
2 classes and objects

this is a new chapter 27

I was told there would be objects.

 A Trip to Objectville

We’re going to
Objectville! We’re

leaving this dusty ol’
procedural town for good.

I’ll send you a postcard.

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

once upon a time in Objectville

28 chapter 2

the spec

Chair Wars
(or How Objects Can Change Your Life)

the chair

At Brad’s laptop at the cafeIn Larry’s cube

 rotate(shapeNum) {

 // make the shape rotate 360º

 }

 playSound(shapeNum) {

 // use shapeNum to lookup which

 // AIF sound to play, and play it

 }
}

}

}

O

you are here4

classes and objects

29

There wil
l be an am

oeba shap
e

on the scr
een, with

the other
s.

When the
user click

s on the

amoeba, i
t will rota

te like the

others, an
d play a .h

if sound f
ile

But wait! There’s been a spec change.

Larry thought he’d nailed it. He could almost feel the rolled

steel of the Aeron beneath his...

what got added to the spec

Back in Larry’s cube

playSound(shapeNum) {
 // if the shape is not an amoeba,
 // use shapeNum to lookup which
 // AIF sound to play, and play it
 // else
 // play amoeba .hif sound
 }

At Brad’s laptop at the beach

Amoeba

rotate() {
 // code to rotate an amoeba
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

once upon a time in Objectville

30 chapter 2

Ameoba r
otation po

int in Lar
ry

and Brad’
s version:

Where the
ameba ro

tation

point sho
uld be:

What the spec conveniently
forgot to mention

 1) determine the rectangle that surrounds the shape

 2) calculate the center of that rectangle, and rotate the shape around that point.

Larry snuck in just moments ahead of Brad.

Back in Larry’s cube

 rotate(shapeNum, xPt, yPt) {

 // if the shape is not an amoeba,

 // calculate the center point

 // based on a rectangle,

 // then rotate

 // else

 // use the xPt and yPt as

 // the rotation point offset

 // and then rotate

 }

 At Brad’s laptop on his lawn

chair at the Telluride Bluegrass Festival

Amoeba

int xPoint
int yPoint

rotate() {
 // code to rotate an amoeba
 // using amoeba’s x and y
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

you are here4

classes and objects

31

So, Brad the OO guy got the chair, right?

What Larry wanted
(figured the chair would impress her)

They’re Shapes, and they all rotate and
playSound. So I abstracted out the
common features and put them into a
new class called Shape.

Shape

rotate()
playSound()

TriangleSquare Circle Amoeba

Shape

rotate()
playSound()

superclass

subclasses

Then I linked the other

four shape classes to

the new Shape class,

in a relationship called

inheritance.

Triangle

rotate()
playSound()

Square

rotate()
playSound()

Circle

rotate()
playSound()

I looked at what all four
classes have in common.

Amoeba

rotate()
playSound()

1

2

3

You can read this as, “Square inherits from Shape”,
“Circle inherits from Shape”, and so on. I removed
rotate() and playSound() from the other shapes, so now
there’s only one copy to maintain.

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

once upon a time in Objectville

32 chapter 2

What about the Amoeba rotate()?

O

verride Now

Ask Me How

I made the Amoeba class override
the rotate() method of the
superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

4

TriangleSquare Circle Amoeba

rotate()
// amoeba-specific
// rotate code

playSound()
// amoeba-specific
// sound code

Shape

rotate()
playSound()

superclass
(more abstract)

subclasses
(more specific)

Overriding methods

I can take
care of myself.
I know how an Amoeba

is supposed to rotate
and play a sound.

I know how a Shape is
supposed to behave. Your
job is to tell me what to

do, and my job is to make it happen.
Don’t you worry your little program-
mer head about how I do it.

I made the Amoeba class override
the rotate() and playSound()
methods of the superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.{

{

{

{

you are here4

classes and objects

33

metacognitive tip
If you’re stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates
a different part of your brain. Although it

works best if you have another person to
discuss it with, pets work too. That’s how

our dog learned polymorphism.

The suspense is killing me.

Who got the chair?

“It helps me design in a more natural way. Things
have a way of evolving.”
 -Joy, 27, software architect

“Not messing around with code I’ve already
tested, just to add a new feature.”
 -Brad, 32, programmer

“I like that the data and the methods that oper-
ate on that data are together in one class.”
 -Josh, 22, beer drinker

“Reusing code in other applications. When I write
a new class, I can make it fl exible enough to be
used in something new, later.”
 -Chris, 39, project manager

“I can’t believe Chris just said that. He hasn’t
written a line of code in 5 years.”
 -Daryl, 44, works for Chris

“Besides the chair?”
 -Amy, 34, programmer

What do you like about OO?

34 chapter 2

thinking about objects

ShoppingCart

cartContents

addToCart()
removeFromCart()
checkOut()

knows

does

Button

label
color

setColor()
setLabel()
dePress()
unDepress()

knows

does

Alarm

alarmTime
alarmMode

setAlarmTime()
setAlarm()
isAlarmSet()
snooze()

knows

does

When you design a class, think about the objects that

will be created from that class type. Think about:

things the object knows

things the object does

Things an object knows about itself are called

instance variables

Things an object can do are called

methods

Song

title
artist

setTitle()
setArtist()
play()

instance
variables
(state)

methods
(behavior)

knows

does

Think of instance as another way of saying object.

Sharpen your pencil

Alarm

alarmTime
alarmMode

setAlarmTime()
getAlarmTime()
isAlarmSet()
snooze()

knows

does

you are here4

classes and objects

35

What’s the difference between
a class and an object?

A class is not an object.

(but it’s used to construct them)

class

JVM

Look at it this way...

36 chapter 2

class DogTestDrive {
 public static void main (String[] args) {

 Dog d = new Dog();

 d.size = 40;
 d.bark();
 }
}

DOG

size
breed
name

bark()

making objects

class Dog {

 int size;
 String breed;
 String name;

 void bark() {
 System.out.println(“Ruff! Ruff!”);
 }
}

Making your first object

TestDrive
Bungee BungeeTestDrive

TestDrive

1 Write your class

class DogTestDrive {
 public static void main (String[] args) {
 // Dog test code goes here
 }
}

2 Write a tester (TestDrive) class

3 In your tester, make an object and access
the object’s variables and methods

instance variables

a method

just a
main method

(we’re go
nna pu

t code

in it in
 the n

ext st
ep)

make a Dog object
use the dot operator (.)
to set the size of the Dogand to call its bark() method

 dot

operat
or

The Dot Operator (.)

If you already have some OO savvy,
you’ll know we’re not using encapsulation.
We’ll get there in chapter 4.

you are here4

classes and objects

37

Sharpen your pencil

object 1

object 2

object 3

title

genre

rating

title

genre

rating

title

genre

rating

MOVIE

title
genre
rating

playIt()

class Movie {
 String title;
 String genre;
 int rating;

 void playIt() {
 System.out.println(“Playing the movie”);
 }
}

public class MovieTestDrive {
 public static void main(String[] args) {
 Movie one = new Movie();
 one.title = “Gone with the Stock”;
 one.genre = “Tragic”;
 one.rating = -2;
 Movie two = new Movie();
 two.title = “Lost in Cubicle Space”;
 two.genre = “Comedy”;
 two.rating = 5;
 two.playIt();
 Movie three = new Movie();
 three.title = “Byte Club”;
 three.genre = “Tragic but ultimately uplifting”;
 three.rating = 127;
 }
}

Making and testing Movie objects

38 chapter 2

GuessGame

p1
p2
p3

startGame()

get the heck out of main

Quick! Get out of main!

The two uses of main:

to test your real class

to launch/start your Java application

The Guessing Game

GuessGame.class Player.class GameLauncher.class

Player

number

guess()

instance variablesforthe threeplayers

the numberthis playerguessed

method formaking a guess

GameLauncher

main(String[] args)

makes a GuessGameobject andtells it tostartGame

you are here4

classes and objects

39

public class GuessGame {
 Player p1;
 Player p2;
 Player p3;

 public void startGame() {
 p1 = new Player();
 p2 = new Player();
 p3 = new Player();

 int guessp1 = 0;
 int guessp2 = 0;
 int guessp3 = 0;

 boolean p1isRight = false;
 boolean p2isRight = false;
 boolean p3isRight = false;

 int targetNumber = (int) (Math.random() * 10);
 System.out.println(“I’m thinking of a number between 0 and 9...”);

 while(true) {
 System.out.println(“Number to guess is “ + targetNumber);

 p1.guess();
 p2.guess();
 p3.guess();

 guessp1 = p1.number;
 System.out.println(“Player one guessed “ + guessp1);

 guessp2 = p2.number;
 System.out.println(“Player two guessed “ + guessp2);

 guessp3 = p3.number;
 System.out.println(“Player three guessed “ + guessp3);

 if (guessp1 == targetNumber) {
 p1isRight = true;
 }
 if (guessp2 == targetNumber) {
 p2isRight = true;
 }
 if (guessp3 == targetNumber) {
 p3isRight = true;
 }

 if (p1isRight || p2isRight || p3isRight) {

 System.out.println(“We have a winner!”);
 System.out.println(“Player one got it right? “ + p1isRight);
 System.out.println(“Player two got it right? “ + p2isRight);
 System.out.println(“Player three got it right? “ + p3isRight);
 System.out.println(“Game is over.”);
 break; // game over, so break out of the loop

 } else {
 // we must keep going because nobody got it right!
 System.out.println(“Players will have to try again.”);
 } // end if/else
 } // end loop
 } // end method
} // end class

GuessGame has three instance variables for the three Player objects

create three Player objects and assign them to the three Player instance variables

declare three variables to hold the three guesses the Players make

declare three variables to hold a true or
false based on the player’s answer

make a ‘target’ number that the
players have to guess

call each player’s guess() method

get each player’s guess (the result of their
guess() method running) by accessing the
number variable of each player

check each player’s guess to see if it matches the target number. If a player is right,
then set that player’s variable to be true
(remember, we set it false by default)

if player one OR player two OR player three is right... (the || operator means OR)

otherwise, stay in the loop and ask the
players for another guess.

40 chapter 2

File Edit Window Help Explode

%java GameLauncher

I’m thinking of a number between 0 and 9...

Number to guess is 7

I’m guessing 1

I’m guessing 9

I’m guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 3

I’m guessing 0

I’m guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 7

I’m guessing 5

I’m guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player one got it right? true

Player two got it right? false

Player three got it right? false

Game is over.

Running the Guessing Game

Guessing Game

public class Player {
 int number = 0; // where the guess goes

 public void guess() {
 number = (int) (Math.random() * 10);
 System.out.println(“I’m guessing “
 + number);
 }
}

public class GameLauncher {
 public static void main (String[] args) {
 GuessGame game = new GuessGame();
 game.startGame();
 }
}

Java takes out the
Garbage

you are here4

classes and objects

41

 BULLET POINTS
ß Object-oriented programming lets you extend

a program without having to touch previously-
tested, working code.

ß All Java code is defined in a class.

ß A class describes how to make an object of
that class type. A class is like a blueprint.

ß An object can take care of itself; you don’t
have to know or care how the object does it.

ß An object knows things and does things.

ß Things an object knows about itself are called
instance variables. They represent the state
of an object.

ß Things an object does are called methods.
They represent the behavior of an object.

ß When you create a class, you may also want
to create a separate test class which you’ll
use to create objects of your new class type.

ß A class can inherit instance variables and
methods from a more abstract superclass.

ß At runtime, a Java program is nothing more
than objects ‘talking’ to other objects.

there are noDumb Questions

random()

public
static

public static fi nal

random()

Math

Make it Stick

42 chapter 2

 A
class TapeDeck {

 boolean canRecord = false;

 void playTape() {

 System.out.println(“tape playing”);

 }

 void recordTape() {

 System.out.println(“tape recording”);

 }

}

class TapeDeckTestDrive {

 public static void main(String [] args) {

 t.canRecord = true;

 t.playTape();

 if (t.canRecord == true) {

 t.recordTape();

 }

 }

}

 B
class DVDPlayer {

 boolean canRecord = false;

 void recordDVD() {

 System.out.println(“DVD recording”);

 }

}

class DVDPlayerTestDrive {

 public static void main(String [] args) {

 DVDPlayer d = new DVDPlayer();

 d.canRecord = true;

 d.playDVD();

 if (d.canRecord == true) {

 d.recordDVD();

 }

 }

}

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and

determine whether each of
these files will compile.
If they won’t compile,
how would you fix them,

and if they do compile,
what would be their output?

exercise: Be the Compiler

you are here4

classes and objects

43

boolean topHat
= true;

boolean snare =
 true;

void playSnare() {

 System.out.println(“bang bang b
a-bang”);

}

 if (d.snare == true) { d.playSnare(); }

 d.snare = false;

class DrumKitTestDrive {

 d.
playTo

pHat()
;

 public static void main(String [] args) {

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

 void playTopHat () {
 System.out.println(“ding ding da-ding”); }

class DrumKit {

DrumKit d = new DrumKit();

d.playSnare();

44 chapter 2

Pool Puzzle

public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 e1.hello();

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 System.out.println(e2.count);
 }
}

 class ____________ {

 int _________ = 0;

 void ___________ {

 System.out.println(“helloooo... “);
 }
 }

File Edit Window Help Implode

%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

puzzle: Pool Puzzle

you are here4

classes and objects

45

Who am I?

I am compiled from a .java file.

My instance variable values can
be different from my buddy’s
values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent ‘state’.

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object instances.

My state can change.

I declare methods.

I can change at runtime.

class

46 chapter 2

A

B

Code Magnets:

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

class DrumKit {

 boolean topHat = true;

 boolean snare = true;

 void playTopHat() {

 System.out.println(“ding ding da-ding”);

 }

 void playSnare() {

 System.out.println(“bang bang ba-bang”);

 }

}

class DrumKitTestDrive {

 public static void main(String [] args) {

 DrumKit d = new DrumKit();

 d.playSnare();

 d.snare = false;

 d.playTopHat();

 if (d.snare == true) {

 d.playSnare();

 }

 }

}

class TapeDeck {
 boolean canRecord = false;
 void playTape() {
 System.out.println(“tape playing”);
 }
 void recordTape() {
 System.out.println(“tape recording”);
 }
}

class TapeDeckTestDrive {
 public static void main(String [] args) {

 TapeDeck t = new TapeDeck();
 t.canRecord = true;
 t.playTape();

 if (t.canRecord == true) {
 t.recordTape();
 }
 } We’ve got the template, now we have
} to make an object !

class DVDPlayer {
 boolean canRecord = false;
 void recordDVD() {
 System.out.println(“DVD recording”);
 }
 void playDVD () {
 System.out.println(“DVD playing”);
 }
}

class DVDPlayerTestDrive {
 public static void main(String [] args) {
 DVDPlayer d = new DVDPlayer();
 d.canRecord = true;
 d.playDVD();
 if (d.canRecord == true) {
 d.recordDVD();
 }
 } The line: d.playDVD(); wouldn’t
} compile without a method !

Be the Compiler:

exercise solutions

you are here4

classes and objects

47

public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();

 Echo e2 = new Echo(); // the correct answer
 - or -
 Echo e2 = e1; // is the bonus answer!
 int x = 0;

 while (x < 4) {
 e1.hello();

 e1.count = e1.count + 1;
 if (x == 3) {
 e2.count = e2.count + 1;

 }

 if (x > 0) {
 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 System.out.println(e2.count);
 }
}

 class Echo {
 int count = 0;
 void hello() {
 System.out.println(“helloooo... “);
 }
 }

File Edit Window Help Assimilate

%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

I am compiled from a .java file.

My instance variable values can be
different from my buddy’s values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent ‘state’.

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object
instances.

My state can change.

I declare methods.

I can change at runtime.

class

object

class

object, method

class, object

instance variable

object, class

method, instance variable

object

class

object, instance variable

class

object, instance variable

Pool Puzzle

Note: both classes and objects are said to have state and behavior.
They’re defined in the class, but the object is also said to ‘have’
them. Right now, we don’t care where they technically live.

