A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

11 exception handling

Risky Behavior

Sure it's risky,
but I can handle it if
something goes wrong.

Stuff happens. The file isn’t there. The server is down. No matter how
good a programmer you are, you can’t control everything. Things can go wrong. Very wrong.
When you write a risky method, you need code to handle the bad things that might happen.
But how do you know when a method is risky? And where do you put the code 1o handle the
exceptional situation? So far in this book, we haven't really taken any risks. We've certainly had
things go wrong at runtime, but the problems were mostly flaws in our own code. Bugs. And
those we should fix at development time. No, the problem-handling code we're talking about
here is for code that you can’t guaranatee will work at runtime, Code that expects the file to be
in the right directory, the server to be running, or the Thread to stay asleep. And we have to do
this now. Because in this chapter, we're going to bujld something that uses the risky JavaSound

API. We're going to build a MIDI Music Player.

thisis a new chapter 345

http://www.a-pdf.com/?product-split-demo

building the MIDI Music Player

Let’s make a Music Machine

Over the next three chapters, we’ll build a few different sound
applications, including a BeatBox Drum Machine. In fact,
before the book is done, we'll have a muld-player version so
you can send your drum loops to another player, kind of like
a chat room. You're going 1o write the whole thing, although
you can choose to use Ready-bake code for the GUI parts.

OK, so not every IT department is looking for a new BeatBox
server, but we’re doing this to Larn more about Jeva Building
a BeatBox js just a way to have fun whilewe’re learning Java.

The finished BeatBox looks something like this:

You make a beatbox loo
p (a Ib-beat 4
by Putting thetkmarks i the boxes. rum pattern)

CXeNG) Cyber BeatBox

ssbum - FO0O@OCCMO00MO00 Csan)1

Closed wi-at)OMOOOMEOCMO00EE g,)

open i-Hat 0000E0EEE8B8E880

acoustic snre 10 00 088680000086

cashombal 0E000086B6080886 fhak agts

Hndclap 00B0C0E888008088 _ Csedt) yowr mes 0 | players

wenTom 0O00CO00E000C08S [grooser e serk o e 0 00

Hitonge 000000000 OCOME#O Jlomgy wikh YO ETT

Masas @OMOMOMCEC#OE0@D Lot patterm when

wise 0000CC0EE0CE08BEHE vik “Sendlt’

T sisllalela ! (alE] el al e i ——

coweell 0OO0B0BOCEHEOOBOO0 | #owh

Vibraslap QoOCo0ooogooOogond | chrs: groove? revised (\\

Low-mid Tom 1E0BC008C8068E8088 |\ dance best PEoming messanes

righ agoge 00000000O0000000 | * Plaers, o

Open Hi Conga] JOMEM 00000 0HEH0O | to loag 10" Cliek one

——— 4 b pater,
Yoes \ivl{',l'l |f} and £
Stant’ hen eliek
Play it

Put checkmarks in the boxes for each of the 16 ‘beats’. For example, on beat
1 (of 16) the Bass drum and the Maracas will play, on beat 2 nothing, and
on beat 3 the Maracas and Closed Hi-Hat... you get the idea. When you hit
‘Start’, it plays your pattern in a1 loop until you hit ‘Stop’. At any tme, you
can “capture” one of your own patterns by sending it 1o the BeatBox server
(which means any other players can listen to it). You can also load any of the
incoming patterns by clicking on the message that goes with it.

346 chapter 11

We'll start with the basies

Obviously we’ve got a few things to learn before the whole
program is finished, including how to build a Swing GUI, how
to connect to another machine via networking, and a litde 1/0
so we can send something to the other machine.

Oh yeah, and the JavaSound AP]. That’s where we'll start in this
chapter. For now, you can forget the GUI, forget the networking
and the I/0, and focus only on getting some MIDI-generated
sound to come out of your computer. And don’t worry if you
don’t know a thing about MIDI, or a thing about reading or
making music. Everything you need to learn is covered here.
You can almost smell the record deal.

The JavaSound API

JavaSound is a collection of classes and interfaces added 1o
Java starting with version 1.3. These aren’t special add-ons;
they’re part of the standard J2SE class library. JavaSound is split
into two parts: MIDI and Saropled. We use only MIDI in this
book. MID] stands for Musical Instrument Digital Interface,
and is a standard protocol for getting different kinds of
electronic sound equipment to communicate. But for

our BeatBox app, you can think of MIDI as a kind of

sheet music that you feed into some device you can think

of like a high-tech ‘player piano’. In other words, MIDI
data doesn’t actually include any sound, but it does

include the instructions that a MID]-reading instrument

can play back. Or for another analogy, you can think of

a MIDI file like an HTML document, and the instrument L
that renders the MIDI file (i.e. plays it) is like the Web

browser.
e’

MIDI data says whatto do (play middle C, and here’s how hard B

to hit it, and here’s how long to hold it, etc.) but it doesn’t say Q\)))
anything at all about the actual sound you hear. MID] doesn’t

know how to make a flute, piano, or Jimmy Hendrix guitar

sound. For the acmal sound, we need an instrument (a MIDI

device) that can read and play a MIDI file. But the device is

usually more like an entire band or orchesira of insbuments. And

that instrument might be a physical device, like the electronic

keyboard synthesizers the rock musicians play, or it could

even be an instrument built entirely in software, living in your

computer.

For our BeatBox, we use only the built-in, software-only
instrument that you get with Java. IUs called a synthesizer (some
folks refer to it as a software synth) because it creates sound.
Sound that you hear.

exception handling

MID| deviee knows how to
‘read’ 3 MID| file and play back
the sound. The device might
be a synthesizer keyboard or
some other kind of inshrument.
Usually, a MIDI instrument

tan play a LOT of different
sounds (yiano, drums, violin,
etz), and al) at the same time.
So a MID| file isn't like sheet
musié For Jus{: one musSiLlan Wn
the band —— it tan hold the
parts for ALL the musicians
playing 3 pavticular song.

317

you are here »

but it looked so simple

First we need a Sequencer

Before we can get any sound to play, we need a Sequencer object. The
sequencer is the object that takes all the MIDI data and sends it to the right
instruments. It's the thing that plays the music, A sequencer can do a lot of
different things, but in this book, we're using it strictly as a playback device. Like
a CD-player on your stereo, but with a few added features. The Sequencer class
is in the javax.sound.midi package (part of the standard Java library as of version
1.3). So let’s start by making sure we can make (or get) a Sequencer object.

A midi 7RLK3

import javax.sound.midi.¥; - '\m?cﬂ'{'« e 53\131»50““ e s Qepenter ob“)cc‘t Ijt:ﬁf .
devite/ insOrum
public class MusicTestl (m3in ?a'jh oﬁg‘:‘c{j\/‘:z‘lﬁ;‘;\ﬁt well,
we're using; . Bon mto
public void play() { eventes 3l the MID! information

e or't make 3 brand
3 SOhs' Bu£ weé d ave Jm 35\: +_¥\¢

[< new one ourselves == WE
System.cut.println(“We got a sequencer”); M‘ld‘lSstLm {o give us one:
} // close play

Sequencer sequencer — MidiSystem.getSaquencer () :

public static void main(String{] args) {
MusicTestl mt = new MusicTestl():
mt.play();

} // close main

} 77 closs clasa Something's wrong!

‘.n\is tode won’{: COMP]IC,! The Lompifcr 3Yys theve's an
wnreported exeeption’ £hat must be eaught or detlaved.

Fila Edil Window Halp SayWhal? A

o

% javac MusicTestl.java

MusicTestl.java:13: unreported exception javax.sound.midi.
MidiUnavailableException; must be caught or declared to be
thrown

Sequencer sequencer = MidiSystem.getSequencer () ;

N

1l errors

318 chapter 11

exception handling

What happens when a method you want to call
(probably in a class you didnt write) is risky?

@ Let’s say you want
to call a method in a
class that you didn’t
write,

@ That method does
something risky,
something that might
not work at runtime.

@ You need to know
that the method
you're calling is

risky.

@ You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

write

class you
you didn't write

void moo ()
if (sarvexDown) {
aexplode () ;
}

class you
didn't write

My moo()
method will

I wonder if

@ < that method explode if the
B could blow up... server is down.
you didn’t write

Now that I
know, I can take
precautions.

you are here» 319

when things might go wrong

Methods jn Java uge éxceptions to tel| the ¢

alling code,
"Somethlng Bad Happepeg, | failed

an exception), so that you can write code to deq)
with thag possibility. Ifyou knoy You might get ap €Xception when You call a partieyay

ly even Tecover from—ihe Problem thay Caused

So, how do you know fa method throws ap €Xception? Yoy fing 2 throws clayse in the
risky methog’s declaratiop.

(=]
@ MidiSystem (ava 2 Platform SE v1,4.0)
Ky i ﬂ Auli-c;-?iil ﬁ Mail
. Forward Stop _Refresh Home | i I ' . m AP{ doa &” ym
Back 7 Java son soend 1234 14 .4/ dous] wpl ok Metin) — D‘ = — 3
@ wip://j 5 v — ‘ 1)
Applt Mcroioit
=1 €an throw 3, exteption:
<l getSequencer Midiuuvaibue& .
— 3
: ic 3 nr getSequancer(
g { pubilc static Foguonchr

e e ~ethod hag to declzy,
I € exs :y Eﬂhs '{ mist‘f
Obuains the default sequencer.

AN

N,

U’l\'ow.
5
B Returns: |
<3| e dofaull sequencer) . j
/:: ™ m‘gr, ofau | r1on - if the soquencer is nol available due .
2 Tu rsouree eictions
>
H
g
1
TV part 4y,
You i .
"‘CC on —__ in 'u‘ yo“ hlghé 55{3 ﬂaé
. 14) bcdaue of v
tries; Cuhig, Could sy eSoure,
is Bfrcady bt'ina wed) J Means {), Stquens,,

320 chapter 14

to handle it. That compiler doesn't care kowyou

care of it.

exception handling

%ﬁ aﬂ? 7

. ﬂkﬁ(a Jjﬂ""a&"ﬁ 472 M

The compiler needs to know D
that YOU know youre calling vty 7., 4 Yt
a risky method. .

y @ﬂedﬁf ,W‘f/ 7 %é'
If you wrap the risky code in something called a
try/catch, the compiler will relax.
A try/catch block tells the compiler that you %M/
know an exceptional thing could happen in the &
method you're calling, and that you’re prepared ‘%éjd{ﬁ”

@C’WJ! 7% /Ae/z@,é)

handle it; it cares only that you say you're taking %@ s itk l/céy
R/ 202 ,@;' ;
M}W o, e 74 e

whe Gl

: ‘- 49 dere ta, 3
ﬂ!ﬁgyﬁf"adé»w 495, 5 ¢ '

”[ZMWJ éadg

import javax.sound.midi.*;

public class MusicTestl {
public void play() {

try { “ '
Sequencer segquencer = MidiSystem.getSequencer() ; 6‘ Y"&’ {,‘)\t T\::Z‘k "
System.out.println{“Successfully got a sequancer”); in bf‘f
} catch(MidiUnavailableExcepticn ex) ({
System.out.printlin(“Bumnar”) ;
} \
} // close play dmak;d (ca{d,‘bl .
0 ;. oc
public static void main{String{] args) { haPPCM&i%PﬁW’f:,::f‘é to
MusicTestl mt = new MusicTastl () ; Midiu"amilag; othey. Word don
mt.play() ; Y the eall 4, CE"‘fP\‘.io., ,-; "
} // close main 1“9'\(.“-() %

} // closa class

you are here» 321

exceptions are objects

DonY try this 3 home

Throwable

getMessage()
printStackTrace()

Part of the E""‘Whm“
i iy 112
exbend tlass Throwable
and 'mhﬂ'\f two kq

methods-

I'm gonna
TRY +this risky thing
and I'm gonna

CATCH myself if I fall.

I0Exception InterruptedException

322 chapter 11

An exception is an object...
of type Exception.

Which is fortunate, because it would be much harder
to remember if exceptions were of type Broceoli.

Remember from your polymorphism chapters that
an object of type Exception can be an instance of any
subclass of Excepnon.

Because an Exception is an object, what you catch is an
object. In the following code, the cateh argument
is declared as type Exception, and the parameter
reference variable is éx.

ery
// do risky thing .‘;c's")ust

L/“‘M

} catch (Exception ex) (

“\LC Ac"\aﬂ"&

g arapme

// try to recover

What you write in a catch block depends on the
exception that was thrown. For example, if a server
is down you might use the caich block to try another
server. If the file isn't there, you might ask the user
for help finding it.

exception handling

If it’s your code that catches the exception,
then whose code throws it?

You’ll spend much more of your Java coding time handling
exceptions than you'll spend creating and throwing them yourself.
For now, just know that when your code calls a risky method—a
method that declares an exception—it’s the risky method that
throws the exception back to you, the caller.

your code class with a

In realicy, it might be you who wrote both classes. It really risky method

doesn’t matter who writes the code... what matters is knowing
which method throws the exception and which method catches it.

When somebody writes code that could throw an exception, they
must declare the exception.

@ Risky, exception-throwing code:

e a;cbv'\ns) that

public void takeRisk() [ENEGWS)BadException (One method will
if (abandonAllHope) {
catch what another
methed throws. An
| exception is E)JWa‘y'ri

| thrown back to the
caller.

The methed that
t!)l‘OWS ')QS to clec-]m‘e

public void crossFingers() |{ 'f’lﬂt it l]ﬁﬂ"}l‘ ‘t’)rO\V
m{ : & .
anObject. takeRisk () ; the excepﬁon.
cateh (Badexception ex) { |
System.out.println(“Aaargh!”); I1f You tan't vecover
ex.printStackTrace() ;

@ Your code that calls the risky method:

from the exteption, 3t LEAST

9et @ stack trace using the vt . LEAS
é“/ﬂ‘a{ all exteptions in:zri{: " {S{:aCkTmCCO method

you are herer 323

checked and unchecked exceptions

Exceptions that are NOT subclasses of
RuntimeException ave checked for by

the tompiler. Thc\/'re ealted “chetked
exu?{:ions”

The compiler checks for everything
except RuntimeExceptions.

The compiler guarantees:

@ If you throw an exception in your code you must declare it using
the throws keyward in your method declaration.

@ If you cail a method that throws an exception (in other words,

a method that declares it throws an exception), you must
acknowledge that you're aware of the exception passibility.

One way to satisfy the compiler is to wrap the call in a try/catch.
(There's a second way we'll joak at a little later in this chapter.)

IntarruptedException i

therejare no

Dunib Questions

« Walt just a minutel How come this is the FIRST time
we've had to try/catch an Exception? What about the
exceptions i've already gotten like NullPointerException
and the exception for DivideByZero. | even got a
NumberFormatException from the Integer.parselnt()
method, How come we didn’t have to catch those?

A: The complier cares about al} subclasses of Exception,
unless they are a special type, RuntimeException. Any
exception class that extends RuntimeException gets a

free pass. RuntimeExceptions can be thrown anywhere,
with or without throws declarations or try/catch blocks.
The compiter doesn’t bother checking whether a method
dectares that It throws a RuntimeException, or whether the
caller acknowledges that they might get that exception at
runtime.

324 chapter 11

and detlare RuntimeE”

vave Lo, and Ehe tompiler won £ theek-

Q: I'll bite. WHY doesn’t the compiler care about those
runtime exceptions? Aren‘'t they just as likely to bring the
whole show to a stop?

A: Most RuntimeExceptions come from a problem in
your code lagic, rather than a condition that fails at runtime
in ways that you cannot predict or prevent. You cannot
guarantee the file is there.You cannot guarantee the server
is up. But you can make sure your code doesn’t index off the
end of an array (that's what the .length attribute is for).

You WANT Runtimekxceptions to happen at development
and testing time.You don’t want to code in a try/catch, for
example, and have the overhead that goes with it, to catch
something that shouldn't happen in the first place.

A try/catch is for handling exceptional situations, not flaws
in your code, Use your catch blocks to try to recover from
situations you can’t guarantee will succeed. Or at the very
least, print out a message to the user and a stack trace, so
somebody can figure out what happened.

exception handling
BULLEY POINTS

A method can throw an exception when something fails at runtime.

An exception is always an object of type Exception. (Which, as you
remember from the polymorphism chapters means the object is from a
class that has Exception somewhere up its inheritance tree.)

The compiler does NOT pay attention to exceptions that are of
type RuntimeException. A RuntimeException does not have to be

declared or wrapped in a try/catch (although you're free to do either or
both of those things)

All Exceptions the compiler cares about are called ‘checked
axceptions' which really means compiler<hecked exceptions. Only
RuntimeExceptions are excluded from compiler checking. All other

exceptions must be acknowledged in your code, according to the
rules.

MetaaOGﬂiﬁve £iP

{# you're trying to leam some\hin{g {\ee;vr;‘
make that the Jast thing you trg;e . ot i
pefore going 10 gleep. S0, ON o e
book down (assuming you can Ko
away from it) don't reﬁd;nﬁrghee se

i a
%‘l?(“ifno?.:: gbrt:l?\nng\:ds fime 10 pracess what

A method throws an exception with the keyword throw, followed by
a new excaption object:

throw new NoCaffeineException();

Methods that might throw a checked exception must announcs it with

a few J)OUIS “ o iO 1IOVB som ﬁl\h
CQP on ded

of the
new in right on 1ap of your Java. some
Java might not ‘stick.

If your code calls a checked-exception-throwing method, it must
reassure the compller that precautions have been taken.

Ot course, this doesn't rule out le;rlr::‘g
nysice! skill. Working on your >
2 Balircom KickBoxing rou

If you're prepared to handle the exception, wrap the call n a try/catch,
and put your exception handling/recovery code in the catch block.

probably won' affect your
Java leaming.
" Ifyou're not prepared to hiandle the exception, you can still make the For the best results. read this
compiler happy by officially ‘ducking’ the exception. We'll talk about
ducking a litite later in this chapter.

look at
book {of &t teasl_

the pictures) right before
going {0 sleep.

y@;pen Your penci

Things you want to do

What might go wrong

Vconnect to a remote server
Which of these do you think

might throw an exception that __ access an array beyond its length
the compiler would care about?

__display a window on the screen
We're only looking for the
things that you can’t control in
your cade. We did the first one.

__see if a text file is where you think it is
{Because it was the easlest.) create a new file

the server is down

__retrleve data from a database

__read a character from the command-line

you are here» 325

exceptions and flow control

Flow control in try/eatch blocks

When you call a risky method, one of two things can hap-
pen. The risky method either succeeds, and the try block
completes, or the risky method throws an exception back to
your calling method.

If the try Succeeds
(doRiskyThing() does not

throw an exception) | { _ o o
@ Foo £ = x.doRiskyThing(): The tode in the
> £ ver
int b = f.getNum(); takeh blotk e
blotk vunt e 20 vuns-
Fiest the oy L/ Filo Edil_Window Help RiskAl
Linen the tode E_‘l‘_"_‘.‘.’ } catch (Exception ex) { %java Tester
cateh vuns System.out.println(“failed”); We made it!

} i _
System.out. println(*We made it!”);

If the try fails
(because doRiskyThing()

does throw an exception) otk e
(_5‘\'. he &xg o T
l'd .
try { _ S T\‘iws) itk 30; e J(ﬂo&
put the Foo f = x.doRiskyThing(); ¢ et b ess
*"_ b\a-b“- vuns; o : 2 - g7 bﬂam AS o *)\C . T\“"SO
The Yd R's\“iﬂ".'“so theo int b = f.getNum() _._uﬁt“w\\ ko dofasy
ol
! *:jbe?g\om 5o the ¥&8 tne
an ¢ N \o(,\t docs"l)‘" vun-) _catch (Excepti_o_n_ ex) (Fo Egl Window Help RiskAl
the Y otk v Lhen —b System.out.println(“failed”); 5java Tester
\ e
The catt

inues o™ } failed
chod LonTT o Nyt
khe ™ .System.out.println("We made it!”); [FAEewINETY]

326 chapter 11

Finally: for the things you want

to do no matter what.

If you try to cook something, you start by turning on

the oven.

If the thing you try is a complete failure,
you have to turn off the oven.

If the thing you try succeeds,
you have to turn off the oven.

You have to furn off the oven no matter what!

A finally block is where you put
code that must run regardiess
of an exception.

try {
turnOvenOn () ;
x.bake () ;
} cateh (BakingException ex) {
ex.printStackTrace () ;
} finally (
turnovenOf£ () ;
}

Without finally, you have to put the
turnOvenOFf() in both the try and the catch
because you have to hun off the oven no matter
what. A finally block lets you put all your
important cleanup code in one place instead of
duplicating it like this:

try {
turnOvenOn () ;
x.bake () ;
turnOvenOff () ;
} catch (BakingException ex) {
ex.printStackTrace ()
turnOvenOff () ;

exception handling

Are you sure
you want Yo try
this?
the neighborhood.

1l

If the try block fails (an exception), flow
control immediately moves to the catch block.
When the catch biock completes, the finally
block runs. When the finaily block completes,
the rest of the method continues on.

If the try block succeeds (no exception),
flow control skips over the catch block and
moves to the finally block. When the finally
block completes, the rest of the method
contlnues on.

If the try or catch block has a return
statement, finally will still run! Flow
jumps to the finally, then back to the return.

you are here »

No motter what, do NOT let
me forget to turn of f the
overl Last time T torched half

327

flow control exercise

@rpen Your pencl
2N
Look at the code to the left. What do you think the

output of this program would be? What do you think
Flow Contr()l it would be if the third line of the program were

changedto: String test = “yes”; ?

Assume ScaryException extends Exception.

ublic class TestExceptions
P P { Output when test = “no”

public static void main(String [) args) {

String test = “no”;
try {
System.out.println(“start try”);
doRisky(test);
System.out.println(”end try”);
} catch (ScaryException se) {
System.out.println{“scary exception”);
} finally {
System.out.println(*finally”);

}

System.out.println(“end of main”);

} Output when test = “yes”

static void doRisky(String test) throws ScaryException ({
System.out.println(”start risky”);
if ("yes”.equals(test)) {

throw new ScaryException();

}

System.out.println(”end risky”);
return;

Ujew Jo pua - Afleuy - uoidadxe Aseds - Ays(LRIS - Al Leis 1 $aK, = 1531 udYm
ujew Jo pud - Ajjeuy - A1y pud - Ajsu pua - Ayspuers - A ueis 1 ou, = 1531 USYM

328 chapter 11

exception handling

Pid we mention that a method can
throw wmore than one exception?

A method can throw multiple exceptions if it darn well needs to. But

a method’s declaration must declare all the checked exceptions it can
throw (although if two or more exceptions have a common superclass, the
method can declare just the superclass.)

Catehing multiple exceptions

The compiler will make sure that you’ve handled all the checked excep-
tions thrown by the method you're calling. Stack the catch blocks under
the try, one after the other. Sometimes the order in which you stack the
catch blocks matters, but we'l] get to that a little later.

public class Laundry ({ \w

public void doLaundry() throws PantsException, LingerieException {

// code that could throw either exception \7\

ke
) . cthod 8e413E bwo, £
} Thws ot
WO cﬂvf'?b
public class Foo |
public void go() {
Laundry laundry = new Laundry({); iFddawdwﬂ)awmua
try PantsException, it lands in the
{ PantsExeeption tateh block
laundry.doLaundry{);
} catch(PantsException pex) ({
// recovery code
} catch(LingerieException lex) (
wdwﬁ)th _
// recovery code ~ J} dol3 it b“d, in the
} ieExtef pakeh btk

} L“\BCY |¢E“L¢Yb

you are here »

329

polymorphic exceptions

Exceptions are polymorphic

Exceptions are objects, remember. There’s nothing all that
special about one, except that it is a thing that can be throum.
So like all good objects, Exceptions can be referred to
polymorphically. A LingerieException object, for example,
could be assigned to a ClothingException reference. A
PantsExcepton could be assigned to an Exception reference.
You get the idea. The benefit for exceptions is that a method
doesn’t have to explicitly declare every possible exception it
might throw; it can declare a superclass of the exceptions.
Sarne thing with catch blocks—you don'’t have to write a catch
for each possible exception as long as the catch (or catches)
you have can handle any excepton thrown.

You can DECLARE exceptions using
a supertype of the exceptions you

throw.
Aeszp

public void dolaundry() throws ClothingException (

Drmg,;.—egmrﬁ Pion, and

individually

on wj

@ You can CATCH exceptions using a
supertype of the exception thrown.

A exteptions bave

Exseption 33 2

su?:*ﬁiasL

10Exception ClothingExcaption

ﬂ“*fcx}'*
P 'Cfﬂy dalaﬁ”ﬁ ﬂic’u

Lan La&“ m\H . “
wtE "
try | Lan e 3 try { ‘g\f’j&‘ AErerbon

ClokrinaEreefoer

laundry.doLaundry ()
n whtlass

ey A

laundry.doLaundxy{) ; /
B
. Ve o | \
\{fl‘,

} catch(ClothingException cex) { } catch(ShirtException sex) ({

// recovery code

330 chapter i1

// recovery code

exception hard

Just because you CAN catch everything
with one bhig super polymorphic catch,
doesn’t always mean you SHOULD.

You could write your exception-handling code so that
you specify only one catch block, using the supertype
Exception in the catch clause, so that you’ll be able to
catch any exception that might be thrown.

try {
laundry.doLaundry () ;

} catch(Exception ex) { Leh block Wl
2 This ta
// recovery code...&.__ Retovery feom W“AT T .\S o won
sakeh ANY and sl exceptions oY

} av{,oma‘cica\\‘l know what wend wrond
Write a different catch block for each
exception that you need to handie
uniquely.
For example, if your code deals with (or recovers
from) a TeeShirtException differently than it handles a
LingerieException, write a catch block for each. But if you
treat all other types of ClothingException in the same way,
then add a ClothingException catch to handle the rest.

try {

laundry.doLaundry () ;
<5, P\
ons N
i @ i S\{N*'emwo ed d"ﬁam)c
} catch(TeeShirtException tex) (& Tee Lions ne
Lndye’ et nould ¥s€
// recovery from TeeShirtException Lot so Y
vecovery %)) olotks:
aikkerer
} catch(LingerieException lex) {
// recovery from LingerieException
o

iy ;
} catch(ClothingException cex) { 4’/ dre ““SH: heve SE’QCP{'”‘

// recovery from all others

you are here »

331

order of muHliple catch blocks

Moultiple cateh blocks must be ordered

from smallest to biggest

catch (TeaShirtException tex)

sons il
\)“£ 3\\
E' e AT

\.&\\t\"

catch (ShirtException sex)

catch (ClothingException cax)

332 chapter 11

ClothingException

The higher up the inheritance tree, the bigger the
catch ‘basket’. As you move down the inheritance
tree, toward more and more specialized Exception
classes, the catch ‘basket’ is smaller. It’s just plain old
polymorphism,

A ShirtException catch is big enough to take

a TeeShirtException or a DressShirtException

(and any future subclass of anything that extends
ShirtExcepton). A ClothingException is even bigger
(i.e. there are more things that can be referenced
using a ClothingException type). It can take an
exception of type ClothingException (duh), and

any ClothingException subclasses: PantsException,
UniformException, LingerieException, and
ShirtException. The mother of all catch arguments
is type Exception; it will catch any exception,
including runtime (unchecked) excepdons, 80 you
probably won't use it outside of testing.

You cant put bigger baskets
above smaller baskets.

Well, you can but it won’t compile. Catch
blocks are not like overloaded methods
where the best match is picked. With catch
blocks, the JVM simply starts at the first one
and works its way down undtl it finds a catch
that's broad enough (in other words, high
enough on the inheritance tree) to handle
the exception. If your first catch block is
catch (Exception ex), the compiler
knows there’s no point in adding any
others—they’ll never be reached.

laundry.doLaundry () ; §

try {

} catch(ClothingException cex) ({

// recovery from ClothingException

} catch(LingarieExcaeption lex)

// recovery from LingerieException

} catch(ShirtExcaption sex) {

// recovery from ShirtException

exception handling

Size matters when
you have multiple catch
blocks. The ane with the biggest
basket has to be on the bottom.
Otherwise, the ones with
smaller baskets are useless.

Siblings can be in any order, because they
can't catch one another's exceplions.

You could put ShirtException above
LingerieException and nobody would mind.
Because even though ShirtException is a bigger
(broader) type because it can catch other classes
(its own subclasses), ShirtException can't catch a
LingerieException so there’s no problem.

you are here» 333

polymorphic puzzle

n your pencil
NP your p

try {
x.doRisky () :

} catch(BlphakEx a)

// recovery from AlphaEx
} catch(BataEx b) {

// recovery from BetaEx

} catch(GammaEx c) {

// recovery from GammaEx
} catch(DeltaEx d) {

// recovery from DeltaEx

334 chapter 11

Assume the try/catch block here is legally coded. Your task is to draw
two different class diagrams that can accurately reflect the Exception
classes.In other words, what class inheritance structures would make the
try/catch biocks in the sample code legal?

Your task is to create two different legaf try / catch structures (similar to
the one above left), to accurately represent the class diagram shown on
the left. Assume ALL of these exceptions might be thrown by the method
with the try block.

exception handling

When you don’t want to handle
an exception...

What the...?

There is NO way I'm
catching that thing. I'm gettin’
out of the way-- somebody
behind me can handle it.

if you don’t want to handle an
exception, you can duck it by
declaring it.

When you call a risky method, the compiler
needs you to acknowledge it. Most of the time,
that means wrapping the risky call in a try/
catch. But you have another alternatve, simply
duck it and let the method that called you catch
the exception.

It's easy—all you have to do is declare that

you throw the exceptions. Even though,
technically, you aren’t the one doing the
throwing, it doesn’t matter. You're still the one
letting the excepton whiz right on by.

But if you duck an exception, then you don’t
have a try/catch, so what happens when the
risky method (doLaundry()) does throw the
exception?

When a method throws an exception, that
method is popped off the stack immediately,
and the exception is thrown 1o the next
method down the stack—the caller. But if the
caller is a ducker, then there’s no catch for it so
the caller pops off the stack immedjately, and
the excepton is thrown o the pext method
and so on.., where does it end? You’ll see a

¢

tittde later m dont P\?’tl;:i a br\f/ cateh
i N

public void foo() throws ReallyBadException { smeY® 7" 4y gy tdh |

))
. . for &he YT iy meth
// call risky method without a try/catch JOW are now \\Zc“' Lalls YOU

laundry.doLaundry () ; Petavse MT'“:'& e ereeriien
3

youarehere» 335

handie or declare

Ducking (by declaring) only
delays the inevitable

Sooner or later, somebody has to ,
deal with it. But what if main()

ducks the exception? o
“L\(&)\C MM{&P

public class Washer { ,,A)\Odsd &c‘,c‘sh"\’_"d :

Laundry laundry = new Laundry/(): \3(\“5-\0 $0 ‘\é.“s)('ﬁmc.

T Lt

public void foo() throws ClothingException | nandle .

laundry.doLaundry () ;
)

public static void main (String[] args) throws ClothingExcaption {
Washer a = new Washer();

a.foo():
}
)
doLaundry() throws a foo() ducks the main() ducks the The JVM
ClothingException exception exception shuts down

main{) calls foo() doLaundry() pops of f the foo() pops off the

stack immediately and stack immediately and
foo() calls dol.aundry() the exception is thrown the exception is thrown
doLaundry() is back to foo). back to... who? What?

running and throws a
ClothingException

v

There's nobody left
but the TVM, and it's
thinking, "Don't expect
ME to get you out of
this.”

But foo() doesn’t have a
try/catch, so...

» We're using the tee-shirt to reprasent a Clothing
Exception. We know, we know... you would
have praferred the blue jeans.

336 chapterit

exception handling

Handle or Declare. It’s the law.

So now we’ve seen both ways to satisfy the compiler
when you call a risky (exception-throwing) method.

@ HANDLE

Wrap the risky call in a try/catch
This had better b

e a bi e h
e /’\ handle 3l exeptions gt ::Zuc:&h>
laundry.doLaundry () ; Mighf throw. Or else & : n ry('
} catch(ClothingException cex) { sij|l complain that. € Lompiler will

the exce ptions You're not eatehing all

// recovery code

@ DECLARE (duck it)

Declare that YOUR method throws the same exceptions yod throws 3
as the risky method you're calling. The doLa‘”‘d"‘IQ m:t,,{; by Leclaving e
void foo() throws ClothingException { c\o’d\‘m‘b&*ﬁ;"f‘o:;() mebhod &

laundry.doLaundry () ; ~— mevl'f‘”* . No *x\,/ca’cﬁ\"
) dutk the exLEF

But now this means that whoever calls the foo() method
has to follow the Handle or Declare law. If foo() ducks
the exception (by declaring it), and main() calls foo(), then
main() has to deal with the exception.

public class Washer {
Laundry laundry = new Laundry();

public void foo() throws ClothingException {
laundry.doLaundry () ;

| TROUBLEN we
) '\\e) a“ » -
public static void main (Stringl] args) { &7y wand ko et M:
Washer a = new Washer () ; ek an fun¥ tontl s e
) a.foo(); <\ %:Qz\;:(s) ?:{’,\\Od '“\Y'O‘NS an
e
: Becau‘tsc the fool) method dueks fhe t*“w‘m
CI?*l:(hmgﬁmr{ion thrown by dolaundry()
main) has £o wrap a.fool) in try/eateh '
or main() has 4o declare that it, 400 '
throws C’O{MngEucFﬁm\! ’

you are here» 337

fixing the Sequencer code

Getting back to our music code...

Now that you’ve completely forgotten, we started this chapter
with a first look at some JavaSound code. We created a Se-
quencer object but it wouldn’t compile because the method
Midi.getSequencer() declares a checked exception (MidiUnavail-
ableException). But we can fix that now by wrapping the call in a

tr}’/ catch. . e‘\’SC’\ “C“cho)
callng 3EV=0
ro\)\c"‘ {; nd
X N NO Y) waYYCd v
public void play() { oW fhat weve
try { cateh otk
Sequencer sequencer = MidiSystem.getSequencer();
System.out.println (“Successfully got a sequencer”);
The ¢, 4
} catch(MidiUnavailableException ex) { the ‘.,,'3,' ﬁf' P a*amqé,, has
System.out.println (“Bummer”) ; &_— Zafch(ﬁle/;:gﬁo”. I wefo .be
} Code Woulg ndEx,, .Sa,d
} // close play mehiCa[[ho ‘°"'Pu'e, A Ption), &
Won’{ fit .)' {: Midiahavi/ab;c;kse Poly_
n ak €, xe, .
Reme..,[,er ” File, ofFoundExZPbo”
1 .
Catey, b/ock ¢ hot cha"ﬂh o h eFé'°h.
e 8V¢ a

ﬂ'ihg being & You haye to

Exception Rules

You cannot have a catch or finally) A try MUST be followed by either a

" without a try catchorafinally , . A
i gah! C betaus
void go() { NOT L 2 try { }’«'?Vea £ € You
Foo £ = new Foo(); W\\ﬂ-e,s the ey x.doStuff (); ﬂ'""ﬁh ¢ nall) evey,
£.£00f(); } finally { But . here’s .. eates
} catch (FooException ex) { } } // cleanup '6")' b; ;:;Z‘Of "‘avea)
You cannot put code between the) A try with only a finally (no catch)
try and the catch must still declare the exception.
try | Z::TLLEéAL'/ You can't void go() throws FooException {
x.doStuff () ; ﬂ, ¢ betwee, the 4. et exy A ithout 2 eateh
} € cateh, Y and x.doStuff(); ey W £y the
int y = 43; } finally {)} doesn ® sa&: L\\’A\'c \aw
} catch(Exception ex) { } } handle o ¢

338 chapter 11

exception handling

*

*
Code Kitchen

. There is NO way
But why don’y I'm letting Betty win the
you just use code-of f this year, so I'm
Ready-bake code? gonna make if myself from
scratch.

You don't have to do it
yourself, but it's a lot
more fun if you do.
The rest of this c]xﬂpter

is o]m'onel: you can use
Ready-bake code for all

the music apps.

But if you want to learn
more about JavaSound,
turn the page.

you are herey 339

JavaSound MIDI classes

Making actuval sound

Remember near the beginning of the chapter, we Jooked at how MIDI data holds
the instructions for what should be played (and how it should be played) and we
also said that MIDI data doesn’t actually create any sound that you hear. For sound
to come out of the speakers, the MIDI data has to be sent through some kind of
MIDI device that takes the MIDI instructions and renders them in sound, either
by triggenng a hardware instrument or a ‘virtual’ instrument (software synthe-
sizer). In this book, we're using only software devices, so here’s how it works in

JavaSound:

4) The thing that
@ ng
plays the music

plays

You need FOUR things:

The music to be

@ The part of the

@ The actual music

played...a song. Sequence that information:
holds the actual notes to play,
information how long, etc.
has a

Sequencer — Sequence —— Track

The Sequencer Is the thing
that actually causes a song
to be played.Think of it like
a music CD player.

340 chapter 11

For this book, we only
need one Track, 50 just
Imagine a a music CD
with only one song. A
single Track. This Track
is where all the song
data {(MIDI information)
lives,

The Sequence is the
song, the musical piece
that the Sequencer will
play. For this book, think
of the Sequence as a
music CD, but the whole
CD plays just one song.

©

&
—(=)

A MIDI event is a message
that the Sequencer can
understand. A M(DI event
might say (if it spoke
English),"At this moment
In time, play middle C, play
it this fast and thlis hard,
and hold It for this long.”

A MIDt event might
also say something like,
“Change the current
instrument to Flute,”

exception handling

And you need FIVE steps:

@ Get a Sequencer and open it
Sequencer player = MidiSystem.getSequencer();
player.open();

@ Make anew Sequence

Sequence seq = new Sequence (timing, 4);

@ Get anew Track from the Sequence

Track t = seg.createTrack():

@ Fill the Track with MidiEvents and
give the Sequence to the Sequencer

t.add (myMidiEventl);
player.setSequence(seq);

Ahhhh. We
forgot to push the

PLAY button. You have Yo
start() the Sequencer!

Uh, hate to break it
to you, but that’s only
FOUR steps.

player.start();

you are here» 344

a sound application

Your very first sound player app

Type it in and run it. You’ll hear the sound of someone playing a
single note on a piano! (OK, maybe not someone, but something.)

Don’
‘f__d/

public class MiniMiniMusicApp {

import javax.sound.midi.*;

public static void main(String[] args) {
MiniMiniMusicApp mini
mini.play();

} // ¢lose main

public veoid play() {

try {

Sequencer player
player.open();

@ Track track = seq.createTrack();

ShortMessage a new ShortMessage();
a.setMessage (144, 1, 44, 100);
MidiEvent noteOn new MidiEvent (a,
track.add(noteOn) ;

ShortMessage b = new ShortMessage();
b.setMessage (128, 1, 44, 100);

MidiEvent noteOff
track.add (noteOff) ;

Sequence seq = new Sequence (Sequence,PPQ,

R Seaventt

&\ Ask the Se

1);

new MidiEvent (b, 16);

t forget ¢, import the mid; Package

new MiniMiniMusicApp ()

MidiSystem.getSequencer () ; (/

senks to the
Dor'k worey bout, the rumer Lhese (Enink

const?
ok lem 3

4);

quente for 3 Traek. Rcmembcr, the

Track lives in the G
lives in the Tra.n,l:, uenée; and the MID] data

Put some MidiEvents into the Track.
is mostly Ready-bake code.
have to eare about are the arguments £o the
setMessage() method, and the arguments £o
the MidiEvent eonstructor. We'll look at those
arguments on the next page.

This pavt
The only thing you'll

player.setSequence (seq) ; &— Give the Sequente to the Sequenter (like

player.start();

} catch (Exception ex) {
ex.printStackTrace() ;

342 chapter 11

putting the CD in the CD player)
S0 b S, (

like P‘“hins PL AY)

exception handling

Making a MidiEvent (song data)

A MidiEvent is an instruction for part of a song. A series of MidiEvents is
kind of like sheet music, or a player piano roll. Most of the MidiEvents we
care about describe a thing to do and the moment in time to do it. The moment
in time part matters, since iming is everything in music. This note follows
this note and so on. And because MidiEvents are so detailed, you have to say
at what moment to start playing the note (a NOTE ON event) and at what
moment to stop playing the notes (NOTE OFF event). So you can imagine
that firing the “stop playing note G” (NOTE OFF message) before the “start
playing Note G” (NOTE ON) message wouldn’t work.

The MIDI instructon actually goes into a Message object; the MidiEvent is
a combination of the Message plus the moment in time when that message
should ‘fire’. In other words, the Message might say, “Start playing Middle

C” while the MidiEvent would say, “Trigger this message at beat 4”.

So we always need a Message and a MidiEvent.
The Message says what to do, and the MidiEvent says when to do it.

o Make a Message

ShortMessage a = new ShortMessage();

@ rut the Instruction in the Message «ghart P13V notke &
a.setMessage (144, 1, 44, 100); 6_“\ ?f\\qﬁﬁ;ﬁ: other purebers o the
we
V\L*Jf- ?ast)

@ Moke a new MidiEvent using the Message
MidiEvent noteOn = new MidiEvent(a, 1); e The imfw.'.'l:ionsa i
re in

ﬂ\e messg .
Y] 36' bu'b {h di—
j;’;: Zfd; .ﬂ-e moment in time when the in:{;/:-/,u:ﬁo
@ Add the MidiEvent to the Track 9eved: This MidiEvent. sae 4, {:riﬁﬁ"n

track.add{(noteon) ; \\ message 3 at the fivgt beat (beat /).

A Tratk holds all the Mi) I
 3tLovding Lo when eath event. it supp and &
3: S': u:L“g?\a»f; fhem back in that ordcr; Yo*u e,a; ha ;3 o
Cn{‘,s}\a??cﬁns at the exatt same moment in Lime. “d. $£:‘m£
. want two notes played simulbaneously, or even &t

ing, diffevert sounds at the same time.

; biecks. The Sequence organizes
difvent obje 4 to happem, and then

\10\1 n‘ﬁhk
insbruments play

you are here» 343

contents of a Midi event

MIPI message: the heart of a MidiEvent

A MIDI message holds the part of the event that says what to do. The actual instruction
you want the sequencer to execute. The first argument of an instruction is always the type
of the message.The values you pass to the other three arguments depend on the type of
message. For example, a message of type 144 means “NOTE [.y”. But in order to carry
out 2 NOTE ON, the sequencer needs to know a few things, Imagine the sequencer saying,
“OK, I'll play a note, but which channeP In other words, do/you want me to play 2 Drum
note or a Piano note? And which note? Middle-C? D SharH’P And while we’re at it, at which
velocity should I play the note? §

To make a MIDI message, make a ShortMessage instance and invoke setMessage (), passing
in the four arguments for the message. But remember, the message says only what to do, so
you sdll need to stuff the message into an event that adds when that message should ‘fire’.

Anatomy of a message

The first argument to setMessage() always The Message says what to do, the

represents the message ‘type’, while the other MidiEvent says when to do it.
three arguments represent different things
depending on the message type.
o QA @ cChannel
ISR e S e Think of a channel like a musician in
a.setMessage (144, 1, 44, 100); a band. Channel 1 is musician 1 (Yhe

keyboard player), channel 9 is the
drummer, etc.

@ Note to play

A number from O to 127, going
from low Yo high notes.

128 means
NOTE OFF

@ Velocity

How fast and hard °
you press the key? O isso softyou
probably wen't hear anything, but 100 is a
good defaul¥.

344 chapter i1

exception handling

Change a message

Now that you know what’s in a Midi message, you can start experimenting. You
can change the note that’s played, how long the note is held, add more notes,
and even change the instrument.

@ cChange the note

Try a number between 0 and 127 in the note
on and note of f messages.

a.setMessage (144, 1, 20, 100);
£,

@ Change the duration of the note

Change the note off event (not the message) so
that it happens at an earlier or later beat.

b.setMessage (128, 1, 44, 100);
MidiEvent noteOff = new MidiEvent (b, _3.);

@ Change the instrument

Add a new message, BEFORE the note-playing message,
that sets the instrument in channel 1 to something other
than the default piano. The change-instrument message
is '192’, and the third argumen’ represents the actual
instrument (fry a number between O and 127)

first.setMessage (192, 1, 102, 0):

o™ T\
%o
g c“z"“\!’

you are hare» 345

change the instrument and note

Version 2: Using command-line args to experiment with sounds

This version still plays just a single note, but you get to use command-line argu-
ments to change the instrurnent and note. Experiment by passing in two int values
from 0 to 127. The first int sets the instrument, the second int sets the note to play.

import javax.sound.midi.*; P

public class MiniMusicCmdLine (/7 thiS/{;/the first one

public static void main(String{] args) {
MiniMusicCmdLine mini = new MinikysichdLine();
if (args.length < 2) {
System.out.println{“*Don’t forget the instrument and note args”);
} else !
int instrument = Integer.parselnt(args[0]);
int note = Integer.parselnt(args(l));
minl.play{instrument, note);
)

} // clese main
public void play(int instrument, int note) |
cry |

Sequencer player = MidiSystem.getSequencer();
player.openi);

Sequence seq = new Sequence (Sequence.PPQ, 4);
Track track = seqg.createTrack();

MidiEvent event = null;

ShortMessage first = new ShortMessage();
first.setMessage (1982, 1, instrument, 0):;

MidiEvent changelInstrument = new MidiEvent (first, 1);
track.add(changeinstrument);

ShortMessage a = new ShortMessage(); Run it with two int arys from O
a.setMessage(144, 1, note, 100); 1o 127 Tey these for starters
MidiEvent noteOn = new MidiEvent(a, 1);
track.add (noteOn});

Flle Edlt Window Help

¥java MiniMusicCmdLine 102 30

Allenuste

ShortMessage b = new ShortMessage();
b.setMessage (128, 1, note, 100); %$java MiniMusicCmdLine 80 20
MidiEvent noteOff = new MidiEvent (b, 16);
track.add (noteOff):;
player.setSequence (seq);

player.start();

%java MiniMusicCmdLine 40 70

) catch (Exception ex) {ex.printStackTracel();)
} // close play
} // close class

345 chapter 1

Where we¥re headed with the rest

of the CodeKitchens

Chapter 15: the goal

When we're done, we'll have a working
BeatBox that’s also a Drum Chat Client.
We'll need to learn about GULs (includ-
ing event handling), I70, networking, and
threads. The next three chapters (12, 13,
and 14) will get us there.

exception handling

L:X:X:]

Chapter 12: MIDI events

This CodeKitchen lets us build a little
“music video” (bit of a stretch to call it
that...} that draws random rectangles to
the beat of the MIDI music, We'll learn
how o construct and play a lot of MIDI
events (instead of just a couple, as we do
in the current chapter).

Chapter 13: Stand-alone
BeatBox

Now we'll actually build the real BeatBox,
6UI and all. But it's limited—as soon as you
change a pattern, the previous one is lost.
There's no Save and Restore feature, and
it doesn't communicate with the network.
(But you can still use it to work on your
drum pattern skills)

Chapter 14: Save and
Restore

You've made the perfect pettern, and

now you can save it Yo a file, and reload it
when you want to play it again. This gets
us ready for the final version (chapter 15),
where instead of writing the pattern to a
fite, we send it over a network to the chat
server.

beat three beat four

you are here »

347

exercise: True or False

This chapter explored the wonderful world of
exceptions. Your job is to decide whether each of the
) m following exception-related statements is true or false.

©TRve oR FauseT

1. A try block must be followed by a catch :{nd a finally block.

2. If you write a method that might cause a compilerchecked exception, you
must wrap that risky code in a try / catch block.

3. Catch blocks can be polymorphic.
4. Only ‘compiler checked’ exceptions can be caught.
5. If you define a try / catch block, a matching finally block is optional.

6. If you define a try block, you can pair it with a matching catch or finally block,
or both.

7. If you write a method that declares that it can throw a compilerchecked ex-
ception, you must also wrap the exception throwing code in a try / catch block.

8. The main() method in your program must handle all unhandled exceptions
thrown to it

9. Asingle try block can have many different catch blocks.

10. A method can only throw one kind of exception.

11. A finally block will run regardless of whether an exception is thrown.
12. A finally block can exist without a try block.

13. A try block can exist by itself, without a catch block or a finally block.
14. Handling an exception is sometimes referred to as ‘ducking’.

15. The order of catch blocks never matters.

16. A method with a try block and a finally block, can optionally declare the
exception.

17. Runtime exceptions must be handled or declared.

348 chapter 11

e 1

{3V Code Magnets

! A working Java program is scrambled up on the fridge. Can you
reconstruct all the code snippets to make a working Java program
that produces the output listed below? Some of the curly braces fell
on the floor and they were too small to pick up, so feel free to add as
many of those as you need!

 i——

exception handling

/

/ system.out.print(“r”); @

System.out -Print(«tv),

doRisky(test);

System.out.println(”s¥);

System.out.print(“o”);

class MyEx extends Exception { }

public class ExTestDrive (

SYSte.m.out.P’-'int(.

.equaJ.S(t)) {

System.out.print(”“a%);

throw new MYEx():;

) catch (MYEX e) {

Btatic void doRisky(String t) throws MyEx (

Fie it Wincow Heip Trvowlp
5 java ExTestDrive yes
thaws

5 java ExTestDrive no
throws

System.out.print(*n”);

ie static void main{string (] args) {

publ
gtring test = args{0l;

you are here » 349

puzzle: crossword

PR Joalross 7.0

Across

1. To give value

4. Flew off the top

6. All thls and morel
8. Start

10. The farnily tree
13. No ducking

15. Problem objects
18. One of Java’s ‘49’

20. Class hierarchy

21. Too hot to handle

24. Common primitive
25, Code recipe

27. Unruly method action
28. No Pleasso here

29. Start a chain of events

More Hints:

350 chapter 11

43136, e 10N “L1

Sunuoy Ajjwiey 3yl

Down

2. Currently usable

3. Template's creation

4. Don't show the kids
5. Mostly static APl class
7. Not about behavior
9. The template

—

1. Roli another one off
the line

- I2qWNN S
164 '€

(Sjdwexa jou)

‘91 ysemyinow 10 '
1nEjRp 20)8nd AUO 6

umoq

12. Javac saw it coming
14. Attempt risk

16. Automatic acquisition
17. Changing method

19. Announce a duck

22 Deal with it

23, Create bad news

26. One of my roles

You know what to dol

DeAsSqyY ION 'S7 UEDIP JO pealsu] ‘gL

wajqoud e suers L7
Raend (17
UON9(j03 jo adA) B OSYY DT

poylaul & URS 8
plyIRARTY 9
ssany

% Exercise Soutions

Trve_oR FaLse

1. False, either or both.

2. False, you can declare the exception.

3. True.

4. False, runtime exception can be caught.
5. True.

6. True, both are acceptable.

7. False, the declaradon is sufficient.

8. False, but if it doesn’t the JVM may shut
down.

9. True.
10. False.

11. True. It’s often used to clean-up partally
completed tasks.

12. False.
18. False.

14. False, ducking is synonomous with declar-
ing.

15. False, broadest exceptions must be caught
by the last catch blocks.

16. False, if you don’t have a catch block, you
maust declare.

17. False,

exception handling

Code Magnets

class MyEx extends Exception { }
public class ExTestDrive { |
public static void main(String [} args) {
String test = args[0];
try {
System.out.print(”t”);
doRisky(test);
System.out.print{*o"});
} catch (MyEx e) {
System.out.print(“a”});
} finally (
System.out.print(“w”);

}
System.out.println(*s8”);

}

static void doRisky(String t} throws MyEx {
System.out.print(“h*);

i1f (“yes”.equals(t))} {

throw new MyEx();

}

System,out.print(~r”);

} Fie £dt Wndow top Chl
% java ExTestDrive yes
thaws

% java ExTestDrive no
throws

you are here» 351

puzzle answers

(JavaOross Answers

=17 > =

z
| m A m]o

B

I
T
€

362 chapter 11

