A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

Appendix B

The Top Ten Topics that aimost made it into the Real Book...

You mean, there's stil)
MORE? Doesn't this
book EVER end?

We covered a lot of ground, and you're almost finished with this book. We'll miss you, but before
we let you go, we wouldn't feel right about sending you out into JavaLand without a little more
preparation. We can’t possibly fit everything you'll need to know into this relatively small appendix.
Actually, we did originally include everything you need to know about Java (not already covered by
the other chapters), by reducing the type point size to .00003. It ail fit, but nobody could read it. So,
we threw most of it away, but kept the best bits for this Top Ten appendix.

This really /s the end of the book. Except for the index (a must-read!).

this is a new appendix 659

http://www.a-pdf.com/?product-split-demo

bit manipulation

#10 Bit Manipulation
Why do you care?

We’ve talked about the fact that there are 8 bits in a byte,
16 bits in a short, and so on. You might have occasion to
turn individual bits on or off. For instance you might find
yourself writing code for your new Java enabled toaster,
and realize that due to severe memory limitations, certain
toaster settings are controlled at the bit level. For easier
reading, we’re showing only the last 8 bits in the comments
rather than the full 32 for an int).

Bitwise NOT Operator: ~
This operator ‘flips all the bits’ of a primitive.

int x = 10; // bits are 00001010
X = ~X; // bits are now 11110101

The next three operators compare two primitives on a bit
by bit basis, and return a result based on comparing these
bits. We’ll use the following example for the next three
operators:

int x = 10; // bits are 00001010

int y = 6; // bits are 00000110

Bitwise AND Operator: &

This operator returns a value whose bits are turned on only
if both original bits are turned on:

int a=x & y; // bits are 00000010

Bitwise OR Operator: |

This operator returns a value whose bits are turned on only
if either of the original bits are turned on:

int a = x | y; // bits are 00001110

Bitwise XOR (exclusive OR) Operator: *

This operator returns a value whose bits are turned on only
if exactly one of the original bits are turned on:

int a =x “y; // bits are 00001100

660 appendix8

The Shift Operators

These operators take a single integer primitive and shift (or
slide) all of its bits in one direction or another. If you want
to dust off your binary math skills, you might realize that
shifting bits left effectively multiplies a number by a power of
two, and shifting bits right effectively divides a number by a
power of two,

We’ll use the following example for the next three operators:

int x = -11; // bits are 11110101

Ok, ok, we've been putting it off, here is the world’s
shortest explanation of storing negative numbers, and

two’s complement. Remember, the leftmost bit of an integer
number is called the sign bit. A negative integer number in
Java always has its sign bit turned on (i.e. set to 1). A positive
integer number always has its sign bit turned off (0). Java
uses the two’s complement formula to store negative numbers.
To change a number’s sign using two’s complement, flip all
the bits, then add 1 (with a byte, for example, that would
mean adding 00000001 to the flipped value).

Right Shift Operator: >>

This operator shifts all of a number’s bits right by a certain
number, and fills all of the bits on the left side with whatever
the original leftmost bit was. The sign bit does not change:

int y = x >> 2; // bits are 11111101
Unsigned Right Shift Operator: >>>

Just like the right shift operator BUT it ALWAYS fills the
leftmost bits with zeros. The sign bit might change:

int y = x >>> 2; // bits are 00111101

Left Shift Operator: <<
Just like the unsigned right shift operator, but in the other

direction; the rightmost bits are filled with zeros. The sign bit
might change.

int y = x << 2; // bits are 11010100

#9 Immutability

Why do you eare that Strings are Immutable?

When your Java programs start to get big, you'll
inevitably end up with lots and lots of String objects.
For security purposes, and for the sake of conserving
memory (remember your Java programs can run on
teeny Javaenabled cell phones), Strings in Java are
immutable. What this means is that when you say:

String s = “0%;

for (int x = 1; x < 10; x++) {
8 =8 + X;
)

What's actually happening is that you're creating ten
String objects (with values “0”, “01”, “012", through
“0123456789”). In the end sis referring to the String
with the value “0123456789”, but at this point there
are ten Strings in existencel

Whenever you make a new String, the JVM puts it
into a special part of memory called the ‘String Pool'
(sounds refreshing doesn’t it?). If there is already

a String in the String Pool with the same value, the
JVM doesn’t create a duplicate, it simply refers your

reference variable to the existing entry. The JVM can

get away with this because Strings are immutable; one
reference variable can’t change a String’s value out
from under another reference variable referring to
the same String.

The other issue with the String pool is that the
Garbage Collector doesn't go there. So in our example,
unless by coincidence you later happen to make a
String called “01234”, for instance, the first nine
Strings created in our forloop will just sit around
wasting memory.

How does this save memory?

Well, if you're not careful, it doesn’d But if you un-
derstand how String immutability works, than you
can sormetimes take advantage of it to save memory.
If you have to do 2 Jot of String manipulations (like
concatenations, etc.), however, there is another class
StringBuilder, better suited for that purpose. We'll
talk more about StringBuilder in a few pages.

appendix 8 Top Ten Reference

Why do you care that Wrappers are
Immutable?

In the Math chapter we talked about the two main
uses of the wrapper classes:

¢ Wrapping a primitive $0 it can pretend to be an
object.

* Using the static utility methods (for example,
Integer.parselnt()).

It's important to remerber that when you create a
wrapper object like:

Integer iWrap = new Integer(42);

That'’s it for that wrapper object. Its value will aZways
be 42. There is no setter method for a wrapper object.
You can, of course, refer iWrap to a different wrapper
object, but then you'll have two objects. Once you
create a wrapper object, there’s no way to change
the value of that object!

! ROSQS are redl

trings are Imwo/et; are blue,

m
Utable, Wrappers are too,

Ob look/
: look/ A bonvs Make it Stigk.
Night heve in the aPpendix.

you are here» 661

assertions

#8 Assertions

We haven't talked much about how to debug your Java
program while you're developing it. We believe that
you should learn Java at the command line, as we've
been doing throughout the book. Once you're a fava
pro, if you decide to use an IDE*, you might have
other debugging tools to use. In the old days, when

a Java programmer wanted to debug her code, she’d
stick a bunch of System.out.println() statements
throughout the program, printing current variable
values, and “I got here™ messages, to see if the flow
control was working properly. (The ready-bake code
in chapter 6 left some debugging ‘print’ statements
in the code.) Then, once the program was working
correctly, she’d go through and take all those System.
out,printin{) statemnents back out again. It was
tedious and error prone. But as of Java 1.4 (and 5.0},
debugging got a whole lot easier. The answer?

Assertions

Assertions are like System.out.println() statements

on steroids. Add them to your code as you would

add printn statements. The Java 5.0 compiler
assumes you’ll be compiling source files that are 5.0
compatible, so as of Java 5.0, compiling with assertions
is enabled by default.

At runtime, if you do nothing, the assert statements
you added to your code will be ignored by the JVM,
and won'’t slow down your program. But if you tell the
JVM to enableyour assertions, they will help you do
your debugging, without changing 2 line of code!

Some folks have complained about having to leave
assert statements in their production code, but
leaving them in can be really valuable when your
code is already deployed in the field. If your client

is having trouble, you can instruct the client to run
the program with assertdons enabled, and have the
client send you the output. If the assertions were
stipped out of your deployed code, you'd never
have that option. And there is almost no downside;
when assertions are not enabled, they are completely
ignored by the JVM, so there’s no performance hit to
worty about.

662 appenaixB

How to make Assertions work

Add assertion statements to your code wherever you
believe that something must be true. For instance:

assert (height > 0);

// if true, program continues normally

// if false, throw an AssertionError

You can add a little more informadon to the stack
trace by saying:

assert (height > 0) “height = ™ +
height + ™ weight = “ + weight;

The expression after the colon can be any legal

Java expression that resolves to a non-null value. But
whatever you do, don’t create assertions that change an
object’s state! If you do, enabling assertions at runtme
might change how your program performs.

Complling and running with
Assertions

To compile with assertions:

javac TestDriveGame.java

(Notice that no command line options were
necessary.)

To run with assertions:

java -ea TestDriveGame

* IDE stapds for Integrated Development Environment
and includes tools such as Eclipse, Borland’s JBuilder, or
the open source NetBeans (netbeans.org).

appendix B Top Ten Reference

#7 Block Scope

In chapter 9, we talked about how local variables

live only as long as the method in which they’re
declared stays on the stack. But some variables can
have even shorter lifespans. Inside of methods, we
often create blocks of code. We’ve been doing this

all along, but we haven’t explicitly talked in terms of
blocks. Typically, blocks of code occur within methods,
and are bounded by curly braces { }. Some common
examples of code blocks that you’ll recognize include
loops (for, while) and conditional expressions (like if
statements).

otk
Let’s look at an example: Lok of the mekhod ¥
s
o dOSthfé) .g_{:icai vaviable scoped to the entive method

int x =

for(int y = 0; y < 5; y++) {Mbesmnmzoo(: a\f%‘;\ooo\:’b‘\:‘;\? and Y i
onl

stoped

X = X+ Vie_ *ahdxlarcbokh‘mst,o\?c

No YV‘OHC"\)

b end of the for loop block

X =X * yie— Aack! Won't c::mptlc[is out of se
} the way it works in Somc other lan

end O‘F the method Ho&k, now % is also out op

ope here! (this is mot
guages, so bewarel)

stope

In the previous example, y was a block variable,
declared inside a block, and y went out of scope as
soon as the for loop ended. Your Java programs will
be more debuggable and expandable if you use local
variables instead of instance variables, and block
variables instead of local variables, whenever possible.
The compiler will make sure that you don’t try to use
a variable that’s gone out of scope, so you don’t have
to worry about runtime meltdowns.

you are here »

663

linked invocations

#6 Linked Invocations

While you did see a little of this in this book, we tried to keep our syntax as clean and
readable as possible. There are, however, many legal shortcuts in Java, that you’ll no doubt
be exposed to, especially if you have to read a lot code you didn’t write. One of the more
common constructs you will encounter is known as linked invocations. For example:

StringBuffer sb = new StringBuffer (“spring”);

sb = sb.delete(3,6).1insert (2, ”umme”) .deleteCharAt (1),
System.out.println(“sb = “ + sb);

// result is sb = summer

What in the world is happening in the second line of code? Admittedly, this is a contrived
example, but you need to learn how to decipher these.

1 - Work from left to right.

2 - Find the result of the leftmost method call, in this case sb.delete (3, 6). If you

look up StringBuffer in the API docs, you'll see that the delete () method returns a
StringBuffer object. The result of running the delete () method is a StringBuffer object
with the value “spr”.

3 - The next leftmost method (insert ())is called on the newly created StringBuffer
object “spr”. The result of that method call (the insert () method), is also a StringBuffer
object (although it doesn’t have to be the same type as the previous method return), and so
it goes, the returned object is used to call the next method to the right. In theory, you can
link as many methods as you want in a single statement (although it’s rare to see more than
three linked methods in a single statement). Without linking, the second line of code from
above would be more readable, and look something like this:

sb = sb.delete(3,6);
sb = sb.insert (2, ”umme”) ;
sb = sb.deleteCharAt (1);

But here’s a more common, and useful example, that you saw us using, but we thought
we’d point it out again here. This is for when your main() method needs to invoke an
instance method of the main class, but you don’t need to keep a reference to the instance of
the class. In other words, the main () needs to create the instance only so that main() can
invoke one of the instance’s methods.

class Foo {

public static void main(String [] args) [bout
. dont tave abov
new 00 () .90 ()7 $— we wand o eall 300 bu{;:ﬁk ;:{\wcv assigning

. ¢
} the Foo instante; 5{‘;"‘{; 3 rc(j evente.

void go() { the new Foo objet
// here’s what we REALLY want...
}

}
664 appendix B

appendix B Top Ten Reference

#5 Anonymous and Static Nested Classes

Nested classes come In many flavors

In the GUI event-handling section of the book, we started using inner (nested) classes as a
solution for implementing listener interfaces. That’s the most common, practical, and read-
able form of an inner class—where the class is simply nested within the curly braces of another
enclosing class. And remember, it means you need an instance of the outer class in order to get
an instance of the inner class, because the inner class is a member of the outer/enclosing class.

But there are other kinds of inner classes including static and anonymous. We're not going

into the details here, but we don’t want you to be thrown by strange syntax when you see it in
someone’s code. Because out of virtually anything you can do with the Java language, perhaps
nothing produces more bizarre-looking code than anonymous inner classes. But we’ll start with
something simpler—static nested classes.

Static nested classes

You already know what static means—something tied to the class, not a particular instance. A
static nested class Jooks just like the non-static classes we used for event listeners, except they're
marked with the keyword static.

o hat—a
.o nested elass is ust ¢
Shabc o:cd w‘h\\,\“ an her, ahd

public class FooOuter { A ‘
S t\\ &c 5{3'{','15 mod.l‘c\ﬁ'

- tlass ent!
i class BarInner ({ marked Wi

void sayIt() {
System.out .println (“method of a static inner class”);

)
! Becausc & stati
) st om ot ¢ nested tlass is. spatie don’
name O-FM{}; ree of the tlass You,'you ont
methods ox 285 The Sme vy you ke bt
class Test | ess static Variab\{c& ¢
public static void main tring[] args) {/

foo.sayIt (};

}

Static nested classes are more like regular non-nested classes in that they don’t enjoy a special relation-
ship with an enclosing outer object. But because static nested classes are still considered a member of
the enclosing/outer class, they still get access to any private members of the outer class... but only the
ones that arve also static. Since the static nested class isn’t connected to an instance of the outer class, it
doesn’t have any special way to access the non-static (instance) variables and methods.

you are here » 665

when arrays aren’t enough

#5 Anonymous and Static Nested Classes, continued

The difference between nested and inner

Any Java class that's defined within the scope of another class is known as a nrested class. It
doesn’t matter if it’s anonymous, static, normal, whatever. If it's inside another class, it's
technically considered a nestzd class. But non-static nested classes are often referred to as inner
classes, which is what we called them earlier in the book. The bottom line: all inner classes are
nested classes, but not all nested classes are inner classes.

Anonymous inner classes

Imagine you're writing some GUI code, and suddenly realize that you need an instance

of a class that ijmplements AcionListener. But you realize you don't Aave an instance of an
ActionListener. Then you realize that you also never wrote a class for that listener. You have two
choices at that point:

1) Write an inner class in your code, the way we did in our GUI code, and then instantiate it
and pass that instance into the button’s event registration (addActionListener()) method.

OR

2) Create an anonymous inner class and instandate it, right there, just-in-time. Literally right
where you are at the point you need the listener object. That’s right, you create the class and the
instance in the place where you'd normally be supplying just the instance. Think about that for
a moment—it means you pass the entire class where you'd norrmnally pass only an instanceinto a
method argumentl

import java.awt.avent.*; bubkom, and wo¥ we

import javax.swing.*; Lvame and Eidd?—‘il a itk the bukton
We made 3 ¥¢ i on liskener Wi th

public class TestAnon { ¢ action ; ?i(mtﬂb ¢

weed Lo veaister anadc 2 tlass that i

we never ™
Excert e inbeckate-

public static void main (Stringl[) args) (

JFrame frame = new JFrame(); Aekionlis , cthing like bhis—passing ma“
JButton button = new JButton (“click”); Novmally wed de “')::«?c,anl.ﬂ of an inmer t,\as!v--a
frame.getContentPane () .add (button); (/ 3 velevente 4o an \\mmb ALﬁDnL|s£cm
// button.addActionListener (quitListener); innee L1358 that im? 80 mc‘U\Od)'
the aekionPervorme ok
. Jccmch‘b ' oJ; a16md n an ochL
This s£3 L now instead ox ¥ hole new
button.addActionlistener (new Actionlistener() ({ B “°"“ we pass the w ds, we
public void actionPerfo (ActionEvent ev) { vekecentt: [} [other wor »

Syatam.exit(0);
.bo,‘l,'ls't‘“cr a

» CThe s -pally.

Notice that we say “new Ad:ionLis{xhcr() even NegD 1T ¢ ‘3“ a“{mabw‘ L

instante of the t
\onListener is an interrate and so0 You
H“’:“E\"Mi}“ég an‘imgnc: oE il But this syntax

|
down ber€ . “veate 3 new tlass {vith no name
‘-I-f;]t, '\:cla:':lcng the Aa‘.ﬁanl,is{:encr ‘“t."gji"‘&
and b Lse way heve's the im lmen{:(a)bon ¢
] interkate methods sttionPertormedl).

666 appendixB

access levels appendix B Top Ten Reference

#4 Access Levels and Access Modifiers (Who Sees What)

Java has fouraccess levels and three access modifiers. There are only three modifiers because
the default (what you get when you don’t use any access modifier) is one of the four
access levels.

Access Levels (in order of how restrictive they are, from least to most restrictive)

public & public means any tode anywhere can acess the public. thing (by
thing we mean tlass, variable, method, constructor, ete.).

protected «——— proterted works just like default (code in the same patkage has aetess), EXCEPT it
also allows subtlasses outside the package to inherit the protected thing.

default ¢
default access means that only tode within the same patkage as

the tlass with the default thing tan aceess the default thing,

private means that only code within the same ¢lass tan aceess the private thing.
Keep in mind it means private to the tlass, not private to the object. One D
tan see another Dog object’s private stutf, but a Cat can't see 3 Dog’s yvivgzesa

Access modifiers

private ee

public
protected
private

Most of the time you'll use only public and private access levels.
public

Use public for classes, constants (static final variables), and methods that you're
exposing to other code (for example getters and setters) and most constructors,

private

Use private for virtually all instance variables, and for methods that you don’t want
outside code to call (in other words, methods used by the public methods of your class).

But although you might not use the other two (protected and default), you still need to
know what they do because you’ll see them in other code.

you are here » 667

when arrays aren’'t enough

#4 Access Levels and Access Modifiers, cont.
default and protected

default

Both protected and default access levels are tied to packages. Default access is simple—it
means that only code within the same package can access code with default access. So a
default class, for example (which means a class that isn’t explicitly declared as public) can
be accessed by only classes within the same package as the default class.

But what does it really mean 1o access a class? Code that does not have access to a class is
not allowed to even think about the class. And by think, we mean use the class in code.
For example, if you don’t have access to a class, because of access restriction, you aren’t
allowed to instantiate the class or even declare it as a type for a variable, argument, or
return value. You simply can’t type it into your code at all! If you do, the compiler will
complain.

Think about the implications—a default class with public methods means the public
methods aren’t really public at all. You can’t access a method if you can't see the class.

Why would anyone want to restrict access to code within the same package? Typically,
packages are designed as a group of classes that work together as a related set. So it might
make sense that classes within the same package need to access one another’s code, while
as a package, only a small number of classes and methods are exposed to the outside
world (i.e. code outside that package).

OK, that's default. It's simple—if something has default access (which, remember, means
no explicit access modifier!), only code within the same package as the default thing
(class, variable, method, inner class) can access that thing.

Then what's protected for?

protected

Protected access is almost identical 10 default access, with one exception: it allows sub-
classes to inhenit the protected thing, even if those subclasses are outside the package of the super-
class they extend. That's it. That's all protected buys you—the ability to let your subclasses
be outside your superclass package, yet still inherit pieces of the class, including methods
and constructors.

Many developers find very little reason to use protected, but it is used in some designs,
and some day you might find it to be exactly what you need. One of the interesting things
about protected is that—unlike the other access levels—protected access applies only to
inhentance. If a subclass-outside-the-package has a rzference 10 ap instance of the superclass
(the superclass that has, say, a protected method), the subclass can't access the pro-
tected method using that superclass referencel The only way the subclass can access that
method is by inheritingit. In other words, the subclass-outside-the-package doesn’t have
access to the protected method, it just 2as the method, through inheritance.

668 appendixB

String and SiringBuffer

appendix B Top Ten Reference

#3 String and StringBuffer/StringBuilder Methods

Two of the most commonly used classes in the Java API are String and StringBuffer (remember from
#9 a few pages back, Strings are immutable, so a StringBuffer/StringBuilder can be a lot mor efficient
if you're manipulating a String). As of Java 5.0 you should use the StringBuilder class instead of
String Buffer, unless your String manipulations need to be thread-safe, which is not common. Here’s a

brief overview of the key methods in these classes:
Both String and StringBuffer/StringBuilder classes have:
char charAt(int index);
int length();
String substring (int start, int end);

String toString();

To concatenate Strings:
String concat(string);

String append (String);

The String class has:
String replace (char old, char new);
String substring(int begin, int end);
char [] toCharArray();
String toLowerCase();
String toUpperCase ();
String trim();
String valueOf(char [])

String valueOf(int i)

// how long is this
// get a part of this

// what char is at a certain position

// what’s the String value of this

// forx the String class

// for StringBuffer & StringBuilder

// replace all occurences of a char
// get a portion of a String

// convert to an array of chars

// convert all characters to lower case
// convert all characters to upper case
// remove whitespace from the ends
// make a String out of a char array

// make a String out of a primitive

// other primitives are supported as well

The StringBuffer & StringBuilder classes have:
StringBxxxx delete (int start, int end);
StringBxxxx insert(int offset, any primitive or a char []);
StringBxxxx replace (int start, int end, String s);
StringBxxxx reverse();

void setCharAt(int index, char ch);

// delete a portion

// insert something

// replace this part with this String
// reverse the SB from front to back

// replace a given character

Note: StringBaxxx refers to either StringBuffer or String Builder, as appropriate.

you are here »

669

when arrays aren’t enough

#2 Multidimensional Arrays

In most languages, if you create, say, a2 4 x 2 two-dimensional array, you would visualize a
rectangte, 4 elements by 2 elements, with a total of 8 elements. But in Java, such an array
would actually be 5 arrays linked together! In Java, a tvo dimensional array is simply an array
of arrays. (A three dimensional array is an array of arrays of arrays, but we’ll leave that for
you to play with.) Here's how it works

int[) (] 228 = new int (4])(2]);

The JVM creates an array with 4 elements. Each of these four elements is actually a reference
variable referring 1o a (newly created), int array with 2 elements.

int array (int[)) int array (int[])

8 \ o I 2z 3
s int[] intl int[] int]}

RCMCmb“ fhaf &
int array object (int[][]) t the arvay itself is ap ob:
int[](] U (intL]L (an array holdma veferentes to ini‘:*::;):)d

Working with multidimensional arrays

- To access the second element in the third array: int x = a2d[2)(1); // remember, 0 based!
- To make a one-dimensional reference to one of the sub-arrays: int[] copy = a2d[l);
- Short-cut initialization of a 2 x 3 array: int (1) x=1(4¢{2,3,41}, { 7,89} }:
- To make a 2d array with irregular dimensions:
int{1[1 v = new int [2)(}; // makes only the first array, with a length of 2
y(0) = new int (3]; // makes the first sub-array 3 elements in length
y(1] = new int (5]; // makes the second sub-array 5 elements in length

670 appendixB

enumerations appendix B Tog Teni- ~-nce
And the number one topic that didn’t quite make it in...

#1 Enumerations (also called Enumerated Types or Enums)

We've talked about constants that are defined in the API, for instance,
JFrame EXIT_ON_CLOSE. You can also create your own constants by
marking a variable static final. But sometimes you’'ll want to create a set
of constant values to represent the only valid values for a variable. This set of
valid values is commonly referred to as an enumeration. Before Java 5.0 you
could only do a half-baked job of creating an enumeration in Java. As of Java
5.0 you can create full fledged enumerations that will be the envy of all your
pre-Java 5.0-using friends.

Who's in the band?

Let’s say that you're creating a website for your favorite band, and you want to
make sure that all of the comments are directed to a particular band member.

The old way to fake an “enum”:

public static final int JERRY = 1;
public static final int BOBBY = 2;
public static final int PHIL = 3;

// later in the code We've hoying that by the £ime ve 30{: heve

« »)
if (selectedBandMembes —= JERRY) { selectedBandMember” has 2 valid value/

// do JERRY related stuff

The good news about this technique is that it DOES make the code easier to
read. The other good news is that you can’t ever change the value of the fake
enums you've created; JERRY will always be 1. The bad news is that there’s
no easy or good way to make sure that the value of selectedBandMember
will always be 1, 2, or 3. If some hard to find piece of code sets
selectedBandMember equal to 812, it’s pretty likely your code will break...

vou are hare » 671

when arrays aren’t enough

#1 Enumerations, cont.

The same situation using a genuine Java 5.0 enum. While this is a very basic

enumeration, most enumerations usually are this simple. \ass dc!}\r(\hon
ke @ smple &2 MRE
A new, official “enum”: ‘/——~ This Kind ok loo¥s L tha enums L 3 ne
a? & furrs OV) Uca‘u ar
public enum Members { JERRY, BOBBY, PHIL }; doesnt ‘.k' \,,3} Plass. Yere wee o
public Members selectedBandMember; spetid! kind ¢ talled “Member

CV\WnCV'a*’Cd &’W
// later in the code

The “selectedBandMember” variable is of type

if (selectedBandMember == Members.JERRY) | “Members”, and ean ONLY have a value of
// do JERRY]related stuff /\ “JERRY”, “BOBBY”, or “PHIL”

}

No need to worry about this variable’s value/ The syntax to vefer to an enum “ins tance”.

Your enum extends java.lang.Enum

When you create an enum, you’re creating a new class, and you’re implicitly extending
java.lang.Enum. You can declare an enum as its own standalone class, in its own
source file, or as a member of another class.

Using “if” and “switch” with Enums

Using the enum we just created, we can perform branches in our code using either
the if or switch statement. Also notice that we can compare enum instances using
either == or the .equals () method. Usually == is considered better style.

Assigning an enum value o a variable.

Members n = Members.BOBBY; /

if (n.equals (Members.JERRY)) System.out.println(“Jerrrry!”);
if (n == Members.BOBBY) System.out.println{(“Rat Dog”); e Both of these ¥

n . '\V\‘\'Ad'
\\Ka‘h DO% * w

ok ;'mtl.

Members ifName = Members.PHIL;

switch (ifName) ({
case JERRY: System.out.print (“make it sing %);
case PHIL: System.out.print (“go deep “}; N Pop Quiz! What's 4he output?
case BOBBY: System.out.println(“Cassidy! ”);

jhpisse)) daap ob

Answer:

672 appendixB

enumerations appendix B Top Ten Reference

#1 Enumerations, completed

A really tricked-out version of a similar enum

You can add a bunch of things to your enurm like a constructor, methods,
variables, and something called a constant-specific class body. They’re
not common, but you might run into them:

n Lo
public class HfjEnum ({ aYS“"‘“JC ?Bsscd n

This s 3" \aved below
JERRY (“lead guitar”) ub These are The

. . .]
ip llc.St}.rmg sings() { é’/ W omstant—s cifie tlass bodies -
return “plaintively”; } nt-sP Aina the
}, Think of them as overviding
BOBBY (“rhythm guitar”) (public String sings() ¢ basit enwm method (.‘“.Jd“_s L?)“s
return “hoarsely”;) the “s‘mg()" method), ok singl/
s called on @ vavidble with %"Yc"“"
PHIL (“bass”); value of JERRY or BoBBY:
private String instrument;
Names (String instrument) | & This is the enum's tonstructor. [t runs
this.instrument = instrument; onte For eath detlared enum value (in

)
public String getInstrument() {
return this.instrument;

Lhis 2ase it vuns three times).

}
public String sings () {
return “occasionally”;
}
)

— You'll see these methods being called from “main()”.

public static void main{(String [] args) { E“"Y erum Lomes with 3
for (Names n : Names.values()) / builk—in “alues()” method
System.out.print (n); o is dypially wsed in a
C e " - which is TP
System.ovt.print (", instrument: “+ n.getInstrument()); | "y 3¢ shown-
System.out.println(“, sings: ™ + n.sings()); l:or oop

) Filoe Edt Window Help Bootlag
$java HfjEnum

Notice tha ie “sina()”
JERRY, instrument: lead guitar, sings: plaintively ethod i t the basic S'"S()
BOBBY, instrument: rhythm guitar, sings: hoaxsely method is only ealled when the
PHIL, instrument: bass, sings: occasionally enwm value has no tonstant—
% specific elass body.

K7

you are here» 873

when arrays aren’t enough

FNB—M&HU’{‘B A Long Trip Home

Mystery

674

appendix B

Captain Byte of the Flatland starship “Traverser” had received an urgent, Top Secret fransmission
from headquarters. The message contained 30 heavily encrypted navigational codes that the
Traverser would need to successfully plot a course home through enemy sectors. The enemy
Hackarians, from a neighboring galaxy, had devised a devilish code-scrambling ray that was capable
of creating bogus objects on the heap of the Traverser’s only navigational computer. In

addition, the alien ray could alter valid reference variables so that they referred to these

bogus objects. The only defense the Traverser crew had against this evil Hackarian ray was

to run an inline virus checker which could be imbedded into the Traverser’s state of the art
Java 1.4 code.

Captain Byte gave Ensign Smith the following programming instructions to process the crtical
navigational codes:

“Put the first five codes in an array of type ParsecKey. Put the last 25 codes in a five by five, two
dimensiona! array of type QuadrantKey. Pass these two armays into the plotCourse() method of the
public final class ShipNavigation. Once the course object is returned run the inline virus checker
against all the programs reference variables and then run the NavSim program and bring me the
results.”

A few minutes later Ensign Smith returned with the NavSim output. “NavSim output ready for
review, sir”, declared Ensign Smith. “Fine”, replied the Captain, ‘Please review your work”. “Yes
sir!”, responded the Ensign, “First I dectared and constructed an array of type ParsecKey with the
following code; ParsecKey [] p = new ParsecKey[5]; , next I declared and constructed an array

of type QuadrantKey with the following code: QuadraniKey [| [] q = new QuadrantKey [5} {5]; .
Next, I loaded the first 5 codes into the ParsecKey array using a ‘{or’ loop, and then I loaded the last
25 codes into the QuadraniKey array using nested ‘for’ loops. Next, I ran the virus checker against
all 32 reference variables, 1 for the ParsecKey array, and 5 for its elements, 1 for the QuadrantKey
array, and 25 for its elements. Once the virus check returned with no viruses detected, I ran the
NavSim program and re-ran the virus checker, just to be safe.., Sir!*

Captain Byte pave the Ensign a ¢ool, long stare and said calmly, “Ensign, you are confined to
quarters for endangering the safety of this ship,] don’t want to see your face on this bridge again
until you have properly leamed your Java! Lieutenant Boolean, take over for the Ensign and do this
job corvectly!”

Why did the captain confine the Ensign to his quarters?

Five-Minute Mystery Jefutisn

A Long Trip Home

Captain Byte knew that in Java, multidimensional arrays are actu-
ally arrays of arrays. The five by five QuadrantKey array ‘q’, would
actually need a total of 31 reference variables to be able to access

all of its cornponents:

1 - reference variable for 'q’

5 - reference variables for q[0) - q[4]

25 - reference variables for q(0][0] - (4] [4]

The ensign had forgotten the reference variables for the five one
dimensional arrays embedded in the ‘q" array. Any of those five
reference variables could have been corrupted by the Hackarian
ray, and the ensign’s test would never reveal the problem.

you are here» 675

Don't you know about the web site?
We've got answers to some of the

Sharpens, examples, the Code Kitchens,

Ready-bake Code, and daily updates
from the Head First author blogs!

This iso't goodbye
Bring your brain over to
wickedlysmart.com

