Perspectives and Challenges of iOS Developers in Using Reactive
Programming with RxSwift

Elaine Cruz Farias Carlos Zimmerle Kiev Gama
Universidade Federal de Pernambuco Universidade Federal de Pernambuco Universidade Federal de Pernambuco
(UFPE) (UFPE) (UFPE)

Recife, Brazil Recife, Brazil Recife, Brazil
ecf@cin.ufpe.br cezl@cin.ufpe.br kiev@cin.ufpe.br

ABSTRACT

Reactive programming, which deals with asynchronous data streams
and events, is gaining popularity but remains underexplored as a
research topic. In the iOS ecosystem, RxSwift stands out as a widely
used framework for reactive programming despite its challenges.
This study investigates the difficulties faced by iOS developers when
using RxSwift. Semi-structured interviews were conducted, and a
code comprehension questionnaire was applied to map developers’
perspectives and the main challenges encountered. The paradigm
shift was identified as the primary obstacle, with specific difficulties
in creating streams, managing memory, and handling concurrency.
Architectural patterns and learning resources were also cited as
significant barriers. This research provides an overview of reactive
development with RxSwift in iOS, proposing ways to optimize the
learning journey and maximize the benefits of this approach.

KEYWORDS

Reactive Programming, Reactive Extensions, Mobile Applications

1 INTRODUCTION

In the dynamic landscape of programming and projects aimed at
mobile platforms, reactive programming emerges as an innovative
approach to tackle increasing challenges [9]. Modern applications
are becoming more robust and complex, requiring simultaneous
management of tasks such as audio playback, interface manipulation,
and network calls, all while maintaining responsiveness and speed
for the user [22].

Many of these applications are reactive systems that respond to a
series of events and perform actions based on them [21]. Reactive
programming is a declarative programming approach that deals
with constant data streams and the propagation of changes over time
asynchronously [9]. This unique ability to manage these streams and
events makes it a fundamental element in the development of mobile
platform applications, producing more flexible and scalable systems
that better handle changes and provide interactive and effective
feedback to their users [4].

At the core of this research is RxSwift, a widely used framework
that incorporates the principles of reactive programming in the de-
velopment of projects for the iOS ecosystem [5]. However, despite
the benefits that the reactive approach can bring, it does not come
without challenges and difficulties in its implementation. These sys-
tems require a new way of interpreting and solving problems, which
can be a difficult skill to master, as pointed out by participants in a
study [28]. Thus, learning and using RxSwift is not just about acquir-
ing a new tool but facing a learning curve that can be challenging.

Besides being suitable for event-driven applications on mobile de-
vices (e.g., tablets, smartphones), reactive programming also follows
this principle in web applications [14], forming the basis of various

frameworks like Angular, React, and Vue.js [18]. Although widely
adopted and recognized, reactive programming continues to be un-
derexplored by the research community in Software Engineering, as
pointed out in 2015 [27]. There is a scarcity of research articles on
this topic, concentrated among a few authors [28, 29], often limited
to repository mining [20, 29], and rarely adopting an approach that
directly involves developers, and still less the RxSwift framework.

In this context, we conducted an exploratory study aiming to
identify and map the difficulties faced by developers when using
RxSwift. A mixed-method approach was used, combining interviews
and a code comprehension questionnaire, which helped collect data
from software industry professionals. By mapping these challenges,
this research aims to create new perspectives and insights that not
only enhance the state of practice in companies and software projects
but also advance the state of the art in academic research on a topic
that is underexplored and intersects with industry needs.

2 BACKGROUND

2.1 Reactive Programming

Reactive systems or applications are a vital and broad class of soft-
ware that focus on reacting to various types of events, such as user
interface interactions, Internet messages, and sensor stimuli [25, 26].
Most modern software encompasses reactivity [9, 27], making them
challenging to design, implement, and maintain [26, 27]. Reactive
programming is a paradigm built around continuous values that vary
over time and the propagation of changes. It facilitates the declara-
tive development of event-driven applications, allowing programs
to be expressed in terms of intentions while the language automat-
ically manages execution [9]. This approach increases abstraction
and simplifies code, improving expressiveness and understanding.
The reactive paradigm has several principles present in the lan-
guages and libraries that implement it, such as declarativity; the
abstraction in the propagation of changes; the existing abstractions
in the composition of objects, facilitated by operators, for example,
and the favoring of data flow over control flow [28]. These principles
are present in various solutions that enable reactive development in
imperative languages. One such example is Reactive Extensions !,
one of the most popular and widely used families of libraries, also
known as ReactiveX or Rx. In 2012, the Rx.NET library became an
open-source project, allowing the implementation of its functionality
for various languages and platforms, such as Ada [16] and Java [19],
among other languages that adopted this more reactive approach.

2.2 RxSwift

For the iOS platform [22], RxSwift was proposed in 2015 [5], the spe-
cific implementation of Swift for the Reactive Extensions (ReactiveX)

Uhttps://reactivex.io

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Observer {
identifier: Int { get set }
update(temperature: Double) Void

1 Subject {
registerObserver (observer: Observer)
removeObserver (ol er: Observer)

¢ notifyObserver()

TemperatureSubject: Subject {
private observers: [Observer] 0
private temperature: Double

private identifier: Int

registerObserver (observer: Observer){

observers.append(observer)

removeObserver(observer: Observer) {
observers. removeAll(whe { obs
obs.identifier observer.identifier

)

notifyObserver() {
observers. forEach { obs i

obs.update(temperature .temperature)

}

setTemperature(temperature: Double){
.temperature temperature

notifyObserver()

TemperatureObserver: Observer {

identifier: Int

update(temperature: Double {
print(I \(temperature)”)

temperatureSubject = TemperatureSubject()
temperatureObserver TemperatureObserver()
temperatureSubject.registerObserver(observer: temperatureObserver)

temperatureSubiect.setTemperature(temoerature

img RxSwift

t temperatureSubject = PublishSubject<Double>()

t disposable = temperatureSubject
subscribe(onNext: { temperature i
print(\(temperature)")
3]

temperatureSubject . onNext

Figure 1: Swift code (A) versus RxSwift equivalent (B)

standard. Like other Rx implementations, the intent of RxSwift is to
enable the easy composition of asynchronous operations and data
streams in the form of Observables, along with a set of methods
to transform and compose these asynchronous work elements [6].
Figure 1 exemplifies Swift code using the Observer pattern (A) and
equivalent code using RxSwift (B), showing a clear reduction in
verbosity through the use of the library.

RxSwift has four main elements: observables, subscribers, oper-
ators, and schedulers. An Observable is a protocol that defines a
type capable of transmitting a sequence of values over time [22],
meaning it emits a sequence of values. On the other hand, there are

Elaine Cruz Farias, Carlos Zimmerle, and Kiev Gama

subscribers, which use operators to consume these generated values.
Operators are methods capable of abstracting some asynchronous
activity, and they can be composed with each other by chaining
the result of one operator to be used by another (for example, filter
and map in Figure 2). Finally, Schedulers can be seen as enhanced
dispatch queues. RxSwift provides predefined Schedulers and allows
scheduling different parts of the work from the same signature on dif-
ferent Schedulers for better performance, sending parts of the work
to the correct context and allowing them to work harmoniously with
each other’s output[22].

The relevance of RxSwift in the reactive development landscape
for iOS is notable, even with the native option of Swift Combine [1]
since 2019 and the release of the new Observation framework [3] in
2023. However, despite the many positive aspects and the extensive
documentation available on the Internet, few studies investigate the
use of reactive programming with RxSwift, and even more broadly in
reactive development on mobile devices, especially studies involving
developers directly in data collection.

3 METHOD

In this exploratory study scenario, interviews are fundamental for
investigating practices and understanding perceptions, allowing for
a deep exploration of relevant questions, topics, and experiences,
capturing the complexity and richness of phenomena in specific
contexts [15]. In addition, to support and complement the collected
reports, multiple-choice questionnaires related to code comprehen-
sion were also conducted. Thus, this study adopted a mixed approach
to data collection regarding RxSwift developers’ perceptions of the
technology. Data collection was conducted exclusively online, both
for availability and practicality for participants from various cities.

3.1 Semi-structured interview

Since there are few studies on the topic [27], using semi-structured
interviews served to avoid structural rigidity and allow for broader
exploration [15]. The interview guide was designed to conduct the
conversation around four main axes:

Experience, which will map the interviewee’s background in pro-
gramming, reactive programming, and RxSwift, providing context
to understand their journey and level of expertise and how every-
thing relates to and impacts the understanding of the subject being
addressed;

Development and Challenges, which aims to validate the com-
plexity associated with learning and applying RxSwift, exploring
specific difficulties in nature and intensity through the reports;
Learning Resources, to obtain a practical perspective on the tools
and materials available for learning. Identifying satisfaction with
these resources and possible gaps in existing materials will contribute
to improvements in learning RxSwift;

Suggestions and Tips, to consolidate data validation by collect-
ing suggestions on how to make learning and using RxSwift more
accessible and efficient.

3.2 Multiple-choice questionnaire

The questionnaire consisted of closed-ended questions and was di-
vided into three main sections: Experience, Code Comprehension,
and Operator Classification. In the Experience section, questions
were asked about the duration of practice with programming, reac-
tive programming, and RxSwift. In the Code Comprehension section,

Perspectives and Challenges of iOS Developers in Using Reactive Programming with RxSwift

1. Ao analisar o cédigo apresentado, qual das seguintes opcdes melhor descreve o que o processedNumbersObservable emitiria a0
ser subscribed?

import RxSwift

let numbers = Observable.of(1, 2, 3, 4, 5)
let processedNumbersObservable = numbers
.filter { $0 % 2 == 0 }
.map { $0 * }

[...]

(O Os valores de numbers multiplicados por 2

(O Os valores pares de numbers multiplicados por 2

(O Os valores de numbers multiplicados por 2 e maiores que 4
(O Os valores pares de numbers

(O Néo sei inferir nada sobre o cédigo acima

Figure 2: Example of a question about Stream Manipulation

1 to 3 questions were presented about: Stream Creation, Stream Ma-
nipulation, Dependency Management, Composition, and Disposable.
These categories were derived from existing studies on repository
mining and Q&A platforms focused on reactive programming [29]
and from a specific study on the use of RxSwift [13]. In the Operator
Classification section, based on the operators used in code examples,
respondents were asked to categorize the difficulty (easy, very easy,
neutral, difficult, very difficult, or unknown) of some RxSwift opera-
tors (map, subscribe, create, just, combineLatest, zip, flatMap, filter,
observeOn, takeUntil, and share). A theoretical question without
code to be interpreted, regarding the functionality of DisposeBag,
complemented the analysis of code comprehension

The SoSci Survey platform [7] was used for the online research.
In this setup, a code snippet was presented and participants were
expected to identify the alternative that best expressed their inter-
pretation and understanding of the provided snippet. An example
question can be seen in Figure 2.

To mitigate the occurrence of false positives, each question in-
cluded an option which participants could select if they did not know
the answer or could not affirm any of the alternatives, indicating a
lack of knowledge for interpreting the code. Participants were also
encouraged and emphasized to avoid guessing the answers.

3.3 Sampling

The strategy of purposive sampling was used to select interviewees
who well-represented the perceptions and experiences of RxSwift
developers, aiming for a balanced profile between academic and
professional experience. The sample consisted of 13 interviewees
and 10 questionnaire respondents. The individuals were all Brazilians
contacted among the professional network connections of the first
author. As pointed out by Baltes and Ralph [10], this type of sampling
is valuable in Software Engineering research because it allows for
the selection of rich and relevant cases when a complete sampling
frame is not available, enabling a focus on specific criteria to obtain
deep and meaningful data, thus ensuring the relevance of the results
for the study’s objectives.

3.4 Daya analysis

3.4.1 Semi-structured interviews. The interviews were all conducted
in Portuguese, and the recordings were transcribed with an auto-
mated tool (Whisper Transcription). The results were analyzed to

SBES’24, September 30 — October 04, 2024, Curitiba, PR

correct minor transcription errors. To analyze the data collected
from the interviews, we used deductive reasoning [23], meaning we
started with categories gathered from the literature, analyzed indi-
vidual reports, and made generalizations and classifications based
on these inferences. We conducted three processes during data col-
lection and analysis:

I. Analytical Memos. After each interview, we made Analytical
Memos, which are concise notes about the thoughts, ideas, and ques-
tions that arose during data collection. Their purpose is to document
and reflect on the development of the investigative process, including
the analysis of patterns and categories [24]. This approach helped
to observe repetitions that emerged in the data, contributing to the
investigation.

II. In Vivo Coding. To categorize the difficulties pointed out by
the developers, we performed a coding process on the interview
transcriptions. Coding is a heuristic for the meanings of individual
sections of data. These codes serve as a way to standardize, clas-
sify, and subsequently reorganize each piece of data into emerging
categories for further analysis [23]. Among the different ways to
apply coding, this study used In Vivo Coding, which emphasizes the
participants’ spoken words [23]. Thus, we sought to select excerpts
that seemed significant or somehow summarized what was said.
III. Categorization of Codes. After conducting the In Vivo Cod-
ing process, we categorized the extracted codes. For the categories
that would support the deductive reasoning employed in the anal-
ysis, we surveyed topics already identified as popular or difficult
within the literature on reactive programming and RxSwift: such
as Dependency Management [29], Functional Programming [28],
and Perception of time [12]. These topics formed the initial list of
categories, subject to change during the analysis phase. During this
process, new topics were added based on elements identified in the
data, reflecting recurring themes present in the extracted excerpts:
- Stream Creation: Difficulties involved in creating observables.
Notably regarding the different types of Subjects that exist, the
various ways to create each one, and when to use each type.

- User Interface (UI): Complexities related to integrating reactive
logic with user interactions.

- Paradigm Shift: Challenges of perceptual and conceptual changes
faced when adopting the reactive paradigm, examining how this
transition impacts the mental framework in approaching problems.
- Functional Programming: Obstacles when applying functional
programming concepts in RxSwift, identifying how the composition
of reactive operators reflects the principles of this approach.

- Dependency Management: Challenges related to effectively man-
aging streams and the dynamic relationships between components,
considering the subtle management of internal connections.

- Memory Management: Difficulties in managing memory, focusing
on preventing leaks and optimizing performance. This category is
sometimes also referred to as Lifecycle or Stream lifecycle.

- Testing and Debugging: Problems encountered in identifying and
debugging issues, as well as in manually and automatically testing
RxSwift code with unit tests.

- Perception of time: Complexity of understanding and structuring
Perception of times in RxSwift implementation. This includes issues
of state management and the complexity of tracking value changes
over time.

- Type Inference: Obstacles dealing with type inference and type
compatibility errors, especially in long chains of operators.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

- Error Handling: Challenges in strategies for effectively managing
the data flow, especially in handling the onError event to deal with
exceptions and unexpected failures

3.4.2 Multiple choice questionnaires. To examine the data from the
multiple-choice questionnaire, the accuracy and error rates for each
question related to Code Comprehension were assessed, along with
the response times. Alongside these indices, the categories estab-
lished during the data collection structuring phase were examined,
allowing for a detailed view of performance in specific areas, with
special attention given to categories with higher error rates, indicat-
ing potential difficulty in those topics.

Thus, the combination of qualitative and quantitative methods
allowed for an understanding of the challenges faced by developers
when applying RxSwift in their projects. Additionally, it enabled
an exploration of perceptions about learning resources and sug-
gestions for improving the efficiency of using RxSwift, providing a
comprehensive and practical view for professionals and researchers
interested in this domain.

4 RESULTS

4.1 Semi-structured interviews

Participants details. As detailed in Table 1, the 13 participants had
varying levels of experience in RxSwift, which were divided into 3
expertise categories: Beginner (1 to 3 years), Intermediate (3 to 5
years), and Advanced (more than 5 years). The interviews lasted,
on average, 21 minutes, with longer duration observed for more
experienced interviewees, reflected by the greater range of reports
and testimonies.

Table 1: Profile of the interview participants

Participant Experience with RxSwift Interview Duration (min.)

P1 Beginner 18:05
P2 Beginner 17:30
P3 Beginner 08:30
P4 Beginner 10:02
P5 Beginner 16:50
Pe6 Beginner 17:15
P7 Intermediate 20:50
P8 Intermediate 30:05
P9 Intermediate 22:30
P10 Intermediate 18:15
P11 Advanced 24:04
P12 Advanced 27:05
P13 Advanced 21:50

Coding and categorization An In Vivo Coding approach was used
to select excerpts spoken by the participants [23], as shown in Table
2. The aim was to identify the most representative segments, summa-
rizing or concisely expressing the testimony presented. After the In
Vivo Coding of the interview transcripts, the extracted codes were
categorized. Starting from the initial 11 categories listed in Table 3,
a cross-validation of the recurring topics was performed, resulting
in the removal of one category (Type Inference) and the inclusion of
four other categories, detailed below, which resulted in 14 categories
being used (Figure 3).

a) Architectural Patterns: Obstacles faced in understanding
and structuring architectural patterns that fit well with the
use of RxSwift, considering scalability and code maintenance.
Barriers in decision-making regarding structures and code
organization were recorded here, as exposed in "Difficulty

Elaine Cruz Farias, Carlos Zimmerle, and Kiev Gama

in passing Rx information between classes and screens" (P1)
and "it became a very large file that we didn’t know how to
structure" (P2).

b) Insufficient Learning Resources: Challenges faced by de-
velopers in finding limited educational resources to learn and
resolve doubts in RxSwift.

c) Implicit Behavior: Barrier regarding an 'implicit automa-
tion” in RxSwift snippets, referring to behavior that occurs
automatically, without clear explicitness in the source code.
This characteristic, although convenient, was identified as a
challenge manifested in "Things seemed to be done by magic,
I didn’t understand well" (P2) and "A lot of things I used with-
out really understanding how it works behind the scenes."
(P3).

d) Others: Consideration of challenges and aspects not addressed
in the previous categories, providing space for diverse topics
in the context. Some issues raised included difficulty in know-
ing how to search when there was a doubt or performance
problems.

Table 2: Example of in Vivo code extraction and categorization
(translated from PT-BR)

Transcript Excerpt Extracted Code Category

"Icouldn’t get it to work atall because "I think I still Memory Man-
I didn’t understand what DisposeBag ~ don’t understand agement

was until then, and I think I'stilldon’t what disposebag

understand what DisposeBag is" (P3) is"

"When we write object-oriented code, "you no longer Concurrency
you know the order in which it will have control over

be executed. When you start using when things will

this type of framework, looking at be executed"

the reactive part, you no longer have

control over when things will be exe-

cuted" (P9)

Table 3: Categories of codes and their respective origins

Category Reference of Origin
Stream Creation Zimmerle et al. [29]
User Interface (UI) Pereira et al. [20]
Paradigm Shift Salvaneschi et al. [28]

Functional Programming
Dependency Management
Memory Management

Salvaneschi et al. [28]

Zimmerle et al. [29]

Holopainen [13], Pereira [21], and
Zimmerle et al. [29]

Zimmerle et al. [29], Pereira et al. [20]
Zimmerle et al. [29], Pereira et al. [20]
Dinser [12]

Zimmerle et al. [29] and Miata [17]

RS RN OENE

8 Testing and Debugging
9 Concurrency
9 Perception of time
10 Type Inference*
11 Error Handling Zimmerle et al. [29]
12 Architectural Patterns This study
13 Insufficient Learning Resources | This study
14 Implicit Behavior This study
15 Others This study
*Not identified/used in data categorization

In the other pre-selected categories, there are, for example, "in-
consistency in the collection view" (P1) and "difficulty in getting
information and displaying it the way I wanted in the UI" (P6) cat-
egorized as challenges faced by participants in the User Interface
(UI) topic. Also, "Sometimes it is very difficult to reproduce how

Perspectives and Challenges of iOS Developers in Using Reactive Programming with RxSwift

Paradigm Shift

Stream Creation

Memory Management
Concurrency

Implicit Behavior
Functional Programming
Dependency Management
Testing and Debugging
Insufficient Learning Resources
Architectural Patterns
User Interface (Ul)
Perception of Time

Error Handling

Others

0 2 4 6 8 10
Number of interviewees

Figure 3: Mentions of each category by the interviewees (n=13)

the stream works in the test" (P12) categorized as a Testing and
Debugging topic. Table 2 provides more examples. The complete list
of codes is available in the artifact availability section.

Analysis of interviews. The frequency with which each category
was mentioned by the participants can be observed in Figure 3. "Para-
digm Shift" stands out as the most referenced category, representing
69% (9 people) of the participants. Mentions of this topic highlight
the importance attributed to the paradigm shift and its impact on
the mental framework for approaching problems. This finding also
correlates with the discussion about the learning curve in reactive
technologies and the intrinsic paradigm shift in them, as indicated by
Salvaneschi et al [28], who also point out these factors as the main
obstacles faced by developers of reactive applications, reinforcing
this finding. "Stream Creation" was cited by 8 participants (61.5%), ap-
pearing more frequently in the statements of people new to reactive
technology and RxSwift. The topics of "Memory Management" and
"Concurrency” also had high citations, mentioned by 7 (53.8%) of the
participants. These occurrences align with Zimmerle et al [29], who
state that "the topics with the most publications address stream ab-
straction, with Stream Manipulation (over 13%) and Stream Creation
and Composition (over 10%) being in first and second place". Addi-
tionally, "Concurrency" appears in another study [21] that addresses
difficulties with Combine, Apple’s reactive framework, being pointed
out as the most challenging topic, which can also be seen with the
RxSwift framework. The topics of "Functional Programming" and
"Testing and Debugging" were also frequent in the interviewees’
statements and should be considered frequent challenges. The func-
tional programming theme is also identified as a major difficulty by
Holopainen [13]. The category of Architectural Patterns identified
in the reports highlighted a gap in guidelines and design patterns
aimed at the reactive universe.

4.2 Multiple Choice Questionnaire

The questionnaire was divided into three main sections: Experience,
Code Comprehension, and Operator Classification, to explore differ-
ent aspects of RxSwift usage. In the Code Comprehension section,
1 to 3 questions were presented on the topics of Stream Creation,
Stream Manipulation, Dependency Management, Composition, and
Disposable. The Stream Creation part had 1 question; Stream Ma-
nipulation, Composition, and Disposable are explored in 2 questions
each, and Dependency Management had 3 questions.

Profile of Participants. The profile of the participants can be seen
in Table 4, fitting individuals with little expertise in the reactive

SBES’24, September 30 — October 04, 2024, Curitiba, PR

paradigm and the RxSwift framework. The interview participants
with little experience and categorized as beginners answered the
questionnaire, with this intersection between the samples.

Table 4: Profile of the Questionnaire Participants

Characteristics n(%)
Experience with programming

0-2 years 1(10%)
2-3 years 1(10%)
3-4 years 2 (20%)
4-5 years 2 (20%)
5+ years 4 (40%)
Experience with reactive programming

0-1 years 5 (50%)
2-3 years 4 (40%)
4-5 years 1(10%)
Experience with RxSwift

None 1(10%)
0-1 years 9 (90%)

Analysis of Responses. In the analysis of the responses, the options
indicating a lack of knowledge about the correct alternative were
treated as equivalent to incorrect ones. This was due to the inter-
pretation that the question presented challenges for the respondent,
which is recognized in both cases. The accuracy and error rates for
each of the questions can be observed in Table 5. It is noteworthy that
the questions related to the use of Disposables registered the lowest
accuracy rate. Understanding these questions is intrinsically linked
to understanding the lifecycle of streams, and is thus associated
with Memory Management in the context of RxSwift. This finding
reinforces the high incidence of mentions of Memory Management
as a challenging area in the interviews. Additionally, challenges in
the topics of stream manipulation and composition also had some
errors. In the categorization of operator comprehension difficulty,
out of the 10 responses, share was the least known operator, accord-
ing to 6 respondents, and considered difficult by 3. Other notable
figures include takeUntil being unknown to 5 people, while 4 were
unfamiliar with create, just, and observeOn. On the other hand, filter
and map were considered easy by 9 respondents, while subscribe was
seen as easy by 5 people. Furthermore, 3 people considered flatMap
to have some level of difficulty. It is important to note that difficulty
is not necessarily related to popularity, as, with the exception of
the share operator, the presented operators are among the 15 most
popular [29].

Table 5: Rate of correct/incorrect questionnaire answers (n=10)

Question Correct | Incorrect
1 - Stream Creation 90% 10%
2 - Stream Manipulation I 90% 10%
3 - Stream Manipulation II 50% 50%
4 - Dependency Management I 80% 20%
5 - Dependency Management I 60% 40%
6 - Dependency Management III 90% 10%
7 - Stream Composition I 60% 40%
8 - Stream Composition II 60% 40%
10 - Disposables I 40% 60%
11 - Disposables II 30% 70%

4.3 Limitations

One of the main limitations that can be raised for this work is the
limited sample size, although this is an article focused on new ideas
and emerging results. We understand that the findings cannot be

SBES’24, September 30 — October 04, 2024, Curitiba, PR

generalized, nor is it the purpose of this research, which presents
emerging results. According to the research objectives, small samples
are acceptable in qualitative research [11]. Regarding the purposive
sampling approach, where items are selected based on a specific logic
or strategy, it becomes appropriate for qualitative and interpretive
research [10]. Thus, even with such a sample of developers with
varied experience, it is possible to ensure the relevance and depth of
the data, essential for understanding the challenges in using RxSwift.
Internal validity may have been compromised by participant bias,
with more experienced developers potentially providing more de-
tailed responses, and by the possible influence of the interviewer.
External validity is limited by the generalization of the results, given
that the sample has a small number of developers and the specific
focus on the iOS context, not being applicable to other platforms.

5 DISCUSSION

The interviews highlighted that the Paradigm Shift is an area of
notable difficulty, being mentioned by 69% of the participants. This
result emphasizes the significant mental transition that developers
face when adopting the reactive paradigm, indicating that the main
difficulty is more related to understanding the fundamentals of the
approach rather than RxSwift itself. From the reports, it was observed
that most developers started learning RxSwift due to professional
demands, highlighting the lack of a solid foundation to support the
daily use of the framework. This aspect was also emphasized in the
tips and suggestions section of the interviews, where there were
many mentions of the importance of studying and understanding the
paradigm before using RxSwift in practice. This finding is aligned
with the literature that addresses reactive programming [28].
Another category mentioned was Stream Creation, addressed
by 61.5% of the interviewees. Of the two questions about Stream
Manipulation in the questionnaire, one had a 90% success rate and
the other only 50%. The topic was pointed out in the literature [29]
as one of the most frequent in posts and questions on Stack Overflow
and GitHub, although it is not listed among the most challenging.
This seems to align with the frequency of this topic being a common
doubt for beginners, but appears to decrease with higher expertise.
Other frequently cited categories were Memory Management
and Concurrency, highlighted in the statements of 53.8% of the par-
ticipants. These topics are consistent with the complexities identified
in reactive frameworks, emphasizing the need for a deep understand-
ing of the lifecycle of streams and efficient resource management.
The topic of Memory Management, besides being recurrent in
the testimonies, had its complexity corroborated by the analysis
of the questionnaire responses, revealing specific challenges in un-
derstanding the use of Disposables, which was the area with the
highest error rate in the questions and naturally involves memory
management and references. A study [13] points to the issues of
reference cycles and memory leaks as one of the main challenges in
developing with RxSwift, which confirms the findings. Furthermore,
this theme is mentioned in other studies [21, 29] as one of the most
popular topics for questions, although not identified as one of the
main ones in terms of difficulty. The significant difficulty index with
the Concurrency category reported by the interviewees supports
the findings of two studies [20, 29] that pointed to it as one of the
most difficult topics in reactive programming and Combine, respec-
tively. Additionally, the exclusion of the "Type Inference" category

Elaine Cruz Farias, Carlos Zimmerle, and Kiev Gama

from the classification of codes reflects its absence in the testimonies,
although studies [17, 29] have pointed it out as a difficulty.

The categories that emerged in the analysis, such as Insufficient
Learning Resources and Architectural Patterns, provide valuable
insights as they are more difficult to identify in the counting and
analysis of Stack Overflow [8] and GitHub [2] posts. Therefore, the
presence of such themes highlights gaps in the availability of specific
educational materials for RxSwift and underscores the importance
of clear architectural guidelines.

6 CONCLUSION

Although RxSwift is not a very recent framework, having been re-
leased in 2015, there is currently scarce evidence of research address-
ing its use, and none have incorporated the direct opinions of devel-
opers. The mixed-method approach used in our research, combining
qualitative and quantitative elements through semi-structured in-
terviews along with a code comprehension questionnaire, provided
a broad understanding of the challenges faced by developers in ap-
plying RxSwift. Thus, with the aim of investigating the difficulties
faced by iOS developers when incorporating reactive programming
through RxSwift, this research helps reveal these main challenges
and how they relate to and differ from more general aspects of re-
active programming, highlighting issues related to stream creation
and manipulation, memory management, functional programming,
testing, and debugging.

In this work, we collected and categorized topics related to the use
of RxSwift, examining their appearance and frequency in developers’
reports as well as in code comprehension responses. This approach
provides a foundation for the research community to start deeper
investigations into the understanding gaps of the framework in
reactive projects. We contribute to the identification of common
problems when the framework is employed, guiding suggestions
for improvements to make the use of RxSwift more accessible to
Swift developers interested in reactive programming. Ultimately,
the results of this research provide valuable insights to improve the
efficiency of learning and using RxSwift, benefiting developers and
researchers interested in this domain.

This study serves as an initial step that can lead to broader inves-
tigation, in which we will conduct interviews with a larger sample
of i0S developers and compare perceptions between RxSwift and
Apple’s reactive frameworks, Combine [1] and Observation [3]. Ad-
ditionally, considering the learning difficulties pointed out, we aim to
investigate how the use of assistants like GitHub Copilot and other
tools based on Large Language Models can alleviate the learning
curve for developers with less experience in reactive programming.
Such approach would allow us to confront the current data, enriching
the understanding of the challenges faced in using the technology.
Furthermore, subsequent studies could bring interventions and ma-
terials aimed at addressing the major gaps and obstacles found.

ARTIFACTS AVAILABILITY

Supplementary material (in portuguese) containing a code book
with the list of codes and in vivo codes; a copy of the questionnaire
with questions and code examples; and a file with the questionnaire
responses: https://doi.org/10.6084/m9.figshare.25952860

https://doi.org/10.6084/m9.figshare.25952860

Perspectives and Challenges of iOS Developers in Using Reactive Programming with RxSwift

ACKNOWLEDGMENTS
This work is partially supported by INES (www.ines.org.br), CNPq

grant 465614/2014-0, FACEPE grants APQ-0399-1.03/17 and APQ/0388-

1.03/14, CAPES grant 88887.136410/2017-00.

REFERENCES

=
&

=
&

==
S8

[n.d.]. Combine framework. https://developer.apple.com/documentation/combine
[n.d.]. Github. https://github.com/

[n.d.]. Observation framework. https://developer.apple.com/documentation/
observation

[n.d.]. The Reactive Manifesto. https://www.reactivemanifesto.org/

[n.d.]. RxSwift GitHub. https://github.com/ReactiveX/RxSwift

[n.d.]. RxSwift Reference. https://docs.rxswift.org/

[n.d.]. SoSci Survey. https://www.soscisurvey.de/help/doku.php/en:start

[n.d.]. Stack OverFlow. https://stackoverflow.com/

Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn
Mostinckx, and Wolfgang De Meuter. 2012. A survey on reactive programming.
ACM Computing Survey (2012).

Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research:
A critical review and guidelines. Empirical Software Engineering 27, 4 (2022), 94.
Clive Roland Boddy. 2016. Sample size for qualitative research. Qualitative market
research: An international journal 19, 4 (2016), 426-432.

Moritz Dinser. 2021. An Empirical Study on Reactive Programming. Master’s
thesis, Technische Universitat Darmstadt. https://tuprints.ulb.tu-darmstadt.de/
19901/8/An_Empirical_Study_on_Reactive_Programming.pdf

Niko Holopainen. 2022. Reactive iOS Development with RxSwift. Master’s thesis,
Metropolia University of Applied Sciences. https://www.theseus.fi/bitstream/
handle/10024/704093/holopainen_niko.pdf

Kennedy Kambona, Elisa Gonzalez Boix, and Wolfgang De Meuter. 2013. An
evaluation of reactive programming and promises for structuring collaborative
web applications. In Proceedings of the 7th Workshop on Dynamic Languages and
Applications. 1-9.

Tim May. 2002. Qualitative research in action. Sage.

Alejandro R Mosteo. 2020. Reactive programming in Ada 2012 with RxAda. Journal
of Systems Architecture 110 (2020), 101784.

(17

[18

[19

[21

[22
[23

[24

[26

[27

[28

[29

]

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Matti Maatta. 2017. Reactive Programming in iOS Application Development.
Master’s Thesis, Tampere University of Technology. https://trepo.tuni.fi/bitstream/
handle/123456789/25137/M%C3%A4%C3%A4tt%C3%A4.pdf

Chi Nguyen Huu Ngoc. 2017. Functional Reactive Programming in React Applica-
tion. Bachelor’s Thesis, Metropolia University of Applied Sciences.

Tomasz Nurkiewicz and Ben Christensen. 2016. Reactive programming with RxJava:
creating asynchronous, event-based applications. " O’Reilly Media, Inc.".
Alessandra Pereira, Carlos Zimmerle, Kiev Gama, and Fernando Castor. 2023.
Reactive Programming with Swift Combine: An Analysis of Problems Faced by
Developers on Stack Overflow. (2023).

Alessandra Luana Nascimento Pereira. 2022. Um Estudo Sobre O Uso Do Frame-
work Combine Através Da Mineragao De Publica¢des Do Stack Overflow. Bache-
lor’s Thesis, Universidade Federal de Pernambuco. https://www.cin.ufpe.br/~tg/
2022-1/tg_SI/TG_alnp.pdf

Florent Pillet, Junior Bontognali, and Marin Todorova nand Scott Gardner. 2019.
RxSwift. Reactive Programming with Swift. Razeware LLC.

Johnny Saldafia. 2011. Fundamentals of Qualitative Research - understanding Quali-
tative Research. Oxford University Press, Inc.

Johnny Saldaia. 2013. The coding manual for qualitative research. SAGE Publica-
tions.

Guido Salvaneschi, Joscha Drechsler, and Mira Mezini. 2013. Towards distributed
reactive programming. In Coordination Models and Languages: 15th International
Conference, COORDINATION 2013, Held as Part of the 8th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy,
June 3-5, 2013. Proceedings 15. Springer, 226-235.

Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala: Bridging be-
tween object-oriented and functional style in reactive applications. In Proceedings
of the 13th international conference on Modularity. ACM, 25-36.

Guido Salvaneschi, Alessandro Margara, and Giordano Tamburrelli. 2015. Reactive
Programming: A Walkthrough. (2015).

Guido Salvaneschi, Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini.
2017. On the Positive Effect of Reactive Programming on Software Comprehension:
An Empirical Study. IEEE Transactions on Software Engineering PP(99):1-1 (2017).
Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Filho. 2022. Mining
the Usage of Reactive Programming APIs: A Study on GitHub and Stack Overflow.
(2022).

https://developer.apple.com/documentation/combine
https://github.com/
https://developer.apple.com/documentation/observation
https://developer.apple.com/documentation/observation
https://www.reactivemanifesto.org/
https://github.com/ReactiveX/RxSwift
https://docs.rxswift.org/
https://www.soscisurvey.de/help/doku.php/en:start
https://stackoverflow.com/
https://tuprints.ulb.tu-darmstadt.de/19901/8/An_Empirical_Study_on_Reactive_Programming.pdf
https://tuprints.ulb.tu-darmstadt.de/19901/8/An_Empirical_Study_on_Reactive_Programming.pdf
https://www.theseus.fi/bitstream/handle/10024/704093/holopainen_niko.pdf
https://www.theseus.fi/bitstream/handle/10024/704093/holopainen_niko.pdf
https://trepo.tuni.fi/bitstream/handle/123456789/25137/M%C3%A4%C3%A4tt%C3%A4.pdf
https://trepo.tuni.fi/bitstream/handle/123456789/25137/M%C3%A4%C3%A4tt%C3%A4.pdf
https://www.cin.ufpe.br/~tg/2022-1/tg_SI/TG_alnp.pdf
https://www.cin.ufpe.br/~tg/2022-1/tg_SI/TG_alnp.pdf

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Reactive Programming
	2.2 RxSwift

	3 Method
	3.1 Semi-structured interview
	3.2 Multiple-choice questionnaire
	3.3 Sampling
	3.4 Daya analysis

	4 Results
	4.1 Semi-structured interviews
	4.2 Multiple Choice Questionnaire
	4.3 Limitations

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

