
goes north, and so on. Eventually, the agent arrives at 	�������� ,
where it senses a glitter and grabs the gold. The backtracking
path at this stage is depicted in Figure 3. Along its way, the
agent has determined the square with the Wumpus and shot
its arrow in order to safely pass through this square.

4 Experimental Results
In order to see how the agent performs wrt. the reward func-
tion as specified in [2] and how the program scales to en-
vironments of increasing size, we ran series of experiments

 �
 � �

�

�

� ???

??

?� �

�

� � �

�

�

Figure 3: Exploring the cave depicted in Figure 1, our agent
eventually reaches the cell with the gold, having shot the
Wumpus along its way and inferred the locations of three pits.
Parts of the grid are still unknown territory.

with square grids of different size. The scenarios were ran-
domly chosen by adding a pit to each cell with probability 0.2
and then randomly placing the Wumpus and the gold in one
of the free cells. The following table shows the cumulated
reward3 over 100 runs each for various grid sizes. The third
row shows the number of successful runs, that is, where the
agent found the gold:

Size Total Reward Successful Runs
� � � 43,028 45
� � �

32,596 35
� � �

20,276 23
� � �

15,471 18
� � �

12,616 15
 � �
 � 10,012 13

As can be seen from the table, with increasing size it gets
more and more difficult for our cautious agent to find the gold.

The following table shows the average time (seconds CPU
time of a 1733 MHz processor) it takes for the agent to select
an action and to infer the update. The times were obtained
by averaging over 100 runs with different scenarios and by
dividing the total time for solving a problem by the number
of physical actions executed by the agent:

Size Time per Action
� � � 0.0282 sec
� � �

0.0287 sec
� � �

0.0342 sec
� � �

0.0463 sec
� � �

0.0503 sec
 � �
 � 0.0579 sec

The figures show that the program scales well. The slight in-
crease is due to the increasing size of the state when the agent
has acquired knowledge of large portions of the (increasingly
large) environment. Indeed, the program scales gracefully to

3Following the specification in [2], the agent receives a reward
of +1000 when it makes an exit with the gold. A “reward” of -1000
is given when the agent dies, but this never happens to our cautious
agent. Every action counts -1, and using the arrow counts an addi-
tional -10.

environments of much larger size; we also ran experiments
with a � � � � � -grid, placing the gold in the upper right cor-
ner and with a sparser distribution of pits (using a probabil-
ity 0.05 for each square, so that in most cases the agent had
to explore large portions of the grid). These scenarios were
completed, on the average over 20 runs, within 340 seconds,
and the average time for each action was 0.7695 sec.

5 Improvements
The FLUX program presented in this paper encodes a partic-
ular, quite simple strategy for a Wumpus World agent. Due
to its declarative nature, it should be easy to improve the pro-
gram in various ways:

1. Our agent tends to make more turns than necessary, be-
cause it systematically goes through the possible choices
of directions for the next exploration step. The agent
should rather check whether the direction it currently
faces is among the possible choices, and then simply
continue on its way.

2. Since the use of the arrow gives a negative reward, the
agent should shoot the Wumpus only if this allows to
enter areas that are otherwise inaccessible.

3. With increasing size, it gets increasingly more difficult
for a cautious agent to find the gold; the average reward
may be increased if the agent ventures to take the occa-
sional step into a square that is not known to be safe.

4. The computational behavior may be tuned by a one-
dimensional representation of the grid.

References
[1] Yves Lespérance etal. A logical approach to high-

level robot programming—a progress report. In B.
Kuipers, editor, Control of the Physical World by Intel-
ligent Agents, Papers from the AAAI Fall Symposium,
pages 109–119, 1994.

[2] Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach (Second Edition). Prentice-Hall, 2003.

[3] Michael Thielscher. From situation calculus to fluent cal-
culus: State update axioms as a solution to the inferen-
tial frame problem. Artificial Intelligence, 111(1–2):277–
299, 1999.

[4] Michael Thielscher. FLUX: A logic programming
method for reasoning agents. Theory and Prac-
tice of Logic Programming, 2005. Available at:
www.fluxagent.org.

[5] Michael Thielscher. Reasoning Robots. Applied Logic
Series 33, Kluwer Academic 2005.

