
11 exception handling

Risky Behavior

Stuff happens. The file isn't there. The server Is down. No matter how

good a programmer you are,you can't control everything.Things can go wronq, Very wrong.

When you write a risky method, you need code to handle the bad things that might happen.

But how do you know when a method Is risky? And where do you put the code to handle the

exceptional situation? So far in this book. we haven't really taken any risks. We've certainly had

things go wrong at runtime, but the problems were mostly flaws In our own code. Bugs.And

those we should fix at development time.No, the problem·handllng code we're talking about

here is for code that you can't guaranatee will work at runtime.Code that expects the file to be

in the right directory, the server to be running, or the Thread to stay asleep. And we have to do

this now.Because in thischapter, we're going to build something that uses the risky JavaSound

API. We're going to build a MIDI Music Player.

this is a new chapter 315

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

building the MIOI Music Player

Let"s tMake a Music Machitte

Put checkmarks in the boxes for each of the 16 'beats', For example, on beat
1 (of 16) the Bass drum and the Maracas will play. on beat 2 nothing, and
on beat 3 the Maracas and Closed Hi-Hat... you get the idea . When you hit
'Start', it plays your pattern in a loop until you hit 'Stop'. At any time, you
can "capture" one ofyour own patterns by sending it to the BeatBox server
(which means any other players can listen to it). You can also load any of the
incoming patterns by clicking on the message that goes with it.

Over the next three chapters, we'll build a few different sound
applications. including a BeatBox Drum Machine. In fact,
before the book is done, we'll have a multi-player version so
you can send your drum loops to another player, kind of like
a chat room. You're going to write the whole thing, although
you can choose to use Ready-bake code for the CUI parts.
OK. so not every IT department is looking for a new BeatBox
server, but we're doing this to learn more about Java. Building
a BeatBox isjust a way to have fun while we're learningjava.

the fh11shed JeatJox looks sotMethl"g like this:

)

dance beat

Andy: groove 112

Chris: groove2 revised

Nigel: dance beat

Crash Cymbal

Hand Clap

High Tom

Hi Bongo

Maracas

Whistle

Low Conga

Cowbell

Vibraslap

Low-mid Tom 0 G
High Agogo

Open HI CongaO LJ ILJ .= 1..::, ~I LJ

316 chapter 11

exception handling

WeIll start with the basics

you are here. 317

MIDI dtllit.e b\Ows how to
\"caa' a MIDI .filt al'lQ flay batl<.
the S04.lI\d. nt dtvite ...i~ht.
be a syr.thtsiuY ~oaYa or
s.or..e ot.h~ kitld of i~\II>\ent..

(,.(s.....lIy, a MIDI it'Sb--ellt.

tan playa LOT o.f diH~tnt
~ (yi.1no, d..,.,..1, violil'l,
eitJ, alia all at the sa",e +'i",e.
So a MIDI tilt is,,'+' like shed
"'Iolit ~ot" jldi Ot\e "'1ol'ltiall iPl
the baPld -- it. taft hold the
farh for ALL t.ht "'lolitiar\5

flayi,,~ a farbtlOlar SOl'>5'

MIDI ~ih:

MIDI data says what to do (play middle C, and here 's how hard
to hit it, and here 's how long to hold it, etc.) but it doesn't say
anything at all about the actual sound you hear. MIDI doesn't
know how to make a Elute, piano, or Jimmy Hendrix guitar
sound, For the actual sound, we need an instrument (a MIDI
device) that can read and playa MIDI file. But the device is
usually more like an entire band ororchestra of instrurnen15. And
that instrument might be a physical device, like the electronic
keyboard synthesizers the rock musicians play. or it could
even be an instrument built entirely in software. living in your
computer.

For our BealBox, we use only the built-in , software-only
instrument that you get with Java. It's called a syntMsiu:r (some
folks refer to it as a softumresynth) because it creates sound.
Sound that you hear.

javaSound is a collection of classes and interfaces added to
java starting with version 1.3. These aren't special add-oris:
they're part of the standardJ2SE class library.javaSound is split
into two parts: MIDI and Sampled. We use only MIDI in this
book. MIDI stands for Musical Instrument Digital Interface,
and is a standard protocol for gerting different kinds of
electronic sound equipment to communicate. But for
our BeaiBox app, you can think of MIDI as a kind oj
sheet music that you feed into some device you can think
of like a high-tech 'player piano'. In other words, MIDI
data doesn't actually include any sound, but it does
include the instructions that a MIDI-reacling instrument
can play back . Or for another analogy, you can think of
a MIDI file like an HTML document, and the instrument
that renders the MIDI file (i.e. plays it) is like the Web
browser.

fhe JavaSou)1d API

Obviously we've got a few things to learn before the whole
program is finish ed , including how to build a Swing GUl, how
to connect to another machine via networking, and a little I/O
so we can sendsomething to the other machine.

Oh yeah , and theJavaSound API. That's where we'll start in this
chapter. For now, you can forget the GUl, forget the networking
and the I/O, and focus only on getting some MIDI-generated
sound to come out of your computer. And don't worry if you
don't know a thing about MIDI, Or a thing about reading or
making music. Everything you need to learn is covered here.
You can almost smell the record deal.

but It looked so simple

First we t1eed a Sequet1cer
Before we can get any sound to play, we need a Sequencer object. The
sequencer is the object that takes all the MIDI data and sends it to the right
instruments. It's the thing that plays the music. A sequencer can do a lot of
different things, but in this book, we're using it strictly as a playback device. Like
a CD-player on your stereo, but with a few added features. The Sequencer class
is in thejavax.sound.midi package (part of the standard java library as of version
1.3). So let's start by making sure we can make (or get) a Sequencer object.

6 .d\ ~_e.\(-~~
import j avax. sound. midi . '* ; . aM:. t)-.~ i~ay...~, Ii ~'\~tY ob)tt.t It:1 -tht

~ \llIY We.l'Iee~ ok tne MIDI de~it.dll,sb-er..t
public class MusioTestl { ...d;n fd . It: -the -thi,,~ t.hat,el\•

....e ye l.LS",~. 1 r L, ' to
II tn, MIDI in-tO\""'auC7J\ I"

public void play 0 (sc,\\OLnt.fS 6 b ,..d
, 'Bllt.e dO'l'>'t Nlte 6 Y6

Sequencer sequencer = MidiSys tem. ga tSaquencer () ; a sonlj ' have to asK t'ke.....v-selves __e
"" ",.... Ol'le "'"

System.out .println("We got a sequencer");~Mid~yst.e'" to ~i~t. lAj, Ol'It·

II close play

public static void main(Strlng(] args)

MusicTestl mt = Daw MusicTestl(} ;

IDt. play () ;

II clOSE! main

II close class SOlMethingl wrong!
,This t.«Je won't t.tm.pile! The to",piler ~ys t.nt\""e's ah
IAhreporkd e~epi.iOh' thai "'lASt be t.al.l~ht. or detlared.

318 chapter 11

What happet1s whet1 a tMethod you warttto call
(probably it' a class you didt1~t write) is risky?

exception handling

" Let's say you want
to call a method In a

class that you didn't
write.

• That method does
something risky,
something that might
not work at runtime.

~ You need to know
that the method
you're calling is

risky.

@ You then write code
that can handle the
failure if It does
happen. You need to be
prepared, just in case.

you

_ t_ 1--,
_ f1,

classyou
didn't write

you

you

--.-.. ..111_n,
o
~_Q l•...,.u.

your coc e

void moo () (
if (serverDown)
axplode()i

)

}

your co e

__II ,

~-,_ I"

classyou
didn't write

~.- '

~=. I

crass you
didn't write

you ar e her e ~ 319

When things mIghtgo wrong

Methods iN Java ose except/om: to tell the ca/liM9 code,
·Sotttethlftg Bad HappeHed. I failed;'

Java's exception.handliog mechan~m", a dean, well·lighted way to handle "exceptional
shuations' that pop up at runtime;;t lets}'OuPOlall your error.handling code in one
easy-to-readplace. It's based On you knowingthat the method you're calhng;, risky
(i.e. that the method mighlgene,",e an exception), SO thar you can write code '0 deal
w;th that pos,,;bmty. l£}'Oo k_you might get an exception when you calla ParUcuJar
method, you can be fmP- for-poss;bly even '''-from-the problem thaI causedthe exception.

So, how do}'Ou know if a method throws an eXception! You find a throw. clause;n theriskymethod's declaration.

The getSequencer () lIIethOd takes a risk. It Can fail at runtlllle.
So It lIIust 'declare' the risk you take When you call it.

~ API dots it" r­
M ~,"alta-()-~....-
Un thr-ow an tXQf'i;",,:

MidiU..a\lai'ab'eE~o...

A~od has fo dulal"f!
the ~0fIS it ...iShi
thl"o....

PI ((orm SE vl.4.01@ MldlSvslem (Java 2 a

Oblains the default sequencer.

Rtturns: cer

thedefaultsequcn .. I availabledue
.f th <N'IucnCCTIS noThrows: I b l"ExcCp rl on _ I e seqH! d HJo.) y a 1 .J • • ns

t.~ It f
Hl>rrIC i A~Ic>RlISll>p Rdrt:Sh _ _

getSe-quencer

.ac.~ (l hl~ Ex£~Rt l Qn
i ~ C'a ll (l n s" r 9·ts~ .9 Mldll1o Av:ll 1pUb lic ~ t a t c ' - - th r o~ _ _L~~~I

eee
•hck

~
~...
/

g ~~:\':tOlJrq
~ VOiceSlalys

5' ExcepUons
,,1 I

320 chapte r 11

exception handling

The cOlMpiler t1eeds to kttow
that YOU kttow you're caUit1g
arisky lMethod.
Ifyou wrap the risky code in something called a
try/catch, the compiler will relax.

A try/catch block tells the compiler that you
knota an exceptional thing could happen in the
method you're calling, and that you're prepared
to handle it. That compiler doesn 't care Iwwyou
handle it; it cares only that you say you're taking
care of it,

import j AVax . sound. midi . * ;

public class MusicT~stl {

public void play ()

try {
,J, tM yisk'f iYl~

Sequencer sequencer = MidiSystElm . getsequenCGr () ; i:;- ! 'l..AJ' h'ot't .
IYI a v 1

System.out.prlntln("Suceessfully got a sequencer");

} catch (MidiUnavailableException ex) {

Systelll. out. println ("Bummer") ;

II close play

public static void main{Strinq[] args)

MusicTestl mt = new MusicTestl():

mt.play{) :

II close main

II closit class

you are here. 321

exceptions are objects

A" exceptio" is a" object...
of type Exceptio"_
Which is fortunate, because it would be much harder
to remember if exceptions were of type Broccoli .

Remember from your polymorphism chapters that
an object of type Exception can be an instance of any
subclassof Exception.

Because an Exception is an object, what you catch is an
object. In the following code. the catch argument
is declared as type Exception, and the parameter
reference variable is ex,

II try to recover

} ~ This ~od I
E tOllvr I'
~tp£ , I Iqu if' Ii

Otl Is tJ.ro'Nrl, "

try {

th . I . L \',\:.t. 4tl.\a't"il'l~I I do risky J..nq ·,t sJ~ \:..
.LI."O ay~-tl'l

~a ",e'V'"

} catch(Exception ex) {

What you write in a catch block depends on the
exception that was thrown. For example, if a server
is down you might use the catch block to try another
server. If the file isn't there, you might ask the user
for help finding it.

Throwable

getMeasage{)

printStackTraceO

'e.~.Ltyt.\ OYI

l T'IIl'/ all T
T\I't"owa'ble Exception

two \I.e'(

.> <,
IOElceeptlon Intarrupl&dExceptlon

Part J t'he
dass ~lleYaYl.n

t~~O l.\ass
61'10 il'lheY'It
...dho~

322 chapter 11

exception handling

class with Q

risky method

--._':..::~ I._ ... Jtn I

_""J.

your code

-
If it's yourcode that catches the exceptio",
the., whose code throws it?
You'll spend much more of yourJava coding time handling
exceptions than you'll spend cnatingand throwing them yourself.
For now, just know that when your code callsa riskymethod-a
method that declares an exception-it's the risky method that
throws the exception back to yfJU, the caller.

In reality, it might be you who wrote both classes. It really
doesn't matter who writes the code... what matters is knowing
which method throws the exception and which method catches it.

When somebody writes code that could throw an exception, they
must declare the exception.

One methqd WIll
entch ...VhClt £lncnher-
tnet lloJ thr9'vv~. J\n-
exceptIon 'is aJVY'ly':i

thl"O\Vn back [o the

elll)e\".

The 111eth<)d thnt
th\'ovv' ~ ha~ t<:> dechu-e

----=--
that 'It nl'ir,-ht thrq\\!

the exception.

)

public void crossFingers()
(

anObject.takeRisk()j

) (BadException ex) {

System. out.println ("Aaarqh! ") ; If y04l l.i '.1 r
1I \. rU,over -tror" ih ..J,.,

ex .printStackTrace () ; ../ ~et. asicltk b- . e ~er \.Ion, atLMsT
~ ~i II ~le ~'~ -the P""ini$tallcTrciteO tt.hod

a e-,ttepiior.s Illherit.

\ tnt 'foI0'I'\0 C'o'1
&od MVS1 -\:,t\ ~ d~'f-l,eytIO"

• Risky, exception-throwing code: ~,~ "'~ A) -\:,hat 'I't t,hyo'OlS a a
~ott~Y''''Y

public void takeRi.sk () BadExcepUon (

if (abandonAllHope) (

new BadException();

'\l~t:G~
objett i:;ewE~~

/:h.-ow it.

• Your code that calls the risky method:

you are here ~ 323

checked and unchecked exceptions

E.'Il.ttf"t1Ol\S thai aye NOT s~t1asu:s of
Runti",eEuepiic»l cll"e thet.ked .for by
~c t.oto.pilcr. Th~'rc ~Iled "thetJccd
t"J'-UpiiOflS Ii

Exception

The compiler checks for everything
except RuntimeExceptions.

The compiler guarantees:
If you throw an exception in your code you must declare it using
the throws keyword in your method declaration.

If you call a method that throws an exception (in other words,
a method that declares It throws an exception), you must
acknowledge that you're aware of the exception possibility.
One way to satisfy the compiler is to wrap the call in a try/catch.
(There's a second way we'Hlook at a little later in this chapter .)

InterruptedExceptlon

~: Walt just a mlnutel How come this Is the FIRST time
we ve had to try/cate:h an EJcceptlon7 What about the
exceptions I've already gotten like NullPolnterEJcception
and the exceptJon for DlvldeByZero. I even got a
NumberFormatExceptlon from the Integer.parselntO
method. How come we didn't have to catch those?

A.: The compiler cares about all subclassesof Exception,
unless they are a special type, RuntimeException. Any
exception classthat extends RuntlmeExceptlon gets a
free pass.RuntimeExceptions can be thrown anywhere,
with or without throws declarations or try/catch blocks.
The complier doesn't bother checking whether a method
declares that It throws a RuntimeExceptlon, or whether the
caller acknowledges that they might get that exception at
runtime.

324 chapter 11

Q.: I'll bite. WHY doesn't the complier care about those
runtime exceptions? Aren't they Just as likely to bring the
whole show to a stop?

A: Most RuntimeExceptlons come from a problem in
your code logic, rather than a condition that fails at runtime
in ways that you cannot predict or prevent. You cannot
guarantee the file is there .You cannotguarantee the server
is up. But you can make sure your code doesn't index off the
end of an array (that's what the .length attribute is for) .

YouWANTRuntimeExceptions to happen at development
and testing time.You don't want to code in a try/catch, for
example, and have the overhead that goes with it, to catch
something that shouldn't happen In the first place.

A try/catch is for handling exceptional situations, not flaws
in your code, Use your catch blocks to try to recover from
situations you can't guarantee wlll succeed.Or at the very
least, print out a message to the user and a stack trace, so
somebody can figure out what happened.

• Amethod can throw an exception when something fails at runtime.

• An exception isalways an object of type Exception. (Which, asyou
remember from the polymorphism chapters means the object is from a
class thai has Exception somewhere upitsinheritance tree.)

• The compiler does NOT pay attention toexceptions that are of
type RuntlmeException. ARuntimeExceplion does not have to be
declared orwrapped in a try/catch (although you're free todo either or
both of those things)

• All Exceptions the compiler cares about are called 'checked
exceptions' which really means compiler-<:hecked exceptions. Only
RuntimeExceptions are excluded from compiler checking. All other
exceptions must be acknowledqed in your code, according to the
rules.

• Amethod throws an exception with the keyword throw, followed by
a new exception object:

throw new NoCaffeineException();

• Methods that might throw a checked exception must announce it with
a throws Exception declaration.

• If your code calls a checked-exception-throwing method, itmust
reassure the complier that precautions have been taken.

• Ifyou're prepared 10 handle the exception, wrap the call In a tJy/catch,
and put your exception handling/recovery code in the catch block.

• Ifyou're not prepared tohandle Ihe exception, you can still make the
compiler happy byofficially 'ducking' the exception. We'll talk about
ducking a little lalerin this chapter.

~ your penCil
Things you want to do

exception hand Iing

~etaco"Mitive tiP
\ m somethIng new,

\f you're trying to ea try tolearn
make that\he/8s1 thln~O~nce yOU putthis
before goIng tosleep. 'can tearyourself
book down .(a ssu~I~~~O~nyth\ng else more
away from It)don t b I< ofa Cheerios'"
challenging t~an the

d
atlCme toprocess what

boX. Your braIn nBB Sad That could take
you've read and lea~ to'shova something
a feW hoUrs. If you f urJava. some of the
new in right onto~ 0 .yo
Java might not'sllek.

. doesn't rule oul learning
Ofcourse, thIS rldn on your latesl
a physical sk1\1. Wo K~ICkBOXlng routine

Ballroom
probably won'l affect your
Java leamlng.

b t resulls read Ihls
For the es '

book {orat least1001< al
the pictures) right before
goin9tosleep.

What might go wrong

Which of these do you think
might throw an exceptfon that
the com pller would care about?
We're only looking for the
things that you can't control In
your code. We did the first one.

(Because Itwas the easiest.)

'v'connect to a remote server

_ access an arraybeyond its length

_ display a window on the screen

retrieve data from a database

_ see ifa text file is where you think It is

create a new file

read a character from the command-line _

you are here . 325

exceptions and flow control

Flow eontrol it1 try/catch blocks
When you call a risky method, one of two things can hap­
pen. The risky method either succeeds, and the try block
completes, or the risky method throws an exception back to
your calling method.

(~lsystem. out. println ("We made it!");1

catch (Exception ex) {

System.out.println("failedU
) ;

If the trysucceeds
(doRiskyThlngO does not
throw an exception) try {

(j Foo f

int b

x.doRiskyThing();
f . getNum () ;

} catch (Exception ex) (

~ System. out. println ("failed") ;

~stem.out.println("We made it!");
-I

try (

.------i~!flHIFoo f
'<::I'

iot b

If the tryfails
(because doRlskyThlngO
dOBS throw an exception)

326 chapte r 11

Fh,ally: for the thlttQs you wattt
to do no fffatter what.
Ifyou try to cook something, you start by turning on
the oven.

If the thing you try is a complete failure,
you haue to turn offthe oven.

If the thing you try succeeds,
you haue to turn offthe oven.

You have to turn offthe oven no matter what!

A finally block is where you put
code that must run regardless
of an exception.

try (

turnOvenOn();

x , ba Ice () ;

catch (BakingException ex)

ex.printStackTrace()i

) finally (
turnOvenOf£();

)

Without finally, you have to put the
tumOvenOffO in both the try and the catch
because you have to turn offthe oven JU> matter
what . A finally block lets you put all your
important cleanup code in oneplace instead of
duplicating it like this:

try {

turnOvenOn () ;

x.bake o .
turnOvenOff () ;

} catch (BakingException ex) (

ex.printStackTrace();

turnOvenOf f () ;

exception andling

If the try block fails (an exceptIDn), flow

control immediately moves to the catch block.

When the catch block completes, the finally

block runs. When the finally block completes,

the rest of the method conUnues on.

If the tr-y block succeeds (no exception),

flow control skips over the catch block and

moves to the finally block. When lhe finally

block compleles, the rest of the method

continues on.

If the try or catch block has a return

statement, finally will still runl Flow

jumps lo the finally, then back to the relum.

you are here ~ 327

flow control exercise

~yourpendl

Flow ContPoI

public class TestExceptions {

public static void main(String () args) {

Look at the c:ode to the left. What do you think the
output of this program would bel What do you think
It would be If the third line of the program were
changed to: String test. "yes", 1
AssumeScaryExceptlon extends Exception.

Output when test =' "no"

String test = "no N;

try {

Systern.out.println("start try");
doRisky(test);
System.out.println("end try");

} catch (ScaryExceptioo se) {
Systern.out.println("sca:r:yexception");

} finally {
System. out. println("finally") ;

}

System.out.println("end of main");
}

static void doRisky(String test) throws ScaryException {
System.out.println ("start risky");
if ("yes".equals(test)) {

throw new ScaryException();

System.out.println(Uend riskyN);

return;

}

}

ulew JOpua . ,(lIeuy . UOlldCl»)«l 've)~ . ~SIJ lJelS . Nl uelS :.5i1,.{. =~al U"4M
ulew lO pUiI - Alleuy - .tit pua - A~S!J pUCI - A~SIJ lJl?1S - ,VllJelS :.ou . = l5Cll UCl1.!M

328 chapter 11

Output when test = "yes"

exception handling

Pid we lIte.,tio., that atltethod ca.,
throw tMore tha., o.,e exception?
A method can throw multiple exceptions if it dam well needs to. But
a method's declaration must declare all the checked exceptions it can
throw (although if two or more exceptions have a common superc1ass, the
method can declare just the superclass.)

CatchlnQ lHultlple exceptlo"s
The compiler will make sure that you've handled all the checked excep­
tions thrown by the method you're calling. Stack the catch. blocks under
the try, one after the other. Sometimes th e order in which you stack the

~:~::~~~::~~. ~~~~:\r:tto thata\Itde late,
public void doLaundry() throws PantsException,

II code that could throw either exception

public class Foo {

publ ic void go ()

Laundry laundry new Laundry () ; it doLa~dr'f() ~..o\WS a

try { Pa"b~uepiiCW\1 i.e lands ill the

1/ Pa"b.~~O'r\ utth blotk.
laundry.doLaundry(); ~

} catch (PantsException pex) {

II recovery code

) Catch(LingerieExcePti~) (
".,..0''''') t\lydOIS a

I I recovery code ~ J d~ 'T. 0'\. it. \a"as i" the

} L.i~'t~~. ~h blot.\t.·
U~ew'it~~tybOl'l

you are here ~ 329

polymorphic exceptions

Exceptiotts are polytMorphic
Exceptions are objects, remember. There 's nothing all that
special about one, except that it is a thing that can bethrown.
So like all good objects, Exceptions can be referred to
polymorphically. A LingerieException object, for example,
could be assigned to a ClothingException reference. A
PantsException could be assigned to an Exception reference.
You get the idea. The benefit for exceptions is that a method
doesn't have to explicitly declare every possible exception it
might throw; it can declare a superclass of the exceptions.
Same thing with catch blocks-you don't have to write a catch
for each possible exception as long as the catch (or catches)
you have can handle any exception thrown.

@ You can DECLARE exceptions using
a supertype of the exceptions you
throw.

All eU~QtIS ho'le

exception f.~~ as a
SlI"cY tolass-

IOExceptlon CloltilngExeeptlon

try (

@ You can CATCH exceptions using a
supertype of the exception thrown.

try (~\, ""'I
1.<1" .../...•

·4-1-UT~
laundry. doLaund ry () ; . / C\atnl

~ .~ If Ie \Jot\a.u

'.' 0 ! I/~
catch(ClothingException cex) {

II recovery code

330 chapter 11

laundry.doLaundry();

<...·r t. i-:­
\;I ' :.l

catch (ShirtException sex)

II recovery code

exception hand

Just because you CAN catch everything
with one big super polymorphic catch,
doesn't always mean you SHOULD.

You could write your exception-handling code so that
you specify only onecatch block, using the supertype
Exception in the catch clause, so that you'll be able to
catch any excep tion that might be thrown.

try {

l a undry.doLaundry();

}

catch (Exception ex) { blotk will
w"~T? Tn,s tattn ,

I I r e c overy code . ..~ Rt.t.ol/t.'('(.{:'(0f'I -b so '(()II. WOYlt
L'h ~N'I ay,G all t.~t.t.f oY\S,

ta-u- \.. t wt.\'It WV'o\'l~ '
a~~atit.all'f k\'low wna

Write a different catch block for each
exception that you need to handle
uniquely.

For example, if your code deals with (or recovers
from) a TeeShirtException differently than it handles a
LingerieException, write a catch block for each. But if you
treat all other types of ClothingException in the same way,
then add a ClothingException catch to handle the rest.

try {

l aundry.doLaundry();

.J.i "s 3Y10 :t.
S\iAt1Lt.t vO 0 o,~h'(eYl

} catch (TeeShirtException tex) {~ Tee' .\:;IOYlS Ylet.
I,; ll.,t.'(iet1Le\, s....ov.\o. ~e

I I r e cove r y from TeeShirtExceptiol 'YI;.I '-J t,oOel so ,!0II0"
~ fu '(et,o\lt.'(I tt..... 'o\ot"s.
~ o,~~t.'t't.Ylt. t,a

} catch(LingerieException lex) {

All oihet- CI th' Eo /tI~ Xlt,nJ. ·
Ut"t, talAaht h r I./QtlS

J et-t, .

I I recove r y from al l others

}

you are here . 331

order of multiple catch blocks

Multiple catch blocks iMust be ordered
froiM stttaliesf to biggest

ClothingException

catch(TeeShirtException tex)

catch (ShirtException sex)

catch(ClothingException cex)

332 chapter 11

The higher up the inheritance tree, the bigger the
catch 'basket', As you move down the inheritance
tree, toward more and more specialized Exception
classes, the catch 'basket' is smaller. Ir'sjust plain old
polymorphism.

A ShirtException catch is big enough to take
a TeeShirtException or a DressShirtException
(and any future subclass of anything that extends
ShirtException). A C1othingException is even bigger
(i.e . there are more things that can be referenced
using a ClothingException type) . It can take an
exception of type ClothingException (duh), and
any ClothingException subclasses: PantsException,
UnifonnException, Lingerielixception, and
ShirtException. The mother of all catch arguments
is type Exception; it will catch any exception,
including runtime (unchecked) exceptions, so you
probably won't use it outside of testi ng.

\

You cat1"t put bigger baskets
above stMalier baskets.
Well, you can but it won't compile. Catch
blocks are not like overloaded methods
where the best match is picked. With catch
blocks, theJVM simply starts at the first one
and works its way down until it finds a catch
that's broad enough (in other words, high
enough on the inheritance tree) to handle
the exception. lfyour first catch block is
catch (Exception ex). the compiler
knows there's no point in adding any
others-they'll never be reached .

try (

l aundr y. doLaundr y () ;

catch(ClothingException cex) {

II recovery from ClothingException

catch (Linge.rieExc:eption lex) {

II recovery from LingerieException

catch(ShirtException sex) {

II recovery from ShirtException

exception handling

Size matters when
you have multiple catch

blocks. The one with the biggest
basket has to be on the bottom.

Otherwise, the ones with
smaller baskets are useless.

Siblings can be in any order, because they
can't catch one another's e~tions.

You could putShirtException above

UngerieException and nobody would mind

Because even though ShlrtException is a bigger

(broader)type because It can eateh other classes

(its own subdasses),ShirtException can't catch a

UngerieExceptlon so there's no problem.

you are here ~ 333

polymorphic puzzle

~n your pencil

try {

x , doRisky () ;

catch(AlphaEx a) {

II recovery from AlphaEx

catch (BetaEx b) {

II recovery from BetaEx

ca toh (GammaEx c)

II recovery from GammaEx

cateh(DeltaEx d) {

II recovery from DeltaEx

BazEl

T
FooElr

.> <,
8esEJ BIIlEJ

<.

334 cha pter 11

Assume the try/catch block here Is legally coded.Yourtask is to draw
two different class diagrams that can accurately reflect the Exception
classes. In other words, what class Inheritance structures would make the
try/catch blocks in the sample code legal?

Yourtask is to create two different legal try / catch structures (similar to
the one above left), to accurately represent the class diagram shown on
the left Assume ALLof these exceptions might be thrown by the method
with the try block.

exception handling

Whe., you dO.,/t wa.,t to ha.,dle
a., exceptiott...

iust dUCK it

If you don't want to handle an
exception, you can duck it by
declaring it.
When you call a risky method, the compiler
needs you to acknowledge it. Most of the time,
that means wrapping the risky call in a try/
catch. But you have another alternative, simply
d1Uk it and let the method that called you catch
the exception.

It's easy-all you have to do is declare that
you throw the exceptions. Even though.
technically, you aren't the one doing the
throwing. it doesn't matter. You're still the one
letting the exception whiz right on by.

But if you duck an exception, then you don't
have a try/catch, so what happens when the
risky method (dol.aundry/)) does throw the
exception?

When a method throws an exception, that
method is popped off the stack immediately,
and the exception is thrown to the next
method down the stack-the caller. But if the
calleris a ducker, then mere's no catch for it so
the caller pops off me stack immediately, and
the exception is thrown to the next method
and so on ... where does it end? You'll see a
liul elate r.

public void foo() throws

II call risky method

laundry.doLaundry() ;

}

!

!

you are here. 335

handle or declare

Uuckhtg (by declaring) only
delays the inevitable

Sooner or later, somebody has to
deal with it. But what If MainO
ducks the exception?

public class Washer (
Laundry laundry = new Laundry(J;

public void fool) throws ClothingException
laundry .doLaundry();

public static void main (String[] argsl throws ClothingException (
Washer a = new Washer();
a .fooO;

o doLaundryO throws a
ClothingException

fooD ducks the
exception

mainO ducks the
exception

The JVM
shuts down

mainO calls focO

fooO calls doLaundryO

doLaundryO is
running and throws a
ClothingException

doLaundryO pops off the
stack immediately and
the exception is thrown
back to fooO .

But fooD doesn't have a
try/catch . so...

fooD pops off the
stack immediately and
the exception is thrown
back to ... who? What'?
There's nobody left
but the JVM, and it's
thinking. "Don't expect
ME to get you out of
this."

We're us)ng the tee-sh irt to represent a Cloth ing

Exception. We know, we know... you would

have preferr ed the blue Jeans.

336 chapter 11

}

exception handling

Handle or Declare. It's the law.
So now we've seen both ways to satisfy the compiler
when you call a risky (exception-throwing) method.

• HANDLE
Wrap the risky call in a try/catch

This had betta- b b'
try { »<""> ha",dle all extepti e athl~ e",o~h tatth

laundry. doLaundry () ; ~ ...iaht~ I'\. OI'IS, at doLa~",dt"yC)
J t"ow. vr e se th t '1

} catch (ClothingException cex) { still to...pl ' ~1L 1- I e OIftPI et" willa,,,, 'toa't yo~ toe t Lh
/ / recovery code of th••v. ,.,L. "'0 tau i",~ all

...."",er"IOI'IS.

• DECLARE (duck it)
Declare that YOUR method throws the same exceptions oil tnvoo-"s a
as the risky method you're calling. .1 1 ",W'dvo'.l) ...e-\:.n \ . Q tnt

int lo'o\..A01~ b~t b'(dtt. avo''';,
void foo () throws ClothingException { C\otni,,~~1Ltyti;"~O ...ttnod ~c\:.s to

laundry. doLaundry () ; ~~tytio", tnt..J.'OY\' No tVO'fIt.atJ,n.
d~\c. tnt t1Ltr'"

But now this means that whoever calls the fooO method
has to follow the Handle or Declare law. If fooD ducks
the exception (by declaring it), and mainO calls fooO, then
mainO has to deal with the exception.

pUblic class Washer {
Laundry laundry = new Laundry();

public void foo() throws Clothi ngExcep t i on
laundry.doLaundry();

public static void main (String[] a r gs)
Washer a = new Washer();
a c f oo Ij r ~

Beta~e the +000 ...tihod d~ks the
CI~hi",~ExteptiOl'l tht"OWl'l by doLa~",dt"vI')
...a,,,,() has to a ,. () T: I

Wt" P a·1"OO i", a tt"y/tatth
at" ...ai",O has to detlat"e that it, too, ,
ih...ows Cloihi",~ExtertjOl'l!

you are here. 337

fixing the Sequencer code

G-effittg back to our tMusic code...
Now that you've completely forgotten, we started this chapter
with a first look at someJavaSound code. We created a Se-
quencer object but it wouldn't compile because the method
Midi.getSequencerO declares a checked exception (MidiUnavail­
ableException). But we can fix that now by wrapping the call in a
try/catch.

public void play()

try {

Sequencer sequencer = MidiSystem.getSequencer();

System.out.println(~Successfullygot a sequencer");

}
II close play

Exception Rules

• You cannot have a catch or finally
without a try

void go () { t-/Oi ~~~~~\ ?

Faa f = new Faa () ; wnt.V"is -tnt -ty '1 '
f. foof () ;

catch(FooException ex) { }

• You cannot put code between the
try and the catch

NOT Lf..&:A
try { "': L!VOlA ". '1

lode h t11 1; P"t
x , doStUff/(); 1. e weell the try ~~

) "Ule ldtth. Ii""

int y = 43;

} catch(Exception ex) { }

try {

x.doStuff();

finally {

II cleanup

• A try with only a finally (no catch)
must still declare the exception.

void got) throws FooException {

try {

x.doStuff() ;

} finally { }

338 chapter 11

Code Kitchen

exceptJon handl ing

.:
(

You don't have to do it
yourselt, but it's a lot
more fun if you do.

Tlte rest 01 tlUs chapter
is optionaL you can use
ReaJy-bake code tor all
the music apps.

But ityou want to learn
more about JllvaSouncl,
turn the rage.

you are here ~ 339

JavaSound MIDI classes

Making actual sound
Remember near the beginning of the chapter, we looked at how MIDI data holds
the instructions for what should be played (and how it should be played) and we
also said that MIDI data doesn't actually create any sound that you hear. For sound
to come out of the speakers, the MIDI data has to be sent through some kind of
MIDI device that takes the MIDI instructions and renders them in sound, either
by triggering a hardware instrument or a 'virtual' instrument (software synthe­
sizer). In this book. we're using only software devices, so here's how it works in
JavaSound:

You need FOUR things:

The actual music
Information:
notes to play,
how long, etc.

e
9e
9

A MIDI event is a message
that the Sequencer can
understand. A MIDI event
might say (if It spoke
English), "At this moment
In time, play middle C,play
It this fast and this hard,
and hold It for this long."

A MIDI event might
also say something like,
"Change the current
instrument to Flute."

holds

The part of the
Sequence that
holds the actual
Information

Track

For this book, we only
need one Track,so Just
Imagine a a music CD
with only one song. A
single Track.This Track
Is where all the song
data {MIDI Information)
I1ves.

•

The Sequence is the
song, the musical piece
that the Sequencer will
play. For this book, think
of the Sequence as a
music CD,but the whole
CDplays just one song.

• The music to be
playtd...o song.

plays has a
Sequencer ~ Sequence ~

eD The thing that
plays the music

The Sequencer Is the thing
that actually causes a song
to be played. Think of It like
a music CD player.

340 chapter 11

And you need FIVE steps~

.. Get a Sequencer and open it
Sequencer player = MidiSyscem.gecSequencer();
player .openl);

.. Make a new Sequence
Sequence seq = new Sequenceltiming,4);

• Get a new Track from the Sequence
Track t = seq.createTrack();

• Fill the Track with MidiEvents and
give the Sequence to the Sequencer

exception handling

player. start ();

t.add(myMidiEventl);
player.setSequencelseq);

you are here ~ 341

a sound application

Your very first sound player app
Type it in and run it. You'll hear the sound of someone playing a
single note on a piano! (OK, maybe not someone, but something.)

import javax.sound.midi.*;

public class MiniMiniMusicApp {

pUblic static void main(String[] args) {
MiniMiniMusi cApp mini = new MiniMiniMusicApp();
mini.play();

II clos e main

(
try {

public void play()

a.·.~

"
•

Sequencer player
player . ope n () ;

Sequence seq = new

MidiSystem.getSequencer();

Tra ck track = seq.createTrack();

ShortMessage b = new ShortMessage()i
b. setMes sage (128, 1, 44, 100);
MidiEvent noteOff = new MidiEvent(b,
track.add(noteOff);

ShortMessage a = new ShortMessage();
a.setMessage(144, 1, 44, 100);
MidiEvent noteOn = new MidiEvent(a, 1);
track.add(noteOn); PlAt SOMe MidiEvetl'ts into the T-sek. This fart

is Mostly Ready-bake tode. The only thin~ YOlA'1l
have to tare abolAt al'"e the al'"~llMents to the
setMessa~e() ""ethod, and the al'"~llMents to
the MidiEvent t.onshlAtk. We'/Ilook at those
al'"~llMents on the ne1l.t ra~e .

player. setSequence (seq); ~ qive the Se,\llent.e to the Se,\llent.er (like

player. start (); 4:-- flAHin~ the CD in the cD fla-yel'")
Sfdl'"i() the

catch (Exception ex) { SeC(llehter Oike PlASh '
ex. p r i nt St ackTr ace (); 'n~ PLAy)

} I I c l o s e play

I I clos e c lass

342 cha pter 11

exception handling

Makit1g a MidiEvettt (SOttg data)
A MidiEvent is an instruction for part of a song. A series of MidiEvents is
kind of like sheet music, or a player piano roU. Most of the MidiEvents we
care about describe a thing to do and the momentin time to do it. The moment
in time part matters, since timing is everything in music. This note follows
this note and so on. And because MidiEvents are so detailed, you have to say
at what moment to start playing the note (a NOTE ON event) and at what
moment to step playing the notes (NOTE OFF event). So you can imagine
that firing the "stop playing note G" (NOTE OFF message) before the "start
playing Note en (NOTE ON) message wouldn't work.

The MIDI instruction actually goes into a Message object; the MidiEvent is
a combination of the Message plus the moment in time when that message
should 'fire'. In other words, the Message might say, "Start playing Middle
C" while the MidiEvent would say. "Trigger this message at beat 4".

So we always need a Message and a MidiEvent.

The Message says what to do, and the MidiEvent says when to do it.

• Make a Message
ShortMessage a = new Shor~Message();

1 MidiEVent says
whBtto do and
~todo~

Everg~on
must include the
~s.fortbat
in8tJtuction..

In other words, at
which beat that-thing ahould happen.

• Make Q new MidlEvent using the Message

• Put the Instruction in the Message "start y\a'li,,~ ~ ~.y
a. se~Message(144, 1, 44, 100); ~(- Th~ ...~~e s.a~ othtT """,'oeYS Ol\ ~e

(~e'\\ \oo\t at &e
"Vot. ya~e)

• Add the MidiEvent to the Track

you are here ~ 343

contents of a Midi event

MIPltttessage: the heart of a MidiEvet1f
A MIDI message holds the part of the event that says toha: to do. The actual instruction
you want the sequencer to execute. The first argument of an instruction is always the type
of the message.The values you pass to the other three arguments depend on the type of
message. For example, a message of type 144 means UNOTE O~'·. But in order to carry
out a NOTE ON. the sequencer needs to know a few things....fuiagine the sequencer saying.
~OK, I'll playa note, but whu:h chantul? In other words. dc/you want me to playa Drum
note or a Piano note? And which note? Middle-C? D Sharp? And while we're at it. at which

I

vekJcity should I play the note? \,
To make a MIDI message, make a ShortMessage instance and invoke setMessageO I passing
in the four arguments for the message. But remember, the message says only iahiuu» do. so
you still need to stuff the message into an event that adds when that message should 'fire'.

Anatomy of a message
The first argument to setMessageO always
represents the message 'type', while the other
three arguments represent different things
depending on the message type.

~t. ~"\

-:>r>f" il'c. Jd,V ~ ~~
....t; ~ '(P - ~f:j

a.setMessage(144, 1, 44, 100);

neldsf.3~
tyP ' . ~ Yd'ry dej>eJldj

e. Thl$ 1$ i NOTE ~ 0I'l ~~
~~ ~~~ ~f.o ~ .il"t tot" tJ. . .1, ~t, so the

k"o'ol i" ot"d .1 '~s U1t St,~
~ "[D rl.y • "ote. "eedt

~ Message type

344 chapter 11

The Message says what to do, the
MidiEvent says when to do it,

• ChoMel
Think of a channel like a musician in
a band. Channell is musician 1 (the
keyboard player), channel 9 is the
drummer, etc.

• Note to play
A number from 0 to 127, going
from low to high notes.

• Velocity
How fast and hard
you press the key? 0 is so soft you
probably won't hear anything, but 100 is a
good default.

Chat1ge a tMessage
Now that you know what's in a Midi message, you can start experimenting. You
can change the note that's played, how long the note is held, add more notes,
and even change the instrument.

exception handling

• Change the note

Try a number between 0 and 127 in the note
on and note off messages.

a. setMessage (144, 1, 20, 100);-
• Change the duration of the note

Change the note off event (not the message) so
that it happens at an earlier or later beat.

b.setMessage(128, 1, 44, 100);

MidiEvenc noteotf = new MidiEvent(b, 3);-

Change the instrument

Add a new message, BEFORE the note-playing message,
that sets the instrument in channell to something other
than the default piano. The change-instrument message
is '192', and the third argument represents the actual
instrument (try a number between 0 and 127)

you are here 345

change the instrument and note

and note args");

,/

/ / thiS£' the first one

I
args;) (
Mini~usiccmdLine();

public static void main(Scringl)
MiniMusicCmdLine mini = new
if (a rqs .length < 2) (

System.ouc.println("Don'C forget che instrument
else (

int instrument = Integer.parselnt(argsIO])i
int note = Integer.parselnC(args[l)l;
mini.play(instrumenc, note);

public class MiniMusiccmdLine

This version still plays just a single note, but you get to use command-line argu­
merits to change the instrument and note. Experiment by passing in two int values
from 0 to 127. The first int sets the instrument, the second int sets the note to play.

import javax.sound.midi.*;

) 1/ c lose mai.n

public void play(int instrument, int note) {

try

Sequencer player = MidiSystem.getSequencer();
player.open();
Sequence seq = new Sequence(Sequence.PPQ, 4);
Track track = seq.createTrack(),

MidiEvent event = null;

ShortMessage first = new ShortMessage();
first. setMessage (192, 1, instrument, 0);
MidiEvent changelnstrument. = new MidiEvent (first,
track.add(changelnstrument);

1) ;

ShortHessage a = new ShortMessage();
a.setMessage(144, 1, note, 100);
MidiEvent noteOn = new MidiEvent(a, 1);
track.add(noteOn);

Rvr. rt wi~ two i"i~ -h-Ot'<'. D
iD J'}..7. Try that: few~

ShortMessage b ~ new Shor~essage();

b.setMessage(12B, 1, note, 100);
MidiEvent noteOff = new MidiEvenc(b, 16);
track.add(noteOffl,
player.setSequence(seq);
player. start ();

%java MiniMusicCmdLine 102 30

%j ava MiniMusicCmdLine 80 20

~ j ava MiniMusicCmdLine 40 70

I catch (ExCeption ex) (ex.printStackTrace();)
I / / close p lay

/ I cl ose clas s

346 chapter 11

Where we're headed with the rest
of the CodeKitchens

exceptJon handling

Chapter 15: the goal
When we're done, we'll have a working
BeatBox that's also a Drum Chat Client.
We'll need to learn about GUIs (includ­
ing event handling), I/O, networking, and
threads. The next three chapters (12, 13,
and 14) will get us there.

Chapter 12: MIDI events
This CodeKitchen lets us build a little
"music video" (bit of a stretch to call it
that...) that draws random rectangles to
the beat of the MIDI music. We'll learn
how to construct and play a lot of MIDI
events (instead of just a couple, as we do
in the current chapter).

0.11 !l!.

Chapter 13: Stand.-alone
BeatBox
Now we'll actually build the real Beat Box,
GUI and all. But it's limited-as Soonas you
change a pattern, the previous one is lost.
There's no Save and Restore feature, and
it doesn't communicate with the network.
(But you can still use it to work on your
drum pattern skills.)

Chapter 14: Save and
Restore
You've made the perfect pattern, and
now you can seve it to a file, and reload it
when you want to play it agoin. This gets
us ready for the 'final version (chapter 15),
where instead of writing the pattern to a
file, we send it over a network to the chat
server.

you are here ~ 347

exercise: True or False

This chapter explored the wonderful world of
exceptions. Your job is to decide whether each of the
following exception-related statements is true or false.

~rl\\I- 01\ F9~~
1. A try block must be followed by a catch ind a finally block.

2. Ifyou write a method that might cause a compiler-checked exception, you

must wrap that risky code in a try I catch block.

3. Catch blocks can be polymorphic.

4. Only 'compiler checked' exceptions can be caught

5. Ifyou define a try / catch block, a matching finally block is optional.

6. If you define a try block, you can pair it with a matching catch or finally block,

or both.

7. Ifyou write a method that declares that it can throw a compiler-checked ex­

ception, you must also wrap the exception throwing code in a try / catch block.

8. The main () method in your program must handle all unhandled exceptions

thrown to it.

9. A single try block can have many different catch blocks.

10. A method can only throw one kind of exception.

11. A finally block will run regardless of whether an exception is thrown.

12. A finally block can exist without a try block.

13. A try block can exist by itself, without a catch block or a finally block.

14. Handling an exception is sometimes referred to as .ducking' .

15. The order of catch blocks never matters.

16. A method with a try block and a finally block, can optionally declare the

exception.

17. Runtime exceptions must be handled or declared.

348 chapter 11

exception handling

Code Magnets
A working Java program is scrambled up on the fridge. (an you
reconstruct all the code snippets to make a work ing Java program
that produces the output listed below? Some of the curly braces fell
on the floor and they were too small to pick up, so feel free to add as
many of those as you needl

/ . t(UrU)"
, system. out . pr 1.n I

\
system.out.print(ut u) ;

doRisky(test)i

system.out .println(UsU); } finally

class MyEx extends Exception < }

public class ExTestDrive (

lUy e ~

S .equalslt») {

system.out.print(Ua U
) ;

throw new MyEX()i
} catch (MyEx e) {

static void doRisky(String t) throws MyEx (

Systern.out.print(Uh");

. st iog [J args) {
public static void ma1.n(r

string test = args[O);

you are here . 349

puzzle: crossword

-

/" 10

JavaOr~ss r.O

.' .

.

I

I
-

You know what to dol
-

I 1
16

I'~
- -

- r I
flJ

I

I
f--

LY

Across 20. Class hierarchy Down 12. Javac saw it coming

1. Togivevalue 21. Toohot to handle 2 Currently usable 14. Attempt risk

4. Flew off the top 24. Commonprimitive 3. Template's creation 16. Automaticacquisition

6. All thisand morel 25. Coderecipe 4. Don't showthe kids 17. Changing method

8. Start 27. Unrulymethod action 5. MostlystaticAPI class 19. Announce a duck

10. The family tree 28. NoPicasso here 7. Not about behavior 22 Dealwith it

13. No ducking 29, Start a chainof events 9.Thetemplate 23. Create badnews

15. Problem objects 11. Roll anotheroneoff 26. Oneof my roles

18. Oneof Java's '49'
the line

More Hints:
.J3U36. PION 'll

ilUntJQl,(IIUJI!l a4\- - '9 1

111l2jap JO 'lI<lnd ,(IUO '6

350 chapter 11

, .. SJ3qwnN 'S

(3Idw~IOUl --'0;1 '£
4Sl!M1I1now l' '0 'z

llMOQ

PetlSq\llON 'SZ

W31<lOJd ~ QJl!\S ·Ll.
l(~pntl 'iz

U0I-I><lUro10ad.<l e0Sfd 'oz

~ep,}p 10P~ul '£\
P0413W e IJl!lS "9

P1l4' l!IIprv '9
~

1. False, either or both.

2. False, you can declare the exception.

3. True.

exception handling

Code Magnets
class MyEx extends Exception { }

public class ExTestDrive {

public static void main (String [J arqs) {
String test = args[O]:
try {

syatem.out.print(Nt"):

doRisky(teat):

4. False, runtime exception can be caught.

5. True .

6. True, both are acceptable .

7. False. the declaration is sufficient.

8. False, but ifit doesn't theJVM may shut
down.

9. True.

10. False.

11. True. It's often used to clean-up partially
completed tasks.

12. False .

13. False.

14 . False. ducking is synonornous with declar­
ing.

15. False, broadest exceptions must be caught
by the last catch blocks.

16. False, if you don't have a catch block, you
must declare.

17. False .

}

System.out.print(Ho");

} catch (MyEx e) {

} finally {

System.out.print(Hw");
}

System.out.println(Ns")j
}

static void doRisky(String t) throws MyEx {
System.out.print(HhH);

if ("yesH.equals(t)

throw new MyEx();
}

System.out.print(Wr")j

yo u are here. 351

puzzle answers

•

362 chapter 11

