A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

7 inheritance and polymorphism

We were underpaid,

Better LiVi ng in overworked coders 'till we

tried the Polymorphism Plan. But

o bj ectVi I Ie thanks to the Plan, our future is

bright. Yours can be tool

Plan your programs with the future in mind. ifthere were a way to wiite
Java code such that you could take mare vacations, how much would it be worth to you? What
if you could write code that someone efse could extend, easily? And if you could write code
that was flexible, for those pesky last-minute spec changes, would that be something you're
interested in? Then this Is your lucky day. For just three easy payments of 60 minutes time, you
can have all this, When you get on the Polymorphism Plan, you'll learn the 5 steps to better class
design, the 3 tricks to polymorphism, the 8 ways 10 make flexible code, and if you act now—a
bonus lesson on the 4 tips for exploiting inheritance. Don'’t delay, an offer this good will give
you the design freedom and programming flexibllity you deserve. It’s quick, it's easy, and it's

available now, Start today, and we'll throw In an extra level of abstraction!

this is a new chapter 16!

http://www.a-pdf.com/?product-split-demo

the power of inheritance

Chair Wars Revisited...

Remember way back in chapter 2, when Larry (procedural guy)
and Brad (0O guy) were vying for the Aeron chair? Let’s look at
a few pieces of that story to review the basics of inheritance.
LARRY: You've got duplicated code! The rotate procedure
is in all four Shape things. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn't see the final design. Let me
show you how OO inheritance works, Larry.

Square Amoeba

| looked at what all four

rotata() rotate() classes have In sommon.
playSound() playSound()

«

They’re Shapes, and they all rotate and
playSound. So | abstracted out the
common features and put them into a
new ¢lass called Shape. —

rotats()
playSound()

3

Then ! linked the other
four shape elasses to
the new Shape class,
in a relationship called
Inheritance.

superelass

You can read this as, “Square inherits from Shape”,
“Clrcle Inherits from Shape”, and 50 on. | removed

rotate() and playSound() froam the other shapes, so now /
thera's only one copy to maintain.

suboiasses

AN

Triangle

Square Circle

The-Shape class Is called the suparclass of the other four
ctagsas. The other four are the subclasses of Shape. The
subclasses Inherit the methods of the superclass. In othar
worgs, if the Shape class has the functionality, then the
subclasses aulomatically get thet same functionslity.

168 chapter 7

inheritance and polymorphism

What about the Amoeba rotatel)?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

How can amoeba do something different if it inherits its
functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows
exactly which rotate() method to run when someone tells the
Amoeba to rotate.

superolass
(wore abstract)

=~

rotate()

playSound() [made the Amoeba class override the

rotate(} and playSound() methods
of the superciass Shape. Overriding
Just means that a subelass redefines
one of s inherlted methods when
It needs to change or extend the
behavtor of that method.

subelasses
Imore speolfic)

\ Square : Circle Triangle Amosba

rotate()
/i amoeba-specific
/ rotate code

playSound()
I/ amoeba-specific
/1 sound code

Overriding methods
75 9

RANN
QWEWwR

How would you represent a house cat and a tiger, in an
inheritance structure. Is a domestic cat a specialized
version of a tiger? Which would be the subclass and
which would be the superciass? Or are they both
subclasses to some other class?

0o

How would you design an Inheritance structure? What
methods would be overridden?

Think about it. Before you turn the page.

you are herey 167

s way inheritance works

1 chapter 7

Understanding Inheritance

When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits from the
superclass.

In Java, we say that the subclass extends the superclass.
An inheritance relatonship means that the subclass inherits
the members of the superclass, When we say “members of
a class” we mean the instance variables and methods.

For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automaducally inherits the instance vanables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPower () and
30 on. But the PantherMan subclass can add new
methods and instance variables of its own, and it can
override the methods it inherits from the superclass
SuperHero.

superolass
(woreabstract) fsut instance varlables
2 | spociapower (state, attributes)
useSpeciatPower() . methods
putOnSuit() {behavior)
subclasses
(wore specifle)
\é, FriedEggMan PantharMan Overriding
T useSpaclalPower() methods

“

‘putOnSuit()

—

Y FriedEggMan doesn’t need any behavior that’s unique,

/&, o he doesn’t override any methods. The methods and
@& instance variables in SuperHero are sufficient.

PantherMan, though, has specific requirements for his suit
and special powers, so ugeSpecialPower () and
petonsuit () are both overridden in the PantherMan
class.

Instance variables are not overridden because they
don'’t need 1o be. They don't define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inhenited tights (o
purple, while FriedEggMan sets his to white.

An Inheritance example:

public class Doctor {
boolean worksAtHospital;
void treatPatient () |

// perform a checkup

)

public¢c ¢class FamilyDoctor extends Doctor ({

boolean makesHouseCalls;
void giveAdvice() {

// give homespun advice
}

)

public ¢lags Surgeon extends Doctor{

void treatPatient () ({
// perform surgery
)

void makeIncision() {
// make incision (yikes!)
)

inheritance and polymorphism

I inherited my
pracedures so I didn't
bother with medical school.
_ Refax, this won't hurt a bit.
(now where did I put that
power saw..)

superclass

worksAtHospital

| treatPatient ()

one nstanee variabie

one method

your pencil —

How many instanca variables does
Surgeon have?

How many instance variables does
FamilyDoctor hava?

How many methads does Doctor have?

Adds one new method | makelncision(}

subslasses How many methods does Surgeon have? ____
surgoon FamiyDoctr How many methods does FamilyDoctor
- . Adds one new have?
Overrides the Inherited makesHouseCalls instance varable
treatPatient() method | treatPatient () Can a FamilyDoctor do treatPatient()? ______
giveAdvics () Adds one new method

Can 3 FamilyDoctor do makelncision()?

169

you are here »

Let’s design the inheritance tree for
an Animal simulation program

Imagine you're asked to design a simulation program that
lets the user throw a bunch of different animals into an
environment to see what happens. We don’t have to code the
thing now, we’re mostly interested in the design.

We've been given a list of some of the animals that will be
in the program, but not all. We know that each animal will
be represented by an object, and that the objects will move
around in the environment, doing whatever it is that each
particular type is programmed to do.

And we want other programmers to be able to add new
kinds of animals to the program at any time.
First we have 1o figure out the common, abstract

characteristics that all animals have, and build those
characteristics into a class that all animal classes can extend.

o Look for objects that have common
attributes and behaviors.

What do these six types have In
common? This helps you to abstract
out behaviors. (step 2)

How are these types related? This
helps you to define the inheritance
tree relationships (step 4-5)

170 chapter 7

Using inheritance to avoid
duplicating code in subclasses

We have five instance variables:
picture ~ the file name representing the JPEG of this animal

food — the type of food this animal eats. Right now, there
can be only two values: meat or grass.

hunger — an int representing the hunger level of the animal.
It changes depending on when (and how much) the
animal eats.

boundaries — values representing the height and width of
the ‘space’ (for example, 640 x 480) that the animals will
roam around in.

location ~ the X and Y coordinates for where the animal is
in the space.

We have four methods:

makeNoise () — bebhavior for when the animal is supposed to
make noise.

eat() — behavior for when the animal encounters its
preferred food source, meat or grass.

sleep() — behavior for when the animal is considered asleep.

roam() - behavior for when the animal is not eating or
sleeping (probably just wandering around waiting to bump
into a food source or a boundary).

Lion

inheritance and polymorphism

2

Design a class that represents
the common state and behavior.

These objects are all animals, so
we'll make a common superclass
called Animal.

we'll put in methods and instance
variables that all animals might
need.

Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()

sleep()
roamy()

Wolf

Cat

you are here» 171

designing for inheritance

Po all animals eat the same way?

Assume that we all agree on one thing: the instance
variables will work for all Animal types. A lion will
have his own value for picture, food (we're thinking
meat), hunger, boundaries, and location. A hippo
will have different values for hig instance variables,
but he’ll stiil have the same variables that the other
Animal types have. Same with dog, tiger, and so on.

Decide if a subclass
needs behaviors (method

But what about behavior

Which methods should we override?

Does a lion make the same noise as a dog? Does
a cat eat like a hippo? Maybe in your version, but

in ours, eating and making noise are Animal-type-

specific. We can'’t figure out how to code those
methods in such a way that they’d work for any
animal. OK, that’s not true. We could write the

makeNoise () method, for example, so that all it does
is play a sound file defined in an instance variable
for that type, but that's not very specialized. Some

animals might make different noises
for different situations (like one
for eating, and another when
bumping into an enemy, etc.)

So just as with the Amoeba

overriding the Shape class rotate()
method, to get more amoeba-specific (in
other words, unique) behavior, we’ll have
to do the same for our Animal subclasses.

Animal

picture
food

hunger
boundaries
location

172 chapter7

I'm ore bad™ss
plant-eater.

implementations) that are specific
to that particular subclass type.

Looking at the Animal class,

we decide that eat() and
makeNoise() should be overridden
by the individual subclasses.

In the dog
community, barking is an

important part of our cultural
identity. We have a unique sound,
and we want that diversity to
be recognized and respected.

these two methods, eat0)

We bCHZC" aven"ldt

and makeNoise(), s Lhat eath animal Lype Lan

. ye &on
ine i cL‘-G‘f. behavior for eating 3
e o, i locks fee sleef) and

voaml) &3n SQY W;L'

Looking for wore inheritance

opporfunities

The class hierarchy is starting to shape up. We

have each subclass override the makeNoise() and
eal() methods, so that there’s no mistaking a Dog

bark from a Cat meow (quite insulting to both
parties). And a Hippo won't eat like a Lion.

But perhaps there’s more we can do. We have to
look at the subclasses of Animal, and see if two
or more can be grouped together in some way,
and given code that’s common 10 only that new

group. Wolf and Dog have similarities. So do

Lion, Tiger, and Cat.

Lion

makeNoise()
eat()

Hippo

makeNoise()
oat()

inheritance and polymorphism

o

Look for more opportunities to use

abstraction, by finding two or more
subclasses that might need common
behavior.

We look at our classes and see

that Wolf and Dog might have some
behavior In common, and the same goes
for Lion, Tiger, and Cat,

Animal

picture
food
hunger
boundaries
location

Tiger

roamy() Wolf ang D

c u| makeNoise()
| eat()

1

-
9 makeNoise()

makeNolse()

eat()

oal()

imakeNoise()
eat()

you are here » 173

designing for inheritance

e Finish the class hierarchy

Since animals already have an organizational Animal
hierarchy (the whole kingdom, genus, phylum

thing), we can use the level that makes the most picture

sense for class design. We'll use the bialogical food
“families” to organize the animals by making a hunger
Feline class and a Canine class. boundaries

We decide that Canines could use a common location

roam() method, because they tend to move in
packs. We also see that Felines could use a
common roam() method, because they tend to
avoid others of their own kind. We‘Ir let Hippo
continue to use its inherited roam() method—
the generic one it gets from Animal.

S0 we're done with the design for now: we'll
come back to it later in the chapter.

slaep()

Fellne

Canline

roam()

Hippo
roamy()

makeNolse()
aay()

makeNolse()
eat()

Tiger

makeNoise()
eat()

i | makeNalsa() Wolf

makeNolse()

makeNoisa() |
eat()

' =

174 chapter?7

inheritance and polymorphism

Which method is ¢alled?

The Wolf class has four methods. One
inherited from Animal, one inherited from
Canine (which is actually an overridden
version of a method in class Animal}, and
two overridden in the Wolf class. When
you create a Wolf object and assign it to

a variable, you can use the dot operator

on that reference vaniable to invoke all
four methods. But which version of those
methods gets called?

makeNoisa()
eat()

slsep()
roam()

make 3 new Wolf objct{: Wolf w = new Wolf ()

ealls the version in Wolf w.makeNoise (};
¢alls the version in Canine w.roam() ;

talls the vevsion in Wolf w.eat();

calls the version in Animal w.sleep();

When you call 2 method on an object
reference, you're calling the most specific
version of the method for that object type.

In other words, the lowest one wins!

“Lowest” meaning lowest op the
inheritance tree. Canine is lower than

Animal, and Wolf is lower than Canine, ‘
so invoking a method on a reference 21 '
to a Wolf object means the JVM starts ‘

looking first in the Wolf class. If the [VM
doesn’t ind a version of the method in
the Wolf class, it starts walking back up
the inheritance hierarchy until it finds a
match.

makeNoisa()
eat()

you are here* 175

practice designing an inheritance tree

Designing an Inheritance Tree

superclass

(wore abstract) |
Class Superslasses Subclasses ~3 L
Clothing — Boxers, Shirt subslasses fD\

(more spesifie)
Boxers Clothing more pes
Shirt Clothing Boxers Shirt
Inharitance Table

Sharpen your pencil

Find the relationships that make sense. Fill in the last two columns

Class Superclasses

Subelasses

Musician

Rock Star

Fan

Bass Player

Concert Pianist

Hint: not avarything can be connected 10 something ofse.
Hint: you're allowed to add to or change the classes listed.

{nheritance Class Diagram

Draw an inheritance diagram here.

Ot Ghestions

Q.' You said that the JVM starts
walking up the inheritance tree,
starting at the class type you invoked
the method on (like the Wolf example
on the pravious page). But what
happens if the JVM doesn’t ever find
a match?

176 chapter?

A: Good question! But you don't
have to worry about that. The compiler
guarantees that a particular method

is callable for a specific reference type,
bat it doesn't say (or care) from which
class that method actually comes from
at runtime.With the Wolf example, the
compiler checks for a sleep() methad,
but doesn't care that sleep(Is actually
defined In (and inherited from) class
Animal. Remember that if a class
Inherits a method, it has the method.

Where the inherited method Is defined
(in other words, In which superclass

it Is defined) makes no difference to
the compller. But at runtime, the JVM
will always pick the right one_And
the right one means, the most specific
version for that particular object.

Inheritance and polymorphism

Using 1S-A and HAS-A

Remember that when one class
inherits from another, we say that the
subclass extends the superclass. When
you want to know if one thing should
extend another, apply the IS-A test.

Triangle IS-A Shape, yeah, that works.
Cat IS-A Feline, that works too.
Surgeon IS-A Doctor, still good.

Does it make sense %o
say a Tub I5-A Bathroom? Or a
Bathroom IS-A Tub? Well it doesn't to
me. The relationship between my Tub
and my Bathroom is HAS-A. Bathroom
HAS-A Tub. That means Bathroom
has a Tub instance variable.

Tub extends Bathroom, sounds
reasonable.
Until you apply the IS-A lest.

To know if you’ve designed your types
correctly, ask, “Does it make sense to
say type X IS-A type Y?” If it doesn’t,
you know there’s something wrong
with the design, so if we apply the IS-A
test, Tub IS-A Bathroom is definitely
false.

What if we reverse it to Bathroom
extends Tub? That stll doesn't work,
Bathroom IS-A Tub doesn’t work.

Tub and Bathroom arerelated, but
not through inheritance. Tub and
Bathroom are joined by a HAS-A
relationship. Does it make sense to
say “Bathroom HAS-A Tub™? If yes,
then it means that Bathroom has a
Tub instance variable. In other words,
Bathroom has a reference to a Tub, but
Bathroom does not extend Tub and
vice-versa,

Int size;
Bubbles b;

Tub bathtub;
Sink theSink;

int radius;
Int colorAmt;

Bathroom HAS-A Tub and Tub HAS-A Bubbtes.
Bul nobody Inherlts from (extends) anybody else.

you are here» 177

exploiting the power of objects

178 chaptar 7

But wait! There’s more!

The IS-A test works enywherein the inheritance tree. If your
mheritance tree is well-designed, the IS-A test should make
sense when you ask any subclass if it IS-A any of its supertypes.

if class B extends class A, class B 1S-A class A.

This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both B and A.

Canine extends Animal
Wolf extends Canine
Wolf extends Animal

Canine 1S-A Animal
Wolf IS-A Canine
Wolf IS-A Animal

makeNoise()
eat()

| sleep()

roam()

makeNoisa()
aat()

With an inheritance tree like the
one shown here, you're always
allowed to say “Wolf extends
Animal” or “Wolf IS-A Animal”.
It makes no difference if Animal
is the superclass of the superclass
of Wolf. In fact, as long as Animal
is somewhere in the inheritance
hierarchy above Wolf, Wolf IS-A
Animal will always be true.

The structure of the Animal
inheritance tree says to the world:

“Wolf IS-A Canine, so Wolf can do
anything a Canine can do. And
Wolf IS-A Animal, so Wolf can do
anything an Animal can do.”

It makes no difference if Wolf
overrides some of the methods
in Animal or Canine. As far as
the world (of other code) is
concerned, a Wolf can do those
four methods. How he does them,
or in which class they're overridden
makes no difference. A Wolf can
makeNoise (), eat(), sleep(), and
roam() because a Wolf extends
from class Animal.

How do you know if you've got

your inheritance right?

There’s obviously more to it than what we’ve
covered so far, but we'll look at a lot more OO
issues in the next chapter (where we eventually
refine and improve on some of the design work
we did in ¢his chapter).

For now, though, a good guideline is to use the
IS-A test. If “X IS-AY” makes sense, both classes
(X and Y) should probably live in the same
inheritance hierarchy. Chances are, they have
the same or overlapping behaviors.

Keep in mind that the
inheritance 1S-A relationship
works in only one direction!

Triangle IS-A Shape makes sense, so you can
have Triangle extend Shape.

But the reverse—Shape IS-A Triangle—does
not make sense, so Shape should not extend
Triangle. Remember that the 1S-A relavonship
implies that if X ISAY, then X ¢an do anything
aY can do (and possibly more).

inheritance and polymorphism

Beer

| oK, your Nm,M?:\;f 0'
| way-ness F e rmus
\ v): oxtends VX154

Sharpen Your pentil ————

Put a check next to the relationships that
make sense.

[] Oven extends Kiichen

(] Gultar extends Instrument
(] Person extends Employee
(] Ferrari extends Engline

O] FriedEgg extends Food
L] Beagle extends Pet

] Container extends Jar

[J Metal extends Titanlum
[] GratefulDead extends Band
[] Blonde extends Smart

(] Beverage extends Martini

HinL apply the 1S-A test

you are here» 179

who inherits what

thes
Dumb Questions

Q: So we see how a subclass gets
to inherit a superclass method, but
what if the superclass wants to use
the subclass version of the method?

A: A superclass won't necessarily

Q: In a subclass, what if | want to
use BOTH the superclass version and
my overriding subclass version of a
method? In other words, | don’t want
to completely replace the superclass
version, | just want to add more stuff
to it.

You can design your superclass
methods in such a way that they
contain method implementations

that will work for any subclass, even
though the subclasses may still need
to ‘append’ more code. In your subclass

know about any of its subclasses.

You might write a class and much

later someone else comes along and
extends it. But even if the superclass
creator does know about (and wants
to use) a subclass version of a method,
there’s no sort of reverse or backwards
inheritance. Think about it, children
inherit from parents, not the other way
around.

superclass”

A: You can do this! And it's an
important design feature. Think of the
word “extends” as meaning,”l want

to extend the functionality of the

public void roam() {
super.roam () ;
// my own roam stuff Y

overriding method, you can call the
superclass version using the keyword
super. It’s like saying, “first go run the
superclass version, then come back and
finish with my own code...”

this ealls £he inhevrited version of
roarn(), then tomes back Lo do
our owWn subdass-—s?ccij;ic tode

Who gets the Porsche, who gets the porcelain?
thow to know what a subclass san /R
[nhertt from its superclass)

A subclass inherits members of the
superclass. Members include instance
variables and methods, although later in

this boak we’ll look at other inherited members. A
superclass can choose whether or not it wans a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access Jevels that we’ll cover in this book,
Moving from most restrictive 10 least, the four access
levels are:

private default protected public

180 chapter?

Access levels control who sees what, and are crucial
10 having well-designed, robust Java code. For now we’ll
focus just on public and private. The rules are simple for
those two:

public members are inherited
private members are not inherited

When a subclass inherits a member, it is as if the
subclass defined the member itself. In the Shape
cxample, Square inherited the rotate {) and
playSound () methods and 10 the outside world (other
code) the Square class simply fas a rotate () and
playSound () method.

The members of a class include the variables and
mecthods defined in the class plus anything inherited
from a superclass.

Note: get more details about default and protected in chapter
|& (chlo\fncnU and appendix B.

When designing with inheritance,
are you USIng or abusing?

Although some of the reasons behind these rules won’t be
revealed undl later in this book, for now, simply knowinga
few rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type
of a superclass. Example: Willow is a more specific type of
Tree, so Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among
multiple classes of the same general type. Example:
Square, Circle, and Triangle all need to rotate and play
sound, so putdng that functionality in a superclass Shape
might make sense, and makes for easier maintenance and
extensibility. Be aware, however, that while inheritance is
one of the key features of object-oriented programming,
it's not necessarily the best way to achieve behavior reuse.
It'll get you started, and often it’s the right design choice,
but design patterns will help you see other more subtle
and flexible options. If you don’t know about design
patterns, a good follow-on to this book would be Head First
Design Patterns.

DO NOT use inheritance just so that you can reuse

code from another class, if the relationship between the
superclass and subclass viclate either of the above two
rules. For example, imagine you wrote special printing
code in the Alarm class and now you need printing code
in the Piano class, so you have Piano extend Alarm so that
Piano inherits the printing code. That makes no sense! A
Piano s not a more specific type of Alarm. (So the printing
code should be in a Printer class, that all printable objects
can take advantage of via a HAS-A relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test. Always ask yourself if the subclass
IS-A more specific type of the superclass, Example: Tea IS-
A Beverage makes sense. Beverage IS-A Tea does not.

inheritance and polymorphism

2 _
—— BULLET POIM& —_—

Asubclass extends a superclass.

A subclass inherits all pubfic instance
variables and methods of the superclass, but
does not inherit the private instance variables
and methods of the superciass.

Inherited methods can be overridden; instance
variables cannof be overidden (aithough they
can be redefined in the subclass, but that's
not the same thing, and there's almost never a
nesd to do it)

Use the 1S-A test to verify that your
inheritance hierarehy is valig. if X extends Y,
then X /S-A Y must make sense.

The [S-A relationghip works in only one
direction. A Hippo Is an Anlmal, but nat all
Animals are Hippos.

When a method is overridden in a subclass,
and that method is Invoked on an instance of
the subclass, the overridden version of the
method is called. {The lowest one wins.)

If class B extends A, and C extends B, class
B IS-A class A, and class C IS-A class B, and
class C also 1S-A class A.

you are herey 181

exploiting the power of objects

So what does all this
inheritance really buy you?

You get a lot of OO mileage by designing
with inheritance. You can get rid of duplicate
code by abstracting out the behavior common
to a group of classes, and sticking that code
10 a superclass. That way, when you need to
modify it, you have only one place to update,
and the change is magically reflected in all the
classes that inherit that behavior. Well, there's
no magic involved, but it is pretty simple:
make the change and compile the class
again. That's it. You don’t have to touch the
subclasses!

Just deliver the newly<changed superclass, and
all classes that extend it will automatically use
the new version.

A Java program is nothing but a pile of classes,
30 the subclasses don't have to be recompiled
in order to use the new version of the
superclass. As long as the superclass doesn’t
break anything for the subclass, everything’s
fine. (We’ll discuss what the word ‘break’
means in this context, later in the book. For
now, think of it as modifying something in
the superclass that the subclass is depending
on, like a particular method’s arguments or
return type, or method name, etc.)

182 chapter 7

@ You avoid duplicate
code.
Put common code in one piace, and let
the subclasses inherit that code froma
superclass. When you want to change that
behavior, you have o modify it in only
one place, and everybody else (i.e. all the
subclasses) see the change,

@® You define a common
protocol for a group of
classes.

Um, what
the heck does
THAT mean?

Inheritance lets you guarantee that
all classes grouped under a certain
supertype have all the methods that
the supertype has.”

In other words, you define a common protosol for a
set of classes related through Inheritanee.

When you define methods in a superclass, that can be
inherited by subclasses, you’'re announcing a kind of
protocol to other code that says, “All my subtypes (i.e.
subclasses) can do these things, with these methods
that look like this...”

In other words, you establish a contract.

Class Animal establishes a common protocol for all
Animal subtypes:

Youre telling the world {;\sa{:
Pnimal £3n do these Towr

maketolse()

Sea B . That inthdes the methed
sleep() ks and vebum types-
roam() Jrguments 3

And remember, when we say any Animal, we mean
Animal and any class that extends from Animal Which
again means, any class that has Animal somewhere above it
in the inheritance hierarchy.

But we're not even at the really cool part yet, because
we saved the best—polymorphism—for last.

When you define a supertype for a group of classes,
any subclass of that supertype can be substituted where the
supertype is expected.

Say, what?

Don’t worry, we're nowhere near done explaining it.
Two pages from now, you'll be an expert

"When we say “all the mathods” we mean “all the /inherifable methods®, which
for now actually means, “all the public methods®, although later we'il refine that
gefinition a bt more.

inheritance and polymorphism

And 1 care because...

Because you get to take advantage of
polymorphism.

Which matters to me
because...

Because you get to refer to a subclass
object using a reference declared as the

supertype.

And that means to me...

You get to write really flexible code.
Code that’s cleaner (more efficient,
simpler). Code that'’s not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You'll see how it works on the next page.

We don't know about you, but
personally, we find the whole
tropical vacation thing
particularly motivating.

<P

you are here» 183

the way polymorphism works

To see how polymorphism
works, we have to step back
and look at the way we
normally declare a reference
and create an object...

184 chapter?7

The 3 steps of object
declaration and assignment

1 3 2
/\—)‘*—/\ /\N—\
Dog myDog = new Dog() ;

Declare a reference
variable

Dog myDog
Tells the JVM to allocate space for a
reference variable.The reference varlable
is, forever, of type Dog. In other words,

a remote control that has buttons to

control a Dog, but not a Cat or a Button
or a Socket.

e Create an object

Dog myDog = new Dog() ;

Tells the JVM to allocate space for
a new Dog object on the garbage
collectible heap.

new Dog{();

Dog object

Link the object
and the reference

Dog myDog = new Dog() ;

Assigns the new Dog to the refer-
ence variable myDog. In other words,
program the remote control.

Dog object

inheritance and polymorphism

The important point is that the
reference type AND the object
type are the same.

In this example, both are Dog.

Dog
—

A

These two ave the same type. The veberente
variable type is declaved as Dog, and the object
is tveated as new Dog().

But with polymorphism, the
reference and the object can
be different.

Animal myDog = new 1291();

Animal

These two are NOT the same type. The
vefevente variable type is declaved as Animal,
but the objccf is ereated as new P_gg().

you are here v+ 185

polymorphism in action

With polymorphism, the reference
type can be a superclass of the

actual object type. uh... nope.
Still not gettin' it,

When you declare a reference variable,
any object that passes the IS-A test for the
declared type of the reference variable
can be assigned to that reference. In
other words, anything that extends the
declared reference variable type can
be assigned to the reference
variable. This lets you do

things like make polymorphic =
arrays. R =
OJC)‘ wordh
b i . e Primal 1 e Bramil
OK, OK maybe an example will help Dedare 3n 3 1\09 o ,,byc’“"r‘ oype
an 203y hat ™

Animal [] animals = new Animal[5];

animals [0] = new Dog():;

animals [1l] = new Cat(): g But look wha{yougd'-{'ﬂdo you canvu{:ANY

animals [2] = new Wolf () ; subtlass of Animal in the Animal away

186

animala {3] = new Hippo();

animals [4] = new Lion(); Mnd here's ¢ bect o
Fdison 4' lymorph;
et to d} ,c ﬂ‘fwho Pe Part (e
3 loop 44, € &Xampl,)
oop h the Ples, You
for (int i1 = 0; i < animals.length; i++) { CAm...a;_dan ab-raya d

el
J“é doc_g ﬂ hc{ one
animala[i].eat () ; &

€ right ﬂvn& o d cvery
animals[i].roam() ;

When V0 0, 3 D is 3t index O in {he mrray,
you get the Dogs eak() method. When ' s |, you
get the Cat's eat() method

Same with Yoamo-

chapter 7

inheritance and polymorphism

But wait! There's more!

You can have polymorphic
arguments and return types.
e ———— A —

If you can declare a reference vartable
of a supertype, say, Animal, and assign a

subclass object to it, say, Dog, think of how .
that might work when the reference is an ; &

argument to a method...

class Vat (

public void giveShot (Animal a)

// do horrible things to the Animal at ;::;?";:’ P""z'ﬂc‘&r tan take ANY
€ s the 4
// the other end of the ‘a’ parameter #‘ Vet is done Sivinrs&e:ﬁf’:i when
makeNoi . finimal {o n@choi:e(g, and wka‘{:;v el .ﬂme
a. eNoise() ; uhr:alfy out theve on the heap H-.;Z’Amma’
w - s
} o5& "HJ;(CNoue() 'ﬂtﬂsod hn” v s

class PetOwner

public void start() (The Veb's Sichho{O wethod ii“ J‘c;k;;n‘f
- ive it s long as The
Vet v = new Vet(): Animal you 3¢ Asmc?\t it a subelass

pass in as the a9

o
new Dog() ; 4’ }N,.al, it will work:

Dog d =
Hippo h = naw Hippo() ; /

v.giveshot(d); & Pey's makeNoise() vuns

v-giveshot(h); &—— Hippo's makeNoise) pung

you are here» 187

exploiting the power of polymorphism

NOW I get itl If T write
my code using polymorphic arguments,
where I declare the method parameter as a
superclass type, L can pass in any subclass object at
runtime, Cool. Because that alse means I can write my
code, go on vacation, and someone else can add new
subclass types Yo the program and my methods will
still work... (the only downside is I'm just making life
easier for that idiot Jim).

TR With polymorphisw, you can write tode that doesnt

have to change when you Introduce new subelass
types [nto the program.

Remember that Vet class? If you write that Vet class using
arguments declared as type Animal your code can handle any
Animal subclass. That means if others want to take advantage of
your Vet class, all they have to do is make sure their new Animal
types extend class Animal. The Vet methods will sl work, even
though the Vet class was written without any knowledge of the
new Animal subtypes the Vet will be working on.

RALNN

QWEWR
Why is polymorphism guaranteed to work this way? Why Is
it always safe to assume that any subclass type will have the
methods you think you're calling on the superciass type (the
superclass reference type you're using the dot operator on)?

188 chapter 7

therejare po |
Dun% « uestions

Q: Are there any practical limits
on the levels of subclassing? How
deep can you go?

A: If you look in the Java API,
you'll see that most inheritance
hierarchies are wide but not deep.
Most are no more than one or two
levels deep, although there are
exceptions (especially in the GUI
classes).You'll come to realize that
it usually makes more sense to keep
your inheritance trees shallow, but
there isn’t a hard limit (well, not one
that you'd ever run into).

Q: Hey, I just thought of
something... if you don’t have
access to the source code for a class,
but you want to change the way a
method of that class works, could
you use subclassing to do that? To
extend the “bad” class and override
the method with your own better
code?

AI Yep.That's one cool feature
of 00, and sometimes it saves you
from having to rewrite the class
from scratch, or track down the

programmer who hid the source code.

Q_: Can you extend any class? Or
is it like class members where if the
class is private you can't inherit it...

A: There’s no such thing as a
private class, except in a very special
case called an inner class, that we
haven’t looked at yet. But there are
three things that can prevent a class
from being subclassed.

The first is access control. Even though
aclass can’t be marked private,a
class can be non-public (what you

get if you don't declare the class as
public). A non-public class can be
subclassed only by classes in the
same package as the class. Classes in

a different package won't be able to
subclass (or even use, for that matter)
the non-public class.

The second thing that stops a class
from being subclassed is the keyword
modifier final. A final class means
that it’s the end of the inheritance
line. Nobody, ever, can extend a final
class.

The third issue is that if a class has
only private constructors (we'll
look at constructors in chapter 9), it
can't be subclassed.

inheritance and polymorphism

Q: Why would you ever want to

make a final class? What advantage
would there be in preventing a class
from being subclassed?

A: Typically, you won't make your
classes final. But if you need security

— the security of knowing that the
methods will always work the way
that you wrote them (because they
can’t be overridden), a final class
will give you that. A lot of classes in
the Java API are final for that reason.
The String class, for example, is final
because, well,imagine the havoc if
somebody came along and changed
the way Strings behave!

Q: Can you make a method final,
without making the whole class
final?

AZ If you want to protect a specific
method from being overridden, mark
the method with the fina 1modifier,
Mark the whole class as final if you
want to guarantee that none of the
methods in that class will ever be
overridden.

vou are herer 189

Keeping the contract: rules for overriding

When you override a method from a superclass, you're agreeing to
fulfill the contract. The contract that says, for example, “I take no
arguments and I return a boolean.” In other words, the arguments
and rerurn types of your overriding method must look to the outside
world exactly like the overridden method in the superclass.

The methods are the contract.

If polymorphism is going to work, the Toaster’s version of the
overridden method from Appliance has to work at runtime.
Remember, the compiler looks at the reference type to decide
whether you can call a particular method on that reference. With

an Appliance reference to a Toaster, the compiler cares only if class
Appliance has the method you're invoking on an Appliance reference.
But at runtime, the JVM looks not at the reference type (Appliance) but
at the actual Toaster object on the heap. So if the compiler has already
approved the method call, the only way it can work is if the overriding
method has the same arguments and return types. Otherwise,
someone with an Appliance reference will call turnOn() as a no-

arg method, even though there’s a version in Toaster that takes an
int. Which one is called at runtime? The one in Appliance. In other
words, the ionOn(int level) method in Toaster is not an override!

Q Arguments must be the same, and return
types must be compatible.

The contract of superclass defines how other ¢ode can use a method.
Whatever the superclass takes as an argument, the subctass over-
riding the method must use that same argument. And whatever the
superclass declares as a return type, the overriding method must de-
clare either the same type, or a subclass type. Rermember, a subclass
object is guaranteed 1o be able to do anything its superclass declares,
30 it's safe to return a subclass where the superclass Is expected.

The method can’t be less accessible.

That means the access level must be the same, or friendlier. That
means you can't, for example, override a public mathod and make
it private. What a shock that would be to the cods invoking what it

T

This i NOT an
oim.\del'

Appliance

boalean tumOn()
boatean tumOft()

Toaster

boolean tumOn(int level)

Y a3 legal
“{'-Mfﬁjn

overl OAD,
overR {DE

Appliance

public boolean tumOn()
public boolean turnOn()

thinks (at compile time) is a public method, if suddenly at runtime T L,EQN’!
the JVM slammed the door shut because the overriding version NO —\4 Toaster i’
called at runtime is private! s not 3 \esalu o
So far we've leamed about two access levels: private and public. °“‘W'.de df\\c attess |private boolean tumOn{)
The other two are In the deployment chapter (Release your Code) "C‘b“% ik o lead!
and appendix B. There's alsa another rule about overriding related level a;\D; petavst
to exception handiing, but we'll wait until the chapter on exceptions ~ o¥€¥ Ldn b £hangt
(Risky Behavlor) to cover that. you dio®
argumen

190 chapter7

inheritance and polymorphism

Overloading a method

Method overloading is nothing more than having
two methods with the same name but different
argument lists. Period. There’s no polymorphism

involved with overloaded methods! An Overloaded meﬂl()d 1S
Overloading Iets you make multiple versions just a di{ferent meﬂlod ﬂl&t

of a method, with different argument lists, for

}clonvenient(;le :;) t}llle cai(lers. Flor ex_ampl}f, if)ﬁ).u ha [JPenS to have ﬂle same
ave a method that takes only an int, the calling N
code has to convert, say, a double into an int methOd name. It has HOﬂ'ﬂng
before calling_your method. But if you overloaded {o do wi‘&'_ inhel‘itance and

the method with another version that takes a .

double, then you’ve made things easier for the PO]_YI‘]OI’PIIISM. An Overloaded

caller. You'll see more of this when we look into meﬂ‘lod 1S NOT ﬂle same as

constructors in the object lifecycle chapter.

Since an overloading method isn’t trying to an OveITldden meﬂl()d-

fulfill the polymorphism contract defined by its
superclass, overloaded methods have much more

flexibility.
@ The return types can be Legal examples of method
different. overloading:
You're free to change the return types in public class Overloads {
overloaded methods, as long as the argument lists
are different. String uniquelD;
@ You can’t change ONLY the public int addNums(int a, int b) {

return a + b;

return type.

If only the return type is different, it's not a

}

valid overload—the compiler will assume public double addNums(double a, double b) (
you're trying to override the method. And even return a + b;
that won't be legal unless the return type is }
a subtype of the return type declared in the
superclass. To overload a method, you MUST public void setUniqueID(String thelID) {
change the argument list, although you can // lots of validation code, and then:
change the return type to anything. uniqueID = thelID;
}

‘ You can vary the access public void setUniqueID(int ssNumber) {

levels in any direction. String numString = “” + ssNumber;

You're free to overload a method with a method) setUniquelD (numString) ;

that's more restrictive. It doesn't matter, since the
new method isn't obligated to fulfill the contract of
the overloaded method.

you are herey 191

exerclse: Mixed Messages

» A short Java program is listed below. One block of
MlXed s the program is missing! Your challenge Is to match
ag the candidate block of code (on the left), with the
Mess e output that you'd see if the block were fnserted.
Not all the lines of output wiil be used, and some of

Sé a = 6; 56 the lines of output might be used more than once.
b=35; 11 Draw lines connecting the candidate blocks of
a=5; 65 code with their matching command-line output.

the program:
class A { class C extends B {
int ivar = 7; void m3()
void ml(} { System.out.print(“C’s m3, “+(ivar + 6));
System,out.print(“a’s ml, *); }
} }
void m2() {
System.out.print(“A’s m2, *); public class Mixed2 {
} public static void main(String (] args) {
void m3() { A a = new A{);
System,out.print(“A’s m3, “); B b= new B();
} C c =new C();
) A a2 = new C(); candidate code
/ goes nere
1 B tends A
class B extends A { (three Iines)
void ml() (
System.out.print(“B‘s ml, *“);
} }
b }
code b.mi(); output:
. c.m2();
candidates: a_m();} Asml, A’s m2, C's w3, §
c.ml(); B’s mi, A’s m2, A's m3,
c.mZ();} A’s ml, B’s m2, A’s m3,
c.m3();
B’s ml, A’s m2, C's m3, 13
a.ml(); , , ,
b.m2();} B‘’s ml, C’s m2, A’'s m3,
c.m3(); B’s ml, B’a m2, C's m3, 6
az.ml(); A'’s ml, A’s m2, C’'s m3, 13
az.m2();
az.m3();

192 chapter?

inheritance and polymorphism

. BE the Compiler

Which of the A-B pairs of methods listed on the right, i
inserted into the classes on the left, would compile and
produce the output shown? (The A method inserted into
class Monster, the B method inserted into class Vampire.)

public class MonsterTestDrive { ,
boolean frighten(int d) {

. ; . . 1
public static void main(String (] args) { Q System.out.println(*arzrgh”);

Monster () ma = new Mongter[3]: return true:

ma[0] = new Vampire():; }
ma(l) = new Dragon(); boolean frighten({int x) {
ma[2) = new Monster(); e System.out.println(”a bite?”);
for(int x = 0; x < 3; x++) { return false;
ma[x).frighten(x); }
}
) 2 boolean frighten(int x) {
) o System.out.println{“arrrgh”);
return true;
¥
class Monster (int frighten(int f£) {

e Q System.out.println(“a bite?”);

return 1;

} }
class Vampire extends Monster { 3 boclean frightea(int x) {
System.out.println(”arrrgh”);
0 Q return false;
}
} boolean scare(int x) {

e System.out.println(“a bite?”);
clasg Dragon extends Monster (return true;

boolean frighten(int degree) (}

System.out.println(“breath fire”);

return true; 4 boolean frighten(int z) {

e System.out.println(*arrrgh”);

e E81 Window He SaveYoursed

return true;

% java MonsterTestDrive }

a bite? boolean frighten(byte b) (
breath fire e System.out.println(“a bite?”);
arrrgh return true;

you are herer 193

puzzie: Pool Puzzle

Pool Puzzle

Your Job is to take code snippets from the pool and place them into

the blank lines in the code.You may use the same snippet more
than once, and you might not need to use all the snippets. Your
goal is to make a set of classes that will compile and run together
as a program. Don’t be fooled - this one’s harder than it looks.

public class Rowboat { public class TestBoats {
public rowTheBoat () { main(String(] args)({
System.out.print(”“stroke natasha”); bl = new Boat();
} Sailboat b2 = new ();
} Rowboat = new Rowboat();
public¢ class {

b2.setLength(32);
private int

~a

R bl. ();
void (Y A b3. O
length = len; .move ()}
} }
public int getLength() { }
; public class Boat ({
) public 0 A
public move () < System.out.print{* ")
System.out.print(” ")i }
) }

D drift drift hoist sail

: = -
“Rowboat
Sallboat Subclasses

Boat Testboats extends drift
. int len "™ hoist sall
return stroke natasha rowTheBoat
continue . intlength siring move
b1 break int b1 int ba void i setLength
b2 fength Int b2 int statl publie
%3 e int b2 SPEC private getlength

194 chapter 7

inheritance and polymorphism

BE the Compiler

Set 1 will work.

Set 2 will not compile because of Vampire's return
type (int).

The Vampire's frighten() method (B) is not a legal
override OR overload of Monster's frighten() method.
Changing ONLY the return type is not enough

to make a valid overioad, and since an int is not
compatible with a boolean, the method is not a valid
overmide. (Remember, if you change ONLY the retum
type, it must be to a retumn type that ts compatible
with the superclass version's return type, and then it's
an override.

Sets 3 and 4 will compile, but produce:
arrrgh
breath fire

arrrgh

Remember, dass Vampire did not overnde class
Monster’s frighten() method. (The frighten() method
in Vampire's set 4 takes a byte, not an int.)

code
. b.ml(); output:
candidates: em2()) } p
a.m3();

\ A‘s ml, A‘'s m2, C’s m3, 6
Mix@d comif): B’s mi, A's m2, A’s m3,
c.m2(); } A‘s ml, B’8 m2, A’s m3,

P B’s ml, A’s m2, C’'s m3, 13

a.ml();

b.m2(); B‘s ml, C’s m2, A’'s m3,
c.m3();} B'’s ml, A’s m2, C’8 m3, 6
az.ml()s A’s ml, A’S m2, C’s m3, 13
a2.m2();

az.m3():;

you are here>» 195

puzzie answers

public class Rowboat extends Boat {

1
. 1 ' public void rowTheBoat() {
System.out.print (“stroke natasha”);

}
public class Boat {
private int Iength B
public void setlength (intlen) {
length = len;

}
public int getLength() {
return length ;

¥
public void move() {

System.out.print(«drift 7);

public class TestBoats {
public static void main(sString[] args){

Boat bl = new Boat();
Sailboat bz = new Sailboat();
Rowboat b3 = new Rowboat();
b2.setLength(32);
bl.move();
b3.move();
b2 .move();

}
public class Sailboat extends Boat {

public void move() {
System.out.print (~hoist sail 7);

CUILUHE drift drift hoist sail

196 chapter 7

