A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

16 collections and generics

Data Sheesh... and all
this time I could have just let
StrUCtu res J'av; pL:T Tehingz in al:;ageﬁc:i

order? Third grade really

sucks, We never learn
anything useful...

e AT =

Sorting is a snap in Java. You have all the tools for collecting and manipulating
your data without having to write your own sort algorithms (unless you're reading this right
now sitting in your Computer Science 101 class, in which case, trust us—you are SO going to be
writing sort code while the rest of us just call a method in the Java API}. The Java Collections
Framework has a data structure that should work for virtually anything you'll ever need to do.
Want to keep a list that you can easily keep adding to? Want 1o find something by name? Want
to create a list that automatically takes out all the duplicates? Sort your co-workers by the
number of times they’ve stabbed you in the back? Sort your pets by number of tricks learned?

It's all here...

this is a new chapter 529

http://www.a-pdf.com/?product-split-demo

sorting a list

Tracking song popularity on your jukebox

Congratulations on your new job—managing the automated
jukebox system at Lou’s Diner. There’s no Java inside the
jukebox itself, but each time someone plays a song, the
song data is appended to a simple text file.

Your job is to manage the data to track song popularity,

generate reports, and manipulate the playlists. You're not

writing the entire app—some of the other software developer/
waiters are involved as well, but you're responsible for managing
and sorting the data inside the Java app. And since Lou has a thing
against databases, this is strictly an in-memory data collection. All
you get is the file the jukebox keeps adding to. Your job is to take it
from there.

You've already figured out how to read and parse the file, and so far
you've been storing the data in an ArrayList.

SonglList. txt

Challenge #1

Somersault/Zaero 7
Shiva Moon/Pram Joshua

order... what can you do?

method in the ArrayList class?

530 chapter 16

Pink Moon/Nick Drake Sort the songs in alphabetical order

You have a list of songs in a file, where each line
represents one song, and the title and artst are

i T
Clrcles/Bt | Jatro Colts separated with a forward slash. So it should be simple
Pasgenger/ﬂeadmix to parse the line, and put all the songs in an ArrayList.
Listen/Tahiti 80 Your boss cares only about the song titles, so for now

you can simply make a list that just has the song titles.

But you can see that the list is not in alphabetical

You know that with an ArrayList, the elements are
kept in the order in which they were inserted into the
list, so putting them in an ArrayList won't take care of
alphabetizing them, unless... maybe there’s a sort()

collections with generics

Here’s what you have so far, without the sort:

import java.util.*;
import java.io.*;

VJJ“skortkhijog Litles
"\
public class Jukeboxl { /_ n frevayList 9s

ArrayList<String> songList = new ArraylList<String>();

public static void main(String(] args) {
new Jukeboxl () .go();

) The mekhod that stare sl ot
™ Lon
public void go() { K— ke and H\‘{: m :

a wa
getSongs () ; the sonolis 1
System.out.println(songList);

le and

el \nc'ﬁ it vead e f\c
Nothing st c%ho 4 For eath ine
void getSongs{) { C$“{h¢ad&§”
try |

File file = new File(“SongList.txt”);

BufferedReader reader = new BufferedReader (new FileReader(file)):

String line = null;

while ((line= reader.readLine()) != null) {

addSong (line);

}
} catch(Exception ex) {

ex.printStackTrace();

The 54
) d$m@
} Card \‘:hc l/o ﬁha J“S{: like \':hc Suin

th 70“ r
void addSong(String lineToParse) { f P'““ ((:ok the ﬂc and ﬂ" line

1
String[] tokens = lineToParse.split(“/”); "3 th e‘th() C€h to tue
songlist.add (tokens(0]) ;

)
Ri__\ ég;onv {L p

} .
SLK‘t (e “‘3)’1_;;{) &
Fia £03_Window Nelp Once i . . he
%java Jukeboxl The 50“5L‘5t ?’Ehﬁ::&“‘:&z\t
[Pink Moon, Somersault, songs 1 d?j 1:; thc Aﬂ-a List (which
Shiva Moon, Circles, é_/ :CI.;: sa:\c order the songs arc n

Deep Channel, Passenger,
Listen]

within the dﬂgwﬁ } ket X f
This is debinidely NOT alyhabe-ht,al

you are here» 534

ArraylList AP|

But the Arraylist class does NOT have a sort() method!

When you look in Arra

nethod on t}wAn'ayLisL

chapter 16

Wher yList, there doesn’t seem to be an
Nalking up the inheritance hierarch

't $ y method related to sorting.
y didn’t help either—it’s clear that you can’t oalgl a sort

ShehEe A

baelaan

Apperds the speciicd domeet i e and of this Ho.

veld) gad(1at Ladax, E slenant)

nserts the specifed dement a tho spocified potiion in this Est

Boslamn

sddAll(Collegslon ? extends B> ¢)
Appeads el of ha demenls in e specificd Collection o e md of this s, i the order that ey e remed by the
specified Cofiection’s lermor.

addall(int {ndex, Coliect{on<? axvends P 0)
Imerta o) of e dementt ip e specifisd Colioction iow tha b, starting st the spocified poasition,

voit graaxt)
Removes ol of tho domerts from this kst

[0 T 18]
Retoms 1 shillow copy of this ArvayLint nsanm.

epxuceCapnelisy(ine minCapaalty)
Increases the axpacity of s AxreyLise

specified by e mndonm capacily wgument,

Ligat(ins {ndex}

Retans o demen & the specified pogition &

% | (adanof (Qhies elem)
Saarches far the rd occarenc X e gvee

t)
Tenie if i Hst has v chemeres.

(Qhieay =lem)
Rehurns the lodex of B st cecumanes of

L iremovetine index)
Remaves the dement & the specified posiy

Rbolesn

oamgrs(Qhigas o)
Remaves & single muance of thr ypecified

‘"“":T: agvafines (Lot fcomindes, {ne Lol
Remaves from this U2 all of $he demenss

Lleqrilnt {ncen, § wlenant)

fetuns e number of domet in his Bst

hmmmuumpM
RN FTT 1§

Rriiesdl sonrrey()
Retums 1 amy nipg B} of b d = this B 0 tho comect arder.
<7 T() | cohxaniT() &)
Rotumy an sy conteinkig sl of he dements bn this iy o the comect amar, the runtime typs of the rontrnod arre;
ibe spectied amay.
v srintolinel)

Trim¢ the epacrty of this ArrayList instince i ba the fisf's arent iz

Mrithods luberfied from des Jevassiil Abgracilin

collections with generics

I do see a collection class
called TreeSet... and the docs
say that it keeps your data
sorted. I wonder if I should be
using a TreeSet instead of an
Arraylist..

Arraylist is not the only collection

Although ArrayList is the one you’ll use most often,
there are others for special occasions. Some of the key

collection classes include: Den't worry sbovt, ey
ko learm &}.cscl‘ciiu\cf‘ :;cs
. . WC o N
» TreeSet :?:t' 3‘:{‘3\\5 a \1?.&1: later

Keeps the elements sonted and prevents duplicates.

» HashMap
Let's you store and access elements as namefvalue pairs.

» LinkedList
Designed to give better performance when you insert or delete
elements from the middle of the collection. (In practice, an
Arraylist is still usually what you want.)

» HashSet
Pravents duplicates in the collection, and given an element, can
find that element in the collection quickly.

» LinkedHashMap
Like a regular HashMap, except it can remember the order in
which elements (name/value pairs) were inseried, or it can be
configured to remember the order in which elements were last
accessed.

you are here» 533

Collections.sort()

You could use a TreeSet...

Or you could use the Collections.sort() method

If you put all the Strings (the song titles) into a TreeSet instead of
an ArrayList, the Strings would automatically land in the right place,
alphabetcally sorted. Whenever you printed the list, the elements would

always come out in alphabetical order.

And that's great when you need a set (we'll
talk about sets in a few minutes) or when
you know that the list must akways stay
sorted alphabetically.

On the other hand, if you don’t need the
list to stay sorted, TreeSet might be more
expensive than you need—every time you
tnsert inio a TreeSet, the TreeSet has to take
the time to figure out where in the tree the new
element must go. With Arraylist, inserts can
be blindingly fast because the new element
just goes in at the end.

Q} But you CAN add something to an
ArrayList at a specific index Instead of just at
the end—there’s an overloaded add() method

that takes an Int along with the element to add.
So wouidn’t It be slower than Inserting at the end?

A: Yes, it’s slower to insert something in an ArrayList
somewhere other than at the end. So using the overloaded
add(index, element) method doesn’t work as quickly as calling
the add{element)—which puts the added element at the end.
But most of the time you use ArrayLists, you won't need to put

something at a specific Index.

1ava.utll.CoIlections

public static void copy{List destination, List source)
public static List emptyList()
public static void fili{List listToF i, Object objToFlltWith)
public static int frequency(Collection ¢, Object o)
public static void reverse{List list)
public static void rotate(List fist, int distance)
public static void shuffle(List list)
public static
public static boolT
Jmany T . there IS 3 sort() method
in the Collettions elass. ¢ fék?s
& List, and sinte ArvaylList
implements the List interface
AreayList IS=A Lick. Thank, :
to polymorphism, You ¢an Pﬁu A

’h ra,l—""". fo é me«l;
! g 45 0, ,ctlared

Ohiect oidval, Object newVal)

Q: | see there’s a LinkedList class, so wouldn’t that be better for
doing inserts somewhere in the middie? At laast if | remember my Data

Structures class from college...

A: Yes, good spot.The LinkedList can be quicker when you insert or

remove something from the middle, but for most applications, the difference
between middle inserts into a LinkedList and ArrayList Is usually not enough
to care about unless you're dealing with a iuge number of elements. We'll

look more at LinkedLIst in a few minutes.

534 chapter 16

Nettions

. s is NOT &he veal Col ‘
}:1:&:;?;: we simplified it \mrc- by (lc:::?
out the generit Eype inf ormation (!
you'll see in 2 few pages)-

collections with generics

Adding Collections.sort()} to the Jukebox code

import java.util.*;
inport java.io.*;

public class Jukeboxl (

The Collections.sort()
ArrayList<String> songList = new ArrayList<String>(): Fle'ﬂl()d Sorts a hSt OF

public staric void main(Stringl]

[1 args) { Smgsalfh ca]ly
new Jukeboxl () .go():

)

public void go() | b
gerSongs{); tatie Collecions
i Herma TRt | Call the s wk the
System.out.printin(songlist); 0 wethod, then yrw
Collections.sort (songlList); « mha in T he setond nt ovt

\

System.out.println(songList) " in a?habc{:i&\ ordert
)
vaicd getSongs () |
try |
File file =

new File (“SongListc.oxt™);

BufferedReader reader = new BufferedReader (new FileReader (file));
String line = null;
while ({(line= reader.readlLine()) != null) (

addSona(line) ;
}

) catch (Exception ex) |
ex.printStackTrace (),
)
}

void addSong (String lineToParse) |
String[] tokens = lineToParse.split(“/“);
songLisc.add(tokens ([0))

Flle Et Window Halp Chili

% java Jukeboxl

[Pink Moon, Somersault, Shiva Moon, Circles, Deep P

chove ealling sort()
Channel, Passenger, Listen]

ing, soxt)-
[Circles, Deep Channel, Listen, Passenger, Pink Aeder catling
Moon, Shiva Mocn, Somersault] é_/

you are here» 535

sorting your own objects

But now you need Song objects,
not just simple Strings.

Now your boss wants actual Song class instances in the list, not just
Stringsg, so that each Song can have more data. The new jukebox
device outputs more information, so this time the file will have four
pieces (tokens) instead of just two.

The Song class is really simple, with only one interesting feature—
the overridden toString() method. Remember, the toString()
method is defined in class Object, so every class in Java inherits the
method. And since the toString() method is called on an object
when it’s printed (System.out.println (anObject)), you should
override it to print something more readable than the default
unique identifier code. When you print a list, the toString()
method will be called on each object.

class Song (

ing title; . ables for the
String tlt]‘.e Fowr inskante v'ar\ "~ the $ile.
String artist; a{br.bu{:u n
, . Lowr sony
String rating;
String bpm;
Song(String t, String a, String r, String b) {
title = t;
artist = a; The vaviables ave all set in
rating = r; the Lonx'l:rul_-tor when the
bpm = b;

) new Song is eveated.

public String getTitle() (
return title;
)

public String getArtist () {
return artist;
) The actber methods for
the ?our attributes
public String getRating({} ({
return rating;
}

public String getBpm() (
return bpm;

}

We overvide togx‘:ring(), because when

public 8tring toString() | 6‘ wﬁ?‘rinﬂh(aSon Ob;

return title; en You do 3

)

536 chaptler 16

) the tobitring() mithod ~f

SonglListMore. txt

Pink Moon/Nick Drake/S5/80
Somersauvlt/Zero 7/4/84

Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110

Deep Channel/Afro Celts/4/120
Passenger/HBeadmix/4/100
Listen/Tahiti 80/5/90

The new song £ile holds {our
attributes instead oCJud: two.
And we want ALL of “them in our
list, so we need to make 3

tlass with instanse variables for 3l
four song attvibutes.

You do a ™.

ect), wc.wawf: to see the title.
Ihﬂn{aLiS'{:O‘FSO‘nﬁs), it ealls

CH element in the list.

collections with generics

Changing the Jukebox code to use Songs
instead of Strings

Your code changes only a little—the file I/O code is the same,
and the parsing is the same (String.split()), except this time
there will be four tokens for each song/line, and all four will be
used to create a new Song object. And of course the ArrayList
will be of type <Song> instead of <String>.

import java.util.*; List of Sorg
: 5 e Lo *; (4 'to an Awa\i .
import java.io.*; Co;‘j:c skead of Shring:

public class Jukeboxici/// “--____-—~——-,\‘:1

Arraylist<Song> songlist = new ArrayList<Song>({();
public static veid main{Stringl}] args) {
new Jukebox3{).go();
}
public void go{) {
getScngs ()
System.out.println{songlist);
Collections.sort {songlList);
System.out.println(songlList);
}
void getSongs () {
try | .
File file = new File(“ScngList.txt”);
BufferedReader reader = new BufferedReader (new FileReader (file));
String line = null;
while (({line= reader.readline{)) != null) {
addSong (line);
}
} catch(Exception ex) {
ex.printStackTrace (};

}

void addSong (String lineToParse) {
String[] tokens = lineToParse.split(%/7);

Song nextSong = new Song(tokens[0], tokens[1l], tokens[2], tokens[3]);
songList.add (nextSong) ; . '

} Create 3 pey Sona ob:
} (which means the 3 °ch‘£ “":2 the four tokens

i our p; il
for this line), then add"‘é‘::ssons néo é:cfrefmng File
IST.

you are here» 537

Collections.sort()

It won't compile!

Something’s wrong... the Collections class clearly shows there's a
sort() method, that takes a List.

ArrayList is-a List, because ArrayList implements the List interface,
50... it should work.

But it doesn’t!

The compiler says it can’t find a sort method that takes an
ArrayList<Song>, so maybe it doesn’t like an ArrayList of Song
objects? It didn’t mind an ArrayList<String>, so what’s the
important difference between Song and String? What'’s the
difference that’s making the compiler fail?

Flla B4t Window Help Bumear

%javac Jukebox3.java

Jukebox3. java:15: cannot find symbol

symbol : method sort(java.util.ArrayList<Song>)
location: class java.util.Collections

Collections.sort(songlist);

A

l error

And of course you probably already asked yourself, “What would it
be sorting on?” How would the sort method even know what made
one Song greater or less than another Song? Obviously if you want
the song’s title to be the value that determines how the songs are
soried, you'll need some way to tell the sort method that it needs
to use the Litle and not, say, the beats per minute.

We'll get into all that a few pages from now, but first, let’s find out
why the compiler won’t even let us pass a Song ArrayList to the
sort() method.

538 chapter16

collections with generics

WTF? I have no idea how to
read the method declaration
on this, It says that sort()
takes a List<T>, but what is
T? And what is that big thing
before the return type?

£ The sort() method declaration

~f o

T3 fle:///Usersfkathy/public/docs fapifindexc el O

sort

public staticf<T extends Comparable<? super T>> Joid -o list) m

Sorts the specified list into ascending order, according to the nanoal ordering of its elements. Al}
elements in the list must implement the comparable interface. Furthermore, all elements in the list

must be musually comparable (tbat is, el.compareTo(e2) Must not throw a ClasstastException
for any elements a1 and a2 in the list).

From the API docs (looking up the java.utl.Collections class, and scrolling to the sort()
method), it looks like the sort() method is declared... strangely. Or at least different from
anything we've seen so far.

That's because the sort() method (along with other things in the whole collection framework in
Java) makes heavy use of generics. Anytime you see something with angle brackets in Java source
code or documentation, it means generics—a feature added to Java 5.0. So it looks like we’ll
have to learn bow to interpret the documentation before we can figure out why we were able to
sort String objects in an ArrayList, but not an ArrayList of Song objects.

you are here + 539

generic types

Generics means more type-safety

We’ll just say it right here—uvirtually all of the code you write that deals
with generics will be collection-related code. Although generics can be used
in other ways, the main point of generics is to let you write type-safe
collections. In other words, code that makes the compiler stop you
from putting 2 Dog into a list of Ducks.

Before generics (which means before Java 5.0), the compiler could
not care less what you put into a collection, because all collection
implementations were declared to hold type Object. You could put
anything in any ArrayList; it was like all ArrayLists were declared as

ArrayList<Object>. "o
Before =“;*‘t"£§2‘€‘ e With generics, you can
-1 v
WITHOUT generics ‘Aii?" Ui o s) metrd create type-safe co]lections
Objects go IN as a reference to MY’C‘!YC Ob:)cdc-
SoccerBall, Fish, Guitar, and where more problems are
Car objects caught at compile-time
instead of runtime.

Without generics, the
compiler would happily let
you put a Pumpkin into an
Arraylist that was supposed

And come OUT as a reference of type Object {o hold only Cat ObjBCtS-
WITH generics
Objects go IN as a reference to
only Fish objects
I T T Now wit
. . b ’ Eneri ,
ArrayList<Fish> j::f: ‘03’*6 Awa;&i‘l';:mﬁ only Fish
You don’t h; ovt as Fish refere, 2 the
l l l l sﬁtkin ve {o Wory- entes.
what o oevage, o ot that
u{:))
able to s h ve 4\:::: t rea”y be ca:?f

And come out as a reference of type Fish

540 chapier 16

Learning generics

Of the dozens of things you could learn about generics, there are

really only three that matter to most programmers:

Creating instances of generified classes (like ArrayList)

When you make an ArrayList, you have to tell it the type
of objects you’ll allow in the list, just as you do with plain
old arrays.

Declaring and assigning variables of generic types

How does polymorphism really work with generic
types? If you have an ArrayList<Animal> reference
variable, can you assign an ArrayList<Dog> to it? What
about a List<Animal> reference? Can you assign an
ArrayList<Animal> to it? You’ll see...

Declaring (and invoking) methods that take generic types

If you have a method that takes as a parameter, say, an
ArrayList of Animal objects, what does that really mean?
Can you also pass it an ArrayList of Dog objects? We’ll
look at some subtle and tricky polymorphism issues that
are very different from the way you write methods that
take plain old arrays.

(This is actually the same point as #2, but that shows you
how important we think it is.)

Q: But don‘t | also need to learn how to create my OWN generic
dasses? What if | want to make a class type that lets people
instantiating the class decide the type of things that class will use?

A: You probably won't do much of that. Think about it—the API

designers made an entire library of collections classes covering most of
the data structures you'd need, and virtually the only type of classes that

really need to be generic are collection classes. In other words, classes

designed to hold other elements, and you want programmers using it to
specify what type those elements are when they declare and instantiate

the collection class.

Yes, it is possible that you might want to create generic classes, but that’s
the exception, so we won't cover it here. (But you'll figure it out from the

things we do cover, anyway.)

collections with generics

new ArrayList<Song>()

List<Song> songlist =
new ArrayList<Song>()

void foo(List<Song> list)

x.foo (songlist)

you ars here» 541

generic classes

Using generic CLASSES

Since ArrayList is our most-used generified type, we’ll

start by lo?king at it§ documentation. They two key areas T]ﬁnk of “E” a5 a Stand_in -For
to look at in a generified class are: « of

1) The class declaration ﬂle ‘tYPe element you want
3) The method declarations that let you add elements ﬂ]is couecﬁon to llOId and

return.” (E is for Element.)

Understanding ArraylList documentation
(Or, what’s the true meaning of “E”?)

for the Areaylist ;
weh \ace\\o\dﬁ ayList is 5 sube|
The E w3 ¥ use when Yo S0 W"afever £ ass of Abréracﬂ_;
p\gp‘\bc’cz?hz It:a’cc an AerayList Awazl“_ssf is a?éz:zi ::lelcify for the st,
detlar X, YP€ of the Abstys ﬂ.isz used for {p,
public class ArraylList<E> extends Abstractlist<E> implements List<E> ... {
public boolean add(E o)
The type (the valu:(: oﬁh <EE)£
! imbor-tant part! Whatever YE” s betomes the type ¢ Lis
ﬁiﬁ:‘:?::;w{a& k:wdu thinas ‘[ov'rc allowed interface as well.

to add to the Avraylist

// more code

The “E” represents the type used to create an instance
of ArrayList. When you see an “E” in the ArrayList
documentation, you can do a mental find/replace to
exchange it for whatever <type> you use to instantiate
ArrayList.

So, new ArrayList<Song> means that “E” becomes “Song”,
in any method or variable declaration that uses “E”.

542 chapter 16

collections with generics

Using type parameters with Arraylist

THIS code:

ArraylList<String> thisList = new ArrayList<String>

public class ArraylList<E> ends AbstractList<E> ...

public boolean add(E o)
// more code

Is treated by the compller as:

public class Arraylist<String> extends Abstractlist<String>... {

public boolean add(String o)
// more code
}

In other words, the “E” is replaced by the real type (also called the type parameter)
that you use when you create the ArrayList. And that’s why the add() method
for ArrayList won't let you add anything except objects of a reference type that's
compatible with the type of “E”. So if you make an ArrayList<String>, the add()
method suddenly becomes add(String o). If you make the ArrayList of type Dog,
suddenly the add() method becomes add(Dog o).

Q: Is“E” the only thing you can put there? Because the docs for sort used “T7...

A: You can use anything that’s a legal Java identifier. That means anything that you
could use for a method or variable name will work as a type parameter. But the conven-
tion is to use a single letter (so that's what you should use), and a further convention is to
use “T” unless you're specifically writing a collection class, where you'd use “E”to repre-
sent the “type of the Element the collection will hold*

you are herey 543

generic methods

Using generiec METHODS

A generic class means that the class declaration includes a type
parameter. A generic method means that the method declaration
uses a type parameter in its signature.

You can use type parameters in a method in several different ways:

544

Using a type parameter defined In the class declaration

public class Arraylist<E> extends AbstractList<E> ... {
public boolean add(E o) You tam use 4
ale heve ¢
eady been dd“med as pa.-gl[;(gf““‘f it's
When you declare a type parameter for the class, you ¢ tlass.

can simply use that type any place that you’d use a
real class or interface type. The type declared in the
method argument is essentially replaced with the type
you us¢ when you instantiate the class.

Using a type parameter that was NOT defined In the class declaration
— \

public <T extends Animal> void takeThing(ArrayList<T> list)

If the class itself doesn’t use a type parameter, you can stll Here we Can uge (T
specify one for a method, by declaring it in 2 really unusual T earlier i) ﬂ_‘ :Eb“au&e we
(but available) space—before the return type. This method says € method detJar.;gEli:‘d

that T can be “any type of Animal”,

chapter 16

collections with generics

Wait... that can't be right. If you can
take a list of Animal, why don't you

just SAY that? What's wrong with just
take Thing(Arraylist<Animal> list)?

Here’s where it gets weird...

This:
public <T extends Animal> void takeThing (ArrayList<T> list)

Is NOT the same as this:
public void takeThing(ArraylList<Animal> list)

Both are legal, but they’re different!

The first one, where <T extends Animal> is part of the method
declaration, means that any ArrayList declared of a type that is
Animal, or one of Animal's subtypes (like Dog or Cat), is legal.
So you could invoke the top method using an ArrayListc<Dog>,
ArrayList<Cat>, or ArrayList<Animal>.

But... the one on the bottom, where the method argument is
(ArrayList<Animal> list) means that only an ArrayList<Animal>
is legal. In other words, while the first version takes an ArrayList
of any type that is a type of Animal (Animal, Dog, Cat, etc.),

the second version takes only an ArrayList of type Animal. Not
ArrayList<Dog>, or ArrayList<Cat> but only ArrayList<Animal>.

And yes, it does appear to violate the point of polymorphism.
but it will become clear when we revisit this in detail at the end
of the chapter. For now, remember that we're only looking at
this because we're still trying to figure out how to sort() that
SongList, and that led us into looking at the API for the sort()
method, which had this strange generic type declaration.

For now, all you need to know ts that the syntax of the top version
ts legal, and that it means you can pass in a ArrayList object
instantiated as Animal or any Anisnal subtype.

And now back to our sort() method...

you are here+ 545

sorting a Song

This stilt doesn't
explain why the sort method

failed on an ArrayList of Songs
but worked for an Arraylist of
Strings...

Remember where we were...

I "Fie Edt Window Melp Bummer

% javac Jukebox3.java

i Jukebox3.java:l5: cannot find symbol

| symbol : method sort(java.util.ArrayList<Song>)
location: class java.util.Collections

hg _ |

Collections.sort (songlList) ;

N

—
f

"W 1 error

L] |

import java.util.*;
import java.jio.*;

public class Jukebox3 |
ArrayList<Song> songlList = new ArrayList<Song>():
public static void main{String(]} args) |
new Jukebox3().go();
!
public void go() {
getSongs () ;

i hen
System.out.println(songList); This is wheve it bvcﬂki! It wovked fine

. c
“ assed n an A'Waﬂ:?k(sb'l“?’ bu{.{/a“c:"‘:; s
ko€ i .
System.out.println(songList); i,wd to sort an ayLuh ¥
}
void getSongs() {
try {
File file = new File (“SongList.txt”);
Buf feredReader reader = new BufferedReader (new FileReader (file));
String line = null;
while ((line= reader.readLine(})} != null) {
addSong{line);
}
)} catch (Exception ex) {

ex.printStackTrace();
}
)

void addSong(String lineToParse) {
string() tokens = lineToParse.split(™/");
Song nextSong = new Song(tokens[0], tokens[l]}, tokans[2], tokens[3]):
songlist.add (naxtSong) ;

}

548 chapter 16

collections with generics

Revisiting the sort() method

So here we are, trying to read the sort() method docs to find
out why it was OK to sort a list of Strings, but not a
list of Song objects. And it looks like the answer is...

The sort() method can take only lists
of Comparable objects.

pociticd Ly Boeod
Song is NOT a subtype of | e mvmlmummn’”“?wwmw,m N
Comparable, so you cannot sort() | oy b 1 ey o7 i et) 8 e

the list of Songs. tepticn

public static <T extends Comparable<? super T>> void sgort(List<T> list)

j\ (y 3 Lisk (or

Jan i n You ¢an pass in onl :
This says “Whatever T’ s must £ y?fcf:'if’fﬁfe"mif; But subtype of list, like Avvaylist
of £ype Comparable” 2 J hat uses a pavameterized type
be ok typ P that the type pavameter for « ble’
Comparable must be of toe T £hat “extends Comparabie

or one of T's supcr-[;\/?cs_

At least not yet...

Um... T just checked the docs for
String, and String doesn't EXTEND
Comparable--it IMPLEMENTS it.

Comparable is an interface. 5o it's nonsense
to say «<T extends Comparable>,

public final clasa String extends Object implements Serializable,
Comparable<String>, CharSequence

you are here» 547

the sort() method

In generics, extends” means
‘extends or implements”

The Java engineers had to give you a way to put a constraint

on a parameterized type, so that you can restrict it to, say, only Y
subclasses of Animal. But you also need to constrain a type to In genencs’ ﬂle keyw Ord
allow only classes that implement a particular interface. So “extends” reaﬂy means “iS"a”

here’s a situation where we need one kind of syntax to work

for both situations—inheritance and implementation. In other and Wofks for BOTH c]_asses
words, that works for both extends and implements. .
and jnterfaces.

And the winning word was... extends. But it really means “is-a”,
and works regardless of whether the type on the right is an
interface or a class.

ble is an i terkate, so this
gg{z{?‘{ c\r:ad:: “'5” wust be a type {,:‘ha{:
implements the Compavable interrace’.

{

public static <T extends Comparable<? super T>> void sort(List<T> list)

[t doesn't matter whether the thing on the vight is
a tlass or interface... you still say “extends”.

Q: Why didn’t they just make a new keyword,“is”?

A: Adding a new keyword to the language is a REALLY big deal because
it risks breaking Java code you wrote in an earlier version. Think about
it—you might be using a variable “is” (which we do use in this book to repre-
sent input streams). And since you're not allowed to use keywords as identi-
fiers in your code, that means any earlier code that used the keyword before
it was a reserved word, would break. So whenever there’s a chance for the
Sun engineers to reuse an existing keyword, as they did here with “extends’
they’ll usually choose that. But sometimes they don‘t have a choice...

A few (very few) new keywords have been added to the language, such

as assert in Java 1.4 and enum in Java 5.0 (we look at enum in the appen-
dix). And this does break people’s code, however you sometimes have the
option of compiling and running a newer version of Java so that it behaves
as though it were an older one.You do this by passing a special flag to the
compiler or JVM at the command-line, that says,“Yeah, yeah, | KNOW this is

“Java 1.4, but please pretend it’s really 1.3, because I'm using a variable in my

code named assert that | wrote back when you guys said it would OK!#5%"

(To see if you have a flag available, type javac (for the compiler} or java (for
the JVM) at the command-line, without anything else after it, and you should
see a list of available options. You'll learn more about these flags in the chap-
ter on deployment.}

548 chapter 18

Finally we know whats wrong...

The Song class needs to implement Comparable

We can pass the ArrayList<Song> to the sort() method only if the
Song class implements Cornparable, since that's the way the sort()

method was declared. A quick check of the API docs shows the
Comparable interface is really simple, with only one method to
implement:

Java.lang.Comparable

public intarface Comparable<T> {
int compareTo(T o) ;

}

And the method documentation for compareTo() says

Retums:
a negative integer, zero, or a
positive integer as this object

is less than, aqual to, or greatar
than the specifiad object.

It Jooks like the compareTo() method will be called on one
Song object, passing that Song a reference to a different
Song. The Song running the compareTo() method has to
figure out if the Song it was passed should be sorted higher,
lower, or the same in the list.

Your big job now is to decide what makes one song greater
than another, and then implement the compareTo() method
to reflect that. A negau'i/e number (any negative nunber)
means the Song you were passed is greater than the Song
running the method. Returming 2 positive number says

that the Song running the method is greater than the Song
passed to the compareTo() method. Returning zero means
the Songs are equal (at least for the purpose of sorting... it
doesn't necessarily mean they're the same object). You might,
for example, have two Songs with the same title.

(Which brings up a whole different can of worms we’ll look
at Jater...)

collections with generics

The big question is: what
makes one song less than,
equal to, or greater than
another song?

You can’t implement the
Comparable Interface untll you
make that declslon.

Wn your pencl ————

Write in your idea and pseudo code (or
better, REAL code) for Implementing the
compareTo() method In a way that will
sort() the Song objects by thie.

Hint; if you're on the right track, it should
take less than 3 lines of code

you are here » 549

the Comparable interface

The new, improved, comparable Song class

We decided we want to sort by title, so we implement the compareTo()
method to compare the title of the Song passed to the method against
the title of the song on which the compareTo() method was invoked.
In other words, the song running the method has to decide how its
title compares to the title of the method parameter.

Hmmm... we know that the String class must know about alphabetical
order, because the sort() method worked on a list of Strings. We know
String has a compareTo() method, so why not just call it?> That way, we
can simply let one title String compare itself to another, and we don't
have to write the comparing/alphabetizing algorithm!
Usually these matth.we're specifying the tyyc that
the im?\:m:ne\hﬁ tlass tan be "’°"“Pa"d 83ains

lass Song impl nts C arable<Song> This means that Son °b:)“{"‘ tan be com?ar.cd to
© asc:ing gtil;llf; ane o o> ! other Song objects, *or Yhe purpose of sorting:
String artist;
String rating; The sork() mekhod sends 3 Song to compareTol)
String bpm; h Lo see how that Song tompares {o the Song on
which the method was invoked.
public int compareTo(Song s) ({

return title.c areTo (s.getTitle ; E——Simple! We just pass the work
) o #:9 0 on 1o the é{\c String objcc{:S,
sinte we know Strings have 3

Song(String t, String a, String r, String b) ¢ tompaveTol) method.

title = t;

artist = a;

rating = r;

bpm = b;

}

public String getTitle() {
t title;
} R This time it worked. I prints the list, then calls sort
which puts the Sonas in alphabetical ovder by title
public String getRrtist() (

Flia Eda Wirdow Help Amblent

raturn artiat;
} %$java Jukebox3

public 3tring getRating() {

return rating; {Pink Moon, Somersault, Shiva Moon, Circles, Deep

) Channel, Passenger, Listen]

ublic Stri tB X i
P retﬁm b;:f getspm O | [Circles, Deep Channel, Listen, Passenger, Pink
} Moon, Shiva Moon, Somersault)

public String toString() {
return title;
)
)

550 chapter 186

collectlons with generics

We can sort the list but...

There’s a new problem—Lou wants two different views of the song list,
one by song title and one by argst!

That's not good enough.
Sometimes I want it fo sort
by artist instead of title.

But when you make a collection element comparable (by having it
implement Comparable), you get only one chance to impiement the oQ
compareTo() method. So what can you do?

The horrible way would be 10 use a flag variable in the Song class, e
and then do an iftest in compareTo() and give a different result
depending on whether the flag is set to use title or ardst for the
comparison.

But that’s an awful and britde solution, and there’s something much
better. Something built into the API for just this purpose—when you
want to sort the same thing in more than one way.

Look at the Gollections class APl again. There’s a
second sort{) method—and it takes a Comparator.

el Collections (java 2 PlatformSE5.00
Bl file:/ //Users /kathy/Public/docs /apifindex.html

s Jellyvision, Inc. Collections _.form SE 5.0) Caffeinated ...d Brain Day Brand Noise Diva Market

statio|gingletonNap(K key, V value) !
<K.V> Hap<k,v> Returns an immutable map, mapping only the)

. specified key to the specified value.

e ' sLotic | gore (List<T?> list)
—— Bpex 3:;, Sorts the specified list nto ascending order,
. serloaded to according to the namural ordering of its elements.
\s O ¥

arl

N n‘-'lr.'lnuv d
P e e R r—

iy

Noke o self fiure ot MB:{: Lo SRR o ak
e{: / n\ak‘ 3 Can?a\ra v

iom\’an and order the sont ¥
aekist instead of title

you are here » 551

the Comparator interface

Using a custom Comparator

An element in a list can compare #selfto another of
its own type in only one way, using its compareTo () public intarface Comparator<T> {
method. But a Comparator is external to the element int cempare(T ol, T 02);

type you're comparing—it’s a separate class. So you can)
make as many of these as you likel Want to compare
songs by artistr Make an ArtstComparator. Sort by beats
per minute? Make a BPMComparator.

Then all you need to do is call the overloaded sort()
method that takes the List and the Comparator that will
help the sort() method put things in order.

The sort() method that takes 2 Comparator will use the I'P YOU PaSS a Comrarator to ﬂ‘le
Comparator instead of the element’s own compareTo() SOIT() method ﬂ1e Sort Ordef 18

method, when it puts the elements in order. In other

words, if your sort() method gets a Comparator, it won'’t de!:ermi:ned by the Comlaarator

even call the compareTo() method of the elements

in the list. The sort() method will instead invoke the I'&ﬂ191° ﬂ’lan ﬂ‘le e],emeﬁfs own
compare() method on the Comparator.
oF P compare T o() method.

So, the rules are:

Java.util.Comparator

» Invoking the one-argument sort(List o) method
means the list element's compareTo(} method
determines the order. So the elements in the list
MUST implement the Comparable interface.

» Invoking sort(List o, Comparator ¢) means the
list element’s compareTo() method will NOT be
called, and the Comparator's compare{) method
will be used instead. That means the elements
in the list do NOT need to Implement the
Comparable interface.

Q,: So does this mean that if you have a class that Q: But why doesn’t every class implement Comparable?

doesn’t Implement Comparable, and you don’t have the

source code, you could still put the things In order by A

creating a Comparator? - Do you really believe that everything can be ordered?
If you have element types that just don't lend themselves to

A any kind of natural ordering, then you'd be misleading other

* That's right. The other option (if it's possible) would be programmers if you implement Comparable. And you aren't

to subclass the element and make the subclass implement taking a huge risk by not implementing Comparable, since

Comparable. a programmer can compare anything in any way that he
chooses using his own custom Comparator.

562 chapter 16

collections with generics

Updating the Jukebox to use a Comparator

We did three new things in this code:

1) Created an inner class that implements Comparator (and thus the compare()
method that does the work previously done by compareTo()).

2) Made an instance of the Comparator inner class.

38) Called the overloaded sort() method, giving it both the song list and the
instance of the Comparator inner class.

Note: we also updated the Sorg class toString () method to print both the song
title and the artist. (It prints title: artist regardless of how the list is sorted.)

import java.util.*;
import java.io.*;

public class Jukebox3 |

ArraylList<Song> songlList = new ArraylList<Song>({}); (}za{calww3hh0'd3“‘uﬂ£i“ﬂ€"°d3
public static void main(String[] args) { Comparator (note Fhat its 'l'.‘f?t

new Jukebox5().go(); aratnd:t.r izhes the ype we've 2;5“5
) / L tompare—in this Lase Song objec)

clazs ArtistCompare implements Comparator<Song> ({
public int compare (Song one, Song two) (
return one.getArtist() .compareTo (two.getArtist());

) . \mre&) "N Wele lekting the st
This becomes a String do the aetug “:Efma variables (For artist)

public void go() { know how to 3|P)b3 ae'{-::s?.o:){:i’:“ ?b‘ihﬁs dlrcady
getSongs () ; mscives.
System.out.println(songlList);
Collections.sortr (songlist) .
System.out.println(songlList);
¢ ° ’ " Make an instonce of the
ArtistCompare artistCompare = new ArtistCompare (); Compavator innev tlass.
Collactions.sort (songlList, artistCompare);
lnvokc !orf(), Pa“in if {‘.."I ls{;
System.out.println (songList) ; and 3 veference 'ﬁo%.he M\: I

) custom Comparator objeet

void getSongs{() {

// 1/0 code here Note: we've made sort-by-title the default sort, by
J keeping the compareTo() method In Song use the
titles. But anather way to design this would be to

void addSong(String lineToParse) { Implement both the title sorting and artist sorting as
// paxse line and add to song list inner Comparator classes, and not have Song implement
) Comparable at all. That means we'd always use the two-
' arg version of Collections.sort{).

you are here » 853

collections exercise

import H \N’?Im yﬂlf Pw(ll

public clags SortMountains {

LinkedList mtn = new LinkedList ();
clags NameCompare { }il *
public int compare(¥ountain one, Mountain two) { e’ve’rse Engln%r
return i Assame this code exists in
)) a single file. Your job is
class HeightCompare { to ﬁﬂ m ﬂle hlﬁDkS so ﬂ]e
public int compare(Mountain one, Mountain two) (ﬂle I’rogmm WIH cre’mm
return (); outpat shown.
}
}

Note: answers are at the end of
public static voild main(String [] args) { the chapter,

new SortMountain().go();

}

public void go() {
mtn.add (new Mountain(“Longse”, 14255));
mtn.add(new Mountain(“Elbert”, 14433));
mtn.add(new Mountain(”Maroon”, 14156));
mtn.add(new Mountain{~“Castle”, 14265));

System.out.println(“as entered:\n” + mtn};
NameCompare nc = new NameCompare();

i
System.out.println(“by name:\n” + mtn);
HeightCompare hc = new HeightCompare();

i

System.out.println(”by height:\n” + mtn);

}

class Mountain {

~e

Output:

~r

File Edit Window Help ThisOne'sForBob

{ %$java SortMountains
R as entered:
f [Longs 14255, Elbert 14433, Maroon 14156, Castle 14265]
} ’ by name:
([Castle 14265, Elbert 14433, Longs 14255, Marcon 14156)
. by height:
} ' (Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

}
554 chapter 16

collections with generics

ol Fifl-in-the-blanks

For each of the questions below, fill in the blank
with one of the words from the “possible answers”
list, to correctly answer the question. Answers are
at the end of the chapter.

Possible Answers:
Comparator,
Comparable,
compareTo(),
compare(),
yes,
no
Given the following compilable statement:

Collections.sort (myArrayList) ;

1. What must the class of the objects stored in myArrayList implement?

2. What method must the class of the objects stored in myArrayList implement?

3. Can the class of the objects stored in myArrayList implement both
Comparator AND Comparable?

Given the following compilable statement:

Collections.sort (myArraylist, myCompare) ;

4. Can the class of the objects stored in myArrayList implement Comparable?

5. Can the class of the objects stored in myArrayList implement Comparator?

6. Must the class of the objects stored in myArrayList implement Comparable?

7. Must the class of the objects stored in myArrayList implement Comparator?

8. What must the class of the myCompare object implement?

9. What method must the class of the myCompare object implement?

you are here »

555

dealing with duplicates

Uh-oh. The sorting all works, but now we have duplicates...

The sorting works great, now we know how to sort on both fitle (using the Song object’s
compareTo() method) and artist (using the Comparator’s compare() method). But there’s
a new problem we didn’t notice with a test sample of the jukebox text file—the sorted list

contains duplicates.

[t appears that the diner jukebox just keeps wridng to the file regardless of whether the
same song has already been played (and thus wrinten) to the text file. The SongListMore.txt
Jjukebox text file is a complete record of every song that was played, and might contain the

same song multiple times.

Fig Eglt Viindow Help ToeoManyNoies

% java Jukebox4

[Pink Moon: Nick Drake, Somersault: Zero 7, Shiva Moon: Prem

Bebore sorting:

Joshua, Circles: BT, Deep Channel: Afro Celts, Passenger:
Headmix, Listen: Tahiti 80, Listen: Tahiti 80, Listen: Tahiti

80, Circles: BT]

[Circles: BT, Circles: BT, Deep Channel: Afro Celts, Listen: Abter sorting using
Tahiti 80, Listen: Tahiti 80, Listen: Tahiti 80, Passenger: Jd,eg,m's own
Headmix, Pink Moon: Nick Drake, Shiva Moon: Prem Joshua, Lompare o) method
Somersault: Zero 7] (by title)
[Deep Channel: Afro Celts, Circles: BT, Circles: BT, Passenger: o
Headmix, Pink Moon: Nick Drake, Shiva Moon: Prem Joshua, Listen: Abter sorting wing
e x e a . - - ! -l-,hgf\'r‘t\f{)c““?arc
Tahiti 80, Listen: Tahiti 80, Listen: Tahiti 80, Somersault: Com?a\ra’wr (sort by
Zero 7] arbist name).

SongListMore. txt

Pink Moon/Nick Drake/5/80
Somersault/Zero 7/4/84

Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110

Deep Channel/2fro Celts/4/120
Passenger/Headmix/4/100
Listen/Tahiti 80/5/%0
Listen/Tahiti 80/5/90
Listen/Tahiti 80/5/90
Circles/BT/5/110

5568 chapter 16

The Sonal;
. nal ist Moy, te)
nﬁ becatase {'}.c Jukccbo: ‘émf .

ﬁayed, " ordey Somebod
ree times iy, d row, -Fo

that had bee, Played es

fe now ha dunl: .

Chine i< W‘:r{‘,::wfjt“ n
dy decided ¢, fg7 Wl o
r’?::fd by Cire es’, 5 Song

We can’t ¢han
! 9e the way i ile ;
.n}izb s?mcwt,&mcs we're ygoih; txfecﬁk J'Js Wi
on We have {5 thange the J‘a:i ttzaé
€.

collections with generics

We need a Set instead of a List

From the Collection API, we find three main interfaces, List, Set, and
Map. ArrayList is a List, but it looks like Setis exactly what we need.

Duf\itﬂ‘tﬁ oK.
» LIST - when sequence matters w b
Collections that know about Index position. ﬁ ﬁ
Lists know where something is In the list. You

can have more than one element referencing List
the same object.

» SET - when unlqueness matters
Collections that do nof allow duplicates.

Sats know whether something is already in the collection.
You can never have more than one slement referencing
the same object (or more than one element referencing
two otjects that are considered equal—we'll look at what
object equality means in a moment).

» MAP - when finding something by key matters

Collections that use key-value pairs.

Maps know the value associated with a given key. You
can have two keys that reference the seme value, but you
cannot have duplicate keys. Although keys are typlcally
String names (so that you can make name/value property
Iists, for example), a key can be any object.

you are here » 557

the collections API

The Collection AP\ (part of it)

Notice that the Map interface doesn™t
actually extend the Collection interface,
but Map is still considered part of the
“Collection Framework” (also known
as the “Collection APT"). So Maps are

sall collections, even though they don’t

include java.util.Collection in their
inheritance tree.

(Note: this is not the complete
collection AP]; there are other

cl

these are the oneés we care

asses and interfaces, but

most about.)

SortodSet
(Interface)

Set
(Interface)

A
[
'

l
i
L
1
13
)
|}
1Y

]
A
1
]
\)
+
]

~ Collection
(interface)

List
(interface)

l
i
7
1
’ [}

f x
?]

-

4
]
4
!

i

)

l v
1
1

TreeSet

HashSet ” ArraylList I

KEY

T extends
T

implements

[Hashset _k implementation class

[“Set b interface

558

’ TreeMap Il HashMap ' LmkedHashMapl

chapter 186

(Interface)

Map
(Interface)

LinkedList

Ma < do'n{', ex{‘,cnd -Can
\ava. u{:«l Co“ctbon, but
hcy ve SJC,I“ Larmdcrcd
to be part of the
concc(:lons Lramework”
in Java. So a Map
<kill veferred to as 3
tolleetion.

Hashtable '

collections with generics

Using a HashSet instead of Arraylist

We added on to the Jukebox to put the songs in a HashSet. (Note: we left out some
of the Jukebox code, but you can copy it from earlier versions. And to make it easier
to read the output, we went back to the earlier version of the Song’s toString()
method, so that it prints only the title instead of title and artst.)

import java.util.*;
import java.io.*;

public class Jukebox6 {
Arraylist<Song> songlist = new Arraylist<Song>();
// main method =tc.

public void go() |

getSongs () ; &

System.out.println(songlist);

We didwt thanae getSongs(), so it still puts the songs in an AveayList

Collactions. sort (songList); Heve we treate 3 new HashSet
aections. sortisonglist); Svam t iud {ZO ho]d Sov\55.

: . 3
System.out.println(songlist);

HashSet<Song> songSet = new HashSet<Song>{() ;

songSet.addAll (songlist); ¢ HashCet has 5 simple 3ddAN() method th
Syatem.out.println(songsat) ; take another eolleetion and use it to af ij"
| the HashSet, [¥s Lhe same s if we ad}?r; iach
$ong on¢ at a {‘.ime (Nc?{: mwh sim?fer).

// getSongs{) and addSong{) methods

Fio Edlt Window Holp GolBetarMunic

s Juk 6
%java Jukebox ﬁBc-Fz-: g
he Avrrayl
[Pink Moon, Somersault, Shiva Moon, Circles, Deep Channel, VL'S{:
Passenger, Listen, lListen, Listen, Circles]
Abter sorting
[Circles, Circles, Deep Channel, Listen, Listen, Listen, the A"a\,u;lc
Passenger, Pink Moon, Shiva Moon, Somersault] “’Y title).

[Pink Moon, Listen, Shiva Moon, Circles, Listen, Deep Channel,
Passenger, Circles, Listen, Somersault]

Abter putting it
'mto a Hashgt{‘»
and printing the
RachSet (we didn't
The Set d.ldn,'f; hc'PH (And it lost its sort ordev Q]SI sort() again).

l when we put the list into a
We still have all $he duplicates! Hz:h&z,vbut e aves sbost

that one laker.)

you are here » 559

object equality

Whaf makes fWO Objecfs equal? if two objects foo and bar are
equal, foo.equals(bar) must be
First, we have to ask—what makes two Song references true, and both foo and bar must

duplicates? They must be considered equal. Is it simply two return the same value from
hashCode(). For a Set to treat

two objects as duplicates, you

references to the very same object, or is it two separate objects

that both have the same title? must override the hashCode()
This brings up a key issue: rference equality vs. object equality. and equals() methods inherited
from class Ohject, so that you

. can make two different objects
» Reference equality be viewed as equal.
Two references, one object on the heap.

Two references that refer to the same object on

the heap are equal. Periad. If you calf the hashCode{) method on
both references, you'll get the same result. If you don't override the
hashCods() method, the default behavior (remember, you inherited
this from class Object) is that each object will get a unique number
(most versions of Java assign a hashcode based on the object's
memory address on the heap, so no two objects will have the same

hashcode).

If you want to know if two references are really refeming to the same

object, use the == operator, which {remember) compares the bits in . Song

the variables. If both references point to the same object, the bits will if (foo == bar) {

be [dentical. // both references are referring

// to the same object on the heap

» Object equality
Two references, two objects on the heap, but
the objects are considered meaningfully equivalent.

if you want to treat two different Song objects as equal (for
example if you decided that two Songs are the same if they have
matching fitle variables), you must override both the hashCode()
and equals() methods inheriled from class Object.

As we said above, if you don'f overmide hashCode(), the default
behavior (from Object) is to give each abject a unique hashcode
value. So you must override hashCode() to be sure that two
equivalent objects retum the same hashcode. But you must also
override equals() so that if you call it on efther object, passing in
the other object, always retums true.

Song

if (foo.equals(bar) && foo.hashCode() == bar.hashCode()) ({
// both references are referring to either a

// a single object, or to two objects that are equal

560 chapter 16

collections with generics

How a HashSet checks for duplicates: hashCodel) and equals()

When you put an object into a Hashset, it uses the
object’s hashcode value to determine where to put
the object in the Set. But it also compares the object’s
hashcode to the hashcode of all the other objects in
the HashSet, and if there’s no matching hashcode,
the HashSet assumes that this new object is not a
duplicate.

In other words, if the hashcodes are different, the
HashSet assumes there’s no way the objects can be
equall

So you must override hashCode () to make sure the
objects have the same value.

But two objects with the same hashCode() might not
be equal (more on this on the next page), so if the

HashSet finds a matching hashcode for two objects—
one you're inserting and one already in the set—the
HashSet will then call one of the object’s equals()
methods to sce if these hashcode-matched objects
really are equal.

And if they’re equal, the HashSet knows that the
object you're artempting to add is a duplicate of
something in the Set, so the add doesn’t happen.

You don'’t get an exception, but the HashSet’s add ()
method rerurns a boolean to tell you (if you care)
whether the new object was added. So if the add()
method returns false, you know the new object was a
duplicate of something already in the set.

I need to know
if your hashcode
values are the same.

am (Obiect you're trying to
Sl ad%i o cﬂatget

Ay Object alveady IN
: " T the HashSet

Your hashcodes
are the same, but are
you REALLY equal?

Obieet you're brying
{'pJadd Yrlm.s ib&zqwls()
methed, tomparing i{'AC“:
{‘,o Bar, and re{um 'Erut

e Olject alveady IN
: e the HashSet

you gre here» 561

overriding hashCode() and equals()

The Sonq class with overridden
hashCode() and equals()

class Song implements Comparable<Song>|{

String ticle;) ;
String artist; WSk {av anyont st ealling Ehis

String rating; The Has ds anokher Somy

String bpm; mt&“’d) sen

<
. . is 8 Sb{'mly
public boolean equals(Object aSong) { T}CQREATnanlsﬂﬁzgﬁifwﬁs
Song s = (Song) aSong; and Shings have a;ao:::w do is ask ont
} return getTitle () .equals(s.getTitle()) ;é'_/ ziﬁ\oi 'i?s ﬂ\u‘;f Ly the other sond)s Likle.
public int hashCode() ({ Same deal heve... ;
return title.hashCode () & hashCode() :\:&oﬁkifﬁ"‘ﬂ dﬂ_—“ has an overridden
} ¢alling hashCode() o, Yo, tan just vetum the vest of

the title. Notice how hashCode()

and equals() are s
ng th i .
public int compareTo (Song s) | 3 the SAME instanee variable.

return tivle.compareTo(s.getTitle());

Seng({String t, String a, String r, String L) |
tictle = ¢t;

artist = aj; Now it works! No duplicates when we
rating = r; print out the HashSel But we didn't
bpm = b; eall sortl) again, and when we put

} {'J'IC AT\'E}L* in'!‘.o £he HQSHSC";, thc
_ ‘ RashSet didn't presevve the sort order.
public String getTitle() ¢

return title; PR ——

)
%java Jukeboxb

public String getArtist{) |
return artist; [Pink Moon, Somersault, Shiva Moon, Circles,
) Deep Channel, Passenger, Listen, Listen,
public String getRating({) { Listen, Circles]
return rating;
} [Circles, Circles, Deep Channel, Listen,

Listen, Listen, Passenger, Pink Moon, Shiva
Moon, Somersault]

public String getBpm() {
return bpm;
)
[Pink Moon, Listen, Shiva Moon, Circles,
public String toString() { Deep Channel, Passenger, Somersault]
return title;
} R EEE——,—
}

562 chapter16

Java Object Law For HashCode()
and equals()

The API docs for class Object state the
rules you MUST follow:

If two objects are equal, they MUST
have matching hashcodes.

If two objects are equal, calling
equals() on either object MUST return
true. In other words, if (a.equals(b)) then
(b-equalis(a)).

If two objects have the same hashcode
value, they are NOT required to be equal.
But if they’re equal, they MUST have the
same hashcode value.

So, if you override equals(), you MUST
override hashCode().

The default behavior of hashCode()
is to generate a unique integer for each
object on the heap. So if you don't override
hashCode() in a class, no two objects of
that type can EVER be considered equal.

The defauit behavior of equals() is to
do an == comparison. In other words, to
test whether the two references refer to a
single object on the heap. So if you don’t
override equals() in a class, no two objects
can EVER be considered equal since
references to two different objects wiil
always contain a different bit pattern.

a.eqguals(b) must also mean that
a.hashCode() == b.hashCode()

But a.hashCode() == b.hashCode()
does NOT have to mean a.equals(b)

collections with generics

the 0
Duﬁ]egmduesﬁons

. How come hashcodes can be the same
even If objects aren‘t equal?

A: HashSets use hashcodes to store the ele-
ments in a way that makes it much faster to access.
If you try to find an object in an ArrayList by giving
the ArrayList a copy of the object (as opposed to
an index value), the ArrayList has to start searching
from the beginning, looking at each element in
the list to see if it matches.But a HashSet can find
an object much more quickly, because it uses the
hashcode as a kind of label on the “bucket” where
It storegd the element. So if you say,“l want you

1o find an object in the set that’s exactly like this
one..."the HashSet gets the hashcode value from
the copy of the Song you give it (say, 742), and
then the HashSet says, “Oh, | know exactly where
the object with hashcode #742 is stored...] and it
goes right to the #742 bucket.

This isn’t the whole story you get in a computer
science class, but it’s enough for you to use Hash-
Sets effectively. In reality, developing 2 good hash-
code algorithm is the subject of many a £hD thesis,
and more than we want to cover in this book.

The point Is that hashcodes can be the same
without necessarily guaranteeing that the objects
are equal, because the “hashing algorithm” used in
the hashCode() method might happen to return
the same value for multiple objects, And yes, that
means that multiple objects would all lang in the
same bucket in the HashSet (because each bucket
represents a single hashcode value), but that’s not
the end of the world. It might mean that the Hash-
Set is Just a little less efficient (or that it’s fllled
with an extremely large number of elements), but
if the HashSet finds more than one object in the
same hashcode bucket, the HashSet will simply
use the equals() method to see if there's 3 perfect
match. In other words, hashcode values are some-
times used to narrow down the search, but to find
the one exact match,the HashSet still has to take
all the objects In that one bucket (the bucket for
ali objects with the same hashcode) and then call
equals() on them to see if the object it’s [ooking for
is in that bucket.

you are here» 563

TreeSets and sorting

And if we want the set to stay
sorted, we've got TreeSet

TreeSet is similar to HashSet in that it prevents duplicates. But it also keeps the list sorted. It works
just like the sort() method in that if you make a TreeSet using the set’s no-arg constructor, the
TreeSet uses each object’s compareTo () method for the sort. But you have the option of passing
a Comparator to the TreeSet constructor, to have the TreeSet use that instead. The downside to
TreeSet is that if you don’t need sorting, you’re still paying for it with a small performance hit. But
you’ll probably find that the hit is almost impossible to notice for most apps.

import Jjava.util.*;

import java.io.*;

public class Jukebox8 |
ArraylList<Song> songlist = new ArrayList<Song>();
int val;

public static void main(Stringl] args) {
new Jukebox8 () .go{);

}

L inskead of HashSet

public void go () { §,,s£ayd’,‘\a‘t€ 3 TVCCSTC_YC cSC{ Lo,,gtwc&g\'
getSongs () ; Ca“'ms *,\’\C V\O"‘ar\? e {-}\C Sch% o\)}tﬂ‘ts
System.out.println{songList) ; means the sct w;c\-\od for the sovt
Collections.sort (songList); com?avipd)‘“c vafof)
System.cut.println(songList); (We could have Yasﬂﬁd n a Compd

TreeSet<Song> songSet = new TreeSet<Song>()
songSet.addAll (songlist) ; .
System.out.printin{songSet);

We ¢an add all the songs from the HashSet

} using addAll0). (Or we fould ha d
songs individually using songSet;ed;Od‘ei{:thc
ot getsone () | the way we added songs to the ArrayList.)
try |

File file = new File{(“SongListMore.txt”};
BufferedReader reader = new BufferedReader (new FileReader (file));
String line = null;
while ((line= reader.readLine ()} != null) {
addSong (line);
}

} catch(Exception ex) {
ex.printStackTrace();
}
}

void addSong(String lineToParse) {
String[] tokens = lineToParse.split(“/”);
Song nextScng = new Song{tokens[0], tokens{l], tokens[2], tockens[3)):
songlist.add (nextSong) ;

}

[-V] P TR Y4

collections with generics

What you MUST know about TreeSet...

TreeSet Jooks easy, but make sure you really understand what you need to
do to use it. We thought it was so important that we made it an exercise so
you’d have to think about it. Do NOT turn the page untl you've done this.

We mean .

&p&n your pencl

Lock at this code.
Read it carefully, then
answer the questions
below. (Note: there
are no syntax errors
in this code.)

import java.util,¥;

public class TestTree {
public static void main (Strimng[] args) {
new TastTree () .go();
}

public vold go() {
Book bl = new Book(“How Cats Work”);
Book b2 = new Book (“Remix your Body”):
Book b3 naew Book (“Finding Emo”) ;

TreeSat<Book> tree = new TreeSet<Book>();
tree. add(bl) ;

tree.add (b2) ;

tree.add (b3) ;

System.out.println(tree) ;

}

class Book (
String title;
publiec Book{String t) {
title = ¢t;
}

1).What is the result when you compile this code?

2).1f it compilles, what is the result when you run the TestTree class?

3).If there is a problem (elther compile-time or runtime) with this code, how would you fix it?

you are here »

565

how TreeSets sort

TreeSet elements MUST be comparable

TreeSet can’t read the programmer’s mind to figure out how the
object’s should be sorted. You have to tell the TreeSet fow.

To use a TreeSet, one of these

things must be true:

» The elements in
the list must be of a type that
implements Comparable

The Book class on the previous

page didn't implement Comparable, so it
wouldn’t work at runtime. Think about it, the
poor TreeSet's sole purpose in life is to keep
your elements sorted, and once again—it had
no idea how to sort Book objects! It doesn't fail
at compile-time, because the TreeSet add()
method doesn't take a Comparable type, The
TreeSet add() method takes whatever type
you used when you created the TreeSet. In
other words, if you say new TreeSet<Book>()
the add() method is essentially add(Book). And
there’s no requirement that the Book class
implement Comparable! But it fails at runtime
when you add the second element to the set.
That's the first time the set tries to call one of
the object’s compareTo() methods and... can't.

OR

» You use the TreeSet’s
overloaded constructor
that takes a Comparator

TreeSet works a lot like the sort()
method—you have a choice of using the
element’s compareTo() method, assuming
the element type implemented the
Comparable interface, OR you can use

a custom Comparator that knows how

to sort the elements in the set. Touse a
custom Comparator, you call the TreeSet
constructor that takes a Comparator.

566 chapter 18

class Book implements Comparable {
String title;
public Book (String t) {

title = t;

public int compareTo (Object b) {

Book book = (Book) b;
return (title.compareTo(book.title));

public class BookCompare implements Comparator<Book> {
public int compare (Book one, Book two) {

return (one.title.compareTo(two.title))

class Test {

public void go() {

Book bl new Book(“How Cats Work”);

Book b2 new Book (“Remix your Body”):

Book b3 = new Book(“Finding Emo”);

BookCompare bCompare = new BookCompare () ;
TreeSet<Book> tree = new TreeSet<Book>(bCompare);
tree.add(new Book (“How Cats Work”);

tree.add (new Book (“Finding Emo”);

tree.add(new Book{“Remix your Body”):
System.out.println(tree);

o

collections with generics

We've seen Lists and Sets, now we'll use a Map

Lists and Sets are great, but sometimes a Map is the best ¢ollection (not Collection
with a capital “C°—remember that Maps are part of Java collections but they don’t
implement the Collection interface).

Imagine you want a collection that acts like a property list, where you give it a name

and it gives you back the value associated with that name. Although keys will often be
Strings, they can be any Java object (or, through autoboxing, a primitive).

Each element in a Map is actually
TWO objects—a key and a value.
You can have duplicate values, but
NOT duplicate keys.

Map example

import java.util.-=;

HBSHMBP needs mo tYPC Pafamcﬁers—
public class TestMap | one tor the k‘Y and one for the value.

public static void main(String(] args) l/ J

RashMap<String, Integer> scores = new HashMap<String, Integer>();:

scores.put (“Kathy”, 42); Use put() ;
acores.put (“Bert”, ! 343) ; & i {af;:‘ mstead of 3dd0), and now of Louyse

& two 3 ments (v
scores.put (“Skyler”, 420); rguments (key, value).

System.out.println(scores);

System.out.println(scores.get (“Bexrt”)); The get0) method t3k)
" ¢s 3 Key, and

returns the value (in this ¢ase, an fhfega')-

filo Edit Window Mol \WhotoAm|

%java TestMap When you print 3 Map, it gives you Ehe key=value

in braces { } inctead of
{Skyler=420, Bert=343, Kathy=42)} when you print fists gnd :;‘ brackets [] You see

343

you are here» 567

generic types

Finally, back to generics

Remember earlier in the chapter we talked about how methods
that take arguments with genernic types can be... weird. And we
mean weird in the polymorphic sense. If things start to feel
strange here, just keep going—it takes a few pages to really tell
the whole story.

We’ll start with a reminder on how array arguments work,
polymorphically, and then look at doing the same thing with
generic lists. The code below compiles and runs without errors:

Here’s how it works with regular arrays:

import java.uril.*;

public class TestGenericsl {
public stati¢ vold main(String(] args) {
new TestGenericsl().go();

If 2 method argument is an array
of Animals, it will also take an
array of any Animal subtype.

In other words, if a method is
declared as:

void foo(Animalf] a) {)

Assuming Dog extends Animal,
you are free to call both:

foo(anAnimalArray);
foo(aDogArray);

| Detlave and treate an Animal avra

public void go() {

\/ that holds both dots and tats.

Animal[] animals = {naw Dog(), new Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(), new Dog()}:

<o Call {'jkcAhimakO, Usin l)oﬂ\
\ «— array t\/f’cs as arsuncr\%s...

takeAnimals (animals) ;
takeAnimals (dogs) ;

™ Declare and ereste a Dog avvay,
that holds only Doa& (the tompiler
won't let you put a Cat in).

public void takeAnimals (Animal{] animals) (€— The ¢rwisl point is that +he LakeAnimalsO)

for (Animal a: animals) {
a.eat();
} R Remember, we 3, eall ONL
} animal, sinte the animals [
‘ Parameter is of
) and we didn't do 3ny easting, (Wha: w
That arvay might hold both Dogs and Cats)

rncﬂwd Lan {akc an
Doﬁ IS—A Animal. Polymorphixm in 3etion.
Y the methods declared in

AnimaMJ or g Doﬁ[l sinle

type

type Animal avray,
ould we cast it £o?

abstract class Animal {
void eat() ¢
System.out.println(“animal eating”);
}

}

class Dog extenda Animal {
void bark () (}

}

class Cat extends Animal {
vold meow() (}

}

568 chapter 16

The simplified Animal] hievavchy.

collections with generics

Using polymorphic arguments and generics

So we saw how the whole thing worked with arrays, but will it work
the same way when we switch from an array to an ArrayList? Sounds
reasonable, doesn't it?

First, let’s try it with only the Animal ArrayList. We made just a few
changes to the go() method:

Passing In just ArrayList<Animal>

A simple thhsc from Awimall] to
AwayLid(Ay.ima};,,
public void go() |
Arraylist<Animal> animals = new Arraylist<Animal>();
animals.add (new Dog());

animals.add(new Cat ()); &—— We have to 3dd one 5 3 time sinte theve's

animals.add(new Dog()); shorteut syntax like theve | 5
eve is for array ereation.

takeAnimals (animals) ; ¢— This is the same code, extept now the “animals”

) variable vefers 4o an AwayL.is{ instead of arvay.

public void takeAnimals (ArraylList<Animal> animals) |
for (Animal a: animals) {
a.eat(); .ﬂﬂt method now takes an ybﬂr\rayLis{:
)) inste3d o—F on array, bu{: cvery{-},ihs else is
the same. Remcmber, that for foop ‘Y"b"
works for both avrays and ollections.

Complles and runs just fine

flo Edii Window Help CalFocdisBetter

%java TestGenerics2

animal eating
animal eating
animal eating
animal eating
animal eating
animal eating

you are here » 569

polymorphism and generics

But will it work with Arraylist<Pog> ?

Because of polymorphism, the compiler let us pass a Dog array

to 2 method with an Animal array argument. No problem. And

an ArrayList<Animal> can be passed to a method with an
ArrayList<Animal> argument. So the big question is, will the
ArrayList<Animal> argument accept an ArrayList<Dog>? If it works
with arrays, shouldn't it work here too?

Passing in just Arraylist<Dog>

public void go() |
Arraylist<adnimal> animals = new ArrayList<animal>{);
animals.add(new Dog{}));
animals.add(new Cat{)):
animals.add(new Dog()};

takeAnimals(animals); &— We know this line worked Line

ArrayList<Dog> dogs = new ArrayList<Dog>() ;

dogs.adad (new Dog());
dogs.add (new Dog());

takeAnimals (dogs) ; €— Will this work now that we thanged

from an array ts an Aﬂ'a\/l_.is{?

public void takeAnimals (ArraylList<Animal> animalsg) (
for(Animal a: animals) {
a.eat{);

}

When we compile it:

Rle B¢l Windaw Help CatsAreSmans!

%¥java TestGenerics3

TestGenerics3,java:21l: takeAnimals(java.util.
Arraylist<Animal>) in TestGenerics3 cannot be applied to

(java.util, ArrayList<Dog>)
takeAnimals (dogs) ;

1l errox

570 chapier16

Make a D°3 A‘rrayLis{: and put 3 touple dogs in.

It looked <o riﬁht,

bu'k wcr\{: 50 w""ﬁ"‘

collections with generics

And T'm supposed to be OK with this? That
totally screws my animal simufation where the
veterinary program takes a list of any type of
animal, so that & dog kennel can send a list of dogs,
and a cat kennel can send a list of cats... now
youre saying I can't do that if T use collections
instead of arrays?

What could happen if it were allowed...

Imagine the compiler let you get away with that. It let you pass an
ArrayList<Dog> to 2 method declared as:

public void takeAnimals (ArrayList<Animal> animals) |{
for{(Animal a: animals) ({
a.eat);
)
)

There's nothing in that method that looks harmful, right? After all,
the whole point of polymorphism is that anything an Animal can
do (in this case, the eat() method), a Dog can do as well. So what’s
the problem with having the method call eat() on each of the Dog
references?

Notking. Nothing at all.

There’s nothing wrong with that code. But imagine this code instead:

public void takeAnimals(ArraylList<Animal> animals) |
an 1s.add(new Cat()) ’.Q \/ikcs_” We Ju’c stuck a Cat in what
wight be 3 Dog,s—-only Awa\/Lis{;

So that’s the problem. There’s certainly nothing wrong with adding a
Cat to an ArrayListcAnimal>, and that's the whole point of having an
ArrayList of a supertype like Animal—so that you can put all types of
animals in a single Animal ArrayList.

But if you passed a Dog ArrayList—one meant to hold ONLY Dogs—
10 this method that takes an Animal ArrayList, then suddenly you'd
end up with a Cat in the Dog list. The compiler knows that if it lets
you pass a Dog ArrayList into the method like that, someone could,
at runtime, add a Cat to your Dog list. So instead, the compiler just
won't let you take the risk.

If you declare a method to take ArvayList<Aimal> it can take ONLY an
ArrayList<Animal>, not ArrayList<Dog> or ArrayList<Cat>.

you are here» 5§71

arrays vs. Arraylists

Wait a minute... if this is why they won't let
you pass a Dog ArrayList into a method that
takes an Animal Arraylist—to stop you from
possibly putting a Cat in what was actually a Dog list,
then why does it work with arrays? Don't you have
the same problem with arrays? Can't you still add
o Cat abject Yo a Dog[]?

Array types are checked again at
runtime, but collection type checks
happen only when you compile

Let’s say you do add a Cat to an array declared as Dog(1 (an array that
was passed into a method argument declared as Animal(), which is a
perfecty legal assignment for arrays).

public void go() {
Dog[] dogs = {new Dog{(), new Dog(), new Deg()}:
takaAnimals (dogs) ;

}

public void takeAnimals (Animal(] animals) (
animals[0] = new Cat{):;

} R____Wepsl anew Catinto s Dog arvay. The
tompiler allowed it, because it knows that
you might have passed a Cat aeray or Animal
array to the method, so to the compiler it
was possible that this was OK.

It compiles, but when we run it:

Filo Egil Window Holp CamsArnSmarter

% java TestGenericsl
] Exception in thread “main” java.lagg.ArrayStoreException:
Whew! At least the [Rorty

VM) 5t°ﬂ>cd it at TestGenericsl.takeAnimals (TestGenericsl.java:16)

at TestGenericsl.go(TestGenericsl.java:12)
at TestGenericsl.main (TestCenericsl.java:5)

572 chapter 16

Wouldn't it be dreamy if there were
a way to still use polymorphic collection
types as method arguments, so that my
veterinary program could take Dog lists
and Cat lists? That way I could loop through
the lists and call their immunize() method,
but it would still have to be safe so that you
couldn't add a Cat in to the Dog list. But I
guess that's just a fantasy...

generic wildcards

Wildeards to the rescue

It looks unusual, but there is a way to create a method argument that
can accept an ArrayList of any Animal subtype. The simplest way is to
use a wildcard—added to the Java language explicitly for this reason.

public void takeAnimals (AzrrayList<? extends Animal> animals) |

for (Animal a: animals) {
»
a.eat(); Remember, the keyword “extends’
}

) here means either extends OR

implements depending on the

tS}? now you’re lwonderinfg, KW'];}?'S the difference’ poP‘[you have {:W“ So i} You want to take

¢ same problem as be o.reP e method abox.e isn't domg. an Awa\/Lis{ of '(:Wcs Fhat
anything dangerous—calling a method any Animal subtype is) i ¢
guaranteed to have—but can’t someone stll change this to add a implement the Pet interrate,
Cat to the animals list, even though it's really an ArrayLisi<Dog>? You'd detlare it as:
And since it’s not checked again at runtime, how is this any .
different from declaring it without the wildcard?” Arvaylist<? extends Pet>

And you'd be right for wondering. The answer is NO. When you
use the wildcard <?> in your declaration, the compiler won't let
you do anything that adds to the list!

When you use a wildcard in your method
argument, the compiler will STOP you from doing
anything that could hurt the list referenced by the
method parameter.

You can still invoke methods on the elements in
the list, but you cannot add elements to the list.

In other words, you can do things with the list
elements, but you can’t put new things in the list.
So you're safe at runtime, because the compiler
won't let you do anything that might be horrible at

runtime.
So, this is OK inside takeAnimals():

But THIS would not compile:

TR USRI B IO B

574 chapter16

collections with generics

Alternate syntax for doing the same thing

You probably remember that when we looked at the sort() method,

it used a generic type, but with an unusual format where the type
parameter was declared before the return type. It’s just a different way
of declaring the type parameter, but the results are the same:

This:
public <T extends Animal> void takeThing(ArrayList<T> list)

Does the same thing as this:
public void takeThing (Arraylist<? extends Animal> list)

therejare no |
Dum @uestlons

Q: If they both do the same thing, why would you use
one over the other?

A: It all depends on whether you want to use “T” some-
where else. For example, what if you want the method to
have two arguments—both of which are lists of a type that
extend Animal? In that case, it's more efficient to just declare
the type parameter once:

public <T extends Animal> void takeThing(ArraylList<T> one, ArrayList<T> two)
Instead of typing:

public void takeThing (ArrayList<? extends Animal> one,
ArrayList<? extends Animal> two)

you sre here s BTD

be the compiler exercise

BE the compiler, advanced

Your job Is to play compiler and determine which of
these statements would compile. But some of this
code wasn't covered in the chapter, so you need to
work out the answers based on what you DID learn,
applying the“rules” to these new situations. in
some cases, you might have to guess, but the
pointis to come up with a reasonable answer
based on what you know so far.

{Note: assume that this code is within a legal class and
method.)

Compiles?

D ArrayList<Dog> dogsl = new ArrayList<Animal>();
D ArraylList<Animal> animals]l = new ArrayList<Dog>{);
D List<Animal> ligt = new ArrayList<Animal>();

D ArrayList<Dog> dogs = new ArraylList<Dog>():;

D Arraylist<Animal> animals = dogs;

[rist<Dog> dogList = dogs;

D ArraylList<Objact> objects new ArrayList<Object>();
() rist<object> cbjList = objects;

DA::&yList(ObjacD objs = naw Arraylist<Dog>();

8576 chapter 16

collections with generics

import java.util.*; Solution fo the “Reverse
public class SortMountains { Bﬂgi’ﬂeel'” 5}1&1’?@11 exercise

}

LinkedList<Mounfain®> mtn = new LinkedList<Mountain>():

class NameCompare implements Comparator <Mountain>
public int compare(Mountain one, Mountain two) {

return one.name.compareTo(two.name);
}
)
class HeightCompare implements Comparator <Mountain> {
public int compare(Mountain one, Mountain two) ({

return (two.height - one.height);
) L
}) e
public static void main{String {) args) ({ Did you notite that the hcn?g\\{:. list s
new SortMountain().go(); n DESCENDW& sequente ©
}
public void go() {
mtn.add(new Mountain(“Longs”, 14255));
mtn.add(new Mountain(”Elbert”, 14433}));

mtn.add(new Mountain(“Maroon”, 14156));
mtn.add(npew Mountain(“Castle”, 14265));

System.out.println(”ag entered:\n” + mtn);
NameCompare nc¢ = new NameCompare();
Collections.sort(mtn, nc);
System.out.println(“by name:\n” + mtn);
HeightCompare hc = new HeightCompare():;

Collections.sort(mtn, he);
System.out.println(“by height:\n” + mtn);

=lasg Mountain {

String name; Output:
Int height;

File Edit Window Halp ThisOne'sForBob
%java SortMountains

Mountain(String n, int h) {

as entered:
name = n; [Longs 14255, Elbert 14433, Maroon 14156, Castle 14265]
height = h; by name:
} ' [Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]
public String toString() { by height:
return name + " + height; [Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

}

you are here vy 577

fill-in-the-blank sojution

Exercise Selution

Possible Answers:
Comparator,
Comparable,
compareTo(),
compare(),

yes,
no

Given the following compilable statement:

Collections.sort (myArraylList) ;

1. What must the class of the objects stored in myArrayList implement? Comparable

2. What method must the class of the objects stored in myArrayList implement?> compareTo()

3. Can the class of the objects stored in myArrayList implersent both
Comparator AND Comparable? yes

Given the following compilable statement:

Collections.sort (myArraylist, myCompare) ;

4. Can the class of the objects stored in myArrayList implement Comparable? yes

5. Can the class of the objects stored in myArrayList implement Comparator? Yyes

6. Must the class of the objects stored in myArrayList implement Comparable? ho

7. Must the class of the objects stored in myArrayList implement Comparator? ng

8. What must the class of the myCompare object implement? Comparator

9. What method must the class of the myCompare object implement? compare()

578 chapter 16

collections with generics

BE the compiler sofutien

Compiles?

[ArrayList<Dog> dogsl = new ArrayList<Animal>();

D ArraylList<Animal> animalsl = new ArrayList<Dog> ().
gListmima1> list = new ArrayList<Animal>();

D ArrayList<Dog> dogs = new Arraylist<Dog>();

[] ArrayList<Animal> animals = dogs;

EListhg) doglist = dogs;

Eurayust<0bjact> objects = new ArraylList<Object>();
EList(Object) objlList = objects;

D Arraylist<Object> objs = new ArraylList<Dog>():

youare here» 579

