A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

10 numbers and statics

Numbers Matter

Do the Math. But there’s more to working with numbers than just doing primitive
arithmetic. You might want to get the absolute value of a number, or round a number, or find
the larger of two numbers. You might want your numbers to print with exactly two decimal
places, or you might want to put commas into your large numbers to make them easler to read.
And what about working with dates? You might want to print dates in a variety of ways, or even
manipulate dates to say things like, “add three weeks to today’s date? And what about parsing
a String Into 2 number? Or turning a number into a String? You're in luck The java APL is full of
handy number-tweaking methods ready and easy to use. But most of them are statlc, so we’'ll
start by learning what it means far a varlable or method to be static, including constants in

Java—static final variables.

this Is a new chapter 273

http://www.a-pdf.com/?product-split-demo

Math methods

MATH wmethods: as close as you'll
ever get to a global method

Except there's no global anything in Java. But think about
this: what if you have a method whose behavior doesn’t
depend on an instance variable value. Take the round()
method in the Math class, for example. It does the same
thing every time—rounds a floating point number(the
argument to the method) to the nearest integer. Every
dme. If you had 10,000 instances of class Math, and ran
the round(42.2) method, you'd get an integer value of
42. Every time. In other words, the method acts on the
argument, but is never affected by an instance variable
state. The only value that changes the way the round()
rnethod runs is the argument passed to the method!

Doesn’t it seem like a waste of perfectly good heap space
10 make an instance of class Math simply to run the
round() method? And what about other Math methods
like min(), which takes two numerical primitives and
returns the smaller of the two. Or max(). Or abs(), which
returns the absolute value of a number.

These methods never use instance variable values. In fact the
Math class doesn’t have any instance variables. So there’s
nothing to be gained by making an instance of class
Math. So guess what? You don’t have to. As a matter of
fact, you can’t.

If you try to make an instance of
class Math:

Math mathObject = new Math();

You’ll get this error:

Flla Edit Window Halp lwasToldTheraWouldBaNoMath

%javac TestMath

TestMath.java:3: Math() has private (2N

Math mathObject = new Math({):

Methods in the Math c]ass
don’t use any instance
variable values. And hecause
the methods are ‘static’,

you don’t need to have an
instance of Math. All you

need is the Math class.

int x = Math.round (42.2);
int y = Math.min(56,12) ;
int z = Math.abs(-343);

Thcsc methods nevey use
m:{av.\(,c variables, so their

b havior doesn’t need Lo
row about 5 speci‘pic obJed{;

This err
access in java.lang.Math Mu‘* shows that the Mat

is mavked Private! That

MEINS You tan NE'/ER

A Math ¢lags ¢5 make 3 h";Y new’ on the

1l error

274 chapter 10

ew Math objec-f;

The difference between regular
(non-static) and static methods

numbers ang statica

Java is object-oriented, but once in a while you have a special case,

typically a utility method (like the Math methods), where there is

no need to have an instance of the class. The keyword static lets
a method run without arny instance of the class. A static method means
“behavior not dependent on an instance variable, so no instance/object

is required. Just the class.”

regular (non-static) method

te
public class Song { -alle value 3‘”“’
Instante Uaﬂat{{')‘-c ?\ay()

String title; ¢ —" fhe behavior
public Seng(String t)_Jiihod

title = t;

}

public void play() (
SoundPlayer player = naw SoundPlayer() :
player .playSound (title) ;

| ot the Lkle
v Cv\{'. Va\ut
S T:’:,a:::vaﬂa le is the (s;mc_\,
= lg\ays when YO¥ eall playt/:
title

Song
Song s3.play () ;
- s2.play():
'hg P
r £
lp.,{“wc lv}'5) on 4. Calling play() on this
o/,fl.“éo '/qu?m refevente will cause
Play My Way" to play.

static method

public] irt min(int a, int B)(
//returns the lesser of a and b

No instante varibles
The c{')\ad behaviov
ocsr's ehange WO
nstante vaviable sLILE

Math.min (42,36) ;

vather

{3ss names
Use the C2 wable

khan a vekevente Y3

name-

you are here» 276

static methods

Call a static method using a

class name

S

88N nin (88,86) ;

Call a non-static method using a
reference variable name

What it means to have a
class with static methods.

Often (although not always), a class with static
methods is not meant to be instantiated. In Chapter
8 we talked about abstract classes, and how marking
a class with the abstract modifier makes it
inpossible for anyone to say ‘new’ on that class type.
In other words, it’s impossible to instantiate an abstract
class.

But you can restrict other code from instandating
a non-abstract class by marking the constructor
private. Remember, a method marked private means
that only code from within the class can invoke

the method. A constructor marked private means
essentially the same thing—only code from within
the class can invoke the constructor. Nobody can
say ‘new’ from outside the class. That's how it works
with the Math class, for example. The constructor
is private, you cannot make a new instance of Math.
The compiler knows that your code doesn’t have
access to that private constructor.

276 chapter10

Song t2
2. play () ;

= new Song():

This does not mean that a class with one or more
static methods should never be instantiated. In fact,
every class you put a main() method in is a class with
a stadc method in it!

Typically, you make a main () method so that you
can launch or test another class, nearly always by
instantiating a class in main, and then invoking a
method on that new instance.

So you're free to combine statc and non-=static
methods in a class, although even a single non-static
method means there must be some way to make an
instance of the class. The only ways to get a new
object are through ‘new’ or deserialization (or
something called the Java Reflection AP] that we
don't go into). No other way. But exactly who says new
can be an interesting question, and one we'll look at
a little later in this chapter.

Static methods cant use non-statie
(instance) variables!

Static methods run without knowing about any particular
instance of the static method's class. And as you saw on

the previous pages, there might not even be any instances

of that class. Since a static method is called using the class
(Math.random()) as opposed to an instance reference (¢2.play()),
a static method can’t refer to any instance variables of the
class. The static method doesn’t know which instance's variable
value to use.

If you try to compile this code:

4
public olass Duck (W\‘-“'\" D‘,(,V;
private int Bize; ”~
public static void main (String[] args) { j/

System.out.println(“8ize of duck is “ + size);

) IF t"lt\‘cls a D“Ck on

public void metSize (int s) { d C)hcap Somewhere, we
size = 8; ont know about it

}

publie int getSize() {
return size;

}

You'll get this error:

? javac Duck.java

Duck.java:6: non-static variable
size cannot be referenced from a
static context

System.out.println(“Size
of duck is ™ + size);

A

I'tti sure they're
talking about MY
size variable.

numbers and statics

I you {ry to use an
instance variable from
inside a static method,
the compiler thinks,

“T don’t know which
object’s instance variahJe
you're talking about!”

If you have ten Duck
objects on the heap, a
static method doesn’t
know about any of them.

No, I'm pretty sure
they're talking about
MY size variable.

you are here» 277

static methods

Static methods cant use non-static
methods, either!

What do non-static methods do? They usually use instance
variable state to affect the behavior of the method. A getName ()
method returns the value of the name variabie. Whose name?
The object used to invoke the getName () method.

This won’t compile:

Calling getSize() |
. 'U'IC ine ,£ab e u{ P“(:Poncs
public clasa Duck { henz:, Jc—ﬁgt; 0 uses

nstance variable.
private int sirze;

public statiec void main (String[] args)
System.out.println(“Size is “ + getSize());
}

public void setSize(int s) |
size = 8;

}

public int getSize({) !
retuvrn size;

javac Duck.java

Duck.java:6: non-static method
getSize () cannot be referenced
from a static context

System.out.println(“Size
of duck is “ + getSize()):

ed,
Roses arerl |
and known to bloom Jate

statics can t see ;
jnstance variable sta

e
278 chapter 10

Ddljl‘ﬁ}egm@e,sﬁ’ons

. Whatif you try to call a non-static
method from a static method, but the
non-static method doasn’t use any in-
stance variables. Will the compiler allow
that?

A: No.The compiler knows that
whether you do or do not use instance
varlables in a non-static method, you can.
And think about the implications...if you
were allowed to compile a scenario like
that, then what happens if in the future
you want to change the implementation
of that non-static method so that one day
it does use an instance variable? Or worse,
what happens if 2 subclass overrides the
method and uses an instance variable in
the overriding version?

Q,: | could swear I've seen code that
calls a static method using a reference
variable instead of the class name.

A: You can do that, but as your mother
always told you, "Just because it’s legal
doesn't mean it's good.” Although it works
to call a static method using any instance
of the class, it makes for misleading (less-
readable} code. You can say,

Duek d = naw Duck()
String[] 8 = ();
d.main(s);

This code is legal, but the complier just
resolves it back to the real class anyway
("OK, dis of type Duck, and main{ Is statle,
so I'll call the static main{) in class Duck™).
In other words, using d to invoke main()
doesn’t imply that main() will have any
special knowledge of the object that 4is
referencing. It's just an alternate way to
Invoke a static method, but the method is
still static!

Static variable:

value is the same for ALL
instances of the class

Imagine you wanted to count how many Duck
instances are being created while your program is
running. How would you do it? Maybe an instance
variable that you increment in the constructor?

class Duck {
int duckCount = 0;

public Duck() {

) duckCount;*"'\ Ehis woulg alwa
| dutkCLmn{ {o/t;;;fﬁ
3 Duek yyq mad me

No, that wouldn't work because duckCount is an
instance variable, and starts at 0 for each Duck. You
could try calling a method in some other class, but
that's kludgey. You need a class that’s got only a single
copy of the variable, and all instances share that one
copy.

That's what a static variable gives you: a value shared
by all instances of a class. [n other words, one value
per class, instead of one value per instance

size

tatic duck(;ount

numbers and statics

public class Duck { \ \caded: NO s wade:

private int size:;
private] int duckCount = 0;

public Duck() (Now 4 .
duckCount++; &;M?o;izﬂ keep

} ﬂ"(D“tk "3 each ﬁme
be Eonstrue L,
andcausc duckCony ;¢ x{TZ

Mon't be veset 4,53
public void getSirza(int s) { .
Bize = »;

}

public int getS8ize() {
raturn size;

}

getSize()
setSize()

you are here» 279

static variables

static vaviable: kid insctance fwo
iceCream

kid instance oné

Static variables are shared.

All instances of the same
class share a single copy of
the static variables.

instance variables: 1 per instance
static variables: 1 per class

” Brain Barbell

Earlier in this chapter, we saw that a private
constructor means that the class can’t be instantiated
from code running outside the class.In other words,
only code from within the class can make a new
instance of a class with a private constructor. (There’s
a kind of chicken-and-egg problem here.)

What If you want to write a class In such a way that
only ONE instance of it can be created, and anyone
who wants to use an instance of the class will always
use that one, single Instance?

280 chapter10

Initializing a static variable

Static variables are initialized when a class is loaded. A class is
loaded because the JVM decides it’s time to Joad it. Typically,
the JVM loads a class because somebody's trying to make a
new instance of the class, for the first dme, or use a static
method or variable of the class. As a programmer, you also
have the option of telling the JVM to load a class, but you're
not likely to need to do that. In nearly all cases, you're better
off letting the JVM decide when to load the class.

And there are two guarantees about static initialization:

Static variables in a class are inittalized before any object of that
class can be created.

Static variables in a class are inidalized before any static method
of the class runs.

class Player ({

}

public class PlayarTastDrive (
public static void main(String[] args) (
System.out.println(Player.playerCount) ;

Player one naw Player (“Tiger Wooda”) ;

System.ocut.println (Player.playerCount) ;

N

Static variables are inidalized when the class is loaded. If you
don’t explicitly initialize a static variable (by assigning it a
value at the time you declare it), it gets a default value, so int
variables are initialized to zero, which means we didn’t need
to explicitly say “playerCount = 0”. Declaring, but not initial-
izing, a static variable means the static variable will get the de-
fault value for that variable type, in exactly the same way that
instance variables are given default values when declared.

numbers and statics

is imtialized when the Llau‘is loaded-
[\ e P]azﬁg;t’:\?b};lilud it Lo O, but we don { need

static int playercount = 07 :I: 'c*c?c% is the default value For ints. Static vari-
sin f .
private String name; ables get debault values 3\«5{ like instante variables.
public Player (String n) {
name = n;
' Default v
playerCount++; static anzai:{-jw declared but uninitialized

- e vavisbles dre {:}.e ame:
Primitive inf{ﬂm “ona, shovt, etz) 0

Primitive ‘ﬂoaﬁng Points (Float, double): 0.0
boolean: £alse

obJet{ referencss null

t Aecess a statie vaviable ")us{ like a static
mt{‘}\od—wiu'\ *‘,}\t tlass name.

Flie Ecit Window Help Whal?

% java PlayerTestDrive
0 «__ bebore any mebantes are made

1(‘\

~ i
dfter an o

!"jff-{ is «‘.rc‘;{:cd

you are here » 281

static final constants

statie final variables are constants

A variable marked finalmeans that~—once initdalized—it ¢an
pever change. In other words, the value of the static final variable
will stay the same as long as the class is loaded. Look up Math.P}

in the AP], and you'll find:

public static final double PI = 3,141592653589793;
The variable is marked publiec so that any code cap access it.

The variable is marked static so thatyou don't need an
instance of class Math (which, remember, you're not allowed to

create).

The variable is marked final because PI doesn’t change (as far as

Java is concerned).

There is no other way to designate a variable as a constant, but
there is a naming convention that helps you to recognize one.

Constant variable names should be in all caps!

static initializer

initialize a final statlc variable:

@ At the time you declare it:

public class Foo {
public static flnal int FOO X = 25;

TTertace, \,;
OR Péb'aﬂ,.,s the :ww th an

@ 1n o static initializer:

public class Bar {
public static final double BAR SIGN;

{

BAR SIGN = (double) Math.random():;

}

this 2o
;‘: ,i:}i;de b,,c ::;,, ngf‘*e ﬂfau
V&Habfc hd C tforc &hy “{‘8{3
e

282 chapter 10

If you don't give a value to a final variable
in one of those two places:

public class Bar {
public static final double BAR SIGN;

) " itislaati,,

The compiler will catch it:

file Edit Windaw Help Jack-n

% javac Bar.java

Bar.java:1: variable BAR_SIGN
might not have been initialized

1l errxor

final isn't just for static
variables...

You can use the keyword final to modify non-
static variables too, including instance variables,
local variables, and even method parameters. In
each case, it means the same thing: the value can’t
be changed. But you can also use final to stop
someone from overriding a method or making a
subclass.

non-static final variables

class Foof (
final int size =
final int whuffia;

5, é—row Yoo tan't change size

Foof () {(‘
whuffie = 42; ¢~ now Yyou tan't tharge whutfie

)

void doStuff (final int x) {
// you can’t change x
}

void doMore () {

final int z = 7;

// you can’t change z
}

final method

class Poof {
final void calcWhuffia() (
// important things
// that muat naver be overridden

final class

final claas MyMostPerfectClass (
// cannot be axtended

}

numbers and statics

A final variable means you
can'’t c]mange its value.

A final method means you
can't override the method.

A final class means you
can't extend the class (i.e.
you can't malxe a sul)class).

Itsall s0... so final
I mean, if T'd known

I wouldn't be able to
change things...

you are here » 283

static and final

OEiE Ghestions

Q,: A static method can’t access a
non-static variable. But can a non-static
method acceoss a static variable?

A: Of course. A non-static method in a
class can always call a static method in the
class or access a statlc varlable of the class.

Q} Why would | want to make a class
final? Doasn’t that defeat the whole
purpose of 00?

A: Yes and no. A typical reason for
making a class final is for security. You
can't, for example, make a subclass of the
String class. Imagine the havoc if someone
extended the String class and substituted
thelr own String subclass objects,
polymorphically, where String objects

are expected. If you need to count on a
particular implementation of the methods
in 2 class, make the class final.

Q_: Isn’t it redundant to have to mark
the methods final if the class Is final?

A: If the class is final, you don’t need to
mark the methods final. Think about it—if
a class is final it can never be subclassed,
so none of the methods can ever be
overridden.

On the other hand, if you do want to allow
others to extend your class, and you want
them to be able to override some, but not
all, of the methods, then don’t mark the
class final but go in and selectively mark
specific methods as final. A final method
means that a subclass can’t override that
particutar method.

284 chapter 10

. - S

A static method should be called using the class
name rather than an object reference variable:
Math.random() vS. myFoo.go ()

A static method can be invoked without any instances
of the method's class on the heap.

A static msthod is good far a utility method that does
not {and will never) depend on a particular instance
variabile value.

A static method is not associated with a particular
instance—only the clags—so It cannot access any
instance variable values of its class. It wouidn't know
which Instance’s values {o use.

A static method cannot access a non-static method,
since nan-static methods are ysually associated with
instance variable state.

If you have a ctass with only static methods, and you

do not want the ciass to be instantiated, you can mark
the constructor private.

A static varlable is a variable shared by all members
of a glven class. There is only one copy of a static
variable in a class, rather than one copy per each
individual instance for instance variables.

A static methed can access a stafic variable.

To make & constant in Java, mark a variable as both
static and final.

Afinal static variable must be assigned a value elther
at the time it is declared, or in a static initializer.
static (

DOG_CODE = 420;
}
The naming canvention for constants (final static
variables) Is to make the name all uppercase.

A final variable value cannot be changed once It has
been assigned.

Assigning a value 1o a final instance variable must be
either at the time it Is declared, or in the constructor.

Afinal method cannot be overridden.
Afinal class cannot be extended (subclassed).

numbers and statics

&rpen your penci

What’s Legal? | kpEPp

Given everything you've just

learned about static and final, h
which of these would compile? R I G H T

public clasa Foo {
static int x;

public void go() { public clasas Pood {
Systam._out.println(x); static final int x = 12;
)]
} public void go() {

System.out.println(x)
}

. public clams Foo2 {

int x;
public atatic void go() { public class Foo5 {
System.out.println(x); static fnal int x = 12;
}
} public void go(final int x) {

System.out.println(x) ;
}

. public class Foo3l {

final int x;
° public class Foo6
public void go() { int x = 12;
Systam.out.println(x) ;
} public static void go({final int x) (
} Syatem.out.println{x) ;

}

you are here» 286

Math methods

Math methods

Now that we know how static
methods work, let’s look

at some static methods in
class Math. This isn’t all of
them, just the highlights.
Check your API for the rest
including sqrt(), tan(), ceil(),
floor(), and asin().

286 chapter 10

Math.random()
Returns a double between 0.0 through (but

not including) 1.0.

double rl = Math.random() ;
int r2 = (int) (Math.random() * 5);

Math.abs()
Returns a double that is the absolute value of
the argument. The method is overloaded, so
if you pass it an int it returns an int. Pass it a
double it returns a double.

int x = Math.abs(-240); // returns 240
double d = Math.abs (240.45); // returns

Math.round()
Returns an int or a long (depending on
whether the argument is a float or a double)
rounded to the nearest integer value.

240.45

point literals are assumed
You add the ‘f.

int x = Math.round(-24.8f); // returns -25
int y = Math.round(24.45f); // returns 24
RCmCMbch chaﬁna
be doubles unless
Math.min()

Returns a value that is the minimum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.

int x = Math.min(24,240); // returns 24
double y = Math.min(90876.5, 90876.49);

Math.max()
Returns a value that is the maximum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.

int x = Math.max(24,240); // returns 240
double y = Math.max(90876.5, 90876.49);

// returns 90876.49

// returns 90876.5

Wrapping a primitive

Sometimes you want to treat a primjgve like
an object For example, in all versions of Java
prior 10 5.0, you cannot put a primitive directly
into a collection like ArrayList or HashMap:
int x = 32;
ArrayList list = new ArrayList();
list.add (x) TN

3 . 5.0 or
Thi 'L work unless youve wein Javf‘i '
r;{;ﬁl T‘}lxcvc's no 3ddlint) methed in Ar;-)ay!,c;g,ﬂis
hat takes an inkl (ArrayList only has add() m

that take ob:)ca{: veberentes, rot ?\rinibvu.)

There’s a wrapper class for every primitive type,
and since the wrapper classes are in the java.
lang package, you don’t need to import them.
You can recognize wrapper classes because
each one is named after the primitive type 1t
wraps, but with the first letter capitalized to
follow the class naming convention.

Oh yeah, for reasons absolutely nobody on the
planetis certain of, the API designers decided
not to map the names exactly from primidve
type to class type. You'll see what we mean:

Boolean
Character <\
Byte Wateh out! The names aren't

Short mapped exactly to the primitive
types: The tlass names ave £ully
Integer

spelled out.
Long
Float
Double
Give the primitive to the

wrapper tonstruttor. That's it
wrapping a value

int i = 288; /

Integer iWrap = naw Intaegex{i):

|| the wrappers work
ﬁkc this. Boolean has a
booteanV/alue(), Charatter
""Wfapplng a value has 3 Lhar\/aluf), c{’,c

int unWrapped = iWrap.intValuae();

numbers and statics

o]oject

Primitive

When you need to treat

a primitive like an object,
wrap it I you’re using any
version of Java before 5.0,
you’ll do this when you
need to store a primitive
value inside a collection like
ArrayList or HashMaP.

b Y"."““{"NC

fh'&ger ObJect

Nota: the picture et the top is & chocolate in a foll wrapper. Get
it? Wrapper? Some peopla think it 1ooks like a baked potato, but
that works too.

you are here » 287

static methods

This is stupid. You mean I can't
just make an ArrayList of ints??? I
have ta wrap every single frickin' one in a new
Integer object, then unwrap it when I try
to access that value in the ArrayList?
That's a waste of time and an error
waiting to happen...

Before Java 5.0, YOU had fo do the work...

She’s right. In all versions of Java prior to 5.0, primitives were primitives
and object references were object references, and they were NEVER
treated interchangeably. It was always up to you, the programrner, o do

the wrapping and unwrapping. There was no way to pass a primitive to a
method expecting an object reference, and no way to assign the result of a
method returning an object reference directly to a primitve variable—even
when the returned reference is to an Integer and the primitive variable is
an int. There was simply no relationship between an Integer and an int,
other than the fact that Integer has an instance variable of type int (1o hold
the primitive the Integer wraps). All the work was up to you.

An Arraylist of primitive ints

Without autoboxing (Java verslons before 5.0)

S{'/ (Rcmcmbcr) .
¢ a“ti‘lmvpe o ll Prayists were 15
syw Y K_/

ArraylList listOfNumbers = new ArrayList();
't add the TT
\/ou\i:’:r{‘a\JC {p Wa? l£ n AR

Intager one = (Integer) listOfNumbers.get(0); & [zomes ouk as Eype

Ob)cc£, but you car tast
int intOne = one.intValue(); o Ob\)“{: e Ihuscr

Finall
JZ: s 3t€ the primitive

5.0 you could not
\cho\ft Y crc O\JJCCJOS
public void doNumsOldWay ()

imitive 9 Lo the list,

1istOfNumbers.add (naw Integexr(3)); Integer Fivst

288 chapter 10

numbers and statics

Autoboxing: blurring the line
between primitive and object

The autoboxing feature added to Java 5.0 does
the conversion from primitive to wrapper object
automatically!

Let’s see what happens when we want to make an
ArrayList to hold ints.

An Arraylist of primitive ints

With autoboxing (Java versions 5.0 or greater)

of type Inteder:

public void doNumsNewWay () { Make an P(wa\[L'S‘t

ArrayList<Integer> listOfNumbers = new ArraylList<Integer>():;

listOfNumbers.add (3); Just add it/ Al'f’)\ovgh there is NOT 3 method in Pm-ayLis’c
' for add(int), the compiler does all the wrapping
int num = listOfNumbers.get (0); (boxing) for you. In other words, there veally [S
} an [nteger ob\jccf stored in the Array{,.is{;, but
, you get to “pretend” that the Avvaylist takes
And the tompiler automatically wnwraps (unboxes) ints: (You tan add both ints and Inteaers to an

{hc ’n‘ﬁeacr Ob\jet‘(‘, S0 You can as&iﬁh ‘Hﬁt int value A&'TQ\/LiS‘E<[h+.€5€Y‘>.)

d“’ccﬂy toa Primitive without .
i Ve wi ha
intValue)) method on the Integer :;:\566% call the

Q} Why not declare an ArraylList<int> if you want to
hold ints?

A: Because... you can’t. Remember, the rule for generic
types is that you can specify only class or interface types, not
primitives. So ArrayList<int> will not compile. But as you can
see from the code above, it doesn’t really matter, since the
compiler lets you put ints into the ArrayList<integer>.In fact,
there's really no way to prevent you from putting primitives
into an ArrayList where the type of the list is the type of that
primitive’s wrapper, if you're using a Java 5.0-compliant com-
piler, since autoboxing will happen automatically. So, you can
put boolean primitives in an ArrayList<Boolean> and chars
into an ArrayList<Character>.

youare here» 289

static methods

Autoboxing works almost everywhere

Autoboxing lets you do more than just the obvious wrapping and
unwrapping to use primitives in a collection... it also lets you use
either a primitive or its wrapper type virtually anywhere one or the
other is expected. Think about that!

Fun with autoboxing

Method arguments

If a method takes a wrapper type, you
can pass a reference to a wrapper or
a primitive of the matching type. And
of course the reverse is true—if a
method takes a primitive, you can
pass in either a compatible primitive
or a reference to a wrapper of that
primitive fype.

void takeNumber (Integer i) {)

Return values

If amethod declares a primitive

return type, you can return either a)
compatible primitive or a reference

Yo the wrapper of that primitive type.

And if a method declares a wrapper

return type, you can return either a

reference to the wrapper type or a

primitive of the matching type.

int giveNumber () {
return x;

Boolean expressions

true
Any place a boolean value is expected,
you can use either an expression that
evaluates to a boolean (4 > 2), or a boolean
primitive boolean, or a reference ta a
Boolean wrapper.
if (bool) {

}

280 chapter 10

System.out.println(“true”);

numbers and statics

Operations on numbers

This is probably the strangest one—yes, you
can now use a wrapper type as an operand
in operations where the primitive type is
expected. That means you can apply, say,
the increment operator against a reference
to an Integer object]

int
But don't worry—this is just a compiler trick.
The language wasn't modified Yo make the
operators work on objects; the compiler it+;

simply converts the object to its primitive
type before the operation. It sure looks
weird, though.

Integer i = new Integer(42);

4+
And that means you can also do things like:

Integer) = new Imeger(S):l
Integer k =) + 3;

Assignments

You can assign either a wrapper or primitive
to a variable declared as a matching wrapper
or primitive. For example, a primitive int
variable can be assigned to an Integer
reference variable, and vice-versa—a
reference to an Integer object can be
assigned to a variable declared as an int

Double d = X;

primitive,
&pen your pencil
public clasg TastBox {

Integer i;
WIll this code complle? Will it run? If it runs, int j;
what will it do?

. public statioc void main (String[] args) (

Take your fime and think about this one; it TestBox t = naw TestBox() ;
brings up an implication of autoboxing that t.go();
we didn't talk about. }

You'll have to go to your compiler to find ubli id
the answers. (Yas, we're forcing you to P j-z ;vo gol {
experiment, for your own goog of course.) System.out.println(j);
Systam.out.printlin(i);
}

you are hera» 291

wrapper methods

292

But wait! There’s more! Wrappers
have static utility methods too!

Besides acting like a normal class, the wrappers have a
bunch of really useful static methods. We’ve used one in
this book before—Integer.parseInt().

The parse methods take a String and give you back a
primitive value.

Converting a String to a No prablem ko pavse
primitive value is easy: “9” inte -

String ¢ = “2”; l
int x = Integer.parselInt(s);

doubla d = Double.parsaDouble (“420.24") ;

boolean b = new Boolean (“true”) .booleanValue () ;

But if you try to do this:

String t = “two”;

gou'd {:\-‘\‘,r\tugm\“n 0 “poul dh. ¢ you .(’m% tor
't Fw{uﬁul‘f {‘)\CV) , Cheing, and then you

&%:cik:\‘\c(a;:jg::&valuc by wnwr appIng i
jus

Uh—oh. This compiles just fine, but
at vuntime it blows up. Any{:hins

int y = Integer.parselnt(t):; that can’t be pavsed as a mumber
will ause 3 NumberFormatExeeption

You'll get a runtime exception:

Fita Edil Window Help Clua
3 java Wrappers
Exception in thread “main”

java.lang.NumberFormatException: two

Every method or
constructor that parses

a String can throw a
NumberFormatException.

at java.lang.Integer . parselnt({Integer.java:409) It’s a runtime exception,
at java.lang.Integer.parselnt{Integer.java:458) so you don'’t have to

at Wrappers.main(Wrappers.java:?9)

chapter 10

handle or declare it.
But you might want to.

(We'll talk about Exceptions in the
naxt chapter.)

numbers and statics

And now in reverse... turning a
primitive number into a String

There are several ways to turn a number into a String.
The easiest is to simply concatenate the number to an i
existing String. bor the ovaa@*d" ovc\;\{;)::icas ,
emem! 44
Java (the m“! overloads® oF dded to 3
double d = 42.5; in Ja tor. }\Y{).mga

c . coh
String doubleString = »” + d; St_\:% betomes S-t\vmty ied

double d = 42.5;
String doubleString = Double.toString(d) ;

’Q Awﬂncr way 4o do it wsin ,
Od n ¢ \(Doub]c“ 3 2 rﬁabc

Yeah,
but how do I make it
look like money? With a doliar
sign and two decimal places

like $56.87 or what if T want
commas like 45,687,890 or
what if I want it in...

Where's my printf
like I have in C? Is

number formatting part of
the X/0 classes?

you are here »

283

number formatting

Nuwmber formatting

In Java, formatting numbers and dates doesn’t have to be coupled with I/O. Think
about it. One of the most typical ways to display numbers to a user is through a
GUL You put Strings into a scrolling text area, or maybe a table. If formatting was
built only into print statements, you’d never be able to format a number into a nice
String to display in a GUIL Before Java 5.0, most formatting was handled through
classes in the java.text package that we won’t even look at in this version of the
book, now that things have changed.

In Java 5.0, the Java team added more powerful and flexible formatting through a
Formatter class in java.util. But you don’t need to create and call methods on the
Formatter class yourself, because Java 5.0 added convenience methods to some of
the I/O classes (including printf()) and the String class. So it’s a simple matter of
calling a static String.format() method and passing it the thing you want formatted
along with formatting instructions.

Of course, you do have to know how to supply the formatting instructions, and
that takes a little effort unless you're familiar with the prinif() function in C/C++.
Fortunately, even if you don’t know printf() you can simply follow recipes for the
most basic things (that we’re showing in this chapter). But you will want to learn
how to format if you want to mix and match to get anything you want.

We’ll start here with a basic example, then look at how it works. (Note: we’ll revisit
formatting again in the 1/O chapter.)

Formatting a number to use commas

public class TestFormats ({ The mmbc\, to ‘cm*ma‘t ()WC
want it Lo have commash
public static void main (String[] args) {

String s = String.format(“%, 4”7, 1000000000) ;
System.out.println(s); NV TN T

instruedi
second avqument (W":Ch{i::nofh ﬁo:a how to format the

Remember, Lher se is an int value).
e
it isn't separati ¢ Strin liteval, so

"9 drquments {o the forma method.

Now we 9et Lommas inserted into the nump,
mber-.

294 chapter 10

Formatting deconstrueted...

At the most basic level, formatting consists of two main parts
(there is more, but we’ll start with this to keep it cleaner):

o Formatting instructions

You use special format specifiers that describe how
the argument should be formatted.

! The argument to be formatted.

Although there can be more than one argument, we'll
start with just one. The argument type can't be just
anything... it has to be something that can be formatted
using the format specifiers in the formatting instructions.
For example, if your formatting instructions specify a
floating point number, you can't pass in a Dog or even a
String that looks like a floating point number.

Do Lhis- to this.
@ @
format(“%, 47, 1000000000) ;
e T

Use these instructions... on this argument.

What do these instructions actually say?

“Take the second argument to this method, and
format it as a decimal integer and insert commas.”

How do they say that?

On the next page we’ll look in more detail at what the syntax “%,

d” actually means, but for starters, any time you see the percent
sign (%) in a format String (which is always the first argument
to a format() method), think of it as representing a variable,
and the variable is the other argument to the method. The rest
of the characters after the percent sign describe the formatting
instructions for the argument.

numbers and statics

ntf0

i alveady know ?vm{:‘
’;:f: c‘ﬁ (?:':’. you tan ?voboa‘t‘\‘y Ju;{';
oim the next few pages. Otherwis

vead wrc(:u“\f{

you are here» 295

the format() method

The percent (%) says, “insert argument here”
(and format it using these instructions)

The first argument to a format() method is called the format String, and it
can actually include characters that you just want printed as-is, without extra
formatting. When you see the % sign, though, think of the percent sign as a
variable that represents the other argument to the method,

Mere ¢haraets
Format specifiers for the include in the Srzrf:o

Chovackers ko melude in - Se2ond Srgument 4o the the setond argument i’c{"

Ehe §inal String vetuned method (fhe number) formatied and insevted. Avgument 4o b,
0. ¢
Feom formatl:) { L ormatied.
—~— v

/_&_\
format (I have %.2f bugs to fix.”, 476578.09876) ;
W\r

)

Ouj\'fY‘*‘: I have 476578.10 bugs to fix.

Notice we lost some of the mu b
mDers

3tter the depimal o
what e 2 {21t Con o e

The “%” sign tells the formatter to insert the other method argument (the
second argument to format(), the number) here, AND format it using the
.26 characters after the percent sign. Then the rest of the format String,
“bugs to fix”, is added to the final output.

Adding a comma

format (“I have %,.2f bugs to fix.”, 476578.09876);

I have 476,578.10 bugs to fix.

naind £h format instrus tions
By o TR ks
Lomma in the Lormattied narmber.

298 chapter 10

numbers and statics

But how does it even KNOW
where the instructions end and the

rest of the characters begin? How come
it doesn't print out the “f* in "%.2f"? Or
the “2“? How does it know that the .2f
was part of the instructions ond NOT
part of the String?

The format String uses its
own little language syntax

You obviously can't put just anything after the “%”
sign. The syntax for what goes after the percent
sign follows very specific rules, and describes
how to format the argument that gets inserted at
that point in the result (formatted) String.

You've already seen two examples:

%, d means “insert commas and format the
number as a decimal integer.”

and

%.2f means “format the number as a floating
point with a precision of two decimal places.”

and

%,.2f means “insert commas and format the
number as a floating point with a precision of
two decimal places.”

The real question is really, “How do [know what
to put after the percent sign to get it to do what
Iwant?” And that includes knowing the syrmbols
(like “d” for decimal and “f” for floating point)
as well as the order in which the insaructions
must be piaced following the percent sign. For
example, if you put the comma after the “d” like
this: “%d,"” instead of “%,d” it won 't work!

Or will it? What do you think this will do:
String.format(“I have %.2f, bugs to fix.”, 476578.09876) ;

{(We'll answer that on the next page.)

youare herer 297

format specifier

The format specifier

Everything after the percent sign up to and including the type indicator (like
“d” or “f”) are part of the formatting instructions. After the type indicator, the
formatter assumes the next set of characters are meant to be pan of the output
String, until or unless it hits another percent (%) sign. Hmmmm... is that even
possible? Can you have more than one formatted argument variable? Put that
thought on hold for right now; we'll come back to it in a few minutes. For now,
let's look at the syntax for the format specifiers—the things that go after the
percent (%) sign and describe how the argument should be formatted.

A format specifier can have up to flve different parts (not
Including the “%”), Everything in brackets [] below is optional, so
only the percent (%) and the type are required. But the order Is
also mandatory, so any parts you DO use must go In this order.

% [argument number] [flags] (width] [.precision] type

0N O
Well et 15 this later. j\ This defines the o alread\f know it mandatory
'€ fets you say whiCH These ave kor MINIMUM rumber \’i}\ﬂ one. it dekines -(rl?c{;hc next Paﬁ‘)
argument if theves move eial Sormatiing of ehavactevs that the pregision- | b and will ussally be
an one. (Dop’ worvy spe - ons like insecting will be wed. That's other words, ¥ g for a degimal

9 it Juf yet.) -3s, OF ‘;ujcﬁhs Fmipimum ¥ not sets the number integer or “f¥ for

. Live puwbers i TOTAL. [£ the nuwber of decimal \aces: R »C\ oating ?om'l’.

“:?mu\cm, or to is]ongcr than the Do»\'{‘. ; +’° number-

e the pumbers width, it still be wed inelude the -

teft jw{'l"c‘ltd- in full, but if s less theve.

% [argument number] [flags]

than the width, it'll be
padded with zevoes.

[width] [.precision] type

N

298 chapter 10

format (“%,6.1£"”,

Thﬂ’c)s no
spetified in
but all £he

‘;'5'““"'{ numbey”

{:}us -Format Sb‘lns,
& PICLCX are éhcrc

42.000) ;

The only required specifier is for TYPE

Although type is the only required specifier, remember that if you do put

in anything else, type must always come last! There are more than a dozen
different type modifiers (not including dates and times; they have their own
set), but most of the time you’ll probably use %d (decimal) or %f (floating
point). And typically you’ll combine %f with a precision indicator to set the
number of decimal places you want in your output.

The TYPE is mandatory, everything else is optional.

%d decimal
format (“$d”, 42); would be 4},

diree | .

The argument must be compatible with an int, so that means
only byte, short, int, and char (or their wrapper types).

%t floating point Heve we combine 4 the "
format (“%.3£"”, 42.000000); wf{c\\ P ‘?\’CC\S\‘”‘ inditator

«3” oo we ended wp with
42.000 {hree zevoes.

The argument must be of a floating point type, so that
means only a float or double (primitive or wrapper) as well
as something called BigDecimal (which we don’t look atin
this book).

%X hexadecimal
format (“$xX’”, 42);

N
[\l

The argument must be a byte, short, int, long (including
both primitive and wrapper types), and BigInteger.

%¢ character

format (“%c”, 42); The rumber &2 vepresents

Lhe thar

I

The argument must be a byte, short, char, or int (including
both primitive and wrapper types).

numbers and statics

You must include a
type in your format
instructions, and if you
specify tlrjngs besides
type, the tyPe must
always come last.

Most of the time,

you’ll pro]ual)ly format
numbers using either

"d” for decimal or "f”
for ﬂoating point.

you are here» 299

format arguments

What happens if | have more than one argument?

Imagine you want a String that looks like this:
“The rank is 20,456,654 out of 100,567,890.24.”

But the numbers are coming from variables. What do you do? You simply add two
arguments after the format String (first argument), so that means your call to format()
will have three arguments instead of two. And inside that first argument (the format
String), you’ll have two different format specifiers (two things that start with “%”). The
first format specifier will insert the second argument to the method, and the second
format specifier will insert the third argument to the method. In other words, the
variable insertions in the format String use the order in which the other arguments are
passed into the format() method.

int one = 20456654;
double two = 100567890.248907;

String s = String.format (“The rank is %,d out of %,.2£f”, one, two);

~

The rank is 20,456,654 out of 100,567,890.25 When you have more than on
:;2;” th & they've inserteq
€ order | i
We added commas to both vaviables, Pass them ¢, 'Eh;hf:t:::&g«
and restricted the floating point method.

rumber (the setond variable) to two
deeimal places.

As you’ll see when we get to date formatting, you might actually want to apply different
formatting specifiers to the same argument. That’s probably hard to imagine until you
see how dateformatting (as opposed to the number formating we’ve been doing) works.
Just know that in a minute, you’ll see how to be more specific about which format
specifiers are applied to which arguments.

Q} Um, there’s something REALLY strange going on here. Just how many arguments can |
pass? I mean, how many overloaded format() methods are IN the String class? So, what happens
if | want to pass, say, ten different arguments to be formatted for a single output String?

A: Good catch. Yes, there is something strange (or at least new and different) going on, and

no there are not a bunch of overloaded format() methods to take a different number of possible
arguments. In order to support this new formatting (printf-like) APl in Java, the language needed
another new feature—variable argument lists (called varargs for short). We'll talk about varargs
only in the appendix because outside of formatting, you probably won't use them much in a well-
designed system.

300 chapter 10

numbers and statics

So muceh for numbers, what about dates?

Imagine you want a String that looks like this: “Sunday, Nov 28 2004”

Nothing special there, you say? Well, imagine that all you have to start with is a variable
of type Date—A Java class that can represent a timestamp, and now you want to take that
object (as opposed to a number) and send it through the formatter.

The main difference between number and date formatting is that date formats use a
two-character type that starts with “t” (as opposed to the single character “f” or “d”, for
example). The examples below should give you a good idea of how it works:

The complete date and time %tc
String.format (“%$tc”, new Date());

Sun Nov 28 14:52:41 MST 2004

Just the time %tr
String.format (“%$tr”, new Date());

03:01:47 pPM

Day of the week, month and day %tA %tB %td

There isn’t a single format specifier that will do exactly what we

want, so we have to combine three of them for day of the week But that means we have L,

(%tA), month (%tB), and day of the month (%td). I::: the Dg{x ochc-é i e
S, one or Caéh 3
Date today = new Date(); ormat that w part of the

String.format (“$tA, %tB %td”, today, today,

2 week, but
The tomma is not part of the fo\rma'f;{:ing... s :: fhz:‘ to do it a9ain ‘Zo i?
;}:us{: the thavacter we want printed after the %la of ¢ month and 39din Eor th
irst inserted formatted arqument. ¥-o¢ the month, €
Same as above, but without duplicating the arguments %tA %tB %td
Date today = new Date(); The angle~bracket “<” is just another

. £lag in the specifier 4
St f wo , - o<td", : 3 " ¢ SFCU {4 ba{ “:C“S {'}IC
ring. format (“StA B % today) {:omaf:{:cr:,o “use the previous araument
You ean think of this as kind of fike calling h ag3in.” So it saves you from vepeating the
diffevent aetter methods on {:he‘ Da Ju'z e c;,“{;o avquments, and instead you format Re
act three diffevent pieces of data from | {,) same argument three ditfevent ways.

you are here» 301

manipulating dates

Let's see... how many work
days will there be if the

project starts on Feb 27th and
ends on August 5th?

Working with Dates

You need to do more with dates than just get
today's date. You need your programs to adjust
dates, find elapsed times, prioritze schedules,
heck, make schedules. You need industrial
strength date manipulaton capabilities.

You could make your own date routines of
coursse... (and don’t forget about leap years!)
And, ouch, those occasional, pesky leap-
seconds. Wow, this could get complicated. The
good news is that the Java APl is rich with
classes that can help you manipulate dates.
Sometimes it feels a little too rich...

302 chapter 10

Moving backward and forward in time

Let’s say your company’s work schedule is Monday through Friday.
You've been assigned the task of figuring out the last work day in
each calendar month this year...

It seems that java.util.Date is actually... out of date

Earlier we used java.util.Date to find today’s date, so it seems
logical that this class would be a good place to start looking for
some handy date manipulation capabilities, but when you check
out the API you’ll find that most of Date’s methods have been
deprecated!

The Date class is still great for getting a “time stamp”—an object
that represents the current date and time, so use it when you want
to say, “give me NOW”.

The good news is that the API recommends java.util. Calendar
instead, so let’s take a look:

Use java.util.Calendar for your date manipulation

The designers of the Calendar API wanted to think globally,
literally. The basic idea is that when you want to work with dates,
you ask for a Calendar (through a static method of the Calendar
class that you’ll see on the next page), and the JVM hands you back
an instance of a concrete subclass of Calendar. (Calendar is actually
an abstract class, so you're always working with a concrete subclass.)

More interesting, though, is that the kind of calendar you get
back will be appropriate for your locale. Much of the world uses the
Gregorian calendar, but if you’re in an area that doesn’t use a
Gregorian calendar you can get Java libraries to handle other
calendars such as Buddhist, or Islamic or Japanese.

The standard Java API ships with java.util.GregorianCalendar, so
that’s what we’ll be using here. For the most part, though, you
don’t even have to think about the kind of Calendar subclass you're
using, and instead focus only on the methods of the Calendar class.

numbers and statics

For a time-stamp of "now”,
use Date. But for everything

else, use Calendar.

you are here »

303

getting a Calendar

Getting an object that extends Calendar

How in the world do you get an “instance” of an abstract class?
Well you don't of course, this won’t work:

This WON'T work: T The ompi

ler won't allow ‘(:his_’
Calendar cal = new Calendar() ;

Instead, use the static “getinstance()” method:

dar ¢ . = “ . *Tnstance
This s\,'nbx should ook Familiar at this
point — we're invoking 2 static method.

Wait a minute.
If you can't make an

instance of the Calendar
class, what exactly are you
assigning to that Calendar
reference?

You can’t get an instance of Calendar,
but you can can get an instance of a
concrete Calendar subclass.

Obviously you can’t get an instance of Calendar, because
Calendar is abstract. But you're still free to call static methods
on Calendar, since static methods are called on the class,
rather than on a particular instance. So you call the static
getInstance () on Calendar and it gives you back... an instance
of a concrete subclass. Something that extends Calendar
(which means it can be polymorphically assigned to Calendar)
and which—by contract—can respond to the methods of class
Calendar.

In most of the world, and by default for most versions of Java,
you’ll be getting back a java.util. GregorianCalendar instance.

304 chapter 10

numbers and statics

Working with Calendar objects

There are several key concepts you'll need to understand in
order to work with Calendar objects:

¥ Fields hold state - A Calendar object has many fields that are used to
represent aspects of its ultimate state, its date and time. For instance, you
can get and set a Calendar’s year or month.

= Dates and Times can be incremented - The Calendar class has methods that
allow you to add and subtract values from various fields, for example “add
one to the month”, or “subtract three years”.

® Dates and Times can be represented in milliseconds - The Calendar class
lets you convert your dates into and out of a millisecond representation.
(Specifically, the number of milliseconds that have occured since January
Ist, 1970.) This allows you to perform precise calculatons such as “elapsed
time between two times” or “add 63 hours and 28 minutes and 12 seconds
to this time”,

An example of working with a Calendar object: o0k 3t 15:40-
kime £0 32" 1% o-based)
b ce the morth 82

Converk this to 2 big of
long dayl = c.getTimeInMillis(); Q——'—"' a...\omw{'.&£ '“‘\““"'o“ds'

Calendar ¢ = Calendar.getlnstance();

c.8et(2004,0,7,15,40);

dayl += 1000 * 60 * 60; Add an hour's worth of millis, then update Jc)hc time.
c.setTimeInMillis (dayl); —— (Notite the “+=", it’s like dayl = dayl +..).

System.out.println(“new hour “ + c.get(c.HOUR _OF DAY));

c.add(c.DATE, 35); <— Add 35 days 4o the date, which
should move us into Febru.ar\’.

System.out.println(“add 35 days ™ + c.getTima());

c.roll (¢.DATE, 35); %— wp |1
“ROH» 35 days onto this date. This
System,out.println(“roll 35 days “ + c.getTime()); volls” the date ahead 35 days, but
DOES NOT Lhansc ‘thé mon {
c.set(c.DATE, 1); <L '
System.out.println(“set to 1 “ + c.getTime()); We're not inCyemen

. ' i .
donna a -‘C‘t o{ fhe 'c‘a{l:re, Jl«r{

Fis Edt Window Help Time-FHies

new hour 16 -
add 35 days Wed Feb 11 16:40:41 MST 2004 This output confirms how millis,
roll 35 days Tue Feb 17 16:40:41 MST 2004 add, voll, and set work.

set to 1 Sun Feb 01 16:40:41 MST 2004

you are herer 305

Calendar AP

Highlights of the Calendar AP

We just worked through using a few of the fields and
me,chods in the Calendar class. This is a big AP, so
we’re showing only a few of the most common fields
and m'ethods that you'll use. Once you get a few of
thf:se it should be pretty €asy to bend the rest of the
thus APT to your will,

r Key Calendar Methods

add(int field, int amount)
Adds or subtracts time from the calendar’s fleld.

get(int field)

Returns the value of the given calendar field.

getinstance()
Returns a Calendar, you can specify a locale.

getTimelnMillis() Key Calendar Field
s

Returns this Calendar’s time In millis, as a long.

roli(int field, boolean up)
Adds or subtracts time without changing larger fields.

DATE / DAY~0F_MONTH
Get / set the day of month

HOUR / HOUR -OF DAy
Get / set the 12 hgur or

set{int field, int value)
Sets the value of a given Calendar field.

set(year, month, day, hour, minute) (all ints)
A common varlety of set to set a complete time.

249 hOUr Va,Ue,

setTimelnMillis(long millis)
Sets a Calendar’s time based on a long milli-time.

Get / sat the minyge.
MONTH

Get/ set the maonth.
YEAR
Get / spt the year,

/! more...

06 chapter 10

numbers and statics

Even more Statics!... static imports

New to Java 5.0... 2 real mixed blessing. Some people love
this idea, some people hate it Static irnports exist only 10 save
you some typing. If you hate to type, you might just like this
feature. The downside to stadic imports is that - if you’'re not
careful - using them can make your code a lot harder to read.

The basic idea is that whenever you’re using a static class, a

static variable, or an enum (more on those later), you can C { l, .
import them, and save yourself some typing. USC are UI. Y’

static imPorts can
Some old-fashloned code: mal‘e your COCIe

con{‘using to read

import java.lang.Math;
class NoStatic {
public static void main (String () args) {
System.out.println(“sqrt “ + Math.sqrt(2.0));
System.out.println(“tan “ + Math.tan(60});
} e wher

kowse ™ s
! T i&iﬁiﬁw e
(4

Same code, with static iImports: '
import static java.lang.System.out; Q - Caveats & Gotchas

import static java.lang.Math.¥*; if you're anly going to use a static member
‘ _ a few times, we think you should avoid
class WithStatic (static imports, to help keep the code more

public static vold main(String [] args) (readable.

B |fyou're going to use a static member a lot,
(like daing lots of Math calculations), then
out.println(“tan “ + tan(60)); it's probably OK to use the stati¢ import.

} = Nofice that you can use wildcards (.“), in
your static Import deciaration.
' / ® Abig issus wilh static imports is that it's
not too hard to create naming conflicts. For
Stati¢ imports in action. example, if you have two different dassas
with an “add()" method, how will you and

the compiler know which one to use?

out.println(“sgrt “ + Bgrt(2.0));

you are here» 307

static vs. instance

308

Fireside Chats

Ingtance Variable

I don’t even know why we’re doing this.
Everyone knows static variables are just used
for constants. And how many of those are
there? I think the whole API must have, what,
four? And it’s not like anybody ever uses
themn.

Full of it. Yeah, you can say that again. OK,
so there are a few in the Swing library, but
everybody knows Swing is just a special case.

Ok, but besides a few GUI things, give me an
example of just one static variable that anyone
would actually use. In the real world.

Well, that’s another special case. And nobody
uses that except for debugging anyway.

chapter 10

Tonight's Talk: An instance variable
takes cheap shots at a static variable

Static Variable

You really should check your facts. When
was the Jast ime you looked at the API? It's
frickin’ loaded with stadcs! It even has endre
classes dedicated to holding constant values.
There's a class called SwingConstants, for
example, that's just full of them.

It might be a special case, butit’s a really
important one! And what about the Color
class? What a pain if you had to remember the
RGB values to make the standard colors? But
the color class already has constants defined
for blue, purple, white, red, etc. Very handy.

How's System.out for starters? The out in
System.out is a static variable of the System
class. You personally don't make a new
instance of the System, you just ask the System
class for its out variable.

Oh, like debugging isn’t imponant?

And here’s something that probably never
crossed your narrow mind—let’s face it, static
variables are more efficient. One per class
instead of one per instance. The memory
savings might be huge!

Instance Variable

Umn, aren’t you forgetting something?

Static variables are about as un-OO as it gets!!
Gee why not just go take a giant backwards
step and do some procedural programming
while we’re at it.

You're like a global variable, and any
programmer worth his PDA knows that’s
usually a Bad Thing.

Yeah you live in a class, but they don’t call

it Class-Oriented programming. That’s just
stupid. You're a relic. Something to help the
old-timers make the leap to java.

Well, OK, every once in a while sure, it makes
sense to use a static, but let me tell you, abuse
of static variables (and methods) is the mark
of an immature OO programmer. A designer
should be thinking about object state, not class
state.

Static methods are the worst things of all,
because it usually means the programmer is
thinking procedurally instead of about objects
doing things based on their unique object
state.

numbers and statics

Static Variable

What?

What do you mean un-OO?

Iam NOT a global variable. There’s no such
thing. I live in a class! That’s pretty OO you
know, a CLASS. I'm not just sitting out there
in space somewhere; I'm a natural part of the
state of an object; the only difference is that
I'm shared by all instances of a class. Very
efficient.

Alright just stop right there. THAT is
definitely not true. Some static variables are
absolutely crucial to a system. And even the
ones that aren’t crucial sure are handy.

Why do you say that? And what’s wrong with
static methods?

Sure, I know that objects should be the focus
of an OO design, but just because there are
some clueless programmers out there... don’t
throw the baby out with the bytecode. There’s
a time and place for statics, and when you
need one, nothing else beats it.

you are here »

309

be the compiler

BE the cempiler

The Java 5ile on this page represents a
complete program. Your job is to play
compiler and determine whether this
file will compile. If i won’t compile,
how would yon fix it and
class StaticSuper{ if.rt dOBS compile, W}!ﬂt
would be s output?

gstatic {

System.out.println(”super static block”);

}
StaticSuper(If it complles, which of these Is
System.out.println(the output?
“gsuper construactor”);
} Possible Output
¥ File Edit Window Help

%java StaticTests

. . . static block 4
public class StaticTests extends StaticSuper {
. . in main
gtatic int rand;
super static block

super constructor
static {

rand = (int) (Math.random() * 6);

constructor

System.out.println(”static bloeck ” + rand);

}

StaticTeses() { Possible Output
System.out.println(*constructor”); File Edit Window Help

) t¥java StaticTests

super static block
public static void main{String [] args) { static block 3
System.out.println(“in main”); in main

super construc tor

StaticTests st = new StaticTests();
constructor

310 chapter 10

numbers and statics

This chapter explored the wonderful, static, world
of Java. Your job is to decide whether each of the
following statements Is true or false.

&Trve or FaLse$

1. To use the Math class, the first step is to make an instance of it.

2. You can mark a constructor with the static keyword.

3. Static methods don’t have access to instance variable state of the 'this’ object.
4. Itis good practice to call a static method using a reference variable.

5. Static variables could be used to count the instances of a class.

6. Constructors are called before static variables are initdalized.

. MAX_SIZE would be a good name for a static final variable.

. A static initializer block runs before a class’s constructor runs.

[l= T - |

. If a class is marked final, all of its methods must be marked final.
10. A final method can only be overridden if its class is extended.

11. There is no wrapper class for boolean primitives.

12. A wrapper is used when you want to treat 2 primitive like an object.
13. The parseXxx methods always return a String.

14. Formattng classes (which are decoupled from 1/0), are in the java.format

package.

you are here» 311

code magnets

Lunar Code Magnets

This one might actually be usefull [n addition to what you've learned in the last few
pages about manipulating dates, you'll need a little more information... First, full
moons happen every 29.52 days or 50.Second, there was a full moon on Jan. 7th,
2004. Your job is to reconstruct the code snippets to make a working Java program
that produces the output listed below (plus more full moon dates). (You might not
need all of the magnets, and add all the curly braces you need.) Oh, by the way, your
output will be different if you don’t live in the mountain time zone.

long dayl = c.getTimeInMillis(); .

c.set(2004,1,7,15,40);

import gtatic java. lang.System. out;

static int DAY _IM = 60 * 60 * 24;

(“full moon on %tc”, c)); |

o .
a an .
dar ¢ = new Calendar() ;
1ass FullMoons ({

public gtatic void main(String [] args) ({

dayl += (DAY IM * 29.52);

o (nt X =0; x < 60; x++) {

static int DAY

=

(“full moon on %t”, cy)s
.mport jav“lltilgt;
static import Jjava.lang.System.out; '

c.set(2004,0,7,15,40);
i java FullMoons . S— : ,
full moon on Fri Feb 06 04:09:35 MST 2004 § 5 (Stzing.format
full moon on Sat Mar 06 16:38:23 MST 2004

full moon on Mon Apr 05 06:07:11 MDT 2004 SSTenHEE & = cﬂlend“_geunsce” .

mport java.io.x;

312 chapter 10

Exetcise Selutions

BE the compiler

StaticSuper() {
System,out,println(

“super constructor”);

StaticSuper is a constructor, and must
have () in its signature. Natice that as
the output below demonstrates, the static
blocks for both classes run before either
of the constructors run.

Possible Output

Flle Edit Window Help
%java StaticTests

super static block

static block 3
in main
super constructor

constructor

numbers and statics

True or False

1. To use the Math class, the first step is to
make an instance of it.

2. You can mark a constructor with the key-
word ‘static’.

3. Static methods don’t have access to an
object’s instance variables.

4. Itis good practice to call a static method
using a reference variable.

5. Static variables could be used to count the
instances of a class.

6. Constructors are called before static vari-
ables are initialized.

7. MAX_SIZE would be a good name for a
static final variable.

8. A static initializer block runs before a class’s
constructor runs.

9. If a class is marked final, all of its methods
must be marked final.

10. A final method can only be overridden if
its class is extended.

11. There is no wrapper class for boolean
primitives.

12. A wrapper is used when you want to treat a
primitive like an object.

13. The parseXxx methods always return a
String.

I4. Formatting classes (which are decoupled

from 1/0), are in the java.format package.

you are here »

False

False

True

False

True

False

True

True

False

False

False

True

False

False

313

code magnets solution

Fxercise Sojutions

import java.util.*;
lmport statie java.lang.System.out;
olass FullMoons {
static int DAY _IM = 10600 * 60 *» 60 * 24;
public static void main(8tring [) args) {
Calendar ¢ = Calendar.getInstance();
c.set(2004,0,7,15,40);
long dayl = c.gatTimeInMillis{()
for (int x = 0; x < 60; x++) (
dayl += (DAY IM * 29.52)

c.setTimaInMillis (dayl) ;

Notes on the Lunar Code Magnet:

You might discover that a few of the
dates produced by this program are
off by a day. This astronomical stuff
is a little tricky, and if we made it
perfect, it would be too complex to
make an exercise here.

Hint: one problem you might try to
solve is based on differences in ume
zones. Can you spot the issue?

out.println(String. format (“full moon on &te”, ¢));

Fig €61 Window Help How

% java FullMoons

full moon on Fri Feb 06 04:09:35 MST 2004
full moon on Sat Mar 06 16:3€:22 MST 2004

full moon on Mon Apr 05 06:07:11 MDT 2004

314 chapter 10

