
4 methods use Instance variables

How Objects Behave

State affects behavior, behavior affects state. We know that objects

have state and behavior, represented by Instance variables and methods. But until now, we

haven't looked at how state and behavior are related .We already know that each instance of a

class (each object of a particular type) can have its own unique values for its instance variables.

Dog A can have a name "Fido" and a weight of 70 pounds. Dog B Is"Killer" and weighs 9 pounds.

And If the Dog class has a method makeNoiseO,well , don't you think a 70-pound dog barks a

bit deeper than the little 9-pounder7 (Assuming that annoying ylppy sound can be considered

a bark.) Fortunately, that's the whole point of an object-It has behavior that acts on its state. In

other words, methods use /nstllnn vllt/llb/Ift values . Like,"if dog Is less than 14 pounds, make

ylppy sound, else..." or "Increase weight by 5~ Let's go chllnge some stat«,

this Is a new chapter 71

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

objects have state and behavior

RetMetMber: a class describes what an
object knows and what at1 object does

Song

83 .play () ;

does

kt10ws

I
C-illi~ playO 0l'I this iflSta~te
will t4lASe "My W;Y:: to play.

(blAt PI~ the ~r.ab-a ~d

Song

title
artist

setTItleO
setArtlstO
playO

lt1stat1ce
variables
(state)

'Methods
(behavior)

A class is the blueprint for an object. When you
write a class, you're describing how theJVM
should make an object of that type. You already
know that every object of that type can have
different instancevariable values. But what about
the methods?

}

Song t2 = new Song();

t2.setArtist("Travis");

Ca" every object of that type have dlfferettt
lMethod behavior?
Well... sort cif.*
Every instance of a particular class has the same
methods, but the methods can behave differently
based on the value of the instance variables.

The Song class has two instance variables, title
and artist. The playO method plays a song. but
the instance you call playO on will play the song
represented by the value of the titleinstance
variable for that instance. So, ifyou call the playO
method on one instance you'll hear the song
"Politik", while another instance plays "Darkstar",
The method code, however, is the same.

void pla.y () {

soundPlayer.playSound(title);

s3 . setTi tie ("My Way") ;

t2.setTitle("Sing");

Song s3 = new Song();

s3.sstArtist("Sex Pistols");

·Yes. another stunningly clearanswerl

72 chapter 4

methods use instance variables

System.out.println("Yip! Yip!-);

~: = s s DogTestDrive {

Dog

size
name

bark()

Dog (

s i ze ;

esize affects the bark

_:'0 ba r k () {

:.f (size> 60)

System .out.println("Wooof! Wooof!"};

el s e if (size> 14) {

System ,out.println("RUff! Ruff!");

else (

public static void main (String! J args) {

Dog one = new Dog();

one.size = 70;

Dog two = new Dog();

two ,size = 8;

;;: =':' ng name;

AtlD3cIJ Dog's bark is different from a big Dog 's bark.

og class has an instance variable size, that the
me thod uses to decide what kind of bark sound

Dog three = new Dog();

three.size = 35;

one. ba rk () ;

two.bark () ;

three.bark/);

~

~java DogTestDrive

Wooof! Wooof I

'lip! Yip!

Ruff! Ruff!

you are here. 73

method parameters

You can send things to a tttethod
Just as you expect from any programming language, you aU1 passvalues into
your methods. You might, for example, want to tell a Dog object how many
times to bark by calling:

d.bark(3) ;

Depending on your programming background and personal preferences,
youmight use the term arguments or perhaps paramet.ers for the values passed
in to a method. Although there emformal computer science distinctions that
people who wear lab coats and who will almost certainly not read this book.
make. we have bigger fish to fry in this book. So yuucan call them whatever
you like (arguments, donuts, hairballs, etc.) but we're doing it like this:

A method~ parameters. A caller passes arguments.

Arguments are the things you pass into the methods. An argument (a value
like 2, "Faa", or a reference to a Dog) lands face-down into a... wait for it..
parameter. And a parameter is nothing more than a local variable. A variable
with a type and a name, that can be used inside the body of the method

But here's the"important part: If a method takes a parameter, you mustpass
it something. And that something must be a value of the appropriate type.

O Call the bark method on the Dog refer­
ence, and pass in the value 3 (as the
argument to the method).

Dog d = new Dog() ;

d.bark(3) ;
~aY'~~",e~t.

A The bits representing the int
W value 3 are delivered into the

bark method.

System.out.println("ruff");

numOfBarks = numOfBarks - 1;

A The bits land in the numOfBarks
V parameter (an int-stzec variable).

P~,"d_~," l:>''\.
~ in

void bark (int numO arks)

while (numOfBarks > 0)

{

{ O Use the numOfBarks
parameter as a variable in
the method code.

}

}

74 chapter 4

methods use instance variables

You ca., get thi.,gs backfrottt alMethod.
ods can return values. Every method is declared with a return

. but until now we've made all ofour methods with a void
type, which means they don't give anything back.

re can declare a method to give a specific type of value
to the caller, such as:

~ giveSecret ()

return 42;

declare a method to return a value, you must

a value of the declared rypel (Or a value
. (()mpatiblewith the declared type. We'll get

at more when we talk about polymorphism
pter 7 and chapter 8.)

atever you say
'II give back, you

tter give back!

}

t - life. giveSecret () ;

giveSec et () {

return 42-
t,nis "'~ ~it.

. tJ
ill aWl \WI\...

you are here ~ 75

..
multiple arguments

You can send ",ore than one thing
to a tMethod
Methods can have multiple parameters. Separate them
with commas when you declare them, and separate the
arguments with commas when you pass them. Most
importantly, ifa method has parameters, you must pass
arguments of the right type and order.

Call1"Q a two-paralMeter IMethod, altd seltdh,g
It two arQuIMe"ts.

void qo () {

TestStuff t = new T8Ststuff()i

t.takeTwo(12, 34);

\\
void takeTwo(int x, int y) (

lnt z = x + y;

Systam.out.prinUn ("Total. is " + z);

.)

You ca" pass variables h'toa IMethod, as lo"c.1 as
thevariable type IMatches the paraIMefer type.

void qoO (

int faa = 7;

int bar = 3;

t. takeTwo (foo, bar);

\~
void takeTwo(int x, int y)

int z ... x + Yi

System. out .println ("Total is rr + z);

76 chapter 4

methods use instance variables

Java is pass...by...value.
=

That tMea"s pass"'by"'copy.

int x = 7;

int
O Declare anin~nd assign it

the value '7. The bit pattern for 7
goes into the variable named x.

void go(int z){ }~
int

A Declare a method with an int
'iii' parameter named z.

ft Call the goO method, passing
W the variable x as the argument.

The bits in x are copied, and
the copy lands in z.

int
foo.go(x) ;

int
void qo(int z){ }

lit dots,,'f. thci ~........ a.,.d 'J.. d'f't":-\:' tf
e'Vb\ • f' 1134:'\1 ..,. L. j,~ ~ d~. ~~t~g

><: ·..······ ·····0···.. ······· ...
int mt

void go(int z){

z = 0;

}

A Change the value of z inside
V the method. The value of x

doesn't change! The argument
passed to the z parameter was
only a copy of x.---The method can't change the
bits that were in the calling
variable x.

you are here. 77

arguments and return values

Reminder: Java
cares about type!

You can't return a Giraffe when
the return type Is declared
as a Rabbit. Same thing with

parameters. You can't pass a
Giraffe Into a method that
takes a Rabbit.

• Classes define what an object knows and whal an
object does.

• Things an object knows are itsInstance variables
(state).

• Things an object does are its methods (behavior).

• Methods can use instance variables so that objects
of the same type can behave differently.

• Amethod can have parameters, which means you
can pass one ormore values in to the method.

• The number and type ofvalues you pass inmust
match the order and type of the parameters
declared bythe method.

• Values passed inand out ofmethods can be
implicitly promoted to a larger Iype orexplicitly cast
toa smaller type.

• The value you pass as an argument toamethod
can be aliteral value (2, 'c', etc.) oravariable of
the declared parameter type (for example, xwhere
x isan intvariable) . (There are other things you
can pass as arguments, but we're not there yet.)

• Amethod must declare aretum type.Avoid retum
type means the method doesn't return anything.

• Ifa method declares anon-void return type, it must
return avalue compatible with the declared return
type.

Q..: Do Ihave to do something with the return
value of a method? can IJust Ignore it?

A:Java doesn't require you to acknowledge a
return value. You might want to call a method with
a non-void return type, even though you don't care
about the return value. In this case, you're calling
the meth od for the work it does inside the method,
rather than for what the method gives returns . In
Java, you don't have to assign or use the return value.

Q:What happens Ifthe argument you want to
pass Isan object Instead of II primitive?

A:You'll learn more about this In later chapters,
but you already know the answer.Java passes
everything by value.EverythIng. But...value means
bits Inside the vcrtable. And remem ber,you don't
stuff objects Into variables; the variable Is a remote
control-a reference to an object. SoIf you pass a
reference to an object into a method, you're passing
a copy of the remote control. Stay tuned, though, we'll
have lots more to sayabout this.

Q..: Can a method declare multiple return values?
Or Is there some way to return more than one
value?

A: Sort of.A method can declare onIy one return
value. BUT... If you want to return, say, three int values,
then the declared return type can be an Int orray.
Stuff those lnts into the array,and passIt on back. It's
a little more involved to return multiple values with
different types; we'll be talking about that in a later
chapter when ~e talk about ArrayLlst.

'Q :Do Ihave to return the exact type , declared?

A.: You can return anything that can be implicitly
promoted to that type. So, you can passa byte where
an Int Is expected .The caller won't care,because the
byte fits Just fine Into the tnt the caller will use for
assigning the result. You must use an explicit cast
when the declared type Issmaller than what you're
trying to return.

78 chapter 4

ElectrlcGultar

methods use instance variables

brand
numOfPickups
rockStarUsesl1

getBrandO

selBrandO

getNumOfPickuPSO

setNumOfPickupsO

getRockStarUsesltO

setRockSlarUsesllO

setRockStaruseslt(boolean y&sOrNo) {
~tarU8eslt m yesOrNoi

- i.DcJ brand i
• numOfPiclcups;

.an rockStarUs8sIt;

:.d setNumOfPickups (int num)
numOfPickups = num;

.an g8tRockStarusealt()
=-~rn rockStarUseslt;

id s8tBrand (String &Brand) (
brand = &Brand i

• getNumOfPickups() {
return numOfPickups;

"ttgs you catt do with parameters
returtt types

Si:.:-'.-nCJ qetBrand ()
return brand;

__.... .e 've seen how parameters and return types work, it's
them to good use: Getters and Setters. Ifyou're into
rmal about it, you might prefer to call them ACC610TS

.Jw.;ifO;OOIrl. But that's a waste of perfectly good syllables.
Gc ters and Setters fits the java naming convention. so

~,wl:l2l we'Il call them.

nd Setters let you, well, getand sa things. Instance van­
1r:1_JeS. usually. A Getter's sole purpose in life is to send back,
~az!lnl value, the value of whatever it is that particular Getter
".-as.:d to be Getting. And by now, it's probably no surprise
1&3,~ner lives and breathes for the chance to take an argu­
.~1De and use it to set the value of an instance variable.

you a re he re. 79

real developers encapsulate

Et1capsulaffot1
00 It or risk hUlMlliatiot' at'd
ridicule.
Until this most important moment, we've
been committing one of the worst 00
faux pas (and we're not talking minor
violation like showing up without the IB'
in BYOB). No, we're talking Faux Pas with
a capital 'F' . And ·P'.

Our shameful transgression?

Exposing our datal

Here we are.just humming along without
a care in the world leaving our data out
there for anyoru to see and even touch.

You may have already experienced that
vaguely unsettling feeling that comes with
leaving your instance variables exposed.

Exposed means reachable with the dot
operator, as in:

theCat.height : 27;

.T hink about this idea of using our remote
control to make a direct change to the Cat
object's size instance variable. In the hands
of the wrong person, a reference variable
(remote control) is quite a dangerous
weapon. Because what's to prevent:

't.
~\l.ts~ Wt. eA" 1

theCat. height = 0; 1e-t ~i5. "ayYt".

This would be a Bad Thing. We need to
build setter methods for all the instance
variables, and find a way to force other
code to call the setters rather than access
the data directly.

80 chapter 4

public void setBeight (int ht) {

if (ht > 9) {

height: ht;

}

thedata
it is that simple to go from
implementation that's just

. g for bad data to one
protects your data and
ects your right to modify
implementation later.

so how exactly do you
the data? With the
lie and private

ess modifiers . You're
. iar with public-we use

rith every main method.

re's an encapsulation
nile of thumb (all stan­

disclaimers about rules
~ thumb are in effect): mark

instance variables privati!
provide public getters
setters for access control.

you have more design
codi ng savvyin Java, you

bably do things a little
rently, but for now. this

I!!!IlP:oach will keep you safe.

ark getters and
etters pUblic.

·Sodly. Bill forgot to
CftCopsulQt~ his Cat class and
ended up wltk Q flat cat .H

(overheard at the water cooler).

methods use Instance variables

'"
Java'~ed
This week's Interview:
An Object gets candid about encapsulation.

HeadFirst What's the big deal about encapsulation?

Object: OK.,you know that dream where you're givinga talk to 500 people when you
suddenly realize-you're TUJkaP.

HeadFirst: Yeah, we've had that one. It's right up there with the one about the Nates
machine and... no, wewon't go there. OK, soyou feelnaked. But other than being a little
exposed, is there any danger?

Object Is there any danger? Is there any danger? [St3.I'1S laughing] Hey, did allyou other
instanceshear that, "Is lhert aT[!danger?" he asks? [falls on the floor laughing]

HeadFirst: What's funny about that? Seems like a reasonable question.

Object: OK, I'll explain it. It's [bW'StS out laughing again, uncontrollably]

HeadFirst: Can I get you anything?Water?

Object: Whew! Oh boy. No I'm fine, really. I'll be serious. Deep breath. OK, go on.

HeadFirst: So what doesencapsulation protect you from?

Object Encapsulation puts a force-fieldaround my instance variables, so nobody can set
them to, let's say, something inappropriaJ.e.

HeadFirst Can you giveme an example?

Object: Doesn't take a PhD here. Most instance variable values arecoded with certain
assumptions about the boundaries of the values. Like, think of all the thingsthat would
break if negative numbers were allowed. Number of bathrooms in an office.Velocity of
an airplane. Birthdays.BarbellweightCellphone numbers. Microwaveoven powet

HeadArst: I seewhat you mean . So how does encapsulation let you set boundaries?

Object By forcing other code to go through setter methods. That way, the setter method
can validate the parameter and decide if it's do-able. Maybe the method will reject it and
do nothing, or maybe it'll throw an Exception (like if it's a nullsocial security number
for a credit card application), or maybe the method will round the panlITleter sent in to

the nearest acceptable value.The point is,you can do whatever you want in the setter
method, whereas you can't do aT[!thing if your instance variables arepublic.

HeadFirst: But sometimesI see setter methods that simplyset the value without check­
ing anything: If you have an instance variable that doesn't have a boundary, doesn't that
sener method create unnecessaryoverhead? A performance hit?

Object: The point to setters (and getters, too) is thatyou can c1umgeyour mind later,
without breaking any1Jo4y else's code! Imagine if half the people in your com-
panyused your classwith public instance variables, and one day you suddenly realized,
"Oops- there's something I didn't plan for with that value, I'm going to have to switchto a
setter method." Youbreak everyone'scode. The cool thing about encapsulation is thatyou
get to cJumgt)'CUT mind. And nobody gets hurt The performance gainfrom using variables
directly isso rniniscule and would rareIy--ifDJn- beworth it

you are here ~ 81

how objects behave

GoodDog

size

gelSize(}

selSize()

bark()

class GoodDog (

private int size;
.~.,.t,L /I

tJ\o¥-t. .\.)\t. \. #. ,/ -
'\ ,,\l\ t.~ public int getSize ()

~o~ 0

~) r,turn ,i,e,

t). ~~ al\G ~ public void setSi"le (int s) (
Ma'¥.t. t. .1.\..~~ ~.
~tt.~ ",CV' size = s r

Ettcapsulatittg the
t}oodPog class

void bark () (

if (size > 60)

System .out.println("wooof! Wooof!");

else if (size> 14) (

Syscem.out.princln("Ruff! Ruff!");

else (

System .out.println("Yip! Yip!");

class GoodDogTestDrive I

+ one.getSize(»;

" + tWQ.getSize(»;

I.Any place where a
particular value can
be used, a method
call that returns that
type can be used.

Instead of:
int x =3 + 24;

you can say:
int x =3 + one.gdSize();

public static void main (String!) args) (

GoodDog one = new GoodDog();

one .setSize(70);

GoodDog two = new GoodDog();

two.setSize(8);

System .out.printlnI WDog one:

System.out.printlnl"Dog two:

one. bark ();

two. bark () ;

82 chapter 4

How do objects I" a" array
have?
like anyother object. The only difference is
. you get to them. In other words, how you get
remote control. Let's try calling methods on
objects in an array.

Declare and create a Dog array,
to hold 7 Dog references.

Doq[] pets;

pets = new Doq[7];

Dog[]

Create two new Dog objects.
and assign them to the first
two array elements.

pets [0] = new Dog () ;

pets[l] = new Dog();

Call methods on the two Dog
objects.

pet8[O].setSize(30) ;

int x = pets[O] .qetsize();

peta[l) .setSize(8);

Dog[]

methods use instance variables

Dog array object (Dog[])

Dog array object (Dog[])

you are here ~ 83

Instance variables
always get a
default value. If
you don't explicitly
assign a value
to an instance
variable, or you
don't call a setter
method, the
instance variab'e
still has a value!

integers 0

floating points 0.0

booleans false

Initializing instance variables

Peclarfttg and initializing
ittstatlce variables
You already know that a variable declaration needs at least a name
and a type :

int size;
String name;

And you know that you can initialize (assign a value) to the
variable at the same time:

int size = 420;
String name = "Donny";

But when you don't initialize an instance variable, what happens
when you call a getter method? In other words, what is the value of
an instance variable bejoreyou initialize it?

t,al'll.t IIayia\,\es,
class PoorDog (dtt\a'Ct t..,o i~ ~ IIalw.

. ./} \:l",t. d()t\'t. a~I~1\
private 1nt size; k'~
private String name;

What will -tnue: 'Cd!.',",??
P)ubliC int getsize () (~

return size; If

public String getName () (
return name;

references null

, Y.-? y.l\\\
public class PoorDogTestDrive { ~\:, ~o ~O'" t.~j ,

public static void main (String [] args) (/ . "'1\ t,O"'~

PoorDog one = new PoorDog () ; '.!. ~\~ e)
System.out.println("Dog size is " + one.getSize(»);
System.out.println("Dog name is " + one.getName(»);

% java PoorDogTestDrive

Dog size is 0

Dog name is null

84 chapter 4

methods use instance variables

fhe differet1ce betwee" it1sfat1ce
at1d local variables

public iot add() {
int total = a + b;
return total;

o Instance variables are declared
inside a class but not within a method.

e Local variables are declared within a method.

class AddThing {
iot a;
int b = 12;

Q: What about method parameters?
How do the rules about local variables
apply to them?

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before
the variable is
initialized.

15.2;
class Horse (

private double height
private String breed;
II more code . . .

e Local variables ~UST be initialized before usel

class Foo { "I\e" Yov. u~
public void go () (W()\'l t to"''' ' t~ ~ a 'Ja\~,

Ln t x; dedaye
Yo WI 0 b-1

nl.&t. as $CO¥\ as 'f~ .
Lrrt z = x + 3; to~ it, ~e l.oft<~\ tr

"------- ~~ea~ ol.&-t.

File Edit Window He! 'r'lke6

% javac Foo.java

Foo.java:4: variable x might
not have been initialized

int z = x + 3;
1 error

A: Method parameters are virtually the
same as local variables-they're declared
Inside the method (well, technically they're
declared in the argumenr ltst of the method
rather than within the body of the method,
but they're still local variables as opposed to
Instance variables). But method parameters
will never be uninitialized, so you'll never get
a complier error telling you that a parameter
variable might not have been initialized.

But that's because the compiler will give
you an error if you try to invoke a method
without sending arguments that the method
needs.So parameters are ALWAYS initialized,
because the compiler guarantees that
methods are always called with arguments
that match the parameters declared for the
method, and the arguments are assigned
(automatically) to the parameters.

you are here . 85

object equality

Colttpari"Q variables (primitives or refere.,ces)
Sometimes you want to know if two primitives are the same. That's easy
enough, just use the = operator. Sometimes you want to know if two
reference variables refer to a siogle object ~>n the heap. Easy as well, jusl use
the == operator. But sometimes you want to know if two objects are equal.
And for that, you need the .equals0 method. The idea of equality for
objects depends on the type of object. For example, if two different String
objects have the same characters (say. "expeditious"), they are meaningfully
equivalent, regardless of whether they are two distinct objects on the heap.
But what about a Dog? Do you want to treat two Dogs as being equal if they
happen to have the same size and weight? Probably not. So whether two
different objects should be treated as equal depends on what makes sense for
that particular object type . We'll explore the notion of object equality again
in later chapters (and appendix B), but for now, we need to understand that
the == operator is used emly to compare the bits in two variables. What those
bits represent doesn't matter. The bits are either the same, or they're not.

To compare two primitives, use the == operator

Use == to compare
two primitives,
or to see if two
references refer to
the same object.

Use the equalsO
method to see
if two diHerenf
objects are equal.
(Such as two different
String objects that both
represent the characters
In "Freel")

The = operator can be used to compare two variables of any kind, and it
simply compares the bits.

if (a = b) {...j looks at the bits in a and b and returns true if the bit pattern
is the same (although it doesn't care about the sizeof the variable, 50 all the
extra zeroes on the left end don't matter). ~~ 0")(~\

oV'e u'(t
in t Ii = 3; (t.t.t'«(aye.'" J t"e iYl ,

\ rt ~\de L~t .
.lc.he tJ('t. (.4'(e 6

1l a--
byte b = 3; \,~t. 'Ole o.~ - -
if (a == b) { I I tl:Ue } t.'hat n('(e) , int byte

To see If two references are the same (which means they
refer to the same object on the heap) use the == operator

if (a == b) { II false } Foo
a=t.ish"\oI.e

if (a -- c) (II true)

if (b c) (II false) a = b is .falst Foo-- Foa

Remember, the == operator cares only about the pattern of bits in the
variable. The rules are the same whether the variable is a reference or
primitive . So the == operator returns true if two reference variables refer to
the same objectl In that case, we don't know what the bit pattern is (because
it 's dependent on theJVM, and hidden from us) but we M know that whatever
it looks like, it wiU bethe samefor two refmrues to a singleobject.

Foo a = new Foo();

Foo b = new Foo();

Foo c = a;

86 chapter 4

methods use Instance variables

Make ,t st,tk
Roses are red,
this poem ischopPY,

. byvaluepassing
;s passing bycopy,

1 it.Replaceour
can do better? r'J 8e~ryet.

Oh,likeyoU d llnewith your ow'" wn wOld~
dumb secon I thing with YOUl 0

theY/ho e
replace forget it.
a"d you'll never

int calcArea(int height, int width)

return height • width;

What's legal?
Given the method below, which
of the method calls listed on the
right ore legalt

Put a checkmcrk next to the
ones that are legal. (Some
statements are there to assign
values used in the method colis).

KEEP

+­
RIGHT

int a '" calcArea(7, 12);

short c '" 7;

calcArea (c,15) ;

int d '" calcArea(S7);

calcArea (2,3) ;

long t '" 42;

int f = calcArea(t,17);

int 9 '" calcArea();

calcArea () ;

byte h = calcArea(4,20);

int j = calcArea(2,3,5);

you are here ~ 87

exercise: Be the Compiler

BE the oomriler
Each ofthe Java files on this page
represents a complete source file.
Your joh is to play collll'iler and
determine whether each ofthese files

will compile. If they won't
compile. how would you
rIX them, and if they do
c011lpile. what would he

their output'i'

A B

class XCopy {

public static void main(Strinq [) arqs) {

class Clock {

String time;

int orig = 42;
void setTime(String t)

time = tj

Xcopy x = new xCopy();

int y : x.go(orig)j

System.out.println(orig + U U + y);

void getTime()

return time;
}

int go(int arg)

arg = arg * 2;

class ClockTestDrive {

public static void main(String (] args) {

return arg;
}

Clock c = new Clock();

}
c.setTime(U124S n) j

String tad = c.getTime()i
System.out.println(Utime: u + tod)j

88 chapter 4

methods use instance variables

A bunch of Java components, in full costume, are playing a party
game,· Wha am W They gille you a clue, and you try to guess who
they are, based on what they say.Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more tha n on e guy, then write down all fa r whom that sentence
applies. Fill In the blanks next to the sentence with the names of one
or more attendees.

Tonight's attendees:

Insta nee variable, argument, return, getter, setter,
encapsulation, public, private, pass by value, method

A class can have any number of these.

A method can have only one of these.

This can be Implicitly promoted.

I prefer my Instance variables private.

It really means 'make a copy'.

Only setters should update these.

A method can have many of these.

I return something by definition.

I shouldn't be used with instance variables.

I can have many arguments.

By definition, I take one argument.

These help create encapsulation.

I always fly solo.

you are here. 89

puzzle: Mi)(ed Messages

Mixed
Messages

Ashort Java program Is listed to your right.
Two blocks of the program are missing.
Your challenge Is to match the candIdate
blocks of code (below), with the output
that you'd see if the blocks were Inserted.

Not all the lines of output will be used, and
some of the lines of output might be used
more than once. Draw lines connecting
the candidate blocks of code with their
matching command-line output.

public class Mix4 (
int counter = OJ

public static void main (String [) args) (
int count = 0;
Mix4 [) m4a =new Mix4[20lj
int x = 0;

while (I I)
m4a [x] = new Mix4 ();
m4a(x] . counter = m4a(xl .counter + 1;
count
count

count + 1;
count + m4a[x) .maybeNew(x);

CandIdates:

x ·< 9

index < 5 ,!

x < 20

index < 5
.~

x <7

index < '1

x < 19

index < 1 •.

90 chapter 4

Possible output:

x = x + 1;

System. out.println(count + ~ "

+ m4a[1) .counter);

public iot maybeNew(int index)

if (I I') (
Mix4 m4 = new Mix4();

m4.counter = m4.counter + 1;
return 1;

return 0;

methods use Instance variables

YourJob is to take code snippets from the
pool and place them Into the blank lines

in the code. You may not use the same
snippet more than once, and you won't
need to use all the snippets. Your goal
is to make a class that will compile and

run and produce the output listed.

public class Puzzle4 {
public static void main(Strinq [] arqs) {

int y = I:
int x = 0:

int result = 0;

while (x < 6) {

y y * 10;

}

x = 6;
while (x > 0) {

}

result = result + __

}

system.out.println("result " + result);

{

_____ doStuff(int) {

if (ivar > 100) {

int ivar;

}

class

Output

return _

} else {

- return ---------------------
}

}

Note: Eachsnippet
"om the pool can be
used only oncel

}

you are here) 91

puzzle: Five Minute Mystery

FastTImes in Stim-Clty

When Buchanan jammed his twitch-gun into Jai's side , Jai froze. Jai knew that Buchanan
was as stupid lis he was ugly and he didn't want to spook the big guy. Buchanan ordered Jai
into his boss's office, but Jai'd done nothing wrong, (lately), so he figured a little chat with
Buchanan's boss Leveler couldn't be too bad. He'd been moving lots of neural-stimmers in
the west side lately and he figured Leveler would be pleased. Black market stimmers weren't
the best money pump around, but they were pretty harmless. Most of the slim-junkies he'd
seen tapped out after a while and got back to life, maybe just a little less focused thanbefore.

Leveler's ' office ' was a skungy looking skimmer, but once Buchanan shoved him in, Jai
could see that it'd been modified to provide aIL the extra speed and armor that a local boss like
Leveler could hope for. "Jai my boy", hissed Leveler, "pleasure to see you again". "Likewise
I'm sure...", said Jai, sensing the malice behind Leveler's greeting, "We should be square
Leveler, have rmissed something?" "Ha! You're making it look pretty good Jai, your volume
is up, but I've been experiencing, shall we say, a little 'breach'lately..." said Leveler.

Jai winced involuntarily, he'd been a top drawer jack-hacker in his day. Anytime someone
.figured out how to break: a street-jack's security, unwanted attention turned toward Jai, "No
way it's me man", said Jai, "not worth the downside. I'm retired from hacking, [just move

my stuffand mind my own business", "Yeah, yeah", laughed Leveler, "I'm sure you're
clean on this one, but I'll be losing big margins until this new jack-hacker is shut

out!" "Well, best of luck Leveler, maybe you could just drop me here and I'll go
move a few more 'units' for you before I wrap up today", said Jai.

"I'm afraid it's not that easy Jai, Buchanan here tells me that word is you're
current on 137NE", insinuated Leveler. "Neural Edition? sure I play around a bit, so

what?". Jai responded feeling a little queasy. "Neural edition's bow I let the stim-junkies
know where the next drop will be", explained Leveler. "Trouble is, some srim-junkie's stayed
straight long enough to figure out how to hack into my WareHousing database." "I need a
quick thinker like yourself Jai, to take a look at my StimDrop 137NE class; methods, instance
variables, the whole enchilada, and figure out how they're getting in. It should..", "HEY!",
exclaimed Buchanan, "I don't want no scum backer like Jai DOSin' around my code!" "Easy
big guy", Jai saw his chance, "I'm sure you did a top rate job with your access modi .. "Don't
tell me - bit twiddler!", shouted Buchanan, "1 left all of those junkie level methods public,
so they could access the drop site data, but 1marked all the critical WareHousing methods
private. Nobody on the outside can access those methods buddy, nobody!"

"I think I can spot your leak Leveler, what say we drop Buchanan here off at the comer
and take a cruise around the block", suggested Jai. Buchanan reached for his twitch-gun but
Leveler's stunner was already on Buchanan's neck, "Let it go Buchanan", sneered Leveler,
"Drop the twitcher and step outside, I think Jai and I have some plans to make",

What did Jai suspect?

Will be get out of Leveler's skimmer with all his bones intact?

92 chapter 4

Instance varl~bles, getter, utter,method

return

setter

getter. s£'tter, public. private

return

return. argument

encapsulation

pass by value

Instance variables

o.rgt.llnent

getter

public

method

Note: 'Getter' methods have areturn
type by definition.

}

methods use Instance variables

}

String getTime ()

return time;

class Clock

String time;

void setTime(~tring t) {
time:: t;

}

class ClockTestDrive {

public static void main(String rl args) {
Clock c = new Clock();
c.setTime(R124S R) j

String tod = c.getTime();
System.out.println(Utime: • + tod);

B

XCopy' compiles and runs as itstands I The
84'. Remember Java ispass byvalue, (which

copy), the variable 'orig' isnol changed by the

dass can have any number of these.

method can have only one of these.

I' can be implicitly promoted.

prefer my instance variables private.

really means 'make a copy'.

setters should update these.

method can have many of these.

return something by definition.

shouldn't be used with instance variables

can have many arguments.

definition, , take one argument.

se help create encapsulation.

always fly solo .

you are here. 93

puzzle answers

Puzzle Solutions

Answer to the 5-minute mystery...

pUblic class Puzzle4 (
public static void main(String [] args) {

Puzzle4b [] ebs =new Puzzle4b[6J;

int y - 1;
int K .. 0,
int result = 0:
while (x < 6) (

obs[x) =new PU2zle4b():

obs[x) . ivar =y;

y - y .. 10;

x=><+1;

Jai knew that Buchanan wasn't the sharpest
pencil in the box. When Jai heard Buchanan
talk about his code, Buchanan never mentioned
his instance variables. Jai suspected that
while Buchanan did in fact handle his methods
correctly, he failed to mark his instance variables
private. That slip up could have easily cost
Leveler thousands.

x = 6,
while (x > 0) {

x =x-I;

result = result + obs[x].doStuff(x): Candidates: Possible output:

System.out.println("result u + result);

q\ java Puzzle4

result 543345

index < 1

index < 5

index < 7

index < 5

x < 19

x < 9

x < 7

x < 20

Output

}

class Punle4b {

1nt ivar,

public int doStuff (int factor)

if (ivar > 100) {

return ivar * factor;

else {

return ivor" (5 - factor);

94 chapter 4

