
3 primitives and references

Know Your Variables

Variables come in two flavors: primitive and reference. So far you've

used variables In two places-as object state (instance variables), and as local variables

(variables declared within a method) .Later, we'll use variables as arguments (values sent to a

method by the calling code), and as return types (values sent back to the caller of the method).

You've seen variables declared as simpie prjmIUve integer vaIues (type inc). You've seen

variables declared assomething more complex like a String or an array. But there's gotta be

more to life than integers, Strings, and arrays.What If you have a PetOwner object with a Dog

instance variable? Or a Car with an Engine? In this chapter we'll unwrap the mysteries of Java

types and look at what you can declare as a variable, what you can pur In a variable, and what you

can do with a variable. And we'll finally see what life Is truly like on the garbage-collectible heap.

this Is a new chapter 49

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

declaring a variable

Peclarittg avariable
Java cares about type. It won't let you do
something bizarre and dangerous like stuff a
Giraffe reference into a Rabbit variable-what
happens when someone tries to ask the so-called
Rabbit to hop ()? And it won't let you put a
floating point number into an integer variable,
unless you lKknowledge to thecompiler that you
know you might lose precision (like, everything
after the decimal point).

The compiler can spot most problems:

Rabbit hopper = new Giraffe();

Don't expect that to compile. Thankfully .

For all this type-safety to work, you must declare
the type of your variable. Is it an integer? a Dog?
A single character? Variables come in two flavors:
primitive and object reference. Primitives hold
fundamental values (think: simple bit patterns)
including integers, booleans, and floating point
numbers. Object references hold. well, references
to objects (gee, didn't that clear it up.)

We'Ulook at primitives first and then move
on to what an object reference really means.
But regardless of the type, you must foUow two
declaration rules:

variables must have a type

Besides a type, a variable needs a name, so that
you can use that name in code.

variables must have a name

int
;?1

type

count;
<,

na.....e

50 chapter 3

Note: When you see a statement like: "an object
of type X", think of l)'Peand classes synonyms.
(We'll refine that a little more in later chapters.)

primitives and references

Primitive Types

Integer

byte 8 bits -128 to 127

short 16 bits -32768 to
32767

int 32 bits -2147483648

to 2147483647

long 64 bits -huge to huge

Type BitDepth Value Range

boolean and char

boolean (JVM ..pedfic) true or false

char 16 bits 0 to 65535

numeric (all are signed)

floating point

float 32 bits varies

double 64 bits varies

char c ='f'j

lnt z e x:

boolean IsPunkRock;

isPunkRock= false;

boolean powerOn;

powerOn = IsFun;

long big = 3456789j

float f = 32.5i

.(qatta "a~t -that
Nott tht~ btU\,<St ja~a thi"~
..,i-th a ~\. ~\oab~ foi"t I~
'"'ythi,,~ 'fI1-th a \,<St '~'.
a ci~\e, "",\65 'fO'#

Primitive declarations
with assignments:

Int){i

x = 234;

byte b = 89;

boolean isfun = true;

double d = 3456,98j

grande

double
64

tall

float
32

small short

long
64

byte short int
8 16 32

--'!II" And inJava, primitives come in different sizes, and those sizes
have names. When you declare a variable in Java,

I
E ::a-YoU must declare it with a specific type. The

four containers here are for the four
integer primitives in Java.

fang int short byte

cup holds a value, so for Java primitives, rather than saying, "I'd like a
french roast", you say to the compiler, "I'd like an int variable with the
ber 90 please." Except for one tiny difference ... in Java you also have to
your cup a name. So it's actually, "I'd like an int please, with the value

:H86, and name the variable height." Each primitive variable has a fixed
ber of bits (cup size). The sizes for the six numeric primitives inJava

shown below:

n you think ofJava variables, think of cups. Coffee cups, tea cups, giant
that hold lots and lots of beer, those big cups the popcorn comes in at

movies, cups with curvy, sexy handles, and cups with metallic trim that
learned can never, ever go in the microwave.

wariable is just a cup. A container. It holds something.

a size, and a type. In this chapter, we're going to look first at the
- bles (cups) that hold primitives, then a little later we'll look at cups

hold references to objects. Stay with us here on the whole cup analogy-as
pie as it is right now, it'll give us a common way to look at things when
discussion gets more complex. And that'll happen soon.

- itives are like the cups they have at the coffeehouse. If you've been to a
ucks, you know what we're talking about here. They come in different
and each has a name like 'short', 'tall', and, "I'd like a
de' mocha half-eaffwith extra whipped cream".

migh t see the cups displayed on the counter,
u can order appropriately:

you are here ~ 51

prlmltlve assignment

You really dot1~t wat1t to spill that...
Be sure the value can fit into the variable.

You can't put a large value into a
small cup.

WeU, OK, you can, but you'll
lose some. You'll get, as we say,
spillage. The compiler tries to
help prevent this ifit can tell
from your code that something's
not going to fit in the container
(variable/cup) you're using.

For example, you can't pour an
int-full of stuff into a byte-sized
container, asfollows:

int x = 24;

byte b = x;

//won't work!!

Why doesn't this work, you ask? After all, the value of x is 24, and 24 is definitely
small enough to fit into a byte. You know that, and weknow that, but all the
compiler cares about is that you're trying to put a big thing into a small thing.
and there's the possibility ofspilling. Don't expect the compiler to know what the
value of xis. even if you happen to be able to see it literally in your code.

You can assign a value to a variable in one of several waysincluding:

• type a litera/value after the equals sign (x=12. isGood = true, etc.)

• assign the value of one variable to another (x =y)

• use an expression combining the two (x = y + 43)

In the examples below, the literal values are in bold italics:

The compiler won't let you put
a value from a large cup into
a small one. But what about
the other way-pouring a
small cup into a big one7 No
problem.

Basedon what you know
about the size and type of the
pri mitive varlables, seeif you
can figure out which of these
are legal and which aren't,
We haven't covered all the
rules yet, so on some of these
you'll have to use your best
judgment. Tip: The compiler
always errs on the side of
safety.

From the following list Circle
the statements that would be
legal if these lines were in a
single method:

1. int x = 34.5;

2 . boolean boo x;

3 . int g = 17;

4. int y '" 9;

5 . Y = Y + 10;

6. short s;

int size = 32;

boolean isCrazy;

int y = x + 456;

double d = 456.709;

128;

11. v '" n ;

12. byte k

10. short n '" 12;

8. byte b = 3;

7. s = y;

9 . byte v = b;

declare an intnamed size, assIgn ilthe value 32

declare a char named initial, assign itlhe value T
declare a double named d, assign it the value 456.709

declare a boolean named IsCrazy (no assignment)

assign the value true to thepreviously-declared ;sCrazy

declare an intnamed y, assign Itlhe value that is the sum
of whatever x is now plus 456

true;isCrazy

char initial = 'j';

52 chapter 3

prlmitJves and references

Jack away frotH that keyword!
lbu know you need a name and a type for your variables.

YOu already know the primitive types.

.,what can you we as names? The rules are simple. You
an name a class, method, or variable according to the

owing rules (the real rules are slightly more flexible,
t these will keep you safe) :

• It must start with a letter, underscore U, or
dollar algn ($). You can't atart a name with a
number.

• After the first character, you can u.. numbers as
well. Just don't atart It with a number,

• It can be anything you like, subject to those two
rules, JU8t 80 long as It Isn't one of Java's reserved
words.

. ' ftIfIeS ote: b\e
, /'It primitIve '7" float doU .

The elg e s\"lOft lot long . t/'lem:
\eao char byt membermg

boO onic for re
, omnem

And here S , gest urge
S u\dn't n

CafefU\~ 8ea's \"10
8e bertet.
furry Oogs 't'll stick even

outown, I
It yoU make upY D

S I LF- ­
B_ c- B_ - -

And the primitive types are reserved as well:

voidstaticpublic

fhls table reserved.
boolean byte mar double flom Inl long

protected abstract flnal native storic strictfp syndJronlzed transient If
else do while swllm case delauh for break continue assart

doss ex1and~ implements import rnstanceof interface new package super this

catch flnol~ try throw throws return void canst gala enum

boolean char byte short int long floa.t double

t there are a lot more we haven't discussed yet. Even ifyou don't
ed to know what they mean, you still need to know you can 't use

'em yourself. Do not-under any circumstances-try to memorize these
.w. To make room for these in your head, you'd probably have to

something else . Like where your car is parked. Don't worry, by
the end of the book you'll have most of them down cold.

Java's keywords and other reserved words (In no useful order). If you use these for names, the complier will be very, vel}' upset.

you are here I 53

object references

Controlling your ~og object
You know how to declare a primitive variable and assign it a
value . But now what about non-primitive variables? In other
words, what about objects?

• There Is actually no such thing as an object variable.

• There's only an object reference variable.

• An object reference variable holds bits that represent a
way to access an object.

• It doesn't hold the object Itsetf, but It holds something
like a pointer. Or an address. Except., in Java we don't
really know what Is Inside a reference variable. We do
know that whatever It Is, It represents one and only one
object. And the JVM knows how to use the reference to
get to the object.

You can ' 1 stuff an object into a variable. We often think of
it that way... we say things like, "I passed the String to the
System.out.printlnf) method." Or, "The method returns a Dog",
or, "I put a new Foo object into the variable named rnyf'oo."

But that's not what happens. There aren't giant
expandable cups that can grow to the size of any
object. Objects live in one place and one place
only-the garbage collectible heap! (You'll
learn more about that later in this chapter)

Although a primitive variable is full of
bits representing the actual value of the
variable, an object reference variable is full
of bits representing a way to get to the
obJect.

You use the dot operator (.)
on a reference variable 10 say,
"use the thing before the dot to
get me the thing afterthe dot." For
example:

myDog.bark() ;

means, "use the object referenced by the variable myDog to
invoke the barkt) method." When you use the dot operator on
an object reference variable, think of it like pressing a button
on the remote control for that object.

54 chapter 3

Dog d = new Dog();
d.bark();

\ thi.k ot this

Thillk o-f a D~

referente vdl'iable al

a D~ l'en-ote to.\h-ol.

You. IUC it to ~tt -t\l~

objut to do ~tthill9

(h'IVolcc ",et.h~) .

primitives and references

byte short int
8 16 32

long reference
64 Ibll depth not relevant)

The 3 steps of object
declaration, creation and
assignment

1 2
~3~
Dog myDog = new Dog();

At1 object referet1ce is just
a"other variable value. O Declare a reference

variable

Dog

Dog object

Dog object

Doq myDoq = new Dog () ;

Tells the JVM to allocate space for a
reference variable, and names that
variable myDog. The reference variable
Is, forever. of type Dog.ln other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button
or a Socket.

Dog

Dog myDog = new Dog () ;

Assigns the new Dog to the reference
variable myDog.ln other words,
programs the remote control,

e Link the object
and the reference

e Create an object

Dog myDog '" new Dog () ;
Tells the JVM to allocate space for a
new Dog object on the heap (we'll
learn a lot more about that process,
especially in chapter 9,)

~\.\.

J~itiveU vall.4t
byte

Dog myDog = new Doq() ;

Something that goes In a cup.
Only this time, the value 15 a remote control.

Prhldtlve Variable
byte x = 7;
the bits representing 7 go

to the variable. (00000111),

~n care how meny t's and O's tho,o are In a (afare~08l1tlriabla lrs UP10a&eh
: " a."ld Ihe phase of Ihe moon ,

you are he re . 55

object references

D:therel~o "
ume ~uest19115

Q:How big 15 a reference
variable?

A.:Vou don't know. Unless
you're cozy with someone on the
JVM's development team, you
don't know how a reference is
represented. There are pointers
in there somewhere, but you
can't access them .You won't
need to. (OK, Ifyou Inslst, you
might as well Just imagine It
to be a 54-bit value.) But when
you're talking about memory
allocation issues, your Big
Concern should be about how
many objects (as oppose-d to
object references) you're creating,
and how big they (the objects)
really are.

Q:So, does that mean that
all object references are the
same size, regardless of the size
of the actua I objects to which
they refer?

A.: Yep. All references for a
given NM will be the same
size regardless of the objects
they reference, but each JVM
might have a different way of
representing references, so
references on one JVM may be
smaller or larger than references
on another JVM.

Q:can Ido arithmetic on a
reference variable, Increment It
you know - C stuff7

A.: Nope.Say It with me again,
"Java Is not C."

56 chapter 3

,.

Java,£Nposecl
This week's Interview:
Object Reference

HeadFirst So, tell us, what's life likefor an object reference?

Reference: Pretty simple, really. I'm a remote control and I can be programmed to
control different objects.

HeadArst Do you mean different objects evenwhile you're running? Like, can you
refer to a Dog and then five minutes later refer to a Car?

Reference: or course not- Once I'm declared, that's it. If I'm a Dog remote control
then ru never be able to point (oops- my bad, we're not supposed to saypoin~ I mean rifer
to anything but a Dog.

HeadFirst Does that mean you can refer to only one Dog?

Reference: No. I canbe referring to one Dog, and then five minutes later I can refer to
some other Dog. As long as it's a Dog, I can be redirected (like reprogranuning your remote
to a differentTV) to it. Unless... no never mind.

HeadFirst No, tellme. What were you gonna say?

Reference: I don't think you want to get into this now,but I'lljust giveyou the short
version - if I'm maned as final, then once I am assigned a Dog, I can never be repro­
grammed to anything else but I1ul1 one and only Dog: In other words, no other object can
be assigned to me.

HeadFirst You're right,we don't want to talk about that now. OK, sounless you're
final, then you can refer to one Dog and then refer to a differentDog later. Can you ever
refer to fIl)tJring atalP. Is it possible to not be programmed to anything?

Reference: Yes, but it disturbs me to talkabout it.

HeadArst Why is that?

Reference: Because it means I'm null, and that's upsetting to me.

HeadFirst You mean. because then you have no value?

Reference: Oh, null isa value. I'm stilla remote control, but it's likeyou brought
home a new universal remote control and you don't have a TV I'm not programmed to
control anything. They can press my buttons all day long, but nothing good happens. I
just feelso... useless. A waste of bits. Granted, not that many bits, but still. And that's not
the worst part. If I am the only reference to a panicular object, and then I'm set to null
(deprogrammed), it means that now rwboqy can get to that object I had been referring to.

HeadFirst And that's bad because...

Reference: You have to ask? Here I've developed a relationship with thisobject, an
intimate connection, and then the tie issuddenly, cruelly, severed. And I will never see
that object again, because now it's eligible for [producer, cue.tragic music) garbage collection.
Sniff. But do you think programmers ever consider !haP. Snif. Why, wIrY can't I be a primi­
tive? I hate being a refcrcut. The responsibility, all the broken attachments...

ott the garbage..collectible heap

= new Book();

= new Book();

e two Book reference
- les.Create two new Book

.Assign the Book objects to
reference variables.

two Book objects are now living
e heap.

Obiects: 2

Book d = c;

re a new Book reference variable.
r than creating a new, third Book
•assign the value of variable c to

. ble d. But what does th is mean?
li ke saying, "Take the bits In c,make a

of them, and stick that copy Into d."

..... c and d refer to the same

....ect.
The c and d variables hold
two dlHerent copies of the
..me value. Two remotes
.....grammed to one TV.

ferences:3

Objects: 2

c = h;

Assign the value of variable b to
variable c. Bynow you know what

is means.The bits inside variable
at are copied, and that new copy Is
stuffed into variable c.

Both band c refer to the
same object.

References:3

Objects : 2

Book

Book

Book

Book

primitives and references

you are here ~ 57

objects on the heap

Ufe a.,d death 0., the heap

Book b = new Book() ;

Book c = new Book() i

Declare two Book reference variables.
Create two new Book objects. Assign
the Book objects to the reference
variables.

The two book objects are now living
on the heap.

ActIve References:2

Reachable Objects: 2 Book

b = Ci

Assign the value of variable c to variable b.
The bits Inside variable c are copied, and
that new copy is stuffed Into variable b.
Both variables hold identical values.

Both band c refer to the ••me
object. Object 1 I. abandoned
and eligible for Garbage Collec­
tion (GC).

Active References:2

Reachable Objects: 1

Abandoned Objects: 1

The first object that b referenced, Object 1,
has no more references. It's unreachable.

C = null;

Assign the value nu 11 to variable c.
This makes c a null reference, meaning
It doesn't refer to anything. But It's still
a reference variable, and another Book
object can stili be assigned to It .

Object 2 .tlll h•• an active
reference (b), and •• long
as It does, the object I. not
eligible for GC.

ActIve References: 1

null References: 1

Reachable Objects: 1

Abandoned Objects: 1

68 chapter 3

Book

primitives and references

An array is like atray of cups

o Declare an int array verinble. An array variable is
a remote control to an array object.

int[] nums;

Create a new int array with a length
of 7 I and assign it to the previously­
declared int rJ variable nums

nums = new int[7] ;

Give each element in the array
an int value.
Remember, elements in on int
array are just int variables.

~
.:is nums [0] = 6;
.3'
~ nums[l] = 19 ;~
~ nums[2] = 44:·s

nums[3] = 42:
nums [4] = 10:
nums[5] = 20;

nums [6] ='1; int[]

int array object (int[])

Notit~ that. -tne a'rYa'f ihtlt is dl'l objtd:,
evel'l t.h~h ~e I tltMtl'lt.s art f\"i",j·I:.'Ives.

Arrays are objects too
Java standard library includes
of sophisticated data structures
uding maps, trees. and sets
Appendix B). but arrays are
t when you just want a quick.
red, efficient list of things.

,"'5 give you fast random
ess by letting you use an index
ition to get to any element in
array.

ry element in an array isjust
nriable. In other words, one of

eight primitive variable types
. k: Large Furry Dog) or a

reference variable. Anything you
would put in a variable of that rype
can be assigned to an arrayelement
of that type. So in an array of type
int (int[]) . each element can hold
an int, In a Dog array (Dog[]) each
element can hold... a Dog? No.
remember that a reference variable
just holds a reference (a remote
control), not the object itself. So
in a Dog array, each element can
hold a remote control to a Dog. Of
course, we still have to make the
Dog objects... and you'll see all that
on the next page.

Be sure to notice one key thing
in the picture above - thearm)' is
an object, even though it's an arrayof
primitives.

Arrays are always objects, whether
they're declared to bold primitives
or object references. But you can
have an array object that's declared
to hold primitive values. In other
words, the array object can have
elements which are primitives. but
the array itself is nevera primi tive,
Regardless of what the array holds,
the array itself is always an objectl

you are here. 59

an array of objects

Make att array of Pogs

pets = new D09[7];

pets[D] = new Dog();

pets[l] = new Dog();

A Create a new Dog array with
W a length of 7, and assign it to

the previously-declared Dog [J
variable pets

Dogarray object (Dog[])

Dog array object (Dog[])

Declare a Dog array variable

Dog[] pets;o

What~ .ttfsShtg1
Dogsl We have an array
of Dog rmrence$, but no
actual Dog obJectsI

A Create new Dog objects, and
V assign them to the array

elements.
Remember, elements in a Dog
arrayare just Dog reference
variables. We still need Dogs!

_~n,~~:':~:f
~~~i:/_t _

--~dmake
-ne ofthe

11 objects?

58 (.. .r 3



Java cares about type.
Once you've declared an array. you
can't put anything an It except thing­
that are of the declared array type.

For example, youcan't put Q COt intoa Dog
array (it would be pretty awful if someone
thinks that only Dogs are inthe orrat, so
the.y ask eoch one to ~ark, and th~n to their
horror discoverthere s a cat lurkmg.) And
youcan't stick a double intoon int orr'atl
(spillage., remember?). You can,however.
put Qbyte into on int arraf, b~QuSea
byte will always fit intoon int-SIZed cup.
This is known as an Implicit wid&ning. We'''
gat Into the details tater. for now just
remember that the compiler won't 1st you
put the wrM'9 thing In on orraf, based on
the Gtf'OY's d&elored type.

, Dog

name

barkO
eatO
chaseCalO

primitives and references

Cot1trol your ~og

(with a referetlce variable)
Dog fide = new Dog();

fido.name = ~FidoN;

We created a Dog object and
used the dot operator on the
reference variable fido to access
the name variable."

We can use the fido reference
to get the dog to barkt) or
eat/) or chaseCatO .

fido.bark() i Dog

fido .chaseCat();

What happetts if thePOQ is Itt
a OOQ array?
~e know we can access the Dog's
Instance variables and methods using
the dot operator, but em what1

When the Dog is in an array, we don't
have an actual variable name (like
fido). Instead we use array notation and
push the remote control button (dot
~perator) on an object at a particular
Index (position) in the array:

Dog[] myDogs = new Dog[3];

myDogs[O] = new Dog() ;

myDogs[O].name = "Fido";

myDogs[O] .bark();

'Yes weknow we're notdemonslralin -
trying tokeep itsimple. For now W '1Igdencapsu iatiOn he_reo butwe're. e 0 encapsulation 10chapter 4.

you are here ~ 61



using references

class Dog (

Str ing name ;

publ i c static void main (String() args)

II make a Dog ob ject and access it

Dog dogl = new Dog();

dogl.bark{) ;

dogl.name = "Bart" ;

APog exatMple
Dog

name

barkO
eatO
chaseCal()

I I now mak e a Dog ar ray

Dog() myDogs = new Dog[3); Output

I I a nd put s ome dogs i n i ~

/1 now Rece s s t he Dogs us i ng t he ar r a y

I I r e f e r e nces

pUblic vo i d ea t ( ) {

pub lic voi d c ha s eCa t ()

• Variables come intwo flavors: primitive and
reference.

• Variables must always be declared with aname
and a type.

• Aprimitive variable value isthe bits representing
the value (5, 'a', true, 3.1416, etc.).

• Areference variable value isthe bits
representing away to get toan object on the
heap.

• Areference variable is like aremote control.
Using the dot operator (.) on a reference
variable islike pressing a button on the remole
control to access amethod orinstance variable.

• Areference variable has avalue ofn u 11 when
it isnot referencing any object

• An array isalways an object, even if the" array
isdeclared to hold primitives" There isno such
thing as a primitive array,only an array that
holds primitives.

" Fr ed" ;

"Marge" ;

ne w Dog () ;

new Dog () ;

dog!;

myDogs[O )

myDogs[l )

myDogs [2 )

myDogs(O).name

myDogs(l).narne

II now 100 t hr ough t he a r r y

I I a nd t e l l all dog s t o ba rk

pUblic void bark() (

System.out.prin tln(narne i- " says Ruff !");

II Hmmnm . . . wha t i s myDogs (2 j name?

System.out .print( "!ast dog's name is ");

Sys t em. ou t . pr in t l n (myDogs (2) . narne ) ;

i nt x = 0;

whi1e(x < mYDOgs .1ength)~ J

myDogs [xl .ba r k () ; a \/aYiab\c l'~~
x = X + 1; ay-yii'(S ha\/C t."c l'I~bCl"

t)lat. ~\\/ts 'lOlA a'J
L' t,\lc jlY"Y I

e\e,.,.tf\'V 11'1

62 chapter 3



prlmltlves and references

BE the cornriler
Each of the Java nles on this page
represents a cOtIlplete source file.
Your job is to play compiler and
detel"llline whether each of these files

will compile. If they won't
cmqpile, how would rOll
fIX them?

A B
class Books {

String title;

String author;

class Hobbits {

String name;

}

public static void main(String (J args) {

class BooksTestDrive

public static void main(String Ij args) Hobbits () h = new Hobbits[3]i
int z = 0;

Books () myBooks :: new Books(3);
int x :: 0;

myBooks{Oj.title :: "The Grapes of Java";

myBooks(lj.title = ~The Java Gatsby"i

myBooks(2).title :: ~The Java Cookbook";

myBooksIO).author = "bob";

myBooksllj.author:: "sue";

myBooks(2).author = "ian";

wbile (x < 3) {

System.ou t.print(myBookslxj.title)i
System.out.print(" by U)i

System.out.println(rnyBooks[xj.author) ;
x = x + 1;

while (z < 4) {

z = z + 1;

hlz] :: new Hobbits();

h{z] .name = "bilbo"i
if (z == I) {

hlz].name:: "frodo";
}

if(z==2){

h[z).name = Usam";

System.out.print (h{z).name + " is a H);

System.out.println(Ugood Hobbit name");

} }

you are here. 63



exercise: Code Magnets

Code Magnets
Aworking Java program Is all scrambled up
on the fridge. Can you reconstruct the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

int Y ==

int ref;

index(y) ;

while (y < 4) {

System.out.print1n(islands{refj)i

index(Ol .,. 1;

index(ll '" 3;

index (21 == 0;

index[31 .,. 2; ~

String (] islands new String(4)i

System.out.print(Uisland ; U);

int [1 index ""

y y + 1;

new int[4Ji

class TestArrays {

public static void main(Strin
N
":J r J args) {

64 chapter 3



primitives and references

_______.height (x + 1) * 2:

_______.leogth x + 4:

) {

void main(String [] args)

while (

class Triangle
double arear
int height;
iot length;
public staticpool puzzle

YourJob is to take code snippets from
the pool and place them into the

blank lines in the code.You may
use the same snippet more than
once, and you won't need to use
all the snippets .Your gOlll is to

make a classthat will compile and
run and produce the output listed.

Output
System.out.print( "triangle "+x+" I area"};

System.out.println(" = " + .area):

}

x = 27:

Triangle tS = ta[2]:

ta[2J.area = 343:

System.out.print(uy = U + y):

System.out.println(", tS area = "+ tS.area};

Bonus Questlonl

For extra bonus points, use snippets
from the pool to fill in the missing
output (above).

}

void setArea() {

(height * length) / 2;

}

} Note: Each lnlppet
from the pool nn be
used more than oncel

you are here ~ 65



puzzle: Heap o' Trouble

AHeap 0' Trouble
A short Javaprogram is listed to the
right. When '/1 do stuff' is reached, some
objects and some reference variables
will have been created. Your task Is
to determine which of the reference
variables refer to which objects. Not all
th e reference variables will be used,and
some objects might be referred to more
than once. Draw lines connecting the
reference variables with their matching
objects.

Tip: Unless you're way smarter than us,
you probably need to draw diagrams
like the ones on page 55 and 56 of th is
chapter. Use a pencil so you can draw
and then erase reference links (the
arrows goIng from a reference remote
control to an object).

class HeapQuiz {
int id == 0;
public static void main(String [] argsl

int x = 0;
HeapQuiz ( ] hq = new HeapQuiz(S]i
while ( x < 3 1 (

hq[x) = new HeapQuiz();
hq(x] . id == Xi

x = X + 1i
}

hq[3] == hq[l]i
hq[4] hq[l] ;
hq[3] = null;
hq (4) hq (0] ;
hq(Ol == hq(31i
hq(3] hq[2];
hq[2] = hq [0] ;
II do stuff

Reference Variables: HeapQulz Objects:

hq[3]

hq[1]

hq[O]

hq[2]

hq[4]

10

~~
f
til

64 chapter 3



primitives and references

The case of the pilfered references

It wasa clark andstormy night Tawny strolled into the programmers' bullpen like she
owned the place. She knew that all the programmerswould still behard at work, and she
wanted help. She needed a new methodadded to the pivotal class that was to be loaded into the
client's new top-secretJava-enabledcell phone. Heap space in the cell phone's memorywas
as tight as Tawny's top, and everyone knew it The normallyraucous buzz in the bullpen fell to
silence as Tawny eased her way to the white board. She sketched a quick overview of the new
method's functionality and slowly scannedthe room. 'Well boys, it's cnmch time", she purred.
'Whoever creates the most memory efficientversion ofthis method iscoming with me to the
client's launchparty on Maui tomorrow... to help me install the new software."

The next morningTawny glided into the bullpen wearingher shortAloha dress.
"Gentlemen", she smiled,"the plane leaves in a few hours, show me what you've
got!". Bob went first; as he began to sketch his design on the white board Tawny
said, "Let's get to the point Bob, show me how you handledupdating the list of con­

tact objects." Bob quicklydrew a code fragmenton the board:

Contact I) ca = new Contact[10];

while ( x < 10 ) { II make 10 contact objects

calx) new Contact()i

x = x + 1 ;

II do complicated Contact list updating stuff with ca

"Tawny rknow we're tight on memory,but your spec said that we hadto beable to access
individualcontact informationfor all ten allowablecontacts, this was the best scheme I could
cookup", said Bob. Kent was next, already imagining coconut cocktails withTawny, "Bob,"
he said, "your solution's a bit kludgydon't you think?" Kent smirked,"Take a lookat this
baby":

Contact. refc;

while ( x < 10 ) { II make 10 contact. objects

refe = new Cont.act()i

x = x + 1;

I
II do complicated Contact list updating stuff with rete

"I saved a bunch of referencevariables worth ofmemory,Bob-o-rino, so put away your
sunscreen",mocked Kent "Not so fast Kent!", said Tawny, "you've saved a little memory, but
Bob's coming with me.''.

Why did Tawny choose Bob's method over Kent's, when Kent's used Jess memory?

you are here t 67



exercise solutions

Exercise Solutions class Books {
String title;
String autbor;

)

if(z==2){
b[z].name = "sam";

}

System.out.print(hlz).name + " is a H);
system.out.println{"good 80bbit nameH)j

class Hobbits {
String name:
public static void main{String I) args) {

Hobbits () h = ne_w=--H..:.ob::..:b7i:...:t..:.s~(3:....:)~: ~,....,....-,

Int :z :: -1; I Remember: o.rrcys start with
whfle (z ( 2) ( element 0 )
z = z + 1i ------------

h[z] = new Hobbits{):
B h[z].name = "bilbo';

if (z == 1) {

b[z].name = "frodo"j

class BooksTestDrive (
public static void main{String I) args)

Books II myBooks = new Books(3);
int x = 0:
myBooks[O] :: ntw 9ooksO; IUrnanber: We hGvt to

myBooks[1] :: ntw BooksO: actuclily InQJc.e the BooI<s
myBooks[2] :: new BooksO: objects I~~----=- ----l

myBooksIO].title = uThe Grapes of Java';
myBooksll] .title = "The Java Gatsby·;
myBooks[2].title = NThe Java Cookbook';
myBooks[O].author = Nbob';
myBooks[l].author = Nsue";
myBooks[2].author = "ian";
while (x < 3) {

System.out.print(myBoOks(x).title)i
System.out.print(" by ")j
system.out.println(myBooks[x).author);
x e X + 1;

A

Code Magnets:

}

}

class TestArrays

pUblic static void main(String () args) {

int [) index = new int{4]:

index[O) I:

Lndex] 1) 3:

index[ 2) 0:

index(3) 2;

String (] islands = new String[4]:

islandslO] "Bermuda":

islandsjl] = "Fiji";

islands(2] "Azores H
:

islands{3] "Cozumel";

int y = 0:

int ref;

while (y < 4) {

ref = index(yl;

system.out.print("island = H);

System.out.println(islandslref]l;

y = y + 1;

68 chapter 3



Puzzle Solutions

primitives and references

The case of the pilfered references

4.0
10 .0

19 .0

28.0

Tawny could see that Kent's method had a serious
flaw. It's true that he didn't use as many reference
variables as Bob , but there was no way to access any
but the last of the Contact objects that his method cre­
ated. With each trip through the loop, he was assign ­
ing a new object to the one reference variable, so the
previously referenced object was abandoned on the
heap - unreachable. Without access to nine of the ten
objects created, Kent's method was useless.

(The software was 8 huge success atKl the dlent gave Tawny and Bob anextra week
In Hawa~. we'dlike to~ you that byfinishing this book you too wilget stuff like IhaL)

class Triangle
double area;
int height;
int length,
public static void main(String [1 argB) {

lnt x =0:
Triangle [ ] tel =new Trlangle[4];

while ( x • 4 ) {
tel[x] =new Tr/ClllglcQ;

~x].he19ht ~ (x + 1) * 2;

talx]. length = x + 4;

talx) .set.Arec();

System.out.print(~triangle ~+X+". area"),

System.ouLprintln(U - N + talx).area);

x=x+1;

}

Int 'I = x:
x - 27;

Triangle tS ~ ta[2J;

ts[2J.area = 343;

Syatem.out.print(Ny = U + Y);

System.out.println(", tS area " U+ tS.area);

}

void setArea() {

~ = (height· length) J 2;

~
;, java Triangle
triangle 0, area

triangle 1. area
criangle 2 , area
triangle 3 , area

'i = 4, t5 arca = 343

Reference Variables:

hq[O]

HeapQulz Objects:

you are here ~ 69


