
15 networking and threads

Make a Connection

Connect with the outside world. Your Javaprogram can reach out and touch a

program on another machine. It's easy. All the low-level networking details are taken care of by

classes In the java.net library. One of Java's big benefits is that sending and receiving data over

a network Is Just I/O with a slightly dIfferent connection stream at the end of the chain. If you've

got a BufferedReader. you can read.And the BufferedReader could care less if the data came

out of a file or flew down an ethernet cable. In this chapter we'll connect to the outside world

with sockets.We'll make cllentsockets.We'll make server sockets.We'll rnake clients and servers.

And we'll make them talk to each other. Before the chapter's done, you'll have a fully-functional,

multithreaded chat client. Old we just say multithreaded? Yes, now you will learn the secret of

how to talk to Bob while simultaneously listening to Suzy.

this is a new chap ter 471

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

tbo)(. chat

You're working on a computer game .You and your team
are doing the sound design for each part of the game.
Using a 'chat' version of the Beat 'Box, your team can
collaborate-You can send a beat pattern along with
your chat message, and everybody in the Beat BB:O"~C:h:a:t__-:r~~~;si~~~@~c::~~;1
getS.i~ So yO,u don't just get to rtad\ th

d
e othder. .. ""'\<IO.sl'I"...• 0>""I<.t

pa",clpa.
lS

",,,sages. yoU gel 10 oa an e.... - .. ;;;;.<"" ...
pl<ry a bea

l
pattern s,,,,ply by chclcing the , - ' <en me "'" ee ,.

message in the incoming messages area. ~~~
In this chapter we' re going 10 learn what ,t Go ,.f'· .._t \ t \ 1\ t''- l' \\ to\!.. . ' ' .'-' ,. "", ,." ,"-,
takes 10 ",ake a chat chenl hke th". We're oc ,,.n " ,<t. """
even going 10 ,earn a hlde .boUI ",aking a If >;'f""'" <1' -;
cbaIS,,"'" We'n save the fun Beat Be' Chat t:..', In ..." r\~ "'"

for the Code lGochen. but in mis chapter you \00""""
",iUwn"" Ludicrously Si",ple Chat Client and t "''''''
Very Si",ple Chat Se",er that send and ,eceive ~~ "" ,.,fI'''''''
"''' m"",g'" <;t, s." """,

472 chapter '\5

networking and threads

Chat Program Overview

The Client has toknow
ahoutthe Server.
The Server has toknow
about ALL the Clienti.

How it Works: Client C

Client A Server

Server

~V~, I'd lik~ to l.o9I~t

- to tht t~ stHite

Client A

Client B

G The server makes a
connection and adds the client
to the list of participants

e Another client connects

o Client connects to the server

o Client A sends a message to
the chat service

"Who took ~ lava liMf__---1
- ~---. My OOhtl f---Client A

-~~

I ~ .

I ~. '.-
Server

o The server distributes the
message to ALL participants
(including the original sender) Client A Server

Client B

you are here ~ 473

socketconnecllons

The three things we have to learn to get the client working are :

1) How to establish the initial connection between the client and server

2) How to send messages UJ the server

S) How to receive messagesjrom the server

There's a lot of low-level stuff that has to happen for these things to work. But we're
lucky, because the Java API networking package (java.net) makes it a piece of cake
for programmers. You'll see a lot more GUI code than networking and I/O code.

And that's not all.

Lurking within the simple chat client is a problem we haven't faced so far in this
book: doing two things at the same time. Establishing a connection is a one-time
operation (that either works or fails). But after that, a chat participant wants to
send outgoing messages and simultaneously receive incoming 7TU'.SSages from the other
participants (via the server). Hmmmm... that one's going to take a little thought, but
we'll get there injust a few pages.

Client A

o Connect
Client connects to the server by
establishing a Socket connection.

Ma~ a sotlcd:. l.mIPlettiO'll to
J~I>.lbt.r.rO; .if. rort c;ooo

• Send
Client sends a message to the server

Client A

e Receive
Client gets a message from the server

Client A

474 chapter 15

networking and threads

Client

Make a ttetwork Socket cotntectiott

= new Socket(~196.164.1.103H,

lr:cir t1S ~or the sa-vt:r

7 Port 1l""'ba­

5000);

To make aSoc"ket
connection, you need
to know~ things
about the server: %0
it is, and which port
its running OIL

In other words,
IP address and TCP
port l11U1lher.

Socket chatSocket

To connect to another machine, we need a Socket connection.
A Socket (java.ner.Socket class) is an object that represents
a network connection between two machines. What's a
connection? A relationship between two machines. where two
pieces of software know about each other. Most importantly,
those two pieces ofsoftware know how to communicatewith
each other. In other words . how to send bits to each other.

We don't care about the low-level details, thankfully, because
they're handled at a much lower place in the 'networking
stack'. Ifyou don't know what the 'networking stack' is, don't
worry about it. It's just a way of looking at the layers that
information (bits) must travel through to get from aJava
program running in aJVM on some OS, to physical hardware
(ethernet cables, for example). and back again on some other
machine. Somebody has to take care of all the dirty details.
But not you. That somebody is a combination of O~pecific
software and theJava networking API. The part that you have
to worry about is high-level-make that v~ high-level-and
shockingly simple. Ready?

ASocket connection means the two machines have
inforztlation about each other, including networl
location (IP address) and TCP port.

you are here ~ 475

well-known ports

Arep port Is Just a ttutltber.
A16...bit ttutMber that identifies
aspecific prograttt Ott the server.

Your internet web (HTTP) server runs on port 80. That's a
standard. Ifyou've got a Telnet server, its running on port
23. FTP? 20. POP3 mail server? 110. SMTP? 25. The Time
server sits at 37. Think of port numbers as unique identifiers.
They represent a logical connection to a particular piece of
software running on the server. That's it. You can't spin your
hardware box around and find a TCP port. For one thing,
you have 65536 of them on a server (0 - 65535). So they
obviously don't represent a place to plug in physical devices.
They're just a number representing an application.

Without port numbers, the server would have no way of
knowing which application a client wanted to connect to.
And since each application might have its own unique
protocol, think of the trouble you 'd have without these
identifiers. What if your web browser, for example, landed
at the POPS mail server instead of the HTTP server? The
mail server won 't know how to parse an HTTP request! And
even if it did, the POPS server doesn't know anything about
servicing the HTTP request

When you write a server program. you'll include code that
tells the program which port number you want it to nul on
(you'll see how to do this in Java a little later in this chapter).
In the Chat program we're writing in this chapter. we picked
50DD.Just because we wanted to. And because it met the
criteria that it be a number between 1024 and 65535. Why
I024? Because 0 through 1023 are reserved for the well­
known services like the ones we just talked about,

And ifyou 're writing services (server programs) to run on
a company network, you should check with the sys-admins
to find out which ports are already taken. Your sys-admins
might tell you, for example, that you can't use any port
number below, say, 3000. In any case, ifyou value your limbs,
you won't assign port numbers with abandon. Unless it's
your home network. In which case youjust have to check with
your kids.

476 chapter 15

Well-known TCP port numbers
for common server applications

AseY"'er" l.4 ... helVe "p to b&5~b
diHf"r'etlt serve- apps 'nIIInil'\~
~ per" pori:.

The TCPport
tuU1lbers frOttl 0 to 1023
are reserved for well­
"known services. Don't
use them for your own
server programs!'"
The chat server we're
writing uses port
5000. We just }tie"ked a
tuU1lber between 1024
and 65535.

'Well, you might be able 10 use one of
these.bul the sys-adrnln whereyou
work will probably kill you.

Q: How do you know the port
number of the server program you
want to talk to 7

A.: That depends on whether the
program is one of the well-known
services. If you're trying to connect
to a well-known service, like the ones
on the opposIte page (HTIp' SMTP,
FTP,etc.) you can look these up on
the Internet (Google "Well-Known
TCP Port"). Or ask your friendly

eighborhood sys-adrnin.

But if the program isn't one of the
well-known services,you need to
find out from whoever Is deploying
the service. Ask him. Or her.Typically,
if someone writes a network service
and wants others to write clients for
it , they'll publish the lP address, port
number, and protocol for the service.
~or exampie, if you want to write a
client for a GO game server, you can
visit one of the GO server sites and
find Information about how to write a
client for that particular server.

networking and threads

IP address is like specifying a

particular shopping moll, soy,
"Flatirons Marketplace"

or number is like naming

a specific store, soy,

"Bob's CD Shop"

OK,you got a Socket connection .The client and the

server know the IPaddress and Tep port number for

each other. Now what1 How do you communicate

over that connection11nother words, how do you

move bits from one to the other? Imagine the kinds of

messages your chat client needs to send and receive.

Q: Can there ever be more than
one program running on a single
port7 Inother words, can two
applications on the same server have
the same port number7

A.: Nol If you try to blnd a prog ram
:0 a port that Is already in use,you'll
get a BindException. To bind a program
:0 a port just means starting up a
server application and telling It to run

a particular port. Again, you'll learn
~ore about this when we get to the
server part of this chapter. Client Server

you are here ~ 477

To read data frotH aSocket use a
SufferedReader
To communicate over a Socket connection, you use streams.
Regular old I/O streams.just like we used in the last chapter. One
of the coolest features in java is that most of your I/O work won't
care what your high-level chain stream is actually connected to. In
other words, you can use a BufferedReader just like you did when
you were writing to a file, the difference is that the underlying
connection stream is connected to a Socket rather than a File!

e Make a BufferedReader and readI

reading from a socket

L \-.ii,n 'foU kno-.l
TM forl:. ,",""g~b-.I +.hat "000 is
h~t.1\OU -.I~ TOL ~ 'fou t.hat ~t:r.o Make a Socket connection to the server / t.\It~ "",",ht:r ~(K oU'r

Socket chatSocket ~ new Socket("127.0.0.1", 5000);

"-.. /27.0.o.J i$ t.hz: 'N~dsJ +f.~ I~:d~~~ tor '11~lhoti .. .
" ~ Ulis 'oIh) I.lI t.od~ i.s... .) 'n

S~Vtt- bI Yot. r~ tub "")\11\9 01\. You
01\ d .sjI\SI~ rt. ~ you.r tJ t

I)\d-aIOtlt "'clth. 'bI dnde Make an InputStreamReader chained to the Socket's rr>e.

low-level (connection) input stream

1L. &oH~(dReAdt:r b:> ~~ d 1 - tnt 10-.1-
Chai" V'C' d (nit\-. was t\-.ai"t 'UJ,.. .\• ..l.)

(
\"ovtSb-ta""Rea~_ w AJ. ~'r()7f\ tr.(~

I 1: S"t.Tta'" -.It 'J"'''\('<It! to'l\,,(tuOl\

BufferedReader reader = new BufferedReader (stream) i

String message = reader.readLine();

Client

buffered characters converted to characters bytes from server

buffered ~ I characte.rs ,. I 011010011 1'+·---characters chained to chained to _

BufferedReader InputStre.amRe.ader Socket's input stream
(we. don't need to know

the. aCf\JQ1 class)

-- ---- -

I

:'
r. I

Server

478 chapter 15

e~ (print) something

networking and threads

fo write data to aSocket use a
Prh1tWriter
We didn't use PrintWriter in the last chapter, we used BufferedWriter. We have
a choice here, but when you 're writing one String at a time, PrintWriter is the
standard choice. And you'll recognize the two key methods in PrintWriter,
printO and println () IJust like good 01' System.out,

o Make a Socket connection to the server

Socket chatSoeket = new Soeket("127.0 .0.1",

e Make a PrintWrlter chained to the Socket's low-level
(connection) output stream

PrintWriter writer = new PrintWrit8r(chatsocket .qetoutputStream(»;

I

\
. l ~t ClIO ~ ..,\\at it. se..o.s·

. 1I 0 ods a I\tfoI ,roe aT.
writer.println("messaqe to send"); ~rrl"U" a .

' L J o-tht "CW \I"t.·writer.print("another message"); ~rri"t() cl.~"" iu

characters

----+~I .message..."

PrintWriter

bytes to server

I ~ 011010011
chained to '----_--I

Socket's output
stream (we don't need

to know the actual class)

you are here) 479

writing a client

fhe PailyAdvieeCliet1t
Before we start building the Chat app,
let's start with something a little smaller.
The Advice Guy is a server program that
offers up practical, inspirational tips
to get you through those long days of
coding.

We're building a client for The Advice
Guy program, which pulls a message
from the server each time it connects.

What are you wailing for? Who kncws
what opportunities you've missed
without this app.

The Advice Guy
o Connect

Client connects to the server and gets an
input stream from it

Client

eRead
Client reads a messQge from the server

Client A

480 chapter 15

catch(IOException ex) {

reader. close () ; ~this doses AI-I- the streaMS

networking and threads

PailyAdviceCliet1t code
This program makes a Socket, makes a BufferedReader (with the

help of other streams), and reads a single line from the server

application (whatever is running at port 4242).

import java .io.*; r_.,.-L is in ,o"a.nt1:.
L-_~ tlass ;:,Q<o~~ .,}

import java.net.*;~

public class DailyAdviceClient

InputStreamReader streamReader = new InputstreamReader(s.getlnputstream(»;

BufferedReader reader = new BufferedReader (streamReader); thain a B~~e\'"edReode\'" to
f---"" art Irty~+.streaMRe ade\'" to

the inf~t str'ea", t\'"OM the
Sotkd:..

string advice = reader .readLine();~ t his readL' o .
t h Ihe IS EXAc

System.out .println("Today you should: " + advice) ; Be sa"'e as ;~ 0'" TL'(
",UeredR. d 't were ~ih~ a

Ih ot her w ea er lhaihed to a FI
lall a B. rr-ds, by the 1;' LE..

fAot-teredW"'t ''''e yOl.t
writer dOt;sh't k

h
r. er "'ethod, the

the lharal ters laow0: lare where
"'e -tro",.

ex .printStackTrace();

public static void main (String[] args)

DailyAdviceClient client = new DailyAdviceClient();

client. go () ;

you are here . 481

socketconnecUons

Test your memory of the streams/classes for reading and writing from a

Socket.Try not to look at the opposite pagel

To read text from a Socket:

Client

To send text to a Socket

Client

'M'iU!dra.., il'l t.h~ thaill o-f sttea....s t.he tlitl'lt.
I.I$tS to read .f"'OM t.ht st'r'/er

'M"iWdraw ill the thaill o-f sttUMS the t1iblt
lAStS to smd ~i"5 to the ~ver

-.. - .,

!
\

\'

server

rpen your pencU ------------------.
Fill In the blanks:

What two pieces of Information does the client need in order to make a

Socket connection with a server?

Which TCP port numbers are reserved for'well-known services'like HTTPand FTP7

TRUE or FALSE: The range of valid TCP port numbers can be represented

by a short primitive?

482 chapter 15

networking and threads

Wrifittg a sitttple server
So what's it take to write a server application? Just a
couple ofSockets. Yes, a couple as in two. A ServerSocket,
which waits for client requests (when a client makes a
new Sockett) and a plain old Socket socket to use for
communication with the client.

How it Works:

~~~~

. ) ...

\

This starts the server application listening

for client requests coming in for port 4242.

o Server application makes a ServerSocket, on a specific port

SarverSocket serverSock: new S&rV8rSocket(4242);

'II'':~ ;';;; ~'.,....

l
Clie.nt knows the IP address and port number
(published or given to him by whomever

configures the server app to be on that port)

e Client makes a Socket connection to the server application

Socket sock = new Socket ("190 . 165. 1 . 103" , 42(2); SD",,~~et.

rs::~~ ~
..... ..~ ~ .

e Server makes a new Socket to communicate with this client

Socket sock = serverSock.accept();

The acceptO method blocks (just sits there) while
it's waiting for a c1ie.nt Socket connection. When a

client finally tries to connect, the method returns

a plain old Socket (on a different port) that knows
howto communicate with the dient (i.e.. knows the
client's IP address and port number). The Socket is on
Cl different port than the ServerSocket, so that the

ServerSocket can go back to waiting for other clients.

you are here. 483



import java.io.*;
import java .net.*;

writing a server

PailyAdviceServer code
This program makes a ServerSocket and waits for client requests. When it gets

a client request (i.e. client said new Sockett) for this application) , the server

makes a new Socket connection to that client. The server makes a PrintWriter

(using the Socket's output stream) and sends a message to the client.

( Ley t.hese St.yiYl~Ye",e",v I db
weye wov-d-wYa""N 'f
t.he lode editov-· e.veYe
hit. Yet.~yYI iYl t.he ",I(ldl

ubl ' 1 D'l Ad' S ,. 0'" t.his atta'f r 1"1...' I) 1p ac c ass aa, y va.ce erver dail'f advile lO"'CS n O't a .:>"YlYI~. '?

String[] adviceList = {"Take smaller bites", "Go for the tight jeans. No they do NOT
make you look fat.", "One word: inappropriate", "Just for today, be honest. Tell your
boss what you *really* think", "You might want to rethink that haircut."};

public void go() (

try

PrintWriter writer = new PrintWriter(sock.getOutputStream(»;
St~ing ad~ice = ge~vice(); ~
wrJ.ter .p r J.n t l n (advJ.ce);~ 1'I0W we ~ th Sot
writer . close () ; . ~ ...ake d P ~ W. ket lOlll'lettiol'l to the t1iel'lt to
System.out.println(advice); advile 1'"11, I'"T'Uhl'" dl'ld selld it (pt"il'ltlI'lO> a Stl'"il'lQ

I ...tssa~t. tl'l we dost th Sotk-1. b J
we re dOl'lt with this ll' 1. e q tta~tItl'll:,

catch{IOException ex) (
ex .printStackTrace();

)

} II close go

private String getAdvice() {
int random = (int) (Math.randomO * adviceList.length);
return adviceList[random] ;

public static void main(String[] args) (
DailyAdviceServer server = new DailyAdviceServer();
server.go{) ;

484 chapter 15



,.,JIBrain Barbell
How does the server know how to

communicate with the dlent?

The client knows the IPaddress and port

number of the server,but how is the server

able to make a Socket connection with the

client (and make Input and output streams)?

Think about how / when / where the server

gets knowledge about the client.

therelare~~
DUmb ~uestl9ns

~: The edvlce server code on the opposite
page has IJ VERY serious limitation-it looks
like It can handle only one client at a tlmel

.A: Yes,that's right. It can't accept a request
from a client untllit has finished with the
current c/lent and started the next Iteration of
the infinite loop (where It sits at the acceptO
call until a request comes In, at which time It
makes a Socket with the new client and starts
the process over again).

Q.: Let me rephrase the problem: how can
you make a server that can handle multiple
clients concurrently??? This would never
work for a chat server, for Instance.

A: Ah,that's simple, really. Use separate
threads, and give each new client Socket to a
new thread. We're just about to learn how to
do that!

networking and threads

• Client and server applications communicate over aSocket
connection.

• ASocket represents a connection between two applications
which may (or may not) be running on two different physical
machines.

• Aclient must know the IPaddress (or domain name) and
rcp port number of the server application.

• Arcp port isa 16-bi1 unsigned number assigned toa
specific server application. TCP port numbers allow different
clients toconnect tothe same machine but communicate
with different applications running on that machine.

• The port numbers from 0 through 1023 are reserved for
'well-known services' Including HTTP, FTP, SMTP, etc.

• Aclient connects to a server bymaking a Server socket
Socket 9 = new Socket(~127.0.0.1n, 4200);

• Once connected, a client can getInput and output streams
from the socket. These are low-level 'connection' streams.
9ock.getInputstream();

• To read text data from the server, create a BufferedReader,
chained to an InputStreamReader. which Ischained to the
input stream from the Socket.

• InpulStreamReader Isa 'bridge' stream that takes in
bytes and converts them totext (character) data. Irs used
primarily toact asthe middle chain between the high-level
BufferedReader and the low-level Socket input stream.

• To write text data to the server, create a PrintWriter chained
directly tothe Socket's output stream. Call the prin~) or
prinUnO methods to send Strings tothe server.

• Servers use aServerSocket that waits forclient requests on
a particular port number.

• When aServerSocket gets a request it 'accepts' the request
bymaking a Socket connection with the client.

you are here ~ 485



a simple chat client

Writit1g aChat Cliet1f
We'll write the Chat client application in two stages. First we'll
make a send-only version that sends messages to the server but
doesn't get to read any of the messages from other participants
(an exciting and mysterious twist to the whole chat room
concept).

Then we'll go for the full chat monty and make one that both
sends and receives chat messages.

Version One: send-only

Code outline

public class SimpleChatClientA

JTextFleld outqoing ;
PrintWrieer writer;
Socket sock ;

public void go() (
II make gui and regist8r a listener with the send button
I I call the setOpNe tworkiDg () method

private void setOpNetworking () (
II make a Socket, then malc.e a PrintWriter
II assign the PrintWriter to writer instance variable

public class SendButtonListener implements ActionLiatener
publio void actionPer£ormed(ActionEvent ev) (

II get thil text from the text field and
II send it to the server using the writer (a PrintWri tar)

)

II close SendButtonLiatener inner class

II close outer class

486 chapler 15



networking and threads

import java.io.*;
import java.net.·;
import j avax. swing. • ;
import:. java.awt.· ;
import java .awt.event.";

publio class SimpleChatClientA

JTextField outgoing;
Pr:intWriter writer;
Socket sock;

public void go ()
JFrame frame ~ new JFrame(nLudierously Simple Chat elientH);
JPanel mainPanel = new JPanel () ;
outgoing = new JTextField(20);
JButton sendButton = new "Button ("sand") ;

sendButton.addActionListener(new SendButtonListener(»;
mainPanel.add(outgoing);
mainPanel.add(sendButton) ;
frame. getcontentPane () . add (Bord.erLayout. CENTER I mainPa.nel);
setUpNetworking():
frame.setSize(400,500):
frama.setViaible(true);

II close go W~'re lI.Sjh~ Iota/host so

y~ ld"~ the tlitnt
priv~ ~id aetUpNetworkinq () { tL"an $tl"V& 011 one "'dthine

Bock = new Socket(U127.0.0.1 H
, 5000); -n " L • u'.I'I\clk.e the Sotkd

I nil IS wn(Y' .. _ ..
writer = new PrintWriter (sock .getoutputstream(»; ,..d the PY;l'Itw.,.itev (its t.dUed
System. out.println ("networking establiBhedH

) : f t.he 01.) ....~od .,.i~ht bC~o'fe
CAtch (IOException ex) ( d:Oft'\ il'l ~c aff ~UP
8x.printSt&cxTrace() ; u~a~ ~

•II close setUpNetworking

/'Jow we cfttlodlly do the W'rit.in~.
Re"'e...be__, the W'rif.t.,. is thained to
the il'l\'1"t ~Cd'" .f.,.o.... tht Sotket, se
whehtveY wc do cf rriPltll'lO, it ~oa

oveY the )ltt.W<Wk -to the SCTVeY!

catch (Exception ex) (
ex.printstackTrace{);

I
outgoing. setText (U") ;
outgoing.requestFocua() ;

public static void main (String' CI U'gll) (

DeW Simpl&ChatClientA () . qo () ;

public class SendButtonLiBtener implements ActionListener (
public void actionPerformed(ActionEvent .v) (

try (
writer.println(outqoing.getText(»;
writer.flush();

)

II close oueer class

}

II close SendButtonListener inner claas

you are here ~ 487



improving the chat client

Version Two: sec:,n:d~_o:;:::;;;;;;;;;~~~~~~~
and receive _

IlhInk A...~o.,'&SU1

---~ ..-

T~e Strllt\" sends il ftltssa5e to all
tlltllt pariitipallts. as~ CIs tJ,e
ftlessa~t is rtl.eived by thc ~VCT.

When,a t1ieflt s.e"ds d "'tssa5c, it
does" t afPeal'" i" the il\tOfloi"5
ftleUil5e display area \Antil the
$.Crllel'" $.Cl'ods it to eVt\"yt:n.e.

Big Question: HOW do you get messages from the server?

Should be easy; when you set up the networking make an input stream as well
(probably a BufferedReader). Then read messages using readl.ine/).

Blgger Question: WHEN do you get messages from the server?
Think about that. What are the options?

• Option One: Poll the server every 20 seconds
Pros: Well, it's do-able

Cons: How does the server know what you've seen and what you haven't? The server
would have to store the messages, rather thanjust doing a distribute-and-forget each time
it gets one. And why 20 seconds? A delay like this affects usability, but as you reduce the
delay, you risk hitting your server needlessly. Inefficient.

• Option Two: Read something In from the server each time the user
sends a message.

Pros: Do-able, very easy

Cons: Stupid. Why choose such an arbitrary time to check for messages? What if a user is
a lurker and doesn't send anything?

• Option Three: Read meSAages as soon as they're sent from the server

Pros: Most efficient, best usability

Cons: How do you do you do two things at the same time? Where would you put this code?
You'd need a loop somewhere that was always waiting to read from the server. But where
would that go? Once you launch the CUI, nothing happens until an event is fired by a CUI
component.

488 chapter 15



networking and threads

Multithreading In Java

Java has multiple threading bu ilt right
into the fabric of the language. And it 's a
snap to make a new thread of execution:

Thread t = new Thread() ;
t. start () ;
That's it. By creating a new Thread object,
you've launched a separate threadoj
execution, with its very own call stack.

Exceptfin" one problem.

That thread doesn't actually do anything,
so the thread "dies" virtually the instant
it's born . When a thread dies, its new
stack disappears again. End of story.

So we're missing one key component­
the thread's job. In other words, we need
the code that you want to have run by a
separate thread.

Multiple threading in Java means we
have to look at both the threadand the job
that's ron by the thread. And we'll also
have to look at the Thread class in the
java.lang package. (Remember. java.lang
is the package you get imported for
free , implicitly, and it' s where the classes
most fundamental to the language live,
including String and Systern.)

.In Java you really CAN
walk and chew gum at
the same time.

We want something to run continuously,
checking for messages from the server,
but without iruerrupting the users ability to
interact with the CUI.'So while the user is
happily typing new messages or scrolling
through the incoming messages, we
want something behind the scenes to keep
reading in new input from the server.

That means we finally need a new thread.
A new, separate Slack

We want everything we did in the Send­
Only version (version one) to work the
same way, while a new process runs along
side that reads information from the
server and displays it in the incoming text
area.

You know by now that we're
going with option three.

Well, not quite. Unless you have multiple
processors on your computer, each new
Java thread is not actually a separate
process running on the OS. But it almost
feels as though it is.

you are here ~ 489



threads and Thread

Java has tMultiple threads but o.,ly
one Thread class
We can ralk about threadwith a lower-case ' t ' and Thread
with a capital 'T'. When you see thread, we're talking
about a separate thread of execution . In other words,
a separate call slack. When you see Thread, think of
the Java naming convention. What, inJava, starts with a
capital letter? Classes and interfaces. In this case. Thread
is a class in the java.lang package. A Thread object
represents a thread. oj execution; you'll create an instance of
class Thread each rime you want to start up a new thread
of execution.

!hread

i\ theead is a separate
'Lhr'eud ofexecution'.
r[1 othet; words. a
1l'}Jal'alc call slack.
J\'-rhrcad is a Java
class that represenh
a thh!uJ.

1'0 111ake a Lhread .
l1mkl\ a ThI\\ud.

Thread

Thread
void joinO
void slartO

slatlc void sleepO

main thread another thread
started by the code

A. thread [lower-case 't") is a separate thread of execution.
That means a separate call slack . Every Java application
starts up a main thread-the thread that puts the
mainO method on the bottom of the stack. TheJVM
is responsible for starting the main thread (and other
threads, as it chooses, including the garbage collection
thread ). As a programmer, you can write code to start
other threads of your own .

490 chapter 1 5

java.lang.Thread
class

Thread (capital "I") is a class that
represents a thread of execution.
It has methods for starting a
thread.joining one thread with
another, and putting a thread to
sleep. (It has more methods; these
are just th e crucial ODes we need
to use now).



What does it ttteat1 to have tMore thatt
ot1e call stack?
With more than one call Slack, you get the appearance of having
multiple things happen at the same time. In reality. only a true
multiprocessor system can actually do more than one thing at a
time, but with Java threads, it can appearthat you're doing several
things simultaneously. In other words, execution can move back
and forth between stacks so rapidly that you feel as though all stacks
are executing at the same time . Remember,java is just a process
running on your underlying OS. So first,Java itselfhas to be 'the
currently executing process' on the OS. But once Java gets its
turn to execute, exactly what does theJVM run? Which bytecodes
execute? Whatever is on the top afthe currently-running stackl
And in 100 milliseconds. the currently executing code might switch
to a different method on a different stack.

One of the things a thread must do is keep track of which statement
(of which method) is currently executing on the thread's stack.

It might look something like this:

networking and threads

o The JVM calls the malnO method.

public static void main (String [l args) (

main thread

main() starts a new thread. The main
thread is temporarily frozen while the new
thread starts running.

Runnable r = new MyThreadJob()j~

Thread t = new Thread(~ YOl,t'1! le;l'lI~hdt
t. start 0 ; -this ...~~. .c.si
Dog d :: new Dog () j d ...o.,.ellt... III J

e The JVM switches between the new
thread (user thread A) and the original
main thread, until both threads complete.

t.startC)

mainO

main thread

main thread

user thread A

x.goO

runO

user thread A

you are here. 491



launching a thread

How to launch a new thread:

o Make a Runnable object (the thread's job)
Runnable threadJob = new My~Jnnable()j

Runnable is an interface you'll learn about on the next page.
You'll write a class that implements the Runnoble interface,
and that class is where you'll define the work that a thread
will perform. In other words, the method that will be run
from the thread's new call stack

e Make a Thread object (the worker) and
give it a Runnable (the job)

Thread myThread = new Thread(threadJob) j

Pass the new Runnable object to the Thread constructor.
This tells the new Thread object which method to put on
the bottom of the new stack-the Runnable's runO method.

Q Start the Thread
myThread.start()j

Nothing happens until you call the Thread's
startO method. That's when you go from
having just a Thread instance to having a new
thread of execution. When the new thread
starts up. it takes the Runnable object's
runO method and puts it on the bottom of
the new thread's stack.

492 chapter 15

rul'10



networking and threads

Every fhread tteeds ajob to do.
AtMethod to put Ott the ttew thread stack.

Runnah]e is to a
Thread what a joh is to
aworker. ARunnahle
is the joh athread is
supposed to run.
ARunnah]e holds the
method that goes on
the bottom of the new
thread's stac"k: ru.n().

A Thread object needs ajob. Ajob the thread will run when the
thread is started . That job is actually the first method that goes on ~. ts 01\\'1 ()I\e
the new thread's stack, and it must always be a method that looks ~\ . -\:.t.Yht.e de 11\ ~lYI i-tS 31'1

like this: I"e 1\""",,3 e\.II\ '10. Y~O. {R.t"'t.\~ e~YG\ess
I L..A

I
y..,.b It. '10 00 ',s. y~'o It. '" :r

public void run (} ( "'~ ~t. "'~ LI -t. 'fld'1.)
II code that will be run by the new thread il'l~ht.t SO l'IVt. i-t. i" ,,"3

Lhty ,/0'" \.., \
~ ~"t:\,

How does the thread know which method to put at the bottom of
the slack? Because Runnable defines a contract. Because Runnable
is an interface. A thread'sjob can be defined in any class that
implements the Runnable interface. The thread cares only that you
pass the Thread constructor an object of a class that implements
Runnable.

When you pass a Runnable to a Thread constructor, you're really
just giving the Thread a way to get to a runt) method. You're giving
the Thread itsjob to do.

you are here. 493



Runnable interlace

fo tttake ajob for your thread,
itMpletMet1t the Rut1"able iMterface

public clus MyRunnable ~I..-nt:a

public void go ()
doMore();

public void doMOre() (
SYllItem.out.prll\tln("top 0' the stack");

class ThreadTetlter { R \:II i"std"U ;"to ~e I'C'O/
Pass -the "ew ,,<YIN nis -tells the -l:.\-I,"~d
n ~d t.O'I'ISb-l>l.t.o--. 'boB:.o ok ~e YltW

public static void main (Strll\g[] &rgs) {/ '"L d.hod to y...-t 0" -the . "'LLod ~t
wha~ "' LL ...., J s -the tlY'S-t ",n;nta k \" OVlCY '0/.,. ~ J

Runnable threadJob = new MyRunnab1e () ; st. · -l} ad will yUY\·
Thread myThread = _ ( ) ; -the "ew "c

o myThread .start() ; (

o

main thread new thread

What do you think the output will be ifyou run the

ThreadTester class? (we'll find out In a few pages)

494 chapter 15



networking and threads

The three states of a new thread

Thread t = new Thread(r);

NEW

t. start () ;

Thread t = new Thread(r);

A Thread instance has been
created but not started.
In other words, there is a
Thread object, but no thread
ofexecution.

RUNNABLE

Selected to run

t.start() ;

When you start the thread, it
moves into the runnable state.
This means the thread IS ready
to run andjust waiting for its
Big Chance to be selected for
execution. At this point, there is
a new call stack for this thread.

\ \ / / /
<, RUNNING _
"

/ { \"

"Call I
S4ly~iu

thai: to¥"
?"yew..

This is the state all threads lust
after! To be The Chosen One.
The Currently Running Thread.
Only the JVM thread scheduler
can make that decision. You
can sometimes influence that
decision, but you cannot force a
thread to move from runnable
to running. In the running
state, a thread (and ONLY this
thread) has an active call stack,
and the method on the top of
the slack is executing.

But there's more. Once the thread becomes
runnable, it can move back and forth between
runnable, running, and an additional state:
temporarily not runnable (also known as 'blocked').

you are he re ~ 495



thread states

Typical runnableJrunning loop

Typically, a thread moves back and
forth between runnable and running,
as theJVM thread scheduler selects a
thread to run and then kicks it back
out so another thread gets a chance.

A thread can be made
temporarily not-runnable

RUNNABLE RUNNING

~

~
Sent bock to runnable
so another thread coo
have a chance

TIle thread scheduler can move a
running thread into a blocked state,
for a variety of reasons. For example,
the thread might be executing code
to read from a Socket input stream,
but there isn't any data to read. The
scheduler will move the thread out
of the running state until something
becomes available. Or the executing
code might have told the thread to
put itself to sleep (sleepO). Or the
thread might be waiting because it
tried to call a method on an object,
and that object was 'locked', In that
case, the thread can't continue until
the object's lock is freed by the thread
that has it.

All of those conditions (and more)
cause a thread to become temporarily
not-runnable,

496 chapter 15

RUNNABLE RUNNING

sIUfi...~ waiti"9 .feN' <ll'lOth& th....taa to ti ... ish,
....aib,,~ fat' data to be ilvClilablt 0'" tht sh-til"'l
wilit,,~ fo... Cl" objed;'s lock ...



fhe fhread Scheduler
The thread scheduler makes all the decisions about
who moves from runnable to running. and about when
(and under what circumstances) a thread leaves the
running state. The scheduler decides who runs, and for
how long, and where the threads go when the scheduler
decides to kick them out of the currently-running state.

You can't control the scheduler. There is no API for
calling methods on the scheduler. Most importantly,
there are no guarantees about scheduling! (There are a
few almose-guarantees. but even those are a little fuzzy.)

The bottom line is this: do not baseyour program '$

rorrectness Q1l theschedulerworking in a particular way!
The scheduler implementations are different for
differentJVM's, and even running the same program
on the same machine can give you different results.
One of the worst mistakes new Java programmers
make is to test their multi-threaded program on a
single machine, and assume the thread scheduler will
always work that way, regardless of where the program
runs.

So what does this mean for write-once-run-anywhere?
It means that to write platform-independentJava code,
your multi-threaded program must work no matter how
the thread scheduler behaves. That means that you can 't
be dependent on, for example, the scheduler making
sure all the threads take nice, perfectly fair and equal
turns at the running state. Although highly unlikely
today, your program might end up running on aJVM
with a scheduler that says, ~OK thread five, you're up,
and as far as I'm concerned, you can stay here until
you're done, when your run () method completes."

The secret to almost everything is sleep. That's
right, sleep. Putting a thread to sleep, even for a few
milliseconds. forces the currently-running thread to
leave the running state, thus giving another thread a
chance to run. The thread's sleepO method does come
with oneguarantee: a sleeping thread will not become
the currently-running thread before the the length of
its sleep time has expired. For example, if you tell your
thread to sleep for two seconds (2,000 milliseconds),
that thread can never become the running thread again
until sometime afterthe two seconds have passed.

networkIng and threads

The"fhread
scheduler makes all

the decisions about
who runs and who
doesn't. lIe usually

makes the threads take
turns, nicely. But
there's no guarantee
about that. lIe might
let one thread run
to its heart's content
while the other
threads 'starve'.

you are here ~ 497



thread scheduling

An example of how unpredictable the
scheduler can be...

Running this code on one machine:

public class MyRunnable implements Runnable

public void run()
qo() ;

public void go ()
doMore() ;

public void dOMOre() (
System .out.printin("top 0' the stack");

class ThreadTestDrive {

public static void main (String[] args) (

Runnable threadJob = new MyRunnable () ;
Thread myThread = new Thread (thraadJob) ;

myThread .start();

.... .
,. . '..

498 ch apter 15

..

Produced this output:

java Th~eadTestDrive

back in main

top 0' the stack

~(j.va T l-~;::",adT·c~i:.DJ.--;_ '. · 'c

top 0' the stack

back in main

java ThreadTestDrive

top 0' the stack

back in main

java Th~eadTestnrive

top 0' the stack

back in main

j a v a T h r e a dT e s ~ D r 1 ve

top 0' the stack

back in main

java T h r R a d TQs t D ~ ~ ~ ~

top 0' the stack

back in main

Java ThreadTestDr1ve

back in main

top 0' the stack



How did we end up with different results?

Sometimes it runs like this:

networking and threads

maIn0sta rts the
new thread

main thread

The scheduler sends
the main thread out
ofrunning and back
torunnable, sothat
the new thread can
run.

main thread

The scheduler tets
the new thread
run to completion,
printing out "top 0'

the stack"

new thread

time

The new thread goes
away, because itsrunO
completed. The main
thread once again
becomes the running
thread, and prints 'back
Inmain"

time

you are here . 499



socketconnecUons

:t1erelare~
Dumo "C.UesU9nS

Q.: I've seen examples that don't use a separate
Runnable Implementation, but Instead Just make a
subclass of Thread and override the Thread's runO
method. That way,you call the Thread's no--arg
constructor when you make the new thread;

Thread t = new Thread(); 1/no Runnable

A: Yes, that Isanother way of making your own
thread, but think about it from an 00 perspective.
What's the purpose of subclassing? Remember that
we're talking about two different things here-the
Thread and the thread'slob. From an 00 view, those
two are very separate activities, and belong in separate
classes. The only time you want to subclass/extend
the Thread class,Is if you are making a new and more
specific type ofThread .ln other words, if you think of
the Thread as the worker, don't extend the Thread class
unless you need more specific worker behaviors. But If
all you need Is a new lob to be run by a Thread/worker,
then Implement Runnable In a separate,job-specific
(not worker-specific) class.

This is a design Issue and not a performance or
language Issue.It's perfectly legal to subclass Thread
and override the runO method, but It's rarely a good
Idea.

Q.: Can you reuse a Thread object? Can you give It
a new Job to do and then restart It by calling startO
agaln7

A: No. Once a thread 's runO method has completed,
the thread can never be restarted . In fact, at that
point the thread moves Into a state we haven't talked
about-dead. In the dead state, the thread has
finished Its runO method and can never be restarted.
The Thread object might stili be on the heap, as a
living object that you can call other methods on (If
appropriate), but the Thread object has permanently
lost its 'threadness'. In other words, there Is no longer a
separate call stack, and the Thread object Is no longer
a thread. It's Just an object, at that point, like all other
objects.

But, there are design patterns for making a pool of
threads that you can keep using to perform different
jobs. But you don't do It by restartlng() a dead thread.

500 chapter 15

• Athread with a lower-case 't' isa separate thread of
execution in Java.

• Every thread In Java has its own call stack.

• AThread with acapital 'T is the java.lang.Thread
class. AThread object represents a thread of
execution.

• AThread needs ajob to do.AThread's job isan
instance ofsomething that Implements the Runnable
interface.

• The Runnable Interface has just a single method, runO.
This is the method that goes on the bottom ofthe new
call stack. Inother words. it isthe first method to run In
the new thread.

• To launch a new thread, you need a Runnable to pass
to the Thread's constructor.

• Athread IsIn the NEW state when you have
instantiated aThread object but have not yet called
startO.

• When you start a thread (by calling the Thread object's
startO method), anew stack Is created, with the
Runnable's runO method on the bottom ofthe stack.
The thread isnow inthe RUNNABLE state, waiting to
be chosen torun.

• Athread issaid 10 be RUNNING when the NM's
thread scheduler has selected it tobe the currently­
running thread. On asingle-processor machine, there
can beonly one currently-running thread.

• Sometimes a thread can be moved from the RUNNING
state to a BLOCKED (temporarily non-runnable) state.
Athread mighl be blocked because it's waiting for data
from astream. orbecause It has gone tosleep, or
because It iswaiting for an object's lock.

• Thread scheduling Isnot guaranteed towork inany
particular way, so you cannot be certain that threads
wlll take tums nicely. You can help influence tum-laking
by putting your threads to sleep periodically.



Putti.,g· athread to sleep
One of the best ways to help your threads take turns is
to put them to sleep periodically. All you need to do

is call the static sleepO method, passing it the sleep
duration, in milliseconds.

For example:

Thread.sleep(2000);
will knock a thread out of the nmning state, and
keep it out of the runnable state for two seconds.
The thread can't become the running thread
again until after at least two seconds have passed.

A bit unfortunately, the sleep method throws an
InterruptedException, a checked exception, so all
calls to sleep must be wrapped in a try/catch (or
declared), So a sleep call really looks like this :

try (
Thread,sleep(2000) ;

catch(InterruptedException ex) (
ax.printStackTrace() ;

Your thread ",;11 probably neverbe interrupted [Tom
sleep; the exception is in the API to support a thread
communication mechanism that almost nobody uses in
the Real World. But, you still have to obey the handle
or declare law, so you need to get used to wrapping your
sleepO calls in a try/catch.

Now you know that your thread won't wake up before the
specified duration, but is it possible that it will wake up
some time after the 'timer' has expired? Yes and no. It
doesn't matter, really, because when the thread wakes
up, it always goes bcuk to the rusmable stare! The thread
won't automatically wake up at the designated time and
become the currently-running thread. When a thread
wakes up, the thread is once again at the mercy of
the thread scheduler. Now, for applications that don't
require perfect timing, and that have only a few threads,
it might appear as though the thread wakes up and
resumes running right on schedule (say, after the 2000
milliseconds). But don't bet your program on it.

networking and threads

Put your thread to sleep
if you want to he sure
that other threads get a
chance to run.
"When the thread wakes
up. it always goes bac"k
to the runnah]e state
and waitS for the thread
scheduler to choose it
to run again.

you are here ~ 501



using Thread.sleep()

Usittg sleep to tttake our prograttt
",ore predictable.
Remember our earlier example that kept giving us different
results each time we ran it? Look back and study the code
and the sample output. Sometimes main had to wait until the
new thread finished (and printed "top o' the stack"), while
other times the new thread would be sent back to runnable
before it was finished, allowing the maio thread to come back
in and print out "back in main", How can we fix that? Stop
for a moment and answer this question: "Where can you put
a sleept) call, to make sure that "back in main" always prints
before "top 0' the stack"?

We'll wait while you work out an answer (there's more than
one answer that would work).

Figure it out?

public class MyRunnable implements Runnable (

public void run() (
go() ;

Thi~ is wh.rt. we. WGl'It-a l.or.siskt. (Katy

0+ fYint. st.at.~enh'

File Ed~ Window Help SnoozeBunon

Java ThreadTestDri ve

back in main

top 0' the stack

.: i a v a ThreadTestDrive

back in main

top 0 ' the stack

javu ThreadTestDriy~

back in main

top 0' the stack

java ThreadTestDrive

back i n main

top 0' the stack

java ThreadTestDri ve

back in main

top 0 ' the stack

public void go ()

Uy (
Thread••leep(2000);
catch (Ifttarrupt.eclException ex) (
ex.pr1ntStackTrace();

public void dOMOre() (
System. out. prinUn ("top 0' the stack");

class ThreadTestDrive (
public static void mAin (String[] arqs)

Runnable theJob - new MyRunnable();
Thread t::: new Thread(theJob);
t. start () ;
Systam.out.println(~back in main");

}

502 chapter 15

..
. ,

"

. J

. ,

"

, .



networking and threads

Maki.,g a.,d sfarti.,g two threads
Threads have names. You can give your threads a name of
your choosing, or you can accept their default names. But the
cool thing about names is that you can use them to tell which
thread is running. The following example starts two threads.
Each thread has the same job: run in a loop. printing the
currently-running thread 's name with each iteration.

public class RunThreads implements Runnable (

~\t i,..st;ll'tt.·
public static void main(String[J arqa) ( ..... Ma\(t O'f\t RIl'l'ol"3

RunThreads runner '" nitW RunThreads () ;
Thread alpha = new Thread (runner);~Mcl~ two th
Thread beta '" new Thread(runner);~ . 'r,edtb, with tht 1,I>"t R""Ylable (the
alpha. setName ("Alpha thread"); Scl"'e Job--...,e II t:a1k ...~t about t.he "-two th..-t.ads
beta. 88tName ("Beta thread");~ and O?Ie R"""\dblt. In a +tvJ ra~es).
alpha . 8 tart () ; ~ Na",t. the tht"edds.
beta. start (); ~ start the tht"t.clds.

LL ""-'A" ~is \00f1
~t.h ~vtao \fIi\\ YIlYl V\~~-J

public void run () { . L' it. 1'0",1: e.)l.h tu"t.·
P"r\Yl~'''~ 'Vfor (int i = 0; i < 25; i++) { 1

String threadName K Thread. currentThread () .getName();
Syatam.out.println(threadName + " is running");

File Ed~ WindOW H~p C&ntaun

What will happe.,?
Wlll the threads take turns? Will you see the thread names
alternating? How often will they switch? With each iteration?
After five iterations?

You already know the answer: we don't knowlIt's up to the
scheduler. And on your as, with your particular JVM, on
your CPU, you might get very different results.

Running under as x 10.2 (Jaguar), with five or fewer
iterations, the Alpha thread runs to completion, then
the Beta thread runs to completion. Very consistent. Not
guaranteed. but very consistent.

But when you up the loop to 25 or more iterations, things
start to wobble. The Alpha thread might not get to complete
all 25 iterations before the scheduler sends it back to
runnable to let the Beta thread have a chance.

Alpha thread is running
Alpha thread is running
Alpha thread is running
Beta thread is running
Alpha thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Beta thread is running
Alpha thread is running

you a re here . 503



aren't threads wonderful?

504 chap ter 15

UtM, yes. There IS adark side.
fhreads ca., lead to co.,curre.,cy 'issues:
Concurrency issues lead to race conditions. Race conditions
lead to data corruption. Data corruption leads to fear... you
know the rest.

It all comes down to one potentially deadly scenario: two or
more threads have access to a single object's daia: In other
words, methods executing on two different stacks are both
calling, say, getters or setters on a single object on the heap.

It's a whole 'left-hand-doesn't-know-what-the-right-hand­
is-doing' thing. Two threads, without a care in the world,
humming along executing their methods, each thread
thinking that he is the One-True Thread. The only one
that matters. After all, when a thread is not running, and in
runnable (or blocked) it's essentially knocked unconscious.
When it becomes the currently-running thread again, it doesn't
know that it ever slopped.



networking and threads

Marriage in Trouble.
Can this couple be saved?

Next, on 8 very special Dr.Steve Show

[Transcript from episode #42)

Welcome to the Dr. Steve show.

"RiYan and I agreed t.hat neither crus will overdraw the checkl.ng account.
So the procedure 1S, whoever wants to withdraw money must check the
balance in the account beiore rnak1ng the withdrawal. It all seemed so
simple. But suddenly we're bouncing checks and getting hit with overdraft.
fees I

I thought it wasn't possible, I thought our procedure WBE safe. But then
this happened:

Ryan needed $50, so he checked the balance in the account,
and saw that it WW3 $100. No problem. So, he plans to
withdraw the money. But first he faI1B asleepI

We've got a story today that's centered around the top two reasons why

couples split up-finances and sleep.

Toctaor's troubled pair, Ryan and Monica.,share a bed and a.
bank account. But not for long ifwe can't find a solution. The
problem? The classic 'iiwo people-one bank account" th:1ng.

Here's how Monica desoribed it to me:

And that's where I come in, while~'s still BEleep, and
now Iwant to withdraw $100. I check the balance, and
it's $100 (because !Wan's st1ll asleep and ha.sn'tyet made
his withdrawal), so I think, no problem. So I make the
withdrawal, and agatn no problem. But then Ryan wakes up,
completes h1s withdrawal, and we're suddenly overdrawn! He didn't

even know that he fell asleep, so he just went ahead and completed his

tra.nsaot1on without checking the balance again. You've got to help us Dr.

SteveI"

Is there a solution? .Are they doomed? We can't stop Ryan from fa.lllng

asleep, but can we make sure that Monica can't get her hands on the bank

account until after he wakes up?

Take a moment and tb.1n.k about that while we go to a.commercial break.

you are here. 505



Ryan and Monica code

The Ryatt at1d Mottica proble'lt itt code
The following example shows what can happen when two
threads (Ryan and Monica) share a singleobject (the bank
account).

The code has two classes, BankAccount, and
MonicaAndRyanJob. The MonicaAndRyanjob class
implements Runnable, and represents the behavior that Ryan
and Monica both have--checking the balance and making
withdrawals. But of course, each thread fulls asleep in between
checking the balance and actually making the withdrawal.

The MonicaAndRyanJob class has an instance variable of type
BankAccount., that represents their shared account.

The code works like this:

BankAccount

intbalance

gelBalance()
withdrawO

Runnable

T
I
I

I
I

RyanAndMonlcaJob

BankAccount account

runO
makeWithdrawal0

• Make one Instance of RyanAndMonlcaJob.

The RyanAndMonicaJob class is the Runnable (the job to do),
and since both Monica and Ryando the same thing (check
balance and withdraw money), we need only one instance.

•
RyanAndMonicaJob theJob::: new RyanAndMonica.Job 0 ;

Make two threads with the same Runnable
(the RyanAndMonicaJ ob instance)

Thread one::: new Thread (theJob) ;
Thread two = new Thread (theJob) ;

In the runO method, do
exactly what Ryan and
Monica would do-check
the balance and, if
there's enough money,
make the withdrawal.

This should protect
against overdrawing the
account.

• Name and start the threads
one.setName(~Ryan"l;

two . setN8IJle ("Monica") ;
one .start() ;

two. start 0 ;

• Watch both threads execute the runO method
(check the balance and make a withdrawal)

One thread represents Ryan. the other represents Monica.
Both threads continually check the balance and then make a
withdr<lwal. but only if it's safe.!
if (ACcount.get.BalanceO >= amount) (

try (
Thread. sleep (SOOl ;

I catch(InterruptedException ax) (ex.printStackTrace(); )

508 chapter 15

Except••• Ryan and
Monica always fall
asleep~r they
check the balance but
before they finish the
withdrawal.



public void run ( ) {
for (int x = 0; x < 10; x++) {

makeWithdrawl (10) ;
if (account.getBalance() < 0) {

System.out.println("OVerdrawn!");

networking and threads

The Ryat1 at1d MOt1ica exalltple
class BankAccount { L tarts ltIith a

private int balance = 100; ~~__~ Tne attov.rI'; s
'oa\aY\l.e ok fIOO.

public int getBalance()
return balance;

}

public void withdraw(int amount) {
balance = balance - amount;

public class RyanAndMonicaJob implements Runnable {

private BankAccount account = new BankAccount();

public static void main (String [] args) {
RyanAndMonicaJob theJob = new RyanAndMonicaJob (); ~ frlsta .
Thread one = new Thread (theJob) ;~ r.t1ai:e the ~"r.tldble (-ob)
Thread two = new Thread (theJob) ; +-- Make two .Lh d ~

~I-eas ' .
one. setName ("Ryan") ; job. nat ' ~IVlr.g eath thl-ead th
two. setName ("Monica") ; alloLir.t . "'ear.s both thl-eads will b e ~"'e R"htldble
one. start () ; Ir.stahle val-iable ir. the R e alleSSlh!} the One
two. start () ; "r.tldble tlass.

tn\'"ead loo\'s t.nYO\l.~n arid t.\'"·les

IYl t.ne yv.YlO .",e+.hod
'tltIitn eat.n it.e\'"atioYl' AHe\'" t.~~

to make a 1tI,t.nd\'"altla 'DalaYlte oY\l.e a~aiYl to see I

ltIit.nd\'"altla\, 'It. t.net.ks t.ne
t.he attOv."t. is ol/eV'dyaltl".

ehetk the attov.Ylt. bala"t.e, aYld it t.heYe~s Ylot. IS
} e"ov.~h mOrle~, we j\lSt. f\'"int. a ",essa~e. I theY~ t.e

. , . . Venov. h, ltIe ~o to sleef, t.hen ltIake v.? a"d t.OWIf e
pr1;rate v01d makeW1 thdrawal (1nt amount) { ~ 't.hdv-altlal, '\lSt like R'fan did.

1f (account . getBalance () >= amount) { t.he WI J
System.out.println(Thread.currentThread() .getName() + " is about to withdraw");
try {

System.out.println (Thread . currentThread() .getName() + " is going to sleep");
Thread .sleep(500);

} catch(InterruptedException ex) {ex.printStackTrace(); }
System.out.println (Thread. currentThread() .getName() + " woke up.");
account.withdraw(amount);
System.out.println (Thread. currentThread() .getName() + " completes the withdrawl");
}

else {
System.out.println("Sorry, not enough for" + Thread.currentThread() .getName(»;

We p"i iha b"hlh of D>oiht staL L
se h l' hi' UhoIeh\;S so we tar.

e w ae; s appehih!} as it l-"hS.

you are here ~ 507



!"Cyan ana MOniCa OUtput:

FlI& Edll Window Help VI£ll

the withdraw1

for Monica

for Monica

for Monica

for Monica

for Monica

, .

508 chapter 15

Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.
Monica completes the withdrawl
Monica is about to withdraw
Monica is going to sleep
Ryan woke up .
Ryan completes the withdrawl
Ryan is about to withdraw
Ryan is going to sleep
Monica woke up.
Monica completes the withdrawl
Monica is about to withdraw
Monica is going to sleep

Ryan woke up.

Ryan completes the withdrawl

Ryan is about to withdraw

Ryan is going to sleep

Monica woke up.

Monica completes

Sorry, not enough

Sorry, not enough

Sorry, not enough

Sorry, not enough

Sorry, not enough

R~'an woke up.

Ryan completes the withdrawl

Overdrawn'

Sorry, not enough for Ryan

Overdrawn!

Sorry, not enough for Ryan

Overdrawn!

Sorry, not enough for Ryan

Overdrawn!

The makeWithdrawalO method
always checks the balance
before making a withdrawal,
but stili we overdraw the
account.

Here's one scenario:

Ryan checks the balance, sees that
there's enough money, and then falls
asleep.

Meanwhile, Monica comes in and checks
the balance. She, too, sees that there's
enough money. She has no Idea that
Ryan Is going to wake up and complete a
withdrawal .

Monica falls asleep .

Ryan wakes up and completes his
withdrawal.

Monica wakes up and completes her
withdrawal. Big Probleml In between the
time when she checked the balance and
made the withdrawal, Ryan woke up and
pulled money from the account.

Monica's check of the account was
not valid, because Ryan had already
checked and was stili In the middle of
making a withdrawal.

Monica must be stopped from getting
Into the account until Ryan wakes up and
flnishes his transaction. And vice-versa.



They need a lock for account access!

networking and threads

The lock works like this:

~ There's a lock associated with the bonk
account transaction (checking the balance
and withdrawing money). There's only
one key, and it stays with the lock until
somebody wants to access the account.

When Ryan wants to access the bank
account (to check the balance and withdraw
money), he locks the lock and puts the key
in his pocket. Now nobody else can access
the account, since the key is gone.

Ryan keeps the key in his pocket until he
finishes the trQl\SQctlon. He has the only
key, so Monica can't access the account
(or the checkbook) until Ryan unlocks the
account and returns the key.

Now, even if Ryan falls asleep ofter he
checks the balance, he has a guarantee
that the balance will be the some when he
wakes up, because he kept the key while he
was asleep!

f

f

The bank account
transaction is
unlocked when
nobody Is using
the account.

When Ryan
wants to access
the account, he
secures the lock
and takes the key.

When Ryan Is
finished, he
unlocks the lock
and returns the
key. Now the key
is available for
Monica (or Ryan
again) to access
the account.

you are here ~ 509



using synchronized

We t1eed the IttakeWithdrawal () tttethod
to rut1 as otte atomic thit1Q.

We need to make sure that once a thread enters the
makeWithdrawal() method, it must be allowed to finisb the method
before any other thread can enter.

In other words, we need to make sure that once a thread has
checked the account balance, that thread has a guarantee that it can
wake up and finish the withdrawal before any other thread can check the
account balance!

Use the synchronized keyword to modify a method so that only
one thread at a time can access it

That's how you protect the bank accountl You don't put a lock on
the bank account itself; you lock the method that does the banking
transaction . That way. one thread gets to complete the whole
transaction, start to finish . even if that thread falls asleep in the
middle of the method I

So if you don't lock the back account, then what exactly is locked? Is
it the method? The Runnable object? The thread itself?

We'll look at that on the next page. In code, though, it's quite
simple-just add the synchronized modifier to your method
declaration:

The synchronized
keyword means that
a thread needs a key
in order to access the
synchronized code.

To protect your data
(like the bank account),
synchronize the
methods that act on
that data.

private synchronized void makeWithdrawal(int amount) {

if (account.getBa1ance () >= amount) {
Syetam.out.println(Thread.current'l'hreadO .q4ItNameO + " is about to withdraw");
try (

System. out.println (Thread. currentThread () .getName() + ~ 1s going to sleepll);
Thread.s1eep(SOO) ;

} eatch(InterruptedException ex) (e.x.printStackTraoeO; I
System. out. println (Thread. ourr8ntThread () . gatName 0 + " wob up. ") ;
aocount ..withdraw (amount) ;
System. out.println (Thr8ad. currentThread 0 .qetNlUll80 + " completes the withdraw1"};

else (
System. out.print1n ("Sorry, not enough for" + Thread. currentThread () .getN~(»;

(Nou ~or 'f0'0l ph'fsil.s-s.avvy \"~ad~ : 'f~' !he t.onv~ntion of I&S;,,~ the 'oIcwl! 'at-.il.' hcY~ does 1\0-1: \"e.flut
the whol~ s..bato.-il. pard:jl.l~ t.hil\~ . ni"k /'i~, t\tJt Eil\1Wl\, whe" 'fou ha\" tl.e 'Hew-a 'ato.-it' i" t.he
1.0JIU'j(t 0+ threads or tta"sal.i;iOt\1. ~t'(, it's Mt OUR ~vtrltOl\ . l.f WE \IItl"t i.... t.haY~e, 'Wt'd appl'f
t4tisc\'lhC'r~'s Ul\l.crt<lif\t'f P\,,;l\l.ir1e -to fYttt'( ... lAt.h eVCt"ytl.i"9 relaW to t.hrc.alUJ

510 chapter 15



networking and threads

Every Java object has a Iocl.
AIocR has only one 'key. .
Most of the tiJtle, the IocR is
unlocked and nobody cares.
But if an ohject has
synchronized methods, a
thread can enter one of the
synchronized methods ONLY
ifthe "key for the object's Ioc"k
is available. In other words.
only ifanother thread hasn't
already grahbed the one "key.

Hey, this object's

takeMonevO method is

synchronized . I need to get

this object's key before I

So what happens when a thread is cranking
through its call stack (starting with the nm()
method) and it suddenly hits a synchronized
method? The thread recognizes that it needs
a key for that object before it can enter the
method. It looks for the key (this is all handled
by theJVM; there's no APT in java for accessing
object locks), and if the key is available. the
thread grabs the key and enters the method .

From that point forward, the thread hangs on
to that key like the thread's life depends on
it. The thread won ' t give up the key until it
completes the synchronized method. So while
that thread is holding the key, no other threads
can enter any of that object's synchronized
methods, because the one key for that object
won 't be available.

zvery object has a lock. Most of the time, the
k is unlocked, and you can imagine a virtual
. sitting with it. Object locks come into play
Iy when there are synchronized methods.

\n en an object has one or more synchronized
ethods, a thread can enter a syrn:hroniz.ed

-ethod only if the thread can get the key io the
J,ject's wckJ

e locks are not per method, they
ar e per object. If an object has two

-nchron ized methods, it does not
simply mean that you can 't have two
threads entering the same method, It

eans you can't have two threads entering
) of the synchronized methods.

Think about it. [fyou have multiple
methods that can potentially act on an
obj ect 's instance variables, all those methods
need to be protected with synchronized.

The goal of synchronization is to protect
cri tical data. But remember, you don't lock the
data itself, you synchronize the methods that
access that data .

Ushtg at1 objeet~ lock

you a re he re. 511



synchronization matters

fhe dreaded "Lost UpdateN probleiM
H ere's another classic concurrency problem, that comes from the database world. It's
closely related to the Ryan and Monica story, but we'll use this example to illustrate a few
more points.

The lost update revolves around one process:

Step I : Get the balance in the account

int i = balance;

Step 2: Add 1 to that balance

balance = i + 1;

The trick to showing this is to force the computer to take two steps to complete the change
to the balance. In the real world, you'd do this particular move in a single statement:
balance++;

But by forcing it into twosteps, the problem with a non-atomic process will become clear.
So imagine that rather than the trivial "get the balance and then add I to the current
balance" steps, the two (or more) steps in this method are much more complex, and
couldn't be done in one statement.

In the "Lost Update" problem, we have two threads, both trying to increment the balance.

class TestSync implements Runnable {

private int balance;

public void run()
for(int i = 0; i < 50; i++) {
increment 0 ;
System.out.println("balance is " + balance);

public void increment() {
int i = balance;
balance = i + l;~ H~r~'s ih~ trlAtial pari! w .

additlQ / 1- . ~ Il'ltr~""~ll't ih I I
J 1:0 whai~v~r ih I ~ oaalll~ by

TIME WE READ IT ( ~ va lA~ o.f balal'll~ was AT THE
ih~ CURREAM- I . )ra h~r ihall addil'lQ /1 h 1-.

" I va lA~ IS J 1:0 W a~V~r

public class TestSyncTest {
public static void main (String[] args) {

TestSync job = new TestSync();
Thread a = new Thread(job);
Thread b = new Thread(job) ;
a.startO;
b.startO;

512 chapter 15



networking and threads

LetJs rut1 this code...

Thread A runs for awhile

Put the value of balance into variable i.
Balance is O. so ; is now O.
Set the value of balance to the result of i + 1.
Now balance Is 1.
Put the value of balance Into variable i.
Balance Is 1, so I is now 1.
Set the value of balance to the result of I + 1.

Now balance Is 2.

We lost the last updates
that Thread A madel
Thread B had preViously
done a 'read' of the value
of balance, and when B
woke up, It Just kept going
as If It never missed a beat.

Thread A runs again, picking up where. it left off

Put the value of balance Into variable I.
Balance Is 3, so I is now 3.

Set the value of balance to the result of I + 1.
Now balance Is 4.

Put the value of balance Into variable I.
Balance Is 4, so I Is now 4.

Set the value of balance to the result of I + 1.
Now balance is 5.

Thread B runs for awhile

Put the value of balance into variable I.

Balance Is 2, so i is now 2.
Set the value of balance to the result of I + 1.

Now balance Is 3.
Put the value of balance Into variable i.
Balance Is 3, so I is now 3.

(now thread B is sent back to runnebte,
before It sets the value of balance to 4]

Thread B runs again, and picks up exactly where it left offl

Set the value of balance to the result of I + 1.

Now balance Is~~ II
. "·\\t~S ..

n __ead A",ydat.ed It. to 1:), blOt.
\'\0,", B ta...e bdl.\( alia ~Ul'fea
0\'\ to!> o.f t.he "fdat.e A....ade,
as it A's "'fdclU IIt"'~ hcll1't\'\ea.

you are here. 513



synchronizing methods

Make the ittcretttettt() tMethod atotttic.
Syttchrottize it!
Synchronizing the incrernenu) method solves the "Lost
Update" problem, because it keeps the two steps in the method
as one unbreakable unit.

public synchronized void increment() {
int i-balance;
balance = i + 1;

}

Q..: Sounds like It's a good Idea to synchronize
everything,Just to be thread-safe.

Once a thread enters
the method, we have
to make sure that all
the steps in the method
complete (as one
atomic process) before
any other thread can
enter the method.

J\: Nope, it's not a good Idea. Synchronization doesn't
com e fOT free. FIrst, a synchronized method has a certai n
amount of overhead. In other words, when code hits a
synchronized method, there's going to be a performance hit
(although typically, you'd never notice It) while the matter of
HIs the key avallabl e7"Is resolved.

Second,a synchron Ized met hod can slow you r prog ram
down because synchronization restricts concurrency. In
other words, a synchronized method forces other threads to
get in line and walt their turn. This might not be a problem
In your code, but you have to consider It.

Third, and most frightening, synchronized methods can lead
to deadlockl (Seepage 516.)

A good rule of thumb Is to synchronize only the bare
minimum that should be synchronIzed. And In fact, you
can synchronize at a granularity that's even smaller than
a method. We don't use it In the book, but you can use the
synchronized keyword to synchronize at the more fine­
grained level of one or more statements, rather than at the
whole-method level.

514 chapter 15



networking and threads

• Thread A runs for awhile
Attempt to enter the incrementO method.

The method is synchronized, so get the key for this object
Put the value of balance into variable i.
Balance is 0, so i is now 0.
Set the value of balance to the result of i + 1.
Now balance is 1.
Return the key (it completed the incrementO method).
Re-enter the incrementO method and get the key.
Put the value of balance into variable i.
Balance is 1, so i is now 1.

[now thread A is sent back to runnable, but since ithas not
completed the synchronized method, Thread A keeps the key]

• Thread B is selected to run

, Attempt to enter the incrementO method. The method is
synchronized, so we need to get the key.

The key is not available.

[now thread B is sent into a 'object lock not available lounge]

• Thread A runs again, picking up where it left off
~ (remember, it still has the key)

.~ Set the value of balance to the result of i + 1.
Now balance is 2.
Return the key.

[now thread A is sent back to runnable , but since it
has completed the incrementO method, the thread
does NOT hold on to the key]

• Thread B is selected to run

I Attempt to enter the incrementO method. The method is
synchronized, so we need to get the key.

This time, the key IS available, get the key.

Put the value of balance into variable i.

[continues to run...]

you are here ~ 515



thread deadlock

The deadly side ofsyttchronizatiott
Be careful when you use synchronized code, because nothing
will bring your program to its kn ees like thread deadlock.
Thread deadlock happens when you have two threads, both of
which are holding a key the other thread wants. There's no way
out of this scenario, so the two threads will simply sit and wait.
And wait. And wait.

Ifyou're familiar with databases Or other application servers,
you might recognize the problem; databases often have a
locking mechanism somewhat like synchronization. But a
real transaction management system can sometimes deal with
deadlock. It might assume, for example, that deadlock might
have occurred when two transactions are taking too long to
complete. But unlike Java, the application server can do a
"transaction rollback" that returns the state of the rolled-back
transaction to where it was before the transaction (the atomic
part) began .

Java has no mechanism to handle deadlock. It won't even know
deadlock occurred. So it's up to you to design carefully. If you
find yourselfwriting much multithreaded code, you might
want to study ".Java Threads" by Scott Oaks and Henry Wong
for design tips on avoiding deadlock. One of th e most common
tips is to pay attention to the order in which YOUl' threads are
started.

All it takes for
deadlock are two
objects and two
threads.

A simple deadlock scenario:

Thread A can't run until

it can get the bar key,

but B is holding the bar

key and B can't run until It

gets the tookey thai A Is

holding and...

Thread A wakes up (stlll

holding the (00 key)

and tries to enter a

synchronized method on

object bar, but can't get

that key because B has

It. A goes to the waiting1 lounge, until the bar key Is

available (it never will bel)

too

Thread B tries to enter

a synchronized method

of object too, but can't

get that key (bacause

A has It). B goes

to the waiting lounge.

until the Ioo key is

available. B keeps the

bar key.

Thread B enters a

synchronized method

of object bar, and gets

the key. if
I bar

"..., -r

1
Thread A goes to

sleep, holding the

too key.

Thread A enters a

synchronized method

of object foo, and gets

the key."

I faa

516 chapter 15



-
• The static Thread.sleepf) method forces a thread to leave the

running state for atleast the duration passed tothe sleep method.
Thread.sleep(200) puts a thread tosleep for 200 milliseconds.

• The sleepO method throws achecked exception (InterruptedExceptionl,
so all calls to sleept) must bewrapped in a try/catch. ordeclared.

• You can use sleepO tohelp make sure all threads geta chance torun,
although there'sno guarantee that when a thread wakes up it'll go tothe
end ofthe runnable line. Itmight for example, go right back to the front.
In most cases, appropriately-timed sleepO calls are all you need tokeep
your threads SWitching nicely.

• You can name a thread using the (yet another surprise) setNameO
method. All threads get adefault name, but giving them an explicl1 name
can help you keep track of threads. especially if you're debugging with
print statements.

• You can have serious problems with threads if two ormore threads have
access tothe same object on the heap.

• Two ormore threads accessing the same object can lead todata
corruption if one thread, for example, leaves the running slate while stili
inthe middle ofmanipulating an object'scritical state.

• To make your objects thread-safe, decide which statements should be
treated as one atomic process. In other words, decJde which methods
must run 10 completion before another thread enters the same method
on the same object.

• Use the keyword synchronized tomodify amethod declaration,
when you want toprevent two threads from entering that method.

• Every object has a single lock, with asingle key forthat lock. Most ofthe
time we don't care about that lock; locks come into play only when an
object has synchronized methods.

• When athread attempts toenter a synchronized method, the thread
must get the key for the object (the object whose method the thread
Is trying torun). If the key Is not available (because another thread
already has it), the thread goes Into a kind ofwaiting lounge. until ttre key
becomes available .

• Even Ifan objecl has more than one synchronized method, there isstill
only one key. Once any thread has entered asynchronized method on
that object, no thread can enter any other synchronized method on the
same object This restriction lets you protect your data by synchronizing
any method that manipulates the data.

networking and threads

you are here ~ 517



final chat client

New and itltproved SitltpleChafClienf
Way back near the beginning of this chapter, we built the SimpleChatClient that could send
outgoing messages to the server but couldn't receive anything. Remember? That's how we
got onto this whole thread topic in the first place, because we needed a way to do two things
at once: send messages to the server (in teracting with the GUI) while simultaneously reading
incoming messages from the server, displaying them in the scrolling text area.

import java.io.*;
import java.net.*;
import java.util.*;
import javax.swing.*;
import java .awt.*;
import java.awt.event.*;

public class SimpleChatClient

JTextArea incoming;
JTextField outgoing;
BufferedReader reader;
PrintWriter writer;
Socket sock;

public static void main (String[] args) {
SimpleChatClient client = new SimpleChatClient();
client. go 0 ;

public void go ()

Yes, there really IS an

B
end to this thapter.

lott not yet...

JFrame frame new JFrame(~Ludicrously Simple Chat Client");
JPanel mainPanel = new JPanel() ;
incoming = new JTextArea(lS,SO);
incoming.setLineWrap(true);
incoming.setwrapStyleWord(true) ;
incoming.setEditable(false);
JScrollPane qScroller = new JScrollPane(incoming) ;
qScroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL SCROLLBAR ALMAYS) ;
qScroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
outgoing = new JTextField(20);
JButton sendButton = new JButton(~Send");

sendButton.addActionListener(new SendButtonListener(»;
mainPanel. add (qScroller) ; We're startin~ a th
mainPanel.add(outgoing); / lotSinli a hew ' nlew read,

. 1 dd (dB ) s. J Inner t: ass asmaJ.nPane . a sen utton; ,;he Rlothnabl (- b)+
setUpNetworking () ; thl"ead. Th eit ,o~ th~

s. f' e l"ead sJob IS
l;O l"ead 1'rOft> the stl"vel"'s
SOlk~t streaft>, disrlayih~
any11,~Oft>ih~ ft>essa~es in the

frame .getContentPane 0 . add (BorderLayout . CENTER, mainPanel); Sll"o In~ teXt area.
frame.setSize(400,SOO);
frame .setVisible(true);

ii close go

518 chapter 15



networking and threads

private void setUpNetworking() {

tty {
sock = new Socket("127.0.0.1 H

, 5000);
:J:nputStreamReader streamReillder = new InputStreamRaader(sock.getInputStream();
reader ~ new BufferedReader(streamReader);
writer = new PrintWriter(sock.getoutputStream(); tn· t
Systam.out.prinUn ("networking established") ; I • ~e sot.Krt to ~et. e 'dYl'\,lSil\~

catch(IOException ex) ( Wt.'rc 141
:{ strca".s. We ""crt. alyea '1 cr

ax.printStackTrAce () ; alld 0Il-lf" stY to strUi to 1:.ht.~ J

) t.M. oJ:.YI't. J ea.", tnt. il\flot sb-u'" so
I I close setUpNet:working \,,,rt f\CI'fl we'r( ,v.1;J J ~Yc.ld ea.... ~et.

that the r I'Lhe~t.Y.W\ts53¥S ",'r0W\ ~

public class SendButtonListener implements ActionLietener
public void actionPerfo~(ActionEventev) {

try (
writer.prinUn(outgoing.getText(» ;
writer.llush() ;

cateh(Exception ex) (
ex.printStackTr8ce() ;

}
outgoing.setText("");
outgoing.requestFocus() ;

}
II close inner cl~ss

lex.priilt:StaCJC'1'rac. n ;}

II close outer class

you are here. 519



chat server code

IJ_... Readj-"a"e
Cade ., fhe really really sltttple Chat Server

You can use this server code for both versions of the Chat Client, Every possible
disclaimer ever disclaimed is in effect here. To keep the code stripped down to the
bare essentials, we took out a lot of parts that you'd need to make this a real server.
In other words, it works, but there are at least a hundred ways to break it. Ifyou
want a Really Good Sharpen Your Pencil for after you 've finished this book, come
back and make this server code more robust.

Another possible Sharpen Your Pencil, that you could do right now, is to annotate
this code yourself. You'll understand it much better if you work out what's
happening than if we explained it to you. Then again, this is Ready-bake code,
so you really don't have (0 understand it at all. It's here just to support the two
versions of the Chat Client.

import java.io.*;
import java.net.*;
import java.util.* ;

public class VerySimpleChatServer

ArrayList clientOUtputStreams;

public claS8 ClientBandler implements Runnable (
BufferedReader reader;
Soc:ket sock;

public: ClientBandler (Socket clientSocket) {
try (

sock = clientSocket;
InputStreamReader isReader :: new InputStreamReader (sock . getlnputStream () ) ;
reader:: new BufferedReader (isRl!!lader) ;

• catch(Exception ex) (ex .printStackTrace();)
) II close constructor

public void run () {
String message;
try (

while «(message = reader.readLine(» !a null)
System.out.println( "raad " + message) ;
tellEveryone(message);

• II close while
catch(Excaption ex) (ex .printStackTr4l:e();)

) 1/ close run
II close inner class

520 chapter 15



networtOng and threads

public static void main (String[] args)
new VerySimpleChatServer().go();

public void ge() (
clientOutputSt.reams ;; Dew ArrayList 0 ;
try (

ServerSocket serverSock;; new SarverSocket(5000);

wh.i.le(true) (
Socket clientsocltet = servarSoclt. aCC8pt () ;
Pr1.ntwrlter writer"" new PrintWriter(clientSoaket .qetoutputStream();
clientOutputst.relUD8. add (writer) ;

Thread t = new Thread(new ClientHandler(clientsoOket»;
t. start () ;
System.out .pr1.ntln("get a connectionH

) i

catch (Exception ex) (
ax.printStackTrace();

•II close go

public void tel~one(Str1.ngmessage)

Iterator it = cliantoutputStreama.iterator();
while(it.hasNaxt(» (

try (
PrintWriter writer ;; (Printwrlter) it.naxtO;
writer .println(message) i
wri tar .fluBh () ;
catch (Exception ex) {

ex.printstacltTrace();

II end while

II close tellEveryooe
I close class

you are here. 521



synchronlzaUon questions

:t1erel~~DumlJ ~uesti9ns

Q.: What about protecting static
variable state 7 Ifyou have static
methods that change the static variable
state, can you stili use synchronization7

A.: Yesl Remember that static
methods run against the classand not
against an Individual instance ofthe class.
So you might wonder whose object's lock
would be used on a static method? After
all, there might not even beany instances
of that class.Fortunately, Just as each
object has Its own lock- each loaded class
has a lock. That means that If you have
three Dog objects on your heap,you have
a total of four Dog-related locks.Three
belonging to the three Dog Instances,
and one belonging to the Dog class Itself.
When you synchronize a static method,
Java uses the lock of the class itself.So If
you synchronize two stat ic methods In a
single class,a thread will need the class
lock to enter either of the methods.

Q..: What are thread prlorltlesll'Ye
heard that's a way you can control
scheduling.

A.: Thread priorities might help
you Influence the scheduler, but they
stili don't offer any guarantee. Thread
priorities are numerical values that tell
the scheduler (If It cares) how Important a
thread Is to you. In general, the scheduler
will kick a lower priority thread out of the
running state If a higher priority thread
suddenly becomes runnable ,But...one
more time, say It with me now,"there
Isno guarantee.» We recommend that
you use priorities only if you want to
Influence performance,but never, ever
rely on them for program correctness.

522 chapter 15

Q.: Why don't you just synchronize
all the getters and setters from the
class with the data you're trying to
protect? Like, why couldn't we have
synchronlzed Just the checkBalanceO
and wlthdrawO methods from class
BankAccount. Instead of synchronizing
the makeWlthdrawalO method from
the Runnable's class?

A: Actua lIy, we shouldhave
synchronized those methods, to prevent
other threads from accessing those
methods In other ways.We didn't bother,
because our example didn't have any
other code accessing the account.

But synchronizing the getters
and setters (or in this casethe
checkBalanceO and wlthdrawO) isn't
enough.Remember, the point of
synchronization Is to make a speciflc
section of code work ATOMICALLY. In
other words, It 's not Just the individual
methods we care about, It's methods
that require more than one step to
completel Think about lt.jf we had not
synchronized the makeWlthdrawalO
method, Ryan would have checked the
balance (by call ing the synchronized
checkBalanceOl, and then Immediately
exited the method and returned the keyl

Of course he would grab the key again,
after he wakes up, so that he can call
the synchronized withdrawO method,
but this still leaves us with the same
problem we had before synchronizationl
Ryan can check the balance, go to sleep,
and Monica can come in and also check
the balance before Ryan has a chance to
wakes up and completes his withdrawal.

So synchron izing all the accessmethods
Is probably a good Idea, to prevent
other threads from getting in, but you
stili need to synchronize the methods
that have statements that must execute
as one atomic unit.



Code Kitchen

Cvber BeatBox

( Start )

( Stop )

( Tempo Up )

( Tempo Down )

( sendlt )

dance beat

Andy: groove #2

Chris: groove2 revls&d

Nigel: dance beat

This is the last version ol the BeatBox!

It connects to a simple MusicServer so that you can
send and receive heat patterns witlt other cUents.

The code is really long, so tite complete listing is

arluaUy in AppenJix A.

networking and threads

you are here. 523



exercise: Code Magnets

public class TestThreads {

class Accum {

Code Magnets
A work ing Javaprogram Is scrambled up on the fridge. Can
you add the code snippets on the next page to the empty
classes below, to make a working Java program that pro­
duces the output listed ? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as
many of those as you needl

class ThreadOne

class ThreadTwo

Bonus Question: Why do you think we used the
mod ifiers we did In the Accum class?

524 chapter 15



networking and threads

Code Magnets, continued..

Thread one ~ new Thread(tl)i
system.out.printlo(Utwo u+a.getCount())i

} oatoh(InterruptedExceptiOn ex) { } ThreadTwO t2 new ThreadTWO()i

return counte icounter += add:

public static Accum getAccurn() {

implements Runnable (

} catch(InterruptedException ex) { }

:::- new Thread(t2);

Accum.getAccum():Accum a

private static Accurn a
new Accurn( ) i

private int counter 0:

a.updatecounter(l);

public void

forti tn x=O: x < 99.
I X++) ( implements Runnable (

public int
getCount() (

a.updateCounter(lOOO)i
return a;

System.out.printlO("one "+a .getCount(»;

for(int x=o; x < 98' two.start()i, x++) (

public static void main(String (I args) (

public void runt) ( private Accum() { } Thr e adOne tl = new ThreadOne():

you are here ~ 525



exercise solutions

}

public static Accurn getAccum() {
return a;

public void updateCounter(int add) {
counter += add;

Threads from two different classes are updating
the same object in a third class, because both
threads are accessinga single instance of Accum.
The line of code:

private static Accum a =new Accum(); creates a
static instance of Accum (remember static means
one per class), and the private constructor in
Accum means that no oneelse con makean Accum
object. These two techniques (private constructor
and static getter method) used together, create
what's known as a 'Singleton' - an 00 pattern to
restrict the number of instances of an object
that can exist in an application. (Usually, there's
just a single instance of a Singleton-hence the
name), but you can use the pattern to restrict the
instance creation in whatever way you choose.)

/,~~ il sUb/')i~".u
J t.\ass to.t.t........

new AccUDI ( ) ;

}

}

pUblic clasa TestThreada {

pUblic static void main(String [] args) {

ThreadOne tl '" new ThreadOne()j

ThreadTwo t2 '" new ThreadTwo();

Thread one ~ new Thread(tl);

Thread two c new Thread(t2);

one.start() ;

two.start() ,

class Accum {
private static Accum a =:
private int counter =: OJ

private Accurn() { } r-- to. rri"~ ~~

}

public int getCount() {
return counterj

}
}

class ThreadOne implements Runnable {

Accum a =: Accum.getAccum()j

public void run() {

for(int xeO; x < 98; x++) {

a.updateCounter(lOOO);

try {

Thread.sleep(50)j

} catch(InterruptedException ex) { }

class ThreadTwo implements Runnable {

Accum a = Accum.getAccum()j

public void run() {

for(int x=:O; x < 99; x++) {

a.updateCounter(l)j

try {

Thread.sleep(50);

} catch(InterruptedException ex) { }

}

System,out.println(~two u+a.qetCount())j

}

}
}

system.out.println(None u+a.getCount())j

}

}

526 chapter 15



•
networking and threads

Near-miss at the Airlock

This morning's meeting was focusedon the control systems for the orbiter's airlocks.
As the final constructionphases were nearing their end, the number of spacewalks was

scheduled to increasedramatically, and trafficwas high both in and out of the ship's
airlocks. "Good morning Sarah", said Tom, "Your timing is perfect, we're just starting
the detailed design review."

"As you all know", said Tom,"Each airlock isoutfittedwith space-hardenedGUI
terminals, both inside and out Whenever spacewalkersare entering or exiting the orbiter

they will use these terminals to initiatethe airlock sequences." Sarah nodded,"Tom can
you tell us what the method sequences are for entry and exit?" Tom rose, and floated to the
whiteboard., "First, here's the exit sequence method's pseudocode",Tom quicklywrote on the
board

orbiterAirlockExitSequence()

verifyPortalStatus();

pressurizeAirlock();

openlnnerHatch();

confinnAirlockOccupied () ;

closelnnerHatch() ;

decompressAirlock();

openOuterHatch();

confirmAi r lockVaca ted () ;

closeOuterHatch();

"To ensure that the sequence is not interrupted, we have synchronizedall of the
methodscalled by the orbiterAirlockExitSequence() method",Tom explained. "We'd hate to
see a returningspacewalker inadvertentlycatch a buddy with his space pants down!"

Everyonechuckled as Tom erased the whiteboard, but something didn't feel right
to Sarah and it finally clicked as Tom began to write the entry sequence pseudocode on the
whiteboard, "Wait a minute Tom!", cried Sarah. ''1 think we've got a big flaw in the ex.it
sequence design, let's go back and revisit it, it could be critical!"

Why did Sarahstop the meeting? What didshe suspect?

you are here ~ 527



puzzle answers

•
What did Sarah know?

Sarah realized that in order to ensure that the entire exit
sequence would run without interruption the

orbi terAi r lockExi tSequence ( ) method needed to
be synchronized. As the design stood, it would be possible
for a returning spacewalker to interrupt the Exit Sequencel
The Exit Sequence thread couldn't be interrupted in the
middle of any of the lower level method calls, but it couldbe
interrupted in between those calls. Sarah knew that the entire
sequence should be run as one atomic unit, and if the a rbi t
erAirlockExitSequence ( ) method was synchronized, it
could not be interrupted at any point.

528 chapter 15


