A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

{7 package, jars and deployment

Release Your Code

It’s time to let go. You wrote your code. You tested your code. You refined your code.
You told everyone you know that if you never saw a line of code again, that’'d be fine. But in the
end, you've created a work of art. The thing actually runs! But now what? How do you give it to
end users? What exactly do you give to end users? What if you don’t even know who your end
users are? In these final two chapters, we'll explore how to organize, package, and deploy your
Java code. We'll look at local, semi-local, and remote deployment options including executable
jars, Java Web Start, RMJ, and Servlets. In this chapter, we’ll spend most of our time on organizing
and packaging your code—things you'll need to know regardless of your ultimate deployment
cholce. In the final chapter, we'll finish with one of the coolest things you can do In Java. Relax.

Releasing your code Is not saylng goodbye. There’s always maintenance...

this Is a new chapter 581

http://www.a-pdf.com/?product-split-demo

Java deployment

Veploying your application

What exactly is a Java application? In other words,

once you're done with development, what is it that you
deliver? Chances are, your end-users don't have a system
identical to yours. More importantly, they don’t have your
applicadon. So now it’s time to get your program in shape
for deployment into The Outside World. In this chapter,
we'll look at local deployments, including Executable Jars
and the part-local/part-remote technology called Java Web
Start. In the next chapter, we'll look at the more remote
deployment options, including RMI and Servlets.

A Java program is a bunch
of classes. That's the
output of your development.

The Tes] question is what
to do with those classes
when you're done.

Deployment options

100% Remote

Combination
Local

The entire application runs on the
end-user's computer, as a stand-alone,
probably GUTL, program, deployed as
an executable JAR (we'll look at JAR
in a few pages.)

Combination of local and remote
The application is distributed with a
client portion running on the user’s
local system, connected to a server
where other parts of the application
are running.

Remote

The entire Java application runs on o
server system, with the client accessing
the system through some non-Java
means, probably a web browser.

But before we really get into the whole deployment thing,
let’s take a step back and look at what happens when you've
finished programming your app and you simply want to pul
out the class files to give them to an end-user. What's really
in that working directory?

682 chapter17

2 Brain Barbell -

What are the advantages and
disadvantages of delivering your

: Java program as a local, stand-

alone application running on
the end-user’s computer?

What are the advantages and
disadvantages of delivering your

: Java program as web-based

system where the user interacts
with a web browser, and the

: Java code runs as servlets on the

server?

package, Jars and deployment

Its
finally donel

Imagine this scenario...

Bob's happily at work on the final pieces of his cool new
Java program. After weeks of being in the “I'm-just-
one-<ompile-away” mode, this ime he’s really
done. The program is a fairly sophisticated
GUI app, butsince the bulk of it is Swing
code, he’s ruade only nine classes of his
own.

At last, it's ime to deliver the program to the
client. He figures all he has to do is copy the
nine class files, since the client already has

the Java APl installed. He starts by doing an
1s on the directory where all his files are...

Whoa! Something strange has happened. Instead of 18

files (nine source code files and nine compiled class

files), he sees 31 files, many of which have very strange
% names like:

Account$FileListener.class
Chart$SaveListener.class

and on it goes. He bad corpletely forgotten
that the compiler has to generate class files
for all those inner class GUI event listeners
he made, and that's what all the strangely-
named classes are.

[M
I

Now he has to carefully extract all the class
files he needs. If he leaves even one of them out,
his program won't work, But it’s tricky since he
doesn’t want to accidentally send the client
one of his source code files, yet everything is
in the same directory in one big mess.

you are here» 583

organizing your classes

Separate source code and class files

A single directory with a pile of source code and class files is a
mess. It turns out, Bob should have been organizing his files
from the beginning, keeping the source code and compiled
code separate. In other words, making sure his compiled class
files didn’t land in the same directory as his source code.

The key is a combination of directory structure organization and the
-d compiler option.

There are dozens of ways you can organize your files, and your
company might have a specific way they want you to do it. We
recommend an organizational scheme that's become almost
standard, though.

With this scheme, you create a project directory, and inside
that you create a directory called source and a directory called
classes. You start by saving your source code (java files) into
the source directory. Then the trick is to compile your code

in such a way that the output (the .class files) ends up in the
classes directory.

And there's a nice compiler flag, —-d, that lets you do that

Compiling with the -a (directory) flag

%cd MyProject/source
$javac =d ../classes MyApp.java

A
tells the Compiler J:o[uf the the last Jd,‘-mc_l;'ls <ill

“-OMPI,cd 50dc (da:.{ ”CS) k\‘c nameé O‘F ht .)ava
{';;1 the “elasses: di"CC{ovy file to Lompile
at’s ope direcwy WP and ne

back down 3a3in £
Current workﬂir.g di:Z:éﬁ;

By using the -d flag, you get to decide which directory the
compiled code lands in, rather than accepting the default of
class files landing in the same directory as the source code.

But T thought I didn't have
a choice about putting the class
files in with the source files.

When you compite, they just go
there, so what do T do?

m?\‘cd LOAE ’

To compile all the java files in the source directory, use: E::MY:W main()
tre

%javac -d ../classes *. java

\ ¥*.java tompiles ALL

in this chapter ascumes that the

our ¢lasspath. (£
have explicitly zet a classpath envivonment ! W =

Running your code sourte files in the
LUWCW{: d'ﬂ‘CL{D'rY
$cd MyProject/classes ({;muahwﬁhg note: cvzry{-,hi
$java Mini run Your proaram, from turvent working direc{p\r\/ (i.e.
the daua'aﬁ;mm
' that it contains the)

8§84 chaptert7

voriable, be Levtain

package, jars and deployment

Put your Java in a JAR

A JAR file is a Java ARchive. It’s based on the pkzip file format, and it lets you bundle
all your classes so that instead of presenting your client with 28 class files, you hand
over just a single JAR file. If you're familiar with the tar command on UNIX, you'll
recognize the jar tool commands. (Note: when we say JAR in all caps, we're referring
to the archive file. When we use lowercase, we’re referring to the jar tool you use 1o
create JAR files.)

The question is, what does the client do with the JAR? How do you get it to rumn?
You make the JAR execudable.

An executable JAR means the end-user doesn't have to pull the class files out before
running the program. The user can run the app while the class files are still in the
JAR. The trick is to create a manifest file, that goes in the JAR and holds information
about the files in the JAR. To make a JAR executable, the manifest must tell the JVM
which class has the main() method! -

Making an executable JAR

Make sure all of your class files are in
the classes directory

We're going to refine this in a few pages, but
for now, keep all your class files sitting in the
directory named ‘classes’,

. Create a manifest.txt file that states
which class has the main() method
Make a text file named manifest.txt that has a

one line:
) the .tlass
Main-Class: MyApp (_‘:"“&fid

Press the return key after typing the Main-
Class line, or your manifest may not work

correctly. Put the manifest file into the “classes” manifest bt
directory.
manifest ixt

@ Run the jar tool to create a JAR file

that contains everything in the classes

directory, plus the manifest.

$cd MiniProject/classes courte

$jar -cvmf manifest.txt appl.jar *_ class ':dc (‘53“‘)

OR - L

%jar -cvmf manifest.txt appl.jar MyApp.class in the JAR

you are here» 585

executable JAR

Most 100% loca] Java
apps are deployed as
Combination 100% Remote executable JAR files.

Running (executing) the JAR

Java (the JVM) is capable of loading a class from a JAR, and calling

the main() method of that class. In fact, the entire application can

stayin the JAR. Once the ball is rolling (i.e., the main() method

starts running), the JVM doesn’t care where your classes come

from, as long as it ¢can find them. And one of the places the JVM

looks is within any JAR files in the classpath. If it can seea JAR, the

JVM will lookin that JAR when it needs to find and load a class. The JUM has to ‘see’ the JAR, 0
it must be in your classpath The
casiest way to make the AR visible
is 4o make your working divec

the plate where the JAR is.

%cd MyProjact/classes

< IPR for
ade ﬂ\\i e
\ooks st for Ma
The —jar £la tel The NS;Ts’c with an t'.\br\f ¢ Yo O
app1.jar WM You'ye 33 i Jsfﬂ'c 3 maNIEg doesn find om©
. JAR . lV|n5 i a C\a“ v L on-
msfcad o{‘a elass. . Y\LI‘\‘E"“C et
Depending on how your operating systera is configured, you
might even be able to simply doubleclick the JAR file to launch
it. This works on most flavors of Windows, and Mac OS X. You
can usually make this happen by selecting the JAR and telling
the OS to “Open with...” (or whatever the equivalent js on your
operating system).
B Gestt
umb Questions
Q} Why can’t | just JAR up an entire directory? Q: What did you just say?
A: The JVM looks inside the JAR and expects to find A: You can’'t put your class flles Into some arbitrary
what it needs right there.1t won't go digging into other directory and JAR them up that way. But If your classes
directories, unless the class s part of a package, and even belong to packages, you can JAR up the entire package
then the JVM looks only in the directories that match the directory structure. in fact, you must. We'll explain all this on
package statement? the next page, so you can relax.

588 chapter17

Put your classes in packages!

So you've written some nicely reusable class files, and you've
posted them in your internal development library for other
programmers to use. While basking in the glow of having
just delivered some of the (in your humble opinion) best
examples of OO ever conceived, you get a phone call. A
frantic one. Two of your classes have the same name as

the classes Fred just delivered to the library. And all hell is
breaking loose out there, as naming collisions and ambiguities
bring development to its knees.

And all because you didn't use packages! Well, you did use
packages, ip the sense of using classes in the Java API that are,
of course, in packages. But you didn’t put your own classes
into packages, and in the Real World, that's Really Bad.

We're going to modify the organizational structure from the
previous pages, just a little, to put classes into a package, and
to JAR the entire package. Pay very close attention to the
subtle and picky details. Even the tiniest deviation can stop
your code from compiling and/or running.

Packages prevent class name conflicts

Although packages aren’t just for preventing name collisions,
that’s a key feature. You might write a class named Customer
and a class named Account and a class named ShoppingCart
And what do you know, half of all developers working in
enterprise e<commerce have probably written classes with
those names. In an OO world, that’s just dangerous. If part of
the point of QO is to write reusable components, developers
need to be able to piece together components from a

variety of sources, and build something new out of them.
Your components have to be able to ‘play well with others’,
including those you didn’t write or even know about.

Remember way back in chapter 6 when we discussed how

a package name is like the full name of a class, technically
known as the fully-gualified name. Class ArrayList is really
Jjova.util ArrayList, [Button is really javax.swing JButton, and
Socket is really jawa.net.Socket. Notice that two of those classes,
ArrayList and Socket, both have jauva as their “first name”.

In other words, the first part of their fullyqualified names

is “tava”, Think of a hierarchy when you think of package
structures, and organize your classes accordingly.

package, jars and deployment

Package structure of the Java API for:
Jjava.text NumberfFormat

Jjavautil. ArrayList
Java.awt.FlowlLayout
jova.awt event.ActionEvent

Java.net Socket

java
1683t text net\
61 181 awt ;u;l:“u%?l
utl I / 1K 161 in
Socket
el event
FlowlLayoul \ -
ActionEvent

What does this picture look like to
you? Doesn’'t it look a whoie lot like

a directory hierarchy?

you are here » 587

package naming

...50 I finally settled on
foo.bar.Heisenberg far my
quantum baking class

Why, that's the same name
I was thinking of for my
sub-atomic iraning classl
Guess I'll just have to come
up with something else.

Packages can prevent name
conflicts, but only i you
choose a package name
that's guaranteed to he
unique. The best way to
Preventing package name conflicts do that is to preface your
Putting your class in a package reduces the chances of naming Packag'es with your reverse

conflicts with other classes, but what'’s to stop two programroers .

from coming up with identical package names? In other words, dmllam name.

what'’s to stop two programmers, each with a class named Account,

from putting the class in a package named shopping.customers? com.headfirstbooks.Book

Both classes, in that case, would st have the same name: Paélfagc e Cb\ass wamt

shopping, customers.Account

Sun strongly suggests a package naming convention that greatly
reduces that risk—prepend every class with your reverse domain
name. Remember, domain names are guaranteed to be unique,
Two different guys can be named Bartholomew Simpson, but two
different domains cannot be named doh.com.

. et
Reverse domain package names e b\agw‘;f:w‘ 28

/, comiheadfirstjavaipro jects.Chart ¢— 2

o
kavt the package with your reverse projee E might be 3 common
::“3‘.“, :q:?arah?d 5\/ a dot (), name, but addm5 ““’"""'“d'(:iﬂ‘f:ﬁva

n add your own o’rgan‘nz.aﬁonal means WZ_ have o worvy about ol
e 2ty 0 oo oo bt g

588 chapter17

your class in a package:

Choose a package name

‘Were using com.headfirstjava as our

le. The class name is PackageExercise,
=2 the fully-qualified name of the class is now:
‘com_headfirstjava.PackageExercise.

a package statement in your class

must be the first statement in the source
file, above any import statements. There
be only one package statement per source

file, so all classes In a source file must
in the same package. That inciudes inner
, of course.

jPackage com.headfirstjava;
import javax,swing.?;

public class PackageExercise {
// life-altering code here
}

' Set up a matching directory structure

‘I7's not enough Yo say your class is in a package,
&y merely putting a package statement in

“#he code. Your class isn't truly in a packoge
wntil you put the class in a matching directory
structure. So, if The fully-qualified class name
= com.headfirstjava.PackageExercise, you

must put the PackageExercise source code in a
‘@rectory named headfirstjava, which must be in
2 directory named com.

11 is possible to compile without doing that, but
#rust us—it's not worth the other problems
you'll have. Keep your source code in a directory
structure that matches the package structure,
and you'll avoid o Yon of painful headaches down
the road.

package, jars and deployment

You must put a class
into a directory

structure that matches
the package hierarchy.

package structure

101101
101101
10501 EB2D 10
e 10 D
o161e 1
sielL
10101010
1001980308

PackageExarclse.class PackageExerclse.Java

Set up a matching directory structure for
both the source and classes trees.

you are here» 589

compile and run with packages

Compiling and running with packages

When your class is in a package, it’s a little trickier to compile and
run. The main issue is that both the compiler and JVM have to be
capable of finding your class and all of the other classes it uses.
For the classes in the core API, that’s never a problem. Java always
knows where its own stuff is. But for your classes, the solution

of corpiling from the same directory where the source files are
siply won't work (or at least not reliably). We guarantee, though,
that if you follow the structure we describe on this page, you'll be
successful. There are other ways 10 do it, but this is the one we've
found the most reliable and the easiest to stick to.

Compiling with the -d (directory) flag

stay n the sourte divet

%cd MyProject/source & . 111y, dicertory wheve the java

{,M-\i, Do NOT ¢d down

file 157

Yjavac =d /ulunl com/headfirstjava/PackageExarcise. java

te”.(+_hc LOMF"ET +40 Mé {h NO‘J on have {',D 5?2‘,\‘&;{
tompiled code (e[as iles) ‘ the JAT“ o aet to The

info the ¢lasses di‘fcli‘l:ory, sckual sourte le.

within the vi ht packane
Strutture!! Yes, i knows.

To compile all the .java files in the com.headfirstjava
package, use:

%javac -d ../classes com/beadfiratjava/*.java

ompiles ‘
Ty e o

Running your code

{;‘: 7M Pv;oa"a"‘- "‘ro".

$cd MyProject/classes tlasses dihecﬁo.-y_

%java | com.headfirstjava.PackageExercise

You MUST a:
give the £ully—anaf: £
see tha e qualified
(ﬁ’;ﬂcs)taagd mmediately |ook : '€ da{f name! The UM will
it “Pttfshfgcz?ed to fing 3 direzdor Current di*ﬂtfory
heve jt cxP“f-:nzan?';citwy named hcad(.’,_i_‘t';; whn.c
d'*cttm-y, or even nd the elase. If {p, elass f}:ain '{i:du;:,n-.

&
tlassed”, it won't work

590 chapter17

10L10L
oY
110
Bl 10
o5l o1

PackageExercise.class

larw
aogua
ut vacw

cotes
ofustv-

PackageExercise.java

The -d flag is even cooler than we said

Compiling with the -d flag is wonderful becaunse not only does jt
let you send your compiled class files into a directory other than
the one where the source file is, but it also knows to put the class
into the correct directory smucture for the package the class is in.

But it gets even better!

Let’s say that you have a nice
directory structure all set up for your
source code. But you haven't set
up a matching directory structure
for your classes directory. Not a
problem! Compiling with

-d tells the compiler to not

just put your classes into
correct directory tree, but to
the directories if they don't caist.

ackane divettor sbrw:f‘.wc
l:ipoc?:\e{',?emf{s\mdcr H\c\zclauc.s
divectory, the Lompiler will build the
directories ik You use the —d £la3‘

4 achually have to
o Y:‘al?m;rca{:e {:\\Z dwcc{,anes under
i.\\c L\asscs root dnre(,{;or\(And i m

Fac{-.. v You 1:{: {',hc “'°'“?‘ ev do \ =
there's no thante ot 3 typo. 5
PackageExerclse Java

The -d flag tells the compller,
“pPut the class into its package
directory structure, using the
class speclified after the -d as
the root directory. But... Iif the
directories aren’t there, create
them first and then put the class
In the right placel”

package, jars and deployment

Ddﬁ‘ﬁl?e@lesﬁons

Q} I tried to <d into the
directory where my main class
was, but now the JVM says it can’t
find my classl But it’s right THERE
in the current directoryl

A: Once your class is in a
package, you can't call it by its

’short’ name. You MUST specify,

at the command-line, the fully-
qualified name of the class whose
main() method you want to run.
But since the fully-qualified name
Includes the package structure,
Java insists that the class be in a
matching directory structure. So if
at the command-line you say:

tjava com.foo.Book

the JVM will look in its current
directory (and the rest of its
classpath), for a directory named
“com” it will not look for a class
named Book, untll it has found

a directory named “com” with a
directory inside named “foo”. Only
then will the JVM accept that its
found the correct Book class. If it
finds a Book class anywhere else,
it assumes the class isn't in the
right structure, even if it ist The
JVM won't for example, look back
up the directory tree to say,"Oh, |
can see that above us is a directory
named com, so this must be the
right package...”

youare heres 591

JARs and packages

Making an executable JAR with packages

When your class is in a package, the package directory strucrure
must be inside the JAR! You can't just pop your classes in the
JAR the way we did pre-packages. And you must be sure that you
don’t include any other directories above your package. The
first directory of your package (usually com) must be the first
directory within the JARI If you were to accidentally include the
directory above the package (e.g. the “classes” directory), the JAR
wouldn’t work correctly.

Making an executable JAR

@ Make sure all of your class files are
within the correct package structure,
under the classes directory.

161101,

@ Create a manifest.txt file that states
which class has the main() method,
and be sure to use the fully-qualified
class namel

Make o text file named manifest.txt that has a
single line:

Main-Class: com.headfirstjava.Packagefxercise

Put the manifest file into the classes directory

® Run the jar tool to create a JAR file
that contains the package directories
plus the manifest

The only thing you need to include is the ‘com’
directory, and the entire package (and all classes)
will go into the JAR.

8cd MyProjact/classas

%jar -cvmf manifest_ txt packEx.jar com

592 chapter17

So where did the manifest file go?

Imagine you've put the packEx.jar into a directory named Skyler.

jar commands for listing and extracting

List the contents of a JAR

% jar |-Ef packEx.jar

T.(‘FSfAndsfo, Tb

Why don’t we look inside the JAR and find out? From the

command-line, the jar tool can do more than just create and run a
JAR. You can extract the contents of a JAR (just like ‘unzipping’ or
‘untarring’).

Sho\y me 3 tab !C F"C 35 i
IC Sm
oF the JAR g, e
Fits Edit Window Help Pickis b“.‘\
% cd Skyler dieed
% jar -tf packEx.jar an ¥

META-INF/

META-INF/MANIFEST .MF

com/
com/headfirstjava/
com/headfirstjava/

PackageExercise.class

Extract the contents of a JAR (i.e. unjar)

% cd Skylar
% jar [=%f packEx.jar

;

—xf cbands for ‘Extract File' and it
works Jusjc like unzipping or un{é\rvm?
£ you extract ’cM;ac Exjar, you!
sce the META-I

dir Ct'-‘to*"f

d-rct{o\"j and the
tom divectory durc&{‘,ov\/ in Your turvent

MANIFEST.MF

PackageExarcise.class

package, jars and deployment

A Q‘\¢_ nte 3
el g\q\u‘

we \’“J(' Jc\\: J
d'\rcb

MANIFEST.MF

ro11ay b
[ERIURY
21 b
0ot 18
001 01

PackagaExercise.class

META-INF stands for 'meta
information’. The jar tool creates
the META-INF directory as

well as the MANIFEST.MF file.
It also takes the contents of
your manifest file, and puts it
into the MANIFEST.MF file. So,
your manifest file doesn't go into
the JAR, but the contents of it
are put into the ‘real’ manifest
(MANIFEST.MF).

you are here » 593

organizing your classes

—%pen Your pencil

Glven the package/dlrectory structure in this
plcture, figure out what you should type at the
command-line to complle, run, create a JAR, and
execute a JAR Assume we're using the standard
where the package dlrectory structure starts just
below source and c/asses. In other words, the source
and cfasses directorles are not part of the package.

Compile:

%cd source
%javac

Run:
$cd

sjava

Foof.class Foof.Java

Create a JAR
$cd

%

Execute a JAR
scd

%

Bonus guestion:What's wrong with the package name?

584 chapter17

Dﬂﬁ%waeﬁom

Qj What happens If you try
to run an executable JAR, and
the end-user doesn’t have java
instailed?

A: Nothing wilt run, since
without a JVM, Java code can't
run.The end-user must have Java
installed.

Q_: How can | get Java
installed on the end-user’s

machine?

Ideally, you can create a custom
installer and distribute it along
with your application. Several
companies offer Installer pro-
grams ranging from simple to
extremely powerful. An installer
program could, for example, de-
tect whether or not the end-user
has an appropropriate version
of Java installed, and if not,
Install and configure Java before
Installing your application.
(nstallshield, InstaliAnywhere,
and DeployDirector all offer Java
installer solutions.

Another cool thing about some
of the installer programs is that
you can even make a deploy-
ment CD-ROM that includes
installers for all major Java
platforms, so...one €D to rule
them all. If the user’s running on
Solaris, for example, the Solarls
version of Java Is installed. On
Windows, the Windows, ver-
sion, etc. If you have the budget,
this Is by far the easiest way for
youy end-users to get the right
verslon of Java Installed and
configured.

package, jars and deployment

: ~
BULLET ponns\

Organize your project so that your source code and class files are not in
the same directory.

A standand organization structure is to create a project directory, and then
put a source directory and a classes directory inside the project directory.

Organizing your classas into packages prevents naming ¢ollisions with
other classes, if you prepend your reverse domain name on 1o the front of
a class name.

To put a class in a package, put a package statement at the top of the
source code file, before any import statements:
packaga com.wickedlysmart;

To be in a package, a class must be in a directory structure that exactly
matches the package structure. For a class, com.wickediysmart. Foo,
the Foo class must be in a directory named wickedlysmart, which is in a
directory named com.

To make your compiled dlass land in the correct package directory
structure under the cfasses directory, use the —d compiler flag:

% cd source

% javac -d ../classes com/wickedlysmart/Foo.java

To run your code, cd to the classes directory, and give the fully-qualified

name of your class:
% cd classes
% java com.wickedlysmart.Foo

You can bundle your classes into JAR (Java ARchive) files. JAR is based
on the pkzip format.

You can make an executable JAR file by putting a manifest into the JAR
that states which class has the main() method. To create a manifest file,
make a text file with an entry iike the following (for example):
Main-Class: com.wickedlyamart. Foo

Be sure you hit the return key after typing the Main-Class line, or your
manifest file may not work.

To create a JAR file, type:

jar -cvfm manifast.txt MyJar.jar com

The sntire package directory structure (and only the directories matching
the package) must be immediately inside the JAR file.

To run an executabla JAR flle, type:
java -jar MyJar.jar

you are here» 5§95

wouldn’t it be dreamy...

Executable JAR files
are nice, but wouldn't it be dreamy

if there were a way to make a rich, stand-
alone client GUT that could be distributed
over the Web? 5o that you wouldn't have to
press and distribute all those CD-ROMs. And
wouldn’t it be just wonderful if the program
could automatically update itself, replacing
Just the pieces that changed? The clients
would always be up-to-date, and you'd never
_ have to worry about delivering new

596 chapter 17

package, jars and deployment

100% Remote

End-users launch a Java

Java Web Start Web Start app by clicking

on a [ink in 3 Weh

With Java Web Start (JWS), your application is launched for the

first time from a Web browser (get it? Web Star?) but it runs as a Page. Bu’t onee ‘ﬂ'le 3PP

stand-alone application (well, almost), without the constraints of the

browser. And once it’s downloaded to the end-user’s machine (which dOWDlOﬂdS, it runs Olﬂﬁlde
happens the first time the user accesses the browser link that starts ﬂle brawser j'U.S’t er any

the download), it stays there.

Java Web Start is, among other things, a small Java program that lives 0ﬂ1e1° Stand—alo;ne ,]ava

on the client machine and works much like a browser plug-in (the .

way, say, Adobe Acrobat Reader opens when your browser gets a .pdf aPPh cation. In ‘F&C’t‘ a

file). This Java program is called the Java Web Start ‘helper app’, Ja\’a Web Start aPP 1S jT-lS’f
and its key purpose is to manage the downloading, updating, and

launching (executing) of your JWS apps. an executable J AR ﬂﬁt’s
When JWS downloads your applicaton (an executable JAR), it distﬁbltted over ﬂie W’eb

invokes the main () method for your app. After that, the end-user can
launch your application directory from the JWS helper app without
having to go back through the Web page link.

But that's not the best part. The amazing thing about JWS is its
ability to detect when even a small part of application (say, a single
class file) has changed on the server, and—without any end-user
intervention—download and integrate the updated code.

There’s still an issue, of course, like how does the end-user gef Java
and Java Web Start? They need both—Java to run the app, and Java
Web Start (a small fava application itself) to handle retrieving and
launching the app. But even that has been solved. You can set things
up so that if your end-users don’t have JWS, they can download

it from Sun, And if they do have JWS, but their version of Java is
out-of-date (because you've specified in your JWS app that you

need a specific version of Java), the Java 2 Standard Edition can be
downloaded to the end-user machine.

Best of all, it’s simple to use. You can serve up a JWS app much like
any other type of Web resource such as a plain old HTML page ora
JPEG image. You set up a Web (HTML) page with a link to your JWS
applicadon, and you’re in business.

In the end, your JWS application isn’t much more than an
executable JAR that end-users can download from the Web.

you are here

697

Java Web Start

How Java Web Start works

(3) The client clicks on a Web page link
to your JWS application (a . jnlp file).
The Web page link
Click

The Web server (HTTP) gets the
request and sends back a .jnlp file
(this is NOT the JAR).

The jnlp file is an XML document that
states the name of the application's
executable JAR file.

@ Java Web Start (a small 'helper app’
on the client) is started up by the
browser. The JWS helper app reads
the .jnlp file, and asks the server for
the MyApp.jar file.

The Web server 'serves’ up the
requested _jar file.

HcllchbShH: (the app in the JAR)
Java Web Start gets the JAR and
starts the application by calling the
specified main() method (just like an
executable JAR).
Next time the user wants to run this app, he can |

open the Java Web Start application and from
there launch your app, without even being online.

598 chapter17

package, jars and deployment

The .jnlp file

To make a Java Web Start app, you need to .jnlp (Java Network

Launch Protocol) file that describes your application. This is the
file the JWS app reads and uses to find your JAR and launch the
app (by calling the JAR’s main() method). A jnlp file is a simple

XML document that has several different things you can putin, Sy Kne ‘voot
but as a minimum, it should look like this: veve 12\3: s?cb;l cevver .
’ s W s O) e WSIN
. ‘oan- {',3 A‘ S& e
<?xml version="”1.0” encoding="utf-8"7?> The tode our WE 02 v \053\\"&*"0_[" For “c\;d
ok whexe 1 s or 2 4197104 s WOV
ree 128 nd 3&6? S Yo seever el
e Yoea 1ok el oo
. EAai
<jnlp spec=70.2 1.0~ s%a\')"’ 3“5. ! ww‘“"“‘f'\ud\i
say WS
codebase="http://127.0.0.1/~kathy” < elabive o the
href="MyApp.jnlp”> This is &he location of the jplp Fil e Boo el i
PP InIp™> codebase. This example shows that My Y‘;\)“ ?ve\' not
available in the voot diveetory of the web server
ested in some other divectory.
<information> L
ol
<title>kathy App</title> Be sure to *mc\ucgce ?“Toxf ?\fc ’C':E;:f &?;‘;"Qg by
etlyt The intorm)
<vendor>Wickedly Smart</vendor> g’:’ 3&2‘ :;;:: avv‘,, mostly for disvlia\,\;gdw};cn\gi ‘:Sn"
<homepage href="index.html”/> wants to relaunth 3 previousty~downlodded 37

<description>Head First WebStart demo</description>

<icon href="kathys.gif”/>

. ithout
<offline-allowed/> { a Jdnc usey £an Yun Yow ram Wi y)
. i “{;:\‘: m:o::ecjocd to the internet. TEOEM usey sf{.’oﬂl\cc,
</antomation it mscans Lhe awkomatic-updating feature won't work:
<resources>

This says that your app needs version |3
<j2se version="1.3+"/> 6/ of Java, or greater.
<jar href="MyApp.jar”/>¢ T}, name of

our ¢
</resources> :i:" AR Files 3¢ ::ﬁ??gz ;,)ARI You might have
Sounds and images used by ;ii:fher Casus o
app.
<application-desc main-class="HelloWebStart”/>

</jnlp> R This is like the mainfest Main—Class entry... it says
which ¢lass in the JAR has the main() method.

you are herey» 599

deploying with JWS
Steps for making and deploying
a Java Web Start app

Make an executoble JAR
for your application. =

MyApp.jar

Locpald

Write a Jnip file. |=*

C wmrs
coedm

MyApp.Jnip

@ Place your JAR and .jnlp
files on your Web server.

@ Add a new mime type to your Web server.
application/s-java-jnlp-file

This causes the server Yo send the .jnlp file with the
correct header, so that when the browser receives
the jnlp file it knows what it is and knows to start

the JWS helper app.
[Lorpai
@ Create a Web page with a link gy
to your _jnlp file ol
<HTML> MySWSApp.htrl
<BODY>
Launch My Application
</BODY>
</HTML>

800 chapter17

at’s
1rst? o

Look at the sequence of events below,and

place them in the order in which they
oceur in a JWS application.

the Wab server 8onds a JAR

o Wiab browser siarts b L7100 the JWS hejper app
helper apP — e
the JWS helpe S nalol 3 1

the JAR file

the Web server sends s
file to the browser

user dlicks a Web page lin

the JAR’s main() method

BiWser requests a Jnip file
from the Web server

D%'eﬁ]e mesﬁons

Q: How Is Java Web Start different from an applet?

A: Applets can't live outside of a Web browser. An applet is
downloaded from the Web as part of a Web page rather than
simply from a Web page. In aother words, to the browser, the applet
Is just like a JPEG ar any other resource. The browser uses elther a
Java plug-in or the browser’s own built-in Java (far less common
today) to run the applet. Applets don’t have the same level of
functionality for things such as automatic updating, and they must
always be launched from the browser. With JWS applications, once
they're downloaded from the Web, the user doesn’t even have to
be using a browser to relaunch the application locally. Instead,

the user can start up the IWS helper app, and use It to launch the
already-downloaded application agaln.

Q: What are the security restrictions of JWS?

A: JWS apps have several limitations including being
restricted from reading and writing to the user’s hard drive. 8ut...
JWS has Its own APl with a special open ang save dlalog box so
that, with the user’s permission, your app can save and read its
own flles In a special, restricted area of the user’s drive,

the JWS helper app invokes

package, jars and deployment

. S

Java Web Start technology lets you deplay a
stand-alone client application from the Web.

Java Web Start includes a ‘helper app' that must
be installed on the client (along with Java).

A Java Web Start (JWS) app has two pieces:
an executable JAR and a jnlp file.

A jnlp file is a simple XML document that
describes your JWS application. Itincludes
tags for specifying the name and location of the
JAR, and the name of the ciass with the main()
methed.

When a browser gets a .jnlp file from the server
(because the user clicked on a link to the _jnlp
file), the browser starts up the JWS helper app.

The JWS helper app reads the .jnlp file and
requests the executable JAR from the Web
server.

When the JWS gets the JAR, it invokes the
main{) methed (specified in the jnip file).

601

you are here »

exercise: True or False

f.*" Sy, We explored packaging, deployment, and JWS
I il g in this chapter. Your job is to decide whether
- /é . each of the following statements is true or fafse.

o9
* ©Trve or FaLse®

1. The Java compiler has a flag, -d, that lets you decide where your .class files should go.
2. AJARis a standard directory where your .class files should reside.

3. When creating a Java Archive you must create a file called jar.mf.

4. The supporting file in a Java Archive declares which class has the main() method.

5. JAR files must be unzipped before the JVM can use the classes inside.

6. At the command line, Java Archives are invoked using the -arch flag.

7. Package structures are meaningfully represented using hierarchies.

8. Using your company’s domain name is not recommended when naming packages.

9. Different classes within a source file can belong to different packages.

10. When compiling classes in a package, the -p flag is highly recommended.

11. When compiling classes in a package, the full name must mirror the directory tree.
12. Judicious use of the d flag can help to assure that there are no typos in your class tree.
13. Extracting a JAR with packages will create a directory called meta-inf.

14. Extracting a JAR with packages will create a file called manifest.mf.

15. The JWS helper app always runs in conjunction with a browser.

16. JWS applications require a .nlp (Network Launch Protocol) file to work properly.

17. AJWS’s main method is specified in its JAR file.

602 chapter17

package, jars and deployment

Summaryﬂr@ss 7.0

k! "

L

Anything in the book
is fair game for this

'lllll.'ll I -

EEE JAEEEEE 'III
L] H il

H dEENE JdEEE

6 ! 3 5 38 39
i
!

Across Down

6. Won't travel 26. Mine is unique 1. Pushy widgets 16. Who's allowed 30. /O cleanup
9. Don't split me 27. GUI's target 2. of mydesire 19. Efficiency expert 31. Milli-nap
10. Release-able 29. Java team 3. 'Abandoned’ moniker 20. Early exit 34. Trig method
11. Got the key - 30. Factory 4. A chunk 21. Common wrapper 36. Encaps method
12. /O gang 32. Forawhile 5. Math not trig 23, Yes or no 38. JNLP format
15. Flatten 33. Atomic* 8 6. Be brave 24, Java jackets 39. V8’ final

17. Encapsulated retumer 35, Good as new 7. Arrange well 26, Not behavior 40. Java branch
18. Ship this one 37. Pairs event 8. Swing slang 28. Socket’s suite

2. Make ft so 41, Where do | start 1. /0 canals

22. /O sleve 42 Alittle firewall 13. Organized release

25. Disk leaf 14. Not for an instance

you are here ¥

603

exercise solutions

user clicks a Web page link

> browser requests a .fﬁlp file
. from the Web server
3. the Web server sends a jnlp

file to the browser

4, the Wab browser starts up
tha JWS helper app

5 the helper app fequests
. the JAR file
the Web sorver sends a
JAR
6. | file to the JWS helper app
, I the JWS helper app Invok

the JAR's main(} method

True . The Java compiler has a flag, -d, that lets you decide where your .class files should go.
False o. A JAR is a standard directory where your .class files should reside.
False 3. when creatng a Java Archive you must create a file called jar,mf.

1
2
3
True 4 The supporting file in a Java Archive dectares which class has the main() method.
False s JAR files must be unzipped before the JVM can use the classes inside.
False &
True 7
False s
False o

False 10. When compiling classes in a package, the -p flag is highly recommended.

. At the command line, Java Archives are invoked using the -arch flag.
. Package structures are meaningfully represented using hierarchies.
. Using your company's domain name is not recommended when naming packages.

. Different classes within a source file can belong to different packages.

True 11. When compiling classes in a package, the full name must mirror the directory tree.
True 19 Judicious use of the -d flag can help to assure that there are no typos in your tree.
True 13 Extracing a JAR with packages wil] create a directory called meta-inf.

True 14 Extracting a JAR with packages will create a file called manifestmf.

False 15. The JWS helper app always runs in conjunction with a browser.

False 16 JWS applications require a .nlp (Network Launch Protocol) file to work properly.
False 17. AJwS's main method is specified in its JAR fle.

604 chapter17

Qummary-Lress 7.0

RANSIENT
R

D ﬂ E,, BWME
[EIX[EICUITIABIL [E B CII T
| PIIA R AR U <
EME%EIII= IIEEEB
ﬂﬂﬂﬂﬂﬁﬂﬂl S |O[CIK[E T MIER
INEIAREE T RN |
P [A|C[KIAIG|E BRRNC |LIAISISERL |O| O
R E L P TRAL

P
L | L s R (5 P
B|Y[TIEFNRESITIORIEFHE JE X TR E M E
A d H B 1€ R
"M|A 5

I S|ITEHE|N|CIA[P|S|U[L]A|T

S |

you are here »

605

