
16 collections and generics

Data
structures

Sorting is a snap in Java. You have all the tools for collect ing and manipulating

your data without having to write your own sort algorithms (unless you're reading this right

now sitting in your Computer Science 101 class,in which case, trust us-you are SO going to be

writing sort code while the rest of us Justcall a method In the Java API). The Java Collections

Framework has a data structure that should work for virtually anything you'll ever need to do.

Want to keep a list that you can easily keep adding to? Want to find something by name?Want

to create a list that automatically takes out all the duplicates? Sortyour co-workers by the

number of times they've stabbed you in the back?Sort your pets by number of tricks learned?

It 's all here...

this is a new chapter 529

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

sorting a list

fracki"Q SOt1g popularity 0., your jukebox
Congratulations on your new job----managing the automated
jukebox system at Lou's Diner. There's no Java inside the
jukebox itself, but each time someone plays a song, the
song data is appended to a simple text file.

Your job is to manage the data to track song popularity,
generate reports, and manipulate the playlists, You're not
writing the entire ap~omeof the other software developer/
waiters are involved as well. but you're responsible for managing
and sorting the data inside the java app. And since Lou has a thing
against databases, this is strictly an in-memory data collection. All
you get is the file the jukebox keeps adding to. Your job is to take it
from there.

You've already figured out how to read and parse the file, and so far
you've been storing the data in an ArrayList.

SongLlst. txt

Pink Moon/Nick Drake
Somersault/Zero 7
Shiv& Moon/Prem Joshua
Circles/BT
Deep Channel/Afro Celts
Passenger/Headmix
Listen/Tahiti 80

530 chapter 16

Challenge #1
Sort the songs in alphabetical order

You have a list ofsongs in a file. where each line
represents one song, and the title and artist are
separated with a forward slash. So it should be simple
to parse the line, and put all the songs in an ArrayList.

Your boss cares only about the song titles, so for now
you can simply make a list thatjust has the song titles.

But you can see that the list is not in alphabetical
order... what can you do?

You know that with an Arrayl.ist, the elements are
kept in the order in which they were inserted into the
list, 50 putting them in an ArrayList won't take care of
alphabetizing them, unless... maybe there's a sortj)
method in the ArrayList class?

collections with generics

Here's what you have so far; without the sort:
impo4t java.util.*;
import java.io.*;

pUblic class Jukeboxl

ArrayList<String> songList : new ArrayList<String>() i

catch(Exception ex) (
ex.printStackTrace();

public static void main (String () args 1 I
new Jukeboxl() . ge () ;

public void go() I~
getSongs();
System.out.println(songList);

. 1: Y'tilO the t 'lle il"d
Not.hi,,~ syet."lill he....e..J~oo ~a-- eat" \il'le·

void gatSonqa () t.a\\ -\:.he ilod$of..~O '"
try {

File file new File("SongList.txt H
) ;

BufferedReader reader = new BufferedReader(new FileReader(file»:
String line = null;
whi Le « line= r e ade r , readLine () ! = null) (

addSong(line);

The tiddSon
Ci...d j th 1 "'eiJ..od \\/orh .

r (J... -J.. Ln. e I/O thdpU JIISf likl! i~1! /.I "
~"t; Ild$ both th tifl....--yOk b... k "i'l<lz.-

void addSong(Strinq lineToParse) I pieCes (MOu) lotS' I! ill! tlnd i1r-t.i:tJ .tt }itle

String (1 tokens = lineToParse. split ("/") ; "\5 tht! spliiO "'eih;. two
songList.add(tokens[Ol);

<:

%j ava Jukebox!
[Pink Moon, Somersault,
Shiva Moon, Circles ,
Deep Channel, Passenge r ,
Listen}

you are here. 531

ArrayList API

~ut the ArrayList class does NOr have asartO tMethod!
When you look in Arrayl.isr, there doesn't seem to be any method related to sorting.
NaJking up the inheritance hierarchy didn't help either-it's clear that y()U can't call a sort
nethod on the ArrayList.

•

-

.-...

• ... 1• ..,., AW..I.1a.aC~ .1UlI . . r- - ---- ----- ----==:::::====--i!IDt>nu t .n.<l lf lhil lUI~ iIl£ spedIDI ,

........ .& regu....... (l...rl t. IcgaJ ..r:us.._, at. lA:ItlWl
.. , . ~>es fltJa> !hi> USl all~~ dcm<lll

I; I ftlW.1.a.~• .L1&WRL l!UIt,Ulor ,

~7l.-f

••

~ -C;. -::T~A;ii'iVUit (Jiiii 2 Pli"tfOOii sr 5:0)

~i:i)11ern +lf~hItP: 1/JavLSun.rom/J1n/ l .S .O 'docs/&pl/ ln cltx .hlml

chapter 16

~ TreeSet
Keeps the elements sorted and prevents duplicates.

r do see a collection class
celled TruSe.t... and the docs

sCI>! that it keeps your data
sorted. r wonder if r should be
using a TreeSet inste.ad of an
ArrayList ...

o
o

collections with generics

ArrayLisf is.!Q1the ot1ly collectiot1
Although ArrayList is the one you'll use most often,
there are others for special occasions. Some of the key .
collection classes include: D 't 'NcKY'f C1nOl>t b-'tl~

Of' ~ese oth~ Ol'Ies
t.o \eClyY\ '\I 0 il'l-to
yiaht "0... · We ~c ,1._
...~e o~il~ a \iH:le C1~'

.. HashMap
Let's you store and access elements as namelvalue pairs.

~ L1nkedLlst
Designed togive better performance when you insert ordelete
elements from the middle ofthe collection. (In practice, an
ArrayUst isstill usually what you want.)

~ HashSet
Prevents duplicates inthe collection, and given an element, can
find that element in the collection qulcldy.

~ L1nkedHashMap
Like aregular HashMap, except it can remember the order in
which elements (name/value pairs) were Inserted, orit can be
configured to remember the order In which elements were last
accessed.

you are here ~ 533

Collectlons.sortO

You could use a freeSet. ..
Or you could use the Coliectiotts.sortCl tttethod

lava.utll.collections

publicstatic void copy{Ust destination.List source)

publicstaticUst emptyUst()

publicstatic void flll(List IIstToFill, ObjectobjToFillltWrth)

public static Int trequency(Collection c, Object0)

publicstatic void reverse{Ust list)

publicstatic void rotate(Ust list, lnt distance)

publicstatic void shuffle(Ust list)

publicstatic~ sOrt{L\st listV
. ;~. II". Ohiect oIdVal, Object newVal)

publicstatic boole

/Imany more met
.ij",,,,,,,... !here IS a sor!() Meihod I-

-~

1ft !he Collet-t;ofts tlass. I! hkes
a Lis! and' A

nd1 ' Slftte rrayList
i"'ple_e...i.s !he Lis! . t +.... er ate,

rrayLlst
ArrayLis! IS-A Lis!. Thanks

verloaded !o polyMorphisM, y~ tan pass a...
ckly as calling ~rayList to a Me!hod d ,
nt at the end. to ta et ared
't need to put Ice List

A: Yes, It 's slower to insert something in an A
somewhere otherthan at the end. So using the 0

add(lndex, element) method doesn't work as qui
the add(element)-which puts the added eleme
But most of the time you use ArrayLists, you won
something at a specific Index.

lfyou put all the Strings (the song titles) into a TreeSet instead of
an ArrayList, the Strings would automatically land in the right place,
alphabetically sorted. Whenever you printed the list, the elements would
always come out in alphabetical order.

And that 's great when you need a set (we'll
talk about sets in a few minutes) or when
you know that the list must au.vays stay
sorted alphabetically.

On the other hand, if you don't need the
list to stay sorted. TreeSet might be more
expensive than you need-every timeyou
insert into a Treeset; the TreeSet has to take
the time tofigure out where in 1M tree the new

element mustgo. With ArrayList, inserts can
be blindingly fast because the new element
just goes in at the end.

Q: But you CAN add something to an
ArrayListat a specific Index Instead of just at
the end-there's an overloaded addll method
that takes an Int along with the element to add
So wouldn'fft be slower than Inserting at the e

Q: I see there's a L1nkedllst class, sowouldn't that be better for
doing Inserts somewhere In the middle1 At least if I remember my Data
Structures class from college...

A: Yes, good spot. The LinkedLlst can be quicker when you Insert or
remove something from the middle, but for most applications, the difference
between middle inserts Into a Linkedllst and ArrayList is usually not enough
to care about unless you're dealing with a huge number of elements. We'll
look more at L1nkedLlst In a few minutes.

534 chapter 16

collectlons with generics

Addit1g Coliectiot1s.sortU to the Jukebox code
impo r t j ava . u t i l . * ;
import java . i o . T ;

pub l i c c l as s J u keb oxl

ArrayList<String> songList = new ArrayList<String>();

pub lic s t a t i c vo i d ma i n (St ri ng [] a r gs) (
ne w Jukebox1 () . go ();

The Collections.sortO
lllethod sorts a list of
StriPgs alphabetically.

pub lic voi d got) r
ge r- Song s () ; 1t.aVt. CoI\et:b~
System. out . p ri n t l n (s ongLi st) ; ~~~~et\<'odl ~e" Y'f\,,~-\;.h~
Collections. sort (songList) ; \' L , "T"ne ~[t.ot>d ~,,,t.

,5<. a~'''' \ J I
System.out.println (songList) ;~ 'IS ,,, i\,,~'oebt.a\ cJt"~t:'t'.

vo i d getsongs ()
t r y (

Fi l e ll e ne w Fi l e (" Son gLi s t . t x t H
) ;

BufferedReade r r eade r = new Bu f f e r edReade r (new FileReade r (file » ;
S t r i ng line - n u l l;
wh ile ((li ne- r e a de r i r e adt.L ne t) l !=' null) (

addSong (1 i ne) ;

ca tch (Exce p tion ex) (
ex.printS a c kTr a c e () ;

voi d addSong(String lineToParse) (
tri ng l] to ke ns = l i ne ToPa r s e . s p l i t(" /H) ;

songList .r.tdd (toke n.s [O]) ;

%j ava Jukeboxl

[Pink Moon , Somersault, Shiva Moon, Circles, Deep
Channel , Passenger , Listen)

(Circles, Deep Channel, Listen, Passenger, Pink
Moon , Shiva Moon, Somersault]

•,

you are here ~ 535

sorting your own objects

Jut now you Meed SOMQ objects,
not just shttple Stri"Qs.
Now your boss wants actual Song class instances in the list, notjust
Strings, so that each Song can have more data. The new jukebox
device outputs more information, so this time the file will have four
pieces (tokens) instead ofjust two.

The Song class is really simple, with only one interesting feature­
the overridden toStringO method. Remember, the toString()
method is defined in class Object, so every class inJava inherits the
method. And since the taStringO method is called on an object
when it's printed (System,out.println (an Object)), you should
override it to print something more readable than the default
unique identifier code. When you print a list. the toStringO
method will be called on each object.

class Song (

String title;f
String artist;
String rating;
String bpmi

Song(String t, String a, String r, String b) (
title = t;

artist =' a; The va~i.ables a.-t all sd. i"
rating = r; the l.or\strl.ll.i« wher> the
bpm = b r "I\ew ~,,~ is l.~eated,

SongUstM0r2.txt

Pink Moon/Nick Drake/5/80
Somersault/Zero 7/4/84
Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110
Deep Channel/Afro Celts/4/120
Passenger/Headmix/4/l00
Listen/Tahiti 80/5/90

pUblic String getTitle()
return title;

public String getArtist()
return artist;

public String getRating(}
return rating;

public String getBpm()
return bpm;

public String toString ()
return title;

536 chapter 16

impor t j ava . ut i l . * ;
import java.io.*;

collections with generics

Changing the Jukebox code to use Songs
instead of Strings
Your code changes only a little-the file I/O code is the same,
and the parsing is the same (String.splitf)). except this time
there will be Jourtokens for each song/line, and all four will be
used to create a new Song object. And of course the ArrayList
will be of type <Song> instead of <String>.

L A.rra'JL.ist cJ SoY\~
Chan~e ~ an f\ J 'Stv:ln~.
objetts Instead

publi c c l a s s JUkebOX~ ~

ArrayList<Song> songList = new ArrayList<Song>();
publ i c static v o i d mai n(Stri ng[] arg s) (

new J ukebox3() . g o () ;
}

pub l i c void ge() {
g e tSongs() ;
Syste m. o u t . p rintln(s o ng Li s t) ;
Col lect i o n s .sort(songLi s t) ;
Sys tem . out .pri nt l n (songLis t) ;

}

void getSongs ()
try {

Fi le fil e new File{"SongLi s t . t xt H
) ;

BufferedReader r e ade r = ne vi Buffe r e d Re ade r (ne w FileReader (file)) ;

S t r i ng line = nul l ;
wh ile « Li ne> r e a d e r . rea dLine ()) ! ~o null) (

a dd Song (line) ;

catch (Excep ti on e x)
e x .pri ntStackTrac e () ;

vo id addSeng(String lineTeParse) {
St ring [] t okens = lineTo Pa r s e . spl it(" /");

Song nextSonq = new Sonq(tokens[O] , tokens[l], tokens [2] , tokens[3]);
songList.add(nextSong);

you are here ~ 537

Collections.s 0 rtO

It WOt1~t cotMpi Ie!
Something's wrong... the Collections class clearly shows there's a
sort/) method, that takes a List.

ArrayList is-a List, because ArrayList implements the List interface,
so... it should work .

But it doesn't!

The compiler says it can't find a sort method that takes an
Arrayl.istc'Songo, so maybe it doesn 't like an Arrayl.ist of Song
objects? It didn't mind an ArrayList<String>. so what's the
important difference between Song and String? What's the
difference that's making the compiler fail?

%javac Jukebox3.java
JukeboK3 .java:15 : cannot find symbol
symbol method sort(java .util.ArrayList<Song»
location: class java.util .Collections

Collections.sort(songList);

1 error

And of course yOll probably already asked yourself, "What would it
be sorting onr How would the sort method even know what made
one Song greater or less than another Song? Obviously if you want
the song's title to be the value that determines how the songs are
sorted, you'll need some way to tell the sort method that it needs
to use the title and not, say, the beats per minute.

We'll get into aU that a few pages from now, but first , let's find out
why the compiler won 't even let us pass a Song ArrayList to the
sortt) method .

538 chapte r 16

collections with generics

WID I have no idea how to
read the method declaration

on this. It says that sortO
takes a List~T) . but what is
n And what is that big thing

before the return type?

o
o

fhe sortO tMethod declaratiot'

sort

public: at.4t~ fUl.teDd: eome:rllbl&<? auper T>";>Oid.o~HlStl

Sortsthe specified list into ascending order. according to the nalJITal ordering of its elements. All
elements in the list mu.st implement the Comparable interface. Furthermore. all elements in the list
must be mullllllJy comparab~ (that is, el.cOIIlpareTo I82) must not throw a ClaasC4st.E>l:c:eption

for any elements&1 and 82 in the list).

From the API docs (looking up the java.util .Collections class. and scrolling to the sortt)
method), it looks like the sortt) method is declared... strangely. Or at least different from
anything we've seen so far.

That's because the sortO method (along with other things in the whole collection framework in
Java) makes heavy use of generics. Anytime you see something with angle brackets inJava source
code or documentation, it means generics-a feature added to Java 5.0. So it looks like we'll
have to learn how to interpret the documentation before we can figure out why we were able to
sort String objects in an Arrayl.ist, but not an ArrayList of Song objects.

you are here ~ 539

generic types

&et1erics ",eat1s ",ore type...safety
We'lljust say it right here-virtually all of the code you writethat deals
with genericswill becollection-related code. Although generics can be used
in other ways, the main point of generics is to let you write type-safe
collections. In other words, code that makes the compiler stop you
from putting a Dog into a list of Ducks.

Before generics (which means beforeJava 5.0), the compiler could
not care less what you put into a collection, because all collection
implementations were declared to hold type Object. You could put
anything in any ArrayList; it was like all ArrayLists were declared as
ArrayList<Object>.

ArrayList

~ ~ ~ ~

••••And come OUT as areference oftype Object

wIth generics. you can
create type-safe collections
where more probleltlS are
caught at compile-time
inStead of runtil1le.

wIthout generics. the
compiler would happily let
you put aPumplin into an
ArrayLiSt that was supposed
to hold only Cat objects.

ArrayList<Fish>

WITH generics

Objects go IN as a reference to
only Fish objects

And come out as areference oftype Fish

540 chapter 16

Learning generics
Of the dozens of things you could learn about generics, there are
really only three that matter to most programmers:

• Creating instances of generified classes (like ArrayList)

When you make an ArrayList, you have to tell it the type
of objects you'll allow in the list,just as you do with plain
old arrays.

• Declaring and assigning variables of generic types

How does polymorphism really work with generic
types? Ifyou have an ArrayList<Animal> reference
variable, can you assign an ArrayList<Dog> to it? What
about a List<Animal> reference? Can you assign an
ArrayList<Animal> to it? You'll see ...

• Declaring (and invoking) methods that take generic types

Ifyou have a method that takes as a parameter, say, an
ArrayList ofAnimal objects, what does that really mean?
Can you also pass it an ArrayList of Dog objects? We'll
look at some subtle and tricky polymorphism issues that
are very different from the way you write methods that
take plain old arrays.

(This is actually the same point as #2 , but that shows you
how important we think it is.)

Q.: But don't Ialso need to learn how to create my OWN generic
dasses? What if Iwant to make a class type that lets people
instantiating the class decide the type of things that class will use?

A.: You probably won't do much of that. Think about it-the API
designers made an entire library of collections classescovering most of
the data structures you'd need, and virtually the only type of classesthat
really need to be generic are collection classes. In other words, classes
designed to hold other elements, and you want programmers using it to
specify what type those elements are when they declare and instantiate
the collection class.

Yes, it is possible that you might want to create generic classes, but that's
the exception, so we won't cover it here. (But you'll figure it out from the
things we do cover, anyway.)

collections with generics

new ArrayList<Song>()

List<Song> songList =
new ArrayList<Song>()

void foo(List<Song> list)

x.foo(songList)

you are here ~ 541

generic classes

Using generic CLASSES
Since ArrayList is our most-used generified type, we'll
start by looking at its documentation. They two key areas
to look at in a generified class are:

1) The class declaration

3) The method declarations that let you add elements

Understanding ArrayList documentation
(Or, what's the true meaning of "E"?)

public class ArrayList<E> extends AbstractList<E>

II more code

The "E" represents the type used to create an instance
of ArrayList. When you see an "E" in the ArrayList
documentation, you can do a mental find/replace to
exchange it for whatever <type> you use to instantiate
ArrayList.

So, new ArrayList<Song> means that "E" becomes "Song" ,
in any method or variable declaration that uses "E".

542 chapte r 16

Thinl of "E" as a stand-in for
"-the type of elem.ent you want
this collection to hold and
return." (E is for Elenent.)- -

implements List<E> .. , {.:
The t'tfe (the lJal~ of <f.»
bet.oMes the t'fVe of the List
il'ltel""kat.e as well .

collections with generics

Usit1Q type parattteters with ArrayList

THIS code:

ArrayList<String> thisList = new

Means ArrayLlst:

. . . {

public boolean addlE 0)

/ / more code

Is treated by the complier as:

public class ArrayList<Strinq> extends AbstractList<Strinq> . .. {

public boolean add(Strinq 0)
/ / more code

In other words, the ~E~ is replaced by the realtype (also called the type parameter)
that you use when you create the Arrayl.ist, And that's why the add 0 method
for ArrayList won't let you add anything except objects of a reference type that's
compatible with the type of ~E". So if you make an ArrayList<:String>, the add 0
method suddenly becomes add(String 0). !fyou make the ArrayList of type Dog,
suddenly the addt) method becomes add(Dog 0).

Q: Is"E"the only thing you can put there18ecause the docs for sort used "1'':'•••

A: You can use anything that's a legal Java Identifier. That means anything that you
could use for a method or variable name will work as a type parameter. But the conven­
tion Is to use a single letter (so that's what you should use),and a further convention IS to
useMT" unless you're specIfically wrltl ng a collection class,where you'd useME" to repre­
sent the "type of the Element the collection will hold"

you are here) 543

generic methods

A generic class means that the class declaration includes a type
parameter. A generic method means that the method declaration
uses a type parameter in its signature,

You can use type parameters in a method in several different ways:

• Using a type parameter defined Inthe class declaration

public class ArrayList<E> extends AbstractList<E> ... (

public boolean addlE 0) \/OII"~
"-../ t-" ~ fh ~E»

tllr~dybt bl d:fi"td :~;tl~:rhet.4~ it's

When you declare a type parameter for the class, you tht lltlU.

can simply use that type any place that you'd use a
realclass or interface type . The type declared in the
method argument is essentially replaced with the type
you use when you instantiate the class,

• Using a type parameter thatwas NOT defined Inthe class declaration-- ~public <T extends Animal> void t&keThing(ArrayList<T> list)

If the class itself doesn't use a type parameter, you can still »&t we~rr" ~<T:> be
specify one for a method, bydeclaring it in a really unusual ~rliel" i" the ...efh ~~ we ~1~hOA
(but available) space-before the return type, This method says od dtlJdrd~
that T can be "any type ofAnimal",

544 chapter 16

collections with generics

Wait ... that can't be right. If youcan
take a list of Animol, why don't you

just SAY that? What's wrong with just
tokeThIng{AtTayUst~Animal;) list)?

HereJs where It gets weird...
This:

public <T extends Animal> void takeThing(ArrayList<T> list)

Is NOT the same as this:

public void takeThing(ArrayList<Animal> list)

Both are legal, but they're diffmmtl

The first one, where <T extends Animal> is part of the method
declaration. means that any Arrayl.ist declared ofa type that is
Animal, or one of Animal's subtypes (like Dog or Cat), is legal.
So you could invoke the top method using an ArrayList<Dog>,
ArrayList<Cat>, or ArrayList<Animal>.

But... the one on the bottom, where the method argument is
(Arr.tyList<Animal> list) means that only an Arr.tyList<Animal>
is legal. In other words, while the first version takes an Arrayl.isr
of any type that is a type ofAnimal (Animal, Dog, Cat, etc.),
the second version takes Qnly an Arrayl.Jst of type Animal. Not
ArrayList<Dog>, or ArrayList<Cat> but only ArrayList<Animal>.

And yes, it does appear to violate the point of polymorphism.
but it will become clear when we revisit this in detail at the end
of the chapter. For now, remember that we're only looking at
this because we're still trying to figure out how to sortO that
SongList, and that led us into looking at the API for the soru)
method, which had this strange generic type declaration.

For now, all you need to krww is that the synt.ax of the top uersion
is legal, and that it meansyou can pass in a ArrayListobject
1'nstantiated as Animal or anyAnimal subtype.

And now back to our sortt) method...

you are here. 545

sorting a Song

This still doesn't
expla in why the soM method

failed on an ArrayList of Songs
but worked for an ArrayList of
Strings...

Remember where we were...

i mpor t java.util .*;
import java.io.*:

public class Jukebox3 (
ArrayList<Song> songList = new ArrayList<Song>() i
pUblic static void main{Stri ng{) args) (

new Jukebox3{) .go();

System.out.println(songList);

I
pUblic void go() (

getSongs();
Sys t em.out. pr i nt l n (s ongLi s t);

}

void getSongs ()
try (

File file new File("SongList.txt H
) ;

Buf feredReader r e ade r = new BufferedReader (new FileReader (file));
String line ~ null;
while ((line= reader.readLine{» != null) (

addSong{line);
I

catch (£xception ex) (
ex.printStackTrace();

)

void addSong(String lineToParse) (
String!) tokens = lineToParse.split("/");
Song nextSong = new Song (tokens [01 , tokens[l], tokans[2] , tokens[3]);
songList .add(nextSong);

546 chapter 16

collections with generics

Revisiti.,g the sortt) tltethod
So here we are, trying to read the sortt) method docs to find
out why it was OK to sort a list of Strings, but not a
list of Song objects. And it looks like the answer is' ' '

L
L... ~ ~OoVi i,;;;;;;.. $(·

:.1.-"~"""lIHJ'/""""I_"I"" /'''''__1 ':01

The sortO method can take only lists
of Comparable objects.

Song is NOT a subtype of
Comparable, so you cannot sorto
the list of Songs.

sort(List<T> list)

Yov. c.dl'l fau i~Of\ly a L.ist. (.I:ir
slObtYfe ~ list, [ikt: AwayLlsV
t.hat~ a fara"'eW-iud t'ifc
thdt "e'llUNis Co""yarablt:".

public static <T extends Comparable<? super T» void
----~--- J

~~..«e th:s part. to'r ..ow. Bt.t
,f y~ loa" t.. it j lI.Si "'tel I'IS

thai the type para",c1:.tY .f«
eo",parablc "'t.jt be o-f type T
o'r one o-f T's st.pertyptsJ ·

At least not yet.•.

Urn... I just checked the docs for
String. and String doesn't EXTEND

Comparable--it IMPLEMENTS it.
CDmparable is an Interlace. So it's nonsense
to say <T extends Comparable> ,

public final claS9 String extends Object implements Serializable,
Comparable<String>, CharSequence

you are here. 547

the sortt) method

't1 get1erics, "extet1dsN ttteat1S
"extet1ds ~ itttpletttet1tsN

TheJava engineers had to give you a way to put a constraint
on a parameterized type, so that you can restrict it to, say, only
subclasses of Animal. But you also need to constrain a type to
allow only classes that implement a particular interface. So
here's a situation where we need one kind of syntax to work
for both situations-inheritance and implementation. In other
words, that works for both extends and implements.

And the winning word was... extends. But it really means "is-a",
and works regardless ofwhether the type on the right is an
interface or a class.

COMrarable is an in-ttr.fate, so this
R~l...l...y reads, "T Ml.tSt be a t'tre t,hat
iMrleMents the COMrarable in-ttrfate .

~
public static <T extends Comparable<? super

J'
It doesn't Mat-tt\'" whether the thil'l~ on the ri~ht is
a t1ass 0\'" il'l-tt\'"+ate... '101#. still sa'l "e~-ttnds" .

Q.: Why didn't they just make a new keyword,"is"?

A: Adding a new keyword to the language is a REALLY big deal because
it risks breaking Java code you wrote in an earlier version. Think about
it-you might be using a variable "is" (which we do use in this book to repre­
sent input streams). And since you're not allowed to use keywords as identi­
fiers in your code, that means any earlier code that used the keyword before
it was a reserved word, would break. So whenever there's a chance for the
Sun engineers to reuse an existing keyword, as they did here with "extends';
they'll usually choose that. But sometimes they don't have a choice ...

A few (very few) new keywords have been added to the language, such
as assert in Java 1.4 and enum in Java 5.0 (we look at enum in the appen­
dix) . And this does break people's code, however you sometimes have the
option of compiling and running a newer version of Java so that it behaves
as though it were an older one. You do this by passing a special flag to the
compiler or JVM at the command-line, that says/Yeah, yeah, I KNOWthis is

. Java 1.4,but please pretend it's really 1.3,because I'm using a variable in my
code named assertthat I wrote back when you guys said it would OKI#$%':

(To see if you have a flag available, type javac (for the compiler) or java (for
the JVM) at the command-line, without anything else after it, and you should
see a list of available options. You'll learn more about these flags in the chap­
ter on deployment.}

548 chapter 16

In generics, the "keyword
"extends" really means "is-a",
and wor"ks for B01lI classes
and interfaces.

T» void sort(List<T> list)

Fittally we kttow whatl wrottQ...
The SOtt<l class tteeds to hMplelMettt COlMparable

We can pass the ArrayList<Song> to the sortt) method only if the
Song class implements Comparable. since that's the way the sortt)
method was declared. A quick check of the API docs shows the
Comparable interface is really simple. with only one method to
implement

java.lang.Comparable

public interface COIIIp&rahle<T>
int compareTo(T O)i

And the method documentation for compare'Io() says

Returns:
a neqative integer, zero, or a
positive integer as this object
1s 1&88 than, 8qlUll to, or greater
than the Sp8cl1ied object.

It looks like the compareToO method will be called on one
Song object, passing that Song a reference to a different
Song. The Song running the compareToO method has to
figure out if the Song it was passed should be sorted higher,
lower, or the same in the list.

Your bigjob now is to decide what makes one song greater
than another, and then implement the compareToO method
to reflect that. A negative number (any negative number)
means the Song you were passed is greater than the Song
running the method. Returning a positive number says
that the Song running the method is greater than the Song
passed to the compareToO method. Returning zero means
the Songs are equal (at least for the purpose of sorting... it
doesn't necessarily mean they're the same object) . You might,
for example. have two Songs with the same title.

(Which brings up a whole different can ofwonns we'Il look
at later...)

collections with generics

The big question is: what
makes one song less than,
equal to, or greater than
anofher song?

You can't Implement the
Comparable Interface until you
make that decision.

nyour pencil -------,

Write In your idea and pseudo code (or
better, REAL code) for Implementing the
compareToO method In a way that will
sortf) the SOl'\g objects by title.

Hint: If you 're on the right track, it should
take less than 3 lines of codel

you are here ~ 549

the Comparable interface

fhe "eYl, itltproved, cotltparable SO"Q class

IAsv.ally t.~~se ,.,..;tt,h...\lIt't't sfetl.f'ii~ the t'fYe t1a-t
t~e i "le...e"h,,~ dciss tal> be (.Oft\ra--ed a~"'IJI,S+"

This ecihS that. ~,,~ objed:.s ta" be t.OMra--ed -to
ot.hel" ~~ objet.b, f~ t~e r~--fose tJ sorti~.

Comparable<Song> {

String a, String r, String b) (

,--- The soortO ",dhod ~ds a So,,~ to i.e-ya--eTof.)
.J..,. -to see how that ~~ t.o...ya__es tot~ Sol'l~ O'/'l

whith the ...dhoa was ,,,yoked.
public int compareTo(Song s) {

return title.compareTo(s.getTitle(»;

Sonq(String t,
title = t;
artist = a;
rating = r;
bpm = b;

)

We decided we want to son by title, so we implement the cornpareTo ()
method to compare the title of the Song passed to the method against
the title of the song on which the compareToO method was invoked.
In other words, the song running the method has to decide how its
title compares to the title of the method parameter.

Hmmrn... we know that the String class must know about alphabetical
order, because the sortj) method worked on a list ofStrings. We know
String has a compareTaO method. 80 why not just call it? That way, we
can simply let one title String compare itself to another, and we don't
have to write the comparing/alphabetizing algorithm!

class Song implements
String ti tIe;
String artist;
String rating;
String bpm;

public String getTitle()
return ti tie;

public String getArtist()
return artist;

%java Jukebox3

public String getRating()
return rating : (Pink Moon, Somersault, Shiva Moon, Circles, Deep

Channel, Passenger, Listen]

public String getBpm () {
return bpm; [Circles, Deep Channel, Listen, Passenger, Pink

Moon, Shiva Moon, Somersault]

public String toString()
return title;

)

550 chapter 16

collections w ith generics

That's not good enough.
Sometimes r want it to sort
by artist instead of title.

Look at the Collections class API again. There's a
second sortO method-and it takes a Comparator.

We catt sortthe list, but...
There's a new problem-Lou wants two different views of the song list,
one by song title and one by artist !

But when you make a collection element comparable (by having it
impl ement Comparable), you get only one chance to implement the
compareToO method. So what can you do?

The horrible way would be to use a flag variable in the Song class,
and then do an if test in compare'Ior) and give a different result
depending on whether the flag is set to use title or artist for the
comparison.

But that's an awful and brittle solution, and there 's something much
better. Something built into the API for just this purpose-when you
want to SOrt the same thing in more than one way.

._-
Collections Oava 2 Platform SE 5.0) ----. _.

~ fl le:IIIUsers/kathyIPublic/docs/apl/lndex.hlml 0.. Google J--
s Jellyvis lon. Inc Collect ion s ...form SE 5.0) Caffelnated .. .d Brain Day Brand Noise DIva Marketing »

static 8LngletoAKaP(K key, V value)
,....

<X,V> ~<K.V> Returns an immutable map,mapping only the ~

specified key to the specified value. :oJ---- 1 lllGtic ~(Li5t<T> list)- ~per T»,-- Sorts the specified list into ascending order,

sarlO ~~od is o'Jev-\oaded -to
void according to the 1UJlUTal ordering of its elements.

\ llt;~ BOrt. (List<T> list, COlnD8f"lftor<? super T>~
The . \\ d a cO"'yayat.o--· r>v c;nrte~ .- list according to the ~.

r---
bke SOft'et\oi,,,~U e ..-

induced by me
1--, '-

~ ~. OIo't~ -to
- <II

~I

\
Note -to se\ : ,~~e

t.o-- t,nat Un
tit /w.av.t a Cotr-yaYd

~ ncl o'I"dfY tnt sanOJ b~
WW'y~t a

. wd ~ ttlt-oO
aM:.isl ,"s

)

L -

you are here. 551

the Comparator interface

Ushtg a custOtlt Cotltparafor
An element in a list can compare itselfto another of
its own type in only one way. using its compareTo(}
method. But a Comparator is external to the element
type you're comparing-it's a separate class. Soyou can
make as many of these as you like! Waut to compare
songs by artist? Make an ArtistCompara tor. Sort by beats
per minute? Make a BPMCornparator.

Then all you need to do is call the overloaded sortt)
method that takes the List and the Comparator that will
help the sortt) method put things in order.

The sortO method that takes a Comparator will use the
Comparator instead of the element's own compareTo(}
method, when it puts the elements in order. In other
words, ifyour sortt) method gets a Comparator, it won't
even call the compareToO method of the elements
in the list. The sortf) method will instead invoke the
compareO method on the Comparator.

So, the rules are:

~ Invoking the one-argument sort(L1st 0) method
means the list elemenfs compareToO method
detennlnes the order. So the elements Inthe list
MUST Implement the Comparable Interface.

~ Invoking sort(Llst 0, Comparator c)means the
listelemenfs compareToO method willNOT be
called, and the Comparators compare{) method
willbe used Instead. That means the elements
Inthe listdoNOT need to Implement the
Comparable Interface.

Q.: So does this mean that Ifyou have a class that
doesn't Implement Comparable, and you don't have the
source code, you could stili put the things In order by
creating 8 Comparator7

A: That's right.The other option (if It 's posslble) would be
to subclass the element and make the subclass implement
Comparable.

552 chapter 16

Java.util.Comparator

public interface Comparator<T>
int compare(T aI, T 02);

Ifyou pass aeomparator to the
sortO method. the sort order is
determined by the comparator
rather than the elements own
compareToO method.

Q.: But why doesn't ~very class Implli!mentComparable1

A: Do you really believe that everything can be ordered?
If you have element types that Just don't lend themselves to
any kind of natural orderIng, then you'd be misleading other
programmers If you implement Comparable. And you aren't
taking a huge risk by not Implementing Comparable, since
a programmer can compare anything in any way that he
chooses using his own custom Comparator.

collections with generics

UpdatiMQ the Jukebox to use aCOlMparafor
We did three new things in this code:

1) Created an inner class that implements Comparator (and thus the rompare()
method that does the work previously done by romjJrue'Ib()).

2) Made an instance of the Comparator inner class.

3) Called the overloaded sortt) method. giving it both the song list and the
instance of the Comparator inner class.

Note: we also updated the Song class tcString() method to print both the song
title and the artist (It prints title: artist regardless of how the list is sorted.)

i mpo r t java .util. ";
imporc java.io.·;

public class JukeboxS (
ArrayList<Song> songList = new ArrayList<Song>();
public static void main(String[] args) {

new Jukebox5 () .go();

~ Make a~ i~Ylt.t: ~ the
ArtistCompare artistCompare:: new ArtistCompare () ; C--y.lrat.m- IMer t.lau.
Collections. sort (songList, artisbCompare);

pUblic void got) {
getSongs();
System.out.pr intln(songLi s t);
Collections.sort(songList);
System.out.println(songList);

System.out .println(SongLi s t J ;

class Artistcompare implements Comparator<Song>
public int campare(Song one, Song twO) (

return one. qatArtist () . compareTo (two. g8tArtist (» ;

~
ni~ bet.OI'/I!1 i} Sh-i",~ (tne artirt)

void getSongs() {
II rIo code here

void addSong(String l ineToParse} {
II parse line an d add co song list

Note: we've made sort-by-title the default sort. by
keeping the compareToO method In Song use the
titles. But another way to design this would be to
Implement both the title sorting and artist sorting as
inner Comparater classes, and not have Song Implement
Comparable at all.That means we'd always use the two­
arg version of Collections .sortl).

you are here ~ 553

collectJons exercise

import

public class SortMountains {

LinkedList'------- mtn new LinkedList, ()i

class NameCompare {

public int cOmpare(MouDtain one, Mountain two) {

return

}

class HeightCompare {

pubLi.c int compare (Mountain one, Mountain two) {

return ();

}

}

public static void main(String [J args) {
new SortMountain().go():

}

public void got) {
mtn.add(new Mountain(ULongs", 14255»;
mtn.add(new Mountain(UElbert", 14433»i
mtn.add(new Mountain(nMarOOn M

, 14156»i
mtn.add(new Mountain(UCastle", 14265»;

System.out.println(U as entered:\n" + mtn);
NarneCornpare nc = new NarneCompare();

System.out.println(uby narne:\nn + mtn);
HeightCompare he = new HeightCompare();

System.out.println(nby height:\nn + mtn)i
}

}

class Mountain {

Output:

Reverse Engineer
Assume this code eXiStS in
II Single !1le. Your joh is
tonil in the hlankS So the
the program will create the
output shawn.

Note:answers are at the end of
the chapter,

}

}
}

554 chapter 16

{

{

File EdH WIndow Hel ThlsOne'sFor8ob

%java SortMountains

as entered:

[Longs 14255, Elbert 14433, Maroon 14156, castle 14265]

by name:

lCastle 14265, Elbert 14433, Longs 14255, Maroon 14156)

by height:

[Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

~ your penCil fiTI-in-the-blanks
For each of the questions below, fill in the blank
with one of the words from the "possible answers"
list, to correctly answer the question. Answers are
at the end of the chapter.

Possible Answers:

Comparator,

Comparable,

compareTo(),

compare(),

yes,

no

collections with generics

Given the following compilable statement:

Collections.sort(myArrayList);

1. What must the class of the objects stored in myArrayList implement?

2. What method must the class of the objects stored in myAr r a yLi s t implement? _

3. Can the class of the objects stored in myArrayList implement both
Comparator AND Compa rable?

Given the following compilable statement:

Collections . sort (myArrayList, myCompare);

4. Can the class ofthe objects stored in myArrayList implement Comparable?

5. Can the class ofthe objects stored in myArrayList implement Comp a r a t o r ?

6. Must the class of the objects stored in myArrayList implement Comparable? _

7. Must the class of the objects stored in myArrayList implement Comparator? _

8. What must the class of the myCompare object implement?

9. What method must the class of the myCompare object implement?

you are here ~ 555

dealing with duplicates

Uh"'oh. fhe sorting all works, but now we have duplicates...
The sorting works great, now we know how to son on both title (using the Song object's
compareToO method) and artist (using the Comparator's compare 0 method) . But there's
a new problem we didn't notice with a test sample of the jukebox text file-the sorted list
containsduplicates.

It appears that the diner jukeboxjust keeps writing to the file regardless ofwhether the
same song has already been played (and thus written) to the text file. The SongListMore.txt
jukebox text file is a complete record of every song that was played, and might contain the
same song multiple times.

SongllstMore. txt

Pink Moon/Nick Drake/5/80
Somersault /Zero 7/4/84
Shiva Moon/Prem Joshua/6/120
Circles/BT/5/110
Deep Channel/Afro Celts/4/120
Passenger/Headmix/4/100
Listen/Tahiti 80/5/90
Listen/Tahiti 80/5/90
Listen/Tahiti 80/5/90
Clrcles/BT/5/110

556 chap ter 16

We t1eed aSet it1stead of aList-From the Collection API, we find three main interfaces, List, Set, and
Map. ArrayList is a List, but it looks like Set is exactly what we need.

collections with generics

~ LIST· when sequence matters

Collections that know about Index posfflon.

Usts know where something is in the list You
can have more than one element referencing
the same objeel

~ SET· when uniqueness matters

Collections that do notaI/ow duplicates.

Sets know whether something isalready in the collection.
You can never have more than one element referencing
the same object (or more than one element referencing
two objects that are considered equal-we'lIlook atwhat
object equality means ina moment).

~ MAp· when finding somethIng bykeymatters

Collections that use key-value pairs.
Maps know the value associated with agiven key. You
can have two keys that reference the same value, but you
cannot have duplicate keys. Although keys are typically
String names (so that you can make name/value property
lists, for example),a key can beany object.

List

Set

Map

you are here ~ 557

the collections API

The Collectiot1 API (part of it)
Notice that the Map interface doesn't
actually extend the Collection interface,
but Map is still considered part of the

"Collection Framework" (also known
as the "Collection APr) . So Maps are
still collections, even though they don 't
includejava.utilCollection in their
inheritance tree.

/'

Set
(Interface)

r.,,,
" ,,,,,

" ,,,,
"

List
(interface)

-r; l\'"
I \. ,, \

I I
I ,, \

I I
I I, \, ,, ,

I I, \
I ,
I ,

Collection
(interface)

I
II-

I
I
I
I
\,,

\
I
I
I,,

I,

/'

.",,,,
r,,

I,
I,

I
I,,

SortedSet
(Interface)

(Note: this is not the complete
collection API; there are other
classes and interfaces, but
these are the ones we care
most about)

TreeSet LinkedHashSet HashSet ArrayList LlnkedLlst Vector

.-------- KEy-------.

Ma~l dOY\'+' ~'ll.u"d '(\"00>\
jiIVel...·h l.Collet -!:.i Ol'l, b..+.
"thl'f)ve lVII tol'llidll"ld
to b~ ~il..-t of the "

"tolled:.iOl'1 ~\'"el ... twetrk
i" Java. ~o a Ma~ is
still Ye{~ed to ell a
tolled:.iol'\ ',,,,,,,,,,,,,,,,,,

\

•
I,

Map I(Interface)

-r; 1\' ..., I
.,, , ,

, \
I ,

SortedMap
I \, \

r ,
(Interface) I ,, ,, I, I

I ,.
/ '

/
/

extends

implements

implementation class

interface

T
.T.,,,

TreeMap II HashMap

"'-----.".
LinkedHashMap •

I
Hashtable

558 chapter 16

collections with generics

Using a HashSet instead of ArrayList
We added on to the Jukebox to put the songs in a HashSet. (Note: we left out some
of the Jukebox code, but you can copy it from earlier versions. And to make it easier
to read the output, we went back [Q the earlier version of the Song's toStringO
method, so that it prints only the title instead of title and artist.)

i mp o r t j ava . ut i l . ~ ;

: mp or t j a va . i o . * ;

ub l i c c las s J u ke box 6 {
Ar rayLi st<Song> s ong Li s t = ne w ArrayList <So ng > (l ;~

I I ma i n me t hod e c . ~

p ub li c vo i d go () (L L . A... d L: +.
We die!..'+. t.ha)\~e ~d$ofI~(), so I+' s1:.i1l y"Vl 1;he $O,,~ ," a" -- y LS

ge t Songs();~

S ys t e m. ou t . p r i n t l n (s ong Li s t);

Col l e c t i o n . s o r (s o ngLi s t) ;

Sys t e m. ou t . p r i n t l n (s ongLi s t);

~~e we t.__eah a "ew l1asl-.Sct
V',wameW-iz.ed t.D hold .so..~

AHe... ~\l.Ui",~ it.
into a }lash&t.
a"a Y'"i,,-tiYl~ tnt:
~a1~ (we dia",'t
eall sor\:.O a~a;n) .

A~ te-- ~iYl~
t.\-Ie A----a'fLi!l
Ch'j -title).

(A"d it. lost. ih soV't. o...de...
",ne" we y"t t.ne list iYlto a
\1as~t.1 blat. we'll WcifY'I a~t.
that tm~ latey··J

The &f. didr/f. help!!
We still have all ih~ dl.lplitaus!

System.out.println(songSBt);

HashSet<Song> songSet = new HashSet<Song>();

songSet.addA11(songList);

)

II ge t So ng s () and a dd Son g () methods

you are here) 559

object equality

What tttakes two objects equal?
First . we have to ask-what makes two Song references
duplicates? They must be considered equal. Is it simply two
references to the very same object, or is it two separate objects
that both have the same Lilli?

This brings up a key issue: reference equality vs. object equality.

). Reference equality
Two references, one object onthe heap,

Two references tIlat refer tothe same object on
the heap are equal. Period. Ifyou call the hashCodeQ method on
both references. you'll get tile same result Ifyou don't override tile
hashCode() method, tile default behavior (remember, you inherited
this from class Object) isthat each objecl will gel aunique number
(most versions ofJava assign ahashcode based on the objecfs
memory address on the heap, so no two objects will have the same
hashcode).

Ifyou want toknow if two references are really referring to the same
object. use the == operator. which (remember) compares the bits in
the variables. Ifboth references point tothe same object. the bits will
be Identical.

). Object equality
Two references, twoobjects onthe heap, but
the objects are considered meaningfully equivalent

Ifyou want to treat two different Song objects as equal (for
example ifyou decided thaI two Songs are the same if they have
matching title variables), you must override both the hashCodeO
and equalsO methods inherited from class ObjecL

As we said above, ifyou don Yoverride hashCodeO, the defauh
behavior (from Object) is to give each object aunique hashcode
value. So you must override hashCodeO to be sure that two
equivalent objects return tile same hashcode. But you must also
override equalsO so that ifyou call non either object. passing in
the other object, always returns tnn.

If two objects foo and bar are
equal, foo.equa's(bar' must be
'rue, and both foo and bar must
return the same value from
hashCode(J. For a Set to treat
two objects as duplicates, you
must override the hashCodeO
and equals() methods inherited
from class Object, so that you
can make two different objects
be viewed as equal.

Song
if (faa -- bar) {

II both references are referring
II to the same object on the heap

Song

if (foo.equa18(bar) && foo.bashCode() .. bar.hashCode(»)

II both references are referring to either a

II a single object , or to two objects that are equal

560 chapter 16

collections with generics

How aHashSet checks for duplicates: hashCode() at'd equals()
When you put an object into a Hashset, it uses the
object's hashcode value to determine where to put
the object in the Set. But it also compares the object's
hashcode to the hashcode of all the other objects in
the Hash Set, and if there's no matching hashcode,
the HashSet assumes that this new object is not a
duplicate.

In other words, if the hashcodes are differen t, the
HashSet assumes there's no way the objects can be
equal!

So you must override hashCode 0 to make sure the
objects have the same value.

But two objects with the same hashCodeO might not
be equal (more on this on the next page). so if the

HashSet finds a matching hashcode for two objects­
one you're inserting and one already in the set-the
HashSet will then call ooe of the object's equalsr)
methods to see if these hashcode-matched objects
really are equal.

And if they're equal, the HashSet knows that the
object you're attempting to add is a duplicate of
something in the Set, so the add doesn't happen .

You don't get an exception, but the HashSer's add 0
method returns a boolean to tell you (if you care)
whether the new object was added. So if the addO
method returns false, you know the new object wasa
duplicate of something already in the set,

eqUaJs(bar)

Your hashcodes
are the some, but ore

you REALLY equal?

I need to know
if your hashcode
values are the same.

you are here ~ 561

overriding hashCodeO and equalst)

The So.,g class with overridde.,
hashCodeU a.,d equals()

Cornpe r eb Le-cSonq> {

. t.h t. Btl, is a S-\:.vincy
public boolean equals (Object aSong) (The qR~AT neWS IS a -Jd, n eQl>d\~O

L . \la~e ell' O~t.Y""IO \
Song s :: (Song) aSong i el\'lei S't..... \,,~s 'II to do is aslt. one
return getTitle () . equals (s . getTitie ()) il;;--' ",ct,hod. ,S:' all 'H, ~~t.t. ot.heY ~n~' ~ ·btl,·

title it It s t.'\"<i

class Song impl eme n t s
Sex-i og t i d e ;
Stri ng art is t ;
St.ri ng rating;
Stri ng bpm;

public int hashCode () (Sa...e dec'll h~e th Sh'
re turn ti tIe. hashCode ()~ hashCodd) ...dhod e IP\~ d,,~ has a" oV~idde"

l.dJli,,~ hdShCodeO ~"S~t~t'~" jNtyeb..n. the: res14H:. of
and ',\lId/SO are l<..lil'l fh: SA e· ~ le how h~shCodeO

public Lrrt compa r e To (Song s) (9 ME IlUit...te var-Ic'lbk
re t u r n t i t l e . compa reTo (s . getTi t l e (») ;

Song(Str i ng t, String a, St ri ng r , St.ring b) I
title = t;
a r t i s t = a ;
r a t i ng = r ;
bpm = b ;

public St ri ng ge t Ti t l e ()
r e t u r n t.i t l e ;

publ i c Str ing ge t Ar t i s t (J
r e t u r n a r t i st.;

pUbl i c St r i ng getRacing()
r e t uxn r a ting;

pu bl i c St r ing ge t Bpm() {
r t u r n bpm;

pu b lic St r i ng t oString(j
re t u r n t i t.l e;

Now it wot"k.s! No dvplit.ates when wt.
fYi"f. -i -the Itas~t. BI.<-t we did,,'t
zall sortO a~in, and when we pllt
the AyrayList into t.he ltashSd., -the
Itas~d: didn'+, fr-e~ve the sort ~deY.

562 chapter 16

collections with generics

Otbere1EU"er\l? 0

umo ~uesfj9n8

Q: How come hashcodes can be the same
even Ifobjects aren't equal7

A..: Hash5ets use hashcodes to store the ele­
ments in a way that makes it much faster to access.
If you try to find an object in an ArrayList by giving
the ArrayList a copy of the object (as opposed to
an index value), the ArrayList has to start searchIng
from the beginning, looking at each element in
the list to see if it matches. But a Hash5et can find
an object much more quickly, because it uses the
hashcode as a kind of label on the "bucket''where
It stored the element. So If you say, "I want you
to find an object in the set that's exactly like this
one..." the Hash5et gets the hashcode value from
the copy of t he Song you give it (say, 742), and
then the HashSet says, MOh, I know exactly where
the object with hashcode 11742 is stored ...: and it
goes right to the #742 bucket.

This isn't the whole story you get in a computer
science class,but it 's enough for you to use Hash­
Sets effectively. In reality, developing a good hash­
code algorithm is the subject of many a PhD thesis,
and more than we want to cover In this book .

The point Is that hashcodes can be the same
without necessarily guaranteeing that the objects
are equal, because the -hashing algorithm" used In
the hashCode() method might happen to return
the same value for multiple objects.And yes,that
means that multiple objects would all/and in the
same bucket In the HashSet (because each bucket
represents a single hashcode value), but that 's not
the end of the world. It might mean that the Hash­
Set is Just a little less efficient (or that it's filled
with an extremely large number of elements), but
if the HashSet finds more than one object in the
same hashcode bucket, the HashSet will simply
use the equalsO method to see If there's a perfect
match . In other words, hashcode values are some­
times used to narrow down the search,but to find
the one exact match, the HashSet still has to take
all the objects in that one bucket (the bucket for
all objects with the same hashcode) and then call
equalsO on them to see if the object it's looking for
is In that bucket.

yo u are here ~ 563

TreeSets and sorting

At1d ifwe wat1t the set to stay-sorted, we've got TreeSet
TreeSet is similar to HashSet in that it prevents duplicates. But it also keeps the list sorted. It works
just like the sortt) method in that if you make a TreeSet using the set's no-arg constructor, the
TreeSet uses each object's compareToO method for the sort. But you have the option of passing
a Comparator to the TreeSet constructor, to have the TreeSet use that instead. The downside to
TreeSet is that if you don't needsorting, you're still paying for it with a small performance hit. But
you'll probably find that the hit is almost impossible to notice for most apps.

import java . ut il. * ;
impo r t j ava . io . *;
public class JukeboxS {

Arra yLis t <So ng> songLis t
i nt val ;

ne w Ar rayLi s t <Son g> () ;

publ i c s t a t i c vo i d main (St r ing [] a r gs) {
new Jukebox8 () . go ();

voi d ge t Songs () {
try {

File file = new Fi le (" Song ListMore .txt ") ;
Buf fe r e dRea de r r e ade r = new Buf fere dRea de r (ne w FileRe ade r (file »;
String l i ne = null ;
whi l e ((l i ne= r e a der .readLi ne (» != nul l) {

addSong (line) ;

L' L ad ~ \tashSet.
L ' L - TYeeSe" IYlSU; +.0

p ublic void go () { IYlstaYl-i,au; a T eSet tOYlstylOt I Y
getSongs () ; Ca\\iYl~ the Ylo-a;? Y\ he SoYlC?J o'ojett s
System .out.print l n (s ongL i s t) ; (WleaYlS the;)tWl:th~e ~OY the soYt;.
Col l e c t i ons . s o r t (songList) ; t.OWIyayeT L_)

J ' a Co",yClYClWY'System . ou t . p r int l n (songLis t) ; t.O"'\d halle yClsselA IYI
TreeSet<Song> songSet = new TreeSet<Song>(); (We
songSet.addA11(songList);~

Sys t.em, out . println (songSe t) ; ~e 'al'l aAdd all the SOI'l~s .froll\ the l+ashSet
lAS lh~ ~d~ ,110. (Or we 'olAld have added t he
SOI'l~S Il'Id1v1d"'1l1y lASil'\~ sOI'\~et.add() ' lASt

the way we added SOI'l~S t;, the Arra~List.)

c a t ch(Exc ept i on ex) {
e x . p r i nt St a c kTr a c e () ;

vo i d a ddSong (String line ToPa rse) {
String[] tokens = lineToPars e . split (" /") ;
Song nex tSong = new Son g (t okens[O] , t oke ns [l], toke ns [2] , t ok ens [3]) ;
s on gList . a dd (ne xtSong) ;

collections with generics

What you MUSf kttow about freeSet. ..
TreeSet looks easy, but make sure you really understand what you need to
do to use it. We thought it was so important that we made it an exercise so
you'd have to think about it. Do NOT turn the page until you've done this .
We mean it.

V your pencil

Look at this code.
ReadIt carefully, then
answer the questions
below. (Note: there
are no syntax errors
In this code.)

import java.util.-;

public class TestTree {
public static void main (String[] arqs) (

new TestTree() .go():

public void go() {
Book bi = new Book ("Bow cats Work") ;
Book b2 new Book ("Remix your Body") ;
Book b3 = new Book("Finding Emo");

TreeSet<Book> tree = new TreeSet<Book>() ;
tree . add (hl) ;
tree . add (b2) ;
tree. add (1:13) :
Systam.out.println(tree):

class Book (
String title;
public Book(String t) {

title = t;

1).What Is the result when you compile this code?

2). If It compiles, what Is the result when you run the TestTree class7

3).lf there is a problem (either compile-time or runtime) with this code, how would you fix It7

you are here ~ 565

how TreeSets sort

freeSet elettte.,ts MUSf be cotttparable
Tre eSet can 't read the programmer's mind to figure out how the
object's should be sorted. You have to tell the TreeSet how.

To use a TreeSet, one of these
things must be true:

)- The elements in
the list must be of a type that
implements Comparable

The Book class on the previous
page didn't implement Comparable, so it
wouldn't work atruntime.Think about it, the
poor TreeSet's sole purpose in life istokeep
your elements sorted, and once again-ithad
no idea how to sort Book objects! Itdoesn't fail
atcompile-time, because the TreeSet addO
method doesn't take aComparable type,The
TreeSet addO method takes whatever type
you used when you created the TreeSet. In
other words, ifyou say new TreeSet<Book>O
the addO method isessentially add{Book). And
there's no requirement that the Book class
implement Comparable! But it fails atruntime
when you add the second element tothe set.
That's the first time the set tries to call one of
the object's compareToO methods and... can't.

OR
)- You use the TreeSet's

overloaded constructor
that takes a Comparator

TreeSet works a lotlike the sortO
method-you have achoice ofusing the
element'scompareToO method, assuming
the element type implemented the
Comparable interface, OR you can use
acustom Comparator that knows how
tosort the elements in the set. To use a
custom Comparator, you call the TreeSet
constructor that takes a Comparator.

566 chaptert fl

c las s Book implements Comparable
String title;
publ i c Book(String t) {

t itle = t ;
}

public int compareTo(Object b)
Book book = (Book) b;
return (title.compareTo(book.title»;

public class BookCompare implements Comparator<Book>{
public int compare(Book one, Book two) {

return (one.title.compareTo(two.title» ;

clas s Te s t {
public void go () {
Book b l new Boo k("How Cats Work") ;
Boo k b 2 = ne w Book ("Remix your Body" };
Boo k b 3 = new Book("Fi ndi ng Emo");
BookCompare bCompare = new BookCompare();
TreeSet<Book> tree = new TreeSet<Book>(bCompare);
tree . add(new Book("How Cats Work") ;
tree . add(new Book("Fi n d ing Emo");
t r e e . a d d (new Boo k ("Remix your Body") ;
System .out .pri nt l n(tree) ;

collections with generics

We~veSee" Lists and Sets~ "OW we~11 use a Map
Lists and Sets are great, but sometimes a Map is the best collection (nor Collection
with a capital "Cn-remember that Maps are part ofJava collections but they don't
implement the Collection interface) .

Imagine you want a collection that acts like a property list, where you give it a name
and it gives you back the value associated with that name. Although keys will often be
Strings, they can be any Java object (or, through autoboxing, a primitive) .

Map

Map example

import java.util.~;

pUblic class Te stMap

publ ic s t at i c void mai n(S t r i ng [a r gs) {

Each element in a Map is actually
TWO objects-a !!ey and a value.
You can have duplicate values, but
NOT duplicate keys.

BashMap<String, Integer> scores = new Ba.ahMap<String, Integer> 0 ;

scores.put ("Kathy" / 42); A-- Use Plot() j'f>$~Cld 0+ ddO r
P t (" B t" 343)·"""" -L 1_1. Cl J Clnd now o-t l.Olor1escores. U er, , 11; WI<l.1 t.WO ClrQIo"" b (k I)

t(" Sk 1 " 420) J en ~y,va~ .scores .pu y er , ;

s ys t em. ou t . p r i nt ln (s co r es) ; ~
Sy s t em. out. p r i nt Ln (scores. get ("Bert") l; The dO 1\ 1.

~ ""e~od wkes a key, (ll<d
t'etuhlS the val~ (in this ~S(:, an h"~9t\").

you are here 567

generic types

Fit1all't back to get1erics
Remember earlier in the chapter we talked about how methods
that take arguments with generic types can be ... weird. And we
mean weird In the polymorphic sense. If things start to feel
strange here.just keep going-It takes a few pages to really tell
the whole story.

We'll start with a reminder on how arrayarguments work,
polymorphically, and then look at doing the same thing with
generic lists. The code below compiles and runs without errors:

Here's how It works with regular arrays:

import java.util .*;

If a method argument is an array
of Animals, it will also take an
array of any Animal subtype.

In other words, if a method is
declared as:

void loo(AnimalU a) { }

Assuming Dog extends Animal,
you are free to call both:

loo(anAnimalArray);
foo(aDogArraY)i

D~tlat'"e ,a"d tl'"~t.e a D~ attay,
t.hat holds 0,.,1~ Do¥ (the t.o",~il~t'"

wo,,'t. Itt yo... "",-1:. a Cat. i,.,) ,

public void got) {
Animal[] animals ~ (new Dog() I new Cat(), new Dog()};
Dog[] dogs: (new Dog(), new Dog(), new Dog()};~

takeAnimals (animals) ;
takeAnimals (dogs) ; <, Call takeAr,i"'<llsO, l.lSi,,~ boih

~ an-a'! t'lfes 41 at'"~lohe,.,ts ,..

pUblic class TestGenericsl (
public static void main (String(] args)

new TestGenericsl() .go () ;

public void takeAnimals (Animal {]
for (Animal a: animals) (

a.eat () i

} »:.:

abstract class Anima..l (
void eat{) (

System .out.printin ("animal eating");

)
class Dog extends Animal

void bark() ()

I
class Cat extends Animal

void meow() { }

568 chapter 16

collections with generics

Using polYtMorphic argulMenfs at'd generics
So we saw how the whole thing worked with arrays, but will it work
the same way when we switch from an array to an ArrayList? Sounds
reasonable, doesn't it?

First, let's try it with only the Animal Arrayl.ist. We made just a few
changes to the go 0 method:

Passing In just ArrayList<Anlmal>

public void gel) t
ArrayLis t<Animal> animals = new ArrayLis t<Anima.l> () j

anima ls.add(new Dog());

an i mal s. add (new Cat (»); ~ We hdve t.o add Ol'\e af. d tie sinte theyc's
animals. add (new Dog ()) ; ShoYUkt S'ft'Ul)(like thet"c is .for drTay lY~or..

takeAnimals (animals) ; <-- This is t.he Sdme lode ~ • .,j. 1,,,
. ' e""cr '" l'IO'N {;.nc Cllli...als"

v.)Ylelbl, Yetm t.o illl An-ayLisi ilUwd o-f an-ely.

~ublic void takaAnimals(ArrayList<Animal> animals) (
for (Animal a: animals) (
a. eat () ;

I

Complies and runs just fine

you are here ~ 569

polymorphism and generics

~utwill it work with ArrayList<~og)?

Because of polymorphism. the compiler let us pass a Dog array
to a method with an Animal array argument. No problem. And
an ArrayList<Animal> can be passed to a method with an
ArrayList<AnimaI> argument. So the big question is, will the
ArrayList<Animal> argument accept an ArrayList<Dog>? If it works
with arrays, shouldn't it work here too?

Passing in just ArrayList<Dog>

publi c void go () (

Ar r a yLis t <An i ma l > an i ma l s ne w Ar r a yList "Ani ma l > {) ;
a ni ma ls . a dd (ne w Dog {)) ;
a n i mals . a dd (new Ca t {)) ;
a ni ma l s.add {new Dog {)) ;

t a keAn i ma l s (an i mals); ~ W k .1h I... - 'now 1: if inc w~ked. .fine.

ArrayList<Dog> dogs = new ArrayList<Dog>() ;
dogs. add (new Dog ()) ; A1ak, a Doc ltr'rayList. d d L

dogs. add (new Dog ()) i -J" pill; d tOlAr1e d~ ill .

takeAnimals (dogs) ; ~ Will this w I. .Lh .1
Qt"1<; now 1: a~ we thd~ed

.f...o... dl\ drYay to dll A-r.-dyList?

public v oid takeAnimals(ArrayList<Animal> animals) (
fo r (An i ma l a: animals) (
a . eat();

l

When we compile It:

%java TestGenerics3

TestGenerics3.java:21: takeAnimals(java.util.
ArrayList<Animal» in TestGenerics3 cannot be applied to
(java.util.ArrayList<Dog»

takeAnimals(dogs);

1 error

570 chapter 16

It looked so ri~ht,
bitt went so \t,fr"on~...

collections with generics

And rm supposed to be OK with this? That
totally screws my animal simulation where the

veterinary program takes a list of any type of
animal. so that a dog kennel can send a list of dogs,

and a cat kennel can send a list of cats... now
you're saying I can't do that if I use collections
instead of arrays?

What could happet1 if it were allowed...
Imagine the compiler let yOIl get away with that, It let you pass an
ArrayList<Dop to a method declared as:

publ i c void takeAnimals (ArrayList<Animal> animals) (
for (Animal a: animals) (

a.eat();

There's nothing in that method that woksharmful, right? After all,
the whol e point of polymorphism is that anything an Animal can
do (in this case, the eatj) method), a Dog can do as well. So what's
the problem with having the method call eat() on each ofthe Dog
references?

Nothing. Nothing at all.

There's nothing wrong with that code. But imagine thiscode instead:

public void takeAnimals (ArrayList<Animal> a nimals) (

animals. add (new Cat ()) ;.1 \J.k II W . L L k C L· L L
~ Ties.. eJl.\S"(. s"(.1ol. a <1"(. ITl wnCl"(.

Mj~ht be a D~-ol'lly ArrClyList-

So that's the problem. There's certainly nothing wrong with adding a
Cat to an ArrayList<An.imal>. and that's the whole point of having an
ArrayList of a supertype like Animal-so that you can put all types of
animals in a single Animal Arrayl.ist.

But if you passed a Dog Arrayl.ist-s-one meanllO hold ONLYDogs­
to this method that takes an Animal Arrayl.ist, then suddenly you'd
end lip with a Cat in the Dog list. The compiler knows that if it lets
you pass a Dog ArrayList into the method like that, someone could,
at runtime, add a Cat to your Dog list . So instead. the compiler just
won't let you take the risk .

Ifyou declare a method to take ArrayList<AnimaJ> it can take ONLY an
ArrayLiskAnimal>, notArrayList<.Dog> or ArrcryLi.rt<Cat>.

you are here ~ 571

arrays vs, ArrayUsls

public void got) {
Dog[] dogs: {new Dog() , new Dog(). new Dog()}:

takaAnima1s(d~

public void takeAniJDals (Animal [1 animals) (
animals [0] = new cat();

~ W~ pvt. a PI(W Celt. il'lto d D~ arra~. The
tc,..piley allowed it, beta\l1(it kl'lows that
't01A ",i~ht. have passed a Cdt. an"ely cfr Al'Iill'lal
arra't to the ,..et.hod, so to th~ to",pile\'" it
was possible that. -Chis was O~.

Let 's say you doadd a Cat to an array declared as Dog[l (an array that
was passed into a method argument declared as Animal[], which is a
perfectly legal assignment for arrays) .

Array types are checked again at
runtime, but collection type checks...
happen only when you compile-

Wait a minute ... if this is why they won't Ie.t
you pass a Dog ArrayList into a method that

takes an Animal ArrayList-to stop you from
possibly putting a Cat in what was actually a Dog list.
then why does it work with arrays? Don't you have
the same problem with arraysl Can't you still add

a Cat object to a Dog[) ?

It compiles, but when we run it:

Whew! At. leost the
JVNl stopftd it.

572 chapter 16

Wouldn't it be dreamy if there were
a way to still use polymorphic collection
types as method arguments, so that my
veterinary program could take Dog lists

and Cat Iist$? That way I could loop through
the lists and call their immunizeO method,
but it would still have to be safe so that you
couldn't add a Cat in to the Dog list. But I
guess that's just a fantasy...

generic wildcards

Wildcards to the rescue
It looks unusual, but there isa way to create a method argument that
can accept an ArrayList of any Animal subtype. The simplest way is to

use a wildcard-added to theJava language explicitly for this reason.

So now you're wondering, "What's the diffcrenc? Don't you have
the same problem as before? The method above isn't doing
anything dangerous-a-calling a method any Animal subtype is
guaranteed to have-but can't someone still change this to add a
Cat to the animals list, even though it's really an ArrayLisL<DOg>?
And since it's not checked again at runtime, how is this any
different from declaring it without the wildcard?"

And you'd be right for wondering. The answer is NO. When you
use the wildcard <?> in your declaration, the compiler won 't let
you do anything that adds to the listl

public void takeAnirnals (ArrayLiot<?
for/Animal a: animals) (

a .eat o .

extends Animal>

<..
animals) I

Re....e....bey, t.he keywoyd ([I!')(.te~ds"

here ""ear..s ei-chey t'llUl'Ids OR-·I....ple"'e"ts dt~el'ldi,,~ 0" t.he
tyye.~ i~ you wa"t. to take
al'l AttayList ot t'tfes that
i",~le",el'lt t.he Pd:. il'lUy~atel

yov.'d detlaye it as:

/tr-.,.ayList<? ~ul'lds Pd:>

574 chapte r 16

collections with generics

Alternate syntax for doing the salMe thing
You probably remember that when we looked at the sortf) method,
it used a generic type, but with an unusual format where the type
parameter was declared before the return type. It's just a different way
of declaring the type parameter, but the results are the same:

This:
public <T extends Animal> void takeThing(ArrayList<T> list)

Does the same thing as this:
public void takeThing(ArrayList<? extends Animal> list)

D:t1ere1lU"EH-? 0

UU}lJ ~uestI9ns

Q: Ifthey both do the same thing, why would you use
one over the other?

A.: It all depends on whether you want to use "T" some­
where else. For example, what if you want the method to
have two arguments-both of which are lists of a type that
extend Animal? In that case, it's more efficient to just declare
the type parameter once:

public <T extends Animal> void takeThing(ArrayList<T> one, ArrayList<T> two)

Instead of typing:

public void takeThing(ArrayList<? extends Animal> one,
ArrayList<? extends Animal> two)

you are here ~ 575

be the complier .exercise

BE the ~omri1er, advan~eJ
Your job Is to play complier and determine which of
these statements would compile. But some of thls
code wasn't covered in the chapter, so you need to
work out the answers based on what you DID learn,

applying the rrules" to these new situations. In
some cases, you might have to guess,but the
point is to come up with a reasonable answer
based on what you know so far.

(Note: assume that this code is within a legal classand
method.)

Compiles?

[JArrayList<Doq> dogsl : new ArrayList<Animal>()i

o ArrayList<Animal> animalsl = new ArrayList<DO<J> () i

o List<.Ani.mal> list = new ArrayList<Anima.l> () i

o ArrayList<Dog> dogs = new ArrayList<Doq> () ;

o ArrayList<Animal> animals = dogs i

o List<Dog> dogList : dogs i

o ArrayList<Object> objects = new ArrayList<Object>();

o List<Object> objList = objects;

o ArrayList<Object> objs = new ArrayList<oog>0 ;

576 chapter 16

}

public static void main(String [)
new SortHountain().go():

collectlons with generics

import java. util. * ; &lUfion 1;tl the ~everge

public class SortMountains { Engineer" sh.arren ~reise,

LinkedList(Mountain> mtn new LinkedList(Mountain> ();

class NarneCompare Implements Comparator <Mountain> {
public lnt compare(Mountain one, Mountain two) {

return one.name. compareTo(two. name):

}

class BeightCompare Implements Comparator <Mountain> {
public int compare(Mountain one, Mountain two) {

return (two. height - one. height) ;

~ . " '"~ ~,;.~" I;," ;,args) (D"\c! 'to\> "of)l.t "na" e ;)")
;~ D~C~NDIN~.se~lIC>l.t? "

}

public void go() {
mtn.add(new Mountain(ULongs U, 14255»:
mtn.add(new Mountain(UElbert'", 14433);
mtn.add(new Mountain(UMaroon u

, 14156»;
mtn.add(new Mountain(UCastle U

, 14265»:

System.out.print1n(Uas entered:\n'" + mtn);
NarneCompare nc = new NarneCompare();

Collectlons.sort(mtn. nc).
System.out.println(Uby name:\n'" + mtn);
HeightCompare hc = new HeightCompare()i

Collectlons.sort(mtn, he);
Systern.out.prlnt1n(Uby height:\n H + mtn);

}

}

::lass Mountain {

String name:

Int height;

Mountaln(String n, Int h) {

name =n;

height = hi
}

public String toString() {

return name + + height;
}

Output:

FlIe Edit Window Hel 1l1lsOne'sFor8ob

'l;java Sortl'buntains

as entered:

[Longs 14255, Elbert 14433. Maroon 14156, Castle 14265)

by nan'e:

[Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]

by height:

(Elbert 14433, Castle 14265, Longs 14255, Maroon 14156)

you are here. 577

f111-in-the-blank solution

Possible Answers:

Comparator,

Comparable,

compareTo()J

compare(),

yes,

no

Given the following compilable statement:

Collections.sort(myArrayList);

L What must the class of the objects stared in myArrayList implement? Comparable

2. What method must the class of the objects stored in myArrayList implement? compareTo()

3. Can the class of the objects stored in myArrayList implement both
Comparator AND Comparable? yes

---"------

Given the following cornpilable statement:

Collections .sort(myArrayList, myCompare) i

4. Can the class of the objects stored in myArrayList implement Comparable?---'V'-e_S _

5. Can the class of the objects stored in myArrayLis t implement Campara tor?--'y'-e5 _

6. Must the class of the objects stored in myArrayLis t implement Comparable? no
- ------

7. Must the class of the objects stored in myArrayList implement Compa r a t.o rj', ---!..lnox- _

8. What must the class of the myCompare object implement?

9. What method must the class of the myCompare object implement?

578 chapter 16

Comporator

comparee)

collections with generics

Compiles?

[JArrayList<oog> dogsl = new ArrayList<AnimAl>();

o ArrayList<Animal> anim&ld ::: new ArrayList<Doq> () ;

)if List<Animal> list ::: new ArrayList<Anima.l> () j

o ArrayList<Dog> dogs ::: new ArrayList<Doq> () ;

o ArrayList<Animal> animals = dogs;

J!I List<Dog> dogList = dogs;

~ArraYList<Object>objects = new ArrayList<Object>();

~ List<Object> ObjList = objects;

o ArrayList<Object> objs = new ArrayList<Dog>() ;

you are here ~ 579

