
7 inheritance and polymorphism

Better Living in
Objectville

We were underpaid,

overworked coders 'fill we

tried the Polymorphism Plan. But

thanks to the Plan, our future is

bright. Yours can be tool

Plan your programs with the future in mind. If there were a way to write

Javacode such that you could take more vacations, how much would It be worth to you? What

if you could write code that someone elsecould extend, easily? And if you could write code

that was flexible, for those pesky last-minute spec changes, would that be something you're

interested In?Then this is your lucky day. ForJust three easypayments of 60 minutes time, you

can have all this. When you get on the Polymorphism Plan, you'll learn the 5 steps to better class

design, the 3 tricks to polymorphism, the 8 ways to make flexible code, and if you act now-a

bonus lesson on the 4 tips for exploiting inheritance. Don't delay,an offer this good will give

you the design freedom and programming flexlbll lty you deserve. It's quick. it's easy, and it's

available now. Start today, and we'll throw in an extra level of abstractionl

this is a new ch ap ter 16i

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

the power of inheritance

Chair Wars (evisited...
Rememberway back in chapter 2, when Larry (procedural guy)
and Brad (00 guy) werevyingfor the Aeron chair? Let's look at
(J few pieces of that story to review the basicsof~.

LARRY: You've got duplicated codel The rotate procedure
is in all four Shape things. It's a stupid design. You have [0

maintain four different rotate "methods". How can that
ever be good?

BRAD: Oh, I guess you didn't see the final design. Let me
show you how 00 inheritance works, Larry.

Square

rotateQ
playSoundO

rotateO
playSoundQ

Amoeba

rotate()
playSoundO

o
Ilooked at what all four
classes have I" OOIMIIIO".
~

rhev're Shapes, and theyall rotate and
plavSound. So IabstraGted out the
COIMIMon features and putthelllinto a
ttew class called Shape. -:;,

shape

rotateQ
playSound()

superclass
Shape

rotale()
playSoondO

You can read this as, uSquare Inheritsfrom Shape".
"Circle Inheritsfrom Shape", and soon. I removed
(olale() and playSound() from the other shapes, sonow

~here's only one copy tomaintain.

Th&.~hape class Is called the luperciasl of the other four
classes. The other four are the lubelaues ofShape. The
SUbclasses Inherit the methods of the superclass. Inother
words. Ifthe Shape class has the (unci/anality, then the
subclasses automatically gatfhat same functionality.

166 chapter 7

Square Circle Triangle

inheritance and polymorphism

What about theAIMoeba rotate()?

oShape

rotateQ
playSoundO

superolau
"MOre autract)

~

LARRY: Wasn't that the whole problem here - that the amoeba shape
had a completely diffe rent rotate and playSound procedure?

How can amoeba do something different if it inherits irs
functionality from the Shape class?

BRAD:That's the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, theJVM knows
exactly which rota/eO method to run when someone tells the
Amoeba to rotate.

Square

lubclasses
"MOre speolflol

\ Circle Tilangle Amoeba

rotateO
/I amoeba-specific
/I rotate code

playSoundO
IIamoeba-speclfic
II sound code

'"!<" OverrldlnQ lMethods

How would you represent a house cat and a tiger. In an
inheritance structure. Is a domestic cat a specialized
version of a tiger? Which would be the subclass and
which would be the superclass? Or are they both
subclasses to some other class?

How would you design an Inheritance structure? What
methods would be overridden?

ThInk about It. Before you tu rn the page.

yo u are here ~ 167

I way inheritance works

Ut1derstat1dit1Q Inheritance
When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits frOID the
superclass.
InJava, we say that the subclass extends the superclass.
An inheritance relationship means that the subclass inherits
the lDelDbers of the superclass, When we say "members of
a class" we mean the instance variables and methods.
For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automatically inherits the instance variables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPower () and
so on. But the PantherMan subclass can add new
:methods and instance variables of its own, and it can
override the :methods it inherits fro:m the superc1ass
SuperHero.

OverrldfttQ
!Methods
~

I"sta"ce varIables
(state. attributed

lMethods
(behavIor)

PantherMan

useSpeclalPowerij

putOnSultO

SuperHero

sul1
lights
spec/alPower

useSpecialPower()
putOnSull()

/~

FriadEggMan

superclasa
(tHore abstract)

~

FriedEggMan doesn't need any behavior that's unique,
so he doesn't override any methods. The methods and

instance variables in SuperHero are sufficient.
PanthenMan, though, has specific requirements for his suit
and special powers, so useSpecialPower () and
putOnSui t () are both overridden in the PantherMan
class.
Instance variables are not overridden because they
don't need to be. They don't define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inherited tights (0

purple, while FriedEw\1an sets his to white.

subclasses
(tHore speolfle)

~
if. lJ,v4'

:;. t"
t(

~ chapter 7

inheritance and polymorphism

public class Doctor {

boolean worksAtHospita1i

void treatPatient() [
II perform a checkup

public class FamilyOoctor extends Doctor {

boolean makesHouseCallsi
void giveAdvice(} {

II give homespun advice

public class Surgeon extends Doctor(

void treatPatient () (
II perform surgery

void makeIncision() (
II make incision (yikes!)

superclass
your pencU

makesHouseCal1s

FamllyDoctor

glveAdvlce 0
Can eFamllyDoctor dolreatPatient()?__

Can a FamllyDoctor do rnakelneisloru)? __

How many instance variables does
Surgeon have7__

How many Inslance variables does
FamiryDoctor have7__

How many methods does Doctor have?__

How many methods does Surgeon have?_

How many methods does FamilyDoctor
have7 __

Adds one new
Instance variable

Adds one new method

OMe '"stattce variable

otte tMethod

Doctor

treatPatient 0

worksAlHosptlal

Surgeon

subclasses

Ovenides the Inherited
lrealPaUenlQ method lreatPatlenl ()

Adds one new method makelnclslonO

you are here ~ 169

Let"s desig" the it1heritattce tree for
att Atti~al sitltulatiot1 progralM
Imagine you're asked to design a simulation program that
lets the user throw a bunch ofdifferent animals into an
environment to see what happens. We don't have to code the
thing now, we're mostly interested in the design.

We've been given a list of someof the animals that will be
in the program, but not all. We know that each animal will
be represented by an object, and that the objects will move
around in the environment, doing whatever it is that each
particular type is programmed to do .

And we want other programmers to be able to add new
kinds ofanimals to the program at any time.

First we have to figure out the common, abstract
characteristics that all animals have, and build those
characteristics into a class that all animal classes can extend.

170 chapter 7

o Look for objects that have common
attributes and behaviors.

What do these six types have In
common? This helps you to abstract
out behaviors. (step 2)

How are the~ types related? This
helps you to define the Inheritance
tree relationships (step 4-5)

Usi.,g i.,herita.,ce to avoid
duplicatit1Q code it1 subclasses
We have five instance variables:

pidure- the file name representing theJPEG of this animal

food - the type offood this animal eats, Right now, there
can be only 1:\'10 values : meator grass.

hunger- an int representing the hunger level of the animal.
It changes depending on when (and how much) the
animal eats.

boundaries - values representing the height and width of
the 'space' (for example, 640 x 480) that the animals will
roam around in.

location> the X and Y coordinates for where the animal is
in the space.

We have four methods:

makeNoUe 0 - behavior for when the animal is supposed to
make noise.

eatO- behavior for when the animal encounters its
preferred food SOUTee, meat or grass.

skepO - behavior for when the animal is considered asleep.

roam() - behavior for when the animal is not eating or
sleeping (probably just wandering around waiting to bump
into a food source or a boundary) .

LIon

HIppo

Inheritance and polymorphism

Design a class that represents
the common state and behavior.

The~ objects are all animals, so
we'll make a common super-class
called Animal .

We'll put In methods and instance
variables that all animals might
need.

Animal

picture
food
hunger
boundaries
location

makeNoiseO
eatO
sleept)
roamt)

Wolf

Dog

you are here ~ 171

designing for inheritance

Po all at1httals eat the saIMe way?
Assume that we all agree on one thing: the instance
variables will work for aUAnimal types. A lion will
have his own value for picture, food (we're thinking
meat), hunger, boundaries, and location. A hippo
will have different values for his instance variables,
but he'll still have the same variables that the other
Animal types have. Same with dog, tiger, and so on.
Butwhatabout~h~~

Decide if a subclass
needs behaviors (method
implementations) that are specific
to that particular subclass type.

Animal

Which 'Methods should we override? looking at th£ Animal class,
w£ decide that eatQ and
makeNolseO should be overridden
by the Individual subclasses.

In the dog
community, barking is an

important part of our cultural
identity. We havea uniquesound,

and we want that diversity to
be recognized and respected.

sleepf)
roamO

picture
food
hunger
boundaries
location

Does a lion make the same noise as a dog? Does
a cat eat like a hippo? Maybe in youTversion, but
in ours, eating and making noise are Animal-type­
specific. We can't figure out how to code those
methods in such a way that they'd work for any
animal. OK, that's not true. We could write the
rnakeNoise() method, for example, so that all it does
is playa sound file defined in an instance variable
for that type, but that's not very specialized. Some
animals might make different noises
for different situations (like one
for eating, and another when
bumping into an enemy, etc.)

So just as with the Amoeba
overriding the Shape class rotateO
method, to get more amoeba-specific (in
other words, unique) behavior, we'll have
to do the same for our Animal subclasses.

172 chapter 7

Inheritance and polymorphism

Looklt1Q for more it1heritat1ce
opportut1itles e
The class hierarchy is starting to shape up. We
have each subclass override the makeNoise() and
eat() methods, so that there's no mistaking a Dog
bark from a Cat meow (quite insulting to both
parties). And a Hippo won't eat like a Lion.

But perhaps there's more we can do. We have to
look at the subclasses of Animal, and see if CWo
or more can be grouped together in some way,
and given code that's common to only that new
group. Wolf and Dog have similarities. So do
Lion, Tiger, and Cat.

Look for more opportunities to use
abstraction, by finding two or more
subclasses that might need common
behavior.

We look at our classes and see
that Wolf and Dog might have some
behavior In common, and the same goes
for Lion, Tiger, and Cat.

Animal

picture
food
hunger
boundaries
location

Wolf

Dog

mekeNolseO
eatO

·~IIIII!IIl"'_rlmakeNolseO
eatO

Hippo

makeNoiseO
eatO

Lion

you are here) 173

designing for inheritance

mamO

Animal

sleept)

picture
food
hunger
boundaries
location

makeNolseO
6810

Cat

makeNolseO
eatO

mem()

Finish the class hierarchy

Since animals already have an organizational
hierarchy (the whole kingdom, genus, phylum
thing), we can use the level that makes the most
sense for class design. We'll use the biological
"families" to organize the animals by making a
Feline class and a Canine class.

We decide that Canines could use a common
roomO method. because they tend to move In
packs. We also see that Felines could use a
common raamO method, because ther tend to
avoid others of their own kind. We'l let Hippo
continue to use Its Inherited roamO method­
the generic one It gds from Animal.
So we're done with the: deSign for now:
come back to It later In the chapter.

TIger

makeNolseO
eat()

makeNolseO
e.atO

Wolf

makeNolse()
eatO

makeNolseO
eatO

174 chapter 7

inheritance and polymorphism

Which tttethod Is called?
The Wolf class has four methods. One
inherited from Animal, one inherited from
Canine (which is actually an overridden
version ofa method in class Animal), and
two overridden in the Wolf class. When
you create a Wolf object and assign it to
a variable, you can use the dot operator
on that reference variable to invoke all
four methods. But which version of those
methods gets called?

When you call a method on an object
reference, you're calling the most specific
version of the method for that object type.

In other words, the lowest one wins!

"Lowest" meaning lowest on the
inheritance tree. Canine is lower than
Animal, and Wolf is lower than Canine,
so invoking a method on a reference
to a Wolf object means the JVM starts
looking first in the Wolf class. If the JVM
doesn't find a version of the method in
the Wolf class, it starts walking back up
the inheritance hierarchy until it finds a
match.

Canine

Anima'

Wolf

makeNolseO
eatO
sleepO
roarnr)

roamO

new Wolf () ;

w. sleep () ;

w.eat();

w .makeNoise () ;

w. roam () i

Wolf w =

talls t.he v~ion in Wol.f

tails t.he version in Wol.f

talls -the version in Ani...al

you are here ~ 175

practice designing an inheritance tree

suparclass
hMore abstract)~

~ L..:::..J
subelaases I ~
(lttore tpeolflol '\.

~ Box,," ~
Inheritance CIUlI Diagram

Sharpen your pencil

Inherftance Table

Class Superclasses Subclasses
Clothing -- Boxers, Shirt

Boxers Clothing

Shirt Clothing

PeslgttiMQ aM InherltaMce free

'-..: I l
~~ Draw an inheritance diagram here.

Find the relationships that make sense. Fill In the last two columns

Chus Superclasses Subclasses
Musician

Rock Star

Fan

Bass Player

Concert Pianist

Hint: noteverythIng can beconnected tosomething else.
Hint: you're allowed toaddtoorchange the cl8SSes listed.

therejltrer\l?
DUmb ~uesti9n.8

Q.: You said that the JVM starts
walking up the Inheritance tree,
starting at the class type you Invoked
the method on (like the Wolf example
on the previous pagel. But what
happens If the JVM doesn't ever find
ill match?

A.: Good questionl But you don't
have to worry about that.The compiler
guarantees that a particular method
Is callable for a specific reference type,
but It doesn 't say (or care) from which
class that method actually comes from
at runtime. With the Wolf example, the
compiler checks for a sleepf) method,
but doesn't care that sleepO Is actually
defined In (and Inherited from) class
Animal. Remember that If a class
Inherits a method, It has the method.

Where the inherited method Is defined
(In other words, In which superclass
It Is defined) makes no difference to
the complier. But at runtIme, the JVM
will always pick the right one. And
the right one means, the most specific
version for that particular object.

176 chapter 7

Inheritance and polymorphism

UsittQ IS...Aattd HAS-A

What if we reverse it to Bathroom
extends TUb? That still doesn't work.,
Bathroom IS-ATub doesn't work.

Tub and Bathroom are related, but
not through inheritance. Tub and
Bathroom are joined by a HAS-A
relationship. Does it make sense to
say "Bathroom HAS-ATUb"? Ifyes,
then it means that Bathroom has a
Tub instance variable. In other words,
Bathroom has a reference to a Tub, but
Bathroom does not extend1\lb and
vice-versa.

Remember that when one class
inherits from another, we say that the
subclass extends the superclass. When
you want to know if one thing should
extend another, apply the IS-A test,

Triangle IS-AShape, yeah, that works.

Cat IS-A Feline, that works too .

Surgeon IS-ADoctor, still good.

Tub extends Bathroom, sounds
reasonable.
UntilyO'u apply 1M IS-A test.

To know if you've designed your types
correctly, ask, "Does it make sense to
say type X IS-A type Y?" If it doesn't,
you know there's something wrong
with the design, so ifwe apply the IS-A
test, Tub IS-A Bathroom is definitely
false.

Does it make sense to

say a Tub IS-A Bathroom? Or a

Bathroom IS-A Tub? Well it doesn't to

me. The relationship between my Tub

and my Bathroom is HAS-A. Bathroom

HAS-A Tub. That means Bathroom

has Q Tub instance variable.

Bubbles
inl radius:
InloolorAm~

Tub
Inl size:
Bubbles b:Bathroom

Tub bathtub;
Sink lheSink;

Bathroom HAS-A Tub and Tub HAS-A Bubbles.
Bul nobody Inherits from (extends) anybody else.

you are here ~ 177

exploiting the power of objects

Jut wait! There"s 'More!
The IS-Atest works anywhere in the inheritance tree. If your
inheritance tree is well-designed, the IS-Atest should make
sense when you ask any subclass if it IS-A any of i IS su pertypes.

If class B extends class A, class B IS-A class A.

This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both Band A.

178 chapter 7

Canine extends Animal

Wolf extends Canine

Wolf extends Animal

Canine IS-A Animal

Wolf IS-A CanIne

Wolf IS-A Animal

Animal

makeNolseO
eatO
sleepO
roamO

Canine

roarnt)

Wolf

makeNolseO
eal()

With an inheritance tree like the
one shown here, you're always
allowed to say "Wolf extends
Animal" or "Wolf IS-AAnimal".
It makes no difference ifAnimal
is the superc1ass of the superclass
ofWolf. In fact, as long as Animal
is somewhere in the inheritance
hierarchy above Wolf, Wolf IS-A
Animal will always be true.

The structure of the Animal
inheritance tree says to the world:

"Wolf IS-A Canine. so Wolf can do
anything a Canine can do. And
Wolf IS-AAnimal, so Wolf can do
anything an Animal can do."

It makes no difference if Wolf
overrides some of the methods
in Animal or Canine. As far as
the world (of other code) is
concerned, a Wolf can do those
four methods. H(JlJ) he does them,
or in which class they 1'e overridden
makes no difference. A Wolf can
makeNoise O. ea to, sleep (), and
roamO because a Wolf extends
from class Animal.

How do you k"ow if yotfve got
your htherita"ce right?
There's obviously more to it than what we've
covered so far, but we'll look at a lot more 00
issues in the next chapter (where we eventually
refine and improve on some of the design work
we did in thischapter) .

For now. though, a good guideline is to use the
IS-Atest, U "X IS-AY" makes sense, both classes
(X and Y) should probably live in the same
inheritance hierarchy. Chances are, they have
the same or overlapping behaviors.

Keep in mind that the
inheritance IS-A relationship
works in only one directionl
Triangle IS-AShape makes sense, so you can
have Triangle extend Shape.

But the reverse-Shape IS-ATriangle-does
not make sense, so Shape should not extend
Triangle. Remember that the IS·A relationship
implies that ifX IS-A y. then X can do anything
a Y can do (and possibly more).

Inheritance and polymorphism

I letsare blUe. . 't true.
Roses are red, v 0 the reverse lsn

""a is-aShape,
SqU- d r

d laletS are ell. beer.
Roses are re I v t 01/ drinks are

Ink but no e-
Beer is-a Dr, '" t shOWS the on 'f

M Ke one t"a . Remember. \
QI(, your turr\e~S_A relatiOnshlP~ense,
way.nesS of~ 'S.A'(must maKe

'/.. extend_s_'(I_ ------"..........--~"........-

Sharpen your pencil------,

Put a check next to the relationships that
make sense.

o Oven extends KItchen

o Guitar extends Instrument

o Person extends Employee

o Ferrari extends EngIne

o FriedEgg extends Food

o Beagle extends Pet

o Container extends Jar

o Metal extends Titanium

o GratefulDead extends Band

o Blonde extends Smart

o Beverage extends Martini

Hint apply the IS-A test

you are here ~ 179

who inherits what

therelllreAl~Dum D "<.,uesD9ns
Q: SOwe see how a subclass gets
to Inherlt a superclass method, but
what If the su perclass wants to use
the subclass version of the method1

A.: A superclass won't necessarily
knowabout any of its subclasses .
You might write a class and much
later someone else comes along and
extends it. But even Ifthe superclass
creator does know about (and wants
to use) a subclass version of a method,
there's no sort of reverse or backwards
inheritance. Think about it,children
Inherit from parents, not the other way
around.

Q: In a subclass, what if I want to
use BOTHthe superclass version and
my overriding subclass version of a
method? In other words, I don't want
to completely rep/Dee the superclass
version, I Just want to add more stuff
to It.

A:vou can do this! And It's an
important design feature .Thinkof the
word "extends" as meaning,"1 want
to extend the functionality of the
superclass"

public void roamC)
super. roam C) ;

/ / my own roam

You can design your superclass
methods in such a way that they
contain method implementat ions
that will work for any subclass, even
though the subclasses may still need
to 'append' more code . Inyour subclass
overriding method, you can call the
superclass version using the keyword
super. It's like saying,"first go run the
superclass version. then come back and
finish with my own code ..,"

Who gets the Porsche, who gets the porcelah,?
(how to kt'ow whata subclass cat'
Itt"erlt frolM Its superelassJ

A subclass inherits members of the
superclass. Members include instance
variables and methods, although later in
this book we'Dlook at other inherited members. A
superclass can choose whether or not it wants a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access levels that we'D cover in this book.
Moving from most restrictive to least , the four access
levels are:

private default protected public

180 chapter 7

Access levels control who sees what, and are crucial
to having well-designed, robustJava cod e. For now we'll
focus just on public and private. The rules are simple for
those two:

public members are Inherited--private members are~ Inherited

When a subclass inherits a member, it is as if the
subclass defined the -member itself. In the Shape
example, Square inherit ed the rotate () and
playSound () methods and to the outside world (othe r
code) the Square class simply has a rota te () and
playSound () method .
The members of a class include the vari ables and
methods defined in the class plu s anything inherited
from a superclass.

No-«: get ..O\"C ddails about dc+alAlt and fl"ot.et.ud in 'h4y-W­
Ib (dcrl0't"cnV and .li'fcNli'J< B.

When designing with inheritance,
are you usit1g or abusi"g?
Although some of the reasons behind these rules won't be
revealed until later in this book, for now, simply knowing a
few rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type
ofa superclass. Example: WIllow is a more specific type of
Tree, so Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among
multiple classes of the same general type. Example:
Square, Circle, and Triangle all need to rotate and play
sound, so putting that functionality in a superclass Shape
might make sense, and makes for easier maintenance and
extensibility. Be aware, however, that while inheritance is
one of the key features of object-oriented programming,
it's not necessarily the best way to achieve behavior reuse.
It'll get you started, and often it's the right design choice,
but design panerns will help you see other more subtle
and flexible options. !fyou don't know about design
patterns, a good follow-on to this book would be HeadFirst
Design Patterns.

DO NOT use inheritance just so that you can reuse
code from another class, if the relationship between the
superclass and subclass violate either of the above two
rules. For example, imagine you wrote special printing
code in the Alarm class and now you need printing code
in the Piano class, so you have Piano extend Alarm so that
Piano inherits the printing code. That makes no sense! A
Piano is rwt a more specific type ofAlarm. (So the printing
code should be in a Printer class, that all printable objects
can take advantage ofvia a HAS-A relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test, Always ask yourself if the subclass
IS-A more specific type of the superclass. Example: Tea IS­
A Beverage makes sense. Beverage IS-ATea does not.

Inheritance and polymorphism

• Asubclass extends asuperclass.

• Asubclass Inherits allpublic Instance
variables and methods ofthe superclass, but
does not Inherit the private Instance variables
and methods ofthe superdass,

• Inherited methods can be overridden; instance
vartables cannot beoverridden (although they
can be redefined in the subclass, but that's
not the same thing, and there's almost never a
need todo it)

• Use the IS-A test toverify thaiyour
inheritance hierarchy is valid. If Xextends Y,
then X IS-A Ymust make sense.

• The rS-A relationship works Inonly one
direction. AHippo isanAnimal. but not all
Animals are Hippos.

• When a method isoverridden ina subclass,
and that method isInvoked on an instance of
the subclass, the overridden version of the
method is called. (The lowest one wins.)

• Ifclass Bextends A, and Cextends B, class
BIS-A class A, and class C IS-A class e, and
class Calso IS-A class A.

you are here) 181

exploiting the power of objects

So what does all this
h1herita"ce really buy you?
You get a lot of 00 mileage by designing
with inheritance. You can get rid of duplicate
code by abstracting out the behavior common
to a group of classes, and sticking that code
in a superclass. That way, when you need to
modify it, you have only one place to update,
and the changeis magically reflected in all the
classes that inherit that behavior. Well, there's
no magic involved, but it is pretty simple:
make the change and compile the class
again. That's it. You don't have to touch the
subclasses I

Jmt deliver the newly-ehanged superclass, and
all classes that extend it will automatically use
the new version.

AJava program is nothing but a pile of classes,
so the subclasses don't have to be recompiled
in order to use the new version of the
superclass, As long as the superclass doesn't
break anything for the subclass, everything's
fine. (We'll discuss what the word 'break'
means in this context, later in the book. For
now, think of it as modifying something in
the superclass that the subclass is depending
on, like a particular method's arguments or
return type, or method name, etc.)

182 chapter 7

(i) You avoid duplicate
code.
Put common code in one place, and let

the subclasses inherit that code from a

superclass . When you want to change that

behavior, you have to modify it in only

one place, and everybody else (i.e, all the

subclasses) see the change.

• You define a common
protocol for a group of
classes.

lt1heritat1ce lets you guarat1tee that
all classes grouped ut1der a certaht
supertype have all the Ittethods that
the supertype has:
I., other words. you defl"~ a oOttUMO" protocol for a
setofclasses related through I"herita"ce,

When you define methods in a superclass, that can be
inherited by subclasses, you're announcing a kind of
protocol to other code that says, "All my subtypes (i.e,
subclasses) can do these things, with these methods
that look like this .;"

In other words, you establish a contract:

Class Animal establishes a common protocol for all
Animal subtypes:

Anlm.1

makeNolse()
eatO
sleepO
roamO

And remember, when we say any AlIima~ we mean
Animal and any classthat extendsfrom Animal Which
again means, any class tha: has Animal SO"TTIeWhere aboue it
in the inheritancehierarchy,

But we're not even at the really cool part yet, because
we saved the best--polymarphism--for last

When you define a supertype for a group of classes,
any subclass 0/that supmype can besubstituted where the
supertype is expected.

Say, what?

Don 't worry. we're nowhere near done explaining it
Two pages from now, you'll be an expert

"When wesay "all the methods' we mean "alilhe Inheritable methods',which
fornow actually means, "all the public methods', although later we'll refine that
defini\Jon abitmore.

Inheritance and polymorphism

And I care because•••

Because you get to take advantage of
polymorphism.

Which matters to me
because•••

Because you get to refer to a subclass
object using a reference declared as the
supertype.

And that means to me•••

You get to write really flexible code.
Code that's cleaner (more efficient,
simpler). Code that's not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You'll see how it works on the next page,

We don't know about you, but
personally, we find the whole
tropical vacation thing
particu Iarly motivating.

you are here. 183

the way polymorphism works

To see how polymorphism
works, we have to step back
and look at the way we
normally declare a reference
and create an object...

The 3 steps of object
declaration and assignment

1 2
~3~
Dog myDog = new Dog();

O Declare a reference
variable

Dog myDoq = new Dog () ;

Tells the JVM to allocate space for a
reference variable. The reference variable
Is,forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button
or a Socket. Dog

G Create an object

Dog myDoq = new Dog () ;

Tells the JVM to allocate space for
a new Dog object on the garbage
collectible heap.

Dog object

~ Link the object
~ and the reference

Dog myDog = new Dog () ;

Assigns the new Dog to the refer­
ence variable myDog.ln other words,
program the remote control.

Dog object

184 chapter 7

Dog

inheritance and polymorphism

The important point is that the
reference type AND the object
type are the same.

In this example, both are Dog.

But with polymorphism, the
reference and the object can
be different.

Animal myDog - new ~ () ;

~/'
nest: two .i~e NOT the sd",e t)'Pe. ne
re-ftyel'lu I/ariable t)'Pt is detlarta as APli...aI,
b~t tht objtt+' is tytaud as Pltw D~O.

you are here ~ 185

polymorphism In action

With polymorphism, the reference
type can be a superclass of the
actual object type.

When you declare a reference variable,
any object that passes the IS-Atest for the
declared type of the reference variable

can be assigned to that reference. In
other words , anything that extends the

declared reference variable type can
be assigned to the reference

variable. This lets you do

thing! like make polyrruwphic
arrays.

animals [0] = new Dog();

animals [1] = new cat 0 ; Blot. look ",hdt. 'fOU ~d. to do... ~O" Un fvl:. ANY
animals [2) = new Wolf() ; <- s"bclass of A"i...al i.. tnt A..i1'fl41 a.......a'f!

animals [3) = new Hippo () ;

186 chapter 7

But wait! There's more!

You can have polymorphic
arguments and retu!!, types.

Ifyou can declare a reference variable

of a superrype, say,Animal, and assign a
subclass object to it, say, Dog, think of how

that might work when the reference is an

argument to a method...

class Vet {

Inheritance and polymorphism

public void qiveShot(Animal a)

II do horrible things to the Animal at

/ / the other end of the 'a' parameter

a.ma.keNoise();

}

}

class Petowner

public void start ()

Vet v = new VetO;

Dog d = new Dog()i ~

Hippo h = new Hippo(); ~

v. giveShot (d) ; ~ D'1's "",ktNoiUO--1Ai\S

)

)

v .giveShot (h) ; (Itippo's Or\dkeNoiseO l"1AN;

you are here) 187

exploiting the power of polymorphism

NOW I get itl If I write

my code using polymorphic arguments,

where.r declare the method parameter as a

super-class type, r CM pass in any subclass object at
runtime. Cool. Because that also means r can write my

code, go on vacation, and someoneelse can add new

subclass types to the program and my methods will

still work ... (the only downside is rm just making life
easier for that idiot Jim).

WIth polytttorphlSttt, you caM write code that doutt't
have to chattge whe.. you 'tttroduce ..ew subclass
types I..tothe progratlt.
Remember that Vet class? If you write that Vet class using

arguments declared as type Animal; your code can handle any

Animal subclass. That means if others want to take advantage of

your Vet class. all they have to do is make sure their new Animal

types extend class Animal. The Vet methods will still work, even

though the Vet class was written without any knowledge of the

new Animal subtypes the Vet will be working on.

Why is polymorphism guaranteed to work this way? Why Is

it always safe to assume that any subclass type will have the

methods you think you're calling on the suoerclass type (the

superclass reference type you're using the dot operator on)?

18a chapter 7

:therelarH ? 0

Diimo ~uesti9n8

Q: Are there any practical limits
on the levels of subclassing? How
deep can you go?

A.: If you look in the Java API,
you'll see that most inheritance
hierarchies are wide but not deep.
Most are no more than one or two
levels deep, although there are
exceptions (especially in the GUI
classes) .You'll come to realize that
it usually makes more sense to keep
your inheritance trees shallow, but
there isn't a hard limit (well, not one
that you'd ever run into) .

Q: Hey,Ijust thought of
something... if you don't have
Kcess to the source code for a class,
but you want to change the way a
method of that class works, could
JOu use subclassing to do that? To
extend the"bad" class andoverride
the method with your own better
code?

A.: Yep.That's one cool feature
of 00, and sometimes it savesyou
from having to rewrite the class
from scratch, or track down the
programmer who hid the source code.

Q: Can you extend any class? Or
is it like class members where if the
class is private you can't inherit it...

A.: There's no such thing as a
private class,except in a very special
case called an innerclass,that we
haven't looked at yet. But there are
three things that can prevent a class
from being subclassed.

The first is accesscontrol. Eventhough
a classcan'tbe marked pr i va t e, a
classcan be non-public (what you
get if you don 't declare the classas
pub l ic). A non-public class can be
subclassed only by classes in the
same package as the class.Classes in
a different package won't be able to
subclass (or even use, for that matter)
the non-public class.

The second thing that stops a class
from being subclassed is the keyword
modifier final. A final class means
that it's the end of the inheritance
line. Nobody, ever,can extend a final
class.

The third issue is that if a class has
only p r i va te constructors (we'll
look at constructors in chapter 9), it
can't be subclassed.

inheritance and polymorphism

Q: Whywould you ever want to
make a final class? What advantage
would there be in preventing a class
from being subclassed?

A: Typically, you won 't make your
classes final. But if you need security
- the security of knowing that the
methods will always work the way
that you wrote them (because they
can't be overridden), a final class
will give you that. A lot of classes in
the Java APIare final for that reason.
The String class,for example, is final
because,well , imagine the havoc if
somebody came along and changed
the way Strings behave!

Q: Can you make a method final,
without making the whole class
final?

A.: If you want to protect a specific
method from being overridden, mark
the method with the finalmodifier.
Mark the whole class as final if you
want to guarantee that none of the
methods in that classwill ever be
overridden.

you are here r 189

Keepl.,g the co"tract: rules for overriding

Appliance

boolean bJmOnO

boolean bJmOffO

Toaster

boolean tumOn(~lleveD

I

Arguments must be the same, and return
types must be compatible.

When you override a method from a supercIass, you 're agreeing to
fulfill the contract. The contract that says. for example, ~I take no
arguments and I return a boolean ." In other words, the arguments
and return types of your overriding method must look to the outside
world exactly like the overridden method in the superclass.

The methods are the contract.

If polymorphism is going to work. the Toaster's version of the
overridden method from Appliance has to work at runtime.
Remember. the compiler looks at the reference type to decide
whether you can call a particular method on that reference. Wilh
an Appliance reference to a Toaster, the compiler cares only if class
Appliance has the method you 're invoking on an Appliance reference .
But at runtime, thejVM looks not at the reference type (Appliance) but
at the actual Toaster object on the heap. So if the compiler has already ~

approved the method call, the only way it can work is if the overriding "This \~ 1'./01 6"

method has the same arguments and return types. Otherwise. '1t:Y""'\dt~

someone with an Appliance reference will call turn On 0 as a no- o. h6 e \)Ie
arg method, even though there's a version in Toaster that takes an ta" \:. t. b~" 61\

int. Which one is called at runtime? The one in Appliance. In other ~\WI'.~~e-t.n06. .
words, the turnOn{int level) m.etJwd in Toaster is not an override.' O~~I ThIs j! .t,i:.ua/ly .a Je5d1

overLOAD b· i .Lolle"rRIDE. I ""l; "()l:. an

The contract of superclass defines how other code can use a method.
Whatever the superclass takes as an argument. the subclass over­
riding the method must use that same argument. And whatever the
superclass declares as a retum type. the overriding method must de­
clare either the same type. or a subclass type . Remember, a subclass
object is guaranteed to be able to do anything its superclass declares.
so iI's safe to retum a subclass where the superclass Is expected.

• The method can't be less accessible.
That means the access level must be the same, or friendlier. That
means you can't, for example, override a public method and make
It private. What a shock that would be to the code invoking what It
thinks (at compile time) is a public method. If suddenly at runtime
the JVM slammed the door shut because the overriding version
called at runtime Is prlvatel

So far we've leamed about two access levels : private and public .
The other two are In the deployment chapter (Release your Code)
and appendix B. There's also another rule about overriding related
to exception handling , but we'll walt until the chapter on exceptions
(Risky Behavior) to cover thaI.

Appliance

pUblic boolean tumOnO

public boolean tumOnO

Toaster

privata boolean bJmOnO
\

190 chapter 7

Overloading a tttethod
~

Method overloading is nothing more than having
two methods with the same name but different
argument lists. Period. There's no polymorphism
involved with overloaded methods!

Overloading lets you make multiple versions
of a method, with different argument lists, for
convenience to the callers. For example, if you
have a method that takes only an int, the calling
code has to convert, say, a double into an int
before calling your method. But if you overloaded
the method with another version that takes a
double, then you've made things easier for the
caller. You'll see more of this when we look into
constructors in the object lifecyc1e chapter.

Since an overloading method isn't trying to
fulfill the polymorphism contract defined by its
superc1ass, overloaded methods have much more
flexibility.

• The return types can be
different.
You're free to change the return types in
overloaded methods, as long as the argument lists
are different.

• You can't change ONLY the
return type.
If only the return type is different, it's not a
valid overload-the compiler will assume
you're trying to override the method. And even
that won't be legal unless the return type is
a subtype of the return type declared in the
superclass. To overload a method, you MUST
change the argument list, although you can
change the return type to anything.

• You can vary the access
levels in any direction.
You're free to overload a method with a method
that's more restrictive. It doesn't matter, since the
new method isn't obligated to fulfill the contract of
the overloaded method.

inheritance and polymorphism

An overloaded method is
justadii±erent method that
happens to have the sane
method name, It has nothing
to do with inheritance and
pol)'Illorphism. An overloaded
method isNoT the sane as
an overridden method.

Legal examples of method
overloading:
public class Overloads

String uniqueID;

public int addNums(int a, int b) (
return a + b;

public double addNums(double a, double b) (
return a + b;

public void setUniqueID(String theID) (
II lots of validation code, and then:
uniqueID = theID;

public void setUniqueID(int ssNumber)
String numString = "" + ssNumber;
setUniqueID{numString);

you are here ~ 191

exercise: Mixed Messages

the prograttt:

Mix~d
MessagES

a ~ 6i~56
b ~ Si 11
a ~ 5i 65

A short Java program is listed below. One block of
the program is missing! Yourchallenge is to match
the candidate block of code (on the left),with the
output that YOU'd see if the block were Inserted.
Not all the lines of output wIll be used, and some of
the lines of output might be used more than once .
Draw lines connecting the candidate blocks of
code with their matching command-line output.

class A {

int ivar ;; 7;
void ml() (

System.out.print("A'S mIt ");

class C extends B {
void m3() {

system.out.print(UC's nU, "+(ivar + 6»;

[I args) {

cattdldate code

I

~ goes here
(three IIttes)

'----------

public class Mixed2 {
public static void main(String

A a "" new A();

B b ;; new B();
C c = new e();
A a2 = new C() ;

}

void m3() (

System.out.print("A's m3, U);

}

void m2 () {
System.out.print("A'S m2, ");

class B extends A {
void ml (I (

System.out.print(UB'S ml, U);
} }

}

code b.ml ();

}
output:

candidates: c.m2();
a.m3 (); A's ml, A's m2, C's m3, 6

c .ml (); B's ml, A's m2, A's m3,

}c.m2(); A's ml, B's rn2, A's m3,
c.m3();

B's ml, A's m2, C's m3, 13

a.ml()i

} B's ml, m2 t m3,
b.rn2(); C's A's

c.m3(); B's m1, A's rn2, C's m3, 6

a2.ml(); } A's m1, A's rn2, C's mJ, 13
a2 .m2 () i
a2 .m3 () ;

192 chapter 7

inheritance and polymorphism

BE the Ct»mriler
"Which ofthe A-B pai.rS ofmethods listed on the right, if
inserted into the classes on the left. would compile and
produce the output shown? (The AltIethod inSerted into
class Monster, the B JIlethod inserted into class VlUtlpil'e.)

public class MonsterTestDrive {

public static void maio(String (I args) {

Monster (J rna = new Monster(3J:

ma[OI new Vampire();

marl) new Dragon():

ma[2J new Monster():

for(iot x = 0: x < 3; X++) {

ma[xJ.frighten(x);

1

e
boolean frighten(int d) {

System.out.println("arrrgh U);

return true;

}

boolean frighten(int x)

System.out.println("& bite?");

return false;

}

}

}

}

2

e
boolean frighten(int x) {

System.out.println(Uarrrgh");

return true;

class Monster {
}

iot frighten(int f) {

4) System.out.println(Ua bite?");

return 1:

} }

class Vampire extends Monster (3

e
boolean frighten(int x) {

System.out.println("arrrgh"):

return false;

}

class Dragon extends Monster {

boolean frighten(int degree)

System. out. pr intln ("breath fire");

}

boolean scare(int x) {

System.out.println("a bite?"):

return true;

}

boolean frighten(byte b) {o System.out.println("a bite?H);

return true;

return true;

}
4

e
boolean frighten(int z) {

System.out.println("arrrgh")i

return true;

}

you are here ~ 193

puzzle: Pool Puzzle

YourJob is to take code snippets from the pool and place them into
the blank lines In the code.You may use the same snippet more
than once, and you might not need to use all the snippets.Your
goal Is to make a set of classes that will compile and run together
as a program. Don't be fooled - this one's harder than It looks.

Pool Puzzle

public class Rowboat {

public rowTheBoat() {

Syatem.out.print(nstroke natashaW)i

public class TestBoats {

_________ main(String(I args){

______ bI = new Boat();

Rowboat _}

public class

private int _

____ void __

length:: len;

}

public int getLength() {

) {

Sailboat b2 = new ();

new Rowboat () ;

b2.setLength(32);

bl. () i

b3. ()i

___.move();

}

}

public move() {

public class Boat {

public () {

System. out. print (u ") ;

System. ou t . print (" H) ;

}

}
}

}

OUTPUT: drift drift hoist sail

194 chapte r 7

code
catldldates:

inheritance and polymorphism

Set 1will work.

Set 2 will not compile becauseof Vampire's retum
type (Int).

The Vampire's frightenO method (B) is not a legal
override OR overload of Monster'sfrightenO method.
Changing ONLYthe retumtype Is not enough
to makea validoverload, and since an int is not
compatible with a boolean. the method is not a valid
override. (Remember, If you change ONLY the retum
type, it must be to a retum type that Is compatible
with the superclass version's retum type, and then ifs
an override.

Sets 3 and 4 will compile, but produce:

arrrqh

breath fire

arrrgh

Remember, classVampire did not override class
Monster's frightenO method. (The frightenO method
in Vampire's set 4 takes a byte, not an lnr.)

Mixed
MessagES

B's ml,

B's ml,

A'8 ml,

A's m2, C's m3, 6

A's mz , A'9 m3,

B'B m2, A's m3,

A's mz , C's nU, 13

C's m2, A's m3,

A's 11\2, C's m3, 6

A'S m2, e's m3, 13

you are he re ~ 195

puzzle answers

• pUblic class Rowboat extends Boat

public void rowTheBoat() {

System.out.print("stroke natasha")1

public class Boat {

private int length

public void setLength (int len) {

length = lenl

public int getLength()

return length 1

pub.l.Lc void move ()

System. out. print ("drift") 1

public class TestBoats {

public static void main(String[l args) {

Boat bl = new Boat()l

Sailboat b2 = new Sailboat () 1

Rowboat b3 = new Rowboat()1

b2.setLength(32)1

bl.mOVe() 1

b3.mOVe() 1

b2 .move() 1

pubLi.c class Sailboat extends Boat {

public void mover i {

System.out.print("hoist sail ••) 1

196 chapter 7

OUTPUT: drift drift hoist sail

