A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

4 methods use instance variables

How Objects Behave

This oughta
change her statel

State affects behavior, behavior affects state. we know that objects

have state and behavior, represented by instance variables and methods. But until now, we
haven't looked at how state and behavior are refated. We already know that each instance of a
class (each object of a particular type) can have its own unique values for its instance variables.
Dog A can have a name “Fido” and a weight of 70 pounds. Dog 8 is *Killer” and welighs 9 pounds.
And If the Dog class has a method makeNoise(), wel), don’t you think a 70-pound dog barks a

bit deeper than the little 9-pounder? (Assuming that annoying yippy sound can be considered
a bark.) Fortunately, that's the whole point of an object—it has behavior that acts on its state. In
other words, methods use Instance varlable values. Like,“if dog Is less than 14 pounds, make

yippy sound, else...” or “increase weight by 57 Let’s go change some state.

this is @ new chapter 71

http://www.a-pdf.com/?product-split-demo

objects have state and behavior

Remember: a class deseribes what an
object knows and what an object does

A class is the blueprint for an object. When you Sang

write a class, you’re describing how the JVM lnstanee title k

should make an object of that type. You already variables |artist 'KHOWS

know that every object of that type can have (state)

different instance variable values. But what about setTitla()

the methods? wmethods setArtist() does
behavior la

Can every objeet of that type have different (} play(

wethod behavlor?

Well... sort of *

Every instance of a particular class has the same
methods, but the methods can bekave differently
based on the value of the instance variables.

The Song class has two instance variables, fitle
and artist. The play() method plays a song, but
the instance you call play() on will play the song
represented by the vatue of the title instance
variable for that instance. So, if you call the play()
method on one instance you'll hear the song
“Politik”, while another instance plays “Darkstar”.
The method code, however, is the same.

void play() ({
soundPlayer.playSound(title) ;

}
\1(\s \r.s‘u & Song Song

Song t2 = new Song(): \a3 3.play() :

Niny € > 1o 99 s3.play() :
t2.setArtist (“Travis”); c \“‘3 gy 0¥ t2.play() ;
t2.setTitla (“Sing”) ; -
Song 83 = new Song() ; CA”lr.s Flay{) on {'}ns instance
83.setArtist (“Sex Pistols”); will cause MY Way to Pla‘/
83 .setTitle (“My Way”); (but not Lthe Sinadra one)

*Yas, another stunningly clear angwerl

72 chapter 4

size affects the bark

Dog’s bark is different from a big Dog’s bark.

Dog class has an instance variable sizg, that the
i method uses to decide what kind of bark sound

Szring name;

woid bark() {

if (size > 60) |

System.out.println (“Wooof! Wooof!”);
} else if (size > 14) {

System.out.println(“Ruff! Ruff!”);
} else {

System.out.println(“Yip! Yip!'”);

st

ass DogTestDrive |

public static void main (String(] args) f
Dog one = new Dog();
one.slze = 70;
Dog two = new Dog();
two.size = 8;
Dog three = new Dog();

three.size = 35;

Fila Edit Window Help Playdead

% java DogTestDrive

one.bark ()
Wooof! Wooof!

two.bark();

Yip! Yip!
Ruff! Ruff!

three.bark();

methods use instance variables

& Bark Different.

you are here v 73

method parameters

You can send things to a method

Just as you expect from any programming language, you can pass values into
your methods. You might, for example, want to tell a Dog object how many
times to bark by calling:

d.bark(3);

Depending on your programming background and personal preferences,
you might use the term arguments or perhaps parameters for the values passed
into a2 method. Although there are formal computer science distinctions that
people who wear lab coats and who will almost certainly not read this book,
make, we have bigger fish to fry in this book. So you can call them whatever
you like (arguments, donuts, hairballs, etc.) but we're doing it like this:

A method uses parameters. A caller passes arguments.

Arguments are the things you pass into the methods. An argument (a value
like 2, “Foo”, or a reference to a Dog) lands face-down into a... wait for it...
parameter. And a parameter is nothing more than a local variable. A variable
with a type and a name, that can be used inside the body of the method

But here’s the important part: If a method takes a parameter, you must pass
it something. And that something must be a value of the appropriate type.

Dog d = new Dog() ;

Call the bark method on the Dog refer-]
ence, and pass in the value 3 (as the d.bark (3) ;

argument to the method). &_ afsuvr-ChJC

The bits representing the int
e value 3 are delivered into the
bark method.

9 The bits land in the numOfBarks
parameter {an int-sized variable).

Pﬂ"émcfe..

void bark (int numO¥Harks) {

. Use the numOfBarks
while (numOfBarks > 0) ({ parameter as a variable in

System.out.println (“ruff”); the method code.

numOfBarks = numOfBarks - 1;

)

74 chapter4

methods use instance variables

You can get things back from a method.

Methods can return values. Every method is declared with a return
@pe, but undl now we’ve made all of our methods with a void
| type, which means they don’t give anything back.

#id go() {

Cute...
but not exactly what I
was expecting.

we can declare a method to give a specific type of value
=k to the caller, such as:

giveSecret() {

return 42; 0

declare a method to return a value, you must
mn a value of the declared typel (Or a value

St is compatible with the declared type. We'll get

g thar more when we talk about polymorphism

@ chapter 7 and chapter 8.)

atever you say
pu’ll give back, you
" .tter give back!

{ |

The tompiler won't let you return the wrong type of thing,
S®
\0\

int theSecret = life.giveSecret() ;

bR®
:n\axu\\ \ 4-2 are Yc‘t\lncd AQYO'“

- ‘ - . {_,.“\5 L g : h

int giveSecret() ({ The b“fﬁs‘;gz:“mct\wd, and land in TR
the 5'Ne et
return @ iable mamed heSerS
} Jd\\S m\&SJC ‘Q‘JC
n an '\ht.

you are here » 75

multiple arguments

You can send more than one thing
to a method

Methods can have multiple parameters. Separate them
with commas when you declare them, and separate the
arguments with commas when you pass them. Most
importantly, if 2 method has parameters, you must pass
arguments of the right type and order.

Calling a two-parametfer method, and sending
i1 two arguments.

void go() {
TestStuff t = naw TestStuff();

t.takeTwo (12, 34); ™
cw‘c ArGuments Yo Pass lang
) in ﬂ?— z'w Passed the,, Fiest " he sme
the ¢ Tirst Parameter, o0, darshe"{ lands
setond Parameter, 3n4 :: drgument ip
on.
void takeTwo (int x, int y) {
int z = x + y;
Systam.out.println(“Total is “ + z);
)
You can pass variables info a method, as long as
the variable type matehes the parameter type. N
void go() foo and \oa¥ \3“'&:’%&} n
int foo = 7; Tne value® oinm S"\::: " {oo (‘h:i)\e
- 3. AN T\ ke e B) el
= 3 . .
int bar = 3; »; ;‘ﬂ ‘dwbc?;ar e m&,cgi’ﬂ ks bav
t . takeTwo (foo, bar); \)*‘?M“ﬂ '\Acﬁ)(l“'a\
} \\ b\b w \I 2
void takaTwo (int x, int y) (- \ os 27 H’-IS the same
3 vl '
int z = x + y; W\\a{:s th’edvac{: $ Jou addCd Qoo.’*
- . " | el yor S'NC ou passed Them "
System.out.println(“Total is ” + z); bav st the Lime Y
) ‘U‘ie ﬂktT“o ™

76 chapter 4

methods use instance variables

Java is pass-by-value.

That means pass-by-copy.

variab

) o Declare an int e and assign it
int x = 7; | the value '7'. The bit pattern for 7
int goes into the variable named x.
’ . @ Declare a method with an int
void go(int z){ } parameter named z.
int
Py of

N N ’—\ Call the go() method, passing
> ’L’god:p e the variable x as the argument.
The bits in x are copied, and
the copy lands in z.
int

int :
foo.go (x) ; void go(int z){ }

X does),’ ver Change the value of z inside
ﬂmo;?, :' dd hange, W 3':2:{; e the method. The value of x
L doesn't change! The argument
-------------- @ passed to the z parameter was
- int only a copy of x.
void go(int 2){ The method can't change the
z =0; bits that were in the calling
variable x.

you are hare » 77

arguments and return values

78

O Ghestions

Q:What happens if the argument you want to
pass is an object instead of a primitive?

A: You'll learn more about this in later chapters,
but you already know the answer. Java passes
everything by value. Everything. But... value means
bits Inside the variable. And remember, you don’t

stuff objects into variables; the variable Is a remote
control—a reference to an obfect. So if you pass a
reference to an object into a method, you're passing
a copy of the remote controf, Stay tuned, though, we'ill
have lots more to say about this.

Q,: Can a method declare muitiple return valuas?
Or Is there soma way to returin more than one
value?

A: Sort of. A method can declare only one return
value.BUT...If you want to return, say, three int values,
then the declared return type can be an int array.
Stuff those ints into the array, and pass it on back. It's
a little more involved to return multiple values with
different types; we'll be talking about that in a later
chapter when we talk about ArrayList.

Q,: Do | have to return the exact type | declared?

A:You can return anything that can be implicitly
promoted to that type.So, you can pass a byte where
an Int is expected. The caller won't care, because the
byte fits Just fine into the Int the caller will use for
assigning the resuit. You must use an expficit cast
when the declared type is smalfer than what you're
trying to return.

Q: Dol have to do something with tha return
value of a method? Can | just ignore it?

A:Java doesn’t require you to acknowledge a
return value. You might want to call a method with

a non-void return type, even though you don't care
about the return value. In this case, you're calling

the method for the work it does inside the method,
rather than for what the method gives returns. In
Java, you don’t have to assign or use the return value,

chapter 4

——— BULLET POINTSQ

Reminder: Java
cares about type!

You can’t return a Giraffe when
the return type Is declared
v)y as a Rabbit. Same thing with
9/7 parameters. You can’t pass a

b Giraffe into a method that
3 takes a Rabbit.

Classes define what an object knows and what an
object does.

Things an object knows are its instance varlables
(state).

Things an object does are its methods (behavior).

Methods can use instance vaniables so that objects
of the same type can behave differently.

A method can have parameters, which means you
can pass one or more values in to the method.

The number and type of values you pass in must
match the order and type of the parameters
declared by the msthod.

Values passed in and out of methods can be
implicitly promoted to a larger type or explicitly cast
to a smaller type.

The value you pass as an argument to a method
can be a Iteral value (2, ‘¢, etc.) or a varniable of
the declared parameter type (for sxample, x where
xis an int variable). (There are other things you
can pass as arguments, but we're not there yet.)

A method must declare a retum type. A void return
type means the method doesn't retum anything.

If a method declares a non-void retumn type, it must
retumn a value compatible with the declared retumn

type.

methods use instance variables

a@s you can do with parameters
)rn types

St we've seen how parameters and return types work, it's ElectricGuitar
& put them to good use: Getters and Setters. If you're into
‘a8l formal about it, you might prefer to call them Accessors brand
fatstors. But that’s a waste of perfectly good syllables. numOfPickups
= Getters and Setters fits the Java naming conventon, so rockStarUsesl{
at we'll call them. Noke: Using {-,\\lac
.and Setters let you, well, get and set things. Instance vari- namind conventions
miues. usually. A Getter'’s sole purpose in life is to send back, getBrand() medns \fou)“ be
smurn value, the value of whatever it is that particular Geaer | setBrand() £ ollowing o
=d 10 be Getting. And by now, it's probably no surprise getNumOfPickups() '...\?orb"{'« Java
lives and breathes for the chance to take an argu- . tandavd!
and use it to sef the value of an instance variable. setNumOfPickups() swan
getRockStarUseslt()
setRockStarUseslt()
ms ElectricGuitar {

: numOfPickups;
n rockStarUseslt;

ng getBrand () {
return brand;

mid setBrand(String aBrand) {
brand = aBrand;

t getNumOfPickups () (
return numOfPickups;

roid setNumOfPickups (int num) ¢

| pumO£fPickups = num;

R

aan getRockStarUsealIt() {
urn rockStarUseslt;

=i2 setRockStarUsesIt(boolean yesOrNo) ({
zockStarUseslt = yesOrNo;

you are here » 79

real developers encapsulate

Encapsulation

Do it or risk humiliation and
ridicule.

Until this most important moment, we’ve
been committing one of the worst OO
faux pas (and we're not talking minor
violation like showing up without the ‘B’
in BYOB). No, we're talking Faux Pas with
a capital ‘F’. And 'P".

Our shameful transgression?

Exposing our datal

Here we are, just humming along without
a care in the world leaving our data out
there for anyone to see and even touch.

You may have already experienced that
vaguely unsettling feeling that comes with
leaving your instance variables exposed.

Exposed means reachable with the dot
operator, as in:

theCat.height = 27;

.Think about this idea of using our remote
control to make a direct change to the Cat
object’s size instance variable. In the hands
of the wrong person, a reference variable
(remote control) is quite a2 dangerous
weapon. Because what’s to prevent:

yesh We €27 <

\c& *)(\S \\aWCT\I.

theCat.height = 0;

This would be a Bad Thing, We need to
build setter methods for all the instance
variables, and find a way to force other
code to call the setters rather than access
the data direcdy.

80 chapter 4

Jen says you're
well-encapsulated...

_ ko calt 2 sether
By ‘ﬁ‘?ﬁf;ﬁ& he eat frem

public void setHeight (int ht) {

1f (bt > 9) { “,
height = ht; ‘sf:fain ‘;hcdu
ntee a

: minimum ¢at height.

methods use instance variables

the data

s it is that simple to go from
: -nplementatxon that’s just
Begging for bad data to one . _)
a1 protects your data and HeadFirst: What's the big deal about encapsulaton?

geotects your right to modify Object: OK, you know that dream where you're giving a talk to 500 people when you
sour implementation later. suddenly realize— you’re naked?

DE. so how exactly do you HeadFirst: Yeah, we've had that one. It’s right up there with the one about the Pilates
the data? With the machine and... no, we won’t go there. OK, so you feel naked. But other than being a linde
mblic and private exposed, is there any danger?
acress modifiers. You're Object: Is there any danger? Is there any danger? [stans laughing] Hey, did all you other
b.l.llar with publ ic~we use . « o A .
instances hear that, “Is there any danger?” he asks? [falls on the floor laughing]

HeadFirst: Whav's funny about that? Seems like a reasonable question.
re’s an encapsulation . ,
rrule of mpumb (all stan- Object: OK, I'll explain it. It’s [bursts out laughing again, uncontrollably]

d disclaimers about rules ~ HeadFirst: Can I get you anything? Water?

of thumb are in effect): mark Opject: Whew! Oh boy. No I'm fine, really. Pll be serious. Deep breath. OK, go on.

instance vaniables private

3 provide public getters

mad setters for access control. Object: Encapsulaton puts a force-field around my instance variables, so nobody can set
en vou have more design ~ them to, let’s say, something tnappropriate.

id coding savvy in Java, you
probably do things a Jittle

This week’s interview:
An Object gets candid about encapsulation.

HeadFirst: So what does encapsulaton protect you from?

HeadFirst: Can you give me an example?

Object: Doesn't take a PhD here. Most instance variable values are coded with centain
assumptions about the boundaries of the values. Like, think of all the things that would

break if negative numbers were allowed. Numnber of bathrooms in an office. Velocity of
an airplane. Birthdays. Barbell weight. Cell phone numbers. Microwave oven power

HeadFirst: I see what you mean. So how does encapsulation let you set boundaries?

Object: By forcing other code to go through setter methods. That way, the setter method
can validate the parameter and decide if i’s do-able. Maybe the method will reject it and
do nothing, or maybe it’ll throw an Excepdon (ke if it’s a null social security number

for a credit card application), or maybe the method will round the parameter sent in to
the nearest acceptable value. The point is, you can do whatever you want in the setter
method, whereas you can’t do ampthang if your instance variables are public.

HeadFirst: But sometimes I see setter methods that simply set the value without check-
ing anything, If you have an instance variable that doesn't have a boundary, doesn’t that

“Sadly, Bill forgot to setter mecthod create unnecessary overhead? A performance hit?

encapsulate his Cat class and Object: The point to setters (and getters, too) is that you can change your mind later,
ended up with a flat cat.” without breaking anybody else’s code! Imagine if half the people in your com-

pany used your class with public instance variables, and one day you suddenly realized,
“Oops- there’s something I didn’t plan for with that value, I'm going to have to switch to a
setter method.” You break everyone’s code. The ool thing about encapsulaton is that you
get to change your mind. And nobody gets hurt. The performance gain from using variables
directly is so miniscule and would rarely—if* wer— be worth it

{overheard at the water cooler).

you are here » 81

how objects behave

class GoodDog {

Encapsulating the
GoodPog class

private int size;

MavJ' the ‘-qa‘bt'
Q”A&QLVQ"' public int getSize() {
return size;
}
and . A L
. > public void setSize(int s) {

e e X s pie public void
sa{u‘r ™ size = §;

void bark() |

if (size > 60)

Even {,ho\?h the methods dont veally

add new unebionality, the La?l thing System.out.println (“Wooof! Wooof!”);
is that you tan thange your "“"dk) else if (size > 14) {
later. you tan tome back and make 3 System.out.println (“Ruff! Ruff'!”);
mekhod safer faster, better } else {
System.out.println(“Yip! Yip!”);
}
}
)
class GoodDogTestDrive |
public static veoid main (String(]l args) {

GoodDog one new GoodDog();

one.setSize(70);

GoodDog two new GoodDog () ;
two.setSize (8);
System.out.println (“Dog cne:
System.out.println (“Dog two:
one.bark();

two.bark ()

a2

chapter 4

“ + one.getSize());

“ + two.getSize());

methods use instance variables

How do objects in an array
behave?

|__pt like any other object The only difference is
|._Mw you get to them. In other words, how you get
|-ic remote control. Let’s try calling methods on
Dog objects in an array.

Declare and create a Dog array,
to hold 7 Dog references.

Dog[] pets;
pets = new Dog[7];

Dog(]

e Create two new Dog objects,
" and assign them to the first
two array elements.
pets (0]
pets[1]

new Dog();
new Dog () ;

e Call methods on the two Dog
objects.

pets[0] .setSize (30);
int x = pets[0] .getSize();
pets[l] .setSize(8):

Dog array object (Dog(])

you are here » 83

initializing instance variables

Peclaring and initializing
instance variables

You already know that a variable declaration needs at least a name
and a type:

Instance variables
always get a

int size; default value. If
String name; you don’t explicitly
And you know that you can initalize (assign a value) to the assign a value

variable at the same time:

to an instance
int size = 420; o
String name = “Donny”; variable, or you

don’t call a setter
But when you don't initialize an instance variable, what happens
when you call a getter method? In other words, what is the value of methOd’ the

an instance variable before you initialize it? instance variable
« BEEULETERTETTTY

1abl
class PoorDog { bwo ¥ rskante V2 .
detlace '} pssiop 3 value mtegers 0
private int sirze; if but don
private String name; floating points 0.0
What will these veturm?? NN PEAS false

public int getSize() {{¢&—
) return size; / references null

public String getName () {
return name;

}

}
\L? wilb

public class PoorDogTestDrive (L do Y% \L
?\

public static void main (String[] args) { puen
PoorDog one = new PoorxDog{) (s
System.out.println(“Dog size is “ + one.getSize());
Systam.out.println(“"Dog name is “ + one.getName());,

) . nte qavlablcsx
\(ou don't have to mtialize hz&:‘,\{; olue. Numch

becse 00 A \‘3“)3 df: 0, boa\za'«s gc{: false,
¢ Java Pooxboglestbrive rimitves (lnt.\ud\ng thar 151
! 4 doiect ve {evente vaviables 5 ot
e 1| just means 3 rcmo{:z con{'xo\ 3
o

membeY, J thing:
Dog name is null (.f:..ficconb"’““’-s/?' cammed to anY

buk no 36{"“31 OB.)CLL

Fils Edit Window Help CallVel

Dog size is 0

uJ;acncc.

84 chapterd

The difference between instance
and local variables

Instance variables are declared
inside a class but not within a methed.

class Horse {
private double height = 15.2;
private String breed;
// more code...

e Local variables are declared within a method.

classg AddThing {
int a;
int b = 12;

public int add() {

int total = a + b;
return total;

e Local variables MUST be initialized before usel

class Foo { |
public void go() f Wor't Lom‘n'\cﬁ You (;aasi\u
. detlare * without a)
J.-nt . but as soon 3s Yo 7
INE 2 = X Y35 o USE it the comPlET
| ~— Creaks vt

Flie €dit Window Help Yikes
% javac Foo,. java

Foo.]java:4: variable x might

not have been initialized

int z = x + 3;
l error A

methods use instance variables

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before

the variable is
initialized.

Di{”ﬁlemesﬁons

(\)v: What about method parameters?
How do the rules about local variables
apply to them?

A: Method parameters are virtually the
same as local variables—they're declared
inside the method (well, technically theyre
declared in the argument list of the method
rather than within the body of the method,
but they're still local variables as opposed to
instance variables). But method parameters
will never be uninitialized, so you'll never get
a compller error telling you that a parameter
variable might not have been initialized.

But that's because the compiler will give

you an error if you try to invoke a method
without sending arguments that the method
needs. So parameters are ALWAYS initialized,
because the compifer guarantees that
methods are always called with arguments
that match the parameters declared for the
method, and the arguments are assigned
{automatically) to the parameters.

you are here » 85

object equality

Comparing variables (primitives or references)

Sometimes you want to know if two pmmitives are the same. That's easy
enough, just use the == operator. Sometimes you want to know if two
reference variables refer to a single object on the heap. Easy as well, just use
the == operator. But sometimes you want to know if two objects are equal.
And for that, you need the .equals() method. The idea of equality for
objects depends on the type of object. For example, if two different String
objects have the same characters (say, “expeditious”™), they are meaningfully
equivalent, regardless of whether they are two distinct objects on the heap.
But what about a Dog? Do you want to treat two Dogs as being equal if they
happen to have the same size and weight? Probably not. So whether two
different objects should be treated as equal depends on what makes sense for
that particular object type. We'll explore the notion of object equality again
in later chapters (and appendix B), but for now, we need to understand that
the == operator is used only to compare the bits in two variables. What those
bits represent doesn't matter, The bits are either the same, or they're not.

To compare two primitives, use the == operator

The == operator can be used to compare two variables of any kind, and it
simply compares the bits,

if (a =Db) {...} looks at the bits in a and b and retums true if the bit pattern
is the same (although it doesn’t care about the size of the vanable, so all the
extra zeroes on the left end don't matter).

int a = 3; &mc 3“‘
‘2&‘ cave

byte b = 3; \;wh"‘ ov*-

if (a ==b) { // true } ghat here

To see If two references are the same (which means they
refer to the same object on the heap) use the == operator

Remember, the == operator cares only about the pattern of bits in the
variable. The rules are the same whether the variable is a reference or
primitive. So the == operator returns true if two reference variables refer to
the same object! In that case, we don’t know what the bit pattern is (because
it’s dependent on the JVM, and hidden from us) but we do know that whatever
it looks like, it will be the same for two references to a single object.

Foo a = new Foo():
Foo b = new Foo();
Foo ¢ = a;
if (a == b) { // false)

a==¢is true
if (a ==¢e) { // true) 8
if (b ==¢) { // false } a:-:b.s«CaIu

86 chapter 4

Use == to compare
two primitives,

or to see if two
references refer to
the same object.

Use the equals()
method to see

if two different
objects are equal.
{Such as two different
String objects that both

reprasent the characters
in “Fred”)

Foo

I always
keep my variables
private. If you want to
see them, you have to
talk Yo my methods.

_Q%rpen Your pencil

What'’s legal?

Given the method below, which
of the method calls listed on the
right are legal?

Put a checkmark next to the
ones that are legal. (Some
statements are there to assign
values used in the method calls).

KEEP

P
RIGHT

| Make it Stick

methods use instance variables

Roses aré red;
this poem is choppY, \
passing by value
js passing by copy- |
@& our]
o beter? Tey it Ra.:::; -
N hke'yo:nd {ine with your ownx.’ - o
du"l‘b Se;\e’ whole thing with, you! |
ace A
r::d you'lt pever forget it.
int a = calcAraa(7, 12);

int calcArea(int height, int width) ({

raturn height * width;

short ¢ = 7;

calchrea (c,15) ;

int d = calecArea(57);
calchrea (2,3);

long t = 42

int £ = calcArea(t,17);
int g = calcArea();
calchraea () ;

byte h = calcArea(4,20);

int j = calcArea(2,3,5);

you are here »

87

exercise: Be the Compiler

BE the compiler

Each of the Java fi]es on this page
8. Tepresents a complete source f]e.
Your job 15 to play compiler and
determine whether each of these files
wil] compile. If they won’t
compile, how wou]d you
fix them, and if they do
compile, what would he

their output?

class XCopy { class Clock {
String time;
public gtatic void main(String [) args) {

. . void setTime(String t) {
int orig = 42;

time = t;
XCopy x = new XCopy(): }
int y = x.go(orig); void getTime() ({
return time;

System.out.println{orig + * * + y);

}

int go(int arg) {
class ClockTestDrive {

arg = arg * 2; public static void mz2in(String (] args) {

return arg;
}
}

Clock ¢ = new Clock(});

c.setTime(*1245");
String tod = c.getTime(};
System.out.println(“time: “ + tod);

}

88 chapter4d

methods use instance variables

(¥ A bunch of Java components, in full costume, are playing a party
v game,“Who am 17" They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one guy, then write down all for whom that sentence
applies. Fill in the blanks next to the sentence with the names of one
or more attendees.

9 Tonight’s attendeas:
Instance variable, argument, return, getter, setter,

who 33“ encapsulation, public, private, pass by value, method

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

| prefer my instance variables private.

It really means ‘make a copy’.

Only setters should update these.

A method can have many of these.

| return something by definition.

| shouldn’t be used with instance variables.

| can have many arguments.

By definition, | take one argument.

These help create encapsulation.

| always fly solo.

you are here » 89

puzzle: Mixed Messages

Mixed
Messages
A short Java program s listed to your right.
Two blocks of the program are missing.
Your challenge is to match the candidate

blocks of code (below), with the output
that you'd see if the blocks were inserted.

Not all the lines of output will be used, and
some of the lines of output might be used
more than once. Draw lines connecting
the candidate blocks of code with their
matching command-line output.

Candidates:

90 chapterd

Possible output:

public class Mix4 {
int counter = 0;
public static void main(String (] args)
int count = 0;
Mix4 [) md4a =new Mix4([20);
int x = 0;

wmite (] ¢

mda(x] = new Mix4();

mda(x].counter = mda(x).counter + 1;
count = count + 1;

count + mda[x).maybeNew (x);

count
X =x+1;
}
System.out.println(count + ™ *
+ mdall].counter);

}

public int maybeNew (int index) {
if (YA

Mix4 m4 = new Mix4();
m4d.counter = m4.counter + 1;

return 1;

}

return 0;

{

os] Puzzle

Your job is to take code snippets from the
pool and place them into the blank lines

B in the code. You may not use the same

. snippet more than once, and you won't
need to use all the snippets.Your goa/
is to make a class that will compile and
run and produce the output listed.

Output

“File_Edil Window Halp BebyFlop
% java Puzzled
result 543345

Note: Each snippet
from the pool can be
used only oncel

dOStufF(x);
obs.doStuff(x);

L obs[x).ivar = y; factor
[Puzzle4 [] obs = new Puzzle4(6); public
._'. Puzzledb [) obs = new Puzzledbls); Private

Puzzledb [] obs = new Puzzle4d(6]);

methods use instance variables

public class Puzzle4 ({
public static void main(String [] args) {

int y = 1;
int x = 0;
int result = 0;
while (x < 6) {

y=y* 10;

}
X = 6;
while (x > 0)

result = result +

}
System.out.println{“result “ + result);
}
}
class {

int ivar;

doStuff{int) {
if (ivar > 100) {
return
} else {
‘return

T A— obs[x).doStuff(factor);
Wobs ivar _ . Obslx).doStuff(x);
obs[x).ivar = x; ivar

iva\r + factor; Puzzled
ivar * (2 + factor); Puzzle4b int
ivar * (5 - factor); Puzzledb() short

lvar * factor;
obs [x] = new Puzzle4b(x);
obs (] = new Puzzledb();
obs [x] = new Puzzle4b();
obs = new Puzzle4b();

- -

X=x+1;
X=x -1;

you are here » 91

puzzle: Five Minute Mystery

Five-Minute

Mystery

92

chapter 4

Fast Times in Stim-City

When Buchanan jammed his twitch-gun into Jai’s side, Jai froze. Jai knew that Buchanan
was as stupid as he was ugly and he didn’t want to spook the big guy. Buchanan ordered Jai
into his boss’s office, but Jai’d done nothing wrong, (lately), so he figured a linle chat with
Buchanan’s boss Leveler couldn’t be too bad. He'd been moving lots of neurat-stimmers in
the west side lately and he figured Leveler would be pleased. Black market stimmers weren’t
the best money pump around, but they were pretty harmiess. Most of the stim-junkies he’d
seen tapped out after a while and got back to life, maybe just a little less focused than before.

Leveler's ‘office’ was a skungy looking skimmer, but once Buchanan shoved him in, Jai
could see that it’d been modified to provide all the extra speed and armor that a local boss like
Leveler could hope for. “Jai my boy”, hissed Leveler, “pleasure 1o see you again”. “Likewise
I'm sure...”, said Jai, sensing the malice bebind Leveler’s greeting, “We should be square
Leveler, have] missed something?” “Ha! You’re making it look pretty good Jai, your volume
is up, but I’ve been experiencing, shall we say, a little ‘breach’ lately...” said Leveler.

Jai winced involuntarily, he’d been a top drawer jack-hacker in his day. Apytime someone

“figured out how to break a street-jack’s security, unwanted attention turned toward Jai. “No

way it’s me man”, said Jai, “not worth the downside. I'm retired from hacking, I just move
my stuff and mind my own business”. “Yeah, yeah”, laughed Leveler, “I'm sure you're
clean on this one, but I'll be losing big margins until this new jack-backer is shut
out!” “Well, best of luck Leveler, maybe you could just drop me here and I'll go
move a few more ‘units’ for you before I wrap up today”, said Jai.

“I'm afraid it’s not that easy Jai, Buchanan here tells me that word is you’re
current on J37NE”, insinuated Leveler. ‘“Neural Edition? sure] play around a bit, 8o
what?”, Jai responded feeling a little queasy. ‘“Neural edition’s how [let the stim-junkies
know where the next drop will be”, explained Leveler. “Trouble is, some stim-junkie’s stayed
straight long enough to figure out how to hack into my WareHousing database.” “I need a
quick thinker like yourself Jai, to take a look at my StimDrop J37NE class; methods, instance
variables, the whole enchilada, and figure out how they’re getting in. It should..”, “HEY!",
exclaimed Buchanan, “I don’t want no scum hacker like Jai posin’ around my code!” “Easy
big guy”, Jai saw his chance, “I’m sure you did a top rate job with your access modi.. “Don’t
tell me - bit twiddler!”, shouted Buchanan, “I left all of those junkie level methods public,

50 they could access the drop site data, but I marked all the critical WareHousing methods
private. Nobody on the outside can access those methods buddy, nobody!™

“I think I can spot your leak Leveler, what say we drop Buchanan here off at the corner
and take a cruise around the block”, suggested Jai. Buchanan reached for his twitch-gun but
Leveler’s stunner was already on Buchanan’s neck, “Let it go Buchanan”, sneered Leveler,

“Drop the twitcher and step outside, I think Jai and I have some plans to make”.

What did Jai suspect?
Will he get out of Leveler’s skimmer with all his bones intact?

methods use instance variables

class Clock {
String time;
void setTime(String t) {
time = t;
B }
String getTime() {

return time;

class ClockTestDrive {
public static void main(String [] args) {
Clock ¢ = new Clock();
c.getTime(*12457);
String tod = c.getTime();
System.out.println(“time: * + tod);

} Note: ‘Getter methods have a return
=== XCopy’ compiles and runs as it stands | The type by definition.

2 84'. Remember Java is pass by value, (which
ss by copy), the variable ‘orig’ is not changed by the

A class can have any number of these. instance variables, getter, setter,method

A method can have only one of these. return
This can be implicitly promoted. return, argument
prefer my instance variables private. encapsulation
really means 'make a copy’. pass by value
setters should update these. instance variables
A method can have many of these. argument
eturn something by definition. getter

shouldn't be used with instance variables public

| can have many arguments. method

definition, | take one argument. setter

These help create encapsulation. getter, setter, public, private
1 always fly solo. return

you are here » 23

puzzie answers

Puzz]e Solutions

public class Puzzled (
public static void main(String [] args) {
Puzzle4b [1 obs = new Puzzle4b[6]
int y = 1;
int x = 0}
int result = 0;
while (x < 6) {
obs[x] = new Puzzled4b()
obs(x). ivar = y;

y =y * 10;
x=xe+1l

)

X = 6}

while (x > 0) {
X=Xx-1;

result = result + obs[x]doStuff(x):
4

System.out.println(“result “ + result);
*
Y

class Purzledb {
int ivar;
public int doStuff (int factor) ({
if (dvar > 100) {
return ivar* factor;
} elge {

return ivar™ (5 -~ factor);
} Output

} 5 BellyFiop
} %java Puzzleq

result 543345

94 chapter 4

Answer to the 5-minute mystery...

Jai knew that Buchanan wasn’t the sharpest
pencil in the box. When Jai heard Buchanan
talk about his code, Buchanan never menthoned
his instance vanables. Jai suspected that

while Buchanan did in fact handle his methods
correctly, he failed to mark his instance variables
private. That slip up could have easily cost
Leveler thousands.

Candidates: Possible output:

