
9 constructors and garbage collection

...then he said,

~I can't feel my legs!" and

I said"Joel Stay with me J oelH

But it was... too late. The garbage...-~~ collector came and... he was gone.

-";<" '~_"\. Best object I ever had .

Life and Death
of an Object

Objects are born and objects die. You're in charge of an object's IIfecycie.

You decide when and how to construct It .You decide when to destroy It. Except you don't

actually destroy the object yourself, you simply abandon it. But once it 's abandoned, the

heartless Garbage Collector {gel can vaporize it, reclaiming the memory that object was

using . If you're gonna write Java,you're gonna create objects. Sooner or later, you're gonna

have to let some of them go, or risk running out of RAM. In this chapter we look at how objects

are created, where they live while they're alive, and how to keep or abandon them efficiently.

That means we'll talk about the heap, the stack, scope,constructors, super constructors, null

references, and more. Warning: this chapter contains material about object death that some

may flnd disturbing. Best not to get too attached.

th is is a ne w chapter 235

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

the stack and the heap

fhe Stack at1d the Heap: where thit1gs live

}

Before we can understand what really happens when
you create an object, we have to step back a bit, We
need to learn more about where everything lives
(and for how long) inJava. That means we need to

learn more about the Stack and the Heap. In java, we
(programmers) care about two areas of memory-the
one where objects live (the heap), and the one
where method invocations and local variables live
(the stack). When aJVM starts up. it gets a chunk of
memory from the underlying as, and uses it to run
your Java program. How mucl, memory. and whether
or not you can tweak it, is dependent on which
version of the JVM (and on which platform) you're

fhe Stack
Where method Invocat ions
and local variables live

Instance Variables

Instance variables are declared Inside a claSJ but not

Inside a method. They represent the "fields" that each

Individual object has (which can be filled with different

values for each Instance of the class). Instance variables

live InsIde the object they belong to.

public

int

}

236 chap te r 9

running. But usually you WO?I ', have anything to S2.y
about it, And with good programming. you probably
won't care (more on that a little later).

We know that all objects live on the garbage-collectible
heap. but we haven 't yet looked at where variables
live. And where a variable lives depends on what kind
of variable it is. And by "kind", we don't mean type
(i.e. primitive or object reference) . The two kinds of
variables whose lives we care about now are instance
variables and localvariables. Local variables are also
known as slackvariables, which is a big clue for where
they live.

fhe Heap
Where ALL objects live

Local Variables

Local variables are declared Inside a method, Including

method parameters, They're temporary,and live only as

long as the method is on the stack (in other words, as long as

the method has not reached the closing curly brace).

constructors and gc

Methods are stacked
A call stack with two methods

,UtI'- ~y~ ~,-i!!~~~
?l.........

boitor.. of -the statk

The method on the top of the
stack is always the currently­
executing method.

When you call a method, the method lands on
the top of a call stack. That new thing that's
actually pushed onto the stack is the stack
frame, and it holds the state of the method
including which line of code is executing, and
the values of all local variables.

The method at the top of the slack is always
the currently-running method for that stack
(for now, assume there's only one stack.but in
chapter 14 we'll add rnore.) A method stays on
the stack until the method hits its closing curly
brace (which means the method's done). If
method foo() calls method bar(), method bast) is
stacked on top of method foot).

public void doStuff() {
boolean b = true;
go(4);

public void go (int x)
int z = x + 24;
crazy();
/ / imagine more coda here

Astack scenario
The code on the left is a snippet (we don't care what the rest of the
class looks like) with three methods. The first method (drot-u.ff(» calls
the second method (go() , and the second method calls the third
(craz)'()). Each method declares one local variable within the body
of the method, and method goO also declares a parameter variable
(which means goO has two local variables).

public void crazy()
char c = 'a';

• Code from another
class calls doStuffO,
and doStuffO goes
into a stack frame
at the top of the
stack.The boolean
variable named 'b'
goes on the doStuffO
stack frame.

@ doStuffO calls goO,
goO is pushedon
top of the stack.
Variables 'x' and 'z'
are in the goO stack
frame.

@goO cells crozyO,
crozyQ is now on the
top of the stack,
with variable 'e' in
the frame.

@crazy()completes,
and its stack frame is
poppedoff the stack.
Execution goes back
to the goO method.
and picks up at the
line following the caU
to crazy().

you are here. 237

public void barf() {
Duck d '" Dew Duck (24) ;

public class StackRef
public void foof()

barf();

object references on the stack

What about local variables that are objects?
Remember, a non-primitive variable holds a reference to an
object, not the object itself. You already know where objects
live--on the heap. It doesn't matter where they're declared or
created. If the local variable is a reference to an object, only
the variable (the reference/remote control) goes on the stack. .,.t.....

The object itselfstillgoes in the heap. 0 t\a'C'es a~ t'"t.a~ ~si~t. \t: s
'oa~O e lJay·'i"o\t. rts a \ot.i\
t""IlIL~ ,"to~ tv"t.,.tl. e ",e\:.h00I

v 1 . ,.s\ot. .\)I ~t\L.
ot.i\ayt.o ' ov. ()YI -\:.'M

...."o\e 6,,0 ~'l4ayl..
~

Q: Onl!!more time, WHY are we learning the
whole stack/heap thing? How does this help me?
Do I really need to learn about It?

A.: Knowl ng the fu ndamenta Is of the Java
Stack and Heapis crucial If you wa nt to understa nd
variable scope, object creation Issues,memory
management, threads, and exception handling.
We cover threads and exception handling In later
chapters but the others you'll leam In this one. You
do not need to know anything about how the Stack
and Heap are Implemented in any particular JVM
and/or platform. Everything you need to know
about the Stack and Heap Is on this page and the
previous one. If you nail these pages, all the other
topics that depend on your knowing this stuff will
go much, much, much easier.Once again, some day
you will SOthank us for shoving Stacks and Heaps
down your throat.

238 chapter 9

~ Java has two areas ofmemory we care about
the Stack and the Heap.

~ Instance variables are variables declared
insIde aclass but outside any method.

~ Local variables are variables declared inside a
method ormethod parameter.

~ All local variables live on the stack, In the
frame corresponding to the method where the
variables are declared.

~ Object reference variables work. just like primi­
tive variables-if the reference isdeclared as a
local variable, it goes on the stack.

.. All objects live In the heap, regardless of
whether the reference isa local orInstance
variable.

If local variables live Ott the staek.
where do I"stattce variables live?..
When you say new Cellf'hone () ,Java has to make
space on the Heap for that CellPhone. But how much
space? Enough for the object, which means enough to
house all of the object'S instance variables. That's right,
instance variables live on the Heap, inside the object
they belong to.

Remember that the values of an object's instance
variables live inside the object. lithe instance variables
are all primitives, Java makes space for the instance
variables based on the primitive type. An int needs
32 bits, a long 64 bits, etc.java doesn't care about the
value inside primitive variables; the bit-size of an int
variable is the same (32 bits) whether the value of the
int is 32,000,000 or 32.

But what if the instance variables are objects? What if
CeliPhone HAS-AAntenna? In other words, CellPhone
has a reference variable of type Antenna.

When the new object has instance variables that are
object references rather than primitives, the real
question is: does the object need space for aU of
the objects it holds references to? The answer is, not
exQ.{;tly. No matter what,Java has to make space for the
instance variable values. But remember that a reference
variable value is not the whole object, but merely a remote
control to the object. So ifCellPhone has an instance
variable declared as the non-primitive type Antenna,
Java makes space within the CellPhone object only for
the Antenna's remote control (i.e. reference variable) but
not the Antenna object.

Well then when does the Antenna object get space on
the Heap? First we have to find out whim the Antenna
object itself is created. That depends on the instance
variable declaration. lithe instance variable is declared
but no object is assigned to it, then only the space for
the reference variable (the remote control) is created.

private Antenna ant;

No actual Antenna object is made on the heap unless
or until the reference variable is assigned a new
Antenna object.

private Antenna ant :: new Antenna () ;

constructors and gc

Objett wit.h two p-ri ...itive iJ\St..l"te \/al'"iablcs.
SpdU +~ the val'"iables lives i" the ~jed:,

Objttt wit.h l»\t)lOtl-rv-i...itive ir.st..lrltt lIariable­
a I'"tttr-tlIte to d" A"b,."a objett., blot. "0 olthadl
A"un'nd objtd~ This is \oIhat. yO'J. ~d, it YO4/.
detlal"'t t.he lIariable b...t. dOtl'i, initialiu it with
a" ad:lodl Anta.na objett.

public class CellPhone
private Antenna ant;

Objett. with Ol'le "or.-p-ri.... i-lille iJ\Stal">tt lIariable,
and tht A"~,,a IIdr-iable is as.si~"ed a l\tw

A"u",."a objet+"

public class CellPhone (
private Antenna ant = new Antenna (l ;

you are here ~ 239

object creation

fhe tttiracle of object creatlott
Now that you know where variables and objects live, we can dive into
the mysterious world of object creation. Remember the three steps
of object declaration and assignment: declare a reference variable,
create an object, and assign the object to the reference.

But until now, step two--where a miracle occurs and the new object
is "boron-has remained a Big Mystery. Prepare to learn the facts of
object life. Hope you're not squeamish.

Review the 3 steps of object
declaration, creation and assignment:

O Declare a reference
variable

Duck myDuck = new Duck () :

e Create an object

. ~t.\t. ~ Duck myDuck = new Duck () ;
~ yV\\V' gI e
ot.t.v.V'~ "tv' .

e Link the object and
the reference

Duck myDuck @)new Duck () ; _ --rWL

Duck reference

240 chapter 9

Are we calling a method named DuckO?
Because it sure looks like it.

Duck myDuck =

No.

We're calling the Duck constructor.

constructors and gc

A constructor does look and feel a lot like a method, but it's not
a method. It's got the code that runs when you say new. In other
words, the code that runs when you instantiate an object.

The only way to invoke a constructor is with the keyword new
followed by the class name, ThejVM finds that class and invokes
the constructor in that class. (OK, technically this isn't the only
way to invoke a constructor, But it's the only way to do it from
outsidea constructor. You ca'ncall a constructor from within
another constructor, with restrictions, but we'll get into all that
later in the chapter.)

But where Is the constructor?

If we didn't write It, who did?

You can write a constructor for your class (we're about to do
that), but ifyou don't, the compilerwrites one for you!

Here's what the compiler's default constructor looks like:

public Duck () {

}

Notice something missing? How Is this ~

different from a method? 1. e 'IS~t sa",t as 1t~'-I
Iv I'd'" T\\ats ,..a"da\,Pl ,.

~ t.\ass y,d",t·

~Duck() (
~trejs the retllm t / / constructor code goes here
I this Wtre a 1, ype?)

j rheOlod
you d heed d 'ret t j

betweeh l'PlI.b/' ,, "
m

yPe
llDlAlkO", It. arid

you are here. 241

constructing a new Duck

The constructor gives
you a chance to step into
the middle of new.

public Duck () {
System.out.println("Quack~) ;

public class Duck {

The key feature of a constructor is that it runs
before the object can be assigned to a reference.
That means you get a chance to step in and
do things to get me object ready for use. In
other words, before anyone can use the remote
contra] for an object, the object has a chance to
help construct itself In our Duck constructor,
we're not doing anything useful, but it still
demonstrates the sequence of events.

CottStruct a Puck

}

public class UseADuck {

public static void main (String[] args) {
Duck d = new Duck() ;

f-- !h;s ~lJs in D
(.orutr-lAl!or. t: lI.lk

~

% java UseADuck

Quack

A constructor lets you Jump Into the middle

of the object creation step-into the middle

of new. Can you imagine conditions where

that would be useful? Which of these might

be usefulin a Carclassconstructor, if the Car

is part of a Racing Game?Check off the ones

that you came up with a scenario for.

o Increment acounter to track how many objects ofthis class type
have been made.

o Assign runtime-specific state (data about what's happening NOW).
o Assign values tothe object's important instance variables.
o Get and save areference 10 Ihe object that's creating the new object.

o Add the object to an ArrayList.
o Create HAS-A objects.
o (your idea here)

242 chapter 9

}

Initializing the state of anew Puck
Most people use constructors to initialize the state of an object.
In other words, to make and assign values to the object's
instance variables.

public Duck () {
size = 34;

}

That's all well and good when the Duck class developer knows
how big the Duck object should be. But what ifwe want the
programmer who is using Duck to decide how big a particular
Duck should be?

Imagine the Duck has a size instance variable, and you want the
programmer using your Duck class to set the size of the new
Duck. How could you do it?

Well, you could add a setSize() setter method to the class. But
that leaves the Duck temporarily without a size*, and forces the
Duck user to write twostatements-one to create the Duck, and
one to call the setSize () method. The code below uses a setter
method to set the initial size of the new Duck.

public class Duck {
int size; 'f-- iY\Sta\'lt..e ~aYiah\e

public Duck() {
System. out.println ("Quack") ; 'f-- t.oY\ShvLto'r

}

public void setSize (int newSize) { ~ set..t,eY ",et.'nod
size = newSize;

}

}

public class UseADuck {

public static void main (String[] args){
Duck d = new Duck () ; T

t--... i ~~r~'~ a bad thih h
d. setSize (42) ; Ah~ iPO/ht ;1'1 ih~ l~ ~b~'iThe DlAtk is aI'

1'1 hel'l "OlA' I~' lA with t /V~ ai
to KNOW ~hatD~ yihS 01'1 ih~ D:t aSi~!*,
protess: Ol'le i lAtk lr~atioh is k-fAS~r
to tall th~ Stt1~all ih~ tohSirlAtkiwo-pari

Ul-. ahd Oh~
*Instance variables do have a default value. 0 or
0.0 for numeric primitives, false for booleans, and
null for references.

constructors and gc

there]lU'H?
Dumo ~uest19ns

Q.: Whydo you need to write
a constructor if the compiler
writes one for you?

A: If you need code to help
initialize your object and get
it ready for use,you'll have to
write your own constructor. You
might, for example, be depen­
dent on input from the user
before you can finish making
the object ready.There's another
reason you might have to write
a constructor, even if you don't
need any constructor code
yourself. It has to do with your
superclass constructor, and we'll
talk about that in a few minutes.

Q.: How can you tell a con­
structor from a method? Can
you also have a method that's
the same name as the class?

A: Java lets you declare a
method with the same name as
your class. That doesn't make it
a constructor, though.The thing
that separates a method from a
constructor is the return type.
Methods must have a return
type, but constructors cannot
have a return type.

0: Are constructors inher­
it~(h Ifyou don't provide a
constructor but your superclass
does, do you get the superclass
constructor instead of the
default?

A.: Nope. Constructors are
not inherited. We'll look at that in
just a few pages.

you are here), 243

initializing object state

o

Let the user make a new Duck
and set the Duck's size all in

one call. The call to new.
The call to the Duck

constructor.

size = duckSize;

\:.0 ~t
\,,~ ~a'<3""~t'!

public class Duck { fl\4~ 0.... 1cc~Jv:i'f'

int size; ~ \)uL~ !,o~

public Duck(int duckSize) (
System.out.println("Quack"); L lw: -to~

l,(~ the ar~Uft\~~ va
~ the siz.e i"s!:.a"te variable.

Ushtg the eenstruetor to it1itialize
itMportat1t Pock state"
If an object shouldn't be used until one or
more parts of its state (instance variables) have
been initialized, don 't let anyone get ahold of
a Duck object until you're finished initializing!
It's usually way too risky to let someone make­
and get a reference to-a new Duck object that
isn 't quite ready for use until that someone rums
around and calls the setSize() method. How will
the Duck-user even know that he's required to call
the setter method after making the new Duck?

The best place to put initialization code is in the
constructor. And all you need to do is make a
constructor with arguments.

System.out.println("size is " + size);

}

public class UseADuck {

"NOIIO Imply thai not all Duck state Is nol unlmportanL

244 chapte r 9

Make it easy to",ake a Pucle
Je sure you have a tlo..arg cOtldructor

What happens if the Duck constructor takes an argument?
Think about it. On the previous page, there's only oneDuck
constructor-and it takes an int argument for the sizeof the
Duck. That might not be a big problem, but it does make it
harder for a programmer to create a new Duck object, especially
if the programmer doesn't knot» what the size of a Duck should
be. Wouldn't it be helpful to have a default size for a Duck, so
that if the user doesn't know an appropriate size, he can still
make a Duck that works?

Imagine that you want Duck users to have TWO optlons
for making a Duck-one where they supply the Duck
size (as the constructor argument) and one where they
don't specify a size and thus get your default Duck size.

•
You can't do this cleanly with just a single constructor.
Remember. if a method (or constructor-s-same rules) has
a parameter, you must pass an appropriate argument when
you invoke that method or constructor. You can't just say, "If
someone doesn't pass anything to the constructor, then use
the default size", because they won't even be able to compile
without sending an int argument to the constructor call. You
could do something c1unkly like this:

'p ubl i c class Duck
int size;

But that means the programmer making a new Duck object has
to knou: that passing a "0" is the protocol for getting the default
Duck size. Pretty ugly. What if the other programmer doesn't
know that? Or what if he really does want a zero-size Duck?
(Assuming a zero-sized Duck is allowed . lfyou don 't want
zero-sized Duck objects, put validation code in the constructor
to prevent it.) The point is, it might not always be possible
to distinguish between a genuine "I want zero for the size"
constructor argument and a "I'm sending zero so you'll give
me the default size, whatever that is" constructor argument.

constructors and gc

You really want TWO ways to
make a new Duck:

public class Duck2
int size;

public Duck.2 () (
II supply default size
size;; 27;

public Duck2 (int dUckSize) (
/ / uae duckSiz8 parameter
size'" duckSize;

To make a Duck when you know the sIze:

Duak2 d;; new Duck2(15):

To make a Duck when you do not know
the size:

Duck.2 d2 "" new Duck2 () ;

So this two-optlons-to-make-a-Duck Idea
needs two constructors. One that takes
an Int and one that doesn't. Ifyou haw
mor« than one constructor In a dau,
It means you have overloaded
constructors.

you are here ~ 245

overloaded and default constructors

Poes""t the cotMpiler always
",ake a "o-arg eonstrueter
foryou? ~I,

You might think that if you write only
a constructor with arguments, the
compiler will see that you don't have a
no-arg constructor, and stick one in for
you. But that's not how it works. The
compiler gets involved with constructor­
making only ifyou don't sayanything at all
about constructors.

If you write a constructor that
takes arguments, and you stili
want a no-arg constructor,
you'll have to build the no-arg
constructor yourself!

As soon as you provide a constructor,
ANY kind of constructor, the compiler
backs off and says, "OK Buddy, looks like
you 're in charge of constructors now,"

If you have more than one
constructor In a class, the
constructors MUST have
different argument lists.

The argument list includes the order
and types of the arguments. As long as
they're different, you can have more
than one constructor. You can do this
with methods as well, but we'll get to that
in another chapter.

246 chapter 9

constructors and gc

Overloaded constructors means you have
more than one constructor in your class.

To compile, each constructor must have a
dlffersnt argument IIstl

The class below is legal because all four constructors have
different argument lists. lfyou had two constructors that took
only an int, for example, the class wouldn't compile. What you
name the parameter variable doesn't count. It's the variable
type (int, Dog, etc.) and order that matters. You can have two
constructors that have identical types, as long as the order is
different. A constructor that takes a String followed by an int, is
not the same as one that takes an int followed by a String.

kr..ow th~ S'IU, Dlo-t ~Q\i.
pub l i c class Mushroom { . whc" 'jo'J. .r .L' ,.,.al:lit

~ dOWl'-t kF>Ow i-t 'n. s ;)

public Mushroom (int size) { } u-\.\.... ~
~ htJI 'fC)U. dor-.'t. kno-.l 6Y11""'"

public Mushroom () {. W k i-t it's ,.,.a~It. (Jr Y\O-I:.
~ wMl\ '1~tk t\l~ siu

public: Mushroom (boolean isMaqic) (. D\,I.-t dOWl nOW

f
p ubl1C: Mushroom (boolean isMaqic, int size) }~~~ its

:~it., AND 'f$ \{,.O'<l
public Mushroom (int size, boolean isMaqic) • thC siu. as well

~ Instance variables live within the object they belong to, on ~ Ifyou want ano-arg consructor and you've already put
the Heap. inaconstructor with arguments, you'll have to build the

~ Ifthe instance variable isareference to an object, both no-arg constructor yourself.

the reference and the object it refers toare on the Heap. ~ Always provide a no-arg constructor if you can, tomake It

~ Aconstructor isthe code that runs when you say new on easy for programmers tomake aworking object Supply

aclass type. default values.

~ Aconstructor must have the same name as the class, and ~ Overloaded constructors means you have more than one

must nothave a return type. constructor inyour class.

~ You can use aconstructor toInitialize the state (Le. the .. Overloaded constructors must have different argument

instance variables) ofthe object being constructed. lists.

~ Ifyou don't put aconstructor inyour class, the compiler ~ You cannot have two constructors with the same

will put In adefault consnuctor. argument lists. AIl argument list Includes the order and/or
type ofarguments.

~ The default constructor isalways a no-arg constructor.
Instance variables are assigned adefault value, even

Ifyou put a constructor~ny conslructor-in your class, ~
~ when you don't explicitly assign one. The default values

the compiler will not build the default constructor. are DID.Olfalse for primitives, and null for references.

you are here ~ 247

..
overloaded constructors

d[O] = new Duck():

class Duck {

public static void main(String[] args) (

public Duck(boolean fly) {
canFly = fly;
System .out .printin("type 2 duck"):

public Duck(String n, long[] ~) (
name = n:
feathers = f;
Syst&m.out.printin("type 3 duck"):

public Duck () (
System.out.printin("type 1 duck");

int pounds = 6;
floa t floa tabili ty = 2 . IF ;
String name = "Generic";
long[] feathers = {l,2,3,4,S,6,7};
boolean canFly = true:
int maxSpeed = 25;

public class TestDuck {

Match the new Duck () call with the constructor

that runs when that Duck is instantiated . We did

the easy one to get you started .

int weight = 8;
float density = 2. 3F;
String n8I118 = "Donald";
lonq[) feathers = {l,2,3,4,5,6}:
boolean canFly = true:
int airspeed = 22:

Duck [] d = new

d[l] new Duck(density, weight);

d[2] = new Duck(name, feathers):

d[3] = new Duck(canFly);

d[4] new Duck(3.3F, airspeed):

d[S] = new Duck(false);

d[6] = new Duck (airspeed, density);

public Duck(int w, float f)
pounds = w;
floatability = f;
SysteJn.out .println("type 4 duck"):

public Duck (float density, int IIIAX) {
floatability = density:
maxSpeed = max;
SysteJn.out.println("type 5 duck") ;

Q.: Earlier you said that It's good to have a no-argu­
ment constructor 50 that if people call the no-arg con­
structor, we can supply default values for the "mlsslngn

arguments. But aren't there times when It's Impossible to
come up with defaults? Are there times when you should
not have a no-arg constructor In your class?

.A..: You're right. There are times when a no-arg construc­
tor doesn't make sense.You'll see this in the Java API-some
classes don't have a no-arg constructor. The Color class, for
example, represents a...color. Color objects are used to, for
example, set or change the color of a screen font or GUI
button .When you make a Color Instance, that instance Is
of a particular color (you know, Death-by-Chocolate Brown,
Blue-Screen-of-Death Blue, Scandalous Red,etc .), If you
make a Color object you must specify the color In some way.

Color c; new Color(3,45,200);

(We're using three Ints for RGB values here .We'll get into
using Color later, in the Swing chapters.) Otherwise, what
would you get? The Java API programmers could have de­
cided that if you call a no-arg Color constructor you'll get a
lovely shade of mauve. But good taste prevailed.
If you try to make a Color without supplying an argument:

Color c; new Color();

The compiler freaks out because It can't find a matching 00­

arg constructor in the Color class.

248 chapter 9

Nattoreview: four thittQs to
relHelHber about eonstrueters

DoIng all the Brain Barbells has been shown 10oreduce a 42% increase in
neuron size. And you know what they say, "8lg neurons.. '-

•
•

•

•

A constructor is the code that runs when
somebody srrys new on a class type

Duck d = new Duck() ;

A constructor must have the same nome
as the class , and no return type

public Duck(int size) { }

If you don't put a constructor in your class,
the compiler puts in a default constructor.
The default constructor is alwrrys a no-arg
constructor.

public Duck () { }

You can have more than one constructor in your class,
as long as the argument lists are different. Having
more than one constructor in a class means you have
overloaded constructors.

public Duck () {

public Duck(int size) { }

public Duck(String name)

public Duck (String name, int size) { }

constructors and gc

What about 5uperclasses?

When you make a Dog,
should the Canine
construdor run too?

Ifthe superclass is abstract,.
should it even have a
construdor?

We'll look at this on the next
few pages, sostopnow and
think about the implicationsof
constructors and superclasses.

dfim~~esti9ns
Q.: Do constructors have to be public?

A: No. Constructors ca n be public,
private, or default (which means no access
modifier at all).We'll look more at default
access in chapter 16 and appendix B.

Q.: How could a private constructor
ever be useful? Nobody could ever call It,
so nobody could ever make a new objectl

A..: But that's not exactly right. Marking
something private doesn't mean nobody
can access It, it Just means that nobody
outside the class can access it. Bet you 're
thinking "Catch 22': Only code from the
same class as the class -witb -private-con­
structor can make a new object from that
class , but without first mak ing an object,
how do you ever get to run code from that
class in the first place7 How do you ever get
to anything in that class? Patience grasshop­
per. We'll get there in the next chapter.

you are here ~ 249

space for an object's superclass parts

Waif a tMI"ute... we "ever UIP talk about
superclasses and htherita"ce and how that all
fits I" with constructors.
Here's where it gets fun. Remember from the last chapter, the part where we looked at
the Snowboard object wrapping around an inner core representing the Object portion
of the Snowboard class? The Big Point there was that every object holds not just its oum
declared instance variables, but also roerythingjrom its superclasses (which, at a minimum,
means class Object, since every class extends Object) .

Sowhen an object is created (because somebody said new; there is no other way to create
an object other than someone, somewhere saying new on the class type), the object
gets space for all the instance variables. from all the way up the inheritance tree. Think
about it for a moment... a superclass might have setter methods encapsulating a private
variable. But that variable has to live somewhere. When an object is created, it's almost as
though multipleobjects materialize-the object being new'd and one object per each
superclass. Conceptually, though, it's much better to think of it like the picture below,
where the object being created has layers of itself representing each superclass,

Asi~le

objet+' Oft

the heay
Objett has IPlStar.tt varidbl~

trlUpslAlclUd by atuss ",ethods.
no~ il'lStal'lU Vc1\"'ic1bl~ c1ye
t\"'e..1~d when any 5lAbt.lass is

iPlStantiaUd. (nest a.,.t;n't f.ht
REAL Objttt va\"'idbl~, but we
donIt ta.,.e what tht'f dl"'t sil'lU
they're eY>tc1ps-Jaud)

Sroowboard also has ir-sidntt
variables 0+ its 0WJ\j so 1:.0 ...ake
a Snowboard objett wt ""eed
5yc1tt .for the instante variables
0+ both classes.-

Object

Foo 8;

Intb:

Inlc;

&qualsO
gelClassO
hashCodeo
IoStringQ

T
Snowboard

Foox
Fooy
Inlz

lumO
shradO
geWrQ
loseConlrolO

Thert is only ON~ objett 0"" the he.ly htye. A
Snowboard objett. Bt..t it t.ontail'lS both the
Sl"oowboard fdrt.s of ihtl.f and the .Q!.iet.t Yc1rt.s o.f
itself 1\11 il'lStar.te vc1l"'iables ~YOtll both dassts have
to be nC\"e.

250 chapter 9

fhe role of superclass ecastrueters
itt att obJecfs life.

All theconstructors in an object's inheritance
tree must run when you make a new object.

Let that sink in .

That means every superclass has a constructor
(because every class has a constructor), and each
constructor up the hierarchy runs at the time an
object of a subclass is created.

Saying new is a Big Deal. It starts the
whole constructor chain reaction. And yes,
even abstract classes have constructors.
Although you can never say new on an
abstract class, an abstract class is still
a superclass, so its constructor runs
when someone makes an instance of a
concrete subclass.

The super constructors run to build
out the superclass parts of the object.
Remember, a subclass might inherit
methods that depend on superclass state
(in other words, the value of instance variables
in the superdass). For an object to be fully­
formed, all the superclass parts of itself must be
fully-formed, and that's why the super constructor
must run. All instance variables from every class
in the inheritance tree have to be declared and
initialized. Even if Animal has instance variables
that Hippo doesn't inherit (if the variables are
private, for example), the Hippo still depends on
the Animal methods that use those variables.

When a constructor runs, it immediately calls its
superclass constructor, all the way lip the chain
until you get to the class Object constructor,

On the next few pages, you'll learn how superclass
constructors are called, and how you can call
them yourself. You'U also learn what to do if your
superclass constructor has arguments!

constructors and gc

Oblect

I"
AnImal

-~f

HIDDO

A new Hippo object also IS-A Animal
and IS-A Object. If you want to make a
Hippo, you must also make the Animal
and Object parts of the Hippo.

This all happens In a process called
Constructor Chaining.

you are here. 251

object construction

Maklt1Q a Hippo ttteat1s tMakit1Q the
At1hMal at1d Object parts too...

What's the real output? Given the
code on the left , what prints out
when you run TestHippo? A or 87

(the answer Is at the bottom of the page)
public class Animal {

public AnimAl () (
System.out.p1:'intln("Maldllg an Animal");

public class Hippo axtands Animal (
public Hippo () {

System.out.printin("Making a Bippo H) ;

public class T8StBippo {
public static void main (String[] args)

System. out .p r i n tln ("Starting . .. ") ;
Hippo h .. new Hippo () ;

A

B

~

% java TestHippo

Starting ...

Making an Animal

Making a Hippo

~

% java TestHippo

Starting . . .

Making a Hippo

Making an Animal

• Code from another
class says new
Hippo () and the
HlppoQ constructor
goes into a stack
frame at the top of
the stack.

... Hlp~ invokes
the superclass
constructor which
pushes the AnlrnalO
constructor onto the
top of the stock.

• AnlmolO invokes
the superclass
constructor which
pushes the Object()
constructor onto
the top of the stock.
since Object is the
supercloss of Animal.

@ ObjectO completes,
and its stack frame
is poppedoff the
stock. Execution goes
back to the AnlmolO
constructor, and
picks up at the line
following Animal's
call to its supercloss
constructor

252 chapter 9

lSJys94SlUij 19~1 JOPnJlsuCl:llewlUV' 91.11 S.l1
lnq ' ISJ~ pe~O!IU! &1 JOlOfIJlSUOO Oodd!H e41 'd 'eueISJ~ 9lU

How do you lnveke a superclass cOMstructot1

You might think that somewhere in, say,a Duck constructor,
if Duck extends Animal you'd call Anirnalj). But that's not
how it works:

public class Duck exttmds Animal {

int size;

public Duck(int newSize) {

1(,~t>~ --4- Animal () i ~ NOI ti: .
size = newSize; . hl~ 's lIot Ie II

} ~.

}

The only way to call a super constructor is by calling superi),
That's right-super() calls the super consIn.tctor.

What are the odds?

public class Duck extends Animal {

int size;

public Duck(int newSize) {

constructors and gc

And how is it that we've
gotten away without
doing it?

You probably figured that out,

Our good friend the compiler
puts in a call to super() If you
don't.
So the complier gets involved in
constructor-making in two ways:

<D If you don't provide a constructor
The complier puts one in that looks like:

public ClassName()

super () ;

super (); ~(-~

size = newSize;

® I' you do provide a constructor
but you do not put in the call to
superl)

A call to suPer() in your constructor puts the superclass
constructor on the top of the Stack, And what do you
think that superclass constructor does? Calls its superclass
constructor. And so it goes until the Object constructor is
on the top of the Stack, Once Object() finishes, it's popped
off the Stack and the next thing down the Stack (the
subclass constructor that called Objul(») is now on top.
That constructor finishes and so it goes until the original
constructor is on the top of the Stack, where it can now
finish,

The compiler will put a call to supert) in
each of your overloaded constructors."
The complier-supplied call looks like:

super();

It always looks like that. The compiler­
Inserted (all to supert) Is always a no-arg
call. If the superclass has overloaded
constructors, only the no-arg one is called.

'Unless the conslructor calls another overloaded
constructor (you'll see thai ina few pages).

you are here ~ 253

object lifecycle

Catt the child exist before
the parents?
If you think of a superclass as the parent to the subclass child,
you can figure out which has to exist first, The superdass parts
ofan object have to beJUUy-jormed (completely built) btfore the
subclass parts can be constructed. Remember,
the subclass object might depend on things it
inherits from the superclass, so it's important
that those inherited things be finished. No
way around it. The superc1ass constructor
must finish before its subclass constructor,

Look at the Stack series on page 248 again,
and you can see that while the Hippo
constructor is the first to be invoked (it's
the first thing on the Stack), it's the last one
to complete I Each subclass constructor
immediately invokes its own superclass
constructor, until the Object constructor
is on the top of the Stack, Then Object 's
constructor completes and we bounce
back down the Stack to Animal's
constructor. Only after Animal's constructor completes
do we finally come back down to finish the rest of the Hippo
constructor. For that reason :

The call to superO must be the first statement
In each eenetrueterr'

Possible constructors for class Boop

o public Boop () {

super () ;

0' public Boop (int i) (

sup&r() ;

size = i ;

}

"There's an exception to this rule:you'lileam It on page 252.

254 chapter 9

o public Boap () (

I

0' public Boop (int i)

size '" i; f-~--

o public Boop (int i) (BAD!! Thi5 '

/'

VOlt 'f. '4'otl t lOll,l>'jsize = i; .1, t-ill txp/·(; '.l' [It.
U1~ ~II to I 'T.Jy pc-I:

super () ; ClllythiM I lIoP~) belo'o.l
.J e 5e.

Superclass eoastrueters with argUtMettfs
What if the superclass constructor has arguments? Can you pass something in to
the super() call? Of course. Ifyou couldn't. you'd never be able to extend a class
that didn 't have a no-arg constructor, Imagine this scenario: all animals have a
name. There's a gelName() method in class Animal that returns the value of the
name instance variable. The instance variable is marked private, but the subclass
(in this case, Hippo) inherits the getName() method. So here's the problem:
Hippo has a getName() method (through inheritance), but does not have the name
instance variable. Hippo has to depend on the Animal part of himself to keep the
name instance variable, and return it when someone calls geLNa1T/~() on a Hippo
object. But ... how does the Animal part get the name? The only reference Hippo
has to the Animal part of himself is through supert), so that's the place where
Hippo sends the Hippo's name up to the Animal pan of himself, so that the
Animal part can store it in the private n~me instance variable.

public abstract class Animal {

private String name; ~ All al'li",als (i"dwii,,~
slobdas.ses) hall' a "a",e

public String getName () (~~ 9~k "'rl::~od

return name; Illppo illherib ihai

constructors and gc

Animal

private String name

Animal(StTing n)

String getNameO

T
Hippo

Hlppo(String n)

[other Hippo-spe-
cificmethods]

public class Rippo extends Animal (

public Animal(String

name = theName;

public class MakeHippo (

public static void main(StJ:ing[] args) (NJake d Ili
Hippo h = new Bippo("Buffy"); ~ Il<lrnt "BI.I(ly~: f:SS;"9 t~e

to~i.,. f..ot. the Illppo
System. out. println (h. getName ()) ; Hip I ~ • The,. tall f.h

C" _ po 5 'hht:rj~d Lvt e
\~ gel:./¥a'fte()

~

%j a v a MakeHippo

Buffy

you are here. 255

calling overloaded constructors

lt1vokh,g Ot1e overloaded cot1structor
fro", at10ther

-
constructor.

1\. constructor can \\ave a

catt to sUfel'O ott thisO,

llut nevel' \loth!

Tl,e caU to this\)
can be used only in a
condl'ueto1', and must he
the tirst statement in a

Use this\) to catt a-constructor trom another
o-vertoaded constructor in

tl,e saute ctass.

What ifyou have overloaded constructors that, with
the exception of handling different a.Tg1l!l1ent types,
all do the same thing? You know that you don 't want
duplicate code sitting in each of the constructors (pain
to maintain, etc.), so you'd like to put the bulk of the
constructor code (including the call to super()) in only
om of the overloaded constructors. You want whichever
constructor is first invoked to call The Real Constructor
and let The Real Constructor finish thejob of
construction. It's simple: just say this(). Or this(aString).
Or this(27, x). In other words. just imagine that the
keyword this is a reference to the current object

You can say thist) only within a constructor. and it must
be the first statement in the constructor!

But that's a problem. isn't it? Earlier we said that
super() must be the first statement in the constructor.
Well, that means you get a choice.

Every constructor can have a call to super()
or thlsO, but never bothl

class Mini extends Car (

Color color ; n, YIO-ay~ t.o\'\Stvl>Lttx d
lies a d'~ il",lt. ColO'/" d"

public Mini () { ~s tnt ol/CY'\oadtd Real
this (Color. Red) ; {----'" Col\3.~-\:.O'I" (~t OJIt that

) taIls SIIYcY(»'

public Mini (Color c)
8uper("Mini"); l-(----..
color = c;
JJ more ini tialization

public Mini (int size) (
thi5(COIor.Re~) ;~

super (size);~ WOl'l'i '4IO\"'k.!! eall'i have r
slJ.rcy() a"d thisO ;1'1 the sa...e
lOl'l5tn.tt:or, bel41/.U they cad
....lUt be the +il"'St stau....ent.

256 chapter 9

•

~ YOIJr pencil

Some of the constructors In the SonOOoo class will not

compile. See ifyou can recogn lze which constructors are

not legal. Match the compiler errors with the SonOfBoo

constructors that caused them, by drawing a Iine from the

compiler error to the "bad" constructor.

public class Boo (

public Boo(int i) I ~

public Boo (String s) (

public Boo(Strlng 8, int i) { }

class SonOfBoo ext:4ilnds Boo (

public SonOfBoo()
super ("boo") ;

public SonOfBoo(int i) (
super ("Fred") ;

public SonOfBoo(Strinq s) {
supar(42);

public SonOfBoo(int i, String s) {
}

public SonOfBoo(Strinq 8. String b, String c) (
8upar(a,b);

public SonOfBoo(int i, lnt j) (
supar("man", j);

public SonOfBoo(int i, int x, lnt y) {
super(i, "star");

constructors and gc

I

I Malee i-/; Siitle
I Roses Ore red. v

You,pa,en~Ci'Iolets areblue.
Th omen,s, It':

, e superc/ass r ay befo,eyou
I formed b ~ parts of an ob ' .
, elOTe th lJectmu

exist. Just I'k e new sUbc/as sr be fU/ly_
been b I e there's no w s Object can

Orn before You ayYou could h
r parents. ave

you are here . 257

public void sleep()
s = 7;
J<::- ~-tP\ \\ \-lat, \c.oj
~f\~ .; 1It:<"t.\.
1Pt$

object li fespan

Now we know how an object Is boyn,
but how IOt1g does an object live?
An object's life depends entirely on the life of references
referring to it- If the reference is considered "alive", the
object is still alive on the Heap. If the reference d.ies
(and we'll look at what that means injust a moment) . the
object wiU die .

So if an object's life depends on the reference
variable's life, how long does a variable live?
That depends on whether the variable is a localvariable
or an instancevariable. The code below shows the life ofa
local variable. In the example, the variable is a primitive.
but variable lifetime is the same whether it's a primitive
or reference variable.

public class TeatLifeOne

public void read() {
r ,

int s '" 42; ~(__-- .s ;s oSlo
sleep () ; ""rl:.hoc/ ped to th

d ' So if. td ,i "'eddO
PlYWh&e else ~ (; be ~d

{

258 hapter 9

~ A local variable lives only
within the method that
declared the variable.
public void read() (

int s = 42;
II's' can be used. on.1y
II within th.is method.
II When this mathod ends,
II's' disappeaLs completely.

Variable 's' can be used only within the
readO method. In other words. the variable
Is In scope only withIn Its own method. No
other code In the class (or any other class)
can see's'.

• An instance variable lives
as long as the object
does. If the object is still
alive, so are its instance
variables.

public class Life (
int size;

public void setSize(int s)
size = s;
II's' disappears at the
/ I end of this method,
II but 'size ' can be used
II anywhere in the class

Variable ' 5' (this time a method parameter)
Is In scope only within the setSize()
method. But instance variable size is
scoped to the life of the object as opposed
to the life of the method.

The difference between life and
scope for local variables:

Life

A local variable is alioeas long as its Stack
frame is on the Stack. In other words,
until the method. completes.

Scope

A local variable is in scope only within the
method in which the variable was declared.
When its own method calls another, the
variable is alive, but not in scope until its
method resumes. You can use a variable only
when it is in scope.

constructors and gc

public void doStuff(}
boolean b "" true;
go (4) ;

}

publio void go(int x) {
int z .. x + 24;
crazy() ;
/ / imagine more code here

public void crazy()
char c III 'a';

While a local variable is alive, its state persists.
As long as method doStuffO is on the Stack, for
example, the 'b' variable keeps its value. But the
'b' variable can be used only while doStuffO's
Stack frame is at the top. In other words, you can
use a local variable onlywhile that local variable's
method is actually running (as opposed to
waiting for higher Stack frames to complete).

o doStuff() goes onthe
stack. Variable 'b' is
alive andInscope.

o goO plops ontop of
theStack. 'x' and't
arealiveand in scope,
and 'b' Isalivebutnof
in scope.

e crazyO Is pushed onto
theStack, with 'c' now
alive andInscope. The
otherthree variables
arealivebutoutof
scope.

o CfilZ'/O completes and
Is popped off theStack,
so '(j is out of scope
anddead, When goO
resumes where It left
off, 'x' and 'z' are both
aliveand back In scope.
Variable 'b' 16 stili alive
butout of scope (until
goO completes).

you are here ~ 259

object lifecycle

What about referettce variables?
The rules are the same for primtives and references. A reference
variable can be used only when it's in scope. which means you can't use
an object's remote control unless you've got a reference variable that's
in scope. The Teal question is,

"How does variable life affect object life?"
An object is alive as long as there are live references to it, If a reference
variable goes out of scope but is still alive, the object it refers to is still
alive on the Heap. And then you have to ask... "What happens when the
Stack frame holding the reference gets popped off the Stack at the end
of the method?"

If that was the only live reference to the object, the object is now
abandoned on the Heap. The reference variable disintegrated with
the Stack frame, so the abandoned object is now, officially, toast. The
trick is to know the point at which an object becomes eligibleforgarbage
collection:

Once an object is eligible for garbage collection (Ge), you don't have
to worry about reclaiming the memory that object was using. Ifyour
program gets low on memory, GC will destroy some or all of the eligible
objects, to keep you from running out of RAM. You can still run out of
memory, but not before all eligible objects have been hauled off to the
dump. Your job is to make sure that you abandon objects (i.e, make
them eligible for GC) when you're done with them, so that the garbage
collector has something to reclaim. lfyou hang on to objects, GC can't
help you and you run the risk ofyour program dying a painful
out-of-memory death.

Anobject's life has no
value. no meaning. no
rem. unless aomebody
has a reference to it.

n you can't get to it.
you can't ask it to do
anything and it's jUst a
big fat waste of bit&.

But i' anobject is
unreachable. the
GarbageCoUet:t« will
f1gure that out.. Sooner
or later. thatobject'8
gom'down..

An object becomes
eligible for GC when
its last live reference
disappears.

260 chapter 9

Three ways to get rid of an object's reference:

G) The reference goes out of scope, permanently L
, , dies a~

void go () { ~t~t:YtrLt z.
} Life z = new Life () ;~ e.-4 J ",dhod

® The reference is assigned another object . ha.-4~
~ ~ o'o~el.t. ,s 0 , -to

Life z = new Life (); , / the ~;y-S, _YO",,,,e&
z '" new Life () ; ~ "'''''' z.;1 yeyY-;,

a TIt'" o\:>jtt.t..

'3' The reference is explicitly set to null L' "L~~ed
\:!,J ~ t.do" tt.'{. \1 .. (1<1 I

Life z '" new Li fa () ; the iyS. ' .1~ _yo...",e& .
z = null; (- ",'neYl z. \S l) r"-.J

Object-killer #1
Reference goes
out of scope,
permanently.

public class StaclcR.ef {
public void foof() (

barf () ;

public void barf() (
Duck d : new Duck() ;

o loof(J Is pushed ontothe
Stack, no variables are
declared.

I

I
I

I
I
I
I
I

constructors and gc

o barf(J Is pushed ontothe
Stack, where It declares
a reference variable, and
creates a new objectas­
signed to thatreference.
The objectIs created on
theHeap, andthe refer­
ence Isalive andInscope.

e bartO completes andpops
offtheStack. Its frame
disintegrates, so 'd' Is now
dead andgone. Execution
returns to 100'0, but 100(0
can't use'd' .

Uh-oh. TIll: 'd' variable
w~t d'Na,! 'Nne" th~ bar·W
SUlk t ..a",e 'Na~ blo'Nft
o-f.f the stalk, so tht Dutlt

is aba"dClr\td. ~arba~t:­
lollak bait.

yo u are here ~ 261

object lifecycle

Dude,all you

had to do was reset
the r~ference.Guess
they didn't have memory

management back then.
public void qo() {

d = naw Duck () ;

Duck d = new Duck();

public class ReRef {

Object-killer #2

Assign the reference
to another object

o
o

The new Du.tk. ~oes on t he !leaf,e~et"tnLeci
b~ 'ei', ~nte '0' is cln inSt.a!'lte variable, tne
D",-\I. will live as \Ol'l~ as ~e ReRt.t obit.d:.
that il\5-t.al'ltiaW it is alive. l.()\less- ..

'£1' is as.si~\'IeO a !'lew Du.t\l. objt.tt, leav\!'I~ the
ori~i\'lal ah'st) DlAl.k objed:. ahal'loont.o. That
tirst D",-k is 1\0,", as ~ood as dead..

262 chapter 9

constructors and gc

Object..killer #3

Explicitly set the
reference to null

Tee~ D\oll.k ~oes ~ th~ \-ledf' y~.ftytyo,Ud
b'j 'd'. Sil'\U 'd' is a" inrtal'IU vaW'i4bl~, th~
DlItlc. will live as l~~ as th~ R~c.f obj~l:1:
that. i~'I\tiat.ed it. is alive. U"Ies.s- ··

Duck d == new Duck () ;

public void gal) (
d == nul.l:

public class ReRef {

Ifyou use the dot operator on

a null reference. you'll get a

NullPolnterExceptlon at runtime. You'll

learnall about Exceptions In the Risky

Behavior chapter.

When you set a reference to nuJ.l, you're

deprogramming the remote control.

In other words, you've got a remote

control, but no TV at the other end.A null

reference has bits representIng 'null ' (we

don't know or care what those bits are,as

long as the NM knows) .

If you have an unprogrammed remote

control, In the real world, the buttons don't

do anythlng when you press them. But

In Java,you can't press the buttons (I.e.

use the dot operator) on a null reference,

because the NM knows (this Isa runtime

Issue,not a complier error) that you're

expecting a bark but there's no Dog there

to do Itl

The meaning of null

you are here ~ 263

object lifecycle

Fireside Chats

~4
~

Tonight'g Talk: An instance variable and
a looal variable discuss life and death
(wi~ remarkable civilliy)

Instance Variable
I'd like to go first, because I tend to be more
important to a program than a local variable.
I'm there to support an object, usually
throughout the object's entire life. After all,
what's an object without slate? And what is
state? Values kept in instana variables.

No, don't get me wrong, I do understand your
role in a method, it 's just that your life is so
short. So temporary. That's why they call you
guys "temporary variables".

My apologies. I understand completely.

I never really thought about it like that. What
are you doing while the other methods are
running and you're waiting for your frame to
be the top of the Stack again?

264 chapte r 9

Local Variable

I appreciate your point ofview, and I certainly
appreciate the value of object state and all,
but I don't want folks to be misled. Local
variables are really important. To use your
phrase, "After all, what's an object without
behaviorr" And what is behavior? Algorithms
in methods. And you can bet your bits there'll
be some localvariables in there to make those
algorithms work.

Within the local-variable community, the
phrase "temporary variable" is considered
derogatory. We prefer "local", "stack" , "auto­
matic", or "Scope-challenged",

Anyway, it's true that we don't have a long
life, and it's not a particularly good life either.
First, we're shoved into a Stack frame with
all the other local variables, And then, if the
method we're part of calls another method,
another frame is pushed on top of us. And if
that method calls another method... and so on.
Sometimes we have to wait forever for all the
other methods on top of the Stack to com­
plete so that our method can run again.

Nothing. Nothing at all. It's like being in
stasis-that thing they do to people in science
fiction movies when they have to travel long
distances. Suspended animation, really. We
just sit there on hold. As long as our frame is
still there, we're safe and the value we hold
is secure, but it's a mixed blessing when our .

IDstance Variable

We saw an educational video about it once.
Looks like a pretty brutal ending. I mean,
when that method hits its ending curly brace,
the frame is literally blownoff the Stack! Now
that 'sgotta hurt.

I live on the Heap, with the objects. Well, not
with the objects, actually in an object. The
object whose state I store. I have to admit life
can be pretty luxurious on the Heap. A lot of
us feel guilty, especially around the holidays.

OK, hypothetically, yes, if I'm an instance
variable of the Collar and the Collar gets
GC'd, then the Collar's instance variables
would indeed be tossed out like so many pizza
boxes. But I was told that this almost never
happens.

They let us drink?

constructors and gc

Local Variable

frame gets to run again. On the one hand, we
get to be active again. On the other hand, the
clock starts ticking again on our short lives.
The more time our method spends running,
th e closer we get to the end of the method.
We all know what happens then.

Tell me about it. In computer science they use
the term poppedas in "the frame was popped
off the Stack". That makes it sound fun , or
maybe like an extreme sport. But, well, you
saw the footage. So why don't we talk about
you? I know what my little Stack frame looks
like, but where do you live?

But you don't always live as long as the object
who declared you, right? Say there's a Dog
object with a Collar instance variable. Imagine
you'rean instance variable of the Collarobject,
maybe a reference to a Buckle or something,
sitting there all happy inside the Collarobject
who's all happy inside the Dogobject. But...
what happens if the Dog wants a new Collar,
or nulls out its Collar instance variable? That
makes the Collar object eligible for GC. So...
if you 're an instance variable inside the Collar,
and the whole Collaris abandoned, what
happens to you?

And you believed it? That's what they say to
keep us motivated and productive. But aren 't
you forgetting something else? What if you 're
an instance variable inside an object, and that
object is referenced only by a localvariable? If
I'm the only reference to the object you're in,
when I go, you're coming with me. Like it or
not, our fates may be connected. So I say we
forget about all this and go get drunk while
we still can. Carpe RAM and all that.

you are here ~ 265

exercise: Be the Garbage Colleclor

BE the Garbage CtJTIector
Wlnch 01' the lines ofcode onthe rigbt, if added
to& class on the leftat point A, would eaase
exactly one additional object to he eliglhle for the

Garbage Collector? (AsSUlJle that point A(licall
more methods) will execute for a long time, giving the
Garbage Collector time to do its stu1f.)

public class GC (

public static GC doStuff()

GC newGC = new GCI)i

doStuff2(newGC);

return newGCi

pUblic static void maln(String [1 args) (

GC gel;

GC gc2 = new GCI);

GC gc3 = new GCI) ;

GC ge4 = gc3j

gel = doScuff();

II call more methods

public static void doStuff2(GC copyGC)

GC localGC

266 chapter 9

1 copyGC = nulli

2 gc2 = null;

3 newGC = gc3;

4 gel = null ;

5 newGC = null;

6 gc4 = null;

7 gc3 = gC2i

8 gel = gc4i

9 gc3 nu Ll.;

class Bees {
Honey I] beeHAj

}

class Raccoon {
Kit Xi
Boney rh;

}

class Kit (
Boney kh;

}

class Bear {
Boney hunnYi

}

constructors and gc

In this code example, several new objects are created.
Your challenge is to find the object that is 'most popular;
i.e. the one that has the most reference variables referring
to it. Then list how many total references there are for
that object, and what they are! We'll start by poi nti ng aut
one of the new objects, and its reference variable.

Good Luck!

pUblic class Honey {
public static void main(String [] arqs) {

Roney honeyPot = new HoneY()i
Boney I] ha = {honeyPot, honeyPot, honeyPot, honeyPot};
Bees bl = new Bees():
bl. beeRA = ha;
Bear [) ba = new HearlS];
for (int x=O; x < 5; x++)

ba!x] = new Hear();
ba[x).hunny = honeyPot;

Here's Its reference
variable ·r'.

}

}

}

Kit k = new Kit()i
k.kh '" honeyPot;
Raccoon r '" new Raccoon()i

~
r.rh = honeypot:
r.k '" Xj
k = null;

II end of main

Here's a new
~ Raccoon objectl

you are here ~ 267

puzzle: Five Minute Mystery

"We've run the simulation four times, and the main module's temperature consistently
drifts out of nominal towards cold", Sarah said, exasperated. "We installed the new temp-bats last
week. The readings on the radiator bats, designed to cool the living quarters, seem to be within
spec. so we've focused our analysis on the heat retention bats, the bats that help to warm the quar­
ters." Tom sighed, at first it hadseemed that nano-technology was going to really put them ahead
of schedule. Now, with only five weeks left until launch. some of the orbiter's key life support
systems were still not passing the simulation gauntlet.

"What ratios are you simulating?", Tom asked.

"Well if I see where you're going, we already thought of that", Sarah replied. "Mis­
sion control will not sign off on critical systems if we run them out of spec . We are

required to run the v3 radiator bat's SimUnilS in a 2:1 ratio with the v2 radiator's
SimUnits", Sarah continued. "Overall, the ratio of retention bots to radiator bats is

supposed to run 4:3."

"How's power consumption Sarah?", Tom asked. Sarah paused. "Well that's
another thing, power consumption is running higher than anticipated. We 've got a team

tracking that down too, but because the nanos are wireless it's been hard to isolate the power
consumption of the radiators from the retention bats ." "Overall power consumption ratios", Sarah
continued. "are designed to run 3:2 with the radiators pulling more power from the wireless grid."

"OK Sarah", Tom said "Let's take a look at some of the simulation initiation code.
We've got to find this problem, and find it quick!"

import java.util.·;

class V2Radiator {

V2Radiator(ArrayList list) (

for(int ~O; x<57 x++) (

list.add(new SlmUnit{MV2RadiatorU
)) ;

}

class VJRadiator extends V2Radiator

V3Radiator{ArrayLlst lqlist)

super (19list) ;

for{lnt gmO; g<107 q++) {

lqlist.add(new SimUnit(MVJRadiator H » 1

class RetentionBot {

RetentionBot(ArrayList rlist) {

rlist.add(new SimOnit(MRetention-»)

268 chapter 9

rIVe-MInute
Mystery
C<intlnued...

public class TestLifeSupportSim {

public static void main(String [J args) {

ArrayList aList = new ArrayList();

V2Radiator v2 = new V2Radiator(aList);

V3Radiator v3 = new V3Radiator(aList);

for(int z=O; z<20; z++) {

RetentionBot ret = new RetentionBot(aList);

class SimUnit {

String botType;

SimUnit(String type) {

botType = type;

}

int powerUse() {

if (URetentionu.equals(botType»

return 2;

else {

return 4;

}

constructors and gc

Tom gave the code a quick look and a small smile creeped across his lips. I think I've
found the problem Sarah, and I bet I know by what percentage your power usage readings are off
too!

What did Tom suspect? How could he guess the power readings errors, and what few
lines of code could you add to help debug this program?

you are here ~ 269

object Iifecycle

1 copyGC = null; No - this line attempts to access a variable
that is out of scope.

2 ge2 =' null; OK - 9c2 was the only reference variable
referring to that object.

3 newGC =' gc3; No - another out of scope variable .

4 gel = null; OK - gel had the only reference because

G.C. newGC is out of scope.
5 newGC = null; No - newGC is out of scope .

6 gc4 null; No - gc3 is still referring to that object.

7 gc3 gc2; No - 9c4 is still referring to that object.

8 gcl gc4; OK- Reassigning the only reference to
that object.

9 gc3 null; No - gc4 is still referring to that object.

It probably wasn't too hard to figure out that the HoneyobJectfirst referredto by the honeyPot variableisby
far the most -popular'object Inthis class. Butmaybe it was a littletrickier to see that allof the variablesthat
point from the code to the Honeyobject referto the same ob}edl Thereare a total of 12active referencesto
this object right before the maln() method completes. The Ic.kh variableis valid fora while,but kgets nulled
at the end. Sincer.kstili refersto the KItobject, r.k.kh (although neverexpllcitydeclared),refersto the object!

}

Kit k = new Kit();
k.kh => honeyPot;
Raccoon r • new Raccoon();

public class Boney {
public static void main(Striog [) args) {

Boney honeyPot ~ new Boney();
Boney [) ha = {noneyPot, honeypot,

honeyPot, honeYPot};
Bees bi m new Beesl);
bl.beeHA = ha;
Bear [) ba = new BearIS];
for (int x-OJ x < 5; x++) {

ba{x] = new Bear():
ba[xj.hunny c honeyPot;

L

(endsupnull)
1---

---J

T
I

1-

r.rh = honeyPot:

r.k - k;
k • null;

}} II end of main

270 chapter 9

constructors and ge

Tom noticed that the constructor for the V2Radiator class took an
ArrayList. That meant that every time the V3Radiator constructor was called,
it passed an ArrayList in its supert) call to the V2Radiator constructor. That
meant that an extra five V2Radiator SimUnits were created. If Tom was right,
total power use would have been 120, not the 100 that Sarah's expected ratios
predicted.

Since all the Bot classes create SimUnits, writing a constructor for
the SimUnit class, that printed out a line everytime a SimUnit was created ,
would have quickly highlighted the problem!

you are here 271

