A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

15 networking and threads

Make a Connection

Connect with the outside world. your Java program can reach out and touch a
program on another machine. it's easy. All the low-level networking details are taken care of by
classes in the java.net library. One of Java's big benefits is that sending and receiving data over
a network Is Just I/0 with a slightiy different connection stream at the end of the chain.If you've
got a BufferedReader, you can read. And the BufferedReader could care less if the data came
out of a file or flew down an ethernet cable. In this chapter we'll connect 1o the outside world
with sockets. We'll make cfient sockets. We'll make server sockets.We'll make clients and servers.
And we'll make them talk to each other. Before the chapter’s done, you’'ll have a fully-functional,
multithreaded chat client. Did we just say multithreaded? Yes, now you will learn the secret of

how to talk to Bob while simultaneously listening to Suzy.

this is a new chapter 471

http://www.a-pdf.com/?product-split-demo

t box chat

al-time Beat BoX Chat

866
Cyber BeatBox

Bass Dnvmn E;’jm -
Closed Hi- "“DEDDD non 2
e
Acousmsnm-‘ AD'OBO’ e, T ¢ '
pcoustc sra gggggggéadgggggg
Hand Clap P] e e 8880081 ‘
ocoogaag 088888
High Tom e - 8888088 =
. mi=isist aeassg eenat
i Bongo DQQ%SDQDQQDDDDQE - e
aisisisiaisic] . 2 ;g"\bmo..,mm,ér -
| sequence 8

Maraca
wmsﬂ: ggggEDSDsggQgQa 5
Cowbel ammcaﬂsaasggggg 1 + waog 300
Vibrasiap D;_; aa8aa8e8a8g :Db Iskyl s L] \ﬁea"“ d\'\cb“ap“
'-w-n'udrom'UﬁgggggDDDODﬂDgﬁ ;m:;:;‘ﬁ”dmnky,gooam] ‘(:Dusﬁ‘:iﬁ "dﬁgt

288000808 | ovstor2: like skyler2, but | P‘s Al oree -

mors
QA’(&C"“

High Ag =
opt_:nmocgzngagga"gDQDDDC{GQGUG :
8 E!»EDQDDDGESSL@} | Oakenfoldish 1,
| skylers; you WISHI Too i
ylers you WSH Too perky .

You're working on a computer gam

are doing the sO 3 ch part of the game.
Using
collaborate—you can s

chat message and everybody n

it Soyou don'tjus ad the other
artcipants’ messages, You get to

playa beat patterd simply by €
message 11 the incoming messages area.
n this chapter we're going to learn what 1t
-t like this. We're
fitle about making 2

your

{in this chapter you
willwrite 2 Ludicrously Simple Chat Client and
Very Simple Chat end and receive

text messages:

You tan have tom
letel
othentic, mtelet
sﬁmhlaﬁng Zha.{:Ctmlly
60;:;*;3{-’; ont E chy
messane is sent 1o 3l
participants. 2l

Send your message Lo the server

A72 chapter A5

networking and threads

Chat Program Overview

The Client has to know
about the Server.

The Server has to know
about ALL the Clients.

Client B

How it Works: Client €

o Client connects to the server i
— Sevver, ['d like to tonnett
£5 the that cervice

6 The server makes a
connection and adds the client
to the list of participants

oK, you'rc in.

Sevver, |'d like o commett

— to the that service
e Another client connects ™ . OK, yoo're in —
Client B
y “Who took the lava lamp
@) Client A sends a message to _ T from my dorm room?”
the chat service
Client A

i— ' “Who tock the lava lamp

from my dovm voom?"

€ The server distributes the
message ta ALL participants
(including the original sender)

Client A

Client B

you are here» 473

socket connections

Conneeting, Sending, and Receiving

The three things we have to learn to get the client working are :

1) How to establish the inital connection between the client and server
2) How to send messages o the server

3) How 10 receive messages from the server

There’s a lot of low-level stuff that has to happen for these things to work. But we’re
lucky, because the Java API networking package (java.net) makes it a piece of cake
for programmers. You'll see a lot more GUI code than networking and I/0 code.

And that's not all.

Lurking within the simple chat client is a problern we haven’t faced so far in this
book: doing two things at the same tme. Establishing a connecton is a one-time
operation (that either works or fails). But after that, a chat participant wants to

send outgoing messages and simultaneously receive incoming messages from the other
participants (via the server). Hmmmum... that one’s going to take a little thought, but
we'll get there in just a few pages.

© Connect

Client connects to the server by
establishing a Socket connection.

Make a sotket connettion to
1961641103 at port 5000

Client A

© Send

Client sends a message to the server

writer .yrinﬂn(aMcssage)

Client A
© Receive

Client gets a message from the server

i- ¢— String s = veaderreadline)

474 chapter 15

networking and threads

Make a network Socket connection To make 2 Socket

To connect‘ to another machine,‘we nee§ a Socket connection. CODDe(?ﬁOrL you need
A Socket (java.net.Socket class) is an object that represents .

a network connection between two machines. What's a to know two ﬂ‘\]ngs
connecton? A relationship between two machines, where two .
pieces of software kmow about each other. Most importantly, about ﬂ19 server: W]:)O
those two pieces of software know how to communicate with i 15, and \vhich Po]_‘t

each other. In other words, how to send bits to each other. it,s .
We don't care about the low-level details, thankfully, because g

they're handled at a much lower place in the ‘networking
stack’. If you don’t know what the ‘networking stack’ is, don't In Oﬂ‘ler words’

worry about it. It’s just a way of looking at the layers that IP ﬂddl' e55 and TCP

information (bits) must travel through to get from a Java
program running in a JVM on some OS, to physical hardware Port nu]'q_ber_
(ethernet cables, for example), and back again on some other

machine. Somebody has to take care of all the dirty details.

But not you. That somebody is a combination of OS-specific

software and the Java networking APIL. The part that you have

to worry about is high-level —make that very high-level—and

shockingly simple. Ready? Tep

L

Socket chatSocket = new Socket(“196.164.1.103”, 5000);

pord numbey.

(P addvess §or the sevier

This client is at
196.164.1.100, port 4242,
When I need to talk ta
him, that's where I'll send
the message.

The chat server is at
196.164.1.103, port 5000.

When T need to talk to him,
that's where T'll send
the message.

5\ Client Server
|

.. A Socket connection means the two machines have
| information about each other, including network
loeation (IP address) and TCP port.

you are here » 475

well-known ports

478

A TCP port is just a number.

A 16-bit number that identifies
a specific program on the server.

Your internet web (HTTP) server runs on port 80. That’s a
standard. If you've got a Telnet server, its running on port
23. FTP? 20. POP3 mail server? 110. SMTP? 25. The Time

server sits at 37. Think of port numbers as unique identifiers.

They represent a logical connection to a particular piece of
software running on the server. That's it. You can’t spin your
hardware box around and find a TCP port. For one thing,
you have 65536 of them on a server (0 - 65535). So they
obviously don’t represent a place to plug in physical devices.
They're just 2 number representing an application.

Without port numbers, the server would have no way of
knowing which application a client wanted to connect to.
And since each application might have its own unique
protocol, think of the trouble you'd have without these
identifiers. What if your web browser, for example, landed
at the POP3 mail server instead of the HTTP server? The
mail server won'’t kniow how to parse an HT'TP request! And
even if it did, the POP3 server doesn’t know anything about
servicing the HTTP request

When you write a server program, you'll include code that
tells the program which port number you want it to run on

(you’ll see how to do this in Java a little later in this chapter).

In the Chat program we’re writing in this chapter, we picked
5000. Just because we wanted to. And because it met the
criteria that it be 2 number between 1024 and 65535. Why
1024? Because 0 through 1023 are reserved for the well-
known services like the ones we just talked about

And if you're writing services (server programs) to run on

a company network, you should check with the sys-admins

to find out which ports are already taken. Your sys-admins
might tell you, for example, that you can’t use any port
number below, say, 3000. In any case, if you value your limbs,
you won't assign port numbers with abandon. Unless it’s
your home network. In which case you just have 10 check with
your kids.

chapter 15

Well-known TCP part numbers
for common server applications

Telnet oMT?

Tir-\c

HTTPS pop3 PTTP

A server tan have wp to 6553
ditfeeent server apps vunning,
ome per port. :

The TCP port
numbers from 0 to 1023
are reserved for well-
known services. Don’t
use them for your own
server programs!*

The chat server we're
writing uses port
5000. We just picked a
numher between 1024
and 65535.

“Well, you might be able to use one of
thesa, but the sys-admin where you
work will probably kill you.

Ddﬁeﬁle 5 ?ﬂﬁesﬁ’ons

Q: How do you know the port
number of the server program you
want to talk to?

A: That depends on whether the
program is one of the well-known
services. If you're trying to connect
to a well-known service, like the ones
on the opposite page (HTTP, SMTP,
FTP, etc.) you can look these up on
the internet (Google “Well-Known
TCP Port”), Or ask your friendly
neighborhood sys-admin,

But if the program isn't one of the
well-known services, you need to
find out from whoever is deploying
the service, Ask him. Or her. Typically,
if someone writes a network service
and wants others to write clients for
it, they’'ll publish the 1P address, port
aumber, and protocol for the service.
For example, if you want to write a
client for a GO game server, you can
visit one of the GO server sites and
find information about how to write a
client for that particular server.

Q: Can there ever be mare than
one program running on a single
port? In other words, can two
applications on the same server have
the same port number?

A: No! If you try to bind 2 program
0 a port that Is already in use, you'll
get a BindException. To bind a program
10 a port just means starting up a
sarver application and telfing it to run
on a particular port. Again, you'll learn
more about this when we get to the
server part of this chapter.

networking and threads

Pov—{: number | '3 .
IP addvess is the mall ‘,.{.'\“‘e n Lhe :all ¢ specifie

IP address is like specifying a |
particular shopping mall, say, &
"Flatirons Marketplace”

number is like naming
a specific store, say,
*Bab's €D Shop”

OK, you got a Socket connection.The client and the
server know the IP address and TCP port number for
each other.Now what? How do you communicate
over that connection? In other words, how do you
move bits from one to the other? Imagine the kinds of
messages your chat ctient needs to send and receive.

H do {-}‘c“ {wo
a::uall talk to

eath o hev?

you are here »

477

reading from a socket

To read data from a Socket, use a

m?\«{‘. and out WE r{reams

to and from the Sotket
BufferedReader o and trom
To communicate over a Socket connection, you use streams. B
Regular old 1/0 streams, just like we used in the last chapter. One |

of the coolest features in Java is that most of your I/O work won’t
care what your high-level chain stream is actually connected to. In
other words, you can use a BufferedReader just like you did when
you were writing to a file, the difference is that the underlying
connection stream is connected to a Socket rather than a File!

whieh ou know
The port r-unbﬂ"’b \iou {-13{'« 5000 s

L
, betawse we 10 L sevver.
Make a Socket connection to the server J the port sumber For owr (ha
Socket chatSocket = naw Socket (“127.0.0.17, 5000);
O s the [P

¢ & words, the m:d&rm "‘o’- ‘Iloda} host”

s " use ﬂ'lu when 00 eis I—uh)"n 2 th

orver op 4 f“ﬂ on. You

"‘31‘ Pﬂ?nd alone 7“‘" d'th{: and
M.

Make an InputStreamReader chained to the Socket's
low-level (connection) input stream

InputStreamReader stream = new InputStreamReader (chatSocket.getInputStream());

l v{S{;\fe.achadc\' “a br\dsc chcWCcn 3 1ow

Icvc\ \)‘[{‘,C skream (like the one {,omh?:rah llkc A“ we have {o do is AS

K the soecket for

level ehavacter ¢ 3 input sbrcam/ It's a Jow-| .
Sotked) and 2 h\ﬁh our top o Jow—level tonnetti
o ok fevedReader weve akter 2t v ot v e Just doma ehain it £y
Fhe thain stream’- § more text viendly.

C\'\a"\ ﬂ\d &;chcdtgtaf\fthf ﬁ\a"\cd ‘{',0 *}‘l 10\0.—
wReaderiwht
e Make a BufferedReader and read! g‘\:‘jﬁﬁﬁwm bream we got From The

BuffaraedReader reader = new BufferedReadar (3stream) ;
String message = readar.readline();

50“"&!
dc:ﬁ N
na
\ tion buffered characters converted to characters bytes from server
buffered 011010011 [——
characters ¢chained to characters chained to
BufferedReader InputStreamReader Socket's input stream

{we don't need to know
the actual class)

Server

478 chapter 15

networking and threads

To write data to a Socket, vse a
PrintWriter

We didn’t use PrintWriter in the last chapter, we used BufferedWriter. We have
a choice here, but when you're writing one String at a dme, PrintWriter is the
standard choice. And you'll recognize the two key methods in PrintWriter,
print() and printin()! Just like good o’ System.out.

. the
- I fhe same 3¢ 1t was o0
ke ot e
o Make a Socket connection to the server \/ server, we 5Ol have
Socket chatSocket = new Socket(“127.0.0.1”, 5000):;
Make a PrintWriter chained to the Socket's low-level
(connection) output stream
PrintWriter writer = new PrintWriter (chatSoccket.getOutputStream());
r . bridge between /
Prin{:W\r'lJcL; r:‘;:; ﬁ:\;\us ik acts J;rom the QC“S:C::: 3:-'21 ;u a.il?o—-lcvd Lonnet tion
thavatter da bt shream. Dy thaining n i the PrintiWriter b

kel's output stream, we 9iving it {0 the PrintiWritey Lomshructog. Y
to the Socket tannection

Write (print) somethi o
e ; . 0 ddsancw\ima{:l')\ccndofwha{:&sc
«— ?riv\{:\h a

writer.println(“message to send”); o new line.

writer .print (“another message”) ; h?"’.‘“u) doesn add th

dts)d,\a{;'\on
choracters bytes to server
‘message...” P 011010011
chained to
PrintWriter Socket's output

stream (we don't need
to know the actual class)

you are here» 479

writing a client

The DailyAdviceClient

Before we start building the Chat app,
let's start with something a little smaller. a cold onel You
The Advice Guy is a server program that deserve it}
offers up practical, inspirational 6ps
to get you through those long days of
coding.

We’re building a client for The Advice
Guy program, which pulls a message
from the server each time it connects.

Treat yourself to

What are you waiting for? Who knows
what opportunities you've missed
without this app.

The Advice Guy
© Connect

Client connects to the server and gets an
input stream from it

-

Make 3 sotket connettion to
190.165.1.103 at port 4242

— so(.ktﬁgd:[n?u{;g{:rﬁm()

Client

© Read

Client reads a message from the server

advite = veaderreadline()

480 chapteri5

Tell your boss

the report will
have to wait. There's

powder at Aspenl

That shade of
green isn't really

workin’ for you...

Server

networking and threads

VaiiyAdvicecIien’f code

This program makes a Socket, makes a BufferedReader (with the
help of other streams), and reads a single line from the server
application (whatever is running at port 4242).

import java.io.*; : 33V3~“C{3

. Plass So&kd'f s W

import java.net.*;

public class DailyARdviceClient {
onnettion ko whatever is

ake 3 So&kc‘t ¢ e same \'\';75
public void go() { heve :unn\hﬁ on por & lﬁt,(?\\e 4 d’a\hcs&)
£ry { ¢ a lok tan 30 W VL ks code is vunnd

Socket s = new Socket(“127.0.0.1", 4242);

InputStreamReader streamReader = new InputStreamReader (s.getInputStream());

BufferedReader reader = new BufferedReader (streamReader); ... 3 BufferedReader to

n InputStreamReader to
i,\sc ‘? ot stream from the

Sotk

String advice = reader.readLinae(); k/—\ +his veadLing() ;

System.out.println(“Today you should: “ + advice); 55 ‘3Mt as if
BU Y Were us,ha a

Rcadcr ¢hained toa FILE.

reader.close () ; &——4his tloses ALL the streams Ca Il a B ds'u/ the € time You
tor me{;),od the

the a‘a"aﬁ'ée b ? tare where
rom

<EXACTLy

} catch(IOException ex) {
ex.printStackTrace() ;

public static void main(String[] args) {
DailyAdviceClient client = new DailyAdviceClient():;
client.go():

you are here» 481

socket connections

—%rpen your penci
Test your memory of the streams/classes for reading and writing from 2

Socket.Try not to look at the opposite pagel

To read text from a Socket:

write/draw in the thain of streams the client
uses £o vead from the server

To send text to a Socket:

write/draw in the thain of streams the client
Client uses to send something to the server

Server

—tagbrpen yu pen
Fill in the blanks:

What two pieces of information does the client need in order to make a
Socket connection with a server?

Which TCP port numbers are reserved for'well-known services’like HTTP and FTP?

TRUE or FALSE: The range of valid TCP port numbers can be represented
by a short primitive?

482 chapter 15

networking and threads

Writing a simple server

So what's it take to write a server application? Just a
couple of Sockets. Yes, a couple as in two. A ServerSocket,
which waits for client requests (when a client makes a
new Socket{)) and a plain old Socket socket to use for
comumunication with the client.

How it Works:

o Server application makes a ServerSocket, on a specific port
SarverSocket sarverSock = new SarxrverSockat (4242); Servee

Cotkel

This starts the server application listening
far client requests coming in for port 4242.

@ Client makes a Socket connection to the server application
Socket sock = new Socket(“190.165.1.103", 4242);
Client knows the IP address and port number

(published or given to him by whomever
configures the server app to be on that port)

e Server makes a new Socket to communicate with this client
Socket sock = serverSock.accapt();

The accept() method blocks (just sits there) while

it's waiting for a client Socket connection. When a
client finally tries to connect, the method returns

a plain old Socket (on a different port) that knows
how ta communicate with the client (i.e., knows the
client’s TP address and port number). The Socket is on
a different port than the ServerSocket, so that the
ServerSocket can go back Yo waiting for ather clients.

you are here v 483

writing a server

PailyAdviceServer code

This program makes a ServerSocket and waits for client requests. When it gets
a client request (i.e. client said new Socket() for this application), the server
makes a new Socket connection to that client. The server makes a PrintWriter
(using the Socket’s output stream) and sends a message to the client.

import java.io.*; evbeY ihe mporT
import java.net.¥*; ver

(emewber, these Shrings
weve word—wrapped Y
the tode editor- Nc‘vcvl
hik vetuen v the middle

public class DailyAdviceServer { daly advie tomes from this avvay of 2 String!) 2

String[] advicelist = {“Take smaller bites”, “Go for the tight jeans. No they do NOT
make you look fat.”, “One word: inappropriate”, “Just for today, be honest. Tell your
boss what you *really* think”, “You might want to rethink that haircut.”};

public void go() {

try { /‘\ application Jic é'e‘:'fc; his servey
. on t or Clla‘{ v
ServerSocket serverSock = new ServerSocket (4242); Po;v 4-2_4_2 on £he hent . hc_s{;s
‘{: ‘ € IS V‘uhnihs on. ine BIS
The sevver goes into 3 yerma!\m{: 00?,,;,5
waiting for (and serviting) tlient veq
while (trve) { Ehe aceept method blocks (just sits theve) wnkil a
Q/—‘ vequest comes in, and then the method returns a

Socket sock = serverSock.accept()

with the ¢lient

Sotket (on some anonymous port) for communicating

PrintWriter writer = new PrintWriter(soék.getOutputStream());

String advice = getAdvice();
writer.println(advice) ;

now we _
writer.close() ; use the Socket tonnettion

make a Printw,

System.out.println (advice) ; .
ad)v:«:e message.

}

} catch(IOException ex) {
ex.printStackTrace() ;
}
} // close go

private String getAdvice() {

int random = (int) (Math.random() * advicelist.length);
return adviceList[random];

}

public static void main(String[] args) {
DailyAdviceServer server = new DailyAdviceServer();
server.go();

}

484 chapter 15

viter and send it (Frin'l:lh(» as

The]
we've done with this chon T oeket because

to the ¢lient Lo
{:ring

5

7 Brain Barhell

How does the server know how to
communicate with the client?

The client knows the IP address and port
number of the server, but how is the server
able to make a Socket connection with the
client (and make input and output streams)?

Think about how / when / where the server
gets knowledge about the client.

therejara no
Dueﬁ%la uestions

Q} The advice server code on the opposite
page has a VERY serlous limitation—Iit looks
ltke it can handle only one client at a timel

A: Yes, that’s right. It can't accept a request
from a client until it has finished with the
current client and started the next iteration of
the infinite loop (where it sits at the accept()
call until a request comes in, at which time it
makes a Socket with the new client and starts
the process over again).

Q: Let me rephrase the problem: how can
you make a server that can handie multiple
clients concurrently??? This would never
wark for a chat server, for instance.

A: Ah, that’s simple, really. Use separate
threads, and give each new client Socket to a
new thread. We're just about to learn how to
do that!

,.‘- \
__ BULLET POIMT&

networking and threads

-

Client and server applications communicate over a Socket
connection.

A Socket reprasents a connaction between two applications
which may (or may not) be running on two different physical
machines.

A client must know the IP address (or domnain name) and
TCP port number of the server application.

A TCP portis a 18-bit unsigned number assigned to a
specific server application. TCP port numbers allow different
clients to connect to the same machine but communicate
with different appiications running on that machine,

The port numbers from 0 through 1023 are reserved for
‘well-known services' incuding HTTP, FTP, SMTP, etc.

A client connects 10 a server by making a Server socket
Sockat a8 = new Socket(“127.0.0.1”, 4200)

Once connected, a client can get input and output streams
from the socket. These are low-level 'connection’ streams.
sock .gatInputStream() ;

To read text data from the server, create a BufferedReader,
chained to an inputStreamReader, which s chained to the
input stream from the Socket.

InputStreamReader Is a ‘bridge’ stream that takes in
bytes and converts them to text {character) data. If's used
primarily to act as the middle chain between the high-level
BufferedReader and the low-level Socket input stream.

To write text data to the server, creats a PrintWriter chained
directly to the Socket’s output stream. Call the print() or
printin() methods to send Strings to the server.

Servers use a SarverSocket that waits for client requests on
a parlicular port number.

When a ServerSocket gets a request, it ‘accepts’ the request
by making a Socket connaction with the client.

you are here» 485

a simple chat client

Writing a Chat Client

We'll write the Chat client application in two stages. First we’ll
make a send-only version that sends messages to the server but
doesn’t get to read any of the messages from other participants
(an exciting and mysterious twist 10 the whole chat room
concept).

Then we’ll go for the full chat monty and make one that both
sends and receives chat messages.

Version One: send-only

] 6 Q 7 .Lt_xfi_femusly Slmplé (;?gt-'CIignF' = . Type 3 message; then press

488

| Cseng) | toend o B S oM the

Code outline

public clags SimpleChatClienthA (

JTextField outgoing;
PrintWriter writaer;
Sockat mock;

public void go() {
// make gui and register a listenaer with the sand button
// call the setUpNetworking{() method

}

private void setUpNetworking() {
// make a Socket, then make a PrintWriter
// assign the PrintWriter to writer instance variable

}

public class SandButtonlListener implements Actionlistener {
public void actionParformed(ActionEvent ev) {
// get tha taxt from the text field and
// send it to the server using the writer (a PrintWriter)

}
} // close SendButtonliastener innar class

} // close outer claas

chapter 15

networking and threads

import java.ioc.*; <avaio)
import java.net.¥; $or the skreams (J;va.l ’
import javax.swing.¥; imports Fo¥ 1) and the qul
import java.awt.¥; ' Sotket (5aua-nc

import java.awt.avent.¥*; s{‘,u“:

public class SimpleChatClienthA (

JTextFiaeld outgoing;
PrintWriter writer;
Sockat sock;

public void go() {
JFrame frame = new JFrame (“Ludicrously Simple Chat Client”);
JPanal mainPanal = naw JPanel ()

outgoing = new JText¥Field(20); hind nEW
JButton sendButton = new JButton (“Send”); build the ﬁ"_m{"‘_dg
sendButton.addActionListenar (new SendButtonListener()); here, 3“‘? T 0.
mainPanel.add (ocutgoing) ; pebuorking o

mainPanel .add (sendButton) ;
frame . gaetContentPana () .add (BorderLayout CENTER, mainPanel);
satUpNatworking () ;
frame.satS8iza (400,500) ;
frame.satVisible (true) ; ,
} // close go We re usins Jx‘;]}m.{ so
YoU Lan test the gliont

pzlv::__; :roid setUpNetworking () { and sevver on one mathine
sock = new Socket(“127.0.0.1”, 5000) ; Thic is wheve we make the Socket
writer = new PrintWriter(sock.getOutputStream()): " 'n ‘b iwriter (it's called
System.out.println (“natworking establishad”) ; 2 the aol) method r‘n_)’h‘l', bekore
} catch(IOException ex) { ‘_’°’;‘ : ?,M app GUD
ax.printStackTrace() displaying
}
} // close setUpNetworking
public class SendButtonlistener implaments ActionListener (
publiec void actionPerformed (ActionEvent ev) (
try {
writer.println (outgoing.getText()); Now we ac{ually do the writing.
writer.flush () ; Remember, the writer is ehained to
the input stream from the Socket, <o
} catch (Exception ex) { whenever we do a printin(), it qoes
ex.printStackTraca () ; over the network E: the sevver!

}

outgoing.setText (*”)
outgoing.requestFocus () ;

}
} // ¢lose SandButtonlListener inner class

public static void main(3tring(} args) {
new SimplaChatClientA({).go():

}

} // close outer class

you are here» 487

improving the chat client

Version Two: send
and receive

The Server sends 3 message to 5l
tlient participants, as soom as the
message is received by the sevver.
When a tlient sends 2 mesage, it
doesn't appear in the inomi
message display avea until the

i in
infoming server sends it {0 cveryone.

messanes
) s st f Loian?

wo sald that?

I.

oh{',soinﬁ messaae !

Big Question: HOW do you get messages from the server?
Should be easy; when you set up the networking make an input stream as well

(probably a BufferedReader). Then read messages using readLine().

Bligger Question: WHEN do you get messages from the server?
Think about that. What are the options?)

0 Option One: Poll the server every 20 seconds
Pros: Well, it’s do-able
Cous: How does the server know what you’ve seen and what you haven't? The server
would have to store the messages, rather than just doing a distribute-and-forget each time

it gets one. And why 20 seconds? A delay like this affects usability, but as you reduce the
delay, you risk hitting your server needlessly. Inefficient.

@ Option Two: Read something In from the server each time the user
sends a message.

Pros: Do-able, very easy

Cons: Stupid, Why choose such an arbitrary ime to check for messages? What if a user is
a lurker and doesn’t send anything?

@ Option Three: Read messages as soon as they’re sent from the server
Pros: Most efficient, best usability

Cons: How do you do you do nwo things at the same time? Where would you put this code?
You'd need a loop somewhere that was always waiting to read from the server. But where
would that go? Once you launch the GUI, nothing happens untl an event is fired by a GUI
component

488 chapter 15

You know by now that we're
going with option three.

We want something to run continuously,
checking for messages from the server,
but without interrupling the user’s ability to
interact with the GUI! So while the user is
happily typing new messages or scrolling
through the incoming messages, we
want something behind the scenes to keep
reading in new input from the server.

That means we finally need a new thread.
A new, separate stack

We want everything we did in the Send-
Only version (version one) to work the
same way, while a new process runs along
side that reads information from the
server and displays it in the incoming text
area.

Well, not quite. Unless you have multiple
Processors on your computer, each new
Java thread is not actually a separate
process running on the OS. But it almost
Seels as though it is.

networking and threads

' In Java you rea]ly CAN
walk and chew gum at
the same time.

Multithreading in Java

Java has multiple threading built right
into the fabric of the language. And it’s 2
snap to make a new thread of execution:

Thread t = new Thread();
t.start():;

That’s it. By creating a new Thread object,
you've launched a separate thzad of
execution, with 1s very own call stack.

Except for one problem.

That thread doesn't actually do anything,
30 the thread “dies” virtually the instant
it's born. When a thread dies, its new
stack disappears again. End of story.

So we're missing one key component—
the thread’s job. In other words, we need
the code that you want to have run by a
separate thread.

Muluple threading in Java means we

have to look at both the thread and the job
that's run by the thread. And we'll also
have to look at the Thread class in the
java.lang package. (Remember, java.lang
is the package you get imported for

free, implicitly, and it’s where the classes
most fundamental to the language live,
including String and System.)

you are here» 489

threads and Thread

Java has multiple threads but only
one Thread class

We can @alk about thread with a lower—ase ‘t’ and Thread
with a capital “T’. When you see thread. we're talking
about a separate thread of execution. In other words,

a separate call stack. When you see Thread, think of

the Java naming conventon. What, in Java, starts with a
capital letter? Classes and interfaces. In this case, Thread
is a class in the java.]ang package. A Thread object
represents a thread of execution; you’ll create an instance of
class Thread each tme you want to start up a new thread
of execution.

maln thread another thread
started by the code

A thread (lower-case 't') is a separate thread of execudon.

That means a separate call stack. Every Java applicadon
starts up a main thread-—the thread that puts the
main () method on the bottom of the stack. The JVM
is responsible for starting the main thread (and other
threads, as it chooses, including the garbage collecdon
thread). As a programmer, youl can write code to start
other threads of your own.

490 chapter 15

Thread

void join)
vold start()

siatic void sleap()

java.lang.Thread
class

Thread (capital ‘'T’) js a class that
represents a thread of execution.
[t has methods for starting a
thread, joining one thread with
another, and putting a thread to
sleep. (1t has more methods; these
are just the crucial ones we need
10 Use now).

networking and threads

What does it mean to have more than
one call stack?

With more than one call stack, you get the appearance of having
muldple things happen at the same time. In reality, only a true
muldprocessor system can actually do more than one thing ata
time, but with Java threads, it can appear that you’re doing several
things simultaneously. In other words, execution can move back
and forth between stacks so rapidly that you feel as though all stacks
are executing at the same time. Remember, Java is just a process
running on your underlying OS. So first, Java itself has to be ‘the
currently executing process’ on the OS. But once Java gets its

turn to execute, exactly what does the JVM run? Which bytecodes
execute? Whatever is on the top of the currently-running stackl
And in 100 milliseconds, the currenty executing code might switch
10 a different method on a different stack.

One of the things a thread must do is keep track of which statement
(of which method) is currently executing on the thread’s stack.

It might look something like this:
the active thread

o The JVM calls the main() method. J’

public statiec void main (String[] args) (

main thread

)

3 new thread starts

i nd b the activ
main() starts a new thread. The main and becomes the active

thread
thread is temporarily frozen while the new ST L
thread starts running. ' : .

‘ main())
Runnable r = new MyThreadJob () ; la

Thread t = new Thread(r); vy learn o) . main thread user thread A
t.atart(); ~ I means i, "L,c
Dog d = new Dog(); d moment... J
4 363\'\

e ative BYET TN)
The JVM switches between the new °g ([x.go() __ _
thread (user thread A) and the original l run() ’
main thread, until both threads complete.

maln thread user thread A

you are here>» 491

launching a thread

492

How to launch a new thread:

€@ Make a Runnable object (the thread’s job)

Runnable threadJob = new MyRunnable () ;

Runnable is an interface you'll learn about on the next page.
You'll write a class that implements the Runnable interface,
and that class is where you'll define the work that a thread
will perform, In other words, the method that will be run
from the thread's new call stack.

Make a Thread object (the worker) and
give it a Runnable (the job)

Thread myThread = new Thread(threadJob) ;

Pass the new Runnable object to the Thread constructor.
This tells the new Thread object which method to put on
the bottom of the new stack—the Runnable's run() method.

Start the Thread

myThread.start () ; run()

Nothing happens until you call the Thread's
start() method. That's when you go from ,
having just a Thread instance to having a new
thread of execution, When the new thread N y * 4)0 — ‘(.ﬁt;’_
starts up, it takes the Runnable object’s)zf- ooV "hable ©
run() method and puts it on the bottom of

the new thread's stack.

chapter 15

networking and threads

Every Thread needs a job to do.
A wethod to put on the new thread stack.

All T need is a real job.
Just give me a Runnable
and T'lf get to workl

A Thread object needs a job. A job the thread will run when the
thread is started. That job is actually the first method that goes on

the new thread's stack, and it must always be a method that looks Hle | wﬁat.t erebts
like this: The Runnd g o YR _("‘;\.‘L cead¥
public void run() ({ mc’l’)\Od‘ va Yhe ,,‘A')\Od s ¥ L wdy
// code that will be run by the new thread .mwht-c i {'.‘ﬁ" W ow tha
} 4 hebner YO

How does the thread know which method to put at the bottom of
the stack? Because Runnable defines a contract. Because Runnable
is an interface. A thread’s job can be defined in any class that
implements the Runnable interface. The thread cares only that you
pass the Thread constructor an object of a class that implements
Runnable.

When you pass a Runnable to a Thread constructor, you're really
just giving the Thread a way to get to a run() method. You're giving
the Thread its job to do.

Runnable is fo a
Thread what a job is to
a worker. A Runnable
1§ the job a thread is
supposed to run.

A Runnable holds the
method that goes on

the hottom
fhread’s stack: rund).

you are here »

the new

493

Runnable interface

To make a job for your thread,

implement the Runnable interface I
Runnable as,:«“t\:;) import it

Yo
public clagss MyRunnable | Runn :

| : (\Runnablc has only one method 1o
; |m|>|erncn{:-‘ Pubfit void vun() (with yo
jz%u.mchts). This is wheve you put the

public void go() { the thread is supposed to run. Thi
e doMorae () ; is the methad 32:”;{ enerbofe?:
N of the new stack.

public void doMore () {

System.out.println(“top o’ the stack”):
}

class ThreadTaater { nable insbance into the new

Pass the new Run ¢ e e s
| | . | T o boltom of the new
public static void main (String[] args) (+ on the

wgfkmlc}tzhdcto w?;rd: the fist ethod that

Runnable threadJcb = new MyF the new theead will vur

Thread myThread = new

19();

o myThread .start(); (—\
You won't

System.out.println(“back in main”): eall rbart(;o,, the Theead instance

} hc;'{', really a theead unt| A thread is

) sz Just @ Theead instan You start it Before that,
%

ee, like any o‘{:lscr objetf,

it won't have any real ‘threadness.

Z | ,
” Brain Barbell

What do you think the output will be if you run the
ThreadTester class? (we'll find out in a few pages)

maln thread new thread

494 chapter 15

networking and threads

The three states of a new thread e 2 bheead

this s

wan{:s %o btl

Thread £t = naw Thread(r):

NEW RUNNABLE
a t.atare(); Selected to run
T » >
“I've wai{:‘mg to up »
Pl ‘I OOd {0 !
| get started mame

Thread t = new Thread(r);

A Thread instance has been
created but not started.

In other words, thereisa
Thread object, but no thread
of execution.

But there’s more. Once the thread becomes
runnable, it can move back and forth between

t.start ()

When you start the thread, it
moves into the runnable state.
This means the thread is ready
to run and just waidng for its
Big Chance to be selected for
execution, At this point, there is
a new call stack for this thread.

runnable, running, and an additional state:
temporarily not runnable (also known as ‘blocked’).

This is the state all threads lust
afier! To be The Chosen One.
The Currently Running Thread.
Only the JVM thread scheduler
can make that decision. You

can sometimes influence that
decision, but you cannot force a
thread to move from runnable
to running. In the running
state, a thread (and ONLY this
thread) has an active call stack,
and the method on the top of
the stack is executing.

you are here» 495

thread states

Typical runnable/running loop

RUNNABLE RUNNING

Selected to run

Typically, a thread moves back and
forth between runnable and running,
as the JVM thread scheduler selects a
thread to run and then kicks it back
out so another thread gets a chance.

Sent back to runnable
so another thread can
have a chance

A thread can be made
temporarily not-runnable

496

RUNNABLE RUNNING

e~ 8

The thread scheduler can move a
running thread into a blocked state,
for a variety of reasons. For example,
the thread might be executing code
to read from a Socket input stream,
but there isn’t any data to read. The
scheduler will move the thread out
of the running state ung) something
becomes available. Or the executing
code might have told the thread to
put itself to sleep (sleep()). Or the
thread might be waiting because it
tried to call a method on an object,
and that object was ‘locked’. In that
case, the thread can’t conunue undl
the object's lock is freed by the thread
that has it.

All of those conditions (and more)

cause a thread to become temporarily
not-runnable. sleeping, waiting for another thread to finish,
wa.ﬁ.\s for da\?a to be available on the stream,

warbv\g for an ochcﬁs lock...

chapter 15

networking and threads

The Thread Scheduler

The thread scheduler makes alf the decisions about
who moves from runnable to running, and about when
(and under what circumstances) a thread leaves the
running state. The scheduler decides who runs, and for
how long, and where the threads go when the scheduler
decides to kick them out of the currently-running state.

Number four, you've had
enough time. Back to runnable.
Number Ywo, laoks like you're upl

You can't control the scheduler. There is no API for
calling methods on the scheduler. Most importantly,
there are no guarantees about scheduling! (There are a
few almost-guarantees, but even those are a little fuzzy.)

Oh, now it looks like you're gonna have
to sleep. Number five, come take his
place. Number two, you're still

The bottom line is this: de not base your program’s
correctness on the scheduler working in a particular way!
The scheduler implementations are different for
different JVM’s, and even running the same program
on the same machine can give you different results.
One of the worst mistakes new Java programmers Y
make is to test their multi-threaded program on a

single machine, and assume the thread scheduler will
always work that way, regardless of where the program
runs.

sleeping...

So what does this mean for write-once-run-anywhere?
It means that to write platform-independent Java code,
your multi-threaded program must work no matter how
the thread scheduler behaves, That means that you can’t
be dependent on, for example, the scheduler making
sure all the threads take nice, perfectly fair and equal
turns at the running state. Although highly unlikely
today, your program might end up running on a JVM
with a scheduler that says, “OK thread five, you're up,
and as far as I'm concerned, you can stay here untl
you're done, when your run() method completes,”

The secret to almost everything is sleep. That’s

right, slegp. Putting a thread to sleep, even for a few
milliseconds, forces the currently-running thread to
leave the running state, thus giving another thread a
chance to run. The thread’s sleep() method does come
with one guarantee: a sleeping thread will not become
the currently-running thread before the the length of
its sleep tme has expired. For example, if you tell your
thread to sleep for two seconds (2,000 milliseconds),
that thread can never become the running thread again
until sometime after the two seconds have passed.

The thread

schedu]er makes a]l
~ the decisions about
" who runs and who
doesn’t. He usually
makes the threads take
turns, nicely. But
there’s no guarantee
about that. He might
Jet one thread run

to its heart’s content
while the other
threads ‘starve’.

you are here» 497

thread scheduling

An example of how unpredictable the
scheduler can be...

Running this code on one machine: Produced this output:

public clasa MyRunnable implements Runnable { Flle Edil Window Help PlckMe
java ThreadTestDrive
public veoid run() .
go() back in main

} top o’ the stack

public void go() (" sava ThreadTasiD
} ore () top o’ the stack

back in main
public void deMore() ({

java ThreadTestDrive
System.out.println(“top o’ the stack”); java ThreadTestDrive

} top o’ the stack
) back in main
java ThreadTestDrive
clags ThreadTestDrive (top o’ the stack

back in main
public static void main (Strimg[] args) {

java Tareadlesibrive
Runnable threadJob = naw MyRunnable();
Thread myThread = pew Thread(threadJob) ;

top o’ the stack

back in main
myThread.start(); 5 EE

System.out.println(“back in main”); top o’ the stack

) back in main

- 3) java ThreadTestDrive
Nokice how chimes the w
rahdoﬂliff: APt back in main
L \‘5 1 1 R
i;\\‘-scad Fimishes First top o’ the stack

498 chapter 15

How did we end up with different results?

Sometimes it runs like this:

main(} starts the
new thread

main thread

The scheduler sends
the main thread out
of running and back
to runnable, so that
the new thread can
run.

— e
| myThread.star

I main()

- il

haln thread

The scheduler tets
the nsw thread
run to completion,
printing out “top o'
the staci”

new thread

The new thread goes
away, because its run()
completed. The main
thread once again
becomes the rupning
thread, and prints “back
in maln”

main thread

time

And sometimes it runs like this:

main{) starts the
new thread

main thread

Tha schaduler sends
the main thread out
of running ang back
to runnable, so thal
the new thread can
run.

I . myThread.
| a0

main thread

The scheduler lats the
new thread run for a
little while, not long

enough for the run()
method to complete.

new thread

|

The scheduter The scheduler
sends the new selacts the main
thread back to thread to be the
runnable. cunning thread

again. Main prints
out “back In maln*

new thread main thread

networking and threads

The new thread retumns
to the running stale
and prints out “top o'
the stack™.

new thread

time

you are here » 498

socket connections

Ddz’ﬁﬁeﬁm@esﬁons

Q; I've seen examples that don’t use a separate
Runnable imptementation, but instead just make a
subclass of Thread and override the Thread’s run()
method. That way, you call the Threads no-arg
constructor when you make the new thread;

Thread t = new Thread(); // no Runnabte

A: Yes, that /s another way of making your own
thread, but think about it from an OO perspective,
What's the purpose of subclassing? Remember that
we're talking about two different things here—the
Thread and the thread’s fjob. From an OO view, those
two are very separate actlvities, and belong in separate
classes.The only time you want to subclass/extend

the Thread class, Is if you are making a new and more
specific type of Thread. In ather words, if you think of
the Thread as the worker, don’t extend the Thread class
uniess you need more specific worker behaviors. But if
all you need is a new job to be run by a Thread/worker,
then implement Runnable In a separate, job-specific
(not worker-specific) class.

This is a deslgn Issue and not a performance or
language issue. It's perfectly legal to subclass Thread
and override the run() method, but it’s rarely a good
idea.

Q,: Can you reuse a Thread object? Can you give it
a new job to do and then restart it by calling start()
again?

A: No.Once a thread’s run() method has completed,
the thread can never be restarted. In fact, at that

point the thread moves into a state we haven't talked
about—dead.In the dead state, the thread has
finished Its run{) method and can never be restarted.
The Thread object might still be on the heap, as a
living object that you can call other methods on (if
appropriate), but the Thread object has permanently
lost its‘threadness” In other words, there Is no longer a
separate call stack, and the Thread object is no longer
a thread. It’s just an object, at that point, like alt other
objects.

But, there are design patterns for making a pool of
threads that you can keep using to perform different
jobs, But you don't do it by restarting() a dead thread.

500 chapter15

—— BULLET POIHT;%

Athread with a lower-case 1'is a separate thread of
execution in Java.

Every thread In Java has its own call stack.

AThread with a capital ‘T is the java.lang.Thread
class. A Thread object represents a thread of
execution,

A Thread needs a job to do. A Thread's job is an
instance of something that implements the Runnable
interface.

The Runnable interface has just a singte method, run().
This is the method that goes on the bottom of the new

call stack. In other words, it is the first method to run in
the new thread.

To launch a new thread, you need a Runnable to pass
to the Thread's constructor.

Athread Is In the NEW state when you have
instantiated a Thread object but have not yet called
start().

When you start a thread (by calling the Thread object's
start() method), 2 new stack is created, with the
Runnable’s run() method on the bottom of the stack.
The thread is now in the RUNNABLE state, waiting to
be chosen to run.

Afhread is said to be RUNNING when the JVM's
thread scheduler has selected it to be the currently-
running thread. On a single-processor machine, there
can be only one currently-running thread.

Sometimes a thread can be moved from the RUNNING
state to a BLOCKED {temporarily non-runnable) state.
A thread might be blocked hscause it's waiting for data
from a stream, or because it has gone to steep, or
because it is waiting for an cbject’s lock.

Thread scheduling is not guaranteed to work in any
particular way, 50 you cannot be certain that threads
will take tumns nicely. You can help influsnce tum-taking
by putting your threads to sleep pericdically.

networking and threads

Putting a thread to sleep

One of the best ways to help your threads take mums is
to put them to sleep periodically. All you need to do
is call the static sleep() method, passing it the sleep

duration, in milliseconds. Put youl’ ﬂﬂ’ead {0 SleeP
For example: if’ you want fo be sure

Thread.sleep (2000) ;
will knock a thread out of the running state, and ﬂ)ﬁt Oﬂ‘[ef fnl"eads get a

keep it out of the runnable state for nwo seconds. ane Fun
The thread can't become the running thread C}[eto ’

again unt after at least two seconds have passed. Wl'len ﬂ19 fnl’ead W'rikes

A bit unfortunately, the sleep method throws an .](
InterruptedException, a checked exception, so all HP- It a].ways goes bac

calls to sleep must be wrapped in a oy/catch (or 1o ﬂle mmable state

declared). So a sleep call really looks like this:

ery | and waits for the thread

Thread.slaeap (2000) ; 1
} catch(InterruptedExcaeption ex) { Schedldel‘ to choose rt
ax.printStackTrace() ; ‘to Tun again.

)

Your thread will probably never be interrupted from
sleep; the exception is in the AP] to support a thread
cornmunication mechanism that almost nobody uses in
the Real World. But, you still have to obey the handle
or declare law, 50 you need to get used to wrapping your
sleep() calls in a try/catch.

Now you know that your thread won't wake up before the
specified duration, but is it possible that it will wake up
some time after the ‘timer’ has expired? Yes and no. It
doesn’t matter, really, because when the thread wakes
up, it always goes back to the rurmable state! The thread
won'’t automatically wake up at the designated time and
become the currently-running thread. When a thread
wakes up, the thread is once again at the mercy of

the thread scheduler. Now, for applications that don't
require perfect iming, and that have only a few threads,
it might appear as though the thread wakes up and
resurnes running right on schedule (say, after the 2000
milliseconds). But don’t bet your program on it.

you are here» 501

using Thread.sleep()

Using sleep to make our program
more predictable.

Remember our earlier example that kept giving us different
results each time we ran it? Look back and study the code
and the sample output. Sometimes main had to wait undl the
new thread finished (and printed “top o’ the stack”), while
other times the new thread would be sent back to nunnable
before it was finished, allowing the main thread to come back
in and print out “back in main”. How can we fix that? Stop
for a moment and answer this question: “Where can you put
asleep() call, to make sure that “back in main” always prints
before “top o' the stack™

We’ll wait while you work out an answer (there’s more than
one answer that would work).

Figure it out?

public class MyRunnable implements Runnable (

public void run{) {
go();
}

public void go() {

public void doMore() (
System._out.println(“top o’
}

tha stack”);

}

class ThreadTestDrive ({
public static void maian (String[] args) (
Runnable theJob = new MyRunnable();
Thread t = new Thraad (thaJob) ;
t.start();
Systam.out.println(“back in main”);

}

502 chapter5

This is what we want—a consistent ovder
of print statements:

File Edit Window Help SnoozeButton

java ThreadTestDrive
back in main
top o’ the stack

7ava ThreadTestDrive
back in main
top o’ the stack
java ThreadTestDrive

back
top o’

in main

the stack
‘ava ThreadTestDrive
in main

the stack

back
top o’

java ThreadTestDriva
back in main

the stack

top o

. the neW
T heve wil govccﬂ‘{-c—rwn'\“ﬁ

cave &\\e Lurven

networking and threads

Making and starting fwo threads

Threads have names. You can give your threads a name of
your choosing, or you can accept their default names. But the
cool thing about names is that you can use them to tell which
thread is running. The following example starts two threads.
Each thread has the same job: run in a loop, printing the
currently-running thread’s name with each iteration.

public class RunThreads implaments Runnable (

e imstante

public static void main(String[] args) { ‘,-Mak& one Runnd

RunThreads runnaer = new RunThreads ()

Thrend bara =t T (e = Make two threads, with the same Rummable (the
alpha.setNama(“Alpha thread”) ;e ;‘:2‘ J‘*’E‘““ I talk more about the “two threads
bata.setName (“Bata thread”) ; e— ore Runnable” m 3 few pages).
alpha.start():; Nare the U\read;

) bata.start(); Stavt the threads.

4 will vun theoush B loo®

Faeh thred b Lime:

public void run() { inking ke name eath um

for (int i = 0; 1 < 25; i++¢) { Y7
String threadName = Thread.currentThread() .getName () ;
Systam.out.println(threadNama + “ is running”);

File Edit Window Help Centouri

Part of the output when Alpha thread is running
IYEIVCRTINN NP YR Il Alpha thread is running

Wha‘t Wi" happe"? Limes. Alpha thread is running

Beta thread is running

Will the threads take turns? Will you see the thread names Alpha thread is running
alternating? How often will they switch? With each iteration? Beta thread is rumning
After five iteradons? Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread iz running

You already know the answer: we don’t know! It’s up to the
scheduler. And on your OS, with your particular JVM, on
your CPU, you might get very different results.

Running under OS X 10.2 (Jaguar), with five or fewer Beta thread is rzunning
iterations, the Alpha thread runs to completion, then Beta thread is running
the Beta thread runs to completion. Very consistent. Not Beta thread is running
guaranteed, but very consistent. Beta thread is running

Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Alpha thread is xunning

But when you up the loop to 25 or more iterations, things
start to wobble. The Alpha thread might not get to complete
all 25 iterations before the scheduler sends it back to
runnable to let the Beta thread have a chance.

you are here» 503

aren’t threads wonderful?

Wowl Threads are
the greatest thing since the
MINTI Cooper! T can't think
of a single downside to using
threads, can you?

Uw, yes. There IS a dark side.
Threads can lead to concurrency ‘issves:

Concurrency issues lead to race conditions. Race conditions
lead to data corruption. Data corruption leads to fear... you
know the rest.

It all comes down to one potentally deadly scenario: two or
more threads have access to a single object's data. In other
words, methods executing on two different stacks are both
calling, say, geuters or setters on a single object on the heap.

It’s a whole ‘left-hand-doesn’t-know-what-the-right-hand-
is-doing’ thing. Two threads, without a care in the world,
humming along executing their methods, each thread
thinking that he is the One'True Thread. The only one

that matters. After all, when a thread is not running, and in
runnable (or blocked) it's essentially knocked unconscious.
When it becomes the currently-running thread again, it doesn’t
know that it ever stopped.

504 chapter 15

networking and threads

Marriage in Trouble.
Can this couple be saved? T
Next, on a very special Dr.Steve Show | } "‘

[Transcript from episode #42)

Welcome to tha Dr. Steve show.

We've got a story today that's centered around the top two reasons why
couples split np—finances and slesp.

Today’s troubled pair, Ryan and Monica, share abed and a .
bank account. But not for long if we can't ind a solution. The i
problem? The classic “two people—one bank account” thing.

Here's how Monica, desaribed it to me:

“Ryan and I agreed that neither of us will overdraw the checking account.
So the procedurs 18, whoever wants to withdraw money must check the
balance in the account before making the withdrawal. It all seemed 80

simple. But suddenly we're bouncing checks and getting hit with overdraft Rys, 5 4 Monica: viet;
nICE: vie 'MS

foesl the :tv/o People, ome
I thought it wasn't posgible, I thought our procedurs was safs. But then dctount Problem.
thishappened:

Ryan needed $60, 80 he checksd the balance in the account,
and saw that it was $100. No problerm. 8o, he plans to
withdraw the money. But first ha falls asleep!

: Ryan falls asleep abter
. he thetks the balante
bt hekove he makes the
withdrawal: When he wakes
wps he '.mr-cdiakz\y makes
the w}{',hdrad without .
¢hetking the palance 893

And that’'s whera I come in, while Ryan's still aslesp, and
now Jwant to withdraw $100. I check the balance, ang
it's $100 (because Ryan's still aslesp and hasn't yat made
his withdrawal), so I think, no problem. So I make the
withdrawal, and again no problemn. But then Ryan wakes up,
complstes hiz withdrawal, and we're suddenly overdrawn! He didn’t
even know that he fell asleep, 80 he just went ahead and completed his
transaction without checking the balance again, You've got to help us Dr.
Stevel”

Is there 4 solution? Are they doomed? We can’t stop Ryan from falling
asleep, but can we make sure that Monica can’t get her hands on the bank
account until after he wakes up?

Take . momant and think about that while we go to a commercial break.

you are here » 505

Ryan and Monica code

The Ryan and Monica problem, in code

The following example shows what can happen when fwo
threads (Ryan and Monica) share a single object (the bank
account).

The code has two classes, BankAccount, and
MonicaAndRyan]Job. The MonicaAndRyan]Job class
implements Runnable, and represents the behavior that Ryan
and Monica both have—checking the balance and making
withdrawals. But of course, each thread falls asleep in between
checking the balance and actually making the withdrawal.

The MonicaAndRyanJob class has an instance variable of type
BankAccount., that represents their shared account.

The code works like this:

@ Make one instance of RyanAndMonicaTob.

The RyanAndMonicaJob class is Yhe Runnable (the jab to do),

and since both Monica and Ryan do the same thing (check
balonce and withdraw money), we need only one instance.

RyanAndMonicadob theJob = new RyanAndMonicaJob() :

@ Make two threads with the same Runnable
(the RyanAndManicaJob instance)

Thread one = new Thread (theJob) ;
Thread two = naw Thread (theJob) ;

@ Name and start the threads

one. satName (“Ryan”) ;
two . setName (“Monica”) ;
ona.start () :
two.start () ;

@ Watch both threads execute the run() method
(check the balance and make a withdrawal)

One thread represents Ryan, the other represents Monica.

Both threads continually check the balance and then make a

withdrawal, but only if it's safel
if (account.getBalance () >= amount) { =

try (
Thread.slaep (500) ;

} catch(InterruptadException ex) {ex.printStackTrace(), }

508 chapter 15

Runnable

|
RyanAndManicaJob
BankAccount account

run()
makeWithdrawal(}

in the run() method, do
exactly what Ryan and
Monica would do—check
the balance and, if
there’s enough money,
make the withdrawal.

This should protect
against overdrawing the
account.

Except... Ryan and
Monica always fall
asleep after they
check the balance but
before they finish the
withdrawal.

networking and threads

The Ryan and Monica example

class BankAccount {
private int balance = 100; <——— The att

balante

ow& 5{33"&'5 with 3
of 1100
public int getBalance () {

return balance;
}
public void withdraw (int amount) ({

balance = balance - amount;

}
ONE nskante o the

. \
| . it O
public class RyanAndMonicaJob implements Runnable { R\;anf\“dm"“‘ T th bank ateownt Bo
e
instante) town
private BankAccount account = new BankAccount():; A/ ?»;‘Ecads will ateess {his one a
2
public static void main (String [] args) ({
RyanAndMonicaJob theJob = new RyanAndMonicadob() ; ¢ .
Thread one = new Thread (theJob) ; {Méa"f'aﬁc the R“hhablc Giob)
Thread two = new Thread(theJob); ¢— Make £y, thread . ’
one. setName (“Ryan”) ; Jjob. T % 9iving eaeh thread the

two. setName (“Monica”) ; ¢ means both threads v sdme Runnable
one.start(); Stcount instance variable iy, é: o be 3Ceessing the one
two.start(); ¢ R“"hable elass.

}

2 thread loaps hwough and ries

public void run() { () methed, _ - Abter the
for (int x = 0; x < 10; x++) | In the vor . wal with eath \‘wrabo“ A .“{:
ke a withdvad in to see
makeWithdrawl (10) ; to make |, it chetks Lhe balante onte 393
if (account.getBalance() < 0) { withdrawal " v n
System.out.println(“Overdrawn!”); i{he attownt is overar
} i)
} Chetk the attount balante, and it ﬂ‘"l‘; L‘:ﬁc <
} o enough money, we \')usﬁ print a message: ¥ e <
and tom
private void makeWithdrawal (int amount) / °“°“5\?' :; 503*[;0.&;\;;‘(?;;;33;‘.‘? " i
if (account.getBalance() >= amount) { the withdrawa!, §

System.out.println(Thread.currentThread() .getName() + “ is about to withdraw”);
try {
System.out.println(Thread.currentThread() .getName() + “ is going toc sleep”):
Thread.sleep(500) ;
} catch(InterruptedException ex) {ex.printStackTrace();)}
System.out.println(Thread.currentThread() .getName() + ™ woke up.”):;
account.withdraw(amount) ;
System.out.println(Thread.currentThread() .getName() + “ completes the withdrawl”);
}
else {
System.out.println(“Sorry, not enough for “ + Thread.currentThread() .getName()):

;! We put in 3 bunch of

int
} see what's ba?Pchihs aP“'h S{a{:cmew&s SO we Lan

s it runs.

you are herer» 507

Kyan and monica ourput

frow did this
happent

508

chapter 15

Flle Edit Window Help Visa

Ryan is about to withdraw
Ryan is going to sleep

Monica
Monica
Monica
Monica

woke up.

completes the withdrawl
is about to withdraw

is going to sleep

Ryan woke up.

Ryan completes the withdrawl
Ryan is about to withdraw
Ryan is going to sleep

Monica
Monica
Monica
Monica

woke up.

completes the withdrawl
is about te withdraw

is going to sleep

Ryan woke up.

Ryan completes the withdrawl

Ryan is about to withdraw

Ryan is going to sleep

Monica
Monica
Sorry,
Sorry,
Sorry,
Sorry,
Sorry,

woke up.

completes the withdrawl
not enough for Monica
not enough for Monica
not enough for Monica
not enough for Monica
not encugh for Monica

Ryan woke up.

Ryan completes the withdrawl

Overdrawn!

Sorry,

not enough for Ryan

Overdrawn'

Sorry,

not enough for Ryan

Overdrawn!

Sorry,

not enough for Ryan

Overdrawn!

The makeWithdrawai() method
always checks the balance
before making a withdrawal,
but still we overdraw the
account.

Here’s one ascenario:

Ryan checks the balance, sees that
there’s enough money, and then falls
asleep.

Meanwhile, Monica comes in and checks
the balance. She, too, sees that there's
enough money. Shs has no Idea that
Ryan is going to wake up and complete a
withdrawal.

Monica falls asleep.

Ryan wakes up and completes his
withdrawal.

Monica wakes up and completes her
withdrawal. Big Problem! In between the
time when she checked the balance and
made the withdrawal, Ryan woke up and
pulled money from the account.

Monica’'s chack of the account was
not valid, because Ryan had already
checked and was still In the middle of
making a withdrawal.

Monica must be stopped from getting
into the account until Ryan wakes up and
finishes his transaction. And vice-versa.

networking and threads

They need a lock for account access!

The lock works like this:

@ There's a lock associated with the bank The bank account

account transaction (checking the balance
and withdrawing money). There's anty

one key, and it stays with the lack until
somebody wants to access the account,

When Ryan wants to access the bank
account (Yo check the balance and withdraw
money), he locks the lock and puts the key
in his pocket. Now nobody else can access
the account, since the key is gone.

Ryan keeps the key in his pocket until he
finishes the transaction. He has the only
key, so Monica can't access the account

(or the checkbook) until Ryan unlocks the
account and returns the key,

Now, even if Ryan falls asleep after he
checks the balance, he has a guarantee
that the balance will be the same when he
wakes up, because he kept the key while he
was asleep!

transaction is
unlocked when
nobody Is using
the account.

When Ryan

wants to access
the account, he
secures the lock
and takes the key.

When Ryan is
finished, he
unlocks the lock
and returns the
key. Now the key
is available for
Monica (or Ryan
agaln) to access
the account.

youare here» 509

using synchronized

We need the makeWithdrawal{) method

to run as one atomic thing. 38

We need to make sure that once a thread enters the
makeWithdrawal () method, it must be allowed to finish the method
before any other thread can enter.

In other words, we need to make sure that once a thread has !
\ The synchronized

checked the account balance, that thread has a guarantee that it can

wake up and finish the withdrawal before any other thread can check the keyword means that

account balance! a thread needs a key

Use the synchronized keyword to modify a method so that only in order to access the

one thread at a tme can access it. synchronized code.
That's how you protect the bank account! You don't put a lock on

the bank account jtself; you lock the method that does the banking To protect your data
transaction. That way, one thread gets to complete the whole (like the bank account),
transaction, start to finish, even if that thread falls asleep in the synchronize the

middie of the method| methods that act on
So if you don'tJock the back account, then what exacty is locked? Is that data.

it the method? The Runnable object? The thread itself?

We'll look at that on the next page. In code, though, it’s quite
simple—just add the synchronized modifier to your method
declaration:

private synchronized void makeWithdrawal(int amount) {

if (account.getBalance() >= amount) {
Systam.out.println (Thread.currentThread() .getName () + “ is about to withdraw”);
try (
System.out.println(Thread.currentThread() .getName() + ™ is going to sleep”):
Thread.sleep (500) ;
} catch (InterruptedException ex) (ex.print3tackTrace():; }
System.out.println(Thread.currantThraad() .gatNama() + ™ woka up.”);
account, withdraw (amount) ;
8ystem,out.println(Thread.currentThraad{) .getNama () + “ completes the withdrawl”};
} else ({
System.out.println{“Sorry, not enocugh for “ + Thraad.currentThread().getName()) ;

(Note for you physics—savvy veaders: yes, the convention of using the ward ‘atomie’ here does not veflect
the whole subatomie parceticle thing Think Newton, not Einstein, when you hear the word ‘atomit’ in the
tontext of threads or transactions Hey, it's mot OUR comvention. [£ WE weve in thavge, we'd apply
Heisenberg's Uncertainty Principle to pretty muth everything related to threads.)

810 chapter 15

Using an objects lock

Every object has a lock. Most of the time, the
fock is unlocked, and you can imagine a virtual
key sitting with it. Object locks come into play
only when there are synchronized methods.
When an object has one or more synchronized
methods, a thread can enter a synchrovized
method only if the thread can get the hey fo the
ebject’s lock!

The locks are not per method, they
are per object. If an object has two
smchronized methods, it does not
simply mean that you ¢an’t have wo
threads entering the same method. It
means you can't have two threads entering
any of the synchronized methods.

Think about it. If you have multiple
methods that can potentally act on an
object’s instance variables, all those methods
need to be protected with synchronized.

The goal of synchronization is ta protect
critical data. But remember, you don’t lock the
data itself, you synchronize the methods that
access that data,

So what happens when a thread is cranking
through its call stack (starting with the run()
method) and it suddenly hits a synchronized
method? The thread recognizes that it needs

2 key for that object before it can enter the
method. It looks for the key (this is all handled
by the JVM; there’s no API in Java for accessing
object locks), and if the key is available, the
thread grabs the key and enters the method.

From that point forward, the thread hangs on
to that key like the thread’s life depends on

it. The thread won't give up the key until jt
completes the synchronized method. So while
that thread is holding the key, no other threads
can enter any of that object's synchronized
methods, because the one key for that object
won't be available.

Hey, this object’s
takeMoney() method is
synchronized. I need to get
this object’s key before T

networking and threads

ry Java ohject has a lock.
A lock has only one key.

Most of the time, the lock s
unjocked and nobody cares.

But if an object has
synchronized methods, a

ead can enter one of the

hronized methods ONLY
the key for the object’s lock

is available. In other words,
on]y if another thread hasn't
already grabhed the one key.

you are here>» 511

synchronization matters

The dreaded “Lost Update” problem

Here’s another classic concurrency problem, that comes from the database world. It’s
closely related to the Ryan and Monica story, but we’ll use this example to illustrate a few
more points.

The lost update revolves around one process:
Step 1: Get the balance in the account
int i = balance;
Step 2: Add 1 to that balance
balance = i + 1;

The trick to showing this is to force the computer to take two steps to complete the change
to the balance. In the real world, you’d do this particular move in a single statement:
balancet+;

But by forcing it into two steps, the problem with a non-atomic process will become clear.
So imagine that rather than the trivial “get the balance and then add 1 to the current
balance” steps, the two (or more) steps in this method are much more complex, and
couldn’t be done in one statement.

In the “Lost Update” problem, we have two threads, both trying to increment the balance.

class TestSync implements Runnable {

private int balance; < Yames
d At i on
public void run() { eath *"““?,\ ke ba\ance
for(int i = 0; i < 50; i++) { & .‘m::;:va{\o“
increment () ; eat
System.out.println(“balance is “ + balance);
}
}

public void increment() {
int i = balance:

= i . Heve’ .
balance = i + 1; €'s the ¢
(\\ 3d ding | :,:‘:Zi part/

} TIME wE ReAD e the value of balan
IT(¢ was AT THE
the cuRRENTvajuc is)v-a{:hcvr than adding | 4, whatever

public class TestSyncTest {
public static void main (String[] args) {
TestSync job = new TestSync();
Thread a = new Thread(job) ;
Thread b new Thread(job) ;
a.start();
b.start():

512 chapter 15

networking and threads

Let’s run this code...

@ Thread A runs for awhile

Put the value of balance into variable i.
Balance is 0, so i is now 0.

Set the value of balanca to the result of i + 1.
Now batance Is 1.

Put the value of balance into variable i.
Balance Is 1,80 [is now 1.

Set the value of balance to the result of | + 1.
Now balance Is 2,

@ Thread B runs for awhile

@ Put the value of balance into variable .

hioid Balance Is 2, s0 i is now 2.

Set the value of balance to the resulf of i + 1.
Now balance is 3.

Put the value of balance into variable j,
Balance Is 3, so lis now 3.

[now thread B is sent back to runnable,
bafore If sefs the value of balance to 4]

@ Thread A runs again, picking up where it left of f

Put the value of balance into variable |.
Balance is 3, so i is now 3.

Set the value of balance to the result of | + 1,
Now balance is 4.

Put the value of balance into variable |.
Balance i3 4, so i is now 4.

Set the value of balance to the result of i + 1,
Now balance is 5.

y ' i tl it left of fl
@ Thread B runs again, and picks up exactly where it left off We lost the last updates

@l) Set the value of balance to the result of i + 1. that Thread A madel
- Now balanca is 4. (\] “ Thread B had previously
\{\\LCS,. done a ‘read’ of the value
Thread A wdated it L5, but of balance, and when B
now D tame back and stepped woke up, it Just kept going
on 4ob of the vpdate A made, as If it never missed a beat.

as if A's wpdate never happened.
you are here » 513

synchronizing methods

Synchronize it!

Synchronizing the increment() method solves the “Lost
Update” problem, because it keeps the two steps in the method
as one unbreakable unit,

Syn :ﬁvoz.d incremant () {
int i = balance;
=1+ 1;

Once a thread enters
the method, we have

to make sure that all
the steps in the method
complete (as one
atomic process) before
any other thread can
enter the method.

dae,re are
mb Questions

Q} Sounds like it's a good idea to synchronize
everything, Just to be thread-safe,

A: Nope, it’s not a good idea. Synchronization doesn‘t
come for free. First, a synchronized method has a certain
amount of overhead. In other words, when code hits a
synchronized method, there's going to be a performance hit
(although typically, you'd never notice it) while the matter of
"Is the key available?”is resolved.

Second, a synchronized method can slow your program
down because synchronization restricts concurrency. In
other words, a synchronlzed method forces other threads to
get in line and wait thelr turn. This might not be a problem
in your code, but you have to consider it.

Third, and most frightening, synchronized methods can lead
to deadlockl (See page 516.)

A good rule of thumb is to synchronize only the bare
minimum that should be synchronized. And in fact,you
can synchronize at a granularity that’s even smaller than
amethod.We don't use it in the book, but you can use the
synchronized keyward to synchronize at the more fine-
grained level of one or more statements, rather than at the
whole-method level.

514 chapter 15

Now,

nto one 3

doS’cu”O doesnt need to

hronized, so we don't
T‘t ize the whole method.

public void go() (
doStuff () ;

Onfy {.'h“c {:wo mc{},od

ie hm'ﬁ W}’Ch

e
have to provide a,, argummcfdzl::tjis

ochc{: whose key the hread needs ¢, 9et
Aith ough there ave other ways o do

:!;Ucfim?zt al wT{x S‘{nch\-omr.c on the Currz +
fﬁl at’s the same obieet oudn
¢ whele methog od were xy;lchrozlud

ﬁa“s QVC srouPCd

e

networking and threads

* Thread A runs for awhile
] Attempt to enter the increment() method.

The method is synchronized, so get the key for this object
{ ; Put the value of balance into variable i.
" Balance is 0, so i is now 0.
‘ Set the value of balance to the result of i + 1.
‘ Now balance is 1.
Return the key (it completed the increment() method).
Re-enter the increment() method and get the key.
Put the value of balance into variable i.
Balance is 1, so i is now 1.

[now thread A is sent back to runnable, but since it has not
completed the synchronized method, Thread A keeps the key]

Thread B is selected to run

k !, Attempt to enter the increment() method. The method is
synchronized, so we need to get the key.
: The key is not available.

[now thread B is sent into a ‘object lock not available lounge]

Thread A runs again, picking up where it left of f
‘) (remember, it still has the key)

A

Set the value of balance to the result of i + 1.
i i Now balance is 2.
R Return the key.

1 [now thread A is sent back to runnable, but since it
'R has completed the increment() method, the thread
does NOT hold on to the key]

Thread B is selected to run
4
A

Attempt to enter the increment() method. The method is
synchronized, so we need to get the key.

-y This time, the key IS available, get the key.
\ Put the value of balance into variable i.

31 [continues to run...]

you are here »

515

thread deadlock

The deadly side of synchronization

Be careful when you use synchronized code, because nothing
will bring your program to its knees like thread deadlock.
Thread deadlock happens when you have two threads, both of
which are holding a key the other thread wants. There’s no way
out of this scenario, so the two threads will simply sit and wait.
And wait. And wait.

If you're familiar with databases or other application servers,
you might recognize the problem; databases often have a
locking mechanism somewhat like synchronization. But a
real transaction managerpent system can sometimes deal with
deadlock. It might assume, for example, that deadlock might
have occurred when two transactions are taking too long to
complete. But unlike Java, the application server can do a
“transaction rollback” that returns the state of the rolled-back
transaction to where it was before the transaction (the atomic
part) began.

Java bas no mechanism to handle deadlock. It won't even know
deadlock occurred. So it’s up to you to design carefully. If you
find yourself wriing much multithreaded code, you might
want to study “Java Threads” by Scott Oaks and Henry Wong
for design tps on avoiding deadlock. One of the most common
tps is to pay attendon to the order in which your threads are
started.

A simple deadlock scenario:

@ @ @ ~ Thread B enters a
e = synchronized method

of object bar, and gets

| the key.
e

Thread A enters a
synchronized method
of object foo, and gets

the key. ? I

@Thread Agoes to Thread B tries to enter
\! 3 sleep, holding the l a synchronized method
foo key. m of object foo, but can't

get that key (because
~ Ahas it). B goes
to the waiting lounge,
until the foo key s
available. B keeps the
bar key.

516 chapter 15

All it takes for
deadlock are two
objects and two
threads.

?@5,‘%
ICAN

Thread A wakas up (stilt
holding the foo key)

and fries to enter a

' synchronized method on
object bar, but can't get
that key because B has

it. A goes to the waiting
lounge, until the bar key is
avallable (it never will bel)

® 9

Thread A can't run until
: " it can get the bar key,

? but B is holding the bar
key and B can't run until it

gets the foo key that Als
holding and...

— BULLET POIIITS\

The static Thread.sleep() method forces a thread to leave the
running state for at teast the duration paseed to the sleep method.
Thread.sleep(200) puts a thread to sleep for 200 milliseconds.

The sleep() method throws a checked exception (IntermuptedException),
s0 all calls to sleep() must be wrapped in a fry/catch, or declared.

You can uss steep() to help make sure all threads get a chancs to run,
aithough there's no guarantee that when a thread wakes up it'll go to the
end of the runnable line. It might, for example, go right back to the front.
In most cases, appropriately-imed sleep() calls are all you need to keep
your threads switching nicely.

You can name a thread using the (yet another surprise) setName()
method. All threads get a default name, but giving them an explicit name
can help you keep track of threads, especially if you're debugging with
print statements.

You can have serious problems with threads if two or more threads have
access 1o the same object on the heap.

Two or more threads accessing the same abject can lead to data
corruption if one thread, for example, leaves the running state while still
in the middle of manipulating an object's crtical state.

To make your objects thread-safe, decide which statements shouid be
treaied as one atomic process. In other words, decide which methods
must run to completion befare another thread enters the same method
on the same object.

Use the keyword synchronized to modify a method declaration,
when you want to prevent two threads from entering that method.

Evary object has a single lock, with a single key for that lock. Most of the
time we don't care about that lock; locks come into play only when an
object has synchronized methods.

When a thread attempts to enter a synchronized methog, the thread
must get the key for the object (the object whose method the thread

is frying to run). If the key Is not available (because another thread
already has it), the thread goes Into a kind of waiting lounge, until the key
becomes available.

Even if an object has more than one synchronized method, there is still
only ona key. Once any thread has sntered a synchronized method on
that abject, no thread can entar any other synchronized method on the
same object. This restriction lets you protect your data by synchronizing
any method that manipulates the data.

networking and threads

you are here»

517

final chat client

New and improved SimpleChatClient

Way back near the beginning of this chapter, we built the SimpleChatClient that could send
outgoing messages to the server but couldn’t receive anything. Remember? That’s how we
got onto this whole thread topic in the first place, because we needed a way to do two things
at once: send messages fo the server (interacting with the GUI) while simultaneously reading
incoming messages from the server, displaying them in the scrolling text area.

import java.io.*; Yc;, ﬂ‘ﬂ'c' veally IS an
import java.net.*; en this chapter.
import java.util.*; ut not yd;.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class SimpleChatClient ({

JTextArea incoming;
JTextField outgoing;
BufferedReader reader;
PrintWriter writer;
Socket sock;

public static void main(String[] args) {

SimpleChatClient client = new SimpleChatClient(); ou've seen
client.go () ; This is mostly éus‘ i:giz ept the
} e oy T kb

ahted

public void go() { h‘s\“ggadej theedd-
JFrame frame = new JFrame (“Ludicrously Simple Chat Client”);
JPanel mainPanel = new JPanel();
incoming = new JTextArea(15,50);
incoming.setLineWrap (true) ;
incoming.setWrapStyleWord(true) ;
incoming.setEditable (false) ;
JScrollPane gScroller = new JScrollPane (incoming) ;
gScroller.setVerticalScrollBarPolicy (ScrollPaneConstants.VERTICAL SCROLLBAR ALMAYS) ;
gScroller. setHorizontalScrollBarPolicy(ScrollPaneConstants. HORIZONTAL SCROLLBAR NEVER) ;
outgoing = new JTextField(20);
JButton sendButton = new JButton(“Send”) ;
sendButton.addActionListener (new SendButtonlListener());
mainPanel.add(gScroller) ; We've star
mainPanel.add (outgoing) ; wsing 3 &w{:’:‘gc: Z\rw thread,
mainPanel.add (sendButton) ; 'f:he Wmch ‘- b 253 as
setUpNetworking () ; thread. The ﬁ:cad or thc

s o 1S

| vead from the sev-vcr s

g sotket S’b‘t&m, d,SP]ayMS

i an‘/ mcommg messascs in 'l:hc
frame.getContentPane () .add (BorderLayout.CENTER, mainPanel) ; sc"'°“'h3 fcx{; area.
frame.setSize (400,500) ;
frame.setVisible (true) ;

i

} /7 clese go

518 chapteris

networking and threads

private void setUpNetworking() (

try {
sock = new Socket(“127.0.0.1”7, 5000);
InputStreamReader streamReader = new InputStreamRmader(sock.getInmputStream()):;
reader = new BufferadReader (streamReader) ;

writer = new PrintWriter (sock.getOutputStream()); s ouk
Systaem.ocut._println (“networking established”); 5Ct{hetﬁm;g“5
} catch(IOException ex) ({ We're ““Q sbreams. Wc weee alveadY
: ex.printStackTrace(); ?&i oo“u{'. r s{ydm {o send %ti\:as:w:;
W
} // close setUpNetworking but now we e ;;3 &c-\;\‘\‘v\'ﬁd ¢an 56*«
the new
tt\:&EAS'-‘ Lrom the serve™

public class SendButtonlListaner implemants ActionListaner {

public veid actionPerformed (ActionEvent ev) {

try {
writer.println(outgoing.gatText ()} ;

vriter.fush(); ﬁ"ﬂ‘i"ﬁ new heve. When the user 2licks
| cateh (Exception ex) : cisccnd l:E&on. this method sends {he

ex.printStackTrace () ; ontents of the Lext ficld to the server.
}
outgoing. setText () ;
outgoing.requaestFocus () ;

)

} // close Llnner class

} // close outer class

you are here» 519

chat server code

/=2 Roady-bake

=
\WjCade 1\ veally really simple Chat Server

You can use this server code for both versions of the Chat Client. Every possible
disclaimer ever disclaimed is in effect here. To keep the code stripped down to the
bare essentials, we took out a lot of parts that you’d need to make this a real server.
In other words, it works, but there are at least a hundred ways to break it. If you
want a Really Good Sharpen Your Pencil for after you’ve finished this book, come
back and make this server code more robust.

Another possible Sharpen Your Pencil, that you could do right now, is to annotate
this code yourself. You'll understand it much better if you work out what's
happening than if we explained it to you. Then again, this is Ready-bake code,

so you really don't have to understand it at all. It’s here just to support the two
versions of the Chat Client.

import java.io.¥*;
import java.net.*;
import java.util.¥;

public class VerySimpleChatServer ({
ArrayList clientOutputStreams;

publie class ClientHandler implements Runnabla {
BufferadReader reader;
Socket sock;

publie ClientHandler (Socket clientSockat) {
try |
sock = clientSocket;
InputStreamReader igReader = new InputStreamReader (sock.getInputStream());
reader = new BuffaredReadar (1sReadar) ;

} catch(Exception ax) {ex.printStackTrace() ;)
} // close constructor

public void run() ({
String messaga;
try {
while ((message = reader.readline()) != null) ({
System.out.println{“read “ + messaga);
tellEveryone (massage) ;

} // close while
} catch(Exception ex) {ex.printStackTrace();)
} // close run
} // close inner class

520 chapter15

networking and threads

public static void main (String{] args) (
new VarySimpleChatS8arver().go():
}

public void go() {
clientOutputStreams = new ArrayList();

try {
SarverSocket serverSock = new ServerSocket (5000);

while (true) (
Socket clientSocket = saerverSock.accept();
PrintWriter writer = new PrintWriter(clientSocket.getOutputStream());
clientOutputStreams. add (writer) ;

Thread t = new Thread(new ClientHandler (clientSocket)) ;
t_atart();
System.out.println(“got a connection”);

}

} catch (Exception ex) (
ax.printStackTrace () ;

}
} // close go

public void tellEvaryone(String massaga) (

Iterator it = clientOutputStreams.iterator() ;
while(it.hasNext{)) (
try {
PrintWriter writar = (PrintWriter) it.next();
writer.println (mesasage) ;
writer.flush () ;
} catch(Exception ex) {
ex.printStackTrace () ;

)
} // and while

} // close tellEveryone
'/ close class

yau are here » 521

synchronization questions

OB Srestions

Q: What about protecting static
variable state? If you have static
methods that change the static variable
state, can you still use synchronization?

A: Yes| Remember that static
methods run agalinst the class and not

against an indlvidual instance of the class.

So you might wonder whose object’s lock
would be used on a statlc method? After
all, there might not even be any instances
of that class. Fortunately, just as each
object has its own lock, each loaded cfass
has a lock. That means that If you have
three Dog objects on your heap, you have
a total of four Dog-related locks. Three
belonging to the three Dag Instances,
and one belonging to the Dog class Itself.
When you synchronize a static method,
Java uses the lock of the class itself. So if
you synchronize two static methods In 2
single class, a thread will need the class
lock to enter either of the methods.

Q,: What are thread priorities? I've
heard that’s a way you can control
scheduling.

A: Thread priorities might help

you influence the scheduler, but they

still don't offer any guarantee. Thread
priorities are numerical values that tell
the scheduler (If it cares) how important a
thread Is to you. In general, the scheduler
will kick a lower priority thread out of the
running state If a higher priority thread
suddenly becomes runnable. But...one
more time, say it with me now, there

Is no guarantee.” We recommend that
you use priorities only if you want to
Influence performance, but never, ever
rely on them for program correctness.

522 chapter 15

Q} Why don’t you just synchronize
all the getters and setters from the
class with the data you're trying to
protect? Like, why couldn’t we have
synchronized just the checkBalance()
and withdraw() methods from class
BankAccount, instead of synchronlzing
the makeWithdrawal() method from
the Runnable’s class?

A: Actually, we should have
synchronized those methods, to prevent
other threads from accessing those
methods in other ways. We didn’t bother,
because our example didn‘t have any
other code accessing the account.

But synchronizing the getters

and setters (or in this case the
checkBalance() and withdraw()) isn‘t
enough. Remember, the point of
synchronization s to make a specific
section of code work ATOMICALLY. In
other words, it’s not just the indlvidual
methods we care about, it's methods
that require more than one step to
complete! Think about it. {f we had not
synchronized the makeWithdrawal()
method, Ryan would have checked the
balance (by calling the synchronized
checkBalance()}, and then immediately
exited the method and returned the keyl

Of course he would grab the key again,
after he wakes up, so that he can call
the synchronized withdraw() method,
but this still leaves us with the same
problem we had before synchronization!
Ryan can check the balance, go to sieep,
and Monica can come in and also check
the balance before Ryan has a chance to
wakes up and completes his withdrawal.

So synchronizing all the access methods
Is probably a good idea, to prevent
other threads from getting in, but you
still need to synchronize the methods
that have statements that must execute
as one atomic unit.

%
* Code Kitchen

*

X

networking and threads

This is the last version of the BeatBox!

It connects to 2 simple MusicServer so that you can
send and receive heat patterns with other clients.

The code is really long, so the complete llftmg s

actually in Appemlix A.

8008 Cyber BearBox ;)

‘msoum MOOO0EO0008000M000

| Closed Hi-Hat SO MO OOMEOOECOCEM

 ornti-a 000000000B000000

 acoustic Smae 0000 000060000000 2

 cshomal DE00000000008000 (Jemeobown) s senk
madcpy 0EE0000000O0000CC your mess2 3 o
HgnTom . 0000000000000908 [gacopont e the oo PITL Ly
Hitonjo OO000C000COHAE] it your eorrere O
vincs SOSOE0E0SCEOESOEC | kg, when Y
wisie 50000E0088080800 ¥ endlt

tweonpa 0O000OEOCEMOMO000 | -

conbel - (1AEEEBH00CA0QCOMQE A ek

Vibrasiap B0BCeCO80008ta0q |chrs: groove2 revised €<

Low-midTom §E0BBC0C000890040 |, Reomip

monaes 0B006000008000g0 | Players. Crep o From
Open Hi Conga O OMMM O OO0 COMEMO e ps &e: {mz 1o Joag
_ = 2= - - . R - Wi ; am

'S{r:éah..g) and then ook
toplay it

523

you are here»

exercise: Code Magnets

Code Magnets

A working Java program is scrambled up on the fridge. Can
you add the code snippets on the next page to the empty
classes below, to make a working Java program that pro-
duces the output listed? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as
many of those as you need!

public class TestThreads (' |class ThreadOne '

‘ class Accum { '
; class ThreadTwo '

Fie Edt Window Help Sawing

% java TestThreads
one 98098

two 98039

Bonus Question: Why do you think we used the
modifiers we did in the Accum class?

524 chapter 16

networking and threads

Code Magnets, continued..

Accum a = Accum.getAccum();

n4a.getCount());

intln(”two

System.out.pr

ThreadTwo t2 = néew ThreadTwo()

Thread one = new Thread(tl):

} catch(InterruptedExceptio

counter += adgd;

return counterj;

Thread two =

implements Runnable { one.start();

Thread.sleep(50);

ruptedException ex) ()}

new Thread(tz),

|Accum a = Accum.getAccum(); '
’public gtatic Accum getAccum() { '

private int counter = ¢

a.updateCounter(lJ;
for(int x=0; x < 99; x++) (K ‘ implements Runnable { I
a.updateCounter(lOOO); .

.public void updateCounter(int add) (

two.start();

} catch(Inter

= new Accum();

private static Accum a

public void run{) {

Thre

.
r

ad.sleep(sq),

public static void main(String {] args) {
ThreadOne tl = DéW ThreadOne():

you are here v 525

for(int x=0; y < 98; x++) {

public void runt) { §

private Accum() {}

exercise solutions

public class TestThreads ({

public static void main(String (] args) {

ThreadOne tl new ThreadOne();

ThreadTwo t2 new ThreadTwo();
Thread one = new Thread{tl);:
Thread two = new Thread(t2);
one.start();

two.start();

class Accum
private static Accum a
private int counter

0;

new Accum();

private Accum() { } r A private ansbrett¥

public static Accum getAccum() {
return a;

}

public void updateCounter(int add) {
counter += add;

}

public int getCount() {
return counter;

}
}

class ThreadOne implements Runnable {

Accum a
public void run() {

Accum. getAccum() ;

for(int x=0; x < 9B; x++) (
a.updateCounter(1000);
try {
Thread.sleep(50);
} catch(InterruptedException ex) { }
}

System.out.println(“one “+a.gatCount());

526 chapter 15

Exercise Solutions

Threads from two different classes are updating
the same object in a third class, because both
threads are accessing a single instance of Accum.
The line of code:

private static Accum a = new Accum(); creates a
static instance of Accum (remember static means
one per class), and the private constructor in
Accum means that na one else can make an Accum
object. These two techniques (private constructor
and static getter method) used together, create
what's known as a ‘Singleton’ - an OO pattern to
restrict the number of instances of an abject
that can exist in an application. (Usuolly, there's
Just a single instance of a Singleton—hence the
name), but you can use the pattern to restrict the
instance creation in whatever way you choose.)

class ThreadTwo implements Runnable {

Accum a Accum. getAccum() ;
public void run() {
for(int x=0; x < 99; xn++) {
a.updateCounter(l);
try {
Thread.sleep(50);
} catch(InterruptedException ex) { }

}

System.out.printin(“two “+a.getCount());

networking and threads

Near-miss at the Airlock

As Sarah joined the on-board development team’s design review meeting , she gazed out

the portal at sunrise over the Indian Ocean. Even though the ship’s conference room was
incredibly claustrophobic, the sight of the growing blue and white crescent overtaking mght on
the planet below filled Sarah with awe and appreciation.

[=}
FON e-M;nute This moming’s meeting was focused on the control systems for the orbiter’s airlocks.
Mygtepy As the final construction phases were nearing their end, the number of spacewalks was
scheduled to increase dramatically, and traffic was high both in and out of the ship’s
airlocks. “Good moming Sarah”, said Tom, “Your timing is perfect, we’re just starting
the detailed design review.”

“As you all know”, said Tom, “Each airlock is outfitted with space-hardened GUI
terminals, both inside and out. Whenever spacewalkers are eptering or exiting the orbiter
they will use these terminals to initiate the airlock sequences.” Sarah nodded, “Tom can
you tell us what the method sequences are for entry and exit?” Tom rose, and floated to the
whiteboard, “First, here’s the exit sequence method’s pseudocode”, Tom quickly wrote on the
board.

orbiterAirlockExitSequence ()

verifyPortalStatus ();
pressurizeAirlock();
openlInnerHatch () ;
confirmAirlockOccupied () ;
closeInnerBatch() ;
decompresshAirlock () ;
openOuterHatch () ;

confirmAirlockVacated () ;
closeOutexrBatch () ;

“To ensure that the sequence is not interrupted, we have synchronized all of the
methods called by the orbiterAirlockExitSequence() method”, Tom explained. “We’d hate to
see a returning spacewalker inadvertently catch a buddy with his space pants down!”

Everyone chuckled as Tom erased the whiteboard, but something didn’t feel right
to Sarah and it finally clicked as Tom began to write the entry sequence pseudocode on the
whiteboard. ‘“Wait a minute Tom!”, cried Sarah, “1 think we’ve got a big flaw in the exit
sequence design, let’s go back and revisit it, it could be critical!”

Why did Sarah stop the meeting? What did she suspect?
you are here» 527

puzzle answers

What did Sarah kmow?

Sarah realized that in order to ensure that the entre exit
sequence would run without interruption the

orbiterAirlockExitSequence() method needed to

be synchronized. As the design stood, it would be possible
for a returning spacewalker to interrupt the Exit Sequence!
The Exit Sequence thread couldn’t be interrupted in the
middle of any of the lower level method calls, but it cowdd be
interrupted in between those calls. Sarah knew that the entire
sequence should be run as one atornic unit, and if the orbit
erAirlockExitSequence () method was synchronized, it
could not be interrupted at any point.

528 chapter 15

