A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

9 constructors and garbage collection

Life and Death
of an Object

...then he said,
*I can't feel my legs!” and

T said “Joel Syay with me Joel”
But it was... Yoo late. The gerbage
{ collector came and... he was gone.

' Best object I ever had.

Objects are born and objects die. You're in charge of an object’s lifecycle.

You decide when and how to construct it You decide when to dastroy it. Except you don’t
actually destroy the object yourself, you simply abandor it. But once it’s abandoned, the
heartiess Garbage Cotlector (gc) can vaporize it, reclaiming the memory that object was
using. If you're gonna write Java, you're gonna create objects. Sooner or later, you're gonna
have 10 let some of them go, or risk running out of RAM. In this chapter we look at how objects
are created, where they live while they're alive, and how to keep or abandon them efficiently.
That means we’ll talk about the heap, the stack, scope, constructors, super constructors, null
references, and more, Warning: this chapter contains material about object death that some

may find disturbing. Best not to get too attached.

this is a new chapter 235

http://www.a-pdf.com/?product-split-demo

the stack and the heap

The Stack and the Heap: where things live

Before we can understand what reatly happens when
you create an object, we have to step back a bit. We
need to learn more about where everything lives
(and for how Jong) in Java. That means we need to
learn more about the Stack and the Heap. In Java, we
(programmers) care about two areas of memory—the
one where objects live (the heap), and the one
where method invocations and local variables live
(the stack). When a JVM starts up, it gets a chunk of
memory from the underlying OS, and uses it to run
your Java program. How much memory, and whether
or not you can tweak it, is dependent on which
version of the JVM (and on which platform) you’re

The Stack

Where method invocations
and local varlables live

running. But usually you wen t have anything to say
about it. And with good programming, you probably
won't care (more on that a little later).

We know that all objects live on the garbage-collectible
heap, but we haven’t yet looked at where variables
live. And where a variable lives depends on what kind
of variable it is. And by “kind”, we don’t mean fype
(i.e. primitve or object reference). The two kinds of
variables whose lives we care about now are instance
variables and local variables. Local variables are also
known as stack variables, which is a big clue for where
they live.

The Heap
Where ALL objects live

Instance Variables

Instance varlables are declared inside a class but not
inside a method. They represent the *fields” that each
indlvidual object has (which can be filled with different
values for each instance of the class). Instance variables
live Inside the object they belong to.

public class Duck (
\\as a “S.U'-LI

int size; ey Duk
able.

} “\5*3 wie var"

Local Variables

Local variables are declared inside a method, Including
method parameters. They're temporary, and live only as
long as the method is on the stack iin other words, as fong as
the method has not reached the closing curly brace).

public void foo(int x)

and
int L= x4 37 qpepane® L
= - ‘-
boolean b = true; the gavigbles "
| \oeal vard

} ax

2368 chapter9

Methods are stacked

When you call a method, the method lands on
the top of a call stack. That new thing that’s
actually pushed onto the stack is the stack
frame, and it holds the state of the method
including which line of code is executing, and
the values of al] Jocal variables.

The method at the fop of the stack is always

the currently-running method for that stack
(for now, assume there's only one stack,but in
chapter 14 we’ll add more.) A method stays on
the stack until the method hits its closing curly
brace (which means the method’s done). If
method foo() calls method bar(), method bar() is
stacked on top of method foo().

constructors and gc

A call stack with two methods
k‘h’? of the stack

™ loeal vaviables
(induding
parameter w)

bottom of the stask
The method on the top of the

stack is always the currently-
executing method.

public void doStuff() { A stack seenarfo
boolean b = true:;
go(d); The code on the left is a snippet (we don't care what the rest of the
} class tooks like) with three methods. The first method (doStuff(}) calls
public void go(int x) { the second method (go()), and the second method calls the third
int z = x + 24; (crazy()). Each method declares one local variable within the body
crazy() : of the method, and method go() also declares a parameter variable
// imagine more code here (which means go() has two local variables).

)

public void crazy() {
char e = ‘a’;

)

0 Code from another doStuff() calls go{), go() calls crazy(), crazy() completes,

class calls doStuff(), go() is pushed on crazy() is now on the and its stack frame is
and doStuff() goes top of the stack. top of the stack, popped of f the stack.
into a stack frame Variables 'x’ and 'z’ with variable '¢' in Execution goes back
at the Yop of the are in the go() stack the frame. to the go() method,
stack.The boolean freme. and picks up at the
variable named b’ line following the call
goes on the deStuff() to crazy().

stack frame.

\

JoSEFL0. b

Rl

you are here » 237

&

object references on the stack

What about local variables that are objects?

e ———

Remember, a non-primitive variable holds a nference to an

object, not the object itself. You already know where objects
live—on the heap. It doesn’t matter where they're declared or
created. If the local variable is a reference to an object, only
the variable (the reference/remote control) goes on the stack.

The object itself still goes in the heap.

publiec class StackRaef {
public void foof () {(
barf () ;
}

public void barf() {
Duck d = new Duck (24) ;
}

Ddz?ﬁqel?e llestions

» One more time, WHY are we learning the
whole stack/heap thing? How doas this help ma?
Do I really need to learn about it?

A: Knowing the fundamentals of the Java
Stack and Heap Is cruclal if you want to understand
variable scope, object creation Issues, memory
management, threads, and exception handlIng.

We cover threads and exception handling In later
chapters but the others you'll learn In thls one.You
do not need to know anything about how the Stack
and Heap are Implemented in any particular JVM
and/or platform. Everything you need to know
about the Stack and Heap Is on this page and the
previous one.If you nall these pages, all the other
toplcs that depend on your knowing this stuff will
go much, much, much easier. Once again, some day
you will SO thank us for shoving Stacks and Heaps
down your throat.

238 chapter9

ba
b

ACL\ oY CA

entt
wside

2 ‘\A L(Ca s
k0 dE"c\Yyﬁ qar'\a\)\c ¢ le >\
utk €

No "‘a&ﬂ' WHERE

reterense

. - S

) 2

) 4

Java has two areas of memory we care about:
the Stack and the Heap.

Instance variables are variables declared
inside a class but outside any method.

Local variables are variables declared inside a
mathod or method parameter.

All local variables live on the stack, in the
frame corresponding to the method where the
variables are declared.

Object reference variables work just like primi-
tive variablas—if the reference is declared as a
local vanable, it goes on the stack.

All objects live In the heap, regardless of
whether the referencs is a local or instance
vanable.

If loecal variables live on the stack,
where do instance variables live?

When you say new CellPhone(), Java has to make
space on the Heap for that CellPhone. But how much
space? Enough for the object, which means enough to
house all of the object’s instance variables. That's right,
instance variables live on the Heap, inside the object
they belong to.

Remember that the values of an object’s instance
variables live inside the object. If the instance variables
are al] primitives, Java makes space for the instance
variables based on the primitive type. An int needs

32 bits, a long 64 bits, etc. Java doesn’t care about the
value inside primitive variables; the bit-size of an int
variable is the same (32 bits) whether the value of the
int is 32,000,000 or 32.

But what if the instance variables are objects? What if
CellPhone HAS-A Antenna? In other words, CellPhone
has a reference variable of type Antenna.

When the new object has instance variables that are
object references rather than primitives, the real
question is: does the object need space for all of

the objects it holds references to? The answer is, no!
exactly. No matter what, Java has to make space for the
instance variable values. But remember that a reference
variable value is not the whole object, but merely a remote
control to the object. So if CellPhone has an instance
variable declared as the non-primitive type Antenna,
Java makes space within the CellPhone object only for
the Antenna’s remote control (i.e. reference variable) but
not the Antenna object.

Well then when does the Antenna object get space on
the Heap? First we have o find out when the Antenna
object itself is created. That depends on the instance
vaniable declaration. If the instance variable is declared
but no object is assigned to it, then only the space for
the reference variable (the remote control) is created.

private Antenna ant;

No actual Antenna object is made on the heap unless
or undl the reference variable is assigned a new
Antenna object.

private Antenna ant = new Antenna () ;

constructors and gc

it

Objc(.{: with two Primiﬁvc instance vaviables.
Space for the variables lives in the objcct

Objett with one non—primitive instante variable—
3 vekerence to an Antenna object, but no actual
Antenna object This is what you get b You
deelave the variable but don't initialize it with
an attual An{tm\a objec{‘,

public class CellPhone {
private Antenna ant;
}

Object with one non—primitive instanee vaviable,
and the Antenna variable is assigned 3 new
Av\ftnna object

public class CellPhone (
private Antenna ant = new Antenna();

}

you are here» 239

object creation

The wmiracle of object creation

Now that you know where variables and objects live, we can dive into
the mysterious world of object creation. Remember the three steps
of object declaration and assignment: declare a reference variable,
create an object, and assign the object to the reference.

But until now, step two—where a miracle occurs and the new object
is “born"—has remained a Big Mystery. Prepare to learn the facts of
object life. Hope you 're not squeamish.

Review the 3 steps of object
declaration, creation and assignment:

Declare a reference

Coventt variable
e

e
Ma\cebacnw;c\ass oc Duck myDuck = new Duck():
19
q'\::ﬂsabc me.

Duck reference

e Create an object
‘\'35\6 A Duck myDuck = new Duck () ;
v\ -
here:

oLV Duck object

ke me¥ e Link the object and

p@s:)c Lo ke the reference
o:!ge“e‘\u_ Duck myDuck @new Duck () ;

Duck object

Duck reference

240 chapter9

constructors and gc

Are we calling a method named Duck()?
Because it sure looks like it. .
\ Yaoks ke wc'rch«Z““L‘E?
wed VWD
Duck myDuck = new Duck(); 3 mebhod 12 srentheses:
pecause oF e ¥
No.

We’re calling the Duck constructor.

A constructor doeslook and feel a lot Jike a method, but it’s not
a method. It’s got the code that runs when you say new. In other
words, the code that runs when you instantiate an object.

The only way to invoke a constructor is with the keyword new
followed by the class name. The JVM finds that class and invokes
the constructor in that class. (OK, technically this isn't the only
way to invoke a constructor, But it’s the only way to do it from
ouiside a constructor. You ecan call a constructor from within
another constructor, with restrictions, but we’ll get into all that
Jater in the chapter.)

But where is the constructor?
If we didn’t write It, who did?

You can write a constructor for your class (we're about to do
that), but if you don’t, the compriler writes one for you!

Here’s what the compiler’s default constructor looks like:
public Dueck()

}
Notice something missing? How is this

the
different from a method? Lhe same 3
o . Thats mandaber
tlass wa™
, public™ Duck() {
;}/}'ges the return fypc? // constructor code goes hera
' ©)

you are here» 241

constructing a new Duck

Construet a Duek

The key fearure of a constructor is that it runs
before the object can be assigned to a reference.
That means you get a chance to step in and

do things to get the object ready for use. In
other words, before anyone can use the remote
contro] for an object, the object has a chance to
help construct itself. In our Duck constructor,
we're not doing anything useful, but it still
demonstrates the sequence of events.

If it Quacks like a
constructor..

public class Duck {

public Duck({) {
System.out.println(“Quack”) ;

} The constructor gives
S Lov tode you a chance to step into
Comstrvt the middle of new.

Flla Edlt Window Help Quack
% java UseADuck
public static void main (String[] args) { Quack
Duck d = new Duck{() ;
} ~—— This alls
y Eonstrue foy,

public class UseADuck ({

3 Increment a counter 1o track how many objects of this class type
have been made.

(J Assign runtime-specific state (data about what's happening NOW).
O Assign values to the object’s important instance variables.

0] Get and save a reference 1o the object that’s craating the new object.
(] Add the object to an ArrayList.

(O Create HAS-A objects.

a {your idea here)

- Q\Sbgrpen your pencil
Ny,

A constructor lets you jump Into the middle
of the object creation step—into the middle
of naw. Can you imagine conditions where
that would be useful? Which of these might
be useful in a Car class constructor, if the Car
is part of a Racing Game? Check off the ones
that you came up with a scenario for.

242 chapler9

Initializing the state of a new Puck

Most people use constructors to initialize the state of an object.
In other words, to make and assign values to the object’s
instance variables.

public Duck() {
size = 34;

}

That’s all well and good when the Duck class developer knows
how big the Duck object should be. But what if we want the
programmer who is using Duck to decide how big a particular
Duck should be?

Imagine the Duck has a size instance variable, and you want the
programmer using your Duck class to set the size of the new
Duck. How could you do it?

Well, you could add a setSize() setter method to the class. But
that leaves the Duck temporarily without a size*, and forces the
Duck user to write two statements-—one to create the Duck, and
one to call the setSize () method. The code below uses a setter
method to set the initial size of the new Duck.

public class Duck { ble
int size; . .ctante vavia

public Duck() {
System.out.println(“Quack”) ; wy.sk‘f“"{"w
) AN

public void setSize(int newSize) { e cckter mc\-,\\od
s

gize = newSize;

}

public class UseADuck {

public static void main (String[] args){
Duck d = new Duck() ;

(’\\ R : ad .
d.setSize (42) ; A:: Point iy, the c’lﬂdrtr - The D

*Instance variables do have a default value. 0 or
0.0 for numeric primitives, false for booleans, and
null for references.

constructors and gc

therejare po
Dumb Questions

* Why do you need to write
a constructor if the compiler
writes one for you?

A: If you need code to help
initialize your object and get

it ready for use, you'll have to
write your own constructor. You
might, for example, be depen-
dent on input from the user
before you can finish making
the object ready. There’s another
reason you might have to write
a constructor, even if you don’t
need any constructor code
yourself. It has to do with your
superclass constructor, and we'll
talk about that in a few minutes.

. How can you tell a con-
structor from a method? Can
you also have a method that’s
the same name as the class?

A: Java lets you declare a
method with the same name as
your class. That doesn’t make it
a constructor, though.The thing
that separates a method from a
constructor is the return type.
Methods must have a return
type, but constructors cannot
have a return type.

(Qé: Are constructors inher-
ited? If you don’t provide a
constructor but your superclass
does, do you get the superclass
constructor instead of the
default?

A: Nope. Constructors are
not inherited. We'll look at that in
just a few pages.

you are here» 243

initializing object state

Using the constructor to initialize
important Duck state*

If an object shouldn’t be used until one or

more parts of its state (instance variables) have
been initialized, don't let anyone get ahold of

a Duck object until you're finished initializing!
It’s usually way too risky to let someone make—
and get a reference to—a new Duck object that
isn’t quite ready for use until that someone turns
around and calls the setSize() method. How will
the Duck-user even know that he's required to call
the setter method after making the new Duck?

Let the user make a new Duck
and set the Duck's size all in
one call. The call to new.
The call 1o the Duck
canstructor.

The best place to put initialization code is in the

constructor. And all you need to do is make a

constructor with arguments. ¢
gu o OV

we ¥
public elass Duck { 0 .
int size; P\dé “S‘\,",\.LW

public Duck(int duckSize) {

System.out.println(“Quack”) ; Use the a\-gumcn{" value to set

sizea = duckSize; the size instance vaviable.

System.out.println(“size is “ + size);

public class UseADuck {

public static void main (String(] args) {
§ Duck d = new Duck (42) ;
‘S 0‘\\ } &

Pass a vale to the

. *,\\C“ ¢ 3v_(_
S e
ot s‘.\cﬂ Dub\L 3:uumc“b File Edt Windaw Help Hank
Jd:; gzt or¢ % java UseADuck
N

Quack

size is 42

“Not to imply that not all Duck siale Is not unimportant.

244 chapter9

Make it easy to make a Puck
Be sure you have a no-arq constrvetor

What happens if the Duck constructor takes an argument?
Think about it. On the previous page, there’s only one Duck
constructor—and it takes an int argument for the sizz of the
Duck. That might not be a big problem, but it does make it
harder for a programmer to create a new Duck object, especially
if the programmer doesn’t know what the size of a Duck should
be. Wouldn't it be helpful to have a default size for a Duck, so
that if the user doesn’t know an appropriate size, he can still
raake a Duck that works?

Imagine that you want Duck users to have TWO options
for making a Duck—one where they supply the Duck
size (as the constructor argument) and one where they
don’t specify a slze and thus get your default Duck size.

You can’t do this cleanly with just a single constructor.
Remember, if 2 method (or constructor—same rules) has

a parameter, you must pass an appropriate argument when
you invoke that method or constructor. You can'’t just say, “If
someone doesn’t pass anything to the constructor, then use
the default size”, because they won’t even be able to compile
without sending an int argument to the constructor call. You
could do something clunkly like this:

‘public class Duck ({
int mize;

public Duck (int newSize) { ;zrm Y 2z, OENETE
if (newSize = 0) ({ ' dch“ sv c\:ﬂva\“‘ o
aiza = 27; ?;t?:z'“NoT 3 vey 3""6

} alsa {
siza = nawSize; oo™

}
)

But that means the programmer making a new Duck object has
to know that passing a “0” is the protocol for getting the default
Duck size. Pretty ugly. What if the other programmer doesn’t
know that? Or what if he really does want a zero-size Duck?
{Assuming a zero-sized Duck is allowed. If you don't want
zero-sized Duck objects, put validaton code in the constructor
to prevent it.) The point is, it might not always be possible

to distinguish between a genuine “I want zero for the size”
constructor argument and a “I’'m sending zero so you'll give
me the default size, whatever that is” constructor argument.

constructors and gc

You really want TWO ways to
make a new Duck:

| public class Duck2 (
int gize;

public Duck2() ({
// supply default size
size = 27;

}

public Duck2 (int duckSiza) {
// uvse duckSize paramatar
size = duckSize;

To make a Duck when you know the size:
Duck2 d = new Duck2 (15);

To make a Duck when you do not know
| the size:

Duck?2 d2 = new Duck2 () ;

So this two-options-to-make-a-Duck idea
needs two constructors. One that takes
an int and one that doesn’t. /f you have
more than one constructor In a class,

it means you have overloaded
constructors.

you are here» 245

overloaded and default canstructors

Doesn’t the compiler always

make a no-arg constructor OK, let's see here... “You
h he right to you

foryou? N/OI ave the right to your own

constructor.” Makes sense.
You might think that if you write only
a constructor with arguments, the
compiler will see that you don't have a
no-arg constructor, and stick ove ia for
you. But that's not how it works, The
compiler gets involved with constructor-
making only if you don’t say anything at all
about constructors.

“If you cannot afford a constructor,
one will be provided for you by the
compiter.” Goad to know.

If you write a constructor that
takes arguments, and you stil
want a no-arg constructor,
you'll have to build the no-arg
constructor yourself!

As soon as you provide a constructor,
ANY kind of constructor, the compiler
backs off and says, “OK Buddy, looks like

you're in charge of constructors now.”

if you have more than one
constructor in a class, the
constructors MUST have
different argument lists.

The argument list includes the order
and types of the arguments. As long as
they're different, you can have more
than one constructor. You can do this
with methods as well, but we’ll get to that
in another chapter.

246 chapter 9

constructors and gc

Overloaded constructors means you have

T -
more than one constructor in your class.

To compile, each constructor must have a
different argument listl

The class below is legal because all four constructors have
different argument lists. If you had two constructors that took
only an int, for example, the class wouldn’t compile. What you
name the parameter variable doesn’t count. It’s the variable
type (int, Dog, etc.) and order that rnatters. You can have two
constructors that have idenncal types, as long as the order is
different. A constructor that takes a String followed by an int, is
not the same as one that takes an int followed by a String.

o

public Mushreom {int size) ()

public clags Mushroom {

hen you don £ know anythind
public msh.toom() () v v £ e maﬁ“t' .8 not,
when Ya.)‘{_' ;::'\l {-'hg izL
publiec Mushroom (booclean isMagic) () but don
. . . . when Yoﬂ know ,
nave the (public Mushroom (boolean isMagic, int size) (} not ks
same avas, ovTin magics you
di““""t order, o (public Mushroom (int size, boolean isMagic) { } T sine 25 well
s 0¥ }
BULLET POINTS \%
» [Instance variables live within the object they belong to,on 'y, f you want a no-arg constructor, and you've already put
the Heap. in a constructor with arguments, you'll have to build the
» Ifthe instance variable is a reference to an object, both no-arg constructor yourself.
the reference and the object it refers to are on the Heap. » Always provide a no-arg constructor if you can, to make it
» Aconstructor is the code that runs when you say new on easy for programmers to make a working object. Supply
a class type. defaull values.
» Aconstructor must have the same name as the class, and > Overloaded constructors means you have more than one
must not have a return typs, constructor in your class.
» You can use a constructar to Initalize the state (ie. the » Qverloaded constructors must have different argument
instance variables) of the object belng constructed. lsts.
If you don't put a constructor in your class, the compiler » You cannot have two constructors with the same
> wiﬁ putin a zefault constructor. d P argument lists. An argument list includes the order and/or
' type of arguments.
» The default constructor is always a no-arg constructor. o
. » Instance variables are assigned a default value, even
» Ifyou put a constructor—any constructor—in your class, when you don't explicitly assign one. The default values

the compiler will not build the default constructor.

but you

when You know the siz¢,

don't know if it's magie

are 0/0.0/false for primitives, and null for references.

you are here »

247

overloaded constructors

S \k Match the new Duck () call with the constructor
that runs when that Duck is instantiated. We did
the easy one to get you started.

public claas TestDuck {
public static void main(String[] args)

int weight = 8;
float density = 2.3F;
String name = “Donald”;
long[] feathers = {1,2,3,4,5,6});
boolean canFly = true;
int airspeed = 22;
Duck[] d = new Duck[7):;
d(0] = new Duck() ;
d[1] = new Duck (density, weight):;
d[2] = new Duck(pame, feathers);

d[3] = new Duck (canFly) ;

d[4] = new Duck(3.3F, airspeed);

d[5] = new Duck(falsa);

d[6] = naw Duck (airspeed, density);

class Duck {

int pounds = 6;

float floatability = 2.1F;

String name = “Generic”;

long[] feathers = (1,2,3,4,5,6,7};
boolean canFly = true;

int maxSpeed = 25;

public Duck() {(
System.out.println(“type 1 duck”);
)

public Duck (boolean fiy) {
canFly = fly;
System.out.println (“type 2 duck”);
}

public Duck(String n,
name = n;
feathers = £;
System.out.println(“type 3 duck”);

long[] £) |

)

public Duck({int w, float £) {
pounds = w;
floatability = £;
System.out.println(“type 4 duck”}:
}

public Duck(float density, int max) {
floatability = density;
maxSpeed = max;
System.out.println(“type S duck”);
}
}

Q: Earlier you sald that it’s good to have a no-argu-
ment constructor so that if people call the no-arg con-
structor, we can supply default values for tha “missing”
arguments. But aren’t there times when it’s impossible to
come up with defaults? Are there times when you should
not have a no-arg constructor in your class?

A: You're right. There are times when a no-arg construc-
tor doesn't make sense, You'll see this in the Java AP[—some
classes don't have a no-arg constructor. The Color class, for
example, represents a... color. Color objects are used to, for
example, set or change the color of a screen font or GUI
button. When you make a Color Instance, that instance Is

of a particular color (you know, Death-by-Chocolate Brown,
Blue-Screen-of-Death Blue, Scandalous Red, etc.). if you

make a Color object, you must specify the color in some way.

Color ¢ = new Colorx(3,45,200);

248 chapter @

(We're using three Ints for RGB values here.We’ll get into
using Color later, in the Swing chapters.) Otherwise, what
would you get? The Java APl programmers could have de-
cided that if you call a no-arg Color constructor you’ll get a
lovely shade of mauve. But good taste prevailed.

If you try to make a Color without supplying an argument:

Color ¢ = new Colorx{):

The compiler freaks out because it can't find a matching no-
arg constructor in the Color class,

fle £dilt Window Halp

cannot resolve symbol
;constructor Color ()
location: class

java.awt.Color
Color ¢ = new Color():
A

1 ervror

Nanoreview: four things to
remember about constructors

O A constructor is the code that runs when

somebody says new on @ class type

Duck d = new Duck();
P — ——

A constructor must have the same name
as the class, and no return type

public Duck({int size) { }

———

If you don't put a constructor in your class,
the compiler puts in a default constructor.
The default construcyor is always a no-arg
constructor.

public Duck{) { }

You can have more than one constructor in your class,
as long as the argument lists are different, Having
more than one constructor in a class means you have

overloaded constructors,
overioaded

public Duck() { }
public Duck(int size) { }

public Duck (String name) (}

public Duck(String name, int size) { }

Doling all the Brain Barbells has been shown 0 producs a 42% increase in
nauron size. And you know what they say, “Big neurons...”

constructors and gc

RANMN
QWEWR

What about superclasses?

When you make a Dog,
should the Canine
constructor run too?

If the superclass is abstract,
should it even havea
constructor?

We'll look at this on the next
few pages, so stop now and
think about the implications of
constructors and superclasses.

OB Blestions

Q: Do constructors have to be public?

A: No. Constructors can be public,
private, or default (which means no access
modifier at all). We'll ook more at default
access in chapter 16 and appendix B.

+ How could a private constructor
ever be useful? Nobody could ever call it,
so nobody could ever make a new object!

A: But that's not exactly right. Marking
something private doesn't mean nobody
can access it, i Just means that nobody
outside the class can access it. Bet you're
thinking “Catch 22" Only code from the
same class as the class-with-private-con-
structor can make a new object from that
class, but without first making an object,
how do you ever get 1o run code from that
class in the first place? How do you ever get
to anything in that class? Patlence grasshop-
per, We'll get there in the next chapter.

you are herer 248

space for an object’s superclass parts

Wait a minute... we never IV talk about
superclasses and inheritance and how that all
fits tn with construetors.

Here's where it gets fun, Remember from the last chapter, the part where we looked at
the Snowboard object wrapping around an inner core representing the Object portion
of the Snowboard class? The Big Point there was that every object holds not just its own
declared instance variables, but also everything from its superclasses (which, at a minimum,
means class Object, since every class extends Object).

So when an object is created (because somebody said new; there is no other way to create
an object other than someone, somewhere saying new on the class type), the object
gets space for all the instance variables, from all the way up the inheritance tree. Think
about it for a moment... a superclass might have setter methods encapsulating a private
variable. But that variable has to live somewhere. When an object is created, it’s almost as
though multiple objects materialize—the object being new'd and one object per each
superclass. Conceptually, though, it’s much better to think of it like the picture below,
where the object being created has layers of itself representing each superclass.

250

Snowboard

()

shrad()

getAlr)
losaControl()

chapter 9

Object has instante vaviables
encapsulated by ateess methods.
Those instante variables are
eveated when any subtlass is
instantiated. (These aven't the
REAL Objeet vaviables, but we
don't tare what 'Ehey ave sinte
they've encapsulated)

Snowboard also has instante
vaviables of its own, so to make
a Snowboard objc.‘.f we need
space kor the instante variables
of ho_{:h_ elasses.

There is only ONE objett on the heap here. A
Snowboard ob\}e&‘[‘, But it ¢ontains both the
Snowboard parts of itself and the Object parts of
itselT. Al instance variables from both elasses have
to be here.

The role of superelass construectors

in an object’s life.

All the constructors in an object’s inheritance
tree must run when you make a new object.

Let thatsink in.

That means every superclass has a constructor
(because every class has a constructor), and each
constructor up the hierarchy runs at the time an
object of a subclass is created.

Saying new is a Big Deal. It starts the
whole constructor chain reacton. And yes,
even abstract classes have constructors.
Although you can never say new on an
abstract class, an abstract class is sdll

a superclass, so its constructor runs

when someone makes an instance of a
concrete subclass.

The super constructors run to build

out the superclass parts of the object.
Remember, a subclass might inherit

methods that depend on superclass state

(in other words, the value of instance variables
in the superclass). For an object to be fully-
formed, all the superclass parts of itself must be
fully-formed, and that's why the super constructor
must run. All instance variables from every class

in the inheritance tree have to be declared and
initialized. Even if Animal has instance variables
that Hippo doesn’t inherit (if the variables are
private, for example), the Hippo still depends on
the Animal methods that use those variables.

When a constructor runs, it immediately calls it
superclass constructor, all the way up the chain
untl you get to the class Object constructor.

On the next few pages, you'll learn how superclass
constructors are called, and how you can call
them yourself. You'll also learn what to do if your
superclass constructor has arguments!

constructors and gc

A singe Hippo object on the hesp

A new Hippo object also I1S-A Animal
and IS-A Objact. If you want to make a
Hippo, you must also make the Animal
and Object parts of the Hippo.

This all happens In a process called
Constructor Chaining.

you are here » 251

object construction

Making a Hippo means making the
Animal and Object parts too...

public class Animal (
public Animal() {
System.out.println(“Making an Animal”) ;
}

— o\&ﬁgr\pen your pencil ——

What’s the real output? Given the
code on the left, what prints out
when you run TestHippo? A or B?

(the answer Is at the bottom of the page)

Flle EdR Window Help

% java TestHippo

public class Hippo axtends Animal {
public Hippo{) {
System.out.println(“Making a Hippo”):
}

public class TastHippo {
public static voild main (String[] args) (
System.out.printlin(“Starting...”):
Hippo h = new Hippo();

A Starting. ..
Making an Animal
Making a Hippo
Flle Edit Window Help Swear

B % java TestHippo

Starting. ..

Making a Hippo
Making an Animal

‘ Code from another O Hippo() invokes @ Animal() invokes Object() completes,
class says new the superclass the superclass and its stack frame
Hippo () and the canstructor which constructor which is popped off the
Hippo() constructor pushes the Animal() pushes the Object() stack. Execution goes

constructor onto the
top of the stack

goes into a stack
frame at the top of
the stack.

252 chapter 9

the top of the stack,
since Object is the

back ta the Animal()
constructor, and
picks up at the line
following Animal’s
call to its superclass
constructor

constructor onto

superclass of Animal.

S0y S8YS|UY 1B} JOPANSUCO [ew |y I §))
INQ 1S) PEX0AU 5} 2010N45UCT (JoddiH 6y) v "eu0 81y By |

How do you invoke a superclass constructor?

You might think that somewhere in, say, a Duck constructor,
if Duck extends Animal you'd call Animal (). But that’s not
how it works:

public class Duck extends Animal (

int size;

public Duck(int newSize) {

D Animal () ; Mot 7.
* This ¢

ot legal/

siza = nawSiza;

}

The only way to call a super constructor is by calling super().
That's right—super() calls the super constructor.

What are the odds?

public class Duck extends Animal (

int size;

public Duck (int newSize) (

super () ; €E— y°“J“S{: say super()

size = newSizeae;

A call to super()in your constructor puts the superclass
constructor on the top of the Stack. And what do you
think that superclass constructor does? Calls its superclass
constructor. And so it goes until the Object constructor is
on the top of the Stack, Once Object() finishes, it's popped
off the Stack and the next thing down the Swuack (the
subclass constructor that called Object()) is now on top.
That constructor finishes and so it goes untl the original
constructor is on the top of the Stack, where it can now
finish.

constructors and gc

And how is it that we’ve
gotten away without
doing it?

You probably figured that out.

Our good friend the compiler
puts in a call to super() if you
don't.

So the compller gets involved In
constructor-making in two ways:

@ If you don‘t provide a constructor
The compiler puts one in that looks like:

public ClassName () {
super () ;

@ If you do provide a constructor
but you do not put in the call to
super()

The compiler will put a call to super() in
each of your overloaded constructors.®
The compiler-supplied call looks like:

super () ;

It always tooks like that. The compiler-
inserted call to super() Is always a no-arg
call.If the superclass has overioaded
constructors, only the no-arg one is called.

*Unless the construclor calls another overoaded
constructor (you'll see that in a few pages).

you are here» 253

object lifecycle

Can the child exist before
the parents? Eesmman... that

If you think of a superclass as the parent to the subclass child, is 50 creepy. There's
you can figure out which has to exist first. The superclass parts no way T could have been
of an object have to be fully-formed (completely built) before the born befare my parents.

subdlass parts can be constructed. Remember,
the subclass object might depend on things it
inherits from the superclass, so it’s important
that those inherited things be finished. No
way around it. The superclass constructor

must finish before its subclass constructor.

That's just wrong.

Look at the Stack series on page 248 again,
and you can see that while the Hippo
constructor is the first to be invoked (it's
the first thing on the Stack), it's the last one
to completel Each subclass constructor
immediately invokes its own superclass
constructor, until the Object constructor

is on the top of the Stack. Then Object’s
constructor completes and we bounce

back down the Stack to Animal’s
constructor. Only after Animal’s constructor completes
do we finally come back down to finish the rest of the Hippo
constructor. For that reason:

The call to super() must be the first statement
In each constructor!®

Possible constructors for class Boop
[] public Boop() {

V] public Boop() { } &~ These Sre OK 4,
super () ; 6\ ca"e Compiler will ;iz&e
) Z,}“‘ re OK b, M public Boop(int 1) { §i to super() in 3¢ 11
e duse iret sty as éke
lie ?"""*'m ex— size = i; ment
y Oded -é}.c C&” !

[V] public Boop (int i) { ,.éa,z:kr()’ 3 the firot }

ment
super () ; <_

aize = i; @public Boop (int i) { BAD// This won't
} size = i; \L_h:u Can'{ explieid) Compile]
Call Lo cyperry) PUE
super () ; an)»{-},;hﬂ else. P beloy,

*There's an exception to thig rule; you'll team it on page 252.

264 chapter 9

Superclass constructors with arguments

What if the superclass constructor has arguments? Can you pass something in to
the super() call? Of course. If you couldn't, you'd never be able to extend a class
that didn’t have a no-arg constructor. Imagine this scenario: all animals have a
name. There’s a getName() method in class Animal that rerurns the value of the
name instance variable. The instance variable is marked private, but the subclass
(in this case, Hippo) inherits the getName() method. So here’s the problem:
Hippo has a getName() method (through inheritance), but does not have the name
instance variable. Hippo has to depend on the Animal part of himself to keep the
name instance variable, and return it when someone calls getName() on a Hippo
object. But... how does the Animal part get the name? The only reference Hippo
has to the Animal part of himself is through super(), so that's the place where
Hippo sends the Hippo’s name up to the Animal part of himself, so that the
Animal part can store it in the private nameinstance variable.

public abstract class Animal {

. . 1 arimals (ineloding
private String name; L————-ﬁwzw) have 3 name

public String getName() { &— A getier ethod ¢
method {4, ¢

return name; Hlppo inhey it

)

public Animal (String theNams) (

T"‘C COnsfy
= ; uetor
neme = theNama; «——— takec), name 3 ﬁhat‘
} " the ngmp g0 95Signs
) variab)e nie
public class Hippo extends Animal {
ublic Ri Strid a name
P c Rippo | . ing name) { Wiopo wnstvuchov Lakes
super (name) ; | R
) .
: it send, the nom

rimal ¢q tc uiihc Stack to

e

public class MakeHippo (
public static void main(String[] args) (Make 4 ;

) 3
Hippo h = new Bippo (“Buffy”); < —— na"‘c B (ZP” {osi‘l:\? the

Systam.out.println(h.getName ()) ; H PPOS : Thcn cal éif’
)) : in chfcd ﬂchame()

Hippo constructor, then pass

constructors and gc¢

Animal

private String name

Animal(String n)

String getName(}

Hippo

Hippo(String n)

[other Hippo-spe-
clfic methods]

The Animal part of
me needs Yo know my name,
so I take a name in my awn

the name to super()

Flle Edit_Wingow Help Hida

%$java MakeHippo
Buffy

you are here » 255

L 4

calling overioaded constructors

Invoking one overloaded constructor
trom another

What if you have overloaded constructors that, with
the exception of handling different argument types,
all dg the same»thmg:?‘ You know that you don't want cmlﬁlru
duplicate code siting 1 each of the constructors (pain
to maintain, etc.), so you’d like to put the bulk of the
constructor code (including the call to super()) in only
one of the overloaded constructors, You want whichever
constructor is first invoked to call The Real Constructor
and let The Real Constructor finish the job of
construction. It’s simple: just say this(). Or this(aString).
Or this(27, x). In other words, just imagine that the
keyword thisis a reference to the current object

Use 111'150 1o ca“ a ‘
ctor {1'0111 anotnet

ovorloadc(l conslruclor i1

l\xe same dass.

The call to this()

can ‘)E li.‘ie(l Olll)" imn a

st ‘)0
o - aﬂ(l mu
You can say ¢kis()} only within a constructor, and it must c{)ﬂhh uClOl &

: £
be the first statement in the constructor! [\ e {'l'l's'l slaicﬂl‘(}ﬂl ina
1 oA

But that’s a problem, isn't it? Earlier we said that
super() must be the first statement in the constructor. CO“SI_{‘UC‘.OP-
Well, that means you get a choice. '

. can have @
Every constructor can have a call to super() A conslt'“do‘ can |
or this(), but never bothl ” ‘. ‘o Su‘)ef() OR t‘llS()a
N
but never both:
class Mini extends Car {
Coloxr color: I mb-u,{p‘r
'{hc. \::a 2&‘ 2t Color and
public Mini() { T the overloaded Red) .
this (Colox.Red) ; &—— Construttor (he one thd
) ealls svper(D):

P pumer (tint) ; g W6 The Real Constiuctor 4hat
color = ¢; ’ does The Real Work of initislizi y t
i object lintluding Lh "9 The
// more initialization 9 the call {0 supcr())
)

Flla Edlt Window Help Drva

public Mini(int size) {

i javac Mini.java
this (Color.Red) :

auper (size) ; Won't workll Can't have Mini.java:16: call to super must
Su?cr() ard this() in the same be first statement in constructor
) tonstructor, becouse ﬂ"!‘j each
} must be the first statement super () ;

A

256 chapter 9

constructors and gc

ﬁrpen your penci

Some of the constructors in the SonOfBoo class will not
complle. See if you can recognize which constructors are
not legal. Match the compiler errors with the SonOfBoo
constructors that caused them, by drawing a line from the
compiler errar to the “bad” constructor.

public class Boo {
public Boo(int i) { }
public Boo(String s) { }
public Boo (8tring 8, int i) {)

clana SonOfBoo axtends Boo |

%javac SonOfBoo. java

publie SonOfBoo () (

super (“boo”) ; cannot resolve symbol

)

symbol : constructor Boo

public SonOfBoo (int i) { {java.lang.String, java.la
super (“Fred”) ; ng.String)

)

publie SenOfBoo (String s) { Fle EdiWindow Help Yadays

super (42) ; %javac SonOfBoo.java

}
cannot resolve symbol

public SonOfBoo(int i, String 8) (

} symbol : constructor Boo

{(int, java.lang.String)
public SonOfBoo(String a, String b, String ¢) {
super (a,b) ;
}

Filg Edit Window Help ImNoiListening

public SonOfBoo(int i, int j) {
super (“man”, j);
) cannot resolve symbol

%javac SonOfBoo.)ava

public SenOfBoo(int i, int x, int y) { symbol:constructor Boo ()
super (i, “star”);
)

you are here » 257

object lifespan

Now we know how an object is born,
but how long does an object /ive?

An object’s life depends entirely on the life of references
referring to it. If the reference is considered “alive”, the
object is still alive on the Heap. If the reference dies

(and we’ll look at what that means in just a mmoment), the
object will die.

So if an object’ life depends on the reference
variable’s life, how long does a variable live?

That depends on whether the variable is a local variable
or an instance variable. The code below shows the life of a
local variable. In the example, the variable is a primitive,
but variable lifetime js the same whether it's a primitive
or reference variable,

public class TaatLifeOne (

public void read() {

:::e;():;dz; mety, C0Ped h
} P Jsoifda ac"cad()
nyw he"" else nt be used
public void sleep() {
s =17;
Y \\arf..
ust

258 chapter9

@ A local variable lives only

within the method that
declared the variable.

public void read() (

int s = 42;

// ‘8’ can be used only

// within this method.

// When this mathod ends,

// ‘s’ disappears completely.
}

Variable’s’ can be used only within the
read() method. In other words, the variable
Is In scope only within its own method.No
other code In the class (or any other class)
can see’s’

@ An instance variable lives

as long as the object
does. If the object is still
alive, so are its instance
variables.

public class Life {(
int size;

public void getSize(int s) ¢
size = g;
// ‘s’ disappears at the
// end of this method,
// but ‘size’ can be used
// anywhere in the class

}

Varlable’s’ {this time a method parameter)
Is In scope only within the setSize()
method. 8ut instance variable size is
scoped to the life of the object as opposed
ta the life of the method.

constructors and gc

The difference between life and
scope for local variables:

public void doStuff() (

boolean b = true;
Life

go(4);
Alocal variable is alfve as long as its Stack }
frame is on the Stack. In other words)
X ’ public void go{int x) {
until the method completes. int z = x + 24;
crazy () ;
Scope // imagine more code here

}

public void erazy() (
char ¢c = ‘a’;

A local variable is in scope only within the
method in which the variable was declared.
When its own method calls another, the
variable s alive, but not in scope until its
method resumes. You can use a variable only
when it is in scope.

}

1Sl L0
doStuff() goes on the go{) plops on top of e crazy() Is pushed onto e crazy() completes and
Stack. Variable ‘b’ is the Stack. ‘x’and 7 the Stack, with ‘c’ now Is popped off the Stack,
allve and In scope. are alive and in scope, alive and in scope. The 80 ‘¢’ is out of scope
and ‘b’ is alive but nof other three variables and dead. When go(}
in scope. are alive but out of resumes where it left
scopa. off, x' and ‘z' are both
alive and back in scope.
Varlable ‘b’ Is still alive
While a local variable is alive, its state persists. but out of scope (untli
As long as method doStuff() is on the Stack, for go() completes).

example, the ‘b’ variable keeps its value. But the
‘b’ vaniable can be used only white doStuff()’s
Stack frame is at the top. In other words, you can
use a Jocal variable only while that local variable's
method is actually running (as opposed to
waiting for higher Stack frames to complete).

you are here» 259

object lifecycle

What about reference variables?

The rules are the same for primtives and references. A reference
variabte can be used only when it’s in scope, which means you can’t use
an object’s remote control unless you've got a reference variable that’s
in scope. The real question is,

“How does variable life affect object life?”

An object is alive as long as there are Jive references to it. If a reference
variable goes out of scope but is still alive, the object it refers to is still
alive on the Heap. And then you have to ask... “What happens when the
Stack frame holding the reference gets popped off the Stack at the end
of the method?”

If that was the only live reference to the object, the object is now
abandoned on the Heap. The reference variable disintegrated with

the Stack frame, so the abandoned object is now, officially, toast. The
trick is to know the point at which an object becomes ehigible for garbage
collection.

Once an object is eligible for garbage collection (GC), you don't have
to worry about reclaiming the memory that object was using. If your
program gets low on memeory, GC will destroy some or all of the eligible
objects, to keep you from running out of RAM. You can stll run out of
memory, but not before all eligible objects have been hauled off to the
dump. Your job is to make sure that you abandon objects (i.e, make
them eligible for GC) when you’re done with them, so that the garbage
collector has something to reclaim. If you hang on to objects, GC can’t
help you and you run the risk of your program dying a painful
out-of-memory death.

An object becomes
eligible for GC when
its last live reference
disappears.)

void go () {

Life z = naw Life();
z = new Life ()

Life 2z = new Lifa (),
2z = null;

The reference goes out of scope, permanently

@ The reference is assigned another object

@) The reference is explicitly set to null

An object’s lite has no
value, no meaning, no
point, unleas somebody
has a reference to it

1f you can't get to it,
you can't ask it to do

anything and it's just a
big fat waste of bita.

But if an object is
unreachable, the
Garbage Collector will
figure that out. Socner
or later, that object’s
goin’ down.

Three ways to get rid of an object’s reference:

[N | £
Lebevence '® dies?

Life z = new Life();{// anoc mekthod

4 is doandoned
the First ?\’J"'k * abatd‘ ke

" ‘wogYa"‘“

260 chaplerd

constructors and gc¢

Object-killer #1

Reference goes
out of scope,
permanently.

public class StackRef {
publiec void foof{) {
barf () ;
}

I don’t like where
this is headed.

public void barf () ({
Duck d = new Duck();

foof{) is pushed onto the
Stack, no variables are
declarad.

e barf() is pushed onto the
Stack, where it declares

a reference variable, and
creates a new object as-
signed to that reference.
The object {s created on
the Heap, and the refer-
ence Is alive and In scope.

Uh—oh. The 'd’ varigble
went away when the barf()
Staek frame was blown
off the stack, so the Duck
is abandoned. Qarbage-
tollector bait

e barfl) completes and pops
off the Stack. lts frame

disintegrates, so 'd’ is now
dead and gona. Exacutlon
retuns to foof{), but foof()
can't use ‘d'.

you are here » 261

object lifecycie

Object-killer #2

Assign the reference
to another object

public class ReRef {
Duck d = new D“ck();

public void go() {
d = naw Duck() ;

The new Duck goes on the Heap, vefevented
by ‘d’. Since 'd’ is an instance vaviable, the
Duck will live as long as the ReRef o \‘)ec{:
that instantiated it is alive. Unless-.-

4 i bieet, leaving the
4 s ass;gv\cd 3 new Duek obj

original (§ivst) Duck objcc’c abandened. That
Fivst Duck is now as good as dead.

262 chapter9

Dude, all you
had to do was reset
the r=ference, Guess
they didn’t have memory
management back then,

Object-killer #3

Explicitly set the
reference to null

public class ReRef {
Duck d = naw Duck() ;

public void go() {
d = null;

}

The meaning of null

When you set a reference to null, you're
deprogramming the remote control.

in other words, you've got a remote
control, but no TV at the other end. A nuill
reference has bits representing ‘null’ (we
don't know or care what those bits are, as
long as the JVM knows).

if you have an unprogrammed remote
control, In the real world, the buttons don't
do anything when you press them. But

in Java, you can't press the buttons (i.e.

use the dot operator) on a null reference,
because the JVM knows (this is a runtime
Issue, not a compller error) that you're
expecting a bark but there'’s no Dog there
to do tl

If you use the dot operator on

a null reference, you'll get a
NullPolnterExcaption at runtime. You'll
learn all about Exceptlons in the Risky
Behavior chapter.

constructors and gc

The new Duzk qoes on the Heap, veferenced
by ‘d’- Since ‘d' is an instanze variable, the
Duek waill live as]ons as the RLRC‘C ob")cc{'_
that instantisted it s alive. Unless...

This Duek 8 dandoned:

\/ Wis only vebevente 1o been
: 4o wull-

@ is seb to null, which is just fike having 3 ma’)u
conbrol that unt programmed to ah‘f{'.}\ir:g-, You’r.e Tof
even allowed £o use the dot operator on d wnbil it's

veprogrammed (3ssigned an 0‘{')“-{')-

you are here »

263

object lifecycle

Fireside Chats

Instance Variable

Id like to go first, because I tend to be more
important 1o 2 program than a Jocal variable.
I'm there to support an object, usually
throughout the object’s entire life. After all,
what’s an object without state? And what is
state? Values kept in instence variables.

No, don'’t get me wrong, I do understand your
role in a method, it's just that your life is so
short. So temporary. That’s why they call you
guys “temporary variables”.

My apologies. I understand completely.

I never really thought about it like that. What
are you doing while the other methods are
running and you're waiting for your frame to
be the top of the Stack again?

284 chapter9

Tonight's Talk: An instance variable and
a looal variable discuss life and death
(with remarkable civility)

Loocal Variable

I appreciate your point of view, and I certainly
appreciate the value of object state and all,
but I don’t want folks to be misled. Local
variables are really important. To use your
phrase, “After all, what's an object witbout
behavior™ And what is behavior? Algorithms
in methods. And you can bet your bits there'll
be some local variables in there to make those
algorithms work.

Within the local-variable community, the
phrase “temporary variable” is considered
derogatory. We prefer “local”, “stack”, “auto-
matic”, or "Scope~challénged”.

Anyway, it's true that we don’t bave a Jong
life, and it's not a particularly good life either.
First, we're shoved into a Stack frame with

all the other local variables. And then, if the
method we're part of calls another method,
another frame is pushed on top of us. And if
that method calls another method... and so on.
Sometimes we have to wait forever for all the
other methods on top of the Stack to com-
plete so that our method can run again.

Nothing. Nothing at all. It’s like being in
stasis—that thing they do to people in science
fiction movies when they have to travel long
distances. Suspended animation, really. We
just sit there on hold. As long as our frame is
sdll there, we're safe and the value we hold

is secure, but it’s a mixed blessing when our -

Instance Variable

We saw an educational video about it once.
Looks like a pretty brutal ending. I mean,
when that method hits its ending curly brace,
the frame is literally blown off the Stack! Now
that’s gotta hurt.

I live on the Heap, with the objects. Well, not
with the objects, actually in an object. The
object whose state I store. I have to admit life
can be pretty luxurious on the Heap. A lot of
us feel guilty, especially around the holidays.

OK, hypothetically, yes, if I'm an instance
variable of the Collar and the Collar gets
GC’d, then the Collar’s instance variables
would indeed be tossed out like so many pizza
boxes. But I was told that this almost never
happens.

They let us drink?

constructors and gc¢

Local Variable

frame gets to run again. On the one hand, we
get to be active again. On the other hand, the
clock starts ticking again on our short lives.
The more time our method spends running,
the closer we get to the end of the method.
We all know what happens then.

Tell me about it. In computer science they use
the term popped as in “the frame was popped
off the Stack”. That makes it sound fun, or
maybe like an extreme sport. But, well, you
saw the footage. So why don’t we talk about
you? I know what my little Stack frame looks
like, but where do you live?

But you don’t always live as long as the object
who declared you, right? Say there’s a Dog
object with a Collar instance variable. Imagine
you'’re an instance variable of the Collar object,
maybe a reference to a Buckle or something,
sitting there all happy inside the Collar object
who’s all happy inside the Dog object. But...
what happens if the Dog wants a new Collar,
or nulls out its Collar instance variable? That
makes the Collar object eligible for GC. So...
if you re an instance variable inside the Collar,
and the whole Collaris abandoned, what
happens to you?

And you believed it? That’s what they say to
keep us motivated and productive. But aren’t
you forgetting something else? What if you’re
an instance variable inside an object, and that
object is referenced only by a local variable? If
I’'m the only reference to the object you're in,
when I go, you’re coming with me. Like it or
not, our fates may be connected. So I say we
forget about all this and go get drunk while
we still can. Carpe RAM and all that.

you are hera »

265

exercise: Be the Garbage Collector

BE the Garbage Cellector

Which of the lines of code on the right, if added

to the class on the left at point 4, would canse
exact]y one additiona] ohject to be e]igible for the
Garbage Collector? (Assume that point A (//call
more methods) wil] execnte for a long time, giving the
Garbage Collector time to do its stof}.)

public class GC {
public static GC doStuff () {
GC newGC = new GC(); 1 copyGC = null;
doStuff2 (newGC) ;

return newGe; 2 gc2 = null;
}
3 newGC = gc3;
public statlc vold main(String () args) {
GC gcl; 4 gel = null;
GC ge2 = new GC();
GC ge3 = new GC(); 5 newGC = null;

GC gc4d = gc3;

gcl = doStuff(); 6 gc4d = null;

A

// call more methods

7 ge3 = ge2;

} 8 gcl = gca;

public static void doStuff2(GC copyGC) | 9 ge3 = null;

GC localGC

288 chapter 9

constructors and gc

In this code example, several new objects are created.

. = u Your challenge is to find the object thatis ‘most popular;
j mse @ a.r i.e.the one that has the most reference variables referring

1o it. Then list how many total references there are for

I that object, and what they are! We'll start by pointing out
ect—s one of the new objects, and its reference variable.

Good Luck!

class Bees {
Honey [] beeHA;

class Raccoon {
Kit k;
Boney rh;

class Rit (
Boney kh;

class Bear ¢
Boney hunny;

public class Honey {
public static vold main(String (] args) {
Honey honeyPot = new Honey();
Boney [] ha = {honeyPot, honeyPot, honeyPot, honeyPot};
Bees bl = new Bees();
bl.beeRA = ha;
Bear [) ba = new Bear([5];
for (int x=0; x < 5; x++)
ba{x] = new Bear();
ba(x].hunny = honeyPot;

})

Kit k = new Kit(); H":oso:ont:i:cﬂ
k.kxh = honeyPot;

Raccoon r = new Raccoon();

Here's its reference

r.rh = honeyPot; variable ‘r'.
r.k = k;
k = null;

} // end of main

you are here» 267

puzzle: Five Minute Mystery

“We've run the simulation four times, and the main module’s temperature consistently
dnfts out of nomina} towards cold”, Sarah said, exasperated. “We installed the pew temp-bots last
week. The readings on the radiator bots, designed to cool the living quarters, seem to be within
spec, so we’ve focused our analysis on the heat retention bots, the bots that help to warm the quar-
ters.” Tom sighed, at ficst it had seemed that nano-technology was going to really put them ahead
of schedule. Now, with only five weeks left until launch, some of the orbiter's key life support

Mj systems were still not passing the simulation gauntlet.

“What ratios are you simulating?”, Tom asked.

MystePy “Well if] see where you're going, we already thought of that”, Sarah replied. “Mis-
sion control will not sign off on critical systems if we run them out of spec. We are
required to run the v3 radiator bot’s SimUnits in a 2:] ratio with the v2 radiator’s
SimUnits"”, Sarah continued, “Overall, the ratio of retention bots to radiator bots is

supposed to run 4:3.”

“How’s power consumption Sarah?", Tom asked. Sarah paused, “Well that’s
another thipg, power consumption is running higher than anticipated. We've got a team
tracking that down too, but because the nanos are wireless it’s been hard to isolate the power
consumption of the radiators from the retention bots.” “Overall power copsumption ratios™, Sarah
continued, “are designed to run 3:2 with the radiators pulling more power from the wireless grid.”

“OK Sarah”, Tom said “Let’s take a look at some of the simulation initiation code.
We’ve got to find this problem, and find it quick!”

import java.util.=;
class V2Radiator {
V2Radiator (ArrayList liat) {
for(int x=0; x<5; x++) {
ligt.add(new Simunit({*“VZRadiator”));

class V3Radlator extends VZRadiator (
V3Radiator (ArraylLlist lglist) (
super(lglist);
for(int g=0; g<l0; g++) {
lglist.add{new SimUnit(“V3Radiatar~));

class RetentionBot (
RetentionBot (ArrayList rlist) {
rlist.add(new SimOnit(“Retention”));

268 chapter9

constructors and go

public class TestLifeSupportSim {

];HSKETIYIiIIIIt(E public static void main(String [] args) {

ArrayList alist = new ArrayList();

M}’S‘tel’y V2Radiator v2 = new V2Radiator(aList);
- o V3Radiator v3 = new V3Radiator(alist);
conttinued. .. '

for(int z=0; z<20; z++) {
RetentionBot ret = new RetentionBot(aList);

class SimUnit {
String botType;
SimUnit(String type) {
botType = type;
}
int powerUse() {
if (“Retention”.equals(botType)) {
return 2;
} else {

return 4;

Tom gave the code a quick look and a small smile creeped across his lips. I think I've
found the problem Sarah, and I bet I know by what percentage your power usage readings are off
too!

What did Tom suspect? How could he guess the power readings errors, and what few
lines of code could you add to help debug this program?

yvouare herey 269

object lifecycle

1 copyGC = null; No - this line attempts ta access a variable
that is out of scope.
Exercise Solutions 2 gc2 = null; OK - gc2 was the only reference variable
referring to that object.
3 newGC = gc3; No - another out of scope variable.

4 gcl = null; OK - g¢l had the only reference because
G’.C. new6C is out of scope.

5 newGC = null; No - newbC is out of scope.

6 gcd = null; No - gc3 is still referring to that object.
7

gc3 = gez; No - gc4 is still referring to that object.
8 gel = ged; OK - Reassigning the only reference to
that object.

9 gec3 = null; No - gc4 is still referring to that object.

It probably wasn't too hard to figure out that the Honey object first referred to by the honeyPot variable is by
P@PUI&P far the most ‘popular’object in this ¢lass. But maybe it was a little trickier to see that all of the variables that
o point from the code to the Honey object refer to the same object! There are a total of 12 active references to
Ob]ects this object right before the main() method completes. The kkh variable is valid for a while, but k gets nulled
at the end. Since 7.k stlll refers to the Kit object, r.ikh (although never explicity declared), cefers to the object!

public class Honey (
public static void main(String {] args)
Honey honeyPot = new Roney();
Honey [] ha = {honeyPot, honeyPot,
honeyPot, honeyPot};

Bees bl = new Bees{);
l l l | bl.beeHA = ha;

Bear [) ba = new Bear{5];

Hon for (int x=0; x < S; x++) {
— ey baf{x] = new Bear():
— Object ba[x].bunny = honeyPot;

T }

[J l(_end§_uplﬂ|)_ Kit k = new Kit();

l L k.xh = honeyPot;

- - — Raccoon r = new Raccoon();

r.rh = honeyPot;
r.k = Xk;

k = null;

} // end of main

270 chapter9

Five-Minute Mystery Selutisn

Tom noticed that the constructor for the V2Radiator class took an
ArrayList. That meant that every time the V3Radiator constructor was called,
it passed an ArrayList in its super() call to the V2Radiator constructor. That
meant that an extra five V2Radiator SimUnits were created. If Tom was right,
total power use would have been 120, not the 100 that Sarah’s expected ratios
predicted.

Since all the Bot classes create SimUnits, writing a constructor for
the SimUnit class, that printed out a line everytime a SimUnit was created,
would have quickly highlighted the problem!

constructors and 3

you are hare »

271

