
17 package, jars and deployment

Release Your Code

It's time to let go. You wrote your code. You tested your code.You refined your code.

You told everyone you know that if you never saw a line of code again, that'd be fine. But in the

end, you've created a work of art. The thing actually runsl But now what? How do you give It to

end users? What exactly do you give to end users? What if you don't even know who your end

users are? In these final two chapters, we'll explore how to organize, package, and deploy your

Java code.We'll look at local, semi-local, and remote deployment options Including executable

jars, JavaWeb Start, RMI, and Servlets.ln this chapter, we'll spend most of our time on organizing

and packaging your code-things you'll need to know regardless of your ultimate deployment

choice. In the final chapter, we'll finish with one of the coolest things you can do In Java. Relax.

Releasing your code Is not saying goodbye. There'salways maintenance...

this Is a new ch apter 581

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

Java deployment

Peployi"Q your applieatio"
What exactly is a Java application? In other words,
once you're done with development, what is it that you
deliver? Chances are, your end-users don't have a system
identical to yours. More importantly, they don't have your
application. So now it's time to get your program in shape
for deployment into The Outside World. In this chapter,
we'll look at local deployments, including Executable Jars
and the part-local/'part-remote technology calledjava Web
Start. In the next chapter, we'll look at the more remote
deployment options, including RMI and Servlets,

Deployment options

Executable
Jar

AJava program is abunch
of classes. That's the
output of your development.

The real 'f,Uestion is what
to do with those classes
when you're done.

100% Local Combination 100% Remote

@ Remote
The entire Java application runs on a
server system, with the client accessing
the system through some non-Java
means, probably a web browser.

CD Local
The entire application runs on the
end-user's computer, as a stand-alone,
probably GU!, program, deployed as
an executable JAR (we'll look at JAR
in a few pages.)

I1i'\
~

Combination of local and remote
The application is distributed with a
client portion running on the user's
local system, connected to a server
where other parts of the application
are running.

Whatarethe advantages and
disadvantages of delivering your
Java program asa local,stand­
aloneapplication running on
the end-user's computer?

What arethe advantages and
disadvantages of deliveringyour
Java program as web-based
system where the userInteracts
with a web browser, and the
Java code runs as servlets on the
server?

But before we really get into the whole deployment thing,
let's take a step back and look at what bappens when you've
finished programming your app and you simply want to pull
out the class files to give them to an end-user. What's really
in that working directory?

682 chapter 17

package, jars and deployment

ItMagitte this scettario...

Bob's happily at work on the final pieces of his cool new
Java program. After weeks of being in the "I'mjust­

one-compile-away" mode, this time he's really
done. The program is a fairly sophisticated

CUI app. but since the bulk of it is Swing
code. he's made only nine classes of his

own.

At last, it's time to deliver the program to the
client. He figures all he has to do is copy the
nine class files. since the client already has
the Java API installed. He starts by doing an

1s on the directory where all his files are ...

e o
o

Whoa! Something strange has happened. Instead of 18
files (nine source code files and nine compiled class
files), he sees 31 files, many of which have very strange

names like:

Account$FileListener.class

Chart$SaveListener.class

and on it goes. He had completely forgotten
that the compiler has to generate class files
for all those inner class CUI event listeners
he made. and that 's what all the strangely-

named classes are.

Now he has to carefully extract all the class
files he needs. Ifhe leaves even one of them OUI,

his program won't work. But it 's tricky since he
doesn't want to accidentally send the client
one of his source code files, yet everything is
in the same directory in one big mess.

you are here ~ 583

organizing your classes

Separate source code at'd class files
A single directory with a pile ofsource code and class files is a
mess. It turns out, Bob should have been organizing his files
from the beginning, keeping the source code and compiled
code separate. In other words, making sure his compiled class
files didn 't land in the same directory as his source code.

1M key is a combination ofdirectury stTudure organizatUm and the
-d compiler option.

There are dozens of ways you can organize your files, and your
company might have a specific waythey want you to do it. We
recommend an organizational scheme that's become almost
standard. though .

With this scheme, you create a project directory, and inside
that you create a directory called source and a directory called
classes. You start by saving your source code (java files) into
the source directory. Then the trick is to compile your code
in such a way that the output (the .class files) ends up in the
classesdirectory.

And there's a nice compiler flag, -d, that lets you do that.

But r thought I didn't have
a choice about putting the closs
files in with the source files.
When you compile,they just go

there. so what do I do?

Compiling with the -d (directory) flag

MyApp.JavaMyApp.class

(~It1h-ii,,~ noU: c~cr'tl:.hi~ in -lhis lhapicr il1.l_U thilt t},e
tUh"c..t ~kin~ dil"Clky (i.e. the ~.~) ij in 'f()l.J.r dilSSf'il!:.h. If '10<>
have e....pl,t'fJy sd:. il daSSf'.1th tl\~;t"(ln"'tl\t vill",able. be tcr-bin
that it tor.t.ai"s the ",")

~cd MyProject/classes

%j ava Mini rlOlI ~Ol.lr pr03r-<I", frOlol

tht tldues' di'rtltory.

Running your code

%cd Mypr~je~t/s~urce

%javac -d .. /classes
)'\

tells -tht lo"'pi/tr to lot. tht
lo"'piled lode (llats. ~,). to th " .oFi est;. , t tla1S.ts: di~ettory

ab Ohe dired:A'ry lop clnd
bellk dow" a6 'i (' I.

:JG n 1'ro", Ole
lLlrrent w(l\"k;l'I~ dil'tttory.

By using the -d flag, youget to decide which directory the
compiled code lands in, rather than accepting the default of /r
class files landing in the same directory as the source code. r
To compile all the Java files in the source directory, use: til YOWl'ai"O

roo.. htt't •OIl"
%javac -d .. /c1asses *. java ::~;~:ooo'o

'\.

lno 10 0

1 ALL oto \O •
~. iava tompi es "'.'"

..J t: Ll. lUOJOIO

SOLl~t' -tiles; ill VI' """010\
t\ort"tfl+' dirtt~

584 chapter 17

package, jars and deployment

Put your Java itt aJAR-

manifesLtxt

no SO\O.. tt.
toOt Cja~d)

in the "JAR

MyApp.dass

CIflPl .Jar

manifesLtxt

Run the Jar tool to create a JAR file
that contains everything in the classes
directory I plus the manifest.

Create a manifest. txt file that states
which class has the malnO method
Make Q text file named manifest.txt that has a
one line:

Make sure all of your class files are in
the classes directory
We're going to refine this in a few pages, but
for now. keep all your class files sitting in the
directory named 'classes'.

dO\'l' t ,,~t t\lt .t. lass
Main-Class: MyApp 0(- on tht ",d

Press the return key after typing the Main­
Class line, or your manifest may not work
correctly. Put the manifest file into the "closses"
directory.

%cd MiniProject/class8s
'jar -cvmf .manifest.txt appl.jar *.class
OR
'jar -cvmf manifest.txt appl.jar MyApp.class

Making an executable JAR

AJAR file is a Java ARchive . It's based on the pkzip file format, and it lets you bundle
all your classes so that instead of presenting your client with 28 class files, you hand
over just a singleJAR file. lfyou're familiar with the tar command on UNIX, you'll
recognize the jar tool commands. (Note: when we sayJAR in all caps, we're referring
to the archive jilt. When we use lowercase, we're referring to the ja-r toolyou use to
create JAR files.)

The question is, what does the client Mwith theJAR? How do you get it to run?

You make the JAR executable.

An executableJAR means the end-user doesn't have to pull the class files out before
running the program. The user can run the app while the class files are still in the
JAR. The trick is to create a manifest file, that goes in the JAR and holds information
about the files in theJAR. To make aJAR executable. the manifest must tell theJVM
whuh. class has the main() method!

•

•

•

you are here) 585

executable JAR

100% Local Combination 100% Remote

Most 100% local Java
arrs are deployed as
executable JAR files.

RUt1t1it1g (executi.,g) the JAR
JaVli (thejVM) is capable of loading a class from aJAR, and calling
the main () method of that class. In fact, the entire application can
stayin theJAR Once the ball is rolling (i.e., the main () method
starts running), theJVM doesn't care where your classes come
from, as long as it can find them. And one of the places thejVM
looks is within any JAR tiles in the classpath . U it can seeaJAR, the
JVM will look in th3tJAR when it needs to find and load a class.

0:~(:':r-':"-' :_:~..,.::l"'l
. ' . ~-"

appl .jar

r
l

Depending on how your operating system is configured, you
might even be able to simply double-click theJAR file to launch
it. This works on most flavors of Windows, and Mac OS X. You
can usually make this happen by selecting the JAR and telling
the OS to "Open with ...~ (or whatever the equivalent is on your
operating system) .

You can't put your class flies Into some arbitrary
directory and JARthem up that way .But If your classes
belong to packages, you can JARup the entire package
directory structure. In fact, you must. We'll explain all this on
the next page, so you can relax.

Q: Why can't IJust JAR up an entire directory?

A.: The JVM looks inside the JARand expects to find
what It needs right there. It won't go digging Into other
directories, unless the class Is part of a package, and even
then the JVM looks only In the directories that match the
package statement7

---------- Dffin~~estiQns

Q: What did you jU5t say?

A:

586 chapter 17

package, jars and deployment

Put your classes itt packages!
So you've written some nicely reusable class files, and you 've
posted them in your internal development library for other
prognmmers to use. While basking in the glow of having
just delivered some of the (in your humble opinion) best
examples of00 ever conceived. you get a phone call. A
frantic one. Two of your classes have the same name as
the classes Fred just delivered to the library. And all hell is
breaking loose out there, as naming collisions and ambiguities
bring development to its knees.

And all because you didn't use packages! Well, you did use
packages, in the sense of using classes in the Java API that are,
of course, in packages. But you didn't put your own classes
into packages, and in the Real World, that's Really Bad.

We're going to modify the organizational structure from the
previous pages.just a little, to put classes into a package. and
to JAR the entire package. Pay very close attention to the
subtle and picky details. Even the tiniest deviation can stop
your code from compiling and/or running.

Packages prevettf class ttattte co"fllcts

Package stnJcture of the J QVQ API for:

java.textNumberFormat

java.ut iI.ArrayList

java.awt.fJowLayout

java.awt.event.ActionEvent

java.net.Socket

ActionEvent

What does tkls picture look like to
you? Doesn't It look Q whole lot like
a directory hlercrc.hyi

java

text~et
• / a~

NumberFormat uti! /'"

I '" Socket
:~':It ~ event
~:'~:: \

AnayUsl Flowlayout

Although packages aren'tjust for preventing name collisions,
that's a key feature. You might write a class named Customer
and a class named Account and a class named ShoppingCan.
And what do you know, half of all developers working in
enterprise e-comrnerce have probably written classes with
those names. In an 00 world, that's just dangerous. Ifpart of
the point of 00 is to write reusable components, developers
need to be able to piece together components from a
variety of sources, and build something new out of them.
Your components have to be able to 'play well with others',
including those you didn't write or even know about,

Remember way back in chapter 6 when we discussed how
a package name is like the full name ofa class, technically
known as the fully-qualified name. Class Arra yList is really
java.utiLArrayList,]Button is really javax.swingJButton, and
Socket is really java.net.Socket. Notice that two of those classes,
ArrayList and Socket, both have java as their "first name".
In other words. the first pan of their fully-qualified names
is "java". Think of a hierarchy when you think of package
structures, and organize your classes accordingly.

you are here ~ 587

package narnlnq

Prevettfittg package ttalMe cottflicts
Putting your class in a package reduces the chances of naming
conflicts with other classes, but what's to stop two programmers
from coming up with identical pa~kagenames? In other words,
what's to stop two programmers, each with a class named Account,
from putting the class in a package named shopping.customers?
Both classes, in that case, would still have the same name:

shopping.customers.Acwunt

Sun strongly suggests a package naming convention that greatly
reduces that risk-prepend every class with your reverse domain
name. Remember, domain names are guaranteed to be unique.
TWodifferent guxs can be named Bartholomew Simpson, but rwo
different domains cannot be named doh.com.

Reverse domain package names

588 chapter 17

pachges can prevent name
confhcts. but only if you
choose araclage name
that's gtlaranteed to he
unicrue, The hest way to
do that is to preface your
pachges with your reverse
domain name.
com.headfirstbooks.Book
~f' e

pallc.j~(J\o}",c \.. t..\6~ ,..6""

package, jars and deployment

You _~!i.t put a class
into a directory
structure that matches
the package hierarchy.

LorI""
l'\l.N

U, \ _.'".­
~ct'-t4,.

6<:1 .a~dl

do'l 6-1 .tlp

com

heacfflrstjava

PackageExerclse.Java

lOUOl
lOUOl
IOIO\ C-o~le

lOlOlD)
010 101
11)\01111
\Ol~lal0

I~OI(1U1 .0 •

PackageExerclse.class

se a package name
're using com.headflrstjava as our

pie. The class name is PackageExercise,
se the fully-qualified name of the class is now:

.headfirstjavQ. PackageExercise.

Q package statement in your class
be the first statement in the source

file, above any import statements. There
weonly one package statement per source

file, so all classes In Q SOlJrce tile must
- the same package. That includes inner

es, of course.

import javax.swing.*i

public class PackageExercise {
II life-altering code here

Set Up a matching directory structure
: - s not enough to say your class is in a package,

ler e ly putting a package statement in
code. Your class isn't truly in a package

-jl you put the class in a matching directory
ture. So , if the fully-qualified class name

. om.hea dfirst java.PackageExerc ise, you
put the PackageExercise source code in a
tory named neadflrstjaVQ, which must be in

..'rectory named com.
: - . possible to compile without doing that, but

us-it's not worth the other problems
'II have. Keep your source code in a directory

t ur e that matches the package structure,
. you'll avoid 0 ton of painful headaches down

- road.

_put your class in a package:

Set up a matching directory structure for
both the source and classes trees.

you are here. 589

compile and run with packages

Cotttpilittg at'd ruttttinQ with packages
When your class is in a package, it's a little trickier to compile and
run. The main issue is that both the compiler and]VM have to be
capable of f nding your class and all of the other classes it uses.
For the classes in the core API, that's never a problem.Java always
knows where its own stuffis. But for your classes, the solution
of compiling from the same directory where the source files are
simply won't work (or at least not reliably). We guano tee, though,
that if you follow the structure we describe on this page, you'll be
successful. There are other ways to do it, but this is the one we've
found the most reliable and the easiest to stick to.

Compiling with the -d (directory) flag

sta '" tht ~yt.f diytt~'t! Do NO! ~dJ Oo...m
%cd MyProject/source ~ il\J tht. dirtt,1:.t*-y ...,h~t tht. jd~il tIlt IS,

cam/beadfirstjava/*.java

to...piles ev(;'ry /' (
.file ' 1. · . SOlorte .\Ava>

'I' UlIS d,ret.U>ry .r:

%javac -d .. /classes

%javac -d .. /01a8s8s
.>

urJs tAe loto.pHer it> t t.h
.to",piled lode (tlau ll:s) e
'~it> .the tI~ dirtt.ky,
~he rillhi patkd e
sfr~ Yes. it k_~

To compile all the java files in the com.headfirstjava
package, use:

Running your code com com

%cd MyProject/classes

%java cam.headfirstjava.PackaqeExeroise
headf1f$f/8 heacffl

IOIlOl.
10 no J'
0110
001 10
001 01

PackagaExercl8&.class PackageExe~S8~ava

590 chapter 17

package, jars and deployment

fhe ...dflag is eve" cooler tha" we said

PackageExercrse.java

A: Once your class is in a
package, you can't call it by its
'short' name. You MUST specify,
at the command-line, the fully­
qualified name of the class whose
mainO method you want to run.
But since the fully-qualified name
Includes the package structure,
Java insists that the class be in a
matching directory structure. So if
at the command-line you say:

%java com.foo.Book

the JVM will look in its current
di rectory (and the rest of Its
classpath), for a directory named
"corn:It will not look for a class
named Boole. until It has found
a directory nomed "com" with a
directory Inside named ufoo': OnIy
then will the JVM accept that its
found the correct Book class. If it
finds a Book class anywhere else,
it assumes the class isn't in the
right structure, even if it isl The
JVM won't for example, look back
up the directory tree to saY,"Oh,1
can see that above us is a directory
named com, so this must be the
right package..."

~: Itried to cd Into the
directory where my main class
was, but now the JVM says It can't
find my c1assl But It's rightTHERE
In the current directoryl

com

Compiling with the -d £lag is wonderful because not only does it
let you send your compiled class files into a directory other than
the one where the source file is, but it also knows to pllt the class
into the correct directory structure for the package the class is in.

But it gets even better!

Let's say that you have a nice
directory structure all set up for your
source code. But you haven't set
up a matching directory structure
for your classes directory. Not a
problem! Compiling with
-d tells the compiler to not
just put your classes into
correct directory tree, but to 'ld
the directories if they don't

The -d flag tells the complier,
"Put the class into Its package
directory structure, using the
class specKled after the -d as
the root directory. But... If the
directories aren't there, create
them first and then put the class

In the right place!"

you are here ~ 591

JARs and packages

Makit1g at1 executable JAR with packages
When your class is in a package, the package directory structure
must be inside theJAR! You can't just pop your classes in the
JAR the waywe did pre-packages. And you must be sure that you
don't include anyother directories above your package. The
first directory of your package (usually com) must be the first
directory within the JAR! If you were to accidentally include the
directory above the package (e.g. the "classes" directory), theJAR
wouldn't work correctly.

Making an executable ,JAR

•Make sure all of your class files are
within the correct package structure,
under the classes directory.

toll 0'
10UII '

IhelldtIn:tfM• ·· ~ll:
",0\

• Create a manifest. txt file that states
which class has the mainO method,
and be sure to use the fully-qualified
class namel
Make 0 text file named manifest.txt that hasa
single line:

Main-Class: com.headfirstjava.PackaqaExercise

·,u
manl1ast.lxt

Put the manifest tile into the classes directory

_I

Run the Jar tool to create aJAR file
that contains the package directories
plus the manifest
The only thing you need to include is the 'com'
directory, and the entire package (andall classes) t.~ is ~t, I

will go into the JAR. AI\ '1~ ~"~...oAI1 ~d "Iou II
t.0fP' o,y totV'" I '. .t.1

'Sed MyProject/claasea .t ~et. tvt,......f\:),i\l,~ '" I. pcdcEx.jor

•

%jar -cvm£ manifest.txt packEx.jar com- PaclalgeExerclM.dua

592 chapter 17

package, jars and deployment

So where did the tMat1ifest file go?

'.

- '
com ~

_I
headflrstjavl

McrA./NF I

% jar

jar commands for listing and extracting

G) List the contents of aJAR

Why don't we look inside theJAR and find out? From the
command-line, the jar tool can do more thanjust create and run a
JAR You can extract the contents of aJAR (just like 'unzipping' or
'unrarring') .

Imagine you've put the packExjar into a directory named Skyler;

MANIFEST.MF

@ Extract the contents of Q JAR (l.e. unJar)
% cd Skyler
% jar -xf packEx.jar

MANIFEST.MF

IO\ Ul
LO lib '
~ \I t:l
00\ 1~

00\ 01

PackageExerclse.c1ass

META-INF stands for 'meta
information'. The jar tool creates
the META-INF directory as
well as the MANIFEST.MF file.
Tt also takes the contents of
your manifest file, and puts it
into the MANIFEST.MF file . So,
your manifest file doesn't go into
the JAR, but the contents of it
are put into the 'real' manifest
(MANIFEST.MF).

yo u are here ~ 593

organizing your classes

COWl

1CIUO
lO UO'J '
• U •
_lO.., ..

Foot.class

manlfesttxt

COWl

Foof.java

Given the package/directory structure In this
picture,figure out what you should type at the
command-line to compile, run, create a JAR, and
execute a JAR. Assume we're using the standard
where the package dIrectory structure starts just
below source and classes.In other words, the source
and classes directories are not part of the package.

Compile:
%cd source
%javac _

Run:
%cd _

%java _

C~Qte Q JAR
%cd _

,-----------------

Execute aJAR
'cd _

%_---------------

Bonus question:What's wrong with the package name?

594 chapter 17

•

Q.: What happens If you try
to run an uec:utable JAR. and
the end-user doesn't have Java
Installed?

A: Nothing will run, since
without a JVM,Java code can't
run.The end-user must have Java
Installed.

Q: How can I g@t Java
installed on the end-user's
machine?

Ideally, you can create a custom
Installer and distribute It along
with your application. Several
companies offer Installer pro­
grams ranging from simple to
ext remely powerlu I.An InstaIler
program could, for example, de­
tect whether or not the end-user
has an approproprlate version
of Java Installed, and If not,
Install and conflgure Java before
Installing your application.
Instalishleld,lnstaIlAnywhere,
and DeployDlrector all offer Java
Installer solutions.

Another cool thing about some
of the Installer programs Is that
you can even make a deploy­
ment CD-ROM that Includes
installers for all major Java
platforms, so...one CD to rule
them all. If the user's running on
Solarls, for example, the Solarls
verslo n of Java is insta lied. On
Windows, the Windows, ver-
slon, etc. If you have the bud get,
this is by far the easiest way for
your end-users to get the right
version of Java Installed and
conflgured.

package, jars and deployment

• Organize your project so that your source code and class files are not in
the same directory.

• Astandard organization structure is to create aproject directory, and then
put asource directory and aclasses directory inside the project directory.

• Organizing your classes into packages prevents naming collisions with
other classes. if you prepend your reverse domain name on to the front of
a class name.

To put aclass inapackage, put apackage statement atthe top ofthe
source code file, before any import statements:
pac:kage com. wi cJcedlysmart;

• To be inapackage, aclass must be in a directory structure thet exactly
matches thepackage structure. For aclass, com.wlckedlysmarlFoo.
the Foo class must be in adirectory named wickedlysmart. which Is in a
directory named com.

• To make your compiled dass land inthe correct package directory
structure under the classes directory, use the -d compiler flag:
% cd source
%javac -d .. / claues aom/wicJcedlysmart/l1'oo. java

• To run your code, cd to the classes directory, and give the fully-quallfied
name ofyour class:
.. cd classes
% java com.wickedlyamart.l1'oo

• You can bundle your classes into JAR (Java ARchive) flies. JAR isbased
on the pkzip fonnal.

• You can make an executable JAR file byputting amanifest Into the JAR
that states which class has the malnO method. To create amanifest file,
make atext file with an entry like the following (for example):
Main-Class: com.wicJcedlysmart.FOO

• Be sure you hitthe return key atter typing the Main-elass line, oryour
manifest file may not work.

• To create aJAR file. type:
jar -cvfm manifest. txt MyJar. jar com

• The entire package directory structure (and only the directories matching
the package) must be Immediately Inside the JAR file.

• To run an executable JAR file, type:
java -jar MyJar . jar

you are here. 595

wouldn't it be dreamy...

596 chapler 17

With Java Web Start (JWS), your application is launched for the
first time from a Web browser (get it? Web Starf) but it runs as a
stand-alone application (well, almost), without the constraints of the
browser. And once it's downloaded to the end-user's machine (which
happens the first time the user accesses the browser link that starts
the download), it stays there.

Java Web Start is, among other things, a small Java program that lives
on the client machine and works much like a browser plug-in (the
way, say, Adobe Acrobat Reader opens when your browser gets a .pdf
file) . ThisJava program is called the Java Web Start 'helper app',
and its key purpose is to manage the downloading, updating, and
launching (executing) of yOUTJWS apps,

WhenJWS downloads your application (an executableJAR), it
invokes the main 0 method for your app. After that, the end-user can
launch your application directory from the JWS helper app without
having to go back through the Web page link.

But that's not the best part. The amazing thing aboutJWS is its
ability to detect when even a small part of application (say, a single
class file) has changed on the server, and-without any end-user
intervention-download and integrate the updated code.

There's still an issue , of course, like how does the end-user getJava
and java Web Start? They need both-Java to run the app, andJava
Web Stan (a small Java application itself) to handle retrieving and
launching the app. But even tluu has been solved. You can set things
up so that if your end-users don't haveJWS. they can download
it from Sun. And if they do have JWS, but their version ofJava is
out-of-date (because you've specified in yourJWS app that you
need a specific version ofJava), the Java 2 Standard Edition can be
downloaded to the end-user machine.

Best of all, it's simple to use. You can serve up aJWS app much like
any other type ofWeb resource such as a plain old HTML page or a
JPEG image. You set up a Web (HTML) page with a link to yourJWS
application, and you're in business.

In the end, yourJWS application isn't much more than an
executable JAR that end-users can download from the Web.

Java Web Start
End-users launch aJava
Web Start app by clicling
on a lin1 in a Web
page. But once the apr
downloads. it runs outside
the browser, just like any
other stand-alone Java
application. In fact, a
Java Web Start app is just
an executable JAR that's
distributed over the Web.

package, jars and deployment

100% Remote

Web Start---Executable
Jar

100% Local

you are he re ~ 597

Java Web Start

How .Java Web Start works

G) The client clicks on a Web page link
to your JWS application (0 .jnlp file).

The Web page link

Clic:k

Web br-o'NSt"r

-give me MyApp.jnlp"

® The Web server (HTTP) gets the
. request and sends back a .Jnlp file

(this Is NOT the JAR).

The .jnlp file is an XML document that
states the name of the application's
executable JAR file,

Java Web Start (a small 'helper app'
on the client) is started up by the
browser. The JWS helper app reads
the .jnlp file, and asks the server for
the MyApp.jar file.

@ The Web server 'serves ' up the
requested .jar file.

Java Web Start gets the JAR and
starts the oppUcation by calling the
specified malnO method (just like an
executable JAR).
Next time the user wants to run this opp. he can
open the Java Web Start application and from
there launch your app. without even being online.

598 chap ter 17

-give me MyApp.jar"

--

package, jars and deployment

The .j"lp file
To make aJava Web Start app, you need to Jnlp (Java Network
Launch Protocol) file that describes your application. This is the
file the JWS app reads and uses to find yourJAR and launch the
app (by calling theJAR's main 0 method) , A jnlp file is a simple ,
XML document that has several different things you can put in, .~ -t~e 'yoat:
but as a minimum, it should look like this: ~ ye ~o~ s~et.l l~e seY"e~ ·

, -tal"'s 'II ~ L~~ 'IS O'f\ 'ye v51'f\~
, G10ase :\:,a.n- s'\- :t so 'lie 10

<?:xml version="l.O" encoding="ut£-B"?> \~e (.0 e y'fle S \ot.a\~OS I \" yOV' 'lieJ 'II~eye 'f~\Ii -tnls O'f\ o'J'y "\1,1.0.0. . -tn\S'fIO~\G
,.f ' e -\:.tS-\:."'V'~L .1, adoytsSL L sey"eY,
v' eY ~ \oo~va"," ev 'fIev "r -t~e \oc.a S oy\ o'J'Y ·l~~:;o.\~s...a..t-(.o'"

<J'nlp spec="0.2 1.0" s-tayt,a~~ /1,.rIl'fl ,'fIIi.
"~-t-\:.rsO'l'

codebase=''http://l27.0.0.1/~kathy'' t · ~th
. . L \ tio'f\ ot the jtllf ~ile rt:la'ove e

hre£="MyApp. jnlp"> ~ ThiS IS "he ~a I showS that MyAyyjnly is
todebase..T~,'s e14d':Yd~ ttor'f ot the web seYller, not
allailable Itl "he YOO" lye
tlested itl so",e othey diYet~'f-

<information>

<title>kathy App</title>

<vendor>Wickedly Smart</vendor>

<homepaqe hre£="index.html"/>

<description>Head First WebStart demo</description>

<icon hre£="kathys.qi£"/>. n1ya", withollt<o£fline-allowed/>>/ . This ",eanS the lOSer tan Yl/in 'f0l/il'" r . ottl' e
~ . ted ~ the internet. -t he lOSer I~ \n ,

</in£ormation> ~t:~::;~~e a\Atomatit-l/ifdahn~ teahye wont work.

<resources> This says that YOI/il'" al'l' needs lIel'"sion 1.3
<j2se version="l. 3+" />~ ot Jalla, oY ~reate\".

<jar hre£="MyApp . jar"/>~n
e tlatl'le 0+ t:

/ oiher JAo ,. eXef·l<tah/e JAo/ y;
< resources> " 1"; es as w /I 1.L 1. " . 010 tI'Iip'hi h

ever. SOlltld d . e • <;nat: hold .I. ave
s an I tI'Ia~es llSed b Outer (. asses 0\'"

YYOll\" apr.
<application-desc main-class="HelloWebStart"/>

</jnlp> ~ This is like the tI'Iainfest Main-Class ent\"'1'" it says
whith zlass in the JAR has the llIairD llIethod.

you are here . 599

deploying with JWS

Steps for making and deploying
a Java Web Start app

Make an executable JAR
for your application. 0

MyApp.Jar

~ Write a .Jnlp file .

MyApp.jnlp

® Place your JAR and .jnlp
files on your Web server .

@) Add a new mime type to your Web server.

application/x-java-jnlp-nle

This causes the server to send the .jnlp file with the
correct header, so that when the browser receives
the Jnlp file it knows what it is and knows to start
the JWS helper app.

~
.....

I~.....
~--:

MyJWSApp.hbnl

600 chapler 17

Create Q Web page with a link
to your .jnlp file
<HTML>

<BODY>

<8 href='~App2.jnlpH>Launch My Application
<I BODY>

</HTML>

package, jars and deployment,

,.
LOO

I
k at the sequence of events below,and 2.

p acethem in the order In which they
occur In aJWS application.

3.

5,

4.

7.

6.

the JWS helper app invokes
the JAR's malnO method

er requests a .jnlpfile
from the Web server

the Web server sends
tiJe to the browser

__-~--:::;':::-;;;-v !heWeb server sends a JAR
\he Web browser starts up lileto!he JWS helper app
theJWS helper app

user dicks aWeb page Itn

When the JWS gets the JAR, it invokes the
mainO method (specified in the .jnlp file).

•

•

•

•

•

•

•

,-- BULlO POINTS ­
Java Web Start technology lets you deploy a
stand-alone client application from the Web.

Java Web Start includes a 'helper app' that must
be installed on the client (along with Java).

AJava Web Start (JWS) app has two pieces:
an executable JAR and a .jnlp file.

A.jnlp file isasimple XML document that
describes your JWS application. It includes
tags for specifying the name and location of the
JAR, and the name ofthe class with the mainO
method.

When a browser gets a .jnlp file from the server
(because the user clicked on a link tothe .jnlp
file), the browser starts upthe JWS helper app.

The JWS helper app reads the .jnlp file and
requests the executable JAR from the Web
server.

Applets can't live outside of a Web browser. An applet is
downloaded from the Web as part of a Web page rather than
simply from aWeb page. In other words, to the browser, the applet
IsJust like a JPEG or any other resource.The browser uses either a
Javaplug-In or the browser's own built-In Java (far less common
today) to run the applet. Applets don't have the same level of
functionality for things such as automatic updating, and they must
always be launched from the browser. With JWS applications, once
they're downloaded from the Web, the user doesn't even have to
be usIng a browser to relaunch the application locally. Instead,
the user can start up the JWS helper app, and use It to launch the
already-downloaded application again.

dlim~estJons

Q.: How IsJava Web Start dl~rentfrom an applet1

A:

Q..: What are the security restrictions of JWS1

A: JWS apps have several limitations Including being
restricted from reading and writing to the user's hard drive. But...
JWS has Its own API with a special open and savedialog box so
that, with the user's permission, your app can save and read Its
own flies In a speclaI, restricted area of th e user's drive.

you are he re ~ 601

exercise: True or False

We explored packaging, deployment, and JWS
in this chapter. Your job is to decide whether
each of the following statements is true or false.

1. The Java compiler has a flag, -d, that lets you decide where your .class files should go .

2. AJAR is a standard directory where your .class files should reside.

3. When creating aJava Archive you must create a file called jar.mf.

4. The supporting file in a Java Archive declares which class has the main() method.

5. JAR files must be unzipped before the jVM can use the classes inside.

6. At the command line, Java Archives are invoked using the -arch flag.

7. Package structures are meaningfully represented using hierarchies.

8. Using your company's domain name is not recommended when naming packages.

9. Different classes within a source file can belong to different packages.

10. When compiling classes in a package, the -p flag is highly recommended.

11. When compiling classes in a package, the full name must mirror the directory tree.

12. Judicious use of the -d flag can help to assure that there are no typos in your class tree.

13. Extracting aJAR with packages will create a directory called meta-info

14. Extracting aJAR with packages will create a file called manifest.mf.

15. TheJWS helper app always runs in conjunction with a browser.

16. JWS applications require a .nlp (Network Launch Protocol) file to work properly.

17. AJWS's main method is specified in itsJAR file.

602 chapter 17

~U1Il1Ilar)'-Or~ss 7-.0

package, jars and deployment

Anything in the book
Isfairgamefor this
onel

Aaoss Down

6.Won't travel 26. Mine isunique 1. Pushy widgets 16.Who's allowed 30. 110 cleanup

9. Don't split me 27. GUl's target 2. __ of my desire 19.Efficiency expert 31. MUll-nap

10. Release-able 29.Java team 3. 'Abandoned'moniker 20. Early exit 34.Trigmethod

11. Got the key 30. Factory 4. A chunk 21. Commonwrapper 36. Encaps method

12. VOgang 32. Forawhile 5. Math not trlg 23. Yes or no 38.JNLP format

15. Flatten 33.Atomic It 8 6. Bebrave 24.Java jackets 39.VB's final

17. Encapsulated returner 35. Goodasnew 7. Arrangewell 26. Not behavior 40. Java branch

18.Shipthis one 37. Pairsevent 8. Swing slang 28. Socket's suite

21 . MakeIt so 41.Wheredo I start 11. I/Ocanals

22. I/O sieve 42 A little firewall 13.Organized release

25. Diskleaf 14. Not for an instance

you are here ~ 603

exercise solutions

,.
2.

3.

4.

5.

6.

7.

the Web server sends a.jnlp
file 10 the browser

'

theWeb browser starts up
the JWS helper app

\ \he NJS helper app requests

\ lheJARfl\e

I the Web server sends a JAR I
Lli/e 10 the JWS helper app

Ithe JWS helper app Invokes I
theJAR's malnO method

True
False
False
True
False
False
True
False
False
False
True
True
True
True
False
False
False

1. The Java compiler has a flag, -d, that lets you decide where your .class files should go.

2. AJAR is a standard directory where your .class files shouJd reside.

3. When creating a Java Archive you must create a file calledjar.mf,

4. The supporting file in aJava Archive declares which class has the mainO method.

5. JAR files must be unzipped before thejVM can use the classes inside.

6. At the command line, Java Archives are invoked using the -arch flag.

7. Package structures are meaningfully represented using hierarchies.

8. Using your company's domain name is not recommended when naming packages.

9. Different classes within a source file can belong to different packages.

10. When compiling classes in a package, the -p flag is highly recommended.

II. When compiling classes in a package. the full name must mirror the directory tree.

12. Judicious use of the -d flag can help to assure that there are no typos in your tree.

13. Extracting aJAR with packages will create a directory called meta-inf,

14. Extracting aJAR with packages will create a file called manifestmf.

15. TheJWS helper app always runs in conjunction with a browser.

16.]WS applications require a .nlp (Network Launch Protocol) file to work properly.

17. A]WS 's main method is specified in itsJAR file.

604 chapter 1 7

~UtIltIlary-Or~55 t. O

you are here ~ 605

