

Project: COMPASS

Grant Agreement: 287829

Comprehensive Modelling for Advanced Systems of Systems

A Dwarf Signal in CML

COMPASS White Paper WP04

September 2013

Public Document

http://www.compass-research.eu

WP04%–%A%Dwarf%Signal%in%CML%
%

2%

Authors:
Simon%Foster,%Jim%Woodcock,%University%of%York,%UK%
%
%
Abstract:
!
This white paper presents an introduction to the COMPASS Modelling
Language (CML) using a model of a Dwarf Signal. The paper introduces the
states of the signal and the properties that must hold to ensure safety of the
signal, and then introduces the types, functions and processes that model the
state, safety properties and reactive behaviour in CML.

To demonstrate that such a system satisfies the contract imposed by its safety
properties, the COMPASS theorem prover (based on Isabelle/HOL) can be
used. Mechanisation of the example in the theorem prover is currently
underway

%

A Dwarf Signal in CML

Simon Foster Jim Woodcock

September 12, 2013

1 Introduction

Figure 1: A Dwarf railway signal

A Dwarf Signal [6, 5] is a kind of railway
signal which is used at the side of track
when space is limited. An illustration is
shown in Figure 1. It has three lamps which
are displayed in di↵erent configurations to
give instructions to train drivers. Clearly
railway signals need to be safe and reliable
in their implementation, and so in this pa-
per we will give a precise specification to
the Dwarf Signal, which will illustrate the use of the COMPASS Modelling Lan-
guage [2] (CML). The signal’s three lamps are named L1–L3, as illustrated, and
di↵erent configurations of a signal can be written using set notation, for instance
this signal is in {L1, L2} which means Stop.

The signal has a total of four proper states which are the well-defined com-
mands a signal can convey to a driver. These are enumerated in Figure 2. When
all lamps are o↵ (indicated by the empty set {}) the signal is in the Dark state,
which is a power saving mode for when the signal is not in use. The three
remaining proper states Stop, Warning and Drive are indicated by a combi-
nation of two lamps and correspond to the positions of an old-style semaphore
signal.

Dark Stop Warning Drive

{} {L1, L2} {L1, L3} {L2, L3}
Figure 2: Dwarf Signal Proper States

Along with the four proper states there are also three transient states which
describe the unstable states when a signal is moving from one proper state

1

to another, since the signal may only light or extinguish one lamp at a time.
These states are {L1}, {L2} and {L3}. Finally there is the ambiguous state
{L1, L2, L3} which a signal should never display as it is meaningless. This
makes a total of 23 = 8 states.

To ensure the safety of this system, four safety properties are given:

1. Only one lamp may be changed at once

2. All three lamps must never be on concurrently

3. The signal must never be Dark except if the Dark aspect has to be shown
or there is lamp failure

4. A change to or from Dark is allowed only from Stop or to Stop, respec-
tively

These properties essentially form a contract with the signal, or the adminis-
trator of the signal, which ensures that the driver never observes an ambiguous
state, and therefore never has to make an ill-informed decision. We can now
proceed to specify the system in CML.

2 Dwarf Signal in CML

2.1 Signal State

We begin by specifying the basic types of our system.

types

LampId = <L1> | <L2> | <L3>

Signal = set of LampId

ProperState = Signal

inv ps == ps in set {dark, stop, warning, drive}

values

dark: Signal = {}
stop: Signal = {<L1>, <L2>}
warning: Signal = {<L1>, <L3>}
drive: Signal = {<L2>, <L3>}

Table 1: Dwarf Signal basic types

The lamps are specified as an enumerated type LampId, and a Signal is then
simply the set of lamps currently illuminated. A ProperState is a signal which
is in one of the four proper states, indicated by four sets. With our basic types
specified we can then specify the main state type of the Dwarf signal.

The signal state, DwarfType, is specified as a record with six fields. In order
these refer to:

2

types

DwarfType :: lastproperstate : ProperState

desiredproperstate : ProperState

turnoff : set of LampId

turnon : set of LampId

laststate : Signal

currentstate : Signal

inv d ==

(((d.currentstate \ d.turnoff) union d.turnon)
= d.desiredproperstate)

and

(d.turnoff inter d.turnon = {})

Table 2: Dwarf Signal state specification

• the previous/current proper state the signal was in;

• the proper state we desire to reach;

• lamps we need to turn o↵ to reach the desired proper state;

• lamps we need to turn on to reach the desired proper state;

• the actual (transient or proper) last state the signal was in;

• the actual current state the signal is in.

Along with fields we also specify an invariant, which impose further logic
constraints on a CML type. In this case we use the invariant to ensure that only
sane states are represented. There are two clauses to the invariant. The first
ensures that the desired proper state is the current state, minus (\) the set of
signals to turn o↵, plus (union) the set of signals to turn on. The second clause
ensures there is no intersection of the lamps we wish to turn on, and those we
wish to turn o↵. Clearly we can’t simultaneously turn a lamp on and o↵.

2.2 Safety Properties

To ensure the safe functioning of the Dwarf Signal system we need to impose a
number of safety properties. These properties should at all times be preserved
by the system. In CML we specify them as a collection of five functions which
are enumerated in Table 3.

NeverShowAll enforces that it should never be the case that all three lamps
are on simultaneously. MaxOneLampChange requires that between any two
states only one lamp can change from on to o↵, or o↵ to on. ForbidStopTo-
Drive enforces that the signal cannot transition straight from the stop state to
the drive state – it must go via the warning state. DarkOnlyToStop and DarkOn-
lyFromStop together encode the requirement that a signal may only transition

3

functions

NeverShowAll: DwarfType -> bool

NeverShowAll(d) == d.currentstate <> {<L1>,<L2>,<L3>}

MaxOneLampChange: DwarfType -> bool

MaxOneLampChange(d) ==

card ((d.currentstate \ d.laststate)
union (d.laststate \ d.currentstate)) <= 1

ForbidStopToDrive : DwarfType -> bool

ForbidStopToDrive(d) ==

(d.lastproperstate = stop

=> d.desiredproperstate <> drive)

DarkOnlyToStop : DwarfType -> bool

DarkOnlyToStop(d) ==

(d.lastproperstate = dark

=> d.desiredproperstate in set {dark,stop})

DarkOnlyFromStop: DwarfType -> bool

DarkOnlyFromStop(d) ==

(d.desiredproperstate = dark

=> d.lastproperstate in set {dark,stop})

Table 3: Dwarf Signal: Safety Properties

4

from dark to stop, and to dark from stop – a signal in warning or drive should
not become stop directly. With our collection of safety properties which can
describe the safe version of the Dwarf Signal state:

types

DwarfSignal = DwarfType

inv d == NeverShowAll(d) and

MaxOneLampChange(d) and

ForbidStopToDrive(d) and

DarkOnlyToStop(d) and

DarkOnlyFromStop(d)

2.3 Reactive Behaviour

Syntax Description

Stop Deadlocked process

Skip Null behaviour

a -> P Communicate on a then behave like P

a?v -> P Input value v over channel a then do P

a!v -> P Output value v on channel a then do P

P ; Q Execute action P followed by Q

P [] Q Pick P or Q based on the first communication

P [|{a,b,c}|] Q Execute P and Q in parallel, with
synchronisation allowed on a, b and c

[cond] & P allow execution of P only if cond holds

Table 4: CML process combinator selection

The Dwarf Signal is a reactive system; it waits for stimuli and behaves
accordingly. To specify these sorts of aspects of a system we need to use a
suitable formalism. In CML we support the specification of CSP processes.
CSP (Communicating Sequential Processes) is a process calculus which specifies
behaviour in terms of concurrent processes which communicate on channels. A
channel is a two-ended medium with a single listener and a single speaker. A
channel can therefore be used to send information between one processes and
another. A process in CML consists of five parts:

• channels to communicate on, optionally carrying data;

• state variables to read from and write to;

• operations acting on the state, with pre/postconditions;

• actions which describe reactive behaviours;

5

• process body, the main behaviour of the process.

Unlike CSP processes, CML processes are stateful, though there is no state
sharing between the individual constituent actions. Only channels may be used
to share information. CML supports a variety of process combinators to specify
reactive behaviour, many of which are borrowed from CSP (see Table 4).

As an example we could specify the following simple process:

channels

a: int

b: int

process Simple = begin

actions

ACT1 = a?v -> b!(v * 2) -> Skip

ACT2 = a!5 -> Skip

@

ACT1 [|a|] ACT2

end

Table 5: A basic CML process

This specifies two channels, a and b, both of which carry an integer. The
process Simple consists of two constituent actions. ACT1 waits for an input
on a, and then communicates this value doubled on b, and finally terminates,
indicated by Skip. ACT2 sends 5 on a and then terminates. The main action of
the processes is simply the two actions in parallel, with shared channel a. So if
run the result will be an output of 10 on b.

We proceed to specify the Dwarf Signal process.
There are a total of 5 channels, init which instructs the system to initialise,

light and extinguish on which the signal can be instructed to light or ex-
tinguish a given lamp, setPS to instruct the signal to begin transitioning to a
given proper state, and shine which the process uses to display the currently
lit lamps. The state of the process consists of a single variable dw which is an
instance of DwarfType, the state record from Table 2. Next we specify some
operations to act on this state.

operations

Init : () ==> ()

Init() ==

dw := mk_DwarfType(stop, {}, {}, stop, stop, stop)

First we specify the Init operation, which simply sets up the initial value for
state variable dw. Its type is () =) (), meaning it takes no inputs and produce

6

channels

init

light: LampId

extinguish: LampId

setPS: ProperState

shine: Signal

process Dwarf = begin

state

dw : DwarfSignal

Table 6: Dwarf Signal: Channels and State

no outputs, performing just a state update. The initial value is constructed
using the record constructor mk DwarfType. It has the current state, proper
state and next state as Stop and the sets of lamps to turn on and o↵ both as
empty {}. It is therefore a completely stable state, and is awaiting instructions.

SetNewProperState: (ProperState) ==> ()

SetNewProperState(st) ==

dw := mk_DwarfType(dw.currentstate

, dw.currentstate \ st
, st \ dw.currentstate
, dw.laststate

, dw.currentstate

, st)

pre dw.currentstate = dw.desiredproperstate and

st <> dw.currentstate

This next operation takes a new proper state and updates the state record
to indicate this. It also calculates the set of lamps which must be lit and
extinguished for this state to be reached, and adds these to the state. This
operation has a precondition that the current state must be the desired proper
state – i.e. the system must have stabilised. It also requires that the new proper
state be di↵erent from the one we are currently in.

TurnOn: (LampId) ==> ()

TurnOn(l) ==

dw := mk_DwarfType(dw.lastproperstate

, dw.turnoff \ {l}
, dw.turnon \ {l}
, dw.currentstate

, dw.currentstate union {l}

7

, dw.desiredproperstate)

pre l in set dw.turnon

TurnOff : (LampId) ==> ()

TurnOff(l) ==

dw := mk_DwarfType(dw.lastproperstate

, dw.turnoff \ {l}
, dw.turnon \ {l}
, dw.currentstate

, dw.currentstate \ {l}
, dw.desiredproperstate)

pre l in set dw.turnoff

TurnOn and TurnOff add and remove, respectively, a lamp from the set of lit
lamps. The both require that the lamp to be turned on or o↵ is in the set turnon
or turnoff respectively. These values are then also updated accordingly, as the
same lamp cannot be lit or extinguished twice.

With manipulations for the state specified, we can now specify the reactive
behaviour of the system.

actions

DWARF =

((light?l -> TurnOn(l); DWARF)

[] (extinguish?l -> TurnOff(l); DWARF)

[] (setPS?l -> SetNewProperState(l); DWARF)

[] shine!dw.currentstate -> DWARF)

@ init -> Init() ; DWARF

Table 7: Dwarf Signal Reactive Behaviour

The single action, DWARF, consists of an event loop which make a choice
between four sequences. If a communication is received on light, then the
operation TurnOn is called on the given lamp and then the action recurses to
its initial behaviour. If a communication is received on extinguish then the
TurnOff operation is called. If setPS receives a new proper state, then the new
proper state is set. Finally, the signal is always capable of communicating on
shine the current lamp status, which gives us a way of observing it.

The main action waits for an instruction to init, and when received it calls
the Init operation and then enters the main event loop.

We can also describe some test actions which exercise the behaviour of this
process, as in Figure 8. These test are all composed with the main DWARF
action and explore some its di↵erent behaviours.

TEST1 is a valid behaviour of the initialised system, where we transition
from stop to drive via warning, lighting and extinguishing the appropriate lamps

8

along the way. TEST2 starts the same as TEST1, but flips the order in which L2
and L3 are extinguished and lit, respectively. This violates the safety property
NeverShowAll, and if simulated within the COMPASS tool [3] an error will
be raised in the second transition. TEST3 begins by transitioning from stop
to dark (a valid move), but then immediately tries to go to warning. This
violates the safety property DarkOnlyToStop, and again the COMPASS tool
will complain. Finally TEST4 tries to go straight from stop to drive, violating
ForbidStopToDrive.

This test suite, though by no means exhaustive, demonstrates how we can
exercise the Dwarf Signal to ensure the safety of the system. In the future it will
be possible to use the COMPASS theorem prover [4] to prove that the invariants
can never be violated.

-- Working test

TEST1 = setPS!warning -> extinguish!<L2> -> light!<L3>

-> setPS!drive -> extinguish!<L1> -> light!<L2> -> Stop

-- Try to turn on 3 lights simultaneously

TEST2 = setPS!warning -> light!<L3> -> extinguish!<L2>

-> setPS!drive -> extinguish!<L1> -> light!<L2> -> Stop

-- Try to go from dark to warning

TEST3 = setPS!dark -> extinguish!<L1> -> extinguish!<L2>

-> setPS!warning -> light!<L1> -> light!<L2> -> Stop

-- Try to go from stop to drive

TEST4 = setPS!drive -> extinguish!<L1> -> light!<L3> -> Stop

DWARF TEST1 = DWARF [|setPS,light,extinguish|] TEST1

DWARF TEST2 = DWARF [|setPS,light,extinguish|] TEST2

DWARF TEST3 = DWARF [|setPS,light,extinguish|] TEST3

DWARF TEST4 = DWARF [|setPS,light,extinguish|] TEST4

Table 8: Dwarf Signal Tests

3 Conclusion

We have demonstrated the use of CML in specifying a real-life system, namely
the Dwarf Signal, in terms of its state, safety properties and reactive behaviour.
The COMPASS tools can be used in such a system to demonstrate its safety by
ensuring it satisfies its contract. This example is currently being mechanised in
the COMPASS theorem prover, which is based on Isabelle/HOL [1]. This will
enable mechanical verification of the systems contractual obligations.

9

References

[1] J. C. Blanchette, L. Bulwahn, and T. Nipkow. Automatic proof and disproof
in Isabelle/HOL. In 8th International Symposium on Frontiers of Combining
Systems (FroCoS 2011), volume 6989 of LNCS, pages 12–27. Springer, 2011.

[2] Jeremy Bryans, Samuel Canham, Ana Cavalcanti, Andy Galloway, Thiago
Santos, Augusto Sampaio, and Jim Woodcock. CML Definition 2. Tech-
nical report, COMPASS Deliverable, D23.3, March 2013. Available at
http://www.compass-research.eu/.

[3] Joey W. Coleman, Anders Kaels Malmos, Rasmus Lauritsen, and Lúıs D.
Couto. Second release of the COMPASS tool — user manual. Technical
report, COMPASS Deliverable, D31.2a, January 2013.

[4] Simon Foster and Richard J. Payne. Theorem proving support - user manual.
Technical report, COMPASS Deliverable, D33.2a, September 2013.

[5] A. A. McEwan and J. C. P. Woodcock. A refinement based approach to
calculating a fault-tolerant railway signal device. In René Jacquart, edi-
tor, Building the Information Society: IFIP 18th World Computer Congress
Topical Sessions, volume 156 of IFIP Advances in Information and Com-
munication Technology, pages 621–627. Springer, 2004.

[6] J. C. P. Woodcock. Montigel’s Dwarf, a treatment of the dwarf-signal prob-
lem using CSP/FDR. In Proc. 5th FMERail Workshop, September 1999.

10

