A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

18 remote deployment with RMI

Distributed : |
co m p uti “g dis*ranc:arrglz:ie;):scyh?psozg; hard,

but with RMI, it's easy. No
matter how far apart we really
are, RMI makes it seem like
we're together.

Being remote doesn’t have to be a bad thing. sure, things are easier when
all the parts of your application are in one place, in one heap, with one JVM 1o rule them all. 8ut
that's not always possible. Or desirable. What if your application handles powerful computations,
but the end-users are on a wimpy little Java-enabled device? What if your app needs data

from a database, but for security reasons, only code on your server can access the database?
Imagine a big e-commerce back-end, that has to run within a transaction-management system?
Sometimes, part of your app must run on a server, while another part (usualfy a client) must

run on a different machine. In this chapter, we'll learn to use Java’s amazingly simpte Remote
Method Invocation (RMI) technology. We'll also take a quick peek at Servlets, Enterprise Java
Beans (E1B8) ,and Jini, and look at the ways in which EJB and Jini depend on RMI.We’ll end the

book by writing one of the coolest things you can make in Java, a universal service browser.

this is a new chapter 607

http://www.a-pdf.com/?product-split-demo

how many heaps?

Method ealls are always between
two objects on the same heap.

So far in this book, every method we’ve invoked has been on
an object running in the same virtual machine as the caller.
In other words, the calling object and the callee (the object
we're invoking the method on) live on the same heap.

clagss Foo {(

void go() |
Bar b = new Bar ()
b.doStuff () ;

)
public static void main (String[] args) (

Foo £ = new Foo(); In most applications, when one object
£.90(); calls @ methad on another, both abjects
’ are on the same heap. In other words,
} both are running within the same JVM.

}

In the code above, we know that the Foo instance
referenced by fand the Bar object referenced by bare
both on the same heap, run by the same JVM. Remember,
the JVM is responsible for stuffing bits into the reference
variable that represent how (o get lo an object on the heap.
The JVM always knows where each object is, and how to
get 1o it. But the JVM can know about references on only
its own heap! You can't, for example, have a JVM running
on one machine knowing about the heap space of a JVM
running on a different machine. In fact, a JVM running on
one machine can’t know anything about a different JVM
running on the same machine. It makes no difference if
the JVMs are on the same or different physical wachines;
it matters only that the two JVMs are, well, two different
invocations of the JVM.

608 chapter8

remote deployment with RMI

What if you want to invoke a method on
an object running on another machine?

We know how to get information from one machine to another—
with Sockets and I/O. We open a Socket connecton to another
machine, and get an OutputStream and write some data to it.

But what if we actually want to call a method on something running
in another machine... another JVM? Of course we could always build
our own protocol, and when you send data to a ServerSocket the
server could parse it, figure out what you meant, do the work, and
send back the result on another stream. What a pain, though. Think
how much nicer it would be 10 just get a reference o the object on
the other machine, and call a method.

Imagine two co:uputers...

tny, wis
Lt |

Little

Big has SOmetLing Little wants.
Comgute power.

Little wants to send some» data 1o Big, so that Big can do the

heawy computing.
Little wants simply to call a method..

double doCalcUsingDatabase (CalcNumbers numbers)

and get back the result.
But how can Little get a reference to an ol;ject on Big?

e ———

you are here» 609

two objects, two heaps

Object A, running on Little, wants to call
a wmethod on Object B running on Big.

The question is, how do we get an object on one machine
(which means a different heap/JVM) to call a method on
another machine?

return value §

But you cant do that.

Well, not directly anyway. You can’t get a reference to
something on another heap. If you say:

Dog d = ???

Whatever dis referencing must be in the same heap space as
the code running the statement.

But imagine you want to design something that will use
Sockets and I/O to communicate your intention (a method
invocation on an object running on another machine), yet
sull feel as though you were making a local method call.

In other words, you want to cause a method invocation on a
remote object (i.e., an object in a heap somewhere else), but
with code that lets you pretend that you're invoking a method
on a local object. The ease of a plain old everyday method
call, but the power of remote method invocation. That's our
goal.

That’s what RMI (Remote Method Invocation) gives you!

But let’s step back and imagine how you would design RMI if
you were doing it yourself. Understanding what you’d have to
build yourself will help you learn how RMI works.

610 chapter 18

remote deployment with RMI
A design for remote method calls

Create four things: server, client,
server helper, client helper

@ Create client and server apps. The server app is the
remote service that has an object with the method
that the client wants to invoke.

;! Client heap

@ Create client and server ‘helpers’. They'll handle all
the low-level networking and I/0 details so your client
and service can pretend like they're in the same heap.

you are hera » 611

client and server helpers

The role of the ‘helpers’

The ‘helpers’ are the objects that actually do the communicating.
They make it possible for the client to act as though its calling a
method on a local object. In fact, it is. The client calls 2 method on
the client helper, as if the client helper were the actual service. The client
helper is a proxy for the Real Thing.

In other words, the client object thinks it's calling a method on

the remote service, because the client helper is pretending to be
the service object. Pretending to be the thing with the method the client
wanis to call!

But the client helper isn’t really the remote service. Although the
client helper acts like it (because it has the same method that the
service is advertsing), the client helper doesn’t have any of the
actual method logic the client is expecting. Instead, the client
helper contacts the server, transfers information about the method
call (e.g., name of the method, arguments, etc.}, and waits for a
return from the server.

On the server side, the service helper receives the request from
the client helper (through a Socket connection), unpacks the
information about the call, and then invokes the real method on
the realservice object. So to the service object, the call is local. It’s
coming from the service helper, not a remote client.

The service helper gets the return value from the service, packs it
up, and ships it back (over a Socket’s output stream) to the client
helper. The client helper unpacks the information and returns the
value to the client object.

Client heper pretencs
L, be the servitty p

Hs usk 3 pro¥y T e
Ecuem heap Ru? Thing:

. hinks
Client ob)c&’t: ¢
'.{:"s“’cé“"‘“?v to the
1 Ser\l‘lﬁc-
brs £he dlnt
helper is the thing
Enat can atkwally
do the vea) work.

Real Sevvice.
612

chapter 18

Service helper acts the
YCﬂUCS{ -From the tlient
helper, unpatks it, nd

ealls the method o the

Your client ohject gets to
act like it’s making remote
method calls. But what

it’s rea]]y doing is ca]ling
methods on a heap-Jocal
‘troxy’ object that hand]es
all the low-]evel details of
Sockets and streams.

remote deployment with RMI

How the method call happens

@ Client object calls doBigThing() on the client helper object

@ Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

ﬂ Client

heap “client wants to call a method”

.
Server heap [}

Service helper unpacks the information from the client helper,
finds out which method to call (and on which object) and

invokes the real method on the real service object.

wher, this the
ngﬁ{,_b::ts\ the REAL
.-.Jcﬂwd logjt- TM\S\‘L |
that does khe veal work.

you are here>» 613

RMI helper objects

Java RMI gives you the client and

service helper objects!

In Java, RMI builds the client and service helper
objects for you, and it even knows how to make the
client helper look like the Real Service. In other
words, RMI knows how to give the client helper
object the same methods you want to call on the
remote service.

Plus, RMI provides all the runtime infrastructure to
make it work, including a lookup service so that the
client can find and get the client helper (the proxy
for the Real Service).

With RMI, you don't write any of the networking
or [/O code yourself. The client gets to call remote
methods (i.e. the ones the Real Service has) just
like normal method calls on objects running in the
client’s own local JVM.

Almost

There is one difference between RMI calls and local
(normal) method calls. Remember that even though
to the client it looks like the method call is local,

the client helper sends the method call across the
network. So there is networking and 1/0. And what
do we know about networking and 1/0 methods?

They're risky!

They throw exceptions all over the place.

So, the client does have to acknowledge the risk. The
client has to acknowledge that when it calls a remote
method, even though to the client it’s just a local call
to the proxy/helper object, the call ultimately involves
Sockets and streams. The client’s original call is focal,
but the proxy twrns it into a remote call. A remote call
Jjust means a method that's invoked on an object on
another JVM. How the information about that call
gets transferred from one JVM 10 another depends
on the protocol used by the helper objects.

With RMI, you have a choice of protocols: JRMP or
ITOP. JRMP is RMI's ‘native’ protocol, the one made
Just for Java-to-Java remote calis.]IOP, on the other
hand, is the protocol for CORBA (Common Object
Request Broker Architecture), and lets you make
remote calls on things which aren’t necessarily Java
objects. CORBA is usually much more painful than
RM]I, because if you don’t have Java on both ends,
there’s an awfut lot of translation and conversion that
has to happen.

But thankfully, all we care about is Java-to-Java, so
we're sticking with piain old, remarkably easy RMI.

In RMI, the client helper is a ‘stub’
and the server helper is a ‘skeleton’.

614 chapter 18

| ——

Scrvef‘ hCQP l,_l B E:
lj ===== -, a.'(

Making the Remote Service

This is an overview of the five steps for making the remote
service (that runs on the server). Don’t worry, each step is
explained in detail over the next few pages.

Step one:
Make a Remote Interface
The remote interface defines the methods
that a client can call remotely. It’s what
the client will use as the polymorphic class
type for your service. Both the Stub and
actual service will implement this!

Step two:

Make a Remote Implementation

This is the class that does the Real Work.
It has the real implementation of the
remote methods defined in the remote
interface. It’s the object that the client

A CSNS G AT N

—

Step three:

Generate the stubs and skeletons using rmic

These are the client and server ‘helpers’.
You don't have to create these classes or ever
look at the source code that generates them.
It’s all handled automatically when you

run the rmic tool that ships with your Java
development kit.

Step four:

=l gl with the me

remote deployment with RMI

ice. The tlass
The Real s that do
khe veal work. i3 im?\cmcnb
he vemote inkerface.

MyRemotelmpl Java

spite ot tuo .
Running Ymit 3 sk the aetual ‘rﬂuc; T ‘Z % o

servite \m?ltmthbﬁo" elass... hc]Pa obJCé{:x

1o1101
10 1o 1
a6
001 10
01 01

Flie Edit Window Help Eal

%rmic MyRemoteImpl

MyRemotelmpl_Stub.class

101102
10 Ly}
ono
04 20
01 0L

MyRemotelmpl_Skel.class

Start the RMI registry (rmiregistry)
The rmiregistry is)ike the white pages of a
phone book. It’s where the user goes to get
the proxy (the client stub/helper object).

Step five:

Start the remote service

You have to get the service object up and running.
Your service implementation class instantiates an
instance of the service and registers it with the RMI
registry. Registering it makes the service available for
clients.

Fllg Edlt Window Relp Drink

k¥rmiregistry

file Edli Window Help BeMerry

% java MyRemotelmpl

615

you are here »

a remote interface

Step one: Make a Remote Interface

Extend java.rmi.Remote MyRemote java

Remote is a ‘marker’ interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice

that we say ‘extends’ here. One interface is allowed to extend another to
vkace has

interface. [‘ \ﬁ::;“:;?{,ha’t;‘;%s‘forh
s method talls
public interface MyRemote \::gjfau‘ ¢an % M{"“A

Declare that all methods throw a RemoteException

The remote interface is the one the client uses as the polymorphic type
for the service. In other words, the client invokes methods on something
that implements the remote interface. That something is the stub, of
course, and since the stub is doing networking and 1/0, all kinds of Bad
Things can happen. The client has to acknowledge the risks by handling
or declaring the remote exceptions. If the methods in an interface
declare exceptions, any code calling methods on a reference of that type
(the interface type) must handle or declare the exceptions.

e is in javarmi

import java.rmi.*; é— the Remote nterkac

public interface MyRemote extends Remote {
public String sayHello() throws

%% Vi Evcr\/ vemote method £3ll is
: tonsideved ns!(y Dcdarmg
Rcmo{;cﬁxacp{wn on ever
} method forees the tlient
to F&y J'H,cn“:wh and
acknowfcdgc that {:hmgs
msH: not work.

Be sure arguments and return values are primitives or Serializable

Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings,
and the majority of types in the API (including arrays and collections),
you’ll be fine. If you are passing around your own types, just be sure that
you make your classes implement Serializable.

public sayHello () throws RemoteException;
/\ T;"S re{u"‘h Va,vz 15

over the wire from
the client, so it must
That's how args and v
patkaged W and sent.

2 nna be Shl? ed
he Seyvey %ack {;o
be Sevializable.

eturn values aet

/[RAR PR gy S

remote deployment with RMI

Step two: Make a Remote Implementation

@ Implement the Remote interface MyRemotelmpl java

Your service has to implement the remote interface—the one
with the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject H
public String sayHello() { g
return “Server says, ‘Hey’'"”; ﬂ'f compiler will make sure that
} }ou ve ‘"‘Plcmehﬁcd all the methods

// more code in class :om he interface Y°“ implement. [n
} is tase, theve’s on y one.

@ Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some
functionality related to ‘being remote’. The simplest way is to extend
UnicastRemoteObject (from the java.rmi.server package) and let that
class (your superclass) do the work for you.

public class MyRemoteImpl implements MyRemote ({

@ Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws a RemoteException. The only way to deal with this is
to declare a constructor for your remote implementation, just so that you
have a place to declare the RemoteException. Remember, when a class is
instantiated, its superclass constructor is always called. If your superclass
constructor throws an exception, you have no choice but to declare that

“{: an\!{‘)\mg n

your constructor also throws an exception. /'\ {:M g::s i;havc e ¥ need a‘
public MyRemoteImpl () waf, Lo detlave {r)ﬁﬂ: ‘f°“r supertlass

tonskyutor Lhrows an extephion

@ Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to
remote clients. You do this by instantiating it and putting it into the RMI
registry (which must be running or this line of code fails). When you
register the implementation object, the RMI system actually puts the stubin
the registry, since that’s what the client really needs. Register your service
using the static rebin thod of the java.rmi.Naming class. tan wse
tryg { d() method of the jav 8 Gie Your sevvite 8 name i‘c,ha)&a:y:f;m&r n
MyRemote service = new MyRemoteImpl () 40 look it up in the "5';\!;\1 ou bind {he
" with the RM‘ vegistry: When Yo ite for the
Cow biect, RM| swaps the servt

} catca(.xcept.on ex) ..., u si:\:‘;nd puks the stvb in Lhe vegistry:
s

youarehere» 617

Step three: generate stubs and skeletons

Run rmic on the remote implementation class "
(not the remote interface) T' out two ney

ow don't 53y “elass”

The mmic tool, that comes with the Java software Notice that el mime. helper- objects
development kit, takes a service implementation and on the end. Just the Toven
creates two new classes, the stub and the skeleton. et

File Edit Window Halp Whuffle

It uses a naming convention that is the name of
your remote implementation, with either _Stub or
_Skeleton added to the end. There are other options

$rmic MyRemoteImpl
MyRemotelmpl_Stub.class

with mmic, including not generating skeletons, T Ty
seeing what the source code for these classes looked isi'sa

like, and even using OP as the protocol. The way
we're doing it here is the way you'll usually do it MyRemotelmpl_Skel.class
The classes will land in the current directory (i.e.

whatever you did a cd to). Remember, rmic must

be able to see your implemeniation class, so you'll

probably run rmic from the directory where your

remote implementation is, (We're deliberately not

using packages here, to make it simpler. In the Real

World, you'll need to account for package directory

structures and fully-qualified names).

Step four: run rmiregistry

Flls Edlt Window Halp Hun?

Bring up a terminal and start the rmiregistry.

Be sure you start it from a directory that has access Srmiregistry
to your classes. The simplest way is to start it from
your ‘classes’ directory.

Step five: start the service

Flle Edt Window Help Huh?

Bring up another terminal and start your service
This might be from a main() method in your remote % java MyRemoteImpl
implementation class, or from a separate launcher class.
In this simple example, we put the starter code in the
implementation class, in a2 main method that instantiates
the object and registers it with RMI registry.

618 chapter 18

remote deployment with RMI

Complete code for the server side

The Remote interface:
RCNU{'AE?‘LCY{'W a“d Rcmo{'xka ¢
import java.rmi,*;]hwa(.c ave n ")ava.vm ?BL 5 u ;
\/our 'm{',ﬂ“caf.c MUST exten
public interface MyRemote extends Remote { 5ava.m\.Rcma£=
All of your vemote methods must

publiec String sayHello() throws RemoteException; detlave a RmoJerue?{jon

The Remote service (the implementation):

Oyt s
o 7ARYE bieck ix the

i,z ooject

o n\ake 3 ¥emo

U ws.t& ez

ey ;as{'RC'“wo

exkending Un

avairehs
¥ casiest way t

import java.rmi.*;
import java.rmi.server.¥;

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote (

Yo MUST implement your

- & You have to implement all £,
lic Stri Hello () - N
public ng sayHello() ¢ interface methods, tourse. Bt remote intey acell

} return “Server says, ‘Hey'”: notice that you do NOT have to
declare the KemoteException.

public MyRemoteImpl () throws RemotaeException { } \r'(our su?crc\ass tonstruetor (for ?{:
n moteObicet) detlaves an exteplion, so
—~ ke 3 trutlor, because it means

OU must write 8 tons . ‘
Zha{: Your tonsbructor is calling visky tode (its

public static vold main (String{] args) {
supev construttor)

try {
MyRemote service = naw MyRemotelmpl () ; f’\

Naming.rebind (“Remote Hella”, service);
Make the vemote

b eatch (E:ceptiz: ex) _ \ e object, then bing’ it
} ex.printStackTrace() Friregistry wing the statie Ny : .b' {:o(;chc
" . A mi .
. o o egister it under is gh, b L"!é &m
e look it W in the rm regis{:ry rents wl

you are here» 619

getting the stub

How does the client get the stub object?

The cdlient has to get the stub object, since that’s the thing the

client will call methods on. And that’s where the RMI registry

comes in. The client does a 'lookup’, like going to the white pages

of a phone book, and essentially says, “Here’s a name, and I’d like ™

the stub that goes with that name.” thst 1:% be the ngme
lookup() is 3 static method of reg;s&v:d‘i::‘lcc was
the Naming tlass e

MyRemote service = (MyRemote) Naming.lookup (“rmi://127.0.0.1/Remote BRello”);
SN~

\ 7
The ¢ . ,Cvou have to cast it to the our hast name or [P
*C:aitc?jy?el:\liz&%c:hﬁ:: he interfate, since the tookup dercss goes here
HPC of the service. In fact, method returns type Object

e tlient never needs to know
the actual lass name of Your
vemote sevvice.

0od

S, O

‘ Client does a lookup on the RMI registry
Naming.lookup (“rmi://127.0.0.1/Ramota Hello"”):

o RMI registry returns the stub object
(as the return value of the lookup method) and RMI
deserializes the stub automatically. You MUST have
the stub class (that rmic generated for you) on the
client or the stub won’t be deseralized.

‘ Client invokes a method on the stub, as
though the stub IS the real service

820 chapter18

remote deployment with: RMI

How does the client get the stub class?

Now we get to the interesting question. Somehow, someway, the
client must have the stub class (that you generated earlier using
rmic) at the time the client does the lookup, or else the stub won’t
be deserialized on the client and the whole thing blows up. In a
simple system, you can simply hand-deliver the stub class to the
client.

There’s a much cooler way, though, although it’s beyond the
scope of this book. But just in case you’'re interested, the cooler
way is called “dynamic class downloading”. With dynamic class
downloading, a stub object (or really any Serialized object) is
‘stamped’ with a URL that tells the RMI system on the client
where to find the class file for that object. Then, in the process of
deserializing an object, if RMI can’t find the class locally, it uses
that URL to do an HTTP Get to retrieve the class file. So you’'d
need a simple Web server to serve up class files, and you’d also
need to change some security parameters on the client. There are
a few other tricky issues with dynamic class downloading, but that’s
the overview.

Complete client code

T"C Na».'
K/— V‘cmiregis 2:‘3 elass (for doin3 the

import java.rmi.*; J3Va-rm; Pac{;;:kw) S in the

public class MyRemoteClient {
public static void main (String[] args) ({
new MyRemoteClient().go()

}
Lhe ve sbry 3 Lyee

h
public void go() { b torees out O’Q’c forye the €3
Obietts 0 dor
try { \[
MyRemote service = (MyRemote) Naming.lookup(“rmi://127.0.0.1/Remote Hello”);
String s = servica.sayHello(): Z:u ne zfa the P addvess o the rawe wsed Jm
System.out.println(s) ’\ o5 ndme bind/rebind the seruce

} catch(Exception ex) { I looks just like 3
ex.printStackTrace () ; call/ (EX%cyf it mus??;:’::otjf ; cthod
} RemoteExteption) edge the

youare here» 621

RM!I class files

Be sure each machine has the class
files it needs.

The top three things programmers do wrong with RMI are:

1) Forget to start rmiregistry before staring remote service
{when you register the service using Naming.rebind (), the
rmiregistry must be running!)

2) Forget to make arguments and retum types serializable
(you won't know untl runtime; this is not something the
compiler will detect.)

3) Forget 1o give the stub class to the client.

Dor’t -Forgd:. the elient

uses the interfate Lo call et et
methods on the stub. The %0110 oot 16
elient JUM needs the stub oo

elass, but the elient never Cllantclass MyRemotelmpl_Stub.class
vefers to the stub ¢lass

in tode. The client always naf
uses the vemote interfate, e
as though the vemote o
interface WERE the MyRemote.class
attual remote ob)cct
e
The cemott .m)w-ﬁa

822 chapter18

Wun,h. 1RXLOT
10 110 W0 e
9 11 ¢ U D
0% 1 ™8 10
oo3 01 001 o1
MyRemotelmpl, class MyRemotelmp!_Stub.class
umﬂ_.b
10 110 1 101101
11 10 110 1
<81 1o 4110
<1 ok ool 10
o1 o1

Remotelmpl_Skel.class
Wy P MyRemote.class

Sevver needs both the Stub and Skeleton
tlasses, as well as the sevvice and the

remote interface. [£ needs the stub tlass
because vemember, the stub is substituted
For the veal service, when the veal sevvice

is bound to the RMI vegistry.

%\pen your penc \'gh&fs ;
irst? o

remote deployment with RMI

Look at the sequence of events below, and 2
place them in the order in which they

occur in a Java RMI application.

Tre siub sends the method
call to the server

the RM! reglstry

The cllent does a ookl
the RMI Registry

The RMI registry is starte

3.
The client gets the sip from 4,
a—— R
5.
The remote sarvice is regls-
tered with the RMI reglstry 6
7.

BULLET POINTS%

= An object on one heap cannot get a normal Java
refersnce to an object on a different heap {(which means
running on a differant JVM)

= Java Remote Method Invocation (RMI) makes it seam like
you're calling a methad on a remote object (l.e. an object
in a different JVM), but you aren't

= When a client calls a method on a remote object, the
client is really calling a method on a proxy of the remote
object. The proxy is called a ‘stub’.

= Astub is a client helper object that takes care of the low-
level networking details (sockets, sireams, serfalization,
efc.} by packaging and sending method calls to the
server.

= To build a remote service (in other words, an object that
a remote client can ultimately call methods on), you must
start with a remote Interface.

= Aremots interface must extend the java.rmi.Remote
Interface, and all methods must declare
RemoteException.

= Your remate service implements your remote interface.

Your remote service should extend UnicastRemoteObject.
(Technically there are other ways to create a remote ob-
ject, but extending UnicastRemoteObject is the simplest).

Your remote service class must have a consfructor,
and the constructor must declare a RemolteException
(because the superclass constructor declares one).

Your remote service must be instantiated, and the object
registered with the RMI registry.

To register a remote service, use the stafic
Naming.rebind(‘Service Name”, servicalnstance);

The RMI registry must be running on the same machine
as the remote service, before you try fo register a remote
object with the RMt registry.

The client looks up your remote service using the static
Naming.lookup(*rmi://MyHostName/ServiceName™);

Almost everything related to RMI can throw a
RemoteException (checked by the compiler). This
includes registering or looking up a service in the reigstry,
and alf remote method calls from the client to the stub.

you are here ¢ 623

uses for RMI

Yeah, but who really vses RMI?

We use it

for our cool I heard your ex-
new decision-support wife still uses
system. _ plain sockefts.

T use it
for serious B-to-B,
e-commerce back-
ends, running on J2EE
technology. ‘

We've got an
EJB-based hotel
reservation system.
And EJB uses RMT!

AN

did anyone get
by? I just love RMI
for giving us Jini

technology.

T just can't imagine
life without our Jini-
enabled home network
and applicances.

624 chapter 18

100% Local Combination 100% Remote

What about Servlets?

Servlets are Java programs that run on (and with) an HTTP web server. When a client uses a
web browser 10 interact with a web page, a request is sent back to the web server. If the request
needs the help of a Java servlet, the web server runs (or calls, if the servlet is already running)
the servlet code. Servlet code is simply code that runs on the server, to do work as a resuit of
whatever the client requests (for example, save information to a text file or database on the
server). If you're familiar with CGI scripts written in Perl, you know exactly what we're talking
about. Web developers use CGI scripts or servlets to do everything from sending usersubmitted
info to a database, to running a web-site’s discussion board.

And even servlets can use RMI!

By far, the most common use of J2EE technology is to mix servlets and E]JBs together, where
servlets are the client of the E]B. And in that case, the serviel is using RMI to talk to the E]Bs.
(Although the way you use RMI with EJB is a Zitle different from the process we just looked at.)

@ Client fills out a registration form and clicks “submit’
The HTTP server (i.e. web server) gets the request, sees that
it's for a servlet, and sends the request to the servlet.
Web Server
Web Browser - .
(client) “client requests RegisterServiet”

101101 4
10201
03110
2191
o031 0%

Servlet (Java code) runs, adds data to the database,
composes a web page (with custom info) and sends it back to
the client where it displays in the browser.

Web Browser

Web Server
(client) “client requests RegisterServiet” :

a & ¢ & a
‘‘‘‘‘ Prtea,, 101100 |3
“a,, 10116 1
; 6110

601 10
001 o1

“here’s a confirmation page” | ===~

confirm.htmi
you are here »

remote deployment with RMI

625

very simple serviet

Step for making and running a serviet

®

626

Find out where your serviets need fo be placed.

For these exaroples, we’'ll assume that you already have a web server
up and running, and that it's already configured to support serviets.

HETIE =

The most important thing is to find out exactly where your servlet q - — | ol
H « » M 10
class files have to be placed in order for your server to ‘see’ them. If o o o

you have a web site hosted by an ISP, the hosting service can tell you
where 10 put your serviets, just as they'll tell you where to place your
CGl scripts.

Get the serviets.jar and add i+ to your classpath

Serviets aren’t part of the standard Java libraries; you need :
the servlets classes packaged into the servlets jar file. You can

download the servlets classes from java.sun.com, or you c¢an get

them from your Java-enabled web server (like Apache Tomcat, at

the apache.org site). Without these classes, you won't be able to servists jat

compile your servlets.

Write a servlet class by extending HitpServiet e

A servlet is just a Java class that extends HttpServlet (from the e

javax.servlethtep package). There are other types of servlets you e

can make, but most of the ime we care only about HttpServlet. MyServiotA class
public class MyServlatA extends HtipServlet (... }

Write an HTML page that invokes your serviet o

When the user clicks a link that references your servlet, the web e

server will find the servlet and invoke the appropriate method MyPage html

depending on the HTTP command (GET, POST, etc.)

This is the most amazing servlet.

We Server

e
]
P 101100 83

Make your serviet and HTML page avallable to your server

This is completely dependent on your web server (and more specifi-
cally, on which version of Java Servlets that you're using). Your ISP
may simply tell you to drop it into a “Servlets” directory on your
web site. But if you're using, say, the latest version of Tomcat, you'll
have a lot more work to do to get the servlet (and web page) into
the right location. (We just happen to have a book on this too .)

chapter 18

serviets and JSP

il

——— BULLET POINTS -

Servlets are Java classes that run entirely on
{and/for within) an HTTP (web) server.

Servlets are useful for running code on the
server as a result of client interaction with a
web page. For example, if a client submits
information in a web page form, the servlet can
process the information, add it to a database,
and send back a customized, confirmation
response page.

To compile a servilet, you need the servlet
packages which are in the serviets.jar file. The
serviet classes are not part of the Java standard
libraries, so you need to download the serviets.
jar from java.sun.com or get them from a serviet-
capable web server. (Note: the Servlet library

is included with the Java 2 Enterprise Edition
(J2EE))

To run a servlet, you must have a web server
capable of running servlets, such as the Tomcat
server from apache.org.

Your servlet must be placed in a location that's
specific to your particular web server, so you'll
need to find that out before you try to run your
servlets. If you have a web site hosted by an ISP
that supports servlets, the ISP will tell you which
directory to place your servlets in.

Atypical serviet extends HttpServiet and
overrides one or more servlet methods, such as
doGet() or doPost().

The web server starts the servlet and calls the
appropriate method (doGet(), etc.) based on the
client's request.

The servlet can send back a response by getting
a PrintWriter output stream from the response
parameter of the doGet() method.

The servlet ‘writes’ out an HTML page, complete
with tags).

628 chapter 18

th o
Duerrﬁl?e uestions

Q: What's a JSP, and how does it relate to servlets?

A: JSP stands for Java Server Pages. In the end, the web server
turns a JSP into a servlet, but the difference between a servlet and
a JSP is what YOU (the developer) actually create. With a servlet,
you write a Java class that contains HTML in the output statements
(if you're sending back an HTML page to the client). But with a

JSP, it's the opposite—you write an HTML page that contains Java
code!

This gives you the ability to have dynamic web pages where you
write the page as a normal HTML page, except you embed Java
code (and other tags that“trigger” Java code at runtime) that
gets processed at runtime. In other words, part of the page is
customized at runtime when the Java code runs.

The main benefit of ISP over reguiar servlets is that it’s just a lot
easier to write the HTML part of a servlet as a JSP page than to
write HTML in the torturous print out statements in the servlet’s
response. Imagine a reasonably complex HTML page, and now
imagine formatting it within printin statements. Yikes!

But for many applications, it isn't necessary to use JSPs because
the servlet doesn't need to send a dynamic response, or the
HTML is simple enough not to be such a big pain. And, there are
still many web servers out there that support servlets but do not
support JSPs, so you're stuck.

Another benefit of JSPs is that you can separate the work by
having the Java developers write the servlets and the web page
developers write the JSPs. That’s the promised benefit, anyway.

In reality, there's still a Java learning curve (and a tag learning
curve) for anyone writing a JSP, so to think that an HTML web page
designer can bang out JSPs is not realistic. Well, not without tools.
But that’s the good news—authoring tools are starting to appear,
that help web page designers create JSPs without writing the
code from scratch.

Q} Is this all you’re gonna say about servlets? After such a
huge thing on RMI?

A: Yes.RMI is part of the Java language, and all the classes for
RMI are in the standard libraries. Servlets and JSPs are not part of
the Java language; they're considered standard extensions. You
can run RMI on any modern JVM, but Servlets and JSPs require a
properly configured web server with a serviet“container” This is
our way of saying, “it's beyond the scope of this book.” But you can
read much more in the lovely Head First Servlets & JSP.

remote deployment with RMI

Just for fum, let’s make the Phrase-0-Matie
work as a servlet

Try my
new web-enabled

Now that we told you that we won't
say any more about servlets, we can’t
resist servletizing (yes, we can verbify
it) the Phrase-O-Matc from chapter 1.
A servlet is sdll just Java. And Java code
can call Java code from other classes.
So a servlet is free to calt a method on
the Phrase-O-Matic. All you have to do
is drop the Phrase-O-Matic class into
the same directory as your serviet, and
you're in business. (The Phrase-O-
Matic code is on the next page).

marketing.

import java.io.*;

import javax.servlet.*;
jmport javax.servlat. http.*;

public class KathyServlet extends HttpServlet (
public void doGet (HttpSarvletRequast request, HttpServletResponse rasponse)
throws SaervletException, IOException {

String title = “PhraseCMatic has generated the following phrase.”;

response.setContentType (“text/html”) :
PrintWriter out = response.getWriter();

out.println (“<HTML><EEAD><TITLE>") ; Gee? Your serviet €2 i
out.printin(“PhraseOmatic”}; another tlass [n this L?)u’ :Lhod of th
out.println (“</TITLE></HEAD><BODY>") ; Ehe statit makep“""z‘ ,g\ next paoe)
out.println(“<HI>” + title + “</H1>"); PhraseOMatic elass lon The

out.println(“<P>” + PhrasaOMatic.makePhrasa());

out.println (*<P>make anothar phrasae</p>"};
out.println (“</BODY></HTML>") ;

out.closa();

phrase-o-matic and you'll
be a slick talker just like
the boss or those guys in

n call methods on
e La“ins

you are here »

Phrase-O-Matic code

Phrase-0-Matic code, servilet-friendly

This is a slightly different version from the code in chapter one. In the
original, we ran the entire thing in a main() method, and we had to rerun
the program each time to generate a new phrase at the command-line. In this
version, the code simply returns a String (with the phrase) when you invoke
the static makePhrase() method. That way, you can call the method from any
other code and get back a String with the randomly-composed phrase.

Please note that these long String[] array assignments are a victim of word-
processing here—don’t type in the hyphens! Just keep on typing and let your
code editor do the wrapping. And whatever you do, don’t hit the return key in
the middle of a String (i.e. something between double quotes).

public class PhraseOMatic {
public static String makePhrase() ({

// make three sets of words to choose from
String[] wordListOne = {“24/7”,”multi~Tier”,”30,000 foot”,”B-to-B”,”win-win”,”front-
end”, “web-based”,”pervasive”, “smart”, “six-sigma”,”critical-path”, “dynamic”};

String[] wordListTwo = {“empowered”, “sticky”, “valued-added”, “oriented”, “centric”,
“distributed”, “clustered”, “branded”,”outside-the-box”, “positioned”, “networked”, “fo-

cused”, “leveraged”, “aligned”, “targeted”, “shared”, “cooperative”, “accelerated”}:

String[] wordListThree = {“process”, “tipping point”, “solution”, “architecture”,
“core competency”, “strategy”, “mindshare”, “portal”, “space”, “vision”, “paradigm”, “mis-
sion”};

// find out how many words are in each list
int onelLength = wordListOne.length;

int twol.ength = wordListTwo.length;

int threelength = wordListThree.length;

// generate three random numbers, to pull random words from each list
int randl = (int) (Math.random() * onelength):;

int rand2 = (int) (Math.random() * twoLength);

int rand3 = (int) (Math.random() * threelLength);

// now build a phrase
String phrase = wordListOne[randl] + “ “ + wordListTwo[rand2] + ™ ™ +

wordListThree[rand3];

// now return it
return (“What we need is a “ + phrase);

}

630 chapter 18

Enterprise JavaBeans: RMI on steroids

RMI is great for writing and running remote services. But
you wouldn't run something like an Amazon or eBay on RMI
alone. For a large, deadly serious, enterprise application, you
need something more. You need something that can handle
transacdons, heavy concurrency issues (like a gazillion
people are hitting your server at once to buy those organic
dog kibbles), security (not just anyone should hit your
payroll database), and data management. For that, you need
an enterprise application server.

In Java, that means a Java 2 Enterprise Edidon (J2EE) server.
A J2EF server includes both a web server and an Enterprise
JavaBeans(EJB) server, so that you can deploy an application
that includes both servlets and EJBs. Like servlets, EJB is
way beyond the scope of this book, and there's no way to
show “just a litle” EJB example with code, but we will take

a quick look at how it works. (For a much more detailed
treatment of EJB, we can recommend the lively Head First
EJB certification study guide.)

Heve's wheve the EJB

remote deployment with RMI

An E]JB server adds a bunch
of services that you don’t get
with straight RMI. Things
concurrency, database
management, and networking.

An EJB server steps into the
midd]e of an RMI es]] and
layers in all of the services.

The bean obieet is otstted ﬁro:
diveek client actess. Only the sc_‘v_r‘\ :v
ean atbually £alk to Q\: bga»

lets the sexver do {')‘unt_xf like says
“Whoa! This thient doesn t have

, involved! The EJB aprert o 360 by cleavance to call his
. JCC{ In{x “P{‘ H\C u(,ur‘\’ I ,'b\,"“\ 3
s elient tould be AN\/TNNé’ but g:t call ﬁo,ﬂ'c bean (the bca: holds method.-” Al smclvcrh CE;IYO_‘““QY
?‘s'c:\'\ffhan EIB chient is 3 serl ol r:af pesiness loge) and [ayers i bor in a“hEJBHw s::vcivfh?s)
) . Seevié b w 3 .
v\\fafmihs in the same JLEE server server (securi:‘:syrr ovided by the EJB HERE, wheve

framgﬂm, ete)
i AY

@Ml

This is only a small part of the EJB pi

cturel

you are here» 631

a little Jini

For our final trick... a little Jini

We love Jini. We think Jini is pretty much the best thing in Java. If EfB is RMI
on steroids (with a bunch of managers), Jini is RMI with wings. Pure Java bliss.
Like the E]B material, we can’t get into any of the Jini details here, but if you
know RMI, you're three-quarters of the way there. In terms of technology,
anyway. In terms of mindset, it's time to make a bjg leap. No, it's time to fly.

Jini uses RMI (although other protocols can be involved), but gives you a few
key features including:

Adaptive discovery
Self-healing networks

With RMI, remember the client has to know the
name and locatdon of the remote service. The

client code for the lookup includes the IP address or
hostname of the remote service (because that’s where
the RMI registry is running) and the logical name the
service was registered under.

But with Jini, the client has to know only one thing: the
interface implemented by the service! That's it.

So how do vou find things? The trick revolves around Jini lookup
services. Jini lookup services are far more powerful and flexible than
the RMI registry. For one thing, Jini Jookup services announce themselves to the
newwork, automatically. When a lookup service comes online, it sends a message (using P
multicast) out to the network saying, “I'm here, if anyone’s interested.”

But that's not all. Let’s say you (a client) come online afler the lookup service has already
announced itself, you can send a message to the entire nerwork saying, “Are there any
lookup services out there?”

Except that you're not really interested in the lookup service iself—you're interested in
the services that are registered with the lookup service. Things like RMI remote services,
other serializable Java objects, and even devices such as printers, cameras, and coffee-
makers.

And here’s where it gets even more fun: when a service comes online, it will dynamically
discover (and register itself with) any Jini lookup services on the network. When the
service registers with the lookup service, the service sends a serialized object 1o be placed
in the lookup service. That serialized object can be a stub to an RMI remote service, a
driver for a networked device, or even the whole service iself that (once you get it from
the lookup service) runs locally oo your machine. And instead of registering by name, the
service registers by the inlerfaceit implements.

Once you (the client) have a reference to a lookup service, you can say to that lookup
service, “Hey, do you have anything that implements ScientificCalculator?” At that point,
the lookup service will check its list of registered interfaces, and assuming it inds a
match, says back to you, “Yes I do have something that implements that interface, Here's
the serialized object the ScientificCalculator service registered with me.”

632 chapter18

remote deployment with RMI

Adaptive discovery in action

@@ Jini lookup service is launched somewhere on the network, and
announces itself using IP multicast.

Hey everybody,
I'm herel

Jini Lookup Service

machine on the network another machine on the network
somewhere. ..

Register
me as something
that implements
ScientificCalculator. Here's a
serialized object that represents
my service. Send it to
anybody who asks...

& An already-running Jini service on
another machine asks to be registered
with this newly-announced lookup
service. It registers by capability,
rather than by name. In other words,
it registers as the service interface it
implements. It sends a serialized object
to be placed in the lookup service.

another machine on the network
Jini Lookup Service /

machine on the network another machine on the rnetwork
somewhere ..

you are here» B33

adaptive discovery in Jini
Adaptive discovery in action, continved...

@ A client on the network wants
something that implements the
ScientificCalculator interface. It has

no idea where (or if) that thing exists,

so it asks the lookup service. o .

5 another machine

| Jini Service on the network

Do you
have anything
that implements
ScientificCalculator?

'_ Jini Lookup Service

\ Java app
machine on the network another machine on the network
somewhere. ..

The lookup service responds, since it does have something
registered as a ScientificCalculator interface.

Yes, I do
have something.
I'm sending you the
serialized object

¢ Jini Service

another machine on the network

/

NEVTERET]

machine on the network anocther machine on the network
somewhere. ..

634 chapter 18

remote deployment with RM!
Self-healing network in action

@ A Jini Service has asked fo register with the lookup service. The lookup
service responds with a “lease”. The newly-registered service must keep
renewing the lease, or the lookup service assumes the service has gone
offline. The lookup service wants always to present an accurate picture
to the rest of the network about which services are available.

Tl

register you,

and here’s your f

lease. If you don't 4 Jini Service
J £

renew it, T'll drop you. - 3

another machine
on the network

machine on the network another machine on the network
somewhere . ..

The service goes offline (somebody shuts it down), so it fails to
renew its lease with the lookup service. The lookup service drops it.

Hmmmm... I

didn't get a lease
renewal! from that one... it
must be down. T'll drap it. If it

comes back, it will automatically
rediscover me.

another machine on the network

machine on the network another machine on the network
somewhere. ..

you are here » 8358

universal servica project

Final Project: the Universal Service browser

We’re going to make something that isn’t Jini-enabled, but quite easily could be.

It will give you the flavor and feeling of Jini, but using straight RMI. In fact the

main difference between our application and a Jini application is how the service is
discovered. Instead of the Jini lookup service, which automatically announces itself and
lives anywhere on the network, we're using the RMI registry which must be on the same
machine as the remote service, and which does not announce itself automatically.

And instead of our service registering itself automatically with the lookup service, we
have to register it in the RMI registry (using Naming.rebind()).

But once the client has found the service in the RMI registry, the rest of the application
is almost identical to the way we'd do it in Jini. (The main thing missing is the lease that
would let us have a self-healing network if any of the services go down.)

The universal service browser is like a specialized web browser, except instead of HTML

pages, the service browser downloads and displays interactive Java GUTs that we're
calling universal services.

8ee RMI Browser Choose a servite from the
v Day of the Week Service v list. The RM| remotez sevvice
Dice Rolling Service =1 has 3 getServicelist0)

Visual Music Service 3 method that sends back this
1 list of services.

When the user seletts one,
the client asks for the
attual service fDiccRoHing,
Day0f TheWeek, etz.) to
be sent back from the RMI

vemote sevvite.

sc\c.&{‘ 3 :clvv\cc.
up heve.

» yor
ﬁf\:\\\\fsm"

636 chapter18

remote deployment with RMi

How it works:

Client starts up and Service Browser
does a lookup on the (client)
RMI registry for e
the service called
“ServiceServer”, and
gets back the stub.

(on server)

Client calls getServicelist() on the stub. The ServiceServer
returns an array of services

Service Browser
(client) - “getServicelist()’

"OK, here’s an array of services”

@ Client displays the list of services in a 6UL

Service Browser

you are here» 637

638

universal service browser

How it works, continued...

@ User selects from the list, so client calls the getService()
method on the remote service. The remote service returns a

serialized object that is an actual service that will run inside
the client browser.

SZWI(CTI:\:‘;W“" “getService(selectedSve)”
C

T

"OK, here’s the service”

Client calls the getGuiPanel() on the serialized service object it
just got from the remote service. The GUI for that service is
displayed inside the browser, and the user can interact with it

locally. At this point, we don't need the remote service unless/until
the user decides to select another service.

Service Browser
(client)

chapter 18

The classes and interfaces:

interface ServiceServer implements Remote

A regular old RMI remote interface for the remote service (the
remote service haos the methed for getting the service list and
returning a selected service).

@ class ServiceServerImpl implements ServiceServer
The actual RMI remote service (extends UnicastRemoteObject).
Its job is to instantiate and store all Yhe services (the things
that will be shipped to Yhe client), and register Yhe server itself
(ServiceServerImpl) with the RMI registry.

@ class ServiceBrowser
The client. It builds a very simple GUI, does a lookup in the RMI
registry to get the ServiceServer stub, then calls a remote method on
it Yo get the list of services to display in the GUT list.

@ interface Service
This is the key to everything. This very simple interface has just one
method, getGuiPanel(). Every service that gets shipped over to the
client must implement this interface. This is what makes the whole thing
UNIVERSAL| By implementing this interface, a service can come over
even though the client has no idea what the actual class (or classes)
are that make up that service. All the client knows is that whatever
comes over, it implements the Service interface, so it MUST have a
get6uiPanel() method.
The client gets a serialized object as a result of calling
getService(selectedSve) on the ServiceServer stub, and all the client
says Yo that object is, "I don't knaw who or what you are, but I DO
know that you implement the Service interface, so I know I can call
getGuiPanel() on you. And since get6uiPanel() returns a JPanel, Tl just
slap it into the browser 6UI and start inferacting with itl

@ class DiceService implements Service
6ot dice? If not, but you need some, use this service to roll anywhere
from 1 to 6 virtual dice for you.

(@ class MiniMusicService implements Service
Remember that fabulous little 'music video’ program from the first :

remote deployment with RMI

ServiceServer

getService()

getServicesUist()

SarviceSarvarimpl

getServicasList()
getService()

SarviceBrowser

main()

Service

. | getGuiPanel()

' DiceService

/| getGuiPanel()

6UI Code Kitchen? We've turned it into a service, and you can play it
over and over and over until your roommates finally leave.

DayOfTheWeekService

@ class DayOfTheWeekService implements Service
Were you borh on a Friday? Type in your birthday and find out.

getGuiPanel(}

you are here »

s
MiniMusicService

getGulPanel()

639

universal service code

interface ServiceServer (the remote interface)

. Qau
import java.rmi.*; al RMI "moﬁ;z&;,‘\ﬁ ,
NWor { U S
. . - ! WO
public interface ServiceServer extends Remote ({ d,_.Qmes he ¢ Wil have

Vil
Object[] getServicelist() throws RemoteException; vrc"'°‘t° sev

Service getService (Object serviceKey) throws RemoteException;

interface Service (what the GUI services implement)

import javax.swing.¥;
import java.io.*;

public interface Service extends Serializable {

public JPanel getGuiPanel()
}

640 chapter 18

That’s 5 must, b,

shi?rcd over the wire ‘{"ro

remote deployment with RV

glass ServiceServerimpl (the remote Implementation)

import java.rmi.*;
import java.util.¥;
fmport java.rmi.server.*;

A “ovna\ P\Ml 'm?\tmemb’s)bon

pablic class ServiceServerImpl extends UnicastRemoteObject implaments ServiceServer {

Hashap sarvicalist: The sevvices will be stored ;
" .]
hia objeet in the eollettion '

a HashMaP tollecti
Value objCCf Cwhatey on. Instead of putti

) You put TWO 5k, obj AR

public ServiceServerImpl({) throws RemoteException |
setUpServicas () ;
p (Galize the actual
- Must

} ¢S CWAICCI :

5 l w”w % t,a“Cdl m‘

the . wee, Mint
private void setUpSarvicesa() { Vf:::ysa\ servites (DieeServrees

servicalList = new HashMap () ;

saervicelist.put(“Dice Rolling Service”, new DiceService()):
servicelist.put(“Day of the Week Service”, new DayOfThaWaekSaervice()):;
sarvicelList.put (“Visual Music Service”, new MiniMusicService()):

| \ ke the sevvites (the ac;’cnua*\)\s:w'\u
; n
nf%ccb) ané &u{; {S_if::\ T .
Ras\nMag, wl
the key).

public Object() getSar;viceLiat()){ Client calls $h; in order Lo ot 5 bt Y
System.out.println{“in remote”); di . aet 3 f; .
return serviceList.keySat{).toArzay(); JSPL;y in the browser (so £ sevvices to

diplay € user £an seleet
de) o B Objct (even gy 4 e o
: . T
} in the Hashtan-nrr -] € Just the KEVS fag g™

ap. We won' send . are
unless the client a5k Lor i{:c‘;‘y :a"”:“;;iic::‘utccoob\jccf
el /.

public Service getService (Object marviceKey) throws RemoteException {
Sarvice theService = (Service) serviceList.get {serviceKay); wite
return theSarvice; Shter Yo user selects 3 €

he
| ethod after it ot From ©
: Client alls Ehis ;t\is{: of sevviLes ({—3\3}1&: ?a-nc key

asplaye N -
e - gt o CS?orsde
et abch)-ZTp\\G\c Jiend) Lo act Lhe cave
ﬁ?ﬁi\i\fé Lhe BashMay-

public static void main (String[] arxgs) {

try {
Naming.rebind(“ServiceServer”, new ServiceServerImpl());
} catch(Excaption ex)
ex.printStackTrace() ;

}
Systam.out.println(“Remote service is running”);

| you are hare» 64

ServiceBrowser code
class ServiceBrowser (the client)

import java.,awt.*;
import javax.swing.¥;
import java.rmi.*;
import java.awt.avent,*;

public class ServiceBrowsar {

JPanel mainPanel;
JComboBox serviceldst;
ServiceServer server;

public void buildGUI() {
JFrame frame = new JFrame (“RMI Browser”) :;
mainPanel = new JPanel () ;
frama.getContantPane () .add {BorderLayocut,CENTER, mainPanal);

{ookup)
he RM| re veaistey 0.
°:: 4 u“ Wnbcb\)

Objact[] servicaes = getServicesList(); ¢ this mekhod

Lo Lhe
N Add the urv;é‘es (an away o§ 0Ob “B{F:),(both

new JComboBox (services) ; JComboBm& (-
wake displayable Sbnngs out oF cath thing

frams.gqetContantPana () .add (BorderLayout.NORTH, servicalist);

pervicelist =

servicaelist.addActionListener (new MyListlistanar());

frame.setSize (S00,500);
frame .satVigible (true) ;

}

void loadService (Objaect servicaeSalection) (
try {

Saervice svc = saerver.getSarvice (sarviceSalaction);

Here's wheve we add

in the avray-

mainPanel . ramovaAll () ;

mainPanel.add(sva.getGuiPanel ()) ; Fw' has seleeted one.

mainPanael.validata () ;
mainPanel.repaint() ;
} catch (Exception ex) {
ex.printStackTraca() ;
}

642 chapter 18

the aetugl service to the
) 6“{, affn
s s o JCMboghls method is talled by the event e
renty e ox). We ¢al| 9etServicel) on the
er {the st for SevviteSevver) and Pass it the

Q{"lh
o {rmg :J:ai was ;Ii.sv ozcd in the fist (which is the SAME
sh g iging Y 4 rmn the sevver when we ¢a] d
amain_;f;) 5‘::(:: The t:v:er vetuns the aedusl serv‘eu
sy whith is au ticslly 4 ; !
and we simply ell the 5‘*6“'%,30 csevidlived (hanks &, R

the vesult (3 OPanel) £ the broweer’s -g::PS:W;L‘ and add
ne

remote deployment with RMI

Object[] getServiceslist() {

Object obj = null;

Object[] services = null; ‘o
Do the RMI lookup, and aet the st

try {

obj = Naming.lookup(“rmi://127.0.0.1/ServiceServer”);

}
catch (Exception ex) {
ex.printStackTrace() ;

}
server = (ServiceServer) obj; Cast the stub 4o
so that we ¢ap caffhe E"‘O# interface type
getSevvicelist() on it !
try {
services = server.getServiceList():;
} catch(Exception ex) {
} hat we display in the JComboBox for the user to
return services; seleet feom.
}
class Mylistlistener implements ActionlListener {
public void actionPerformed(ActionEvent ev) (
Object selection = servicelist.getSelectedItem()
v made 2

loadService (selection) ; ‘ Lhe vse
) , ik means "t Sor
. N e e
Vs e selection they e loadServite etho
' Y

kake th (see tne o
public static void main(String[] args) { a?v*o?“‘a*",mv‘“ 63&‘3& asks the s¢ V:\;c on
new ServiceBrowser () .buildGUI() ; the YYC““’“S paxe onds ith i
} i;\ sevvite th t covves?
e

youare here» 643

DiceService code

class DiceService (a universal service, implements Service)

O i IS e
Dice Rolling Service

import javax.swing.?*; QQBESN

import java.awt.evant.¥*;
import java.io.¥*;

public class DiceService implemants Service (

JLabel label;
JComboBox numOf£fDice;

public JPanel getGuiPanel () {
JPanel panel = new JPanel () ;
JButton button = naw JButton(“Roll ‘em!”);
String[] choices = (“1%, “2”, “37, “4", “5”};

numOfDica = new JComboBox (choicaes) ;
lahel = new JLabel (“dice valuas hare”);
button.addActionl.istener (naw RollEmLiastener()) ;

panal.add (numOfDice) ; Here's the one i
.add n) ; L ! Po"{'ﬂhf method!
§:nn:i.add:!1ma;:i)) S:-W ice interfate—— the one ’c:fch-re:i: EH::: oﬁ,ﬂ“
return panal; "t"“""'ﬂc is selected and loaded. You «‘.a?.odo "-:&WH&
} 5;“ I'h ﬂ-n-e c{?ﬁuipancl() method, s long as :u 3 fv" you
anel, so it builds {he actual dict—ro”inﬁ éur return 3

publie class RollEmListener implements Actionlistener {
public void actionPerformed(ActionEvent ev) (

// roll tha dice

String diceOutput = “*;

String selection = (String) numOfDice.getSalectedItem():

int numOfDiceToRoll = Integer.parselnt (selaction);

for (int i = 0; i < numOfDiceToRoll; i++) (
int r = (int) ((Math.random() * 6) + 1);
diceCutput += (“ ™ + r);

}

label.getTaxt (diceOutput) ;

@&%ﬁ{&pen your pencil

Think about ways to improve the DiceService.One

suggestion: using what you learned in the GUI chapters, @ o '
make the dice graphical. Use a rectangle, and draw the o ’
appropriate number of circles on each one, corresponding [o

to the roll for that particular die.

644 chapter 18

remote deployment with RMI

class MiniMusicService (a universal service, implements Service)

import javax.sound.midi.r;
import java.lo.*;

import javax.swing.*;
import java.awt.*;

import java.awt.event.¥;

MyDrawPanel myPanal; s i display b:;t{(.’:: ;‘:
. uw
public JPanel getGuiPanel () { the d'ar:s\a will eventually
JPanel mainPanel = new JFanel(); tht*fc
myPanel = new MyDrawPanel () :; be pam

JButton playItButton = new JButton (“Play it”);
playItButton.addActionlistaner (new PlayItl.istener());
mainPanel.add (myPanal) ;

mainPanel.add(playItButton) ;

return mainPanel;

}

public class PlayItListener lmplements ActionListener { This is all the music stuff Lrom the

public void actionPerformed (ActionEvent ev) (¢ Kitchen in ch
won't annotate it a9ain heve.

try (

Sequencar sequencer = MidiSystem.getSequencer();
sequaencer.open() ;

asequeancer.addControllerEventLiataner (myPanel, new int[] (127});
Sequence saq = new Sequance (Sequance.PPQ, 4};

Track track = seq.creataTrack();

for (int i = 0; i < 100; i+= 4) {

int rNum = (int) ((Math.randem() * 50) + 1);

apter 12, so we

if (xNum < 38) { // s0 now only do it if num <38 (75% of the tima)

track.add (makeEvant (144,11, rNum,100,41)) ;
track.add (makeEvent (176,1,127,0,1));
track . add (makeEvent (128,1,xNum,100,1 + 2));

}
} // end loop

sequencer . satSequencae (seq) ;
saquencar.astart();
sequencer.setTempoInBPM(220) ;

} catch (Exception ex) (ex.printStackTrace():;)}

} // closa actionperformed
} // close inner class

you are here» 645

MiniMusicService code

class MiniMusicService, continued...

public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
MidiEvent event = null;
try {
ShortMessage a = new ShortMessage();
a.setMessage (comd, chan, one, two);
event = new MidiEvent(a, tick)};

}catch (Exception e) { }

return event;

}

class MyDrawPanel extends JPanel implements ControllerEventListener {

// only if we got an event do we want to paint
boolean msg = false;

public void controlChange (ShortMessage event) {

msg = true; i . \(ou’vc
] - 1 entive $38C i
seen ? hee erertist
ant ano Lhen
public Dimension getPreferredSize() { lg \!o{‘—:a:,’m“ Lhis code “Y:é\,‘%tmn m
\ return new Dimension(300,300) at.“o,:\’a"‘ '3: wit! ‘h‘v.\c s{'p“‘fﬂ thapter

public void paintComponent (Graphics g) {
if (msg) {

Graphics2D g2 = (Graphics2D) g;

int r = (int) (Math.random{) * 250);
int gr = (int) (Math.random() * 250);
int b = (int) (Math.random() * 250);

g.setColor (new Color(r,gr,b)):

int ht = (int) ((Math.random() * 120) + 10);
int width = (int) ((Math.random() * 120) + 10);

1]

int x
int y

(int) ((Math.random() * 40) + 10);
{(int) ((Math.random() * 40) + 10);

g.fillRect (x,y,ht, width);
msg = false;

} // close if
} // close method
} // close inner class
} // close class

GAB shanier 48

remote deployment with RMI

class DayOfTheWeekService (a universal service, implements Service)

. . . R0 Broeriar
import javax.swing.*; e =4
import java.awt.event ¥; s _ |
import java.awt.¥; ol : (CBom) vonery |
Vawr 1300} 1

import java.io.¥; i.
import java.util.*;
import Jjava.text.¥;
|
|

public class DayOfTheWeekService implements Servica (

JLabel outputLabel;
JCamboBox month ; cthod
JTextField day; The Sevvite inteckace ™

.) Ul
JlextField year; ‘/\ that builds the 6

public JPanal getGuiPanel () (¢ <
JPanel panel = new JPanal () ;
JButton button = new JButton(“"Do it!”);
button.addActionListenar (naw DoltListener()):
outputLabel = new JLabel (“date appears hara”);
DateFormatSymbols dataStuff = new DateFormatSymbols () ;
month = naw JComboBox (dateStuff. getMonths())
day = new JTextField(8);
year = new JTextField(B);
Jranal inputPanel = naw JPanel (new GridLayout(3,2));
inputPanal.add (new JLabel (“Month”));
inputPanel.add (menth) ;
inputPanel. add (new JLabel (“Day”));
inputPanel.add (day) ;
inputPanel.add (new JLabel (“Year”));
inputPanel. add (year) ;
panel . add (inputPanel) ;
panel.add (button) ;
panel . add (outputLabel) ;
return panel;

}

public class DoItlListener implements ActionLiatenar (£ oun“d ara«'mdt'
public void actionPerformed(ActionEvent ev) (R Sor to LMYV" \0 \fﬁma&;ms works
int monthNum = month.getSelectedIndex(): OE \ow umber and d;“or k, howevets N

int dayNum = Integer.parseInt(day.getText()); s tode ;\15\\{'\:\3 ! * olass s, the

int yearNum = Integer.parselnt(year. qgetTaxt(}))
Calendar o = Calendar.gatInatance();

c.get (Calaendar.MONTH, monthNum) ;

¢.sat (Calandar.DAY OF MONTH, dayNum) ;

c.set (Calendar.YERR, yearNum) ;

Date date = c.getTime ()’

String dayOfWeek = (new SimpleDateFormat (“EEEE”)) .format (date);
outputLabel . setText (dayOfWeek) ;

it uses eiky 3 P2
beLavse t \eks us spe
%m?\tpagf dm 5\\0“\d ?Y.m*/ oM
or hov

} you are here*» 647

the end... sort of

648

Wouldr't it be
dreamy if this were the end
of the book? If there were no
more bullet points or puzzles
or code listings or anything else?
But that'’s probably just a

fantasy...

Congratulations!
You made it to the end.

Of course, there’s still the two appendices.

And the index.
And then there’s the web site...

There’s no escape, really.

chapter 18

