
this is a new chapter 197

8 interfaces and abstract classes

Inheritance is just the beginning.

Serious Polymorphism

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

198 chapter 8

Animal

Feline

roam()

Canine

size
picture
food
prey

Lion

size
picture
food
prey

Tiger
size
picture
food
prey

Cat

size
picture
food
prey

Wolf

size
picture
food
prey

Dog

size
picture
food
prey

Hippo

makeNoise()
eat()

roam()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

designing with inheritance

Did we forget about something

when we designed this?

interfaces and polymorphism

you are here4 199

Wolf aWolf = new Wolf();

We know we can say:

A Wolf reference to a
Wolf object. Wolf

aWolf
 Wolf object

These two are the same type.

Animal aHippo = new Hippo();

And we know we can say:

Animal reference to
a Hippo object.

Animal

aHippo
Hippo object

These two are NOT the same type.

Animal anim = new Animal();

But here’s where it gets weird:

Animal reference to
an Animal object.

Animal

anim
Animal object

These two are the same type, but...

what the heck does an Animal object look like?

?

200 chapter 8

scary objects

What does a new Animal() object
look like?

when objects go bad

new
abstract

abstract

abstract class Canine extends Animal {

 public void roam() { }

}

What are the instance variable values?

Some classes just should not be
instantiated!

interfaces and polymorphism

you are here4 201

The compiler won’t let you instantiate

an abstract class

abstract public class Canine extends Animal
{

 public void roam() { }

}

public class MakeCanine {

 public void go() {

 Canine c;

 c = new Dog();

 c = new Canine();

 c.roam();

 }

}

File Edit Window Help BeamMeUp

% javac MakeCanine.java

MakeCanine.java:5: Canine is abstract;
cannot be instantiated
 c = new Canine();
 ^
1 error

class Canine is marked abstract,so the compiler will NOT let you do this.

An abstract class has virtually* no use, no value, no
purpose in life, unless it is extended.

With an abstract class, the guys doing the work at runtime
are instances of a subclass of your abstract class.

This is OK, because
you can a

lways assign

a subclass
 object t

o a superc
lass refer

ence,

even if th
e supercla

ss is abstr
act.

*There is an exception to this—an abstract class can
have static members (see chapter 10).

202 chapter 8

Abstract vs. Concrete

Tiger

Animal

Canine

abstract

abstract

abstract

Hippo

concrete

Dog

Wolf

concrete
Cat

Lion

concrete

Hmmmm... do I
feel like red or
white tonight?

 Hmmmm... the Camelot
Vineyards 1997 Pinot
Noir was a pretty
decent year...

abstract or concrete?

concrete

concrete

abstract and concrete classes

Feline

concrete

interfaces and polymorphism

you are here4 203

Abstract methods

An abstract method has no body!

public abstract void eat();

No method body !

End it with a semicolon.

If you declare an abstract method, you MUST
mark the class abstract as well. You can’t have
an abstract method in a non-abstract class.

there are noDumb Questions

It really sucks to
be an abstract method.
You don’t have a body.

204 chapter 8

you must implement abstract methods

You MUST implement all abstract methods

Implementing an abstract
method is just like
overriding a method.

 I have wonderful news,
mother. Joe finally implemented
all his abstract methods! Now
everything is working just the
way we planned...

interfaces and polymorphism

you are here4 205

Sharpen your pencil

golf course simulation tree nursery application

 architect application

satellite photo application

 coaching application

206 chapter 8

polymorphism examples

Polymorphism in action

public class MyDogList {

 private Dog [] dogs = new Dog[5];

 private int nextIndex = 0;

 public void add(Dog d) {

 if (nextIndex < dogs.length) {

 dogs[nextIndex] = d;

 System.out.println(“Dog added at “ + nextIndex);

 nextIndex++;

 }
 }
}

MyDogList

Dog[] dogs
int nextIndex

add(Dog d)

Use a plain o
ld Dog array

behind the
scenes.

We’ll increment this each

time a new Dog is added.

If we’re not already at
 the limit

of the dogs array,
 add the Dog

and print a message.

increment, to give us the next index to use

Building our own Dog-specifi c list
(Perhaps the world’s worst attempt at making our
own ArrayList kind of class, from scratch.)

1

interfaces and polymorphism

you are here4 207

public class MyAnimalList {

 private Animal[] animals = new Animal[5];
 private int nextIndex = 0;

 public void add(Animal a) {
 if (nextIndex < animals.length) {
 animals[nextIndex] = a;
 System.out.println(“Animal added at “ + nextIndex);
 nextIndex++;

 }
 }
}

MyAnimalList

Animal[] animals
int nextIndex

add(Animal a)

Building our own Animal-specifi c list

2

Uh-oh, now we need to keep Cats, too.

public class AnimalTestDrive{
 public static void main (String[] args) {
 MyAnimalList list = new MyAnimalList();
 Dog a = new Dog();
 Cat c = new Cat();
 list.add(a);
 list.add(c);
 }
}
 File Edit Window Help Harm

% java AnimalTestDrive

Animal added at 0

Animal added at 1

Don’t panic.
We’re not making a

new Animal object; w
e’re making a

new array obje
ct, of type

 Animal.

(Remember, you ca
nnot make a new

instance of
 an abstrac

t type, but

you CAN make an arra
y object

declared to
 HOLD that type

.)

208 chapter 8

Every class in Java extends
class Object.

3

What about non-Animals? Why not make

a class generic enough to take anything?

Many of the ArrayList methods use the

ultimate polymorphic type, Object. Since

every class in Java is a subclass
 of Object,

these ArrayList methods can take
 anything!

(Note: as of Java 5.0, the get() and
add()

methods actually
look a little dif

ferent

than the ones s
hown here, but for

now this

is the way to think abo
ut it. We’ll get into

the full story a
 little later.)

the ultimate superclass: Object

(These are just
 a few of the

methods in ArrayList...there

are many more.)

public class Dog extends Object { }

Any class that doesn’t explicitly extend another
class, implicitly extends Object.

interfaces and polymorphism

you are here4 209

So what’s in this ultra-super-megaclass Object?

Object

boolean equals()

Class getClass()

int hashCode()

String toString()

Just SOME of the methods

of class Object.

Dog a = new Dog();
Cat c = new Cat();

if (a.equals(c)) {
 System.out.println(“true”);
} else {
 System.out.println(“false”);
}

equals(Object o)1

Cat c = new Cat();
System.out.println(c.getClass());

getClass()2

File Edit Window Help Stop

% java TestObject

false

File Edit Window Help Faint

% java TestObject

class Cat

Cat c = new Cat();
System.out.println(c.hashCode());

hashCode()3

File Edit Window Help Drop

% java TestObject

8202111

Cat c = new Cat();
System.out.println(c.toString());

toString()4

File Edit Window Help LapseIntoComa

% java TestObject

Cat@7d277f

Prints out a h
ashcode

for the obje
ct (for

now, think of it
 as a

unique ID).

Tells you if two objects are

considered ‘equal’ (we’ll talk

about what ‘equal’ really

means in appendix B).

Gives you back the

class that object was

instantiated from.

Prints out a S
tring message

with the name of the cla
ss

and some other number we

rarely care a
bout.

YourClassHere Every class you write inherits all the
methods of class Object. The classes
you’ve written inherited methods you
didn’t even know you had.

210 chapter 8

there are noDumb Questions

final

Object o = new Ferrari();
o.goFast(); //Not legal!

Object and abstract classes

interfaces and polymorphism

you are here4 211

ArrayList<Dog> myDogArrayList = new ArrayList<Dog>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

Dog d = myDogArrayList.get(0);

ArrayList<Object> myDogArrayList = new ArrayList<Object>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

Dog d = myDogArrayList.get(0);

Using polymorphic references of type Object has a price...

Objects come out of
an ArrayList<Object>
acting like they’re
generic instances
of class Object. The
Compiler cannot
assume the object
that comes out is of
any type other than
Object.

ArrayList<Object>

The objects go IN
as SoccerBall,
Fish, Guitar, and
Car.

Object Object Object Object

Make an ArrayList declared

to hold Dog objects.

Make a Dog.

Add the Dog to the list.

Assign the Dog from the list to a new Dog reference variable.

(Think of it as though t
he get() method declares a Dog return

type because you used
ArrayList<Dog>.)

Make an ArrayList declared

to hold any type of O
bject.

Make a Dog.

Add the Dog to the list.
(These two steps are the same.)

NO!! Won’t compile!! When you use ArrayList<Object>, the get() method
returns type Object. The Compiler knows only that the object inherits from
Object (somewhere in its inheritance tree) but it doesn’t know it’s a Dog !!

d = md = myD= m

But they come
OUT as though
they were of type
Object.

212 chapter 8

 public void go() {

 Dog aDog = new Dog();

 Object sameDog = getObject(aDog);

 }

 public Object getObject(Object o) {

 return o;

 }

 public void go() {

 Dog aDog = new Dog();

 Dog sameDog = getObject(aDog);

 }

 public Object getObject(Object o) {

 return o;

 }

When a Dog won’t act like a Dog

This line w
on’t work! Even thoug

h the method

returned
 a refere

nce to th
e very sa

me Dog the

argument refer
red to, t

he return
 type Object

means the
compiler won’t let y

ou assign
the retur

ned

reference
 to anyth

ing but O
bject.

File Edit Window Help Remember

DogPolyTest.java:10: incompatible types

found : java.lang.Object

required: Dog

 Dog sameDog = takeObjects(aDog);
1 error ^

The compiler doesn’t know that the

thing returned from the method is

actually a Dog, so it won’t let you

assign it to a Dog reference. (You’ll

see why on the next page.)

BAD

This works (although it may not be very
useful, as you’ll see in a moment) because you
can assign ANYTHING to a reference of type
Object, since every class passes the IS-A test
for Object. Every object in Java is an instance
of type Object, because every class in Java has
Object at the top of its inheritance tree.

GOOD

L

J

I don’t know what you’re
talking about. Sit? Stay?
bark? Hmmmm... I don’t

recall knowing those.

When a Dog loses its Dogness

= = g = g= g

We’re returning a ref
erence to the same Dog, but as a

return type of Object. This part is perfectl
y legal. Note:

this is similar to how the get() method works when you have

an ArrayList<Object> rather than
 an ArrayList<Dog>.

interfaces and polymorphism

you are here4 213

Objects don’t bark.

Object o = al.get(index);

int i = o.hashCode();

o.bark();

This is fi
ne. Class Object ha

s a

hashCode() m
ethod, s

o you ca
n call

that method o
n ANY object

in Java.

Can’t do this!! The Object class has no idea what
it means to bark(). Even though YOU know it’s
really a Dog at that index, the compiler doesn’t..

Object

 o
 Dog object

When you get an object reference from
an ArrayList<Object> (or any method
that declares Object as the return type),
it comes back as a polymorphic reference
type of Object. So you have an Object
reference to (in this case) a Dog instance.

Won’t compile!

The compiler decides whether
you can call a method based
on the reference type, not the
actual object type.

Object

 o
 Dog object

Object

equals()

getClass()

hashCode()

toString()

The method you’re calling on a
reference MUST be in the class of
that reference type. Doesn’t matter
what the actual object is.

o.hashCode();

The “o” reference was declared as type
Object, so you can call methods only if
those methods are in class Object..

o.bo.bao.b

hashCode()

214 chapter 8

new Snowboard()

Get in touch with your inner Object.

There is only ONE object on the heap here. A Snowboard
object. But it contains both the Snowboard class parts of
itself and the Object class parts of itself.

objects are Objects

Object

equals()

getClass()

hashCode()

toString()

Snowboard

equals()

getClass()

hashCode()

toString()

turn()

shred()

getAir()

loseControl()

Snowboard inherits methods
from superclass Object, and
adds four more.

to
St

rin
g() hashCode()

getA
ir()

turn()

sh
re

d()

equals()
getClass

()

loseContro
l(

)

Object

Snowboard

Snowboard object

He treats me like an
Object. But I can do so

much more...if only he’d see
me for what I really am.

A single object
on the heap.

interfaces and polymorphism

you are here4 215

Snowboard s = new Snowboard();
Object o = s;

to
St

rin
g() hashCode()

getA
ir()

turn()

sh
re

d()

equals()
getClass

()

loseContro
l(

)
Object

Snowboard

The Object reference can see only the
Object parts of the Snowboard object.
It can access only the methods of class
Object. It has fewer buttons than the
Snowboard remote control.

o

s

The Snowboard remote control
(reference) has more buttons than
an Object remote control. The
Snowboard remote can see the full
Snowboardness of the Snowboard
object. It can access all the methods
in Snowboard, including both the
inherited Object methods and the
methods from class Snowboard.

Snowboard object

‘Polymorphism’ means
‘many forms’.

You can treat a Snowboard as a
Snowboard or as an Object.

When you put
an object in an
ArrayList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.

When you get a
reference from an
ArrayList<Object>, the
reference is always of
type Object.

That means you get an
Object remote control.

fewer methods here...

216 chapter 8

Wait a minute... what good
is a Dog if it comes out of an

ArrayList<Object> and it can’t do
any Dog things? There’s gotta be a

way to get the Dog back to a state
of Dogness...

I hope it doesn’t hurt.
And what’s so wrong with

staying an Object? OK, I can’t
fetch, sure, but I can give you

a real nice hashcode.

casting objects

Casting an object reference
back to its real type.

Object

 o

Object o = al.get(index);
Dog d = (Dog) o;
d.roam();

Object

 o Dog object

Dog

d

instanceof

 if (o instanceof Dog) {
 Dog d = (Dog) o;
 }

 Dog object

cast the Object back
to

a Dog we know is there.

Cast the so-called ‘Object’ (but
we know he’s actually a Dog) to
type Dog, so that you can treat
him like the Dog he really is.

interfaces and polymorphism

you are here4 217

Think of the public methods in your class as
your contract, your promise to the outside
world about the things you can do.

Account

debit(double amt)

credit(double amt)

double getBalance()

So now you’ve seen how much Java
cares about the methods in the
class of the reference variable.

You can call a method on an object only if
the class of the reference variable has that
method.

218 chapter 8

What if you need to change

the contract?

Think about what YOU would do if YOU were
the Dog class programmer and needed to
modify the Dog so that it could do Pet things,
too. We know that simply adding new Pet be-
haviors (methods) to the Dog class will work,
and won’t break anyone else’s code.

But... this is a PetShop program. It has more
than just Dogs! And what if someone wants
to use your Dog class for a program that has
wild Dogs? What do you think your options
might be, and without worrying about how
Java handles things, just try to imagine how
you’d like to solve the problem of modifying
some of your Animal classes to include Pet
behaviors.

Stop right now and think about it,
before you look at the next page where we
begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories)

modifying a class tree

interfaces and polymorphism

you are here4 219

Let’s explore some design options

for reusing some of our existing

classes in a PetShop program.

We take the easy path, and put pet
methods in class Animal.

1 Option one

All the Animals will instantly inherit
the pet behaviors. We won’t have to
touch the existing Animal subclasses
at all, and any Animal subclasses
created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets

Pros:

So... when was the last time you
saw a Hippo at a pet shop? Lion?
Wolf? Could be dangerous to give
non-pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs
and Cats tend to imple-
ment pet behaviors
VERY differently.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put a
ll the

 pet

method
 code

 up h
ere

for i
nheri

tance
.

220 chapter 8

We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

2 Option two

That would give us all the benefi ts of Option One, but with-
out the drawback of having non-pet Animals running around
with pet methods (like beFriendly()). All Animal classes
would have the method (because it’s in class Animal), but
because it’s abstract the non-pet Animal classes won’t
inherit any functionality. All classes MUST override the
methods, but they can make the methods “do-nothings”.

Pros:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the fi rst concrete subclass
down the inheritance tree.) What a waste of time!
You have to sit there and type in each and every
pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things
(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet
class would be announcing to the
world that it, too, has those
pet methods, even though
the methods wouldn’t
actually DO anything
when called.

This approach doesn’t
look good at all. It just
seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to
ALL Animal subclasses.

Cons:

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

put a
ll the

 pet
method

s

up he
re, bu

t with n
o

implementat
ions.

Make a
ll

pet m
ethod

s abs
tract

.

Ask me to be friendly.
No, seriously... ask me.

I have the method.

modifying existing classes

interfaces and polymorphism

you are here4 221

Put the pet methods ONLY in the
classes where they belong.

3 Option three

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can
implement the methods and Cats can implement the
methods, but nobody else has to know about them.

Pros:

Two Big Problems with this approach. First off, you’d
have to agree to a protocol, and all programmers of
pet Animal classes now and in the future would have
to KNOW about the protocol. By protocol, we mean
the exact methods that we’ve decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn’t in a contract,
the compiler has no way to check you to see if you’ve
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and fi nd that not all of them work
quite right.

And second, you don’t get to use
polymorphism for the pet methods.
Every class that needs to use
pet behaviors would have to
know about each and every
class! In other words,
you can’t use Animal
as the polymorphic
type now, because the
compiler won’t let you call
a Pet method on an Animal
reference (even if it’s really a
Dog object) because class Animal
doesn’t have the method.

Cons:

Put the pe
t methods ONLY in the

Animal classes
that can

be pets,

instead of
 in Animal.

Tiger

Animal

Canine

Hippo

Dog

Wolf
Cat

Lion

Feline

222 chapter 8

So what we REALLY need is:

Æ A way to have pet behavior in just the pet classes

Æ A way to guarantee that all pet classes have all of the same
methods defined (same name, same arguments, same return
types, no missing methods, etc.), without having to cross your
fingers and hope all the programmers get it right.

Æ A way to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class.

Tiger

Animal

Canine

Hippo

Dog

WolfCat Lion

Feline

Pet

It looks like we need TWO
superclasses at the top

We make a
 new abst

ract

super
class

called
 Pet, a

nd

give i
t all

the p
et m

ethod
s.

Cat now extends

from both Animal

AND Pet, so it g
ets

the methods of
both.

Dog extends both
Pet and Animal

The non-pet Animals

don’t have any inherited

Pet stuff.

multiple inheritance?

interfaces and polymorphism

you are here4 223

It’s called “multiple inheritance”
and it can be a Really Bad Thing.

That is, if it were possible to do in Java.

But it isn’t, because multiple inheritance has a problem
known as The Deadly Diamond of Death.

There’s just one problem with the “two superclasses” approach...

CDBurner

burn()

DVDBurner

DigitalRecorder
int i

burn()

burn()

ComboDrive

CDBurner and
 DVDBurner bot

h

inherit f
rom DigitalRecorder,

and both
 override

 the burn
()

method. B
oth inher

it the “i
”

instance
variable.

Deadly Diamond of Death

Problem with multiple inheritance.
Which burn() method runs when you
call burn() on the ComboDrive?

Imagine t
hat the

 “i” inst
ance

variable
 is used

 by bot
h CDBurner

and DVDBurner, w
ith dif

ferent

values.
What hap

pens if
 ComboDrive

needs t
o use b

oth val
ues of

“i”?

224 chapter 8

Interface to the rescue!

Pet

abstract void beFriendly();

abstract void play();

A Java interface is like a
100% pure abstract class.

All methods in
an interfa

ce are

abstract,
so any clas

s that IS-
A

Pet MUST implement (i.e. ov
erride)

the methods of
Pet.

interface

To DEFINE an interface:

To IMPLEMENT an interface:

public interface Pet {...}

public class Dog extends Canine implements Pet {...}

Use the keyword “interface” instead of “class”

Use the keyword “implements” follow
ed

by the inter
face name. Note that

when you implement an inter
face you

still get to
extend a cla

ss

interfaces

interfaces and polymorphism

you are here4 225

Making and Implementing

the Pet interface

public interface Pet {

 public abstract void beFriendly();

 public abstract void play();

}

public class Dog extends Canine implements Pet {

 public void beFriendly() {...}

 public void play() {..}

 public void roam() {...}

 public void eat() {...}

}

All interfac
e methods are

abstract,
so they M

UST end in

semicolons. Remember, they
have

no body!

You say ‘int
erface’ ins

tead

of ‘class’ h
ere

You say ‘implements’

followed by the name

of the interfa
ce.

You SAID you are a Pet, so you MUST
implement the Pet methods. It’s your
contract. Notice the curly braces
instead of semicolons.

Dog IS-A Animal

and Dog IS-A Pet

These are just normal overriding methods.

there are noDumb Questions

interface methods are implicitly public and
abstract, so typing in ‘public’ and ‘abstract’
is optional (in fact, it’s not considered ‘good
style’ to type the words in, but we did here
just to reinforce it, and because we’ve never
been slaves to fashion...)

226 chapter 8

Classes from different inheritance trees
can implement the same interface.

Tiger

Animal

Canine

Hippo

Dog

WolfCat Lion

Feline

Pet

RoboDog

Robot

Agent

Class RoboDog doesn’t come from the Animal inheritance tree, but it still gets to be a Pet!

Better still, a class can implement
multiple interfaces!

public class Dog extends Animal implements
Pet, Saveable, Paintable { ... }

interface polymorphism

interfaces and polymorphism

you are here4 227

Make it Stick

How do you know whether to make a
class, a subclass, an abstract class, or
an interface?

 Make a class that doesn’t extend anything
(other than Object) when your new class doesn’t
pass the IS-A test for any other type.

 Make a subclass (in other words, extend a class)
only when you need to make a more specifi c
version of a class and need to override or add
new behaviors.

 Use an abstract class when you want to defi ne
a template for a group of subclasses, and you
have at least some implementation code that all
subclasses could use. Make the class abstract
when you want to guarantee that nobody can
make objects of that type.

 Use an interface when you want to defi ne a role
that other classes can play, regardless of where
those classes are in the inheritance tree.

228 chapter 8

class BuzzwordsReport extends Report {

 void runReport() {
 super.runReport();
 buzzwordCompliance();
 printReport();

 }
 void buzzwordCompliance() {...}
}

using super

Invoking the superclass
version of a method

super.runReport();

BuzzwordReport

subclass
method (

override
s

the supe
rclass ve

rsion)

super.runReport();

The super keyword is really a reference
to the superclass portion of an object.
When subclass code uses super, as in
super.runReport(), the superclass version of
the method will run.

abstract class Report {
 void runReport() {
 // set-up report
 }
 void printReport() {
 // generic printing
 }
}

Report

runReport()
printReport()

runReport()
buzzwordCompliance() superclass methods

(including the ov
erridden

runReport()

A reference to the subclass object
(BuzzwordReport) will always call
the subclass version of an overridden
method. That’s polymorphism.
But the subclass code can call
super.runReport() to invoke the
superclass version.

If method code inside a
BuzzwordReport subclass says:

the runReport() method inside
the superclass Report will run

superclas
s version

 of the

method do
es important

stuff

that sub
classes co

uld use

call super
class vers

ion,

then com
e back an

d

do some subclass
-

specific s
tuff

interfaces and polymorphism

you are here4 229

 BULLET POINTS

 When you don’t want a class to be instantiated (in other words, you don’t
want anyone to make a new object of that class type) mark the class with the
abstract keyword.

 An abstract class can have both abstract and non-abstract methods.

 If a class has even one abstract method, the class must be marked abstract.

 An abstract method has no body, and the declaration ends with a semicolon (no
curly braces).

 All abstract methods must be implemented in the first concrete subclass in the
inheritance tree.

 Every class in Java is either a direct or indirect subclass of class Object (java.lang.
Object).

 Methods can be declared with Object arguments and/or return types.

 You can call methods on an object only if the methods are in the class (or interface)
used as the reference variable type, regardless of the actual object type. So, a
reference variable of type Object can be used only to call methods defined in class
Object, regardless of the type of the object to which the reference refers.

 A reference variable of type Object can’t be assigned to any other reference type
without a cast. A cast can be used to assign a reference variable of one type to a
reference variable of a subtype, but at runtime the cast will fail if the object on the
heap is NOT of a type compatible with the cast.
Example: Dog d = (Dog) x.getObject(aDog);

 All objects come out of an ArrayList<Object> as type Object (meaning, they can be
referenced only by an Object reference variable, unless you use a cast).

 Multiple inheritance is not allowed in Java, because of the problems associated with
the “Deadly Diamond of Death”. That means you can extend only one class (i.e. you
can have only one immediate superclass).

 An interface is like a 100% pure abstract class. It defines only abstract methods.

 Create an interface using the interface keyword instead of the word class.

 Implement an interface using the keyword implements
Example: Dog implements Pet

 Your class can implement multiple interfaces.

 A class that implements an interface must implement all the methods of the
interface, since all interface methods are implicitly public and abstract.

 To invoke the superclass version of a method from a subclass that’s overridden the
method, use the super keyword. Example: super.runReport();

230 chapter 8

1)

2)

3)

4)

5)

Given:

public interface Foo { }

public class Bar implements Foo { }

public interface Vinn { }

public abstract class Vout implements Vinn { }

public abstract class Muffie implements Whuffie { }

public class Fluffie extends Muffie { }

public interface Whuffie { }

public class Zoop { }

public class Boop extends Zoop { }

public class Goop extends Boop { }

public class Gamma extends Delta implements Epsilon { }

public interface Epsilon { }

public interface Beta { }

public class Alpha extends Gamma implements Beta { }

public class Delta { }

What’s the Picture ?

(interface)
Foo

Bar

1)

2)

3)

4)

5)

exercise: What’s the Picture?

interfaces and polymorphism

you are here4 231

Click

Top

Fee

Clack

Tip

Fi

Foo

Bar

Baz

Zeta

Beta

Alpha

Delta

1

2

3

4

5

Given:
What’s the Declaration ?

1)

2)

3)

4)

5)

public class Click { }

public class Clack extends Click { }

Clack

Clack

Clack

 KEY

232 chapter 8

File Edit Window Help BeAfraid

%java ______________

5 class Acts

7 class Clowns

________Of76

____________ Nose {

}

abstract class Picasso implements ______{

 return 7;

 }

}

class _________ ________ __________ { }

class _________ ________ __________ {

 return 5;

 }

}

public ___________ ________ extends Clowns {

 public static void main(String [] args) {

 i[0] = new __________

 i[1] = new __________

 i[2] = new __________

 for(int x = 0; x < 3; x++) {

 System.out.println(__________________

 + “ “ + _______.getClass());

 }

 }

}

Pool
Puzzle

puzzle: Pool Puzzle

interfaces and polymorphism

you are here4 233

(interface)
Vinn

public abstract class Top { }

public class Tip extends Top { }

What’s the Declaration ?

What’s the Picture ?

2)
3)

4)

5)

Fluffie

(interface)
Epsilon

(interface)
Beta

(interface)
Whuffie

Vout

Muffie

Boop

Goop

Alpha

Zoop

Delta

Gamma

public abstract class Fee { }

public abstract class Fi extends Fee { }

public interface Foo { }

public class Bar implements Foo { }

public class Baz extends Bar { }

public interface Zeta { }

public class Alpha implements Zeta { }

public interface Beta { }

public class Delta extends Alpha implements Beta { }

2)

3)

4)

5)

234 chapter 8

public class Of76 extends Clowns {
 public static void main(String [] args) {

 Nose [] i = new Nose [3] ;
 i[0] = new Acts() ;
 i[1] = new Clowns() ;
 i[2] = new Of76() ;
 for(int x = 0; x < 3; x++) {

 System.out.println(i [x] . iMethod()
 + “ “ + i [x].getClass());
 }

 }

}

File Edit Window Help KillTheMime

%java Of76
5 class Acts

7 class Clowns

7 class Of76

interface Nose {
 public int iMethod() ;
}

abstract class Picasso implements Nose {
 public int iMethod() {
 return 7;

 }

}

class Clowns extends Picasso { }

class Acts extends Picasso {
 public int iMethod() {
 return 5;

 }

}

puzzle solution

