A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

3 primitives and references

Know Your Variables

. N
P 3
2 Y
ancd F h e '.}
@ etghij
ghijklm nopgrstuvwxy ’
Ua’-:hln tio .
ons and Assignments K
.
N
A
-
e

Variables come in two flavors: primitive and reference. sofaryou've
used variables in two places—as object state (instance variables), and as local variables
(variabfes declared within a method). Later, we'll use variables as arguments (values sentto a
method by the calling code), and as return types (values sent back to the caller of the method).
You've seen varlables declared as simple primitive integer values (type int), You've seen
variables declared as something more complex like a String or an array. But there's gotta be
more to life than integers, Strings, and arrays. What if you have a PetOwner object with a Dog
instance variable? Or a Car with an Engine? In this chapter we'll unwrap the mysterles of Java
types and look at what you can declare as a variable, what you can put in a variable, and what you

can do with a variable. And we'll finally see what life Is trufy like on the garbage-collectible heap.

this is a new chapter 49

http://www.a-pdf.com/?product-split-demo

declaring a variable

Peclaring a variable

Java cares about type. It won't let you do
something bizarre and dangerous like scuff a
Giraffe reference into a Rabbit variable—what
happens when someone tries to ask the so-called
Rabbitto hop ()? And itwon't let you puta
floating point number into an integer variable,
unless you acknowledge to the compiler that you
know you might lose precision (like, everything
after the decimal point).

The compiler can spot most problems:
Rabbit hopper = new Giraffe();
Don't expect that to compile. Thankfully.

For all this type-safety to work, you must declare
the type of your variable. Is it an integer? a Dog?
A single character? Variables come in two flavors:
primitive and object reference. Primitves hold
fundamental values (think: simple bit patterns)
including integers, booleans, and floating point
numbers. Object references hold, well, references
to objects (gee, didn’t that clear it up.)

We'll look at primitives first and then move

on to what an object reference really means.
But regardless of the type, you must follow two
declaration rules:

variables must have a type

Besides a ype, a variable needs a name, 50 that
you can use that name in code.

variables must have a name

int count;
7
type name

Note: When you see a statement Jike: “an object
of type X", think of &peand class as synonyms.
(We’ll refine that a litle more in later chapters.)

50 chapter 3

|
“Id like a double mocha, no, make it an int.”

you think of Java variables, think of cups. Coffee cups, tea cups, giant
guns that hold lots and lots of beer, those big cups the popcorn comes in at
#he movies, cups with curvy, sexy handles, and cups with metallic trim that
learned can never, ever go in the microwave.

A variable is just a cup. A container. It holds something.

I Bas a size, and a type. In this chapter, we're going to look first at the
= bles (cups) that hold primitives, then a Jittle later we’ll look at cups

at hold references to objects. Stay with us here on the whole cup analogy—as
ple as it is right now, it'll give us a common way to Jook at things when
 discussion gets more complex. And that'll happen soon.

Smitives are like the cups they have at the coffeehouse. If you've been to a

garbucks, you know what we're talking about here. They come in different
#=<. and each has a name like ‘short’, ‘tall’, and, “I’d like a

gande’ mocha half-caff with extra whipped cream”.

might see the cups displayed on the counter,

@ sou can order appropriately: U ﬂ

small short tall

grande

— And in Java, primitives come in different sizes, and those sizes

have names. When you declare a variable in Java,
you must declare it with a specific type. The
four containers here are for the four
mteger primitives in Java.

int short byfe

cup holds a value, so for Java primitives, rather than saying, “I'd like a
gl french roast”, you say to the compiler, “I'd like an int variable with the
gmber 90 please.” Except for one tiny difference... in Java you also have to
pee your cup a name. So it's actually, “I'd like an int please, with the value
19486, and name the variable height.” Each primitve variable has a fixed
nber of bits (cup size). The sizes for the six numeric primitives in Java

00U 0l

byte short int long fleat
8 16 32 64 kY] 64

primitives and references

Primitive Types
Type BitDepth Value Range

boolean and char

boolean uvmspedfic) true or false
char 16 bits 0 to 65535

numeric (all are signed)

Integer
byte 8bits -128to 127
short 16 bits -32768 to
32767
int 32 bits -2147483648
| t0 2147483647

| long 64 bits -huge to huge

; floating point

! float 32 bits varies
{ double 64 bits varies

Primitive declarations
with assignments:
int x;
x =234,
byte b = 89;
boolean isFun = true;
double d = 3456,98;
char ¢ =f";
intz=x;
boolean isPunkRock;
isPunkRock = false;
boolean powerOn;
powerOn = isFun;
long big = 3456789;
float f = 32.5£
e
the ‘¥ 5"&” \‘Sv:v:)ﬁ“ks
vn{’}\ a float, w&)\) E\o&b“‘h ?om*. 8

an

a doub\c. wless you W€

you are here » 51

primitive assignment

You really don’t want to spill that...

Be sure the value can fit into the variable.

You can’t put a large value into a
small cap.

Well, OK, you can, but you’ll
lose some. You’ll get, as we say,
spillage. The compiler tries to
help prevent this if it can tell
from your code that something’s
not going to fitin the container
(variable/cup) you're using.

For example, you can’t pour an
int-full of stuff into a bytesized
container, as follows:

int x = 24;
byte b = x;

//won’t work!!

Why doesn’t this work, you ask? After all, the value of x is 24, and 24 is definitely
small enough to fit into a byte. You know that, and we know that, but all the
compiler cares about is that you’re trying to put a big thing into a small thing,
and there’s the possidility of spilling. Don’t expect the compiler to know what the
value of xis, even if you happen to be able to see it literally in your code.

You can assign a value to a variable in one of several ways including:
B type a literal value after the equals sign (x=12, isGood = true, etc.)
B assign the value of one variable to another (x =y)
B use an expression combining the wo (x =y + 43)
In the examples below, the literal values are in bold italics:
int size = 32; declars an int named size, assign it the value 32
char initial = ‘j’;

double d = 456.709;

declare a char named inflial, assign it the value §’

declare a double namad d, assign it the value 456.709
boolean isCrazy; declare a hoolean named /sCrazy (no assignment)
isCrazy = true; assign the value trus to the previously-declared isCrazy

int y = x + 456; declare an int named y, assign it the value that is the sum

of whatever x is now plus 456

52 chapter 3

F@pen your pencil -

The compiler won't let you put
a value from a large cup into

a small one. But what about
the other way—pouring a
small cup into a big one? No
probjem.

Based on what you know
about the size and type of the
primitive variables, see if you
can figure out which of these
are legal and which aren't.
We haven't covered all the
rules yet, so on some of these
you'll have to use your best
judgment. Tip: The compiler
always errs on the side of
safety.

From the following list, Circle
the statements that would be
legal if these lines were in a
single method:

1. int x = 34.5;
2. boolean boo = x:

3. int g = 17;

4. int y g;

5. y=y + 10;

6. short s

7. 8=1y;

B. byte b = 3;
9. byte v = b;

10. shert n = 12;
11. v = n;

12. byte k = 128;

primitives and references

Back away from that keyword!

You know you need a name and a type for your varjables.
‘You already know the primitive types.

Bad what can you use as names? The rules are simple. You
can name a class, method, or variable according to the

#ollowing rules (the real rules are slightly more flexible,
Bt these will keep you safe):

It must start with a letter, underscore (), or
dollar sign ($). You can’t atart a name with a
aumber.

B After the firat character, you can use humbers as Il. And here’s drit \ngeS(La g
well. Just don’t start it with a number. Carefolt Bears Shoul
B It can be anything you like, subject to those two Furty Dogs il stick even petter.
rules, just so long as It isn't one of Java's reserved | ke up your own:
words. \{4ryou "‘: | LF.D-
are keywords (and other things) that the compiler recognizes. | B- Sarsie

And if you really want to play confuse-acompiler, then just &ry ™
wmsing a reserved word as a name,

[You've already seen some reserved words when we looked at
writing our first main class: do?

No matter what

on'¢ you hear, do not, I repeat,
« -Fc, y s any of 4, do not let me ingest
public statie void U own oy, .. € another large furry dog.
mes.
And the primitive types are reserved as well: / o)
0
boolean char byte short int long float double
But there are a lot more we haven’t discussed yet. Even if you don’t
peed 1o know what they mean, you sdll need to know you can’t use
‘em yourself. Do not—under any circumstances—try to memorize these
mow. To make room for these in your head, you'd probably have to
lose something else. Like where your car is parked. Don’t worry, by
the end of the book you’ll have most of them down cold.
This table reserved.
boolear byte char double float int long short public private
protected | absiradt final nafive stofi strictfp synchronized | fransiem | volatile if
$8 0 while I case efau or req tontinue assert
Bl d hil switch default f break i
dass extends implaments | import Instanceof | interface now packuge super this
catch finally try throw throws return void const goto enum

Java's keywords and other reserved words (In no useful order), If you use these for names, the compller will be very, very upset.

you are here » 53

object references

Controlling your Dog object

You know how to declare a primitive variable and assign it a
value. But now what about non-primitive variables? In other

words, wha! about gbjccts? Dog d = hew Dog();
d.bark();

B There is actually no such thing as an object variable,

M There’s only an object reference variable. think of this

B An object reference variable holds bits that represent a like £hi
way to access an object. iKe 18

H Itdoesn’t hold the object itself, but it holds something
like a pointer. Or an address. Except, in Java we don’t
really know what is instde a reference variable. We do
know that whatever it is, It represents one and only one
object. And the JVM knows how to use the reference to
get to the object.

You can’t stuff an object into a variable. We often think of
it that way... we say things like, “I passed the String to the

System.out.printdn () methoed.” Or, “The method returns a Dog”,
oy, “I put a new Foo object into the variable named myFoo.”

But that's not what happens. There aren’t giant
expandable cups that can grow to the size of any
object. Objects live in one place and one place
only—the garbage collectible heap! (You’ll
learn more about that later in this chapter.)

e, Think of 5 Doy
"l veferente variable as
| 3 Dog remote control
N You use it to get the

' object to do something
(invoke methods).

Although a primidve variable is full of

bits representing the actual value of the
variable, an object reference variable is full
of bits representing a way to get to the
object.

You use the dot operator (.)
on a reference variable to say,
“use the thing before the dot to
get me the thing after the dot.” For
example:

myDog .bark() ;

means, “use the object referenced by the variable myDog to
invoke the bark() method.” When you use the dot operator on
an object reference variable, think of it like pressing a button
on the remote control for that object.

54 chapter3

reference
{bit depth not relevant)

An object reference is just
another variable value.

Something that goes in a cup.
Only this time, the value is a remote control.

byte short int long
816 32 64

Primitive Variable o
#yte x =7; '\ &
The bits representing 7 go 3;;:: e
into the variable. (00000111).
byte
erence Variable

Dog myDog = new Dog() ;

e bits representing a way to get to
‘the Dog object go into the variable.

The Dog object itself does not go into
abe variable!

s don't care how meny 1's and 0's there are in a referance variable.ir's up 10 each
J¥M and Iha phaga of the moon.

primitives and references

The 3 steps of object
declaration, creation and

assignment
1 2
A 3

"~
Dog myDog = new Dog() ;

Declare a reference
variable

Dog myDog = new Dog():

Tells the JVM to allocate space for a
reference variable, and names that
variable myDog. The reference variable
Is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button Dog
or a Socket.

Dog myDog = new Dog()
Tells the JVM to allocate space for a
new Dog object on the heap (we'll
learn a lot more about that process,
especially in chapter 9.)

Dog object

Link the object
and the reference

Dog myDog = new Dog():

Assigns the new Dog to the reference
variable myDaog.In other words,
programs the remote control,

Dog

you are fiere » 55

object references

Dﬂﬁeﬁle lgm(iglesﬁ ons

Q,: How big s a reference
vartable?

A:You don't know. Unless
you're cozy with someone on the
JVM’s development team, you
don’t know how a reference is
represented. There are pointers
In there somewhere, but you
can't access them,You won't
need to. (OK, If you insist, you
might as well just imagine It

to be a 64-bit value.) But when
you're talking about memory
allocation issues, your Big
Concern should be about how
many objects (as opposed to
object references) you're creating,
and how big they (the objects)
really are,

Q: So, does that mean that

all object references are the
same size, regardless of the size
of the actual objects to which
they refer?

A: Yep. All references for a
given JVM will be the same

size regardless of the objects
they reference, but each JVM
might have a different way of
reprasenting references, so
references on one JVM may be
smaller or larger than references
on another JVM.

Q,:Can | do arithmeticon a
reference varlable, increament it,
you know - C stuff?

A: Nape. Say it with me again,
“Java is not C."

58 chapter 3

This week’s interview:
Object Reference

HeadFirst: So, tell us, whar’s life like for an object reference?

Reference: Pretty simple, really. I'm a remote control and I can be programmed to
conurol different objects.

HeadFirst: Do you mean different objects even while you’re running? Like, can you
refer 1o a Dog and then five minuces later refer to a2 Car?

Reference: Of course not. Once 'm declared, that’s it. If I'm a Dog remote control
then Il never be able to point (oops — my bad, we're not supposed to say pownd) I mean refer
to anything but a Dog.

HeadFirst: Does that mean you can refer to only one Dog?

Reference: No. I can be referring to one Dog, and then five minutes later I can refer o
some other Dog Aslong asit’s a Dog, [can be redirected (like reprogramming your remote
to a different TV} to it. Unless... no never mind.

HeadFirst: No, tell me. What were you gonna say?

Reference: I don’t think you want to get into this now, but I'll just give you the short
version —if Pm marked as final, then once I am assigned a Dog, I can never be repro-
grammed to anything else but tka one and only Dog In other words, no other object can
be assigned to me.

HeadFirst: You're right, we don’t want to talk about that now. OK, so unless you’re

final, then you can refer 1o one Dog and then refer 1o a different Dog later. Can you ever
refer to nothing at all? Is it possible to not be programmed to anything?

Reference: Yes, but it disturbs me to talk about it

HeadFirst: Why is that?

Reference: Because it means 'm null, and that’s upsetting to me.
HeadFirst: You mear, because then you have no value?

Reference: Oh, null isa value. I'm still a remote control, but it’s like you brought
home a new universal remote contro) and you dor’t have a TV. 'm not programmed to
control anything: They can press my buttons all day long, but nothing good happens. 1
just feel s0... useless. A waste of bits. Granted, not that many bits, but sull. And that’s not
the worst part. If T am the only reference to a particular object, and then I'm set to null
(deprogrammed), it means that now nobody can get to that object I had been referring to.

HeadFirst: And that’s bad because. ..

Reference: You have to ask? Here I've developed a relationship with this object, an
intmate connecdon, and then the ge is suddenly, cruelly, severed. And I wilt never see
that object again, because now it's eligible for (producer, cue.tragic music) garbage collection.
Sniff. But do you think programmers ever consider #iaf® Snif. Why, why can’t I be a primi-
uve? I hate being a reference. The responsibility, all the broken attachments...

primitives and references

fe on the garbage-collectible heap

oy
"

new Book () ;

pok ¢ = new Book();

are two Book reference
bles. Create two new Book
pEgects. Assign the Book objects to
= reference variables.

The two Book objects are now living
o the heap.

sferences; 2

Book d = ¢;

Declare a new Book reference variable.
ther than creating a new, third Book
ect, assign the value of variable ¢ to
able d. But what does this mean?
like saying,“Take the bits in ¢, make a
oy of them, and stick that copy into d.”

Both ¢ and d refer to the same
‘ebject.

The c and d varlables hold
two different coples of the

. same value. Two remotes
programmaed to one TV.

References: 3
)uObjects: 2

¢ = b;

Assign the value of varlable b to
wariable ¢. By now you know what
this means. The bits inside variable
b are copied, and that new copy Is
stuffed into variable ¢.

-:.
o, ol

Both b and ¢ refer to the gt .qﬂ‘ a
same object. eOok 00) ;;3
-~
References: 3 &é’
Objects: 2 S
p&f‘

you are here » 57

objects on the heap

Life and death on the heap

Book b new Book () ;

Bcok ¢ new Book () ;

Declare two Book reference variables.
Create two new Book objects. Assign
the Book objects to the reference
variables.

The two book objects are now living
on the heap.

Active References: 2
Reachable Objects: 2

b =c; t

te AW [-l:oé‘ 4 ‘_
Assign the value of variable ¢ to variable b, e 1 '(T‘“s J Y_‘_w\\c&{ﬁr bait
The bits inside variable ¢ are copied, and ' F; | garbage
that new copy is stuffed into variable b.

Both variables hold identical values.

Both b and c refer to the same
object. Object 1 is abandoned
and eligible for Garbage Collec-
tion (GC).

Active References: 2
Reachable Objects: 1
Abandoned Objects: 1

The first object that b referenced, Object 1,
has no more references. It's unreachable.

c = null;

Assign the value null to varlable c.
This makes ¢ a nulf reference, meaning
it doesn't refer to anything, But it's still
a reference variable, and another Book
object can still be assigned to it.

Object 2 stlll has an active
reference (b), and as long
as It does, the object is not
eligible for GC.

Active References: 1
null References: 1
Reachable Objects: 1
Abandoned Objects: 1

68 chapter3

An array is like a tray of cups

Declare an int array variable. An array variable is
a remote control to an array object.

int[] nums;

Create a new int array with a length
e of 7, and assign it to the previously-
declared int () variable nums

nums
e Give each element in Yhe array
an int value.
Remember, elements in an iny
array are just int variables.
Y
_;.3 nums [0] = 6;
5 nums[1l] = 19;
3 nums [2] = 44;
A nums [3] = 42;
nums[4] = 10;
nums [5] = 20;
nums[6] = 1;

Java standard library includes

ing maps, trees, and sets
Appendix B), but arrays are
when you just want a quick,
red, efficient list of things.
ys give you fast random

by letting you use an index
ition o get to any element in
array.

y element in an array is just

a2 wariable. In other words, one of
eight primitive variable types
Vs=ink: Large Furry Dog) ora

rays are objects foo

of sophisticated data strucrures

= new int[7];

7 int vaviables

int array object (int[])

primitives and references

Notice that the arvay iself is an object,

even though the 7 elements ave primitives.

reference variable. Anything you
would put in a variable of that type
can be assigned to an array element
of that type. So in an array of type
int (int[]), each element can hold
an int. In a Dog array (Dog[]) each
element can hold... 2 Dog? No,
remember that a reference variable
Jjust holds a reference (a remote
control), not the object itself. So

in a Dog array, each element can
hold a remote control to a Dog. Of
course, we stll have to make the
Dog objects... and you’ll see all that
on the next page.

Be sure 1o notice one key thing

in the picture above - the array is
an object, even though it's an array of
primitives.

Arrays are always objects, whether
they're declared to bold primitives
or object references. But you can
have an array object that's declared
to hold primitive values, In other
words, the array object can have
elements which are primitives, but
the array itself is never a primitive.
Regardless of what the array holds,
the array itself is always an objectl

you are here » 59

an array of objects
Make an array of Dogs

Declare a Dog array variable
bog[] pets;

Create a hew Dog array with

a Jength of 7, and assign it Yo
the previously-declared Dog[]
variable pets

pets = new Dogl[7];

What's missing?

Dogs! We have an array

of Dog references, but no B

actual Dog objectsl -
Dogl[}

Create new Dog objects, and
assign them to the array
elements,

Remember, elements in a Dog
array are just Dog reference
variables, We still need Dogs!

pets[0]
petsl]

new Dog() ;
new Dog() ;

Sharpen your pencil —

What Is the current value of
ts[2)?
=~
uld make
‘ne of the
g objects?

68 C 3

primitives and references

Control your Pog

(wlth a reference variable)
Dog fido = new Dog/() ;
fide .name = “Fido”;

We created a Dog object and
used the dot operator on the
reference variable fido to access

the name variable.* '

We can use the fido reference
to get the dog to bark() or
eat() or chaseCat().

fido .bark () ;
fido.chaseCat () ;

What happens if the Dog is in
a Dog array?

We know we can access the Dog's
instance variables and methods using
the dot operator, but on what?

Dog

When the Dog is in an array, we don't
have an actual variable name (like
fido). Instead we use array notation and
push the remote control button (dot
operator) on an object at a particular
index (position) in the array:

Dog[] myDogs = new Dog[3]:
myDogs[0] = new Dog()
myDogs[0] .name = “Fido”:
myDogs [0] .bark () ;

*Yos we know we're not dermonstrating encapsulation here, but we're
trying to keap il simple. For now. We'll do ancapsulation in chapter 4.

you are here » 61

using references

class Dog |

String name;

public static void main (String() args) {

// make a Dog obiect and access it
Dog dogl =
dogl.bark();

dogl.name = “Bart”;

new Dog();

// now make a Dog array
Dog(] myDogs = new Dogl[3);
// and put some dogs in it

myDogs (0] = new Dog():

myDogs[1) new Dog () ;

myDogs [2) dogl;

// now accaess the Dogs using the array

// references
myDogs{0) .name = “Fred”;
myDogs{1l).name = “Marge”;

// Hmmmm. .. what 1s myDogs{[2) name?
System.out.print (“last dog’s name is “);

System.out.println (myDogs[2).name);

// now loop through the array

// and tell all dogs to bark

int x = 0;

while (x < myDogs.length)E7——~\\\\\

myDogs (x) .baxrk{); wave vaﬂa\,\g ‘\C"S?;
X =x + 1; 3Wazs ves e h“"‘b“
)
) fj;mca i ThC a3y

public void bark() ¢

System.out.println(name + “ says Ruff!”);

void eat() { }

purlic volid chaseCac () {)

62

chapter 3

A Dog example

Output

File £dit Window Relp Howi

%java Dog

null says Ruff!

last dog’s name is Bart
Fred says Ruff!

Marge says Ruff!

Bart says Ruff!

BULLET POINTS

Variables coms in two flavors: primitive and
reference.

Variables must always be declared with a name

and a type.

A primitive variable value is the bits representing
the valus (5, ‘@', true, 3.1416, etc.).

A reference variable value is the bits
representing a way to get to an object on the
heap.

A reference variable is like a remote control.
Using the dot operator (.) on a reference
variable is like pressing a button on the remote
control to access a method or instance variable.

Areference variable has a value of null when
it is not referencing any object

An array is always an objsct, even if the amray

is declared to hold primitives. There is no such
thing as a primitive amay, only an amray that
holds primitives.

primitives and references

BE the compiler

_ Each of the Java files on this page
5. Tepresents a complete source file.
. Your job i5 fo play compiler and
determine whether each of these files
' will compile. If they won't
compi]e, how wou]d you

fix them?
A B
class Books { class Hobbits {
String title;
String author; String name;

public static void main{String [] args) {

clasg BooksTestDrive {
public static void main(String [] args) { Hobbits {] h = new Hobbits[3);
int z = 03

Books [] myBooks = new Books[3);

int x = 03 while (2 < 4) {
myBooks{0].title = “The Grapes of Java”; z=2+1;
myBooks(1].title = “The Java Gatsby”; h(2z] = new Hobbits();
myBooks[2]).title = “The Java Cookbook”; h{z].name = “bilbo”;
myBooks(0).author = “bab”; if (z == 1} {(
myBooks(1}].author = “sue”; hiz].name = “frodo”;
myBooks|[2].author = *ian”; }
if (z == 2) {
while (x < 3) { h{2).name = “sam”;
System.out.print {myBooks(x).title); }
System.out.print(® by “); System.out.print(h[z).name + * is a *);
System.out.println{myBooks(x].author); System.out.println(“qgood Aobbit name”);
X=x+ 1; }
} }
})

you are here » 63

exercise: Code Magnets

Code Magnets

A working Java program s all scrambled up
on the fridge. Can you reconstruct the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

. ”AZOre ",
lsland8{3] < 8 .

Coz ume) u;

int ref;

while (y < 4) {

System.out.printin(islands{ref));

index{01 = 1

index{l] = 33

ipdex{21 <

index{3] <

String [] islands = new String[4];

System.out.print(“island = “};

He Ed Window Help Biunl

classg TestArrays {

t java TestArrays
island = Fiji

island = Cozumel
island = Bermuda
island = Azores

public static void main(String (1 args)

64 chapter3

primitives and references

' ouse 3 separate

class Triangle { Comekimes W€ dont .
(™) N
double area; L elass, betawse W:)‘ bryind
int height; vt space o the 799

@@I PUZ z]e int length;

public static void main(String [] args) {
Your job is to take code snippets from

the pool and place them into the
blank lines in the code.You may X
use the same snippet more than while () {
once, angd you won't need to use
alt the snippets.Your goal is to
make a class that will compile and
run and produce the output listed. — .length

height (x + 1) * 2;

x + 4;

System,out.print(”triangle “+x+", area”);

Output .
System.out.println(* = * + .area);
Flle Edit Window Hel
%java Triangle)
triangle 0, area
triangle 1, area
e L x = 27;

triangle 2, area .
Triangle t5 = ta[2];

ta(2).area = 343;

triangle 3, area
y‘ -

System.out.print(“y = “ + y);

System.out.println(”, t5 area = “+ t5.area);
Bonus Questionl }

For extra bonus points, use snippets
from the pool to fill in the missing }
output (above). = (height * length) / 2;

void sethrea() {

Note: Each snippet
from the pool can be
used more than oncel

“4, 15 area = 18.0
4, t5area=3430

‘ area ;
27,15 area = 18.0 int x;
ta.area _ Intv. a1
4 tax.area 27,15 area = 343.0 o i. . X=X+ 2, tax

=0; X=xX+2

. ’ ta(x)

y talx].area ta(x) = setArea(); Intx=1; x=x -1 tam)

Triangle [] ta = new Triangle(4); t@X=setAreal); inty=x; 5
| Triangle ta = new [] Triangte(4); ta[x).setArea(); sg0 t@=new Triangle();

30.0 ta[x) = new Triangle();

riangle [) ta = new Triangte[4];)
e ta.x = new Triangle();

you are here » 65

puzzle: Heap o' Trouble

A Heap o Trouble

A short Java program is listed to the
right. When'// do stuff'is reached, some
objects and some reference variables
will have been created. Your task is

to determine which of the reference
variables refer to which objects. Not all
the reference varlables will be used, ang
some objects might be referred to more
than once. Draw lines connecting the
reference variables with their matching
objects.

Tip: Unless you're way smarter than us,
you probably need to draw diagrams
like the ones on page S5 and 56 of this
chapter. Use a pencil so you can draw
and then erase reference links (the
arrows going from a reference remote
control to an object).

fevente
steh eath ve .
:\ar\ab\c with matthing

ob)ech(s)
Vou ,.\'\5\\16

use every ¥

Lot have 4o
ebecente.

65

are here»

64 chapter3

class HeapQuiz {
int id = 0;

public static void main(String [] args)

int x = 0;
HeapQuiz (] hg = new HeapQuiz(5]:;
while (x < 3) |
hg[x] = new HeapQuiz();
hg(x].id = x;
Xx =x + 1;
)
hgi3] = hgqll];
hg[4] = hqll};
hq[3] = null;
hg(4] = hg(0];
hq(0] = hq{3];
hgq(3] = hg[2];
hq[2] = hq[0);
// do stuff
}
}
Reference Varlables: HeapQuiz Objects:

hql

hq[2]

1]

hq(3]

hq[4]

primitives and references

The case of the pilfered references

[t was a dark and stormy night. Tawny strolled into the programmers’ bullpen like she
owned the place. She knew that all the programmers would still be hard at work, and she
wanted befp. She needed a new method added to the pivotal class that was to be loaded into the
client’s new top-secret Java-enabled cell phone. Heap space in the cell phone’s memory was
as tight as Tawny’s top, and everyone knew it. The normally raucous buzz in the bullpen fell to
silence as Tawny eased her way to the white board. She sketched a quick overview of the new
method’s functionality and slowly scanned the room. “Well boys, it’s crunch time™, she purred.

o “Whoever creates the most memory efficient version of this method is coming with me to the
FON B’Mlnute client’s launch party on Maui tomorrow... to help me install the new software.”

The next moming Tawny glided into the bullpen wearing her short Aloha dress.
“Gentlemen”, she smiled, “the plane leaves in a few hours, show me what you've

got!”. Bob went first; as he began to sketch his design on the white board Tawny

said, “Let’s get to the point Bob, show me how you handled updating the list of con-
tact objects.” Bob quickly drew a code fragment on the board:

Contact [) ca = new Contact(10);
while (x < 10) { // make 10 contact objects
calx) = new Contact();
x =3+ 1;
¥
// do complicated Contact list updating stuff with ca

“Tawny [know we're tight on memory, but your spec said that we had to be able to access
individual contact information for all ten allowable contacts, this was the best scheme I could
cook up”, said Bob. Kent was next, already imagining coconut cocktails with Tawny, “Bob,”
he said, “your solution’s a bit kludgy don’t you think?" Kent smirked, ‘“Take a look at this
baby’"

Contact refc;
while (x < 10) { // make 10 contact objects
refc = new Contact();
X =x + 1;
}
// do complicated Contact list updating stuff with refc

“] saved a bunch of reference variables worth of memory, Bob-o-rino, so put away your
sunscreen”, mocked Kent. “Not so fast Kent!”, said Tawny, “you’ve saved a little memory, but
Bob’s coming with me.”.

Why did Tawny choose Bob’s method over Kent’s, when Kents used less memory?

you are here » 67

exerclse solutions

bEXBrcise Solutions

Code Magnets:

clags TestArrays {

public static void main(String () args) {

int [] index = new int{d];
index(0} = 1;

index(1) = 3;
index[2]) = 0;
index[3) = 2;

String {] islands = new String[4];

iglandg{0] = “Bermuda”;

iglapds[l] = “Fiji”;

islands{2] = *“Azores”;

islands{3] = *“Cozumel”;

int y = 0;

int ref;

while (y < 4) {
ref = index[y];
System.out.print(“island = *);
System.out.println(islands(ref]);

y =y + 1;

} Flo €A1 Window thelp Blis

¥ java TestArrays
island = Fiji

island = Cozumel
island = Bermuda
island = Azores

68 chapter3

class Books {
String title;
String author;
}

class BooksTestDrive (

public static void main{String [] args) {
Books [] myBooks = new Books[3);

int x = 0;

A myBooks(O] = new Books();

myBooks[1] = new Books();
myBooks[2] = new Books():

Remember: We have to
actually make the Books
objects |

myBooks(0].title = “The Grapes of Java”;
myBooks(1].title = “The Java Gatsby”;
myBooks[2].title = “The Java Cookbook”;
myBooks[0] .author = “bob*;
myBooks(1].author = “sue”;
myBooks(2].author = “ian”;
while (x < 3) {
System.out.print (myBooks(x).title);
System.out.print(” by ”};
System.ont.println({myBooks(x].author);
X=X+ 1;

clags Hobbits {
String name;
public static void main{String (] args) {
Bobbits (] h = new Hobbits{3}:

ntz=-4; Remember: arrays stort with
while (z < 2) { element 0)
z2 =2+ 1;
h[z] = new Hobbits();
B h(z].name = “bilbo”;
if (2 == 1) {

h[z].name = “frodo*;
}
if (z == 2)
h[z].name
}
System.out.print(h(z).name + “ is a “);
System.out.println{“good Hobbit name”);

=

L]

rgam”;

Puzz]e Solutions
&3

class Triangle ({
double area;
int helight;
int lengthy

public static void main(String

}

[1 args) {

int x = O:
Triangle [] ta = new Triangle[4];
while (x < 4) {

}

ta[x] = new Trlangle();
talx].height = (x + 1) * 2;
ta{x].length = x + 4;
talx].setArea);
System.out.print(“triangle
System.out.println(® = # + ta[x].area);
X=x+1;

“+x+', area”);y

inty=x

x = 27;

Triangle t5 = ta(2};
ta[2].area = 343;
Syetem.out.print(”y = “ + y))

8ystem.out.println(“, t5 area = “+ tS5.area);

void setArea() {

areq =

(height * length) / 2;

Fée Ed Windom Halp Bemrads

%java Triangle
triangle 0, area
triangle 1, area
criangle 2, area =

3, area

triangle
y = 4, 15 area = 343

primitives and references

The case of the pilfered references

Tawny could see that Bent’s method had a serious
flaw. It's true that he didn’t use as many reference
variables as Bob, but there was no way to access any
but the last of the Contact objects that his method cre-
ated. With each trip through the loop, he was assign-
ing a new object to the one reference variable, so the
previously referenced object was abandoned on the
heap — unreachable. Without access to nine of the ten
objects created, Kent’s method was useless.

(The software was & huge succass and the dient gave Tawny and Bob an exdra week
in Hawall. Wa'd like to tefl you that by finishing this book you too will gat stufl Iike that.)

feference Variables: HeapQuiz Objects:

69

you are here »

