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It goes beyond saving the planet…
(as if that wasn’t important enough)
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There is No Free Lunch

● Multicore processors are ubiquitous;

● Performance of the existing parallel software is reasonably well-understood;

● Little is known about energy behaviors of multi-threaded programs on the 
application level.
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Haskell in the Concurrency Wilderness
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The Problem
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Lack of Knowledge Lack of Tools

Oh Boy! I have no idea on how to 
to improve the energy efficiency of 
my concurrent program...



The Problem
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Lack of Knowledge Lack of Tools

Is there any tool to 
help me on that?



Goals

1. Enable developers to effectively measure the energy consumption of a 
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming 
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.
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Measuring Energy Consumption

15

RAPL
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Performance Analysis in Haskell

Profiling

GHC Profiler

Benchmarking

Criterion
16
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GHC Profiler
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Time Profiling

● Uses frequency counting;

● At each tick interval (1 ms), the profiler increments the counter of the 
currently executing cost-centre;

● When the execution finishes, we can estimate the time spent by each 
cost-centre.
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Energy Profiling

● Uses accumulators;

● At each tick, adds the energy consumed since the last tick to the 
accumulator of the currently executing cost-centre; 

● When the execution finishes, each accumulator holds the energy consumed 
by its associated cost-centre.
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Energy Profiling in Action
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Source Code: https://github.com/green-haskell/ghc
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Source Code: https://github.com/green-haskell/ghc
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Criterion Microbenchmarking Library
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Criterion in Action
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benchmarking fib/9

time                 314.4 ns   (312.2 ns .. 318.5 ns)

                     0.999 R²   (0.997 R² .. 1.000 R²)

mean                 315.3 ns   (314.0 ns .. 319.4 ns)

std dev              7.081 ns   (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)
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benchmarking fib/9

time                 314.4 ns   (312.2 ns .. 318.5 ns)

                     0.999 R²   (0.997 R² .. 1.000 R²)

mean                 315.3 ns   (314.0 ns .. 319.4 ns)

std dev              7.081 ns   (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)

Time estimate for
 running fib/9 once Confidence Interval

Coefficient of determination



Criterion: Other Performance Metrics
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benchmarking fib/9

time                 317.2 ns   (314.2 ns .. 319.4 ns)

                     0.999 R²   (0.999 R² .. 1.000 R²)

mean                 314.4 ns   (313.3 ns .. 315.8 ns)

std dev              4.117 ns   (2.682 ns .. 5.398 ns)

cycles:              0.999 R²   (0.999 R² .. 1.000 R²)

  iters              1079.434   (1069.292 .. 1087.144)

  y                  924904.370 (562772.048 .. 1358678.998)

variance introduced by outliers: 13% (moderately inflated)
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benchmarking fib/9

time                 317.2 ns   (314.2 ns .. 319.4 ns)

                     0.999 R²   (0.999 R² .. 1.000 R²)

mean                 314.4 ns   (313.3 ns .. 315.8 ns)

std dev              4.117 ns   (2.682 ns .. 5.398 ns)

cycles:              0.999 R²   (0.999 R² .. 1.000 R²)

  iters              1079.434   (1069.292 .. 1087.144)

  y                  924904.370 (562772.048 .. 1358678.998)

variance introduced by outliers: 13% (moderately inflated)

Estimate of the number of 
CPU cycles required for

 running fib/9 once



Criterion + Energy Metrics
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benchmarking dining-philosophers (forkOS | MVar)

time                 2.183 s    (1.915 s .. 2.510 s)

                     0.997 R²   (0.991 R² .. 1.000 R²)

mean                 2.179 s    (2.113 s .. 2.212 s)

std dev              57.17 ms   (0.0 s .. 57.19 ms)

energy:              0.999 R²   (0.997 R² .. 1.000 R²)

  iters              180.947    (164.629 .. 200.826)

  y                  0.937      (-71.359 .. 37.230)

variance introduced by outliers: 19% (moderately inflated)

Source Code: https://github.com/green-haskell/criterion
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benchmarking dining-philosophers (forkOS | MVar)

time                 2.183 s    (1.915 s .. 2.510 s)

                     0.997 R²   (0.991 R² .. 1.000 R²)

mean                 2.179 s    (2.113 s .. 2.212 s)

std dev              57.17 ms   (0.0 s .. 57.19 ms)

energy:              0.999 R²   (0.997 R² .. 1.000 R²)

  iters              180.947    (164.629 .. 200.826)

  y                  0.937      (-71.359 .. 37.230)

variance introduced by outliers: 19% (moderately inflated)

Estimate of the energy in Joules required for
 running dining-philosophers once

Source Code: https://github.com/green-haskell/criterion

https://github.com/green-haskell/criterion


Goals

1. Enable developers to effectively measure the energy consumption of a 
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming 
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.
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Concurrency in GHC

34

● Main abstraction: Haskell threads;

● Haskell threads are executed on capabilities (or Haskell Execution Context);

● The number of capabilities can be defined at runtime;

● The runtime system has its own scheduler;

● Haskell threads can be migrated among capabilities.
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● Main abstraction: Haskell threads;

● Haskell threads are executed on capabilities (or Haskell Execution Context);

● The number of capabilities can be defined at runtime;

● The runtime system has its own scheduler;

● Haskell threads can be migrated among capabilities.

load balancing



Concurrency Layers
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Concurrent Programming Constructs

Primitives for Sharing Data

MVar

TVar

TMVar
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Threading Strategies

forkIO

forkOn

forkOS



Threading Strategies
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OS Thread

HEC

Haskell 
Threads

forkIO

OS Thread

HEC

OS Thread

HEC

OS Thread

affinity
bound

Bound 
Threads

forkOn forkOS
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Primitives for Sharing Data
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MVar

● Holds a single value

● Full or empty

● Blocking

TVar

● Holds a single value

● Never empty

● Non-blocking

TMVar

● Mimics an MVar

● Uses a TVar internally
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MVar

● Holds a single value

● Full or empty

● Blocking

TVar

● Holds a single value

● Never empty

● Non-blocking

Can only be used inside a transaction!

TMVar

● Mimics an MVar

● Uses a TVar internally



Benchmarks

● CPU-intensive: mandelbrot, spectral-norm

● Memory-intensive: k-nucleotide, regex-dna

● I/O-intensive: warp

● Synchronization-intensive: chameneos-redux, dining-philosophers

● Mixed: fasta, tsearch

41



Benchmarks

● CPU-intensive: mandelbrot, spectral-norm

● Memory-intensive: k-nucleotide, regex-dna

● I/O-intensive: warp

● Synchronization-intensive: chameneos-redux, dining-philosophers

● Mixed: fasta, tsearch

42

Computer Language Benchmarks Game Rosetta Code Created by us



Methodology

spectral-norm
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forkIO-MVar

forkIO-TVar

forkIO-TMVar

forkOn-MVar

forkOn-TVar

forkOn-TMVar

forkOS-MVar

forkOS-TVar

forkOS-TMVar



Methodology

spectral-norm
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forkIO-MVar

forkIO-TVar

forkIO-TMVar

forkOn-MVar

forkOn-TVar

forkOn-TMVar

forkOS-MVar

forkOS-TVar

forkOS-TMVar

● Each benchmark has up to 9 
variants;

● Each variant is a Criterion 
microbenchmark;

● Each variant is executed with    N 
= {1, 2, 4, 8, 16, 20, 32, 40, 64}



Experimental Environment

2x10-core Intel Xeon E5-2660 v2 processors + 256GB DDR3

Ubuntu Server 14.04.3 LTS (kernel 3.19.0-25)

Criterion 1.1.0 with energy extension

GHC 7.10.2

45



Results
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Small Changes Can Produce Big Savings

47



Small Changes Can Produce Big Savings

48

TMVar is 2.5x worse than MVar
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Small Changes Can Produce Big Savings

50

forkOS is 2.3x worse than forkOn



Faster is Not Always Greener
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Faster is Not Always Greener
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12% faster and 51% less energy-efficient



There is No Overall Winner
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Case Study: fasta 
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Case Study: fasta 
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Worst performance and average energy consumption



How It Works

1. Take seed0 from the shared variable

2. Generate random_numbers and seed1

3. Put seed1 on the shared variable

4. Compute the DNA sequence based on random_numbers

5. Wait until the predecessor DNA sequence is written to output

6. Write DNA sequence to output
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The Fastests Consume More Energy (1/4)
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Best performance and worst energy consumption!



The Fastests Consume More Energy (2/4)

63

forkIO-MVar forkIO-TVar



The Fastests Consume More Energy (3/4)

1. Take seed0 from the shared variable

2. Generate random_numbers and seed1

3. Put seed1 on the shared variable
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2. Generate random_numbers and seed1        MVar vs TVar

3. Put seed1 on the shared variable
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● Using MVar makes the program almost sequential;

● With TVar, all threads are competing to generate the same number;

● Multiple transaction abortions cause high CPU activity.



The Fastests Consume More Energy (4/4)

STM transaction statistics (2016-07-20 19:16:02.445387 UTC):

Transaction        Commits    Retries      Ratio

generate-numbers       299       4138      13.84

output-sync            261         33       0.13

wait-semaphore           2          2       1.00
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The Slowest Consumes Less Energy (1/2)
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Worst performance and average energy consumption



The Slowest Consumes Less Energy (2/2)
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forkOS-MVar



A Bug in the Scheduler
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Discussion

Bad news:

● The relationship between performance and energy is not obvious;
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Discussion

Bad news:

● The relationship between performance and energy is not obvious;

Good news:

● In most cases, switching between concurrency primitives is very simple;

● For most benchmarks, there is a configuration that most of the time beats the others;

● It's easy (and cheap) to experiment with different settings.
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Goals

1. Enable developers to effectively measure the energy consumption of a 
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming 
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.
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Use forkOn for embarrassingly parallel problems

Scenario:

● Your program creates multiple threads;

● There is little or no dependency among these threads;

● They perform almost the same amount of work.
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Scenario:
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● They perform almost the same amount of work.

Solution:

● Use forkOn to spawn the threads;

● Distribute the threads evenly among the capabilities.
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Reduces the scheduling overhead

Improves performance



Use forkOn for embarrassingly parallel problems
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Avoid setting more capabilities than available CPUs
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Avoid using forkOS, except when you can’t
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Goals

1. Enable developers to effectively measure the energy consumption of a 
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming 
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.
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Contributions

● A tool for fine-grained energy analysis;

● A tool for coarse-grained energy analysis;

● An understanding of the energy behavior of concurrent Haskell programs;

● A list of guidelines on how to write energy-efficient software;
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Contributions

● A tool for fine-grained energy analysis;

● A tool for coarse-grained energy analysis;

● An understanding of the energy behavior of concurrent Haskell programs;

● A list of guidelines on how to write energy-efficient software;

● A paper published at the main research track of SANER'16.

   Haskell in Green Land: Analyzing the Energy Behavior of a Purely Functional Language
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Future Work

● Develop a software model for estimating the energy consumed by core;

● Adapt the GHC energy profiler to handle parallel execution;

● Extend ThreadScope to support energy consumption;

● Replicate our study on different hardware (Haswell and Broadwell);

● Study how the various GHC options impact energy consumption;

● In-depth analysis of each benchmark of our suite;

● Analyse other concurrent programming models (e.g. Actor Model).
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