
10 numbers and statics

Numbers Matter

Do the Math. But there's more to working with numbers than Just doing primitive

arithmetic. You might want to get the absolute value of a number, or round a number, or flnd

the larger of two numbers. You mig ht want your numbers to prl nt with exactly two decImaI

places,or you might want to put commas Into your large numbers to make them easier to read.

And what about working with dates?You might want to print dates In a variety of ways,or even

manipulate dates to say things like,"add three weeks to today's date" And what about parsing

a String Into a number? Or turning a number into a String? You're In luck. The Java API Is full of

handy number-tweaking methods ready and easy to use. But most of them are static, so we'll

start by learning what it means for a variable or method to be static, including constants In

Java-static final variables.

this IS a new chapter 273

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

Math methods

MArH tMethods: as close as you'll
ever get to a globa/tMethod
Except there's no global an),lhinginJava. But think about
this: what if you have a method whose behavior doesn 't
depend on an instance variable value . Take the round()
method in the Math class, for example. It does the same
thing every time-rounds a floating point number(the
argument to the method) to the nearest integer. Every
time. lfyou had 10,000 instances of class Math, and ran
the round(42.2) method, you'd get an integer value of
42 . Every time. In other words, the method acts on the
argument, but is never affected by an instance variable
state. The only value that changes the way the round()
method runs is the argument passed to the methodl

Doesn't it seem like a waste of perfectly good heap space
to make an instance of class Math simply to run the
round () method? And what about other Math methods
like mint), which takes two numerical primitives and
returns the smaller of the two. Or maxj). Or abst), which
returns the absolute value of a number.

These methodsnever we instance variable values. In fact the
Math class doesn't haveany instance variables. So there's
nothing to be gained by making an instance of class
Math. So guess what? You don't have to. As a matter of
fact. you can 't,

If you try to make an instance of
class Math:

Math mathObject = new Math () i

You'll get this error:

Methods in the.Math class
don't use any mstance
variable values. Ami because
the methods are 'static',
you don't need to have an
illstance of.Math. All you
need is the Math class.-
int x - Math.round(42.2) ;
int y = Math.min(56,12) i

int z = Math.abs(-343);

274 chapter 10

numbers and statics

fhe differet1ce betweeM regular
(.,on-static) at1d static tttethods
Java is object-oriented, but once in a while you have a special case,
typically a utility method (like the Math methods), where there is
no need to have an instance of the class. The keyword static lets
a method run without any instance o/the class. A static method means
"behavior not dependent on an instance variable, so no instance/object
is required.Just the class."

regular (non-static) method static method-
public class Soog (a '.~'o\("a\~ ~tt.L~

I~,.{,e ~" \ .J)
Strine} title;~ the Otha"\~ cJ tht yar
public Sone} (String t) ".~~o<!.

tiUe = ti

Math
minD
maxD
abs()

public int min(int a, int b) (

//returns the lesser of a and b

Song

Song

}

public void play()

SoundPlayer player = new SoundPlayer () i

player .playSound(tiUB)i

\' J ~e 'title'
nt l."l'l'tJ\t.. "~I\~ Lhe WTI~ that

L. 1/.11'\<10e IS ~
i"sv"tt. La\\ yl<l,/{)'
~\a'fS"e" 'to'JtltIe

you are here ~ 275

static methods

.min (B8, 86) ;Math

mlnO
maxO
absO

Call a static method using a
class name

Call a non-static method using a
reference variable name

V--Song t2 = new Song() ;

.play () ;

What it tHea.,s to have a
class with static Ittethods.
Often (although not always), a class with static
methods is not meant to be instantiated. In Chapter
8 we talked about abstract classes, and how marking
a class with the abstract modifier makes it
impossible for anyone to say 'new' on that class type.
In other words, it's impossible to instantiate an abstract
class.

But you can restrict other code from instantiating
a non,,·abstract class by marking the constructor
private. Remember, a method marked private means
that only code from within the class can invoke
the method. A constructor marked private means
essentially the same thing-only code from within
the class can invoke the constructor. Nobody can
say 'new' from outside the class. That's how it works
with the Math class, for example . The constructor
is private, you cannot make a new instance of Math.
The compiler knows that your code doesn't have
access to that private constructor.

This does not mean that a class with one or more
static methods should never be instantiated. In fact,
every class you put a mainO method in is a class with
a static method in itl

Typically, you make a main 0 method so that you
can launch or test another class, nearly always by
instantiating a class in main, and then invoking a
method on that new instance.

So you're free to combine static and non-static
methods in a class, although even a single non-static
method means there must be S~way to make an
instance of the class. The only ways to get a new
object are through 'new' or deserialization (or
something called theJava Reflection API that we
don 't go into). No other way. But exactly WM says new
can be an interesting question, and one we'Ulook at
a little later in this chapter.

276 chapter 10

Static tMethods caM'f use t1ot1 ...statle
(instance) variables!
Static methods run without knowing about any particular
instance of the static method's class. And as you saw on
the previous pages, there might not even beany instances
of that class. Since a static method is called using the class
(Math.random()) as opposed LO an mstance reference (t2.playO),
a static method can't refer to any instance variables of the
class. The static method doesn't know which instance's variable
value to use.

If you try to compile this code:

public olass Duck (y,[nit,'I'I 'D.,.t.~~
~(f.e ~\1,.l. .

private lnt size; ~ (

public static void main (String[] arqs) (~
System.out.println("SizfiIl of duck is " + size):

1.(fh~e's d DlAlk on

public void setsize (int 09) ~e):eap So"'ewhet-e, we
size = s; on~ KI'IO'w dboc..i it

numbers and statics

Ifyou trj to use an
inStance variable from
inside a static method.
the compiler thitiks.
"I don't"know which
object's mstance variable
you're talking about!"
Ifyou have ten DuCK
objects on the heap. a
static method doesn't
"know about any ofthem.

}

public iot getSize()
return size;

You'll get this error:

you are he re ~ 277

static methods

public void setsize(int s) {

size = B;

Q: What If you try to call a non-static
method from a static method, but the
non-static method doesn't use any In­
stance variables. WIll the compiler allow
that?

A: No.The compiler knows that
whether you do or do not use Instance
variables In a non-static method, you can.
And th ink about the impl ications ... if you
were allowed to compile a scenario like
that, then what happens if in the future
you want to change the implementation
of that non-static method so that one day
It does use an Instance variable? Or worse,
what happens if a subclass overrides the
method and uses an Instance variable in
the overriding version?

Q: Icould swear I've seen code that
calls a static method uslng a reference
variable Instead of the class name.

A: You can do that, but as your mother
always told you, "Just because it 's legal
doesn't mean it's good." Although It works
to call a static method using any instance
of the class,it makes for misleading (less­
readable) code.You can say,

Duck d = new Duck():
String[] s = {};
d.main(s);

This code is legal, but the complier Just
resolves It backto the real class anyway
("01(d Is of type Duck, and malnO Is static,
so I'll call the static malnO in classDuck").
In other words, using d to Invoke main£)
doesn't Imply that maln() will have any
special knowledge of the object that d Is
referencing. It's Just an alternate way to
Invoke a static method, but the method Is
still static!

Roses are red,
bl m late

andknown to 00

StCJtlcs cCJn'. see
instCJnce variable state

public class Duck {

}

public iot getsize()
return size;

What do non-static methods do? They usuaUy use instance
variable state tv affect the behavior ofthe method. A getName ()
method returns the value of the name variable. Whose name?
The object used to invoke the getNameO method.

This won't compile:
Cdl!il\~ ~efs.~() .t.st
~~ ih~vji:db'e-4JS; ~os)tpolles
the si . L J IU IA1l.s

U I)UUI\le variabje.
private iot size;

public static void main (Strinq[] args) (
System.out.println(~Size is ~ + getsize()):

Static tMethods cattJt use "ott"'statlc
methods.. either!

278 chapte r 10

Static variable:
value is the satHe for ALL
i"sta"ces of the class
Imagine you wanted to count how many Duck
instances are being created while your program is
running. How would you do it? Maybe an instance
variable that you increment in the constructor?

class Duck {
int duC](Count = 0;
public Duck () {

dUckCount++; .ll'l:",s wOIA1d I
~ dlAl.ke- d 'WdYS ~t

d D k "i -&, J ~lh ti
l.tt WdS r...id/! ...e

No, that wouldn't work because duckCount is an
instance variable, and starts at 0 for each Duck. You
could try calling a method in some other class, but
that's kludgey. You need a class that's got only a single
copy of the variable, and all instances share that one
copy.

That's what a static variable gives you: a value shared
by all instances of a class. In other words, one value
per class, instead of one value per instance.

Duck

numbers and statics

pub11c Duck () (Now if. will ~
dUckCountH; ~j"'rbnbli:i tp

) the DlAlk lIS c.ilh b"'t
bet.i~ d~t.ot. "uls,
Gild 'fiIIOrl'f bt~i is sidfit

~i.oO.
public void lfetSlze (int s) (

size = !!I;

•public int qetslze ()
return size;

you are here ~ 279

static variables

Static variables are shared.

All instances 01 the same
class share a single copy 01
the static variables.

instance variables: 1 per instance

static variables: 1 per class

280 chapte r 10

~J:V Brain Barbell
Earlier in this chapter, we saw that a private

constructor means that the class can't be instantiated

from code running outside the class. In other words,

only code from within the class can make a new

instance of a classwith a private constructor. (There's

a kind of chlcken-and-egg problem here.)

What If you want to write a class In such a way that

only ONE instance of It can be created, and anyone

who wants to use an instance of the class will always

use that one, single Instance?

numbers and statics

htitializhtg astatic variable
Static variables are initialized when a class is loaded: A class is
loaded because thejVM decides it's time to load it. Typically,
the jVM loads a class because sornebody's trying to make a
new instance of the class, for the first time, or use a static
method or variable of the class. As a programmer. you also
have the option of telling thejVM to load a class, but you're
not likely to need to do that. In nearly all cases, you're better
off letting the jVM decide when to wad the class.

And there are two guarantees about static initialization:

Static variables in a class are initialized before any object of that
class can be created.

Static variables in a class are initialized before any static method
of the class runs.

All static variables
in a class are
Initialized before
any object of
that class can be
created.

olass Player {

static int playerCount ;:; 0;

private String name;

public Player(String n)

n&IIl8 = n;

playerCount++ ;

public class PlayerTestDrive (

public static void main (Strin'll] llrgs) (

Syabam.out.println(Player.playerCount);

Player one = new Player("Tiqer Wooda H
) ;

Syst8m.out .println(Player .playerCount);

\. Atuu a stitt Vjly',able j\<St. like a Sta-t'I(.

...d.hod-wit.h the tlass l'Id",e.

Static variables are initialized when the class is loaded. Ifyou
don't explicitly initialize a static variable (by assigning it a
value at the time you declare it), it gets a default value, so int
variables are initialized to zero, which means we didn't need
to explicitly say "playerflount = 0", Declaring. but not initial­
izing, a static variable means the static variable will get the de­
fault value for that variable type, in exactly the same way that
instance variables are given default values when declared.

you are here ~ 281

static final constants

static fh1al variables are cot1stat1ts-
A variable marked finalmeans that-s-once initialized-it can
never change. In other words, the value of the static final variable
will stay the same as long as the class is loaded: Look up Math.PI
in the API, and you'll find:

public static final double PI = 3.141592653589793;

The variable is marked public so that any code can access it.

The variable is marked static so that you don't need an
instance of class Math (which, remember, you're not allowed to
create).

The variable is marked final because PI doesn't change (as far as
Java is concerned).

There is no other way to designate a variable as a constant, but
there is a naming convention that helps you to recognize one.

Constant variable names should be in all caps!

OR

Initialize a Rnal static variable:

• At the time you declQl"t It:

public clulS]1'00 (

publ~c static final lot FCC_X = 25;

~t.e tJ,e ~ . '\
tj~} I/ariabl ""~ lor.vbltOPl
~"'~ shOlJ.}d bdi-e ~)lb -~~i.lbt.

lAPldc....,._. e all "pp& J so Ule
.-~ $Cpal"'ab .l,f.d$C,,i~ all

~ Ule 'worcit

• In 0 static Inltfollzer:

public class Bar {
public IlltatiC final double BAR SIGN;

If you don't give a value to a finol vorlable
in one of those two places:

public class Bar (
public static final double BAR_SIGN;

110 illi'b_}il4t;olll

The complier will catch It:

fitlal iSKt just for static
variables...
You can use the keyword final to modify non­
static variables too, including instance variables.
local variables, and even method parameters. In
each case, it means the same thing: the value can't
be changed. BUl you can also use final to stop
someone from overriding a method or making a
subclass.

non-static final variables
clan Foo! ('f0!> t.'!,,'f, thd,,~e S'IU

final Int size '" 3; f-- YI()W

final int whuffi.e;

Foof () (I.H'
whuffie = 42;~ \'\ow 'fo ... t<lI'I't Lha,,~e Wh re

)

void doStuff{final iet x)
I I you can' t change)Ii

void doMore () (
final iet z '" 7;
II you can't change z

final method
class Poo£ (

final void calcWhuffi.e ()
II ~rtant things
II that must never be overridden

final class
final class MyMostPer£ectClass

II cannot be llIxtended

numbers and statics

A linaL variable means you

can't change its value.

A tinal method means you

can't override the method.

A tinal class means JOU

can't extend the class (i.e.

you can't make a subclass).

you are here ~ 283

static and final

Q...: Astatic method can't access II

non-static variable. But can a non-statlc
method access II static variable?

A: Ofcourse.Anon-static method ina
class can always call a static method Inthe
class or access a static variable of the class.

Q...: Why would I want to make a class
final1 Doesn't that defeat the whole
purpose of 007

A: Yes and no.A typical reason for
making a class final Isfor security.You
can't, for example, make a subclass of the
String class.Imagine the havoc If someone
extended the String class and substituted
their own String subclass objects,
polymorphically, where String objects
are expected. Ifyou need to count on a
particular Implementation of the methods
Ina class,make the class final.

Q...: Isn't It redundant to have to mark
the methods final Ifthe class Isfinal?

A: If the class Isfinal,you don't need to
rnarkthe methods final. Thinkabout It-If
a class Isfinal It can never be subclassed,
so none ofthe methods can ever be
overridden.

On the other hand, If you dowant to allow
others to extend your class,and you want
them to be able to override some, but not
all,of the methods, then don't mark the
class final but go In and selectively mark
specific methods as final.A final method
means that a subclass can't override that
particular method.

284 chapter 10

• Astatic method should be called using the class
name rather than an object reference variable:
Maoth . random () vs.myFoo . go ()

• Astatic method can be invoked without any Instances
ofthe method's class on the heap.

• Astatic method isgood for autility method that does
not (and will never) depend on a particular Instance
variable value.

• Astatic method isnot associated with aparticular
instanee----only the c1ass---so Itcannol access any
Instance vanable values offts class. Itwouldn't know
which Instance's values to use.

• Astatic method cannot access anon-static method,
since non-static methods are usually associated with
instance variable state.

• Ifyou have a class with only static methods, and you
do not want the class tobe instantiated, you can mark
the constructor private.

• Astatic variable isavariable shared byall members
ofagiven class. There isonly one copy ofastatic
variable inaclass, rather than one copy per each
individual instance for instance variables.

• Astatic method can access astatic variable.

• To make aconstant in Java, mark avariable as both
static and final.

• Afinal static variable must be assigned avalue either
atthe time it isdeclared, or in astatic initializer.
static {

DOG_CODE:: 420;
}

• The naming convention for constants (final static
variables) Is tomake the name aU uppercase.

• Afinal variable value cannot be changed once Ithas
been assigned.

• Assigning avalue to afinal Instance variable must be
either at the time It Is declared, orinthe constructor.

• Afinal method cannot be overridden.

• Afinal class cannot be extended (subclassed).

~ yoor pencil

What's Legal?
Given everything you've just

learned about static and final,

which of these would compile?

numbers and statics

KEEP...
RIGHT

• public clll.Sl! 11'00
static: int Xi

public: void go() (
Systam.out.println{x) ; • public class F004

BUtic final int x 12;

• public c:lass Foo2 {
int Xi

public static void go () (
Syatem.out.println(x); •

public: void go() (
Systam.out.println(x) ;

public: c1ass Foo5 (
statio tiDal int X '" 12;

public void go (final int x)
System.out.println(x);

• public class Foo3
final int X i

public: void go() (
Syatem.out.println(x); •public class Foo6

int x '" 12;

public static void go(final int x) (
SyatBm ,out.println{xl;

you are here) 285

Math methods

Math lItethods
Now that we know how static
methods work, let's look
at some static methods in
class Math. This isn't all of
them,just the highlights.
Check your API for the rest
including sqrtf), tant), ceilf),
floor'(), and asint).

Math.random{)
Returns a double between 0.0 through (but

not including) 1.0.
double rl = Math. random 0 ;
int r2 = (int) (Math.random() * 5);

Math.absO
Returns a double that is the absolute value of

the argument. The method is overloaded, so

if you pass it an int it returns an into Pass it a

double it returns a double.

int x = Math .abs(-240); II returns 240
double d = Math.abs(240.45); II returns 240.45

II returns 90876.49

Math.roundO
Returns an int or a long (depending on

whether the argument is a float or a double)

rounded to the nearest integer value.

int x = Math.round(-24.8f); II returns -25
int y = Math.round(24.45f); II returns 24

t
Re"'e",bel"', .floa'bn~ point lit el"'als al"'e ass"''''ed
to be do",bles "'nless yo", add t he '.f',

Math.minO
Returns a value that is the minimum of the

two arguments. The method is overloaded to

take ints , longs, floats, or doubles.

int x = Math.min(24,240); II returns 24
double y = Math.min(90876.5, 90876 .49);

Math.maxO
Returns a value that is the maximum of the

two arguments. The method is overloaded to

take ints, longs, floats, or doubles.

int x = Math.max(24,240); II returns 240
double y = Math.max(90876 .5, 90876.49); II returns 90876.5

286 chapter 10

numbers and statics

~ object

primitive

..,.."

int 1I

~'feger o~f

When you need to treat

a primitive like an object,
wrap it. Ii you're using any
version of Java before 5.0,
you'll Jo this when you
need to store a primitive
value inside a collection like
ArrayList or lIashMap.

Note: the plchJre III \he top Is a chocolate In e roll wrapper. Get
It?WraPP6r? Some people think It looks like a baked potato. bill
\hilt Wlll1ls100.

Double

Wrappit1g a pritttifive
Sometimes you want to treat a primitive like
an object For example, in all versions ofJava
prior to 5.0, you cannot put a primitive directly
into a collection like ArrayList or HashMap:

int x :: 32;
ArrayList list = new ArrayList();
list. add (xl i ~

't k 1 s: \&Si~Java 'S.O m-This '010" '" wO'r I"" t.:SS dr. L \ od '11\ ~a'J!-ist.
L -~II Tht"e s J>O a ,''v '" () I _L~ods

~\'"ea=.. . LI (b...~ !-. t. 01\1'1 has add "'CV'
t.hat. takes a" ,,,'t.. f"lYTiJ'f ~ L . ' t.iv)
that. take objed:. ""t~ueJl(.t.s, fIO't. ~''''I es·

There's a wrapper class for every primitive type,
and since the wrapper classes are in the java.
lang package, you don't need to import them.
You can recognize wrapper classes because
each one is named after the primitive type it
wraps, but with the first letter capitalized to
follow the class naming convention.

Oh yeah, for reasons absolutely nobody on the
planet is certain of, the API designers decided
not to map the names exactly from primitive
type to class type. You'll see what we mean:

Boolean

Chara~ter~

Byte Watth 0I<t.! The N",es al"'~"J.t..

Short / ",ayyed e'll4d.l'f to the ~1"'i~l\Jt
t~s. The tlolS na...es are .. 'f

Integer sfelltd o>J.t..
Long

Float

you are here. 287

static methods

This is stupid, You mean I can't
just makean ArrayList of ints??i I

haveto wrap every single frickin' one in a new
Integer object, then unwrap it whenI try

to access that value in the ArrayList?
That's a waste of t imeand an error

waiting to happen..,

Jefore Java 5:0, YOU had to do the work...-
She's right. In all versions ofJava prior to 5.0, primitives were primitives
and object references were object references. and they were NEVER
treated interchangeably. It was always up to you, the programmer, to do
the wrapping and unwrapping, There was no way to pass a primitive to a
method expecting an object reference, and no way to assign the result of a
method returning an object reference directly to a primitive variable----even
when the returned reference is to an Integer and the primitive variable is
an int, There was simply no relationship between an Integer and an int,
other than the fact that Integer has an instance variable of type int (to hold
the primitive the Integer wraps). All the work was up to you.

An ArrayList of primitive ints

Without autoboxing (Java versions before 5.0) \J t,t '? 0 ~~ tau l.I l'lO"{.Arr L:rt.- (Rt",t",'ber, be oYt. ' ~ Db' c.h)
pubLic void doNumsOldWay () { Malu al'l a~/p'2- all l\rYa~L.i~b ..n:r~ \i~b ~e '

1feGi~~ t\o.t T 1 '~

ArrayList listOfNumbers = new ArrayList(); l
. 1., ('l' L t.hl lise-,

It add t\o.e yr"I"'IUllt ? \P .

listOfNumbers, add (new Integer (3» i ~ you c.a~~ i . wYao "r\:. 'n' dl'l ll\u~~"" ~1""St.
so '/0'0' n<I\I~ \P I

Integer one = (Inteqer) lis tofNumbers . ge t (0) ; ~""'lS O'o't as t'fVl
Ob'td:., but. ~O'o> Ga" l..dst.

int intone = ODe. intValue () ; t.h~ ObjtGt to al\ I"U~er .

Fihd/ly y~ td"t t "
out 0+ the Inu~. hI! pl"''''ltivt:'

2BB chapter 10

numbers and statics

Autoboxing: blurring the line
between pritMitive and object
The autoboxing feature added to Java 5.0 does
the conversion from primitive to wrapper object
automatically!

Let's see what happens when we want to make an
ArrayList to hold ints.

An ArrayList of primitive ints

With autoboxing (.Java versions 5.0 or greater)

l1. L: t ok t'j\'e Il'lteCjer.
public void doNumsNewWay() { Make al'l f\rra~ IS

-l
ArrayList<Integer> listOfNumbers new ArrayList<Integer>();

li stOfNumbers.add(3); JlASt add it !

int num = listOfNumbers.get(O);

":h':I:~~~~~e:;uto",atilallyul'lwraps (IAl'lbo~es)
direli! to a :.lei"" ~o yo~ lal'l assi51'1 the int va/loe
intVallA~() fr Itlve '~/IthOlAt havin5 to lall the

....ethod 0\'1 the Inte5er objelt.

Q.: Why not declare an ArrayList<int> if you want to
hold ints7

AH:holA~h there is NOT a ",eihod il'l ArrayList
.f01" add(iI'lV, the lon-piler does all the wrafpil'l5
(bo)/,;n5) .for 'lOlA. 11'1 other words, there I"eall'l IS
a\'l Il'Ite~el" objelt stored il'l the Al"l"a'll-ist. blAt
'lOlA 5et to "pl"etend" that the ~l"a'lList takes
ints. cyOIA lan add both ints al'ld l\'Ite~ers to al'l
A'f'l"a'lList<lnte~er>.)

A.: Because...you can't. Remember, the rule for generic
types is that you can specify only classor interface types, not
primitives. So ArrayList<int> will not compile. But as you can
see from the code above, it doesn't really matter, since the
compiler lets you put ints into the ArrayList<lnteger>.ln fact,
there's really no way to preventyou from putting primitives
into an ArrayList where the type of the list is the type of that
primitive's wrapper, if you're using a JavaS.D-compliant com­
piler, since autoboxing will happen automatically. So,you can
put boolean primitives in an ArrayList<Boolean> and chars
into an ArrayList<Character>.

you are here ~ 289

staUc methods

Aufoboxit1Q works al",ost everywhere
Autoboxing lets you do more than just the obvious wrapping and
unwrapping to use primitives in a collection... it also lets you use
either a primitive or its wrapper type virtually anywhere one or the
other is expected. Think about thatl

Fun with autoboxing

Method arguments

If a method takes a wrapper type, you
can pass a reference to a wrapper or
a primitive of the matching type. And
of course the reverse is true-if o
method takes (] primitive, you can
pass in either a compatible primitive
or a reference to a wrapper of that
primitive type.

Return values

If a method declares a primitive
return type, you can return either a
compatible primitive or a reference
to the wrapper of that primitive type.
And if a method declares a wrapper
return type, you can return either a
reference to the wrapper type or a
primitive of the matching type.

Boolean expressions

Any place a boolean value is expected,
you can use either an expression that
evaluates to a boolean (4) 2), or a
primitive boolean, or a reference to a
Boolean wrapper.

290 chapter 10

.~ \1
"''>1''ger Ol:i~ / int

void takeNumber(Integer i) { }

int giveNumber ()
return X;

true

\1
~/ean o~f boolean

~f
if (bool) {

System.out.println("true H
) ;

Operations on numbers

This is probably the strangest one-yes, you
can now use a wrapper type as an operand
in operations where the primitive type is
expected. That means you can apply , say,
the increment operator against a reference
to an Integer object!

But don't worry-this is just a compiler trick.
The language wasn't modified to make the
operators work on objects; the compiler
simply converts the object to its primitive
type before the operation. It sure looks
weird, though.

Integer i =new Integer(42);
i++;

And tnat means you can also do things like:

Integer j :; new Integer(5);
Integer k :; j .. 3;

Assignments

You can assign either a wrapper or primitive
to a variable declared as a matching wrapper
or primitive. for example, a primitive int
variable can be assigned to an Integer
reference variable, and vice-versa-o
reference to an Integer object can be
assigned to a variable declared as an jnt
primitive.

numbers and statics

i++i

~ your pencil

Will thiscode compile? Will Itrun? IfII runs,
what will ~do7

Take your time and think about thisone; it
brings up an implication ofautoboxing that
we didn't talkabout.

You'll have to go to your compiler to find
the answers. (Yes. we're forclng you to
experiment, for your own good ofcourse.)

public class TastBox

Integer i;
int j;

public static void main (String[] ll%gs) (
T.stBox t ; new T.stBox() i

t.qo() ;
}

public void go 0
j-ii
Systam.out.println(j);
Systam.out .println(i);

you are here) 291

wrapper methods

Jut waltl There1s ",ore! Wrappers
have static utility tMethods too!
Besides acting like a normal class. the wrappers have a
bunch of reaJly useful static methods. We','e used one in
this book before--lnteger.parselntO.

The parse methods take a String and give you back a
primitive value .

Converting a String to a
primitive value is easy:

String s "" "2";
int x = Inteqer.parseInt(s);
double d = Double.parSeDouble("420.24 H

) ;

You'll get a runtime exception:

% java Wrappers

Exception in thread "main N

java .lang.NumberFormatException: two

at java.lang.lnteger.parselnt(Integer .java:409)

at java .lang .lnteger.parselnt(Integer .java:458)

at Wrappers.main(Wrappers.java:9)

292 chapter 10

Every method or
constructor that parses
a String can throw a
NumberFormatExceptlon.
It's a runtime exception,
so you don't have to
handle or declare It.
But you might want to.

(We'U talk about Exceptions in the
next chapter.)

Attd .,ow i" reverse... fuYttittg a
prhMitive ttutMber ittto a Strittg
There are several ways to tum a number into a String.
The easiest is to simply concatenate the number to an
existing String. Lh '+' o~cra~ is o...~y\oa~,d

R,,,,t"'\'cr \. t. loadt.d oycratoo- as a
double d '" 42.5; ~ i" Java (tht. _I'f t;- A",,.l.\.iWl~ .loot.d 1:.0 a

Stt·..o. c.oWlu\:.t.Ni"LO r.1 v'
String doubleString = " + d; ~"J L -CO es Shi,,~i-r't.d.

Sttl"!l Dt: 0'"

double d = 42.5;
String doubleStrinq '" Dcuble .toStrinq(d) ;

\ A~t.I". way to do it l.ISiJ\9 a st.;-bt
"'ethod Ih dan Do..bk

numbers and statics

you are here ~ 293

number formatting

Nutttber fortttatti.,g
InJava, formatting numbers and dates doesn't have to be coupled with I/O. Think
about it. One of the most typical ways to display numbers to a user is through a
GUI. You put Strings into a scrolling text area, or maybe a table. If formatting was
built only into print statements, you'd never be able to format a number into a nice
String to display in a GUI. BeforeJava 5.0, most formatting was handled through
classes in the java. text package that we won't even look at in this version of the
book, now that things have changed.

In Java 5.0, theJava team added more powerful and flexible formatting through a
Formatter class injava.util. But you don't need to create and call methods on the
Formatter class yourself, because Java 5.0 added convenience methods to some of
the I/O classes (including printf'(j) and the String class. So it's a simple matter of
calling a static String.formatO method and passing it the thing you want formatted
along with formatting instructions.

Of course, you do have to know how to supply the formatting instructions, and
that takes a little effort unless you're familiar with the frrintf() function in C/CH.
Fortunately, even if you don't know printf() you can simply follow recipes for the
most basic things (that we're showing in this chapter) . But you willwant to learn
how to format if you want to mix and match to get anythingyou want.

We'll start here with a basic example, then look at how it works. (Note: we'll revisit
formatting again in the I/O chapter.)

Formatting a number to use commas

public class TestFormats (

public static void main (String[) args) {

String s = String. format ("lis, d",
System.out.println(s) ; ~

1,000,000,000

294 chapter 10

Do this...

•format ("%, d",
~

FortMaffit1g decot1sfrucfed...
At the most basic level, formatting consists of two main parts
(there is more, but we'll start with this to keep it cleaner):

__ Formatting Instructions

You use special format specifiers that describe how
the argument should be formatted.

e The argument to be formatted.

Although there can be more than one argument, we'll
start with just one.The argument type can't be just
anything... it has tobe something that can be formatted
using the format specifiers inthe formatting instructions.
For example, if your formatting instructions specify a
floating point number, you can't pass inaDog oreven a
String that looks like afloating point number.

to this.

•1000000000);
~

i \
Use these instructions... on this argument.

What do these Instructions actually say?

"Take the second argument to this method, and

format it as a decimal integer and insert commas."

How do they say that?

On the next page we'll look in more detail at what the syntax "%,
d" actually means, but for starters, any time you see the percent
sign (%) in a format String (which is always the first argument
to a formatf) method), think of it as representing a variable,
and the variable is the other argument to the method. The rest
of the characters after the percent sign describe the formatting
instructions for the argument.

numbers and statics

you are here. 295

the formatO method

The percettt (~) says, "ittsert argutltet1t here"
(a"d format It uslt1g these it1structiottS)

The first argument to a formatj) method is called the format Suing, and it
can actually include characters that you just want printed as-is, without extra
formatting. When you see the % sign, though, think of the percent sign as a
variable that represents the other argument to the method.

I have 476578.10 bugs to fix.

The "%" sign tells the formatter to insert the other method argument (the
second argument to formatf), the number) here, At"lD format it using the

u .2r characters after the percent sign. Then the rest of Ute format Suing,
"bugs to fix" , is added to the final output .

Adding a comma

format("! have %,.2£ bugs to fix. u
, 476578.09876);

I have 476,578.10 bugs to f~.

296 chapter 10

numbers and statics

But how does it even KNOW
where the instructions end and the

rest of the characters begin? How come
it doesn't print out the "f" in "%.2f'? Or

the "2"(How does it know that the .2f
was part of the instructions and NOT

part of the StriT\9?

The format Stri"Q uses its
ow., little lattguage sytttax
You obviously can't put just an),thingafter the "%~

sign. The syntax for what goes after the percent
sign follows very specific rules, and describes
how to format me argument that gets inserted at
that point in the result (formatted) String.

You've already seen two examples:

%, d means "insert commas and format the
number as a decimal integer,"

and

%.2£ means "format the number as a floating
point with a precision of two decimal places."

and

%,.2£ means "insert commas and format the
number as a floating point with a precision of
two decimal places."

The real question is really, "How do I know what
to put after the percent sign to get it to do what
I want?" And that includes knowing the symbols
(like "d" for decimal and "f" for floating point)
as well as the order in which the instructions
must be placed following the percent sign. For
example, if you put the comma after the "d" like
this: k%d,~ instead of "'%,d" it won 't workl

Or will iv What do you think this will do:

String .for1llat("I have %.2£, bugs to fix.", 476578.09876);

(We'll answer that on the next page.)

you a re he re ~ 297

format specifier

The fortMat specifier
Everything after the percent sign up to and including the type indicator (like

"d" or "f') are part of the formatting instructions. After the type indicator, the
formatter assumes the next set of characters are meant to be pan of the output
String, until or unless it hits another percent (%) sign. Hmmmm ... is that even
possible? Can you have more than one formatted argument variable? Put that
thought on hold for right now; we'll come back to it in a few minutes. For now,
let's look at the syntax for the format specifiers-the things that go after the
percent (%) sign and describe how the argument should be formatted.

A format specifier can have up to five different parts (not
Including the MOJo"). Everything In brackets [] below Is optional, so
only the percent (0J0) and the type are required. But the order Is
also mandatory, so any parts you DO use must go In this order.

%[argument number] [flags] [width) [.precision)type

%[argument number] [flags] [width) [.precision) type

------~Jl
format("%,6.1f N

, 42.000);

298 chapter 10

numbers and statics

The ot1ly required specifier is for TVPE
Although type is the only required specifier, remember that if you do put
in anything else, type must always come last! There are more than a dozen
different type modifiers (not including dates and times; they have their own
set), but most of the time you 'll probably use %d (decimal) or %f (floating
point) . And typically you 'll combine %fwith a precision indicator to set the
number of decimal places you want in your output.

The TYPE is mandatory, everything else is optional.

42 .000

decimal
format ("%d",

You must include a

type in your tormat

instructions, and it you

specity things besides

type, the type must

always COme last.

Most ot the time,

you'll probably tormat

numbers using either
"d" r J' l "t»ror ecrma or l'

tor lloating point.

floating point
format ("%.3£", 42. 000000) ;

~ A4-2.25 wcxo/d ot I
42) ; wo",ld be th tI work, It

d' e sallie as trt'tI to. ,rettly assi3t1 a do",bl 3
Itlt variable. e atl

The argument must be compatible with an int, so that means
only byte, short, int, and char (or their wrapper types) .

"kit
»e\"e we tOftlbil'le~ ~he
with a f\"etis',o\'\ 'l'Id,t~tov-

".,11 we el'lded ",y WIth
.7 so
th\"ee u\"oes·

The argument must be of a floating point type, so that
means only a float or double (primitive or wrapper) as well
as something called BigDecimal (which we don't look at in
thi s book) .

%d

%f

%x hexadecimal
format ("%x", 42);

The argument must be a byte , short, int, long (including
both primitive and wrapper types), and BigInteger.

%c character
format ("%c", 42);

The argument must be a byte, short, char, or int (including
both primitive and wrapper types).

you are here . 299

format arguments

What happens if I have tltore than one argutltent?
Imagine you want a String that looks like this:

"The rank is 20,456,654 out of 100,567,890.24."

But the numbers are coming from variables. What do you do? You simply add two
arguments after the format String (first argument), so that means your call to formatt)
will have three arguments instead of two. And inside that first argument (the format
String), you'll have two different format specifiers (two things that start with "%"). The
first format specifier will insert the second argument to the method, and the second
format specifier will insert the third argument to the method. In other words, the
variable insertions in the format String use the order in which the other arguments are
passed into the formatf) method.

i n t one = 20 45 6 6 5 4 ;
doub l e two = 100567890.248907 ;

St r i ng s = String. f o r mat ("The r a nk i s %,d o u t of %,.2£", one, twO);

~
The rank is 20,456,654 out of 100 ,567,890 .25

We added tOl'l\l'I\OS to both vat'iables,
and t'estt'itted the .fIO<ltin~ point
n~l'I\bet' (the setond variable) to two
detil'l\al plates.

As you'll see when we get to date formatting, you might actually want to apply different
formatting specifiers to the same argument. That's probably hard to imagine until you
see how dateformatting (as opposed to the numberformatingwe've been doing) works.
Just know that in a minute, you'll see how to be more specific about which format
specifiers are applied to which arguments.

Q: Um,there's something REALLY strange going on here. Just how many arguments can I
pass? Imean, how many overloaded format() methods are INthe String class? So,what happens
if Iwant to pass, say, ten different arguments to be formatted for a single output String?

A: Good catch. Yes, there is something strange (or at least new and different) going on, and
no there are not a bunch of overloaded formatO methods to take a different number of possible
arguments. In order to support this new formatting (printf-like) API in Java,the language needed
another new feature-variable argument lists (called varargs for short) .We'll talk about varargs
only in the appendix because outside of formatting, you probably won't use them much in a well­
designed system.

300 chapter 10

numbers and statics

So tMuch for t1utMbers, what about dates?
Imagine you want a String that looks like this: "Sunday, Nov 28 2004"

Nothing special there, you say? Well, imagine that all you have to start with is a variable
of type Date-AJava class that can represent a timestamp, and now you want to take that
object (as opposed to a number) and send it through the formatter.

The main difference between number and date formatting is that date formats use a
two-character type that starts with "t" (as opposed to the single character "f" or "d", for
example). The examples below should give you a good idea of how it works:

The complete date and time %tc

String. format ("%tc", new Date());

Sun Nov 28 14 :52:41 MST 2004

Just the time %tr

String. format ("%tr", new Date ()) ;

03:01 :47 PM

Day of the week, month and day %tA %tB %td

There isn't a single format specifier that will do exactly what we
want, so we have to combine three of them for day of the week
(%tA), month (%tB), and day ofthe month (%td).

Sunday, November 28

Same as above, but without duplicating the arguments %tA %tB %td

Date today = new Date () ; The a\'l~le-bl"atkd: "<" is jlASt a\'lothel"
String. format (" %tA, %< t B %< t d " , today); ~Ia~ ill iht speti+iel" that tells the

+ol"",aH el" to "lASe the ..fl"eviOlAS al"~~"'el'lt
a~a il'l ." So it saves '1~ hOM l"efeatil'l~ the
al"~lA",e\'lts, al'ld i\'lSuad 'i0~ +Ol"",at the
SaMe al"~~el'lt thl"ee diHel"el'lt ways.

you are here. 301

manipulating dates

302 chapter 10

Let's see... how many work
days will there be if the

project starts on Feb 27th and
ends on August 5th?

Workhtg with Pates
You need to do more with dates than just get
UN:ldy s date. You need your programs to adjust
dates, find elapsed times, prioritize schedules,
heck, make schedules. You need industrial
strength date manipulation capabilities .

You could make your own date routines of
course... (and don't forget about leap years l)
And, ouch, those occasional, pesky leap­
seconds. Wow, this could get complicated. The
good news is that the Java API is rich with
classes that can help you manipulate dates.
Sometimes it feels a little too rich ...

Movit1Q backward at1d forward it1 tittte
Let's say your company's work schedule is Monday through Friday.
You've been assigned the task of figuring out the last work day in
each calendar month this year...

It seems that java.util.Date Is actually••• out of date

Earlier we used java.util.Date to find today's date, so it seems
logical that this class would be a good place to start looking for
some handy date manipulation capabilities, but when you check
out the API you'll find that most of Date's methods have been
deprecated!

The Date class is still great for getting a "time stamp"-an object
that represents the current date and time, so use it when you want
to say, "give me NOW".

The good news is that the API recommends java.util.Calendar
instead, so let's take a look:

Use Java.util.Calendar for your date manipulation

The designers of the Calendar API wanted to think globally,
literally. The basic idea is that when you want to work with dates,
you ask for a Calendar (through a static method of the Calendar
class that you'll see on the next page), and the JVM hands you back
an instance of a concrete subclass of Calendar. (Calendar is actually
an abstract class, so you're always working with a concrete subclass.)

More interesting, though, is that the kind of calendar you get
back will be appropriate for your locale. Much of the world uses the
Gregorian calendar, but if you're in an area that doesn't use a
Gregorian calendar you can getJava libraries to handle other
calendars such as Buddhist, or Islamic orJapanese.

The standardJava API ships withjava.util.GregorianCalendar, so
that's what we'll be using here. For the most part, though, you
don't even have to think about the kind of Calendar subclass you're
using, and instead focus only on the methods of the Calendar class.

numbers and statics

v· rtt".ror a time-stamp o:t now,
use Date. But lor everything
else, use Calendar.

you are here . 303

getting a Calendar

&ettit1g at' object that extends Calendar
How in the world do you get an "instance" of an abstract class?
Well you don't of course, this won't work:

This WON'T work: v--- nt tompile¥0I'I't allow this I
Calendar cal = new Calendar () ; .

You can't get an instance of Calendar,
but you can can get an instance of a
concrete Calendar subclass.

Obviously you can't get an instance of Calendar, because
Calendar is abstract, But you're still free to call static methods
on Calendar, since SUllie methods are called on the class;
rather than on a particular instance. So you call the static
getInstanceO on Calendar and it gives you back... an instance
of a concrete subclass. Something that extends Calendar
(which means it can be polymorphically assigned to Calendar)
and which-by contract-s-can respond to the methods of class
Calendar.

In most of the world, and by default for most versions ofJava,
you'll be getting back ajava.util.GregorianCalendar instance.

Wait a minute.
If you can't make an

instance of the Calendar
class, what exactly are you
assigning to that Calendar

reference?

Instead, use the static "getlnstanceO" method:

Calendar cal = Calendar .getlnstance() ;

304 ch a ple r 10

numbers and statics

Workittg with Calettdar objects
There are several key concepts you 'U need to understand in
order to work with Calendar objects:

• Fields hold state- A Calendar object bas many fields that are used to
represent aspects of its ultimate state, its date and time. For instance, you
can get and set a Calendar's yearor month.

• Dates and Times can be incremented - The Calendar class has methods that
allow you to add and subtract values from various fields, for example "add
one to the month". or "subtract three years" .

• Dates and TImes can be represented in milhseconds- The Calendar class
lets you convert your dates in to and out ofa millisecond representation .
(Specifically, the number of milliseconds that have occured since January
l st, 1970.) This allows you to perform precise calculations such as "elapsed
time between twO times" or "add 63 hours and 23 minutes and 12 seconds
to this time",

An example of working with a Calendar object: 1 ~o&r at \",~D.
. t.o Ja'" J o-ba$td.1

Calenda r c = Ca lendar . get I ns tance () i ~ b"'\L ,..(l¥\\)1 i.s z.l'"
,--_._~ n.JdUl.t.~nt.

c.set(2004,O, 7,15,40); ~ . L .LL' t.o a hie> 01'
ConV~ "{.I\\s J

long dayl = c. getTimelnMillis (); ~ oJ 3W\OIo'l'It. ot ",i\Iis«.ow-dS.

System.out.println("add 35 days" + c.getTime());

~-------

dayl +~ 1000 * 60 * 60;

c .setTimelnMillis(dayl); (

System.out.println("new hour

c.add(c .DATE, 35) ;

" + c.qet(c.HOUR_OF_DAY») ;

Add 3'5 da'f1 to the dau, whith
shOl.lld ""ove lAS jPlto FebYu.ilry.

System.out.println("roll 35 days" + c.getTime(»)i

c.roll(c.DATE, 35);

c.set(c.DATE, 1);

<:~---~--

System.out.println("set to 1 " + c.qetTime(»);

This outp",t, ton~i_s how ...illis.
add, yoll, dPld set w~k

you are here ~ 305

Calendar API

Highlights of the Calettdar API
WeJUSt worked through using a few of the fields and
methods in the Calendar class. This is a big API so
we're showing only a few of the most common fields
and methods that you'll use. Once you get a few of
these it should be pretty easy to bend the rest of the
this API to your will.

Key Calendar Methods

add(lnt field. Int amount}
Adds or subtracts time from the calendar's field.

get(lnt field)
Returns the value of the given calendar field.

-,
-

KeyCalendar Fields

set(int field.lnt value}
Sets the value of a given Calendar field.

set(year. month. day, hour. minute) (allints)
A common variety of set to set a complete time.

getTlmelnMllIIs()
Returns this Calendar's time In millis,as a long.

roll(int field, boolean up)
Adds or subtracts time without changing larger fields.

II more ...

setTlmelnMfllis(long millis)
Sets a Calendar's time based on a long rnllli-tirne.

DATE I DAY_OF_MONTH
Get / set the day of month

HOUR/HOUR_OF DAY
Get! Set the 12 h-

Our Or24 hour value
MILLISECOND .

Get / Setthe milliseconds,

MINUTE

Get / set the mInute.

MONTH
Get / set the month.

---...._ ..._-_.._--.., YEAR

Get / Set the year.

ZONE_OFFSET

Get / set raw offset of GMT I
1/ n mUUs.more...

06 chapter 10

numbers and statics

Evett ttlore Statics!... static jttlJ!orts
New to Java 5.0... a real mixed blessing. Some people love
this idea, some people hate it, Static imports exist only to save
you some typing. [f you hate to type, you rnightjust like this
feature. The downside to static imports is that - ifyou're not
careful- using them can make your code a lot harder to read.

The basic idea is that whenever you're using a static class, a
static variable, or an enum (more on those later) , you can
import them, and save yourself some typing.

Some old-fashioned code:

import java.lang.Math;

Use CareluUy:
static imports can
make your code
contusing to read

class NoStatic {

publiC static void main (String () argsl (

Math.tan(60});

Same code, with static Imports:

;import static java.lanq.System.Outi - Caw.aII & Gokhas

•

•

•

If you're only going to use astatic member
a fewtimes, we think you should avoid
static Imports, to help keep the code more
readable.

Ifyou're going to use astatic member a lot,
(like doing lots ofMath calculanons), then
it's probably OK touse the static Import.

Notice that you can use wildcards (."), in
your static Import declaration.

• Abig issue with static imports is that it's
not too hard tocreate naming conflicts. For
example, if you have two different classes
with an "addO' method, how will you and
the compiler know which one touse?

public static void main (String [] args)

class WithStatic (

;import static java.lanq.Math.*i

you are here. 307

static vs. instance

Fireside Chats

@
Tonight's Talk: An instance variable
takes cheap sIlots at a static variable

In.stanoe Variable
I don't even know why we're doing this.
Everyone knows static variables are just used
for constants. And how many of those are
there? I think the whole API must have, what,
four? And it's not like anybody ever uses
them.

Full of it. Yeah, you can say that again. OK,
so there are a few in the Swing library, but
everybody knows Swing is just a special case.

Ok, but besides a few GUI things, give me an
example ofjust one static variable that anyone
would actually use. In the real world.

Well , that's another special case . And nobody
uses that except for debugging anyway.

308 chapter 10

S1atic Variable

You really should check your facts . When
was the last time you looked at the API? It's
frickiri ' loaded with statics! It even has entire
classes dedicated to holding constant values.
There's a class called SwingConstarus, for
example, that's just fuU of them.

It might be a special case, but it's a really
important onel And what about the Color
class? What a pain ifyou had to remember the
RGB values to make the standard colors? But
the color class already has constants defined
for blue, purple, white, red, etc. Very handy.

How's System.out for starters? The out in
System.out is a static variable of the System
class. You personally don't make a new
instance of the System, you just ask the System
class for its out variable.

Oh.Iike debugging isn't important?

And here's something that probably never
crossed your narrow mind-let's face it, static
variables are more efficient. One per class
instead of one per instance. The memory
savings might be huge!

Instance Variable

Urn, aren't you forgetting something?

Static variables are about as un-OO as it gets!!
Gee why notjust go take a giant backwards
step and do some procedural programming
while we're at it.

You're like a global variable, and any
programmer worth his PDA knows that's
usually a Bad Thing.

Yeah you live in a class, but they don't call
it Clas.rOriented programming. That's just
stupid. You're a relic. Something to help the
old-timers make the leap to java.

Well, OK, every once in a while sure, it makes
sense to use a static, but let me tell you , abuse
of static variables (and methods) isthe~iDark

of an immature 00 programmer. A designer
should be thinking about objectstate, not class
state.

Static methods are the worst things of all,
because it usually means the programmer is
thinking procedurally instead of about objects
doing things based on their unique object
state.

Riiiiiight. Whatever you need to tell yourself. ..

numbers and statics

Static Variable

What?

What do you mean un-OO?

I am NOT a global variable. There's no such
thing. I live in a class! That's pretty 00 you
know, a CLASS. I'm not just sitting out there
in space somewhere; I'm a natural part of the
state of an object; the only difference is that
I'm shared by all instances of a class. Very
efficient.

Alrightjust stop right there. THAT is
definitely not true. Some static variables are
absolutely crucial to a system . And even the
ones that aren 't crucial sure are handy.

Why do you say that? And what's wrong with
static methods?

Sure, I know that objects should be the focus
of an 00 design, but just because there are
some clueless programmers out there... don 't
throw the baby out with the bytecode. There's
a time and place for statics, and when you
need one, nothing else beats it .

you are here . 309

static {

System.out.println("super static block");

be the compiler

class StaticSuper{

BE the comriIer
The Java file on this page represents a
complete progrlU'l. Your joh is to rIa)'
cOIlIpiler and deterrnne whether this
file will cOIllpile. If it won't cOIlIpile.
how would)'OU 1'lX it. and
if it does compile. whllt
would he ~ output?

}

StaticSuper{

System.out.println(

"super constructor");

}

}

public class StaticTests extends StaticSuper {

static int randj

static {

rand = (int) (Math.random() * 6)j

system.out.println("static block n + rand);

}

StaticTests () {

System.out.println("constructor");

}

public static vcid main{String [] args) {

System.cut.println("in main");

StaticTests st = new StaticTests()j

}

}

310 chapter 10

If it complies, which of these Is
the output?

Possible Output

Rle Edit Wlndow Hel ell
%java StaticTests

static block 4

in main

super static block

super constructor

constructor

Possible Output

File Edit Wlndow Het Electrle:l

%java StaticTests

super static block

static block 3

in main

super constructor

constructor

numbers and statics

This chapter explored the wonderful, static, world
of Java. YourJob is to decide whether each of the
following statements Is true or false.

1. To use the Math class, the first step is to make an instance of it.

2. You can mark a constructor with the static keyword.

3. Static methods don't have access to instance variable state of the 'this' object.

4. It is good practice to call a static method using a reference variable.

5. Static variables could be used to count the instances of a class.

6. Constructors are called before static variables are initialized.

7. MA)CSIZE would be a good name for a static final variable .

8. A static initializer block runs before a class's constructor runs.

9. If a class is marked final, all of its methods must be marked final.

10. A final method can only be overridden if its class is extended.

11. There is no wrapper class for boolean primitives.

12. A wrapper is used when you want to treat a primitive like an object.

13. The parseXxx methods always return a String.

14. Formatting classes (which are decoupled from 1/0), are in the java.format

package.

you are here ~ 311

code magnets

Lunar Code Magnets
This one might actually be usefullin addition to what you've learned in the last few
pages about manipulating dates, you'll need a little more information...First full
moons happen every 29.52 days or so.Second, there was a full moon on Jan.7th,
2004 .Your job is to reconstruct the code snippets to make a working Java program
that produces the output listed below (plus more full moon dates). (You might not
need all of the magnets, and add all the curly braces you need.) Oh, by the way,your
output will be different if you don't live in the mountain time zone.

Calendar c = Calendar.get1nst&nce();

out.printlne.set{2004,O,7,15,40);

c .setT1meInHi
lliS(daYl); (string . format

I long dayl = c.getTimelnMillis() ; I
Ic . s e t (2 0 04 , l , 7 , 1 5 , 4 0) ; I

rimPort static java. lang. system. out;

-\
static int DAY IM :: 60 Or 60 .. 24;

~ 1 ("full moon on llitc", c»; •.~ I (c. format JLCalendar
C - new

Calendar(); • l" l as s (FullMoons

r

I public static void main (Strinq [] arqs) { I
I dayl += (DAY_1M .. 29.52); I

Ifor (int x :: 0 ; X < 60; x++) {a
~Lstati.e int DAY

IM =: 1000
Or 60 Or 60 .. 24;-,

I println l
J . . -

1
\

("full moon on %t", c)) ;
l ~port Java.i.o.*;

~

limport java .util.*; }
Istatic import java.lanq.System.out;

~
I r

312 chapter 10

numbers and statics

True or False

1. To use the Math class, the first step is to

make an instance of it.

2. You can mark a constructor with the key­

word 'static' .

False

False

True

True

True

False

False

3. Static methods don't have access to an

object's instance variables .

4. It is good practice to call a static method

using a reference variable.

5. Static variables could be used to count the

instances of a class.

6. Constructors are called before static vari­

ables are initialized.

7. MAX_SIZE would be a good name for a

static final variable.

8. A static initializer block runs before a class's True:}

staticSuper() {

System.out.println(

usuper constructor H
) ;

StaticSuper is a constructor, and must
nave () in its signature. Notice thor as
the output below demonstrates, the static
blocks for both classes run before either
of the constructors run.

constructor runs.

9. If a class is marked final. all of its methods

must be marked final.

]O. A final method can only be overridden if

its class is extended.

11. There is no wrapper class for boolean

False

False

False

Possible Output

File Ed~ WIndOW Hel elln

%java StaticTests

super static block

static block 3

in main

super constructor

constructor

primitives.

12. A wrapper is used when you want to treat a True

primitive like an object

13. The parseXxx methods always return a False

String.

14. Formatting classes (which are decoupled False

from I/O), are in the java.format package.

you are here . 313

code magnets solution

import java.util.·;

import static java.lanq.Syatem.out;

olass FullMoons (

statio int DAY rM : 1000 • 60 • 60 • 24;

publi~ static void main (String [) args)

Ca18nda~ c = Calendar.getlnstance();

c.aet(2004,O,7,15,40);

long day! = c.qetTimelnM1l1i9();

for (int x ~ 0; x < 60; x++)

day! +: (DAY_1M • 29.52)

c. setTimslnMillis (dayl) ;

Notes on the Lunar Code Magnet:

You might discover that a few of the
dates produced by this prognun are
off by a day. This astronomical stuff
is a little tricky, and if we made it
perfect, it would be too complex to
make an exercise here.

Hint: one problem you might try to
solve is based on differences in time
zones. Can you spot the issue?

out.println(Strlnq.format("full moon on %tc", e»;

314 chapter 10

