
Appendix B
The Top Ten Topics that almost made it into the Real Book...

We covered a lot of ground,and you're almost finished with this book. We'll miss you, but before

we let you go, we wouldn't feel right about sending you out Into JavaLandwithout a little more

preparation. We can't possibly fit everything you'll need to know Into this relatively small appendix.

Actually, we did originally Include everything you need to know about Java (not already covered by

the other chapters), by reducing the type point size to .00003. It all fit, but nobody could read It. So,

we threw most of it away,but kept the best bits for this Top Ten appendix.

This really Is the end of the book. Except for the Index (a must-read I).

this is a new appendix 659

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

bit manipulation

We'll use the following example for the next three operators:

The Shift Operators
These operators take a single integer primitive and shift (or
slide) all of its bits in one direction or another. If you want
to dust off your binary math skills,you might realize that
shifting bits left effectively multiplies a number by a power of
two, and shifting bits right effectively divides a number by a
power of two.

#10 Bit Manipulation

Why do you care?
We've talked about the fact that there are 8 bits in a byte,
16 bits in a short, and so on. You might have occasion to
turn individual bits on or off. For instance you might find
yourself writing code for your newJava enabled toaster,
and realize that due to severe memory limitations, certain
toaster settings are controlled at the bit level. For easier
reading, we're showing only the last 8 bits in the comments
rather than the full 32 for an int).

int x = -11; II bits are 11110101

Bitwise NOT Operator: ...
This operator 'flips all the bits' of a primitive.

The next three operators compare two primitives on a bit
by bit basis, and return a result based on comparing these
bits. We'll use the following example for the next three
operators:

II bits are 00000110

II bits are 00001010 Right Shift Operator: »
This operator shifts all of a number's bits right by a certain
number, and fills all of the bits on the left side with whatever
the original leftmost bit was.The sign bit does notchange:

Ok, ok, we've been putting it off, here is the world's
shortest explanation of storing negative numbers, and
two's complement. Remember, the leftmost bit of an integer
number is called the sign bit. A negative integer number in
Java always has its sign bit turned on (i.e. set to 1). A positive
integer number always has its sign bit turned 011(0). Java
uses the two's complement formula to store negative numbers.
To change a number's sign using two's complement, flip all
the bits, then add 1 (with a byte, for example, that would
mean adding 00000001 to the flipped value).

bits are 00001010

II bits are now 11110101

II
x = -x;

int x = 10;

int x = 10;

int y = 6;

Bitwise AND Operator: &
This operator returns a value whose bits are turned on only
if bothoriginal bits are turned on:

int a = x «y; II bits are 00000010

int y = x »2; II bits are 11111101

Unsigned Right Shift Operator: »>
Just like the right shift operator BUT it ALWAYS fills the
leftmost bits with zeros. The sign bit mightchange:

Bitwise OR Operator:
This operator returns a value whose bits are turned on only
if either of the original bits are turned on:

int y = x»> 2; II bits are 00111101

int a = x I y; II bits are 00001110

Bitwise XOR (exclusive OR) Operator: A

This operator returns a value whose bits are turned on only
if exactly oneof the original bits are turned on:

Left Shift Operator: «
Just like the unsigned right shift operator, but in the other
direction; the rightmost bits are filled with zeros. The sign bit
mightchange.

int y = x «2; II bits are 11010100

int a = x A y; II bits are 00001100

660 appendix B

#9 Immutability

Why do you eare that Strlt1i!..are 1"''Mutable?
When yourJava programs start to get big. you 'll
inevitably end up with lots and lots of String objects.
For security purposes, and for the sake of conserving
memory (remember yourJava programs can run on
teeny Java-enabled cell phones), Strings in java are
immutable. What this means is that when you say:

String s = "0";

for (int x :: 1; x < 10; x++) (
8 = S + Xi

)
What's actually happening is that you're creating ten
String objects (with values "0", "01", "012 ", through
"0123456789") . In the end s is referring to the String
with the value "0123456789", but at this point there
are ten Strings in existence I

Whenever you make a new String, theJVM puts it
into a special part of memory called the 'String Pool'
(sounds refreshing doesn't it.?). If there is already
a String in the String Pool with the same value, the
JVM doesn't create a duplicate, it simply refers your
reference variable to the existing entry. TheJVM can
get away with this because Strings are immutable; one
reference variable can't change a String's value out
from under another reference variable referring to
the same String.

The other issue with the String pool is that the
Garbage Collector doesn't go there. So in our example.
unless by coincidence you later happen to make a
String called "01234", for instance, the first nine
Strings created in our forloop willjust sit around
wasting memory.

How does this save memory?
Well, if you're not careful , it dcesn 't! But ifyou un­
derstand how String immutability works, than you
can sometimes take advantage of it to save memory.
If you have to do a lot of String manipulations (like
concatenations, etc .), however, there is another class
StringBuilder, better suited for that purpose. We'll
talk more about StringBuilder in a few pages.

appendix B Top Ten Reference

Why do you care that Wra2!.ers are
It"",utable?
In the Math chapter we talked about the two main
uses of the wrapper classes:

• Wrapping a primitive so it can pretend to be an
object.

• Using the static utility methods (for example,
Integer. parseln t ()).

It's important to remember that when you create a
wrapper object like:

Integer iWrap :: new Integer(42);

That's it for that wrapper object. Its value will always
be 42. There is no settermethodfor a wrapper object.
You can , of course, refer iWrap to a different wrapper
object, but then you'll have two objects. Once you
create a wrapper object, there's no way to change
the value of that objectl

Roses orered. .
Strln ' Violets oreblue

.11Sar.'mmutobf, .
e, 'NfDppe,s are too.

you are here ~ 661

assertions

#8 Assertions

We haven't talked much about how to debug yourJava
program while you 're developing it. We believe that
you should learn java at the command line, as we've
been doing throughout the book. Once you're aJava
pro, ifyou decide to use an IDE*, you might have
other debugging tools to use . In the old days, when
a java programmer wanted to debug her code, she'd
stick a bunch of System .out.println () statements
throughout the program, printing current variable
values, and "I got here" messages, to see if the flow
control was working properly. (The ready-bake code
in chapter 6 left some debugging 'print' statements
in the code.) Then, once the program wasworking
correctly, she'd go through and take aU those System .
out.println() statements back out again . It was
tedious and error prone. But as ofJava 1.4 (and 5.0),
debugging got a whole lot easier. The answer?

Assertions

Assertions are like Systern .out.println () statements
on steroids. Add them to your code as you would
add println statements. The java 5.0 compiler
assumes you 'll be compiling source files that are 5.0
compatible, so as ofJava 5.0, compiling with assertions
is enabled by default.

At runtime, if you do nothing, the assert statements
you added to your code will be ignored by the JVM,
and won 't slow down your program. But ifyou tell the
JVM to enable your assertions, they will help you do
your debugging, without changing a line of code I

Some folks have complained about having to leave
assert statements in their production code, but
leaving them in can be really valuable when your
code is already deployed in the field. !fyour client
is having trouble, you can instruct the client to run
the program with assertions enabled, and have the
client send you the output. If the assertions were
stripped out ofyour deployed code, you'd never
have that option. And there is almost no downside;
when assertions are not enabled, they are completely
ignored by thejVM, so there's no performance hit to
worry about.

662 appsnuix B

How to make Assertions work

Add assertion statements to your code wherever you
believe that something must be true. For instance:

assert (height> 0);

II if true, program continues normally

II if false, throw an AssertionError

You can add a little more information to the stack

trace by saying:

assert (height> 0) : "height = " +
height + " weight = " + weight;

The expression after the colon can be any legal
Java exp ression that resolves to a non-null value. But
whatever you do . don't create assertions that cJumge an
objed's stale! Ifyou do, enabling assertions at runtime
might change how your program performs.

Compiling and running with
Assertions

To compilewilh assertions:

javac TestDriveGame.java

(Notice that no command line options were

necessary.)

To run with assertions:

java -ea TestDriveGame

'" IDE SlaDW for Integrated Development Environment
and includes tools such as Eclipse, Borland's jbuilder, or
the open source NetBeans (netbeans.org).

appendix B Top Ten Reference

#7 Block Scope

In chapter 9, we talked about how local variables

live only as long as the method in which they're

declared stays on the stack. But some variables can

have even shorter lifespans. Inside of methods, we

often create blocks of code. We've been doing this

all along, but we haven't explicitly talkedin terms of

blocks. Typically, blocks of code occur within methods,

and are bounded by curly braces {}. Some common

examples of code blocks that you'll recognize include

loops (jar, while) and conditional expressions (like if
statements) .

+,nod b\ot.\I.
Let's look at an example: s-tarl.~ -tne ,.,e

void doStuff () {~ J t.o the e"tiYe ",ethod
, /_ lotal vayiable stofe"
Lnt; x = 0; ~

~ ~ 1 f blotk a"d '1 is
for (int y = 0; y < 5; y++) { ~be~i\'l\'li\'l~' a OY r I "

stofed t.o 0\'11'1 the 0\" oof·

x = x + y;~ ..., LI y.. a"d \I aye both i\'l st°fe
1'0 fYOD e"', I

H- e\'lQ o.f the tor loop blotk

In the previous example, y was a block variable,

declared inside a block, and y went out of scope as

soon as the for loop ended. Your java programs will

be more debuggable and expandable ifyou use local

variables instead of instance variables, and block

variables instead of local variables, whenever possible.

The compiler will make sure that you don't try to use

a variable that's gone out of scope, so you don 't have

to worry about runtime meltdowns.

you are here • 663

linked invocations

#6 Linked Invocations

While you did see a little of this in this book, we tried to keep our syntax as clean and
readable as possible. There are, however, many legal shortcuts inJava, that you'll no doubt
be exposed to, especially if you have to read a lot code you didn't write. One of the more
common constructs you will encounter is known as linked invocations. For example:

StringBuffer sb = new StringBuffer("spring");

sb = sb.delete(3,6) .insert(2,"umme") . de l e t e Ch a r At (l) ;

System.out.println("sb = " + sb);

II result is sb = summer

What in the world is happening in the second line of code? Admittedly, this is a contrived
example, but you need to learn how to decipher these.

1 - Work from left to right.

2 - Find the result of the leftmost method call , in this case sb. delete (3, 6) . If you
look up StringBuffer in the API docs, you'll see that the delete () method returns a
StringBuffer object. The result of running the delete () method is a StringBuffer object
with the value "spr".

3 - The next leftmost method (insert ())is called on the newly created StringBuffer
object "spr". The result of that method call (the insert () method), is alsoa StringBuffer
object (although it doesn 't have to be the same type as the previous method return), and so
it goes, the returned object is used to call the next method to the right. In theory, you can
link as many methods as you want in a single statement (although it 's rare to see more than
three linked methods in a single statement). Without linking, the second line of code from
above would be more readable, and look something like this:

sb sb.delete(3,6);
sb sb.insert(2,"umme");
sb sb.deleteCharAt(l);

But here's a more common, and useful example, that you saw us using, but we thought
we'd point it out again here. This is for when your main 0 method needs to invoke an
instance method of the main class, but you don't need to keep a reference to the instance of
the class. In other words, the main 0 needs to create the instance onlyso that main 0 can
invoke one of the instance's methods.

c lass Faa {

public static void main (String [] args) [

()
L L we do,,'t. ea-e ab~t.

new Faa () . go (); ~ we 'fJa"t. +.0 t.all ~o ,0,",,,.1 't. bot.heY assi~l'Iil'l~
L r.: il'ls-tal'lt.e, so we l.\Ol'l I'
"t,he rOO r.: ~,. t.t. +.0 a ye-teyel'lt.e·

void go () t.he l'Iew rOO 0 ~e

I I here's what we REALLY want. ..

}

664 appendix B

appendix B Top Ten Reference

#5 Anonymous and Static Nested Classes

Nested classes come In many flavors

In the GUl event-handling section of the book, we started using inner (nested) classes as a
solution for implementing listener interfaces. That's the most common, practical, and read­
able form of an inner class-where the class is simply nested within the curly braces of another
enclosing class. And remember, it means you need an instance of the outer class in order to get
an instance of the inner class, because the inner class is a member of the outer/enclosing class.

But there are other kinds of inner classes including staticand arwnymous. We're not going
into the details here, but we don't want you to be thrown by strange syntax when you see it in
sorneone's code. Because out ofvirtually anything you can do with the Java language, perhaps
nothing produces more bizarre-looking code than anonymous inner classes. But we'll start with
something simpler--static nested classes.

Static nested classes

You already know what static means-s-something tied to the class, not a particular instance. A
static nested class looksjust like the non-static classes we used for event listeners, except they 're
marked with the keyword static.

public class FooOuter (

class Barlnner

void saylt() {

System. out .printin ("method of a static inner class");

)

}

class Test (

publ ic s t a tic void

faa. sayIt () ;

Static nested classes are more like reguJar non-nested classes in that they don't enjoy a special relation­
ship with an enclosing outer object. But because static nested classes are still considered a member oi
the enclosing/outer class, they still get access to any private members of the outer class... but only the
onesthat arealso statu. Since the static nested class isn't connected to an instance of the outer class, it
doesn't have any special way to access the non-static (instance) variables and methods.

you are here ~ 665

when arrays aren't enough

#5 Anonymous and Static Nested Classes, continued

The diHerenee between nested and Inner

AnyJava class that's defined within the scope of another class is known as a rI£SU:d class. It
doesn't matter if it's anonymous, static. normal, whatever. If it's inside another class, it's
technically considered a nested class. But non-statu nested classes are often referred to as inner
classes, which is what we called them earlier in the book. The bottom line : all inner classes are
nested classes, but not all nested classes are inner classes.

Anonymous inner classes

Imagine you 're writing some GUI code, and suddenly realize that you need an instance
of a class that implements ActionListener. But you realize you don't have an instance of an
Actionl.istener, Then you realize that you also never wrote a class for that listener. You have two
choices at that point:

1) Write an inner class in your code, the way we did in our GUI code, and then instantiate it
and pass that instance into the button's event registration (addActionListenerO) method.

OR

2) Create an anonymous inner class and instantiate it, right there.just-in-time. Litera11y right
where YlJU are at the pmnt you need the listeneror,jed. That's right, you create the class and the
instance in .the place where you'd normally be supplyingjust the instance. Think about that for
a moment-it means you pass the entire cla.sswhereyou'd normally pass only an instance into a
method argumentl

}

666 appendix 8

access levels appendix B Top Ten Reference

#4 Access Levels and Access Modifiers (Who Sees What)

Java has four access levels and three access modifiers. There are only three modifiers because

the default (what you get when you don't use any access modifier) is one of the four

access levels.

Access Levels (in order of how restrictive they are, from least to most restrictive)

public ~ rlAbliteans any cede anywhere tan aUess the flAblit thin~ (by
thin~' weean tlass, I/ariable,ethod, tonstrlAttor, eUJ.

protected "''-:- - - froutud works jlAst like detalAlt (tode in the sa....e fatka~e has auess), EXCEPT it
also allows slAbtiasses olAtside the fatka~e to inherit the yrotetud thin~.

default ~
detalAlt aUesseans that only cede within the sa....e fatka~e as
the tlass with the detalAlt thin~ tal'l aUess the detalAlt thin~.

private ~
fril/at eeans that ol'lly tode withil'l the same dass tal'l aUess the yril/ate thin~.

Keef il'l mil'ld it means fril/au to the tlass, not fril/ate to the objett. One D~
tal'l see al'lother D~ objett's fril/au shU, blAt a Cat tan't see a D~'s yril/aus.

Access modifiers

public

protected

private

Most of the time you'll use only public and private access levels.

public

Use public for classes, constants (static final variables) , and methods that you're

exposing to other code (for example getters and setters) and most constructors.

private

Use private for virtually all instance variables, and for methods that you don't want

outside code to call (in other words, methods used by the public methods of your class).

But although you might not use the other two (protected and default), you still need to

know what they do because you'll see them in other code.

you are here ~ 667

when arrays aren't enough

#4 Access Levels and Access Modifiers, cont.

default and protected

default

Both protected and default access levels are tied to packages. Default access is simple-it
means that only code within the samepackage can access code with default access. So a
default class, for example (which means a class that isn't explicitly declared as puhlil:) can
be accessed by only classes within the same package as the default class.

But what does it really mean to MUSS a class? Code that does not have access to a class is
not allowed to even think about the class. And by think, we mean use the class in code.
For example, ifyou don't have access to a class, because of access restriction, you aren't
allowed to instantiate the class or even declare it as a type for a variable, argument, or
return value. You simply can't type it into your code at all! !fyou do, the compiler will
complain .

Think about the implications-a default class with public methods means the public
methods aren't really public at all. You can't access a method ifyou can't see the class.

Why would anyone want to restrict access to code within the same package? Typically,
packages are designed as a group of classes that work together as a related set. So it might
make sense that classes within the same package need to access one another's code, while
as a package, only a small number of classes and methods are exposed to the outside
world (i.e. code outside that package).

OK, that's default. It's simple-if something has default access (which, remember, means
no explicit access rnodifierl), only code within the same package as the default thing
(class, variable, method, inner class) can access that thing.

Then what's proucudfor?

protected

Protected access is almost identical to default access, with one exception: it allows sub­
classes to inherit the protected thing, even iJthose subclasses are()UtsUU the pad1.age of the super-­
class they extend: That's it. That's all protected buys you-the ability to let your subclasses
be outside your superclass package, yet still inherit pieces of the class, including methods
and constructors.

Many developers find very little reason to use protected, but it is used in some designs,
and some day you might find it to be exactly what you need. One of the interesting things
about protected is that-unlike the other access levels-protected access applies only to
inheritance. If a subclass-outside-the-package has a nference to an instance of the superc1ass
(the superclass that has, say, a protected method), the subclass can 't access the pro­
tected method using that superclass referencel The only way the subclass can access that
method is by inheritingit. In other words, the subclass-outside-the-package doesn't have
access to the protected method. it just has the method, through inheritance.

668 appendix B

String and StringBuffer appendix B Top Ten Reference

#3 String and StringBufferlStringBuilder Methods

Two of the most commonly used classes in th eJava API are String and StringBuffer (remember from

#9 a few pages back, Strings are immutable, so a StringBuffer/StringBuilder can be a lot mor efficient

if you're manipulating a String). As ofJ ava 5.0 you should use the StringBuilderclass instead of

StringBuffer, unless your String manipulations need to be thread-safe, which is not common . Here's a

brief overview of the key methods in these classes:

Both String and StringBuffer/StringBuilder classes have:

char charAt(int index) ;

int Iength t):

String substring(int start, int end);

String to.String () :

To concatenate Strings:

String concat (string);

String append (String);

/ / what char is at a certain position

/ / how long is th is

/ / get a part of this

/ / what's the String value of th is

/ / for the String class

/ / for StringBuffer & StringBuilder

The String class has:

String replace (char old, char new);

String substring(int begin, int end);

char [] toCharArrayO ;

String toLowerCase () ;

String toUpperCaseO;

String trim () ;

String valueOf(char [])

String valueOf(int i)

/ / replace all occurences of a char

/ / get a portion of a String

/ / convert to an array of chars

/ / convert all characters to lower case

/ / convert all characters to upper case

/ / remove whitespace from the ends

/ / make a String out of a char array

/ / make a String out of a primitive
/ / other primitives are supported as well

The StringBuffer & StringBuilder classes have:

StringBxxxx delete (int start, int end); / / delete a portion

StringBxxxx insert(int offset, any primitive or a char []) ; / / insert something

StringBxxxx replace (int start, int end, String s); / / replace this part with this String

Stringlsxxxx reverser): / / reverse the SB from front to back

void setCharAt(int index, char ch); / / replace a given character

Note: StringBxxxx refers to either StringBufferor StringBuilder, as appropriate.

you are here. 669

when arrays aren't enough

#2 Multidimensional Arrays
In most languages, ifyou create, say, a 4 x 2 two-dimensional array, you would visualize a
rectangle, 4 elements by 2 elements, with a total of 8 elements. But inJava, such an array
would actually be 5 arrays linked together! In java, a two dimensional array is simply an arra)'
of arrays. (A three dimensional array is an array of arrays of arrays, but we'll leave that for
you to play with.) Here's how it works

i.nt]] (] a2d = new int [4] (2];

The JVM creates an array with 4 elements. Each. of these four elements is actually a reference
variable referring to a (newly created), int array with 2 elements.

int[J(]
int array object (int[][D

Working with multidimensional arrays

- To access the second element in the third array: int x = a2d [2) [1) i I I remember, 0 based!

- To make a one-dimensional reference to one of the sub-arrays: int [J copy = a2d [1 J;

-Short-cut initialization ofa2x3array: intlJ I) x = (l 2,3,4 }, I 7,8,9 } };

- To make a 2d arraywith irregular dimensions:

int(J [J y = new int (2) [); II makes only the first array, with a length of 2

y[Ol new int (3J; II makes the first sub-array 3 elements in length

y(l] = new int 15J; II makes the second sub-array 5 elements in length

670 appendix B

enumerations appendix B Top Ten Reference

And the number one topic that didn't quite make it in...

#1 Enumerations (also called Enumerated Types or Enums)

We've talked about constants that are defined in the API, for instance,

JFrame.EXIT_ON_CLOSE. You can also create your own constants by

marking a variable static final. But sometimes you'll want to create a set

of constant values to represent the onlyvalid values for a variable. This set of

valid values is commonly referred to as an enumeration. BeforeJava 5.0 you

could only do a half-baked job of creating an enumeration in Java. As ofJava

5.0 you can create full fledged enumerations that will be the envy of all your

pre:Java 5.0-using friends.

Who's in the band?

Let's say that you 're creating a website for your favorite band, and you want to

make sure that all of the comments are directed to a particular band member.

The old way to fake an "enum":

public static final int JERRY = 1;
public static final int BOBBY = 2 ;
public static final int PHIL = 3;

I I later in the code We're h . Lh L b Lh L "
~ °flll~ ;; a;; y;; e ;;'l'WIe we ~ot here

if (selectedBandMember == JERRY) { "sdet tedBalldMel'Wlber" has a valid val"t.!
II do JERRY related stuff

The good news about this technique is that it DOES make the code easier to

read. The other good news is that you can't ever change the value of the fake

enums you've created; JERRY will always be 1. The bad news is that there's

no easy or good way to make sure that the value of selectedBandMember

will always be 1, 2, or 3. If some hard to find piece of code sets

selectedBandMember equal to 812, it's pretty likely your code will break.. .

you are here ~ 671

A new, official "enum":

Members ifName = Members.PHIL;

switch (ifName) {

case JERRY: System.out.print("make it sing ");

case PHIL: System. out.print("go deep ") ;

case BOBBY: System.out.println("Cassidy! ");

when arrays aren't enough

#1 Enumerations, cont.

The same situation using a genuineJava 5.0 enum. While this is a very basic

enumeration, most enumerations usually arethis simple.

~
public enum Members { JERRY, BOBBY, PHIL };
public

Your enum extends java.lang.Enum

When you create an enum, you're creating a new class, and you're implicitly extending
java . lang . Enum. You can declare an enum as its own standalone class, in its own

source file, or as a member of another class.

Using "if" and "switch" with Enums

Using the enum we just created, we can perform branches in our code using either

the if or swi tch statement. Also notice that we can compare enum instances using

either == or the . equals () method. Usually == is considered better style.

______ Assi~r.ir.~ ar. er.1mI yal~ to a variable,

Members n = Members.BOBBY;~

if (n .equals(Members.JERRY)) System. out.println("Jerrrry!"); I. r, el
0'(" """ ,

if (n == Members.BOBBY) System.out.println("Rat Dog"); "--- ~o-\:)l J t"'e$e '"

D
""$,"",,-\:,ed,

"Rat ~

672 appendix 8

enumerations

#1 Enumerations, completed

appendix B Top Ten Reference

A really tricked-out version of a similar enum

You can add a bunch of things to your enum like a constructor, methods.

variables, and something called a constant-specific class body. They're

not common, but you might run into them:

L sstO il'\ -\:p
public class HfjEnum (ay~"",el'\1:. ~a L.\

________ nils is a~\Il.~ oeda.... td ~ o'Wl·

enum Names (~__ L.' • _ ~~_ . ~e ~Q'I\S th $O-t.llleo
JERRi' ("lead guitar) { public String sings () {~ Tkese a....e e ok' dau bodies".

return "plaintively";} ;/ "~Ylt.-s?etl It o . -th
} J Think ~ t.he'" as O"t:rt"IO.ln~ e

o LLod (iYl -thIS t,4St
BOBBY ("rhythm guitar") (public String s i nqs () I \)asit eYl.........n.n r oO .

return "hoarsely";) the "S'IYI~O)l ""et.hcxl), iot S,,\~ IS

) , t.llleo 0" a lIayid'ole ...ith aYl en--
PHIL ("bass") ; I r J~RRY ~ BOBBY·lIa v.t o-t

private String instrument;

Names(String instrument) (
this. instrument = instrument;

)

public String getlnstrument{)
return this. instrument;

)

public String sings () (
return "occasionally";

~~--This is -the tr>lAM'S toYlShvttm-. It. ruYlS

OWIU +t*' e6th detla....ed eYllAM I/al~ (iYl

t.his~ it."'W\.\ t.hree tiMes)o

public static void main(String [] args) (0 ___________
for (Names n : Names.values(») (~

System.aut.print<n);
System.out.prin~(", instrument: "+ n.getlnstrument<)):
System.aut.println(", sings: " + n.sings());

%java HfjEnum

JERRY, i n s t r ume n t : lead guitar, sings: plaintively
BOBBY , instrument : rhythm guitar, sings : hoarsely
PHIL, instrument: bass , sings: occasionally
%

Not.itt that the ba.sit Usi,,~())

""et.hod is oYlly lJlled wheYl the
e"w.- I/al~ has 110 tOPl.Sta7lt­
speti.fit tlas.s body.

you are here . 673

when arrays aren't enough

Captain Byte gave Ensign Smith the following programming instructions to process the critical

navigational codes:

A Long Trip Home

Captain Byte of the Flatland starship "Traverser" had received an urgent, Top Secret transmission

from headquarters. The message contained 30 heavily encrypted navigational codes that the

Traverser would need to successfully plot a course home through enemy sectors. The enemy

Hackarians, from a neighboring galaxy, had devised a devilish code-scrambling ray that was capable

ofcreating bogus objects on the heap of the Traverser's only navigational computer. In
addition, the alien ray could alter valid reference variables so that they referred to these

bogus objects . The only defense the Traverser crew had against this evil Hackarian ray was

to run an inline virus checker which could be imbedded into the Traverser's state of the art

Java 1.4 code.

"Put the first five codes in an array of type ParsecKey. Put the last 25 codes in a five by five, two

dimensional array of type QuadmntKey. Pass these two arrays into the plolCourseO method of the

public final class Shipblavigation. Once the course object is returned run the inline virus checker

against all the programs reference variables and then run the NavSim program and bring me the

results ."

A few minutes later Ensign Smith returned with the NavSim output. "NavSim output ready for

review, sir", declared Ensign Smith. "Fine", replied the Captain. "Please review your work". "Yes

sir!", responded the Ensign, "First I declared and constructed an array of type ParsecKey with the

following code ; ParsecKey 0 p = new ParsecKey[5]; , next 1 declared and constructed an array

of type QuadrantKey with the following code: QuadrantKey 0 0 q = new QuadrantKey [5] [5]; .

Next, I loaded the first 5 codes into the ParsecKey array using a 'for' loop, and then I loaded the last

25 codes into the Quadrantkey,array using nested 'for'{oops, Next, I ran the virus checker against

all 32 reference variables, I for the ParsecKey array, and 5 for its elements, I for the QuadrantKey

array. and 25 for its elements. Once the virus check returned with no viruses detected, I ran the

NavSim program and re-ran the virus checker, just to be safe... Sir!"

Captain Byte gave the Ensign a cool , long stare and said calmly, "Ensign, you are confined to

quarters for endangering the safety oftbis ship, I don't want to see your face on this bridge again

until you have properly learned your Java! Lieutenant Boolean, take over for the Ensign and do this

job correctly!"

Why did the captain confine the Ensign to his quarters?

674 appendix B

A Long Trip Home

Captain Byte knew that in Java, multidimensional arrays are actu­
ally arrays of arrays. The five by five QuadrantKey array ' g' , would
actually need a total of31 reference variables to be able to access

all of its components:

I - reference variable for 'q'

5 - reference variables for q [0) - q [4J

25 - reference variables for q [0] [0] - q [4] [4]

The ensign had forgotten the reference variables for the five one

dimensional arrays embedded in the 'q' array. Any of those five
reference variables could have been corrupted by the Hackarian
ray, and the ensign's test would never reveal the problem.

you are here ~ 675

This isn't goodbye
Bring your brain over to

wickedlysmart.com

