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ABSTRACT
Application Programming Interfaces (APIs) have become an asset
used everyday by developers looking for opportunities of code
reuse. However, this ubiquity has led to numerous complexities,
making the construction of good APIs challenging. Developers in
fact often find APIs hard to learn and use. Therefore, usability has
become a fundamental attribute for APIs in the last years, but it is
often neglected by API designers. In reality, traditional user studies
are frequently deemed expensive and difficult to interpret which
stimulated the search for objective, and less expensive ways to mea-
sure API usability like metrics. The studies of metrics revealed good
ways to measure API structurally, but the availability of publicly
tools are either lacking or not being maintained. In this paper, we
present UAX, a public tool that implements API usability metrics
initially for TypeScript (a superset of JavaScript). We discuss its
implementation and show its application to three reactive program-
ming (RP) APIs with the help of a dashboard we also produced to
help interpret the results. The evaluation showed that the RP APIs
presented a high level of usability but with areas of improvements,
like parameter consistency and API documentation. This demon-
strates that the tool could support API designers to better plan
the API construction and software engineering process, especially
before the APIs get even released.
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1 INTRODUCTION
Our everyday lives of modern software development are heavily
dependent on the reuse offered by Application Programming Inter-
faces (APIs) [19, 25, 36]. From basic computer instructions [38] to
web services [19, 20], most lines of code developers write involve
API calls [19]. This ubiquity, despite its benefits, introduces many
complexities as good APIs are often harder to develop [8] and devel-
opers frequently find APIs hard to learn and use [18, 19]. There are,
in fact, many design decisions involved [8, 35] that could impact
thousands of programmers [8]. The consequences of bad designs
can vary, from productivity impact, code inefficiencies, bugs, to,
more concerning and significant, security flaws [8, 19, 24]. As a re-
sult, API usability has become a paramount quality attribute for API
construction and adoption, and it has been studied through research
venues in the last years [25]. Usable APIs are well-documented, easy
to use and memorize, and encourage reuse [8, 22], translating into
better programmers’ productivity [8, 22].

Despite its importance, API usability are in many cases ignored
by API designers [4]. Reasons include the difficult to gather and
interpret usability data [38], specially considering its subjectivity

nature [22]. Besides, studies with users are often considered expen-
sive during API design [38]. In this way, the last decade has sparked
the search for usability metrics as an objective, cost and time ef-
fective way of measuring usability [25]. The proposed metrics are
based on common beliefs [24], presenting mathematical formula-
tions [24] and also considering the context of use [33]. Additionally,
visualizations have been explored as complement to metrics [5]
aiming to offload the cognitive load to human visual capabilities and
facilitate the recognition of patterns and interpretation of results.
However, all the benefits provided by metrics can only be leveraged
through the availability of tools that implement them, which seems
to be either lacking or not being maintained in the field [25].

In this work, we propose a tool to analyze the usability of APIs
called UAX (Usability Analyzer Experience). As a start point, we
directed the tool to TypeScript (TS) APIs. JavaScript (JS) is one
of the most used languages in the world1 and, along with TS (a
JavaScript superset that, among other things, adds static typing to
the language), top ranks the nowadays most popular technologies2.
Moreover, one of the JS most used package managers, npm3, counts
with more than 2 million packages4; in other words, there are
many, publicly available APIs that could benefit from usability tools.
Finally, static typing can not only aid in implementing somemetrics,
but also help to find and fix errors faster [10], enhance the usability
of unknown API [21], and act as an implicit documentation [23].

The paper thus presents the tool UAX.js, discussing its imple-
mentation and the set of metrics already implemented, and showing
a complementary user interface (dashboard) that can help in the
interpretation of the results. To complete our presentation, we
demonstrate the tool’s feasibility by evaluating three reactive pro-
gramming (RP) APIs (RxJS, Bacon.js, and xstream), abundant in JS
given its asynchronous, event-driven nature. RP is a paradigm that
aims to facilitate the development of reactive applications [30, 31],
but its learning curve and relation to functional programming can
be challenging [17, 32]. Moreover, RP libraries commonly adopts
different interfaces [16], and many design decisions are discon-
nected from the user experience [17]. The metrics’ results showed
that both RxJS and Bacon.js presented a very high level of usability
(inline with observations from previous studies relating high levels
of usability with the number of GitHub stars and forks [36]), fol-
lowed by xstream with a high level score. In metric terms, the APIs
depicted mainly good results, but we could observed that at least
two APIs scored from moderate to low in terms of documentation,
a possible area of improvement.

1https://octoverse.github.com/2022/top-programming-languages
2https://survey.stackoverflow.co/2023/#technology-most-popular-technologies
3https://www.npmjs.com/
4One of the greatest in the world according to https://nodejs.org/en/learn/getting-
started/an-introduction-to-the-npm-package-manager
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We believe that our tool has the potential to help API design-
ers to better plan the design and construction process of APIs by
providing the easy access to usability metrics, something that has
been lacking in the field [25]. Also, the tool may better support the
software engineering process before the API even get released; this
way, designers can avoid the problematic process of changing the
APIs afterwards [24]. The remainder of the paper is organized as
follows. Section 2 delivers the background and related work neces-
sary for the rest of the study. Section 3 presents our methodology,
detailing the metrics we used, the implementation of the tool, and
an additional user interface we built. Section 4 presents our us-
age scenario with the three RP APIs, while Section 5 discusses the
current limitations and opportunities for improvements. Section 6
presents the final remarks and perspectives for future works.

2 BACKGROUND AND RELATEDWORK
2.1 API usability
APIs have become an ubiquitous asset that involves many quality
attributes but usability has shown to be one of great and critical
importance lately [4, 25]. An API is an interface geared towards
human developers [19], similar to graphical interfaces, so usability
considerations and human-computer interactions (HCI) principles
are very valuable [18, 19], but often neglected by API designers [4].
The interest in API usability, in fact, only started to gain more
attention after 2000 [19], in which the activities were slowly being
referred to as DevX or DX (developer experience), analogously to
UX (user experience) [18, 19]. Given its subjective nature [22, 25],
the usability definition varies among standards and researchers.
However, in a summarized way, API usability indicates how easy it
is to use, in a given context, and learn an API [25].

The usability of an API can produce different impacts: it can
encourage or discourage the use of an API (i.e., its adoption and re-
tention), impact productivity and satisfaction of developers, and in-
fluence the quality of the produced code [18, 25]. Bugs and security
problems are examples of poor or incorrect usage of APIs [18, 19]
that frequently impact negatively big organizations [37]. APIs are
often difficult to use and learn [19], and it is much more easy to
create bad APIs than good ones [8]. A lot of causes have already
been identified as reasons for difficulties, including API semantics,
abstraction level, documentation’s quality, error handling support,
and confusing dependencies and preconditions [18]. All of this cor-
roborates to the importance of a good API design [18] and early
usability tests in the API life cycle.

Different usabilitymeasurementsmethods exist, such as heuristic
evaluation, thinking aloud, and surveys, but they incur in a set of
constraints (e.g., experienced evaluators, representative set of users,
functional product, etc.), but their applicability to the API area is still
to be researched [33]. An exception is the popular method known
as the Cognitive Dimensions of Notations (CDN) framework [11],
which is a tool for designers that describe a set of vocabularies or
dimensions to measure the decision that most affect the usability
of a notation [6]. In spite of its popularity, the dimensions and their
applicability are often considered complex (e.g., the dimensions an
their relations are hard to comprehend and assess [33]) and the
method is still cost and time consuming, specially considering that
it relies on users to perform some tasks [6] normally in a lab setting.

The need formore objective and less expensivemethods prompted
some research investments in usabilitymetrics in the last decade [25].
Souza and Bentolila [5] defined the API usability as a function of
its complexity based on three metrics and used a visualization tool,
called Metrix, to aid in the identification of complex API areas.
However, the tool has not been maintained [25]. Rama and Kak[24]
define a set of eight metrics, detailed throughmath formulas, to eval-
uate the usability of class methods based on common beliefs. Table 1
depicts a summary of the eight Rama and Kak [24] metrics; a thor-
ough examination of the metrics can be in found elsewhere [24, 36].
The authors show the usage of the metrics by testing them in seven
Java APIs with the help of their proprietary tool [25]. The work
of Scheller and Kühn [33] seems to be a promise venue, in which
they reused many metrics defined by Rama and Kak [24] to create
metrics that consider other characteristics beyond methods (e.g.,
annotations) and the code context of use. However, the automated
tool using those metrics is not available [25].

2.2 Reactive Programming
Reactive systems or applications are a vital and wide class of soft-
ware that focus on the reaction of all sorts of events like UI interac-
tions, Internet messages, sensor stimuli, and others [29, 30]. Most
modern software encompass reactivity [2, 31], which makes them
challenging to design, implement, and maintain [30, 31]. In this
way, the reactive programming (RP) paradigm has gained popular-
ity in the last years as an alternative to facilitate the construction
of such systems by directly represent reactive values in a intuitive,
composable, and declarative way[29, 32]. The paradigm is influ-
enced by signal processing [15] and has origins in the functional
programming area where its was primarily used to model anima-
tions [17, 32]. Nowadays, its applicability has been extended to a
myriad of areas like distributed applications, game engines, WiFi
firmware, among others [7, 12–14, 34].

Recent studies have attested the high composability of RP abstrac-
tions [30] and the increase in comprehension compared to the Ob-
server pattern [28, 32]. Nonetheless, there still a lack of understand-
ing between the RP design choices and the user experience [17],
and the benefits of widespread adoption of solutions based on the
dataflow style are still unclear [27]. Observation showed that the
learning curve and its relation to functional programming can be
challenging for the paradigm adoption [32], which is exacerbated
by the lack of consistency among RP interfaces [16]. Research has
proposed systematic investigation about the designs of such solu-
tions to better understand their impact and usability [16, 27, 39]
and to fulfill the lacking of guidelines to drive better design choices
for future RP developers [16, 27].

3 METHODOLOGY
3.1 Metrics
To evaluate the APIs with the help of metrics, we decided to use
the ones proposed by Rama and Kak (Section 2.1). An advantage
of using such metrics is that the authors extensively surveyed
well-accepted beliefs of good designs. Also, the metrics are very
general and detailed, with mathematical rigor, and have already
been applied in other studies [36]. A total of eight metrics were
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Table 1: Usability metrics defined by Rama and Kak [24]

Metric Description

API Method Name Overloading
Index (AMNOI)

It quantifies the degree to which the various overload definitions of a function yield disparate return
types [24]. The lesser the metric score, the greater is the number of overloads that return different
types.

API Method Name Confusion
Index (AMNCI)

It is based on three name-abuse patterns listed by Rama and Kak [24] which prescribes how to obtain
the canonical forms of the functions identifiers and, from there, to generate a list of confusing function
names. The greater the number of confusing names, the lesser tends to be the metric score.

API Method Grouping Index
(AMGI)

It measures the extent to which semantically similar functions are grouped rather than dispersed [36].
The semantic similarity is defined based on keywords extracted from the function names [24]; for
instance, functions called mergeMap and concatMap could be considered semantically similar given the
shared keyword “map”. The metric is then calculated based on the number of runs of similar keywords,
where runs are groups of semantically similar functions placed together (i.e., in a class or file).

API Parameter List Consistency
Index (APLCI)

It assesses the consistency in terms of parameter name ordering across functions’ definitions [36].

API Parameter List Complexity
Index (APXI)

This metric deals with the length of function parameter and the runs of parameters of the same type [24].
Long lists of parameter and sequences of parameters with the same data type are likely to worsen the
user experience [24].

API Documentation Index (ADI) Themetric examines the number of words contained in the functions’ documentation [36].It is important
to emphasize that the metric is based on a threshold, which defines a minimum number of words for
every function documentation.

API Exception Specificity Index
(AESI)

This metric deals with the specialization and generalization of checked exceptions. As pointed by Rama
and Kak [24], specialized exceptions work better than general ones for APIs [24]. So, the analyses revolve
around an examination of the exception inheritance trees of exceptions declared by the functions
exposed by the API.

API Thread Safety Index (ATSI) It measures the usability regarding thread safety by analyzing the set of functions that have ‘thread’
or ‘safe’ in their declaration, more specifically in the documentation associated with the declaration,
related the overall set of functions made available by the API.

proposed by Rama and Kak [24] and a summary of them is displayed
in Table 1.

3.2 Implementation
We implement the metrics in a tool we called Usability Analyzer
Experience (UAX), intended to resemble the term “developer expe-
rience”(DevX) which is often linked to API usability [18, 19]. The
implementation works a command-line interface and requires that
the user inform the path to a JSON containing basic configuration
information like an optional name for the library to be tested, its
base path, the path for the tsconfig.json file, and the file containing
the exported API. The user can also provide a path for the output
results (defaults to ./output/ ), which consist of a series of JSON
files following the pattern name “name of the tested API - metric
name”. Each corresponding file carries information about the met-
ric evaluated along with the library/project tested and usability
information regarding the metric execution like the final score. A
complete description is found at the GitHub repository5.

To implement the metrics, we utilized the ts-morph6 library,
which is a wrapper over the TypeScript compiler that facilitates
code manipulation. Given the early stages of the tool development,
we have implemented only the first six metrics listed in Section 3.1.
The Exception case (AESI) is a little complicated in TypeScript, since

5https://github.com/uax-analyzer/uax
6https://github.com/dsherret/ts-morph.

there is not yet a syntax declaration of the exceptions raised by a
function or method7. Besides, the catch clause does not differentiate
between different types of custom exceptions, and it is common that
TypeScript (JavaScript) developers use the general Exception class
most of the time. Thread support (ATSI) in JavaScript/TypeScript is
something that is explored only in specific cases like CPU-bound
tasks, since most of the computations are handled within a single-
threaded, event loop. Therefore, our focus was on the other metrics,
leaving AESI and ATSI for future evaluation if applicable.

The code was implemented by examining the exported, public
declarations, and the inspection proceeded according to files as
they would correspond to JavaScript module boundary (i.e., the
highest-level modular unit). One of the main sources of difficulties
was to incorporate type assignability, since TypeScript did not
make publicly available yet a function to test that8. Instead, we
recurred to a library called type-plus9 that implements a series of
type checking operations; with type-plus, we explored the ts-morph
API to create temporary files to check for type assignability. Due to
the manipulation of temporary files, some metrics like AMNOI and
APXI proved to be CPU-intensive; so, for thosemetrics, we exploited

7A complete discussion can be found in https://github.com/microsoft/TypeScript/
issues/13219 and https://github.com/microsoft/TypeScript/issues/52145.
8A full discussion can be found in https://github.com/microsoft/TypeScript/pull/9943
and https://github.com/dsherret/ts-morph/issues/357.
9https://github.com/unional/type-plus.
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a pool of worker threads with the help of the Piscina10 library. Both
APXI and ADI metrics rely on parameters that must be set for the
execution of the metric. In the case of APXI, we set the parameter
(the threshold for the number of function parameters) to four (i.e.,
functions with parameter list greater or equal to four would be
considered long) in accordance to the value defined in Rama and
Kak [24]. For ADI, we considered a threshold of 50 following the
work of Venigalla and Chimalakonda [36].

3.3 Complementary Visualization
Visualizations can help offloading the cognitive load to human vi-
sual capabilities [5], which in turn may facilitate the recognition
of patterns and interpretation of results. In this way, we in parallel
created a basic user interface (UI) in the format of a HTML dash-
board to ease the interpretation of the tool’s output. The dashboard
is served and accessed through an HTTP server, and it also works
(i.e., it is executed) as a command-line program. To run it, the user
mainly needs to inform the location of the JSON files generated by
UAX.js, and the dashboard parses and computes all the available,
metrics’ information.

The main page of the dashboard shows an overview of the com-
puted scores obtained by every API analyzed (Figure 1). We tried as
much to include charts and visual elements like radial and progress
bars instead of simple tables, so the user can quickly perceive the
big picture expressed by the scores. The first part shows not only
the average of individual, analyzed APIs, but also the average of
all of them; this helps to visualize the individual API perspective
and possibly how a category of APIs scored together. We mainly
explored the mean statistics to be inline with the computations
presented by Rama and Kak [24]; on the other hand, the authors
did not indicate how one could get a perception of the results based
on categories, serving mainly as a comparative score. In this way,
we borrowed the range of categories commonly applied to Likert-
based scales [1] and adapted to our scale (which varies from 0.0
to 1.0) by means of simple linear transformation. Thus, we used
those ranges to map the results between very low usability and
very high usability; each range of values was also mapped to a color
scale, ranging from red to (dark) green (shown in Figure 2). For
instance, a red color indicates a very low level of usability, while
dark green specifies a very high level of usability. Throughout the
dashboard, many data points are actually colored by using this
color scale. The middle part of the main page shows not only the
general result obtained by each API, but also depicts the metrics’
results by using a radar chart following the suggestions of Souza
and Bentolila [5]. It is notable that different colors are used for the
data points depending on the metric score. Finally, the last, bottom
part shows the metrics’ scores from the APIs side by side, allowing
one to assess how every API scored from the metric perspective.

Additionally, we included a second page to display, with more
details and exclusiveness, the information about one of the analyzed
APIs. This page can be accessed through various links available on
the main page or by using the endpoint “/[API_name]”. For instance,
in Figure 1, the name of one of the APIs is rxjs, so by accessing the
URL “/rxjs” one would view a similar page as displayed in Figure 3.
First, the overall score of the API is shown, describing its level of

10https://github.com/piscinajs/piscina

Figure 1: Main page overview of the dashboard tool.

Figure 2: Color scale indicating the level of usability accord-
ing to scores.

usability; also, the scores for the metrics are outlined, informing the
highest and lowest evaluated metric. Following, the results of every
metric are depicted along with a summary for the given metric.

Figure 3: Snippet of the API detailing page of the user inter-
face tool.

https://github.com/piscinajs/piscina
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Table 2: The explored RP APIs sorted (descending order) by
their GitHub stars and forks.

API Version GitHub

Stars Forks

RxJS 7.8.1 30,303 2,984
Bacon.js 3.0.17 6,463 330
xstream 11.14.0 2,366 136
Note: Last update on June 2, 2024.

4 USAGE SCENARIO
To test our tool, we selected three JS, RP APIs: RxJS, Bacon.js, and
xstream. The first two are the JS RP libraries with the most GitHub
stars and forks in that order. Venigalla and Chimalakonda [36]
observed that repositories with both high numbers of stars and
forks showed higher scores in the context of game engines; in this
way, it was our chance to test this hypothesis for RP APIs. xstream,
conversely, was built for the web framework Cycle.js and, different
from the other RP libraries, it has a tiny API surface. Table 2 shows
the some information about the tested APIs such as their version,
number of GitHub stars and forks.

Figure 1 actually shows the results, depicted in the UI dashboard,
obtained for the three RPAPIs after running themetrics. Overall, the
APIs presented high level of usability, scoring an average result of
0.8. From the three, RxJS scored highest (0.87), followed by bacon.js
(0.81) and xstream (0.73). It could be observed that API repositories
with highest stars and forks actually showed the highest level of
usability for RP APIs. Moreover, both RxJS and Bacon.js had very
high levels of usability, while xstream, the API with less stars and
forks, was slightly lower but still presented a high usability level.

In metric terms, a great part of the metrics’ results presented
either high or very high results, with RxJS excelling at five met-
rics. The RxJS only exception was AMGI (grouping of semantically
similar functions), which yielded a moderate value. A reason to
this result may be explained by the RxJS strategy of modularizing
most of its functionalities as standalone functions in separate files.
For example, all of its operations reside in different files11. Both
Bacon.js and xstream group their functionalities in class methods,
reason that may justify their good results for AMGI. In future re-
leases of the tool, we may analyze alternative ways of API analysis
for AMGI, after all the RxJS operators may be not grouped at the
module or class scope, but they are placed together in the same
folder.

xstream was the API with the lowest overall score and its radar
chart is reproduced in Figure 4. xstream actually presented very
high results for four metrics: APXI (length of function param-
eter and runs of parameters of the same type), AMGI, AMNCI
(name-abuse patterns), and AMNOI (overloaded functions with dis-
parate return types). Contrarily, ADI (number of words contained
in the functions’ documentation) and, specially, APLCI (consistency
among parameter name ordering across functions’ definitions) were
the metrics that most collaborated to lower xstream’s overall score.
The impact on APLCI may be explained by the small length of

11https://github.com/ReactiveX/rxjs/tree/7.8.1/src/internal/operators

API operators (26 according to its repository), which implies few
functions sharing consistent parameter ordering. RxJS and Bacon.js,
conversely, offer more than 100 operators, which gives more space
for consistent ordering of functions parameters, but it also intro-
duces other challenges like possibly making the API more difficult
to master [32]. Nonetheless, the API designers of xstream should
evaluate if the consistency level is really a problem for the API, after
all, consistency can alleviate the users’ cognitive load [9, 20] and it
is a property often considered in usability test methods [3]. Along
with names and types, documentation is a resource that developers
use to understand APIs and it seems that xstream did not include
a lot of words in its documentation (ADI) related to the features
exported in its API. For example, none of the methods in xstream
MemoryStream class12 has any documentation. We could also ob-
serve that Bacon.js did not show a high level of usability in terms
of documentation, but a moderate one. Therefore, we think RP
APIs should invest more in documentation, especially considering
that it is a different paradigm with learning curve and functional
programming concepts as possible obstacles [32].

Figure 4: Radar chart showing the overall scores and metric
results of the xstream API.

5 LIMITATIONS AND FUTURE
IMPROVEMENTS

As discussed in Section 3.2, we did not implement all metrics listed
by Rama and Kak [24], but it is our belief that their contribution
(AESI and ATSI) in the context of JS would be minimal (consid-
ering the arguments presented in Section 3.2 as well). Still, in
future releases, we will pursue the feasibility of not only those
metrics, but additional metrics. For example, the work of Scheller
and Kühn [33] presents additional, interesting aspects (e.g., fluent

12https://github.com/staltz/xstream/blob/v11.14.0/src/index.ts/#L1978

https://github.com/ReactiveX/rxjs/tree/7.8.1/src/internal/operators
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interfaces, which are commonly known as function composition in
functional libraries) that could be adapted to our tool.

The majority of the metrics deal with structural aspects, but
there are more aspects that can also affect the user experience [26].
This was in fact recognized by Scheller and Kühn [33], giving as
an example both naming (very dependent on many factors like the
API purpose and language domain) and abstraction level. Moreover,
both Rama and Kak [24] and Rauf et al. [25] express that metrics
could be enhanced by techniques frommachine learning and natural
language processing, which is becoming more achievable in the
present era of artificial intelligence. We believe that only with the
incorporation of such techniques the metrics may become a full
replacement for user studies rather than a complementary tool.

Some implemented metrics rely on specific options like the maxi-
mum number of parameters or the threshold used during documen-
tation evaluation. While we have used values used in other studies
and some of them are general preferences of developers or have
a psychological explanation [24, 36], there is still a lack of broad
understanding of those values [36]. In this way, we plain to make
those values configurable, so different scenarios will be possible to
be tested.

Finally, our tool only checks exported functions and classes
(i.e., public methods of the class, either static or instance ones).
Slowly, we plan to incorporate and investigate the addition of other
exportable, languages constructs such as interfaces or objects. Also,
other types of visualization are intended to be included in the
dashboard such as the TreeMap chart [5] which may enable a better
overview of grouping elements like results of all API functions,
modules (i.e., the average score of the APIs within the module), and
classes. In fact, we are currently enhancing the tool to include the
results (in the generated JSON files) according to different language
units/perspectives like modules (packages) and classes.

Future studies should explore different types of APIs beyond
RP. It would be interesting to compare how distinct classes of APIs
score. Moreover, a greater number of APIs should also be tested
to obtain more varying results. A limitation of our study was to
test only three RP APIs; in this way, our results did not show great
variation. Therefore, we cannot generalize our findings to all RP
APIs that exist. However, it was not our intention to generalize the
results; our goal was only to demonstrate the tool’s usage as well as
the supporting dashboard. Nevertheless, we strongly believe that
the tool should be tried with a greater quantity of APIs as well as
distinct classes of APIs.

6 FINAL REMARKS
APIs have become a ubiquitous tool in everyday lives of program-
mers as a way of reusing code and probably enhance code pro-
ductivity. However, APIs are often hard to learn and use, which
demands better support for tools to objectively measure API us-
ability, something that has either been lacking or not maintained.
In this paper, we presented a public tool called UAX.js, primarily
targeting TypeScript APIs. With the help of a complementary, web
dashboard, we demonstrated the tool by applying the implemented
metrics to three reactive programming (RP) APIs. The results al-
ready showed that RP API designers have directed good effort to
make the APIs very usable. However, the tool also revealed some

areas of improvements like parameter consistency and, especially,
API documentation. From all that was observed and demonstrated,
it is our belief that the tool can support API designers to better
plan the API design and construction as well as the overall soft-
ware engineering process. This becomes especially important as
the designers can get better insights and make the appropriate
modifications even before the API get released, when it becomes
harder to introduce changes to the API.

There are a lot of ways that the tool can still be enhanced, spe-
cially considering that it is in its early stages. For instance, the tool
already implement six metrics, but there are others available in
the literature that could be incorporated involving other aspects.
Also, we plan to investigate and add other languages constructs
that could be evaluated by the metrics beyond functions and class
methods. Future releases of the tools will include a more detailed
output, informing the results at the module (package) or class level.
Additionally, we intend to include more types of visualizations (e.g.,
treemap charts) and configuration to help users better interpret
the results. Finally, we envision that the metrics could be further
enhanced by techniques of machine learning and natural language
processing, something that is becoming more feasible in this artifi-
cial intelligence era.

ARTIFACT AVAILABILITY
Ademo video of the tool is available at https://youtu.be/qqLkTYIvnGQ
and https://dx.doi.org/10.6084/m9.figshare.25971490. The reposi-
tory of UAX.js is available at https://github.com/uax-analyzer/uax.
The repository of the UI dashboard is available at https://github.
com/uax-analyzer/uax-ui. All the repositories have been archived
through software heritage (https://www.softwareheritage.org/).
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