A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

12 getting gui
A Very Graphic

Wow! This looks great.
I guess presentation
~ _ ,_ really is everything.

T heard your

ex-wife could only cook

command-line meals.

Face it, you need to make GUIs. if you're building applications that other
people are going to use, you need a graphical interface. If you're building programs for yourself,
you want a graphical interface. Even if you believe that the rest of your natural life will be
spent writing server-side code, where the client user interface is a web page, sooner or later
you'll need to write tools, and you'll want a graphical interface. Sure,command-line apps are
retro, but not in a good way. Theyre weak, inflexible, and unfriendly. We'll spend two chapters
working on GUIs, and learn key Java language features along the way Iincluding Event
Handling and Inner Classes. In this chapter, we'll put a button on the screen, and make It do
something when you click it. We'll paint on the screen, we'll display a Jpeg image, and we'll even

do some animation.

this is a new chapter 3583

http://www.a-pdf.com/?product-split-demo

your first gui

“If | see one more
command-line app,

It all starts with a window _
™Y you're fired.”

A JFrame is the object that represents &

a window on the screen. Jt’s where you

put all the interface things like buttons,

checkboxes, text fields, angd so on. It can

have an honest-to-goodness menu bar

with menu items. And it has all the litde

windowing icons for whatever platform

you're on, for minimizing, maximizing, and

closing the window.

The JFrame looks different depending on

the platform you're on. This is a JFrame on
Mac OS X:

[éce
Flle Panic Deviate i
G © crose e 3 e B
, wikh 3
3 Jpeame 'dg,c*" (a b
av\d two w\ by N
and 3 vadio
Making a GUI is easy:
@ Make a frame (a JFrame)
J JFrame frame = new JFrame () ;
4
@ Make a widget (button, text field, etec.)
PUT W‘dgefs ih fhe wlhdow JButton button = new JButton(“click ma”);
Once you have a JFrame, you can put @ Add the widget to the frame
things (‘widgets’) in it by adding them frame.getContentPane () .add (button) ;
to the JFrame. There are a ton of Swing .
components you can add; look for thern You don't add things £o
in the javax.swing package. The most diveetly Thk of "3s Lo the frapme
common include JButton, JRadioButton, — the Fame 35 the

R Im 3y, .
JCheckBogx, JLabel, JList, JScrollPane, ﬂ-.i,,ﬁs {:"Z: ﬂ‘f window, and You add
JSlider, JTextArea, JTextField, and ¢ window Pane.

JTable. Most are really simple to use, but

some (like JTable) can be a bit more

complicated. @ Display it (give it a size and moke it visible)

frame.setSiza (300,300);
frame.setVisible (true) ;

354 chapter 12

getting gui

Your first GUI: a button on a frame
don't Soraet Lo import this

import javax.swing.*; &— swing yackase
public class SimpleGuil
public static void main (8tring{] arga) ({ Cyame and 3 putLo
wmake 3
JFrame frame = new JFrame () ; &« e (you ean pass the button (,1'4{*' “‘w)
JButton button = new JButton(“click me”); the w{; you want on the

frama.setDefaultCloseOperation (JFrame .EXIT ON_CLOSE) ;

K_/ this fine makes £he

tlose the vindoy, (; o8rdm 4uit as oom 35 vou

et o ou leave Lh; .y
frame .getContentPane () .add (button) ; J"‘f sit there on the Z«:rcen Eore\lr‘e:)u{ & il
K:odj\écﬂw b't{:'l:on 4o the 'FI‘AMQ‘S
frame.setSiza (300,300); nt Pane
9ve the Frame 3 sine i
frama. satVisible (true); 7 n Pixels

finafly, make it visible/! (;§

this ste :) “ ‘:‘*3‘{'-
you vun i},lo:ozs t see a"yzh’hs when

Let's see what happens when we run It:
$java SimpleGuil

Whoa! That's a
Really Big Button.

The buttan fills all the
available space in the frame.
Later we'll learn to contral
where (and how big) the
button is on the frame.

you are here» 355

user interface events

But nothing happens when | elick it...

That's not exactly true, When you press the button it shows that
‘pressed’ or ‘pushed in’ look (which changes depending on the
\p tformn look and feel, but it always does something to show when

it's being-pressed).

The real queston is, “How do I get the button to do something
specific when the user clicks it?”

We need two things:

A method to be called when the user
clicks (the thing you want to happen as
a result of the button click).

@ A way to Know when to trigger
that method. In other words, a way
to know when the user clicks the
buttonl

When the user clicks, we want
to know.

We're interested in the user-
takes-action-on-a-button event.

e

358 chapter 12

O Ghestions

Q} Will a button look ike a
Windows button when you run on
Windows?

AI If you want it to.You can
choose from a few “look and
feels"—classes in the core library
that control what the interface laoks
like.In most cases you can choose
between at least two different looks:
the standard Java look and feel, also
Known as Metal, and the native look
and feel for your platform.The Mac
0OS X screens in this book use either
the OS X Aqua look and feel, or the
Metal look and feet.

Q,: Can I make a program iook
like Aqua all the time? Even when
it’s running under Windows?

A: Nope. Not all look and feels
are available on every platform. If
you want to be safe, you can either
explicitly set the look and feel to
Metal, so that you know exactly what
you get regardless of where the app
is running, or don’t specify a look
and feel and accept the defaults.

Q: I heard Swing was dog-slow
and that nobody uses it.

A: This was true in the past,

but Isn’t a glven anymore. On weak
machines, you might feel the pain of
Swing.But on the newer desktops,
and with Java version 1.3 and be-
yond, youv might not even notice the
difference between a Swing GUI and
a native GUI. Swing is used heavily
today, in all sorts of applications.

Getting a user event

Imagine you want the text on the button to
change from click me to I've been clicked when
the user presses the bytton. First we can write a
method that changes’the text of the button (a
quick look_i.h.mug{:he API will show you the
method):

public void changelt() {
button.saetText (“I’ve beaen clicked!”);

}

But now what? How will we know when this
method should run? How will we know when the
button is clicked ?

In Java, the process of getting and handling a
user event is called event-handling. There are
many different event types in Java, although
most involve GUI user actions. If the user clicks
a button, that’s an event. An event that says
“The user wants the action of this buiton to
happen.” If it's a “Slow Tempo” button, the user
wants the slow-tempo acton to occur. Ifit's a
Send button on a chat ¢lient, the user wants the
send-my-message action to happen. So the most
straightforward event is when the user clicked
the button, indicating they want an action to
occur.

With buttons, you usually don't care about any
intermediate events like button-is-being-pressed
and button-is-being-released. What you want to
say to the button is, “I don’t care how the user
plays with the button, how long they hold the
mouse over it, how many times they change their
mind and roll off before letdng go, etc. Just tell
me when the user means business! In other words,
don't call me unless the user clicks in a way that
indicates he wants the darn button to do what it
says it'll dot”

getting gui

First, the button needs to know
that we care.

Hey buthom, | cave abot
® what happens to you

/’N

your code \ 8 -,-*‘,-;&_.

Sutton oﬁ‘é’:

S

@ The uwser thicked mel

Second, the button needs a way
to call us back when a button-
clicked event occurs.

RAVN
QWEWR

1) Bow could you tell a button object that you
care about its events? That you're a concerned
listener?

2) How will the button ¢all you back? Assume
that there’s no way for you to tell the button the
name of your unique method (changelt(). So
what else can we use to reassure the button that
we have a specific method it can call when the
event happens? (hint: think Pet)

you are herey 357

event listeners

If you care about the button’s events,

implement an interface [[{FIXFI%R
' [ETILL Jfor your events.”

A listener interface is the bridge between the
listener (you) and event source (the button).

"The Swing GUI components are event sources. In Java terms,
an event source is an object that can turn user actions {ctick
a mouse, type a key, close a window) into events. And like
virtally everything else in Java, an event is represented as an
object. An object of some event class. If you scan through the
Jjava.awt.event package in the API, you’ll see a bunch of event
classes (easy 1o spot—they all have Eventin the name). You'l)
find MouseEvent, KeyEvent, WindowEvent, AcdonEvent, and
several others.

An event source (like a button) creates an event object when the
user does something that matters (like click the button). Most
of the code you write (and all the code in this book) will receive
events rather than create events. In other words, you'll spend
most of your time as an event Lstener rather than an event source.

Every event type has a matching listener interface. If you want
MouseEvents, implement the MouseListener interface. Want
WindowEvenis? Implement WindowListener. You get the idea.
And remember your interface rules—to implement an interface
you dzclare that you implement it (class Dog implements Pet),
which means you must write implemenlation methods for every
method in the interface.

Some interfaces have more than one method because the
event itself comes in different flavors. If you implement
MouseListener, for example, you can get events for
mousePressed, mouseReleased, mouseMoved, etc. Each of
those mouse events has a separate method in the interface,
even though they all take a MouseEvent. If you implement
MouseListener, the mousePressed () method is called when the
user (you guessed it) presses the mouse, And when the user lets
go, the mouseReleased() method is called. So for mouse events,
there’s only one event object, MouseEvent, but several different
event methods, representing the different types of mouse events.

358 chapter12

When you jmplement a
listener interface. you give
the button a way to call
you hack. The interface is
where the ca]l-back method
i§ declared.

getting qui

How the listener and source
communicate:

“Button, please add me Yo
your list of listeners and call

my actionPerformed() method
when the user clicks you."

"OK, youre an ActionListener,
so I know how to call you back
when there's an event -- T'll call
the actionPerformed() method
that I know you have."

ddAC?iOﬂL‘Sanep(f] O
o A ()
AN)

S

> J

. o)
A tionpg rformed (‘hze&

The Listener

If your cfass wants to know about
a button’s ActionEvents, you

implement the ActionListener

interface. The button needs to

know you're Interested, so you

register with the button by calling its
addActionListener(this) and passing an
ActionListener reference to it (In this case,
you are the ActionListener so you pass
this).The button needs a way to call you
back when the event happens, so it calls
the method in the listener Interface. As an
ActionListener, you must implement the
interface’s sole method, actionPerformed().
The compiler guarantees it.

The Event Source

A batton Is a source of ActionEvents,
so it has to know which objects are
interested listeners.The button has an
addActionListener{) method to give
interested objects (listeners) a way to
te/ the button they’re interested.

When the button's
addActionListener() runs (because

a potential listener invoked it), the
button takes the parameter (a
reference to the listener object) and
stores it in a list. When the user clicks
the button, the button ‘fires’ the event
by calling the actionPerformed()
method on each listener in the list,

you are here » 359

getting events

Getting a button’s ActionEvent

® Implement the ActionListener interface

@ Register with the button (fell it you
want to listen for events)

@ Define the event-handling method (implement
the actionPerformed() method from the
ActionlListener interrface)

t
. ¢ vatkage tha
import javax.swing.*; anew »‘m‘,w{; s&.ahcmt“*« ‘cmé& {Yan "
import java.awt.event.*; < AL‘E\onLis{',cnc\' and Actiontver

wheckate N
o el

public class SimpleGuilB implements ActionListener { L ckant
San WS 2

JButton button; f\ " Lis } \, Lo
& ON) p yen
public static void main (String{] args) { \)u’(kp“ w‘\\\ gwc c“\',c\'s
SimpleGuilB gui = new SimpleGuilB(); (The Liskenes 8 e
gui.go(): helor
}
public void go{) {
JFrame frame = new JFrame(); § s 53y
button = new JButton(“click me”) ; &VCS&' with ine ’b‘;s‘k \'\S‘\’X-vscvs
. we w Wy v . s‘-oﬁ‘
~ m‘sw b “hdd me oy be an o\{)c"*’
® —’/ button.addActionListener (this); < Lo the putom - M\LST ' \
' ent YO ok
R 312\“1“ glemer heber
\ass thd
frame.getContentPane () .add (button) ;
frame.setDefaultCloseOperation (J¥rame . EXIT ON_CLOSE) ; . Jct ;a“’s
frame.setSize (300,300) ; Peb {_iskener WCEY
A ’ ! L‘E\Oﬂ the
frame.setVisible (true) \m‘?\c"‘c"‘{ the 0 ekho 4. Thws s
™
: ab_h‘\o“?c\rgo\'m:d d\‘“s me'h}\
. ‘h’ ah
® /"“ sekal even
public void actionPerformed(ActionEvent event) {
button. setText (“I’'ve been clicked!”);
} Tht b(d“',";o“ :
talls this
} method £o ot You know an event

happened. [t sends You an
argument, but we don't ne

“?Pcned is enough info

AcfionEvenf ob‘jec{: as the
ed it Knowing the event

or s,

360 chapter 12

getting gui

Listeners, Sources, and Events

For most of your stellar Java career, you will not be the source
of events.

(No matter how much you fancy yourself the center of your social
universe.)

Get used to it. Your job is to be a good listener.

(Which, if you do it sincerely, can improve your social life.)

As an event source, my job is to
accept registrations {(from listeners),
get events from the user. and
call the listener’s event-handling
method (when the user clicks me)

As a listener, my job is to
implement the interface,

register with the button, and
provide the event-handling.

Source SENDS
the event

Listener GETS the
event

Hey, what about me? I'm a player too, you
know! As an event object, I'm the argument
to the event call-back method (from the
interface) and my job is to carry data about
the event back to the listener.

Event object
HOLDS DATA
about the event

g”em o‘d\?’b

you are here» 361

event handling

thjjxeﬁlelgraﬁesﬁms
Q;

A: You CAN.We Just said that most of the time
you'll be the receiver and not the originator of the
event (at least in the early days of your brilliant Java
careet)-Mostofthe events you might care about

are ‘fired’ by classes in the Java API, and all you have
to do (s be a listener for them. You might, however,
design a program where you need a custom event, say,
StockMarketEvent thrown when your stock market
watcher app finds something It deems Important. In
that case, you'd make the StockWatcher object be an
event source, and you'd do the same things a button
(or any other source) does—make a listener interface
for your custom event, provide a reglstration method
(addStockListener()), and when samebody calls It, add
the caller (a listener) to the list of listeners. Then, when
a stock event happens, instantiate a StockEvent object
{(another class you'll write) and send 1t 1o the listeners
in your list by calling their stockChanged(StockEvent
ev) method. And don't forget that for every event type
there must be a matching listener interface (so you'll
create a StockListener interface with a stockChanged()
method).

Why can’t | be a source of events?

Q,: | don’t see the importance of the event object
that’s passed to the event call-back methods. If
somebody calls my mousePressed method, what
other info would | need?

A: A lot of the time, for most designs, you don't
need the event object.It’'s nothing more than a little
data carrier, to send along more info about the event.
But sometimes you might need to query the event for
specific detalls about the event. For example, if your
mousePressed() method is called, you know the mouse
was pressed. But what if you want to know exactly
where the mouse was pressed? In other words, what if
you want to know the X and Y screen coordinates for
where the mouse was pressed?

Or sometimes you might want to register the same
listener with mujtiple objects. An onscreen calculator,
for example, has 10 numeric keys and since they all do
the same thing, you might not want to make a separate
listener for every single key. Instead, you might

register a single listener with each of the 10 keys, and
when you get an event {because your event call-back
method is called) you can calt a method on the event
object to find out who the real event source was.In
ather words, which key sent this event.

W your pencl

Each of these widgets (user interface objects) are the
source of one or more events. Match the widgets with
the events they might cause. Some widgets might be a
source of more than one event, and some events can be
generated by more than one widget.

Widgets Event methods
chack box windowClosing()
text field actionPerformad()
scrolling list ItemStateChanged()
button mousePressed()
dialog box keyTyped()
radio button mouseExited()
menu item focusGained()

362 chapteri?2

Getting back to graphies...

Now that we know a little about how events work (we'll learn
more later}, let’s get back to putting stuff on the screen.
We’ll spend a few minutes playing with some fun ways to get
graphic, before returning to event handling.

Three ways to put things on your GUI:

\@*P(rr;v/idgefs on a frame

Add buttons, menus, radio buttons, etc.
frame getContantPane () .add (myButton) ;

The javax.swing package has more than a dozen
widget types.

@ Drow 2D graphics on a widget
Use a graphics object to paint shapes,
graphics.fil10val(70,70,100,100) ;

You can paint a lot more than boxes and circles;
the Java2D API is full of fun, sophisticated

graphics methods. /
a

@ Put a JPEG on a widget

You can put your own images on a widget.

graphica.drawInage (myPic,10,10,this);

getting gui

Number of Head
First Java books
mistakenly
bought by coffee
house baristas.

(racks
usinets

BY a?\\\ Mn

you are here» 363

making a drawing panel

Make your own drawing widget

If you want to put your own graphics on the screen, your best
bet is to make your own paintable widget. You plop that widget
on the frame, just like a button or any other widget, but when it
shows up it will have your images on it. You can even make those
images move, in an animation, or make the colors on the screen
change every ime you click a button.

~jes.a piece of cake.
Make a subclass of JPanel and override one

method, paintComponent(). e

o

All of your graphics code goes inside the paintComponent()
method. Think of the paintComponent() method as the method
called by the system to say, “Hey widget, time to paint yourself.”
If you want to draw a circle, the paintComponent() method will
have code for drawing a circle. When the frame holding your
drawing panel is displayed, paintComponent() is called and your
circle appeanrs. If the user iconifies/minimizes the window, the
JVM knows the frame needs “repair” when it gets de-iconified,

so it calls paintComponent() again. Anytime the JVM thinks the

display needs refreshing, your paintComponent() method will be
called.

One more thing, you never call this method yourself! The argument
to this method (a Graphics object) is the actual drawing canvas
that gets slapped onto the rzal display. You can’t get this by
yourself; it must be handed to you by the system. You'll see

later, however, that you can ask the system to refresh the display
(repaint()), which ultimately leads to paintComponent() being

called. & Knest
import java.awt.*; & - ‘,,_z_d\’ Panéhs 2 wid ch
import javax.swing.*; & Make 3 siotlass Lo 3 frame I like

class MyDrawPanael extands JPanel (ized id

. \g
‘/P phat Yoo G20 0t s one 81
ing) €lse:
D i i

9
KN Thisis the B lmvﬁ: f:uﬂct
public void paintComponent (Graphica g) { You will VER t2

?\\'\u method:

“HLTC,S 2 nle

9{5*.6"\ La“s 1*‘ a"‘d sa\f‘loc 'twc &3?“\&&

ing surratt
g.setColor (Color.orange) ; i‘;\i‘ d::\a3 ?a'm{: on now- -
hi
Imagi (s,
g.fillRect (20,50,100,100) {t”iﬂ':"titﬂrt 9 isa pain{juﬂ mathine. \ou
b oro € what color L b3t ith re
} R 0t shape o paint (ifl oomin 20d Ehen
X “here it Qoex and how big iy " E* For

364 chapter12

getting gui

Fun things to do in paintComponent()

Let’s look at a few more things you can do in paintComponent().
The most fun, though, is when you start experimenting yourself.
Try playing with the numbers, and check the API for class
Graphics (Jater we'll see that there's even more you can do besides

what's in the Graphics class).

Display a JPEG

hert
oes
e (ke rame 3

public veid paintComponent (Graphics g) { [‘

Irage image = new Imagelcon (“catzilla.jpqg”).getImage () ;
i

g.drawImage (imaga,3,4,this) ;

) AN

T]'OC le doofd

o inates £op where the o !

ﬂm ’:‘F:\:; shoufd ge. This say: u; Fi:jw;) &P

b i -Zj., of the Panel and 4 pi};dss'p -

eiage e ¢ rand - These numb, e
¢ to the widget (j — 9‘“’375

subtlass), pot the entive Zrihis 4ase Your JPane)
me.

Paint a randomly-colored circle
on a black background
1y, Watt Q

\ it
public void paintComponent (Graphics gq) { o the m{.u;\a::)

(—’ (ne ACQ 3\;\)(.

g.flllRect (0,0, this.getWidth(), this.getHeight(): T, f 4y args debine the (xy) £
me the (x,
corner, velative £o the panel, £or Z:h:rECZrL:witg
| F'—B' $0 0, O means “start O pixels from the
ert edge and O pixels from $he top edge.” The
other £wo args say, "Make the width of £his

int red = (int) (Math.random() * 255);

int green = (int) (Math.randem() ¥ 255); i :
int blue = (int) (Math.random() * 255); "“L ngle 3s wide as the panel (thiswidth()), snd
maKe {'}lc ht(gl‘»f as %‘a“ as 't}lc Pahd {{hls_haah{’)n
Color randomColor = naw Color(rad, green, blua):;
g.setColor (randomColor) ;
g.f8110val (70,70,100,100) ; & You tan make 5, Jor b
re oor BY Passing i 2 .
) start 7 Present the RGp 1y o in 3 ins
the Lo, mmc’i w’;ro’. the left, 75 ¢
loo Pixels tall. % Pixels wide, androm

you are herey 365

drawing gradients with Graphics2D

Behind every good Graphics reference
is a Graphies20 object.

The argument to paintComponent() is declared as type
Graphics (java.awt.Graphics}.

public void paintComponent(Grnnhics g) {}

So the parameter ‘g’ IS-A Graphics object. Which means it
could be a subelass of Graphics (because of polymorphism).
And in fact, it s,

The object referenced by the ‘g’ parameter is actually an
instance of the Graphics2D class.

Why do you care? Because there are things you can do with

a Graphics2D reference that you can’t do with a Graphics
reference. A Graphics2D object can do more than a Graphics
object, and it really is a Graphics2D object lurking behind the
Graphics reference.

Remember your polymorphism. The compiler decides which
methods you can call based on the reference type, not the
object type. If you have a Dog object referenced by an Animal
reference variable:

Animal a = new Dog();
You can NOT say:
a.bark();

Even though you know it's really a Dog back there. The
compiler looks at 'a’, sees that it's of type Animal, and finds
that there's no remote control button for bark() in the Animal
class. But you can stll get the object back to the Dog it really i
by saying:

Dog d = (Dog) a:

d.bark();

So the bottom line with the Graphics object is this:

If you peed to use a method from the Graphics2D class, you
can’t use the the paintComponent parameter (‘g’) straight
from the method. But you can cast it with a new Graphics2D
variable.

Graphics2D g2d = (Graphics2D) g

366 chapter12

Methods you can call on a
Graphics reference:

drawimage()
drawline()
drawPalygon
drawRact()
drawOval()
filiRect()
fililRoundRect()
setColor()

To cast the Graphics2D object to
a Graphics2D reference:

Graphics2D g2d = (Graphics2D) g;

Meothods you can call on
a Graphicsgg reference:
fil3DRect()
draw3DRect()
rotate()
scale()
shear()
transform()
setRenderingHints()

(these are not Lomplete method lists,
theek the APl for move)

getting qui

Because life’s too short fo paint the
eircle a solid color when there’s a
gradient blend waiting for you.

4D dojett
. FERYPY AV N ed
s Nui\:d?n‘? :sva weve Graphies
mas)
o\)\‘)d.‘b

sublic vold intComponent (Graphics g) (

Graphics2D g2d = (Graphics2D) g,
= tast it 50 we tan call something that
Graphies2D has but Graphics doesn't

GradientPaint gradient = new GradientPaint(70,70,Color.blue, 150,150, Color.orange);
Eing Poing "3 Coloy. Ting Poing "3 ol
Vb seks the virtug Paint brush 4o

g2d.satPaint (gradient) ; 33dient instead of 3 solid rolor

g2d.A110val (70,70,100,100) ;

Ll
veall means
the ;‘“0‘43\0 nt\?{;ﬁgr it ;’oadutd on Yo

L .
{::lhi;:‘u:\‘: (\.: Ine tyradtcn

public void paintComponent (Graphics g) {
Graphics2D g2d = (Graphics2D) g;

oo
int red = (int) (Math.random() * 255); s s st fke Lhe “‘:m colors ket
int green = (int) (Math.random({) * 255);
int blue = (int) (Math.random() * 255); he skar and $T
Color startColor = new Color(red, grean, blue) Srad\m{-, Tv‘f‘ .

rad = (int) (Math.random() * 255);

green = (int) (Math.random() * 255);

blua = (int) (Math.random() * 25S5);

Color andColor = new Color(red, green, blue);

GradientPaint gradient = naw GradientPaint(70,70,startColor, 150,150, endColor):;

g2d.setPaint (gradient) ;
g2d.f110val (70,70,100,100) ;

you are here» 367

events and graphics

—— EVENTS

BULLEY POIII‘I’S\

GRAPHICS

To make a GUI, start with a window, usually a JFrame
JFrame frame = new JFrama () ;

You can add widgets (buttons, text fields, etc.) to the

JFrame using:
frame.getContantPana () . add (button) ;

Unlike most other components, the JFrame doesn't [et
you add to it directly, so you must add to the JFrame's
content pane.

To make the window (JFrame) display, you must give it
a size and fell it be visible:
frama, setSiza (300,300);

frame.satViaihla (true);

To know when the user clicks a button {or takes some
other action on the user interface) you need to listen for
a GUI avent.

To listen for an event, you must register your interest
with an event source. An event source is the thing (but-
ton, checkbox, etc.) that fires’ an event based on user
interaction.

The listener interface gives the event source a way
to call you back, because the interfacs defines the

method(s) the svent source will call when an event
happens.

To register for events with a source, call the source’s
registration method. Registration methods always take
the form of: add<EventType>Listener. To register for a

button's ActicnEvents, for example, call;
button.addActionListener (this) ;

(mplement the listener interface by implementing ail of

the interface’s event-handling methods. Put your event-

handling code in the listener call-back method. For

ActionEvents, the method is:

public void actionPerformad (ActionEvent

event) {

button.sgsetText (“you clicked!”);

}

The event object passed into the event-handler method
carries information about the event, including the source
of the event.

You can draw 2D graphics directly on to a widget
You can draw a .qif or .jpeg directly on to a widget.

To draw your own graphics (including a .gif or _jpeg),
make a subclass of JPanel and override the paintCom-
poneny) method.

The paintComponent() method is calleg by the GUI
system. YOU NEVER CALL (T YOURSELF. The argu-
ment to paintComponent() is a Graphics object that
givas you a surface to draw on, which will end up on
the screen. You cannot construct that object yourself.

Typical methods to call on a Graphics cbject {the paint-
Component paramenter) are;

graphicsa.setColor (Color.bluea) ;
g.fillRect (20,50,100,120);

To draw a .jpg, construct an (mage using:

Image image = new Imagalcon(“catzilla.
JPg”) .getimaga () :

and draw the imagine using:
g.drawlmage (image, 3,4, this) ;

The object referenced by the Graphics parameter
to paintComponent() is actually an instance of the
Graphics2D dass. The Graphics 20 class has a variety

of methods including:
fllaDRect(), draw3DReck). rotate(). scate(), shear(),
transform()

To invoke the Graphics2D methods, you must cast the
parameter from a Graphics object to a Graphics2D
object:

Graphica2D g2d = (Graphics2D) g;

368

chapter 12

getting gui

We can get an event.
We can paint graphies.
But'can we paint graphics when we gef an event?

Let’s ook up an event to a change in our drawing panel. We’ll make the circle
change colors each time you click the button. Here's how the program flows:

Start the app

— The frame is built with the twa widgets
(your drawing panel and a button). A
listener is created and registered with
the button. Then the frame is displayed
and it just waits for the user to click.

The user clicks the button and the
button creates an event object and
calls the listener's event handler.

The event handler calls repaint() on the
frame. The system calls paintComponent()
on Yhe drawing panel.

Voilal A new color is painted because
paintComponent() runs again, filling the
circle with a random color.

you are here »

389

building a GUI frame

Wait a minute...how
do you put TWO
things on a frame?

GUl layouts: putting more than one
widget on a frame

We cover GUI layouts in the next chapter, but we'll do a
quickie lesson here to get you going. By default, a frame

has five regions you can add to. You can add only one thing
to each region of a frame, but don’t panicl That one thing
might be a panel that holds three other things including a
panel that holds two more things and... you get the idea. In
fact, we were ‘cheating’ when we added a button to the frame

using:
frame .getContaentPana () .add (button) ;
This isny rea
\ to do i 7 the wa
., bne bekker (a»:dusua kvam“ it (t‘.h € one—grg 77”‘ ” "‘PJ’“ed
T‘.:\a‘ida{'ﬁ"‘f) wal*;; ac Always sYCl Y
m “ Waw
%%P\\g (whith "5‘0“) Y frame.getContentPane () .add (BorderLayout.CENTER, button);
widget o8> add
When yo¥ eall Ehe m?\\.;:\a;? bwse) we eall the
et e 1 e T Babtae et i e
R IR B LDt eid

\—/‘ east

default region west tenter W your Pencll —_—

Given the pictures on page 351, write the
code that adds the button and the panel to

—'__/ the frame.

370 chapter12

getting gui

The circle changes color each time you Thc Custom gy
- Wi
click the button. nstance of 4o Panel
in the CENTE " Paneld
of the l:tra Fegion
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class SimpleGuilC|implements ActionListaner (
{
JFrame frame; %
public static void main (Stringl] args) { /K Bukhon s n ’c\\og
SimpleGui3C gui = naw SimpleGui3C(): SOUT“ regon
gui.go(): the frame

)

public void go() {
frama = new JFrame (),
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

JButton button = new JButton(“Change colors”); 4 the \iskener (i
button.addActionListenear (this) ; < i‘/‘: Yhe \;u‘\:’(ﬂ"‘

MyDrawPanel drawPanel = new MyDrawPanel () ; Ad "
d the two widaets (i
frame.getContentPane () .add (BorderLayout.SOUTH, button); ‘/ a»d dvaw.hs Sancl) f:f—
frame.gaetContentPana () .add (BorderLayout.CENTER, drawPanel) ; hC two ”3"”“ of the

frame.satSiza (300,300); frame.
frame.setVisibla (truae) ;

}

public void actionPerformed(ActionEvent event) (
frame.repaint(};

| ¢ user elicks, kol the Crame
| r\ to rc‘)am{’,() ({sc\g That mah:“r\f
am{,Com?oan) 15 ealled on
mdsc{: in the frame!

class MyDrawPanel extends JPanel ({
T"'é dmw
™3 panel’s
is QL cver;'r{\jcompohmt()
C use)-

public void paintComponent (Graphics g) (
// Code to fill tha oval with a random color tfck;_
// See paga 347 for the coda

}

youare herey 371

multiple listeners

Let's try it with TWO buttons

/

The south button will act as it does now, simply calling repaint on the

frame. The second button {which we’ll stick in the east region) will
change the text on a label. (A label is just text on the screen.)

| So now we need FOUR widgets

label will

90 here

— eaannl
novth
w__w’______,.__d
oS
east \ \dot-t ‘,-‘R Ve Wevt
>
> drawing ?anel qoes
V"] inthetenter
SOU{')‘I N
\
Co]or-dhanaing
button will 4o heve

Change Circle

This bution Chanscs the color

372 chapteri2

the civele

And we need to get
TWO events

Uh-oh.

Is that even possible? How do
you get fwo events when you
have only oneactionPerformed()
method?

! ~~This button thanges the text

on the opposite side

getting gui

How do you get action events for two different buttons,
whep each button needs to do something different?

| @ option one
Implement two actionPerformed() methods
. -

class MyGui implemants ActionListener {
// lota of code here and then:

publiec void actionPerformad (ActionEvent avent) {
) frame .repaint () ~ B._‘{: this is iMPmiblel
public void actionPerformad (ActionEvent event) (

label.setTaxt (“That hurt!”);

)
}

Flaw: You can’tl You can’t implement the same method twice in a Java class. It won’t compile.
And even if you could, how would the event source know which of the two methods to call?

option two
Register the same listener with both buttons.

class MyGui implements ActionListanar {
// declare a bunch of instance variables hare

public void go() {
// build gui
colorButton = new JButton();
labalButton = new JButton{();
colorButton.addActionligtener (this) ; &— R‘ﬁi‘&r the same listener
labelButton.addActionListenar (this) ; / with both buttons
// more gui code here ...
}

public veid actionPerformed(RctionBvent avent) {

if (event.getSource() == colorButton) { ek
frame.repaint() ; Query the C\’C"+L \?b\;):c
b o find ort SN DN e
label.setText (“That hurt!”); setually fived b © to do
} that to detide whd

}

Flaw: thls does work, but In most cases it’s not very 00. One event handler
doing many different things means that you have a single method dolng many different things.
if you need to change how one source is handled, you have to mess with everybody’s event
handler. Sometimes It is a good solution, but usually it hurts maintainability and extensibility.

you are here» 373

multiple listeners

How do you get action events for two different buttons,
when each button needs to do something different?

opftion three
Create two separate ActionlListener classes

class MyGui {
JFrame frame;
JLabal label;
vold gui{() ({
// code to inmtantiate the two listeners and register one
// with the color button and the other with the label button
}

} // closa class

claas ColorButtonlistener implements ActionListenar
public void actionPerformad(ActionEvent avant) {
frama.repaint();

}) N Won't warlf_' 'ﬂ?is tlass doesn't have ‘a vebevente to
the ‘Frame’ variable of the Myﬁm elass

class LabslButtonListener implements ActionlLiataner (
public void actionPerformed (ActionEvant event) (
label.setText (“That hurt!”);

} A
) Problem! This ¢lass has no veferente Lo the vaviable abel’

Flaw: these classes won't have access to the variables they need
to act on, frame’ and ‘label’. You could fix it, but you'd have to give each of the
listener classes a reference to the main GUI ciass, so that inside the actionPerformed()
methods the listener could use the GUI class reference to access the variables of the GUI
class. But that’s breaking encapsulation, so we'd probably need to make getter methods
for the gul widgets (getFrame(}, getLabel{), etc.). And you'd probably need to add a
constructor to the listener class so that you can pass the GUI reference to the listener at
the time the listener is instantiated. And, well, it gets messier and more complicated.

There has got to be a better way!

374 chapter 12

getting gui

Wouldn't it be wonderful if you

could have two different listener classes,
but the listener classes could access the
instance variables of the main GUI class,
almost as if the listener classes belonged
Yo the other class. Then you'd have the best
of both warlds. Yeah, that would be dreamy.
But it's just a fantasy...

you are here» 3758

inner classes

Inner class to the rescue!

You can have one class nested inside another. It’s easy.
Just make sure that the definition for the inner class is
inside the curly braces of the outer class.

Simple inner class:

An inner class can

| class myouterclass | use all the methods
class MyInnerClass { e \ass "Siﬁj ass aﬂtl \'arial)les Of ﬂ‘l(’
Norshigo i enthosed outer class, even the
)) }n'imi(‘ ones.
) The inner class gels
10 use those variables

and methods just
as if the methods

An inner class gets a special pass to use the outer class’s stuff. Even dm:l val la])!cs _wel £
the private stuff. And the inner class can use those private variables Jeclarec[Wl’lllln tlle
and methods .of the outer class as if the vadiables and member:s inner class.

were defined in the inner class. That's what’s so handy about inner
classes—they have most of the benefits of a normal class, but with
special access rights.

Inner class using an outer class variable

class MyOuterClass {
private int x;

class MyInnerClass (
void go() { 0 35 if ik weve & vaviable

: x & of #he nner elass)

} // clese inner class

} // close outer class

378 chapter 12

getting gu!

An inner class instance must be tied to

an outer class instance”. An inner object
— shares a special
Remember, when we talk about an inner class accessing bond with an

something in the outer class, we're really talking abourt an
instange of the inner class aceessing something in an instance of
the outer class. But which instance?

outer object. ‘

Can eigzy arbitrary instance of the inner class access the methods
and va\ria\bles of any instance of the outer class> No!

An inner object must be tied to a specific outer object on

Make an instance of
the outer class

*w~
" Outer oY

Make an instance of
the inner class, by
using the instance
of the outer class.

A lmer o\s‘\“p

@ The outer and inner objects
are now intimately linked.

*Therse's an exceplion to 1his, for a very special case—an inner class defined
within a static method. But we're nat golng there, and you might go your entire
Java life without ever encountering one of {hasa.

you are here» 371

inner class instances

How to make an instance of an inner class

If you instantiate an inner class from code within an outer class, the instance
of the outer class is the one that the inner object will ‘bond’ with. For
example, if code within a method instantiates the inner class, the inner
_object will bond to the instance whose method is running.

Code in an outer class can instantiate ope of its own inner classes, in exactly
the same way it instantiates any other class... new MyInner ()

class MyOuter ({ e ovker dass \-.?s,a ?\-'wah

| *®
private int x; ¢ instirte vaviable

MyInner inner = naw MyInner(): : Make an instance of the

inner ¢lass
public void doStuff() { MyOuter

inner.go():; € eall 3 method on the
})
nner elass

class MyInner (
void go() {

)m(__\ The method in the inner Llassuscx’c}\c‘ .

cuter tlass mstance variable W, as it ‘%
} // close inner class pelonged to the inner tlass

} // close outer class

MyOuter

- Side bar

You can instantiate an Inner instance from code running outside the outer class, but you
have to use a speclal syntax. Chances are you'll go through your entire Java life and never
need to make an Inner class from outslde, but just In case yourre interested...

MyInner

class Foo {
publie statics void main (String[] args) (
MyOutar outarObj = new MyOutar();
MyCuter .MyInner innerObj = outerObj.new MyInner();

}

378 chapter 12

getting gui

Now we can get the two-button

code working

8006
(X3 docS?\ k X -
public class TwoButtons { &— the main Gl ¢la Ligtener now f 3
implement Aeton |
1
JEr frame; ! i
JLgbel label; |
. i
'm a labe Change Labdl |

public static void main (String[) args) (: 7

public void ga() {

}

'class LabelListener imp

flaholautm

TwoButtons gqui = new TwoButtons (): :
gui.go(); j %

Change Circle

frame = new JFrame () ;
frame.setDefaultCloseCperation (JFrame .EXIT ON _CLOSE) ;

JButton la.belButton = naw JButton (“Changa Label”); 2d ot ssm5(
ct: onm.atm(mm muum:m Z\ \fﬁm s \.;L:
mc’c\‘\odv pass L‘\i‘s{.’chg\' class:
JButton colorButton = new JButton(“Change Circle”); / the awro?ﬂa
colorButton. mmomamm« ColorListensr ()):

label = new JLabel (“I'm a labal”);
MyDrawPanel drawPanel = new MyDrawPanal():

TwoButtons
object

frame.getContentPane () .add (BorderLayout. SOUTH, colorButton);
frama.gatContentPane () .add (BorderLayout.CENTER, drawPanel);

frama.getContantPanae () .add (BordarLayout .EAST, labelButton); 4
frame . gatContentPana () .add (BordarLayout.WEST, label) Labellistener =

object
frama.setSize (300,300); ColorListerier
frame.setVisible (truae); object
have
Now we et to
£ Two Aclon'«‘*‘“‘”

y M{:i_ge&}imr i n 8 smglﬂ 12 3“

public void nctlonPerfomed(ActionEvent evont) (
iabhal setText (“Ouch!”) ;

}- k‘ inner dau khowg

} // clome inner class about: fabd'

pu.bl:.c void actionPerfomod(ActlonEvant evont) {
frams.repaint () ;
) K ﬂmc nheéyr Cl&&s E{s fo
use the “Logme’

// close inner claas nie Vanab}, ;
cxphc.{ r“Ffrtnicw thout havmg an

object to the outer ¢lass

you are here» 379

inner classes

HeadFirst: What makes inner classes important?

Inner object: Where do I start? We give you a chance to
implement the same interface more than once in a class.
Remember, you can’t implement a method more thao
once in a normal Java class. But using tnner classes, each
inner class can implement the same interface, so you can
have 2]l these different implementations of the very same
interface methods.

HeadFirst: Why would you ever want (o implement the
same method twice?

Inner object: Let's revisit GUT event handlers. Think
about it... if you want thres buttons to each have a
different event behavior, then use three inner classes, all
implementing ActionListener—which means each class
gets to implement its own actionPerformed method.

HeadFirst: So are event handlers the only reason to use
inner classes?

Inner object: Oh, gosh no. Event handlers are just an
obvious example. Anytime you need a separate class, but
still want that class to behave as if it were part of another
class, an inner class is the best—and sometimes only—way
1o do it.

HeadFirst: I'm sdll confused here. If you want the inner
class to behave hike it belongs to the outer class, why have

a separate class in the first place? Why wouldn’t the inner
class code just be in the outer class in the first place?

Inner object: 1 just gave you one scenario, where you
need more than one implementation of an interface. But
even when you're not using interfaces, you might need
two different classes because those classes represent two
different tngs. It’s good OO.

HeadFirst: Whoa. Hold on here. I thought a big part of
OO design is about reuse and maintenance. You know, the
idea that if you have two separate classes, they can each
be modified and used independently, as opposed to stuffing
it all into one class yada yada yada. But with an inner class,
you're still just working with one real class in the end, right?
The enclosing class is the only one that’s reusable and

380

chapter 12

This weeks interview:
Instance of an Inner Class

separate from everybody else. luner classes aren’t exactly
reusable. In {act, ['ve heard them called “Reuseless—
useless over and over again.”

Inner object: Yes it's true that the inner class is not as
reusable, in fact sometimes not reusable at all, because it's
intimately ted to the instance vanables and methods of
the outer class. Butit—

HeadFirst: —which only proves my point! If they’re not
reusable, why bother with a separate class? I mean, other
than the interface issue, which sounds like a workaround
10 me.

Inner object: As I was saying, you need to think about
I8-A and polymorphism.

HeadFirst: OK. And I'm thinking about them because...

Inner object: Because the outer and inner classes
might need to pass different IS-A tests! Let’s start with the
polymorphic GUI listener example, What's the declared
argument type for the button’s listener registranon
method? In other words, if you go to the API and check,
what kind of thing (class or interface cype) do you have 10
pass to the addActionListener() method?

HeadFirst: You have to pass a listener. Something that
implements a particular listener interface, in this case
ActonListener. Yeah, we know all this. What’s your point?

inner object: My point is that polymorphically, you have
a method that takes only one particular ype. Something
that passes the IS-A test for AcdonListener. Bur—and
here’s the big thing—what if your clase needs to be an IS-
A of something that’s a class rype rather than an interface?

HeadFirst: Wouldn’t you have your class just extend the
class you need to be a part of? Jsn’t that the whole point

- of how subclassing works? If B is a subclass of A, then

anywhere an A is expected a B can be used. The whole
pass-a-Dog-where-an-Animal-is-the-declared-type thing

Inner object: Yes! Bingo! So now what happens if you
need to pass the IS-A test for two different classes? Classes
that aren’t in the same inheritance hierarchy?

HeadFirst: Oh, well you just... hmmm. I think I'm get-

ting it. You can always implemen! more than one interface,

but you can exfend only one class. You can only be one kind
" of IS-A when it comes to class types.

Inner object: Well done! Yes, you can’t be both a Dog
and a Burton. But if you're a Dog that needs to some-
ames be a Button (in order to pass yoursell 10 methods
that take a Button), the Dog class (which extends Anunal
so it can’t extend Button) can have an inner class that acts
on the Dog’s behalf as a Button, by extending Buron,
and thus wherever a Button is required the Dog can
pass his inner Button instead of himself. In other words,
instead of saying x.takeButton(this), the Dog object calls
x.takeButton{new MyInnerButton().

HeadFirst: Can I get a clear example?

Inner object: Remember the drawing panel we used,
where we rmade our own subclass of JPanel? Right now,
that class is a separate, non-inner, class. And that’s fine,
because the class doesn’t need special access to the instance
variables of the main GUI. But what if it did? What if
we're doing an animationt on that panel, and it’s getting its
coordinates from the main application (say, based on some-
thing the user does elsewhere in the GUT), In that case, if
we make the drawing panel an inner class, the drawing
panel class gets to be a subclass of JPanel, while the outer
class is s6ll {ree to be a subclass of something else.

HeadFirst: YesI see! And the drawing panel isn't reus-
able enough to be a separate class anyway, since what it’s
actually painting is specific to this one GUI applicadon.
Inner object: Yes! You've got it!

HeadFirst: Good. Then we can move on to the nature of
the relationship between you and the outer instance.

Inner object: What is it with you people? Not enough
sordid gossip in a serious topic ke polymorphism?
HeadFlrst: Hey, you have no idea how much the public is
willing to pay for some good old tabloid dirt. So, someone
creates you and becomes instantly banded to the outer
object, is that nghe?

Inner object: Yes that’s right. And yes, some have
compared it to an arranged marriage. We don't have a say
in which object we’re bonded to.

HeadFirst: Alright, I'll go with the marriage analogy.
Can you get a divorce and remarry something elsz?

Inner object: No, it’s for life.

getting gui

HeadFirst: Whose life? Yours? The outer object? Both?

Inner object: Mine. T cav’t be ded to any other outer
object. My only way out is garbage collecoon.

HeadFIrst: What about the outer objeet? Can it be
associated with any other inner objects?

Inner object: So now we have it. This is what you really
wanted. Yes, yes. My so-called ‘mate’ can have as many
inner objects as it wants.

HeadFirst: Is that like, serial monogamy? Or can 1t bave
tbem all at the same dme?

Inner object: All ac the same time. There. Satisfed?

HeadFirst: Well, it does make sense. And let’s not
forget, it was you extolling the virtues of “muldple
implementations of the same interface”. So it makes sense
that if the outer class has three buttons, it would need
three different inner classes (and thus three different inner
class objeets) to handle the events. Thanks for everything
Here’s a tissue.

He thinks he's
got it made, having two
inner class objects. But we
have access to all his private
data, so just imagine the damage
we could do...

381

you are here

inner classes

Using an inner class for animation

We saw why inner classes are handy for event listeners, because
you get to implement the same event-handling method more
than once. But now we’ll lock at how useful an inner class is when
used as a subclass of something the outer class doesn't extend. In
other words, when the outer class and inner class are in different
inheritance trees!

Our goal is to make a siraple animation, where the circle moves
across the screen from the upper left down to the lower right.

start $imish

X=X -) : R (900

How simple animation works

@ Paint an object at a particular x and y coordinate
g.f110val (20,50,100,100);
NSNS

?20 pixels from the left,
50 pixels feom the top

@ Repaint the object at a different x and y coordinate
——
g.fil10val (25,55,100,100) ;

A\)

TZG ixels £rom the left, 55
y'ntjs £eom the top

(the objett moved a little
dowm and to the \r'lsh{’)

@ Repeat the previous step with changing x and y values
for as long as the animation is supposed to continue.

382 chapter12

Dtt}fﬁ)el?e@ﬁesﬁons

Q,:Why are we learning about
animation here? | doubt if I'm
going to be making games.

A: You might not be making
games, but you might be
creating simulations, where
things change over time to show
the results of a process. Or you
might be building a visualization
tool that, for example, updates

a graphic to show how much
memory a program is using,

or to show you how much

traffic Is coming through

your load-balancing server.
Anything that needs to take a
set of continuously-changing
numbers and translate them into
something useful for getting
information out of the numbers.

Doesn’t that all sound business-
like? That's Just the “official
justification of course. The real
reason we're covering it here Is
just because it’s a simple way
to demonstrate another use

of inner classes. (And because
we Just fike animation, and our
next Head First book Is about
J2EE and we know we can't get
antmation in that one.)

getting qui

WQat we really want is something like...

N\

%lass MyDrawPanel extends JPanel {
/ public void paintComponent (Graphics g) {

7
e

g.setColor (Color.orange) ;
g.fll10val (x,y,100,100) ;

} Lime \?Am .“t()d.‘sa{; 3
) ian“cd he ol 3 a“?a‘“u
&tk erent £ loeation

— %pen Your pencil

But where do we get the new x and y
coordinates?

And who calls repaint()?

See if you can design a simple solution 10 get the ball to animate from the top left of the
drawing panel down to the bottom right. Our answer Is on the next page, so don't turn
this page until you're done!

Blg Huge Hint: make the drawing panel an inner class.

Another Hint: don’t put any kind of repeat ioop in the paintComponent(} method.

Write your (deas (or the code) here:

you are here» 383

animation using an inner class

ﬁe\ complete simple animation code

> import javax.swing.*;
import java.awt.*;

public class SimpleAunimation {‘-.5{3 va\‘\ab\a n the
make Dwo ML e w and Y

int x = i GUL elass,
int y = 70 e :joni of the ivtle

public static veid main (String[] args) ({
SimpleAnimation gui = new SimpleAnimation ();
gui.go();

}

public wvoild go() {
JEFrame frame = new JFrama()
frame.setDefaultCloseOperation (JFrame . EXIT ON_CLOSE) ;

MyDrawPanel drawPanal = new MyDrawPanel(); Noth,
ah«; ‘"3 hew here. Make the wid
frama.getContentPane () .add (drawPanal) ; Pt them in the frame gets
frams.aat8ize (300,300);

frame.satVisible (trus) ;

s e v [ESERREOIIEST veret b 10 b
attion 'S, ' : '

d:nﬂm n.pinm: t) Q..h“

- try (4
'~ Thread.sleep(50); (———*S!o it do : .
A} utch(hmptiqp ex) { } ‘\“it‘}:l t i‘“ a,L'H'JC (‘_’ﬂ‘"wlic it will move so
s wcrr_nY{:\,s ??w°:d foEEI 'f:ow:) Don't wore b You
“ppos alveady k
}// close go{) method threads in thapter 15, Y know this. we'|| 34_-{; to

t rbselk (sowe
amziko*cYm“
'\:\\c tivele rew | locatin)

éc,‘» 3™ class MyDrawPanel extands JPanel ({

No® “hass
e publie void paintComponent (Graphics g) {
g.satColor (Color.grean) ;
g.filloval(x,y,40,40); Use the tontin
wally—update
Loording P d x ond
) inatey of the outer elass Y

} // close inner class
} // cleae ounter class

384 chapter 12

getting gui

urs.. it didn’t move... it smeared.
What did\ve do wrong?

There's one little flaw in the paintCamponent()
methad,

-X=X-)

e weve going for.

We forgot to erase what was
already there! So we got trails.

To fix it, all we have to do is fill in the entire panel with |
the background color, before painting the circle each |
time, The code below adds two lines at the start of the
method: one to set the color te white (the background '
color of the drawing panel) and the other to fill the '
entire panel rectangle with that color. In English, the
code belaw says, “Fill a rectangle starting at x and y of
0 (O pixels from the left and O pixels from the Yop) and
make it as wide and as high as the panel is currently.

public void paintComponant (Graphics g) (
g.setColor {Color.whita) ;
g.fillRect(0,0,this.gatWidth() , this.gatHeight());

g.aetColor (Color.green) ; \
g.f8110val (x,y,40,40) ; 3;&‘“"“'0 and getHeight() 4,
meEhods inherited from JPyng).

Sharpen your pencil {optional, just for fun)

What changes would you make to the x and y coordinates to produce the animations below?
(assume the first one example moves In 3 pixel increments)

1| @ x_+3] ® X
® v 8 ® Y
start finish start finish
2|@ ® X , ® x
Y
A A ® -
start finish start finish
@
3 ® @ X ___ 3 x__
Y___ ® Y_
start finish start finish

you are here »

385

Code Kité{\en

- X
Code Kitchen

¥

i 3

idp 95

800 00

B | B - o=

186

beat one beat fwo beat three beat fowr ...

Let's make & music video. We'll use Java-generated random
graplu?cs that keep time with the music beats.

Along the way we'll register (and listen for) a new kind of
non-GUI event, triggered by the music itself,

Remember, this part is all optional. But we think it's good for you
And you'll tike it And you tan use it to impress people.

(Ok, sure, it might work only on people who ave really easy to impress,
but still...)

chapter 12

Listening for a non-GUl event

OK, maybe not a music video, but we will make
a program that draws random graphics on the
screen with the beat of the music. In a nutshell,
the program listens for the beat of the music
and draws a random graphic rectangle with each
beat.

That brings up some new issues for us. So far,
we’ve listened for only GUI events, but now

we need to listen for a particular kind of MIDI
event. Turns out, listening for a non-GUI event is
just like listening for GUI events: you implement
a listener interface, register the listener with an
event source, then sit back and wait for the event
source to call your event-handler method (the
method defined in the listener interface).

The simplest way to listen for the beat of the
music would be to register and listen for the
actual MIDI events, so that whenever the
sequencer gets the event, our code will get it
too and can draw the graphic. But... there’s a
problem. A bug, actually, that won’t let us listen
for the MIDI events we’re making (the ones for
NOTE ON).

So we have to do a little work-around. There

is another type of MIDI event we can listen

for, called a ControllerEvent. Our solution

is to register for ControllerEvents, and then
make sure that for every NOTE ON event,
there’s a matching ControllerEvent fired at
the same ‘beat’. How do we make sure the
ControllerEvent is fired at the same time? We
add it to the track just like the other events! In
other words, our music sequence goes like this:

BEAT 1-NOTE ON, CONTROLLER EVENT
BEAT 2 - NOTE OFF

BEAT 3 - NOTE ON, CONTROLLER EVENT
BEAT 4 - NOTE OFF

and so on.

Before we dive into the full program, though,
let’s make it a little easier to make and add MIDI
messages/events since in #his program, we’re
gonna make a lot of them.

getting gu

What the music art program
needs to do:

@ Make a series of MIDI messages/
events to play random notes on a piano
(or whatever instrument you choose)

@ Register a listener for the events
@ Start the sequencer playing

Each time the listener’s event
handler method is called, draw a
random rectangle on the drawing
panel, and call repaint.

We’ll build it in three iterations:

@ Version One: Code that simplifies mak-
ing and adding MIDI events, since we'll
be making a lot of them.

@ Version Two: Register and listen for
the events, but without graphics.
Prints a message at the command-line
with each beat.

@ Version Three: The real deal. Adds
graphics to version two.

youare here» 387

utlll’ly method for events

/7

An easier way to make
messages / events

Right now, making and adding messages and
events to a track is tedious. For each message,
we have to make the message instance (in this
case, ShortMessage), call setMessage (), make a
MidiEvent for the message, and add the event
to the track. In last chapter’s code, we went
through each step for every message. That
means eight lines of code just to make a note
play and then stop playing! Four lines to add a
NOTE ON event, and four lines to add a NOTE
OFF event.

ShortMessage a = new ShortMessage()
a.saetMassage (144, 1, note, 100);
MidiEvent noteOn = new MidiEvent(a, 1);
track._add(noteOn) ;

ShortMgssage b = new ShortMassage () ;
b.setMesgsaga (128, 1, note, 100):;

MidiEvent noteOff = new MidiEvent(b, 16);

track.add (noteOff) ;

Let’s build a static utility method that

Things that have to happen for
each event:

@ Make a message instance
ShortMasasage first = new ShortMessage();

@ Call setMessage() with the instructions
firat.gsetMessaga (192, 1, inatrumant, 0)

@ Make a MidiEvent instance for the message
MidiEvent noteOn = new MidiEvent (firat, 1);

@ Add the event to the track
track.add (noteln) ;

The event ‘tiek’ fon

. ks i
makes a message and returns a MidiEvent the Kowr arqumen :VHEMN this message

Lox the wessdde happen

publie atatic MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {

MidiEvent event = null;
try {

whoo! A method with five parameters.

ShortMessage a = new ShortMessage () ;

a.setMassage (comd, chan, one,
avent = new MidiEvent(a, tick);

}catch (Excaption a) {)

return event;

‘< rc{u"h

t“o) ; 'Hakc th! ™

esss
the method Parg,c,, and {h, event, wing

Ehe event (a MidiEvent al

} loaded wp with the mcssasc)

388 chapter 12

getting gui

Example: how to use the new static
makeEvent() method

There’s no event handling or graphics here, just a sequence of 15
notes that go up the scale. The point of this code is simply to learn
how to use our new makeEvent() method. The code for the next
two versions is much smaller and simpler thanks to this method.

import javax.sound.midi.*; (- don’f ‘.w o
3¢t the ;
public class MiniMusicPlayerl { "Pport

public static void main(String[] args) ({

try |

ﬂQ astanN

Sequencer sequencer = MidiSystem.getSequencer(); w__ make {and ¥
«——

sequencer .open () ;
Sequence seq = new Sequence (Sequence.PPQ, 4); ¢~ make 3 sequente
Track track = seq.createTrack() 4,./ and a track

for (int i = 5; i < 61; i+= 4) { €~ make 3 bunth of events o make the notes keep
305»3 uwp (‘crom piano rote 5 to piano note &)

track.add (makeEvent (144,1,i,100,i));

track.add (makeEvent (128,1,i,100,i + 2)); :i"“é;‘: ;:: ::tctEfl:\w :;ﬂ,od to make Lhe
idi + Uhén a
} // end loop MidiEvent returned from malfh E‘e readt (the
the track. These gy, eEvent())

e NOT
sequerncer. setSequence (seq) ; NOTE OFF (29) Pairs E ON (M-‘H and

sequencer. setTempoInBPM(220) ;k start it Funning
sequencer.start();
} catch (Exception ex) {ex.printStackTrace():}
} // close main

public static MidiEvent makeEvent (int comd, int chan, int one, int two, int tick) {
MidiEvent event = null;

try {
ShortMessage a = new ShortMessage() ;

a.setMessage (comd, chan, one, two);
event = new MidiEvent(a, tick):;

}catch (Exception e) { }
return event;

}

} // close class

you are here» 389

controller events

Version Two: registering and getting Controllerkvents ot
i ControllecEvents,
We need ol Sﬁfh {:\f :‘; oner 1n:£:r éu

0 wWeé im lernen
import javax.sound.midi.¥; ¥
i cluss Wanssescrisye-2 RGNS

public static void main(String{] arga) (
MiniMusicPlayer2 mini = new MiniMusicPlayer2():

mini.go();
)) e
public void go() { Reajsker For evenks with ﬁﬁcﬁac&c
O ent vegstration meth tingy
o Tie ek s it
Sequencer sequancer = MidiSystem.getSequancer(); 1% st of Conjc\‘c’““’g"t"bl ov W
sequencar .¢pen() ; W: wank only ome event) #

Sequence saq = new Saquance (S5egquence.PPQ, 4);
Track track = seq.creataTrack();

Here's how we b;
. i = ; ; 4= 4 P‘dk ; th say .
T o G g T i,
s LentrollerEvend) with 5

| | o c,;cén{ nu.mbcr. #1127, This cvcn{;hw?l;.adk:;/hgffﬁw

e _chu{:nfinJMSTsoﬂw{:wcLan d:—
track.add (makeEvant(128,1,1,100,4 + 2)); ::vien‘icas;h e 3 e s ewd. o

} // end loop re b o e £ ¢ o

fﬂ‘t that WE ¢an listen -E:r (:c tan't ﬁ;‘,anw'”

or NOTE ON/OFF events). Note {hyt we'

sequencar.setSagquenca (3eq) ; making thi ¢ ve
sequencer .setTempoInBPM(220) ; s event happen at ¢h .
gequencer.start() ; t:c OTE ‘ON- So when the N57§EA/\04§ t‘v&{:&
} catch (Exception ex) {ax.printStackTraca():;) N f_"" we'll know about it because OMRc o
y // closa wili ¥ire at the same fime. event

(grm &c Cm\ha‘\CV-
ev wm

ckhod
The event handler O 6 ok time we
S Bt s kbt 20

evtn‘b we n Y\r'm

public MidiEvent makeEvant(int comd, int chan, int one, int two, int tick) (
MidiEvant avent = null;
try
ShortMassage a = new ShortMessage ()
a.setMaessage (comd, chan, one, two);

event = new MidiEvent(a, tick);
Code that's different from the previous

version is highlighted in gray. (and we're

jcatch (Exception @) {)
not running it all within main() this time)

return evant;

}
} // closa class

390 chapter12

getting gui

Version Three: drawing graphics in time with the music

This final version builds on version two by adding the GUI parts. We build a
frame, add a drawing panel to it, and each time we get an event, we draw a
new rectangle and repaint the screen. The only other change from version
two is that the notes play randomly as opposed to simply moving up the
scale.

The most important change to the code (besides building a simple GUI)
is that we make the drawing panel implement the ControllerEventListener
rather than the program itself. So when the drawing panel (an inner class)
gets the event, it knows how to take care of itself by drawing the rectangle.

Complete code for this version is on the next page.

The drawing panel inner class:

is 3 liskener

— The dravind Pane

class MyDrawPanel extends JPanel implements ControllerEventlListener {

boolean msg = false; & We set 2 “33 to £alse, and we'l set it
true onl\/ when we 5e{: an event.

public void controlChange (ShortMessage event) {
msg = true;

i : (-\ We g0t an ev
repaint() ; f—. 9ot an event, so set £h
} true and el rcpain{:zsc the «Clag to

public void paintComponent (Graphics g)

if mag) ()
use a flag because OTHER thinas miaht 4vi :
and we want to paint ONLY when fhcre’s“gsg;'?ffoﬁ:?g::ni repantO)
Graphics2D g2 = (Graphics2D) g;

int r = (int) (Math.random() * 250);
int gr = (int) (Math.random()} * 250);

int b = (int) (Math.vandom() * 250) ; The vest is code Lo genevate
a random tolor and paint
g.setColor (new Color(r,gr,b)); semi-vandom rettangle.

int ht = (int) ((Math.random() * 120) + 10):
int width = (int) ((Math.random() * 120) + 10);
int x = (int) ((Math.random() * 40) + 10);

int y = (int) ((Math.random() * 40) + 10);
g.fillRect (x,y,ht, width);

msg = false;

} // close if

} // close method
} // close inner class

you are here» 391

MiniMusicPlayer3 code

Your pencil
import javax.sound.midi.*; This is the complete code listing for Version

import java.io.*; Three. It builds directoy on Version Two. Try

?“‘P°r: javax. s:i:tg. *i to annotate it yourself, without looking at the
impor ava.awt.*; .
) previous pages.

public class MiniMusicPlayer3 {

static JFrame f = new JFrame(“My First Music Video”):;
static MyDrawPanel ml;

public static void main(String[] args) {
MiniMusicPlayer3 mini = new MiniMusicPlayer3():
mini.go();

} // close method

public void setUpGui() {
ml = new MyDrawPanel () ;
f.setContentPane (ml) ;
f.setBounds (30,30, 300,300);
f.setVisible (true) ;

} // close method

public void go() {
setUpGui() ;

try {

Sequencer sequencer = MidiSystem.getSequencer() ;
sequencer.open () ;

sequencer.addControllerEventListener{ml, new int[] {127});
Sequence seq = new Sequence (Sequence.PPQ, 4);

Track track = seq.createTrack();

int r = 0;
for (int 1 = 0; i < 60; i+= 4) {

r = {(int) ((Math.random() * 50) + 1);

track.add (makeEvent (144,1,r,100,1i));

track.add (makeEvent (176,1,127,0,1));

track.add (makeEvent (128,1,r,100,i + 2));
} // end loop

sequencer . setSequence (seq) ;
sequencer.start() ;
sequencer . setTempoInBPM(120) ;
} catch (Exception ex) {ex.printStackTrace():;}
} // close method

392 chapteri2

exercise: Who Am |

394

A bunch of Java hot-shots, in full costume, are playing the party game *“Who
am 17" They give you a ciue, and you try to guess who they are, based on
what they say. Assume they always tell the truth about themselves. If they
happen to say something that could be true for more than one guy, then
write down all for whom that sentence applies. Fill in the blanks next to the
sentence with the names of one or more attendees.

Tonight’s attendees:

Any of the charming personalities from this chapter just
might show up!

| got the whole GU, In my hands,

Every event type has one of these.

The fistener’s key method.

This method gives JFrame its size.

You add code to this method but never call it.

When the user actually does something, it’s an .

Most of these are event sources,

| carry data back to the listener.

An addXxxListener{) method says an object is an .

How a listener signs up.

The method where all the graphics code goes.

I'm typically bound to an instance.

The ‘g’ in (Graphics g), Is really of class.

The method that gets paintComponent() rolling.

The package where most of the Swingers reside.

chapter 12

getting gui

BE the cempiler

The Java file on this page represents a
-. compete source Hle. Yoar job is to PlaIY
e compiler and determine whether this file
.‘ wil] compile. If it won't compile, how
- wou]d you fix it, and i 3t does
L compile, what would it do?

RC1SE

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

class InnerButton {

JPrame frame;
JButton b;

public static void main(String (] args) {
InnerButton qui = new InnerButton();
gul.go();

}

public void go() {
frame = new JFrame();
frame.setDefaultCloseQperation(
JFrame.EXIT_ON_CLOSE);

b = new JButton(“aA”);
b.addActionListener();

frame.getContentPane().add(
BorderLayout.SOUTH, Db);

frame.setSize(200,100);

frame.setVisible(true);

class BListener extends ActionListener {
public void actionPerformed(ActionBvent e) {
if (b.getText().equals(“a”)) {
b.setText(“B”);
} else {
b.setText {“A*);
}

youare here» 395

*Emrcisa Solutions

Who am I?

1 got the whole GUI, in my hands.
Every event type has one of these.
The listener’s key method.

This method gives JFrame its size.

You add code to this method but
never call it.

‘When the user actually does
something, it's an

Most of these are event sources.
I carry data back to the hstener.

An addXxxListener() method
says an objectis an ___

How a listener signs up.

The method where all the
graphics code goes.

I'm typically bound to an instance.

The ‘g' in (Graphics g), is
really of this class.

The method that gets
paintComponent() rolling.

The package where most of the
Swingers reside.

JFrame
listener interface
actionPerformed()

setSize()

paintComponent()

event
swing components

event abject

event source

addActionListener()

paintComponent()

inner class

Graphics2d

repaint()

javax.swing

BE the cempijer

import javax.swing.*;
import java.awt.event,*;
import java.awt.®*;

class InnerButton {

JFrame frame;
JButtob b;

getting gui

Once this code

is fixed, it will
create a 6UL with
a button that
toggles between
A and B when you
click it

public static void main(String [] args) {
InnerButton qui = new InnerButton();

gui.go():
)

public void go() {
frame = new JPrame();

frame.setDefaultCloseOperation(
JFrame.EXIT_ON CLOSE};

The addActionListener{)
method takes a class that
implements the ActionlLis-
tener interface

b

new JButton(”A”);

b.addActionListener({ NEW Blistenar{)) s

frame.getContentPane().add(
BorderLayout.SOUTH, b);

frame.set3iza(200,100);
frame,setVisible(true);

}

class BListener Implemenfs ActionListener {

public void actionPerformed(ActionEvent e) (
if (b.getText().equals(“A")) {
b.setText(*B”);
} else {
b.getText (“A"};

ActionListener is an
interface, interfaces
are implemented, not
} extended

you are here» 397

puzzle answers

Pss] Puzzle

import javax.swing.*;
import java.awt.*;
public class Animate (
int x = 1;
int y = 1;
public static void main (String[] args) {
Animate gqui = new Animate ();
gui.go();
}
public void go() {
JFrame frame = new Jrrame();
frame.setDefaultCloseOperation(
The Amazing, Shrinking, Blue JFrame.EXIT_ON_CLOSE);
Rectangle. MyDrawP drawP = new MyDrawP();
frome.getContentPane().add(d:awP);
frame.set5ize(500,270);
frame.setVisible(true);
for (int i = 0; i < 124; i+ X++y++) |
X4+t
drawP repaint();
try {
Thread.sleep(50);
} catch(Exception ex) { }

}
class MyDrawP extends JPanel {

public void paintComponent(Graphics g) {
g.setColor(Color.white);
g.fillRect(0,0,500,250);
g.setColor(Color.blue);
g.fillRec¥(x,y,500-x*2,250-y*2);

398 chapter12

