Understanding the Energy Behavior
of Concurrent Haskell Programs

Luis Gabriel Lima

|| [~
| [~2
] [~2

M.Sc. Defense &
?’ Informatics Center
w Federal University of Pernambuco A

Centro de

Recife, August 2016 Informatica

Why does it matter?

Sources of emissions

Energy production remains the primary driver of GHG emissions

6.4%
Building
Sector

24% 14%

3 5 % Agriculture, Transport

Energy Sector other land uses

2010 GHG emissions

ARS WG SPM

-
e . IPCC @) @
|PCC ARS Synthesis Repaort wTtecoveRnmEnTAL paNEL on ClimaTte chanee ween UNEP

http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-arb
2

http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

Why does it matter?

Energy prod B
Mitigation Measures

More efficient use of energy

Greater use of low-carbon and no-carbon energy
+ Many of these technologies exist today

Improved carbon sinks

* Reduced deforestation and improved forest management
and planting of new forests

* Bio-energy with carbon capture and storage

Lifestyle and behavioural changes

® 090

ARSWGII SPM

IPCC & @

n climate chanee —
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-arb

3

IPCC ARS Synthasis Rep

IPCC ARS Synthesis Report

http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

Why does it matter?

Energy prod

Mitigation Measures

‘ o More efficient use of energy \

Greater use of low-carbon and no-carbon energy
+ Many of these technologies exist today

This talk! -

Improved carbon sinks

* Reduced deforestation and improved forest management
and planting of new forests

* Bio-energy with carbon capture and storage

Lifestyle and behavioural changes

® 09

ARSWGII SPM

IDCC & @
n climate chanee LM;) NE
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ars

4

IPCC ARS Synthasis Rep

IPCC ARS Synthesis Report

http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

It goes beyond saving the planet...

(as if that wasn’t important enough)

T
]
N L W

10 M
AW AR S aie i
¢

A

It goes beyond saving the planet...

(as if that wasn’t important enough)

Bloomberg the Company & Its Products | Bloomberg Anywhere Remote Login | Bloomberg Terminal Demo Request
Bloomberg .,
Technology

Inside the Arctic Circle, Where Your
Facebook Data Lives

By Ashlee Vance ¥ | October 04, 2013

000 O =

Every year, computing giants including Hewlett-Packard (HPQ), Dell (DELL), and Cisco
Systems (CSCO) sell north of $100 billion in hardware. That’s the total for the basic iron—

There is No Free Lunch

Multicore processors are ubiquitous;

Performance of the existing parallel software is reasonably well-understood;

Little is known about energy behaviors of multi-threaded programs on the
application level.

Haskell in the Concurrency Wilderness

Techniques for Multicore and Multithreaded Programming

Parallel and
Concurrent
Programming
in Haskell

O’REILLY* Simon Marlow

“ Code Android i0S Web Backend Hardware

@ June 26, 2015 ¥ SECURITY - BACKEND

Fighting spam with Haskell

Q Simon Marlow

One of our weapons in the fight against spam, malware, and other abuse on Facebook is a system
called Sigma. Its job is to proactively identify malicious actions on Facebook, such as spam, phishing
attacks, posting links to malware, etc. Bad content detected by Sigma is removed automatically so
that it doesn't show up in your News Feed.

We recently completed a two-year-long major redesign of Sigma, which involved replacing the in-
house FXL language previously used to program Sigma with Haskell. The Haskell-powered Sigma
now runs in production, serving more than one million requests per second.

Haskell isn't a common choice for large production systems like Sigma, and in this post, we'll explain
some of the thinking that led to that decision. We also wanted to share the experiences and lessons
we learned along the way. We made several improvements to GHC (the Haskell compiler) and fed
them back upstream, and we were able to achieve better performance from Haskell compared with
the previous implementation.

The Problem

Lack of Knowledge Lack of Tools

The Problem

Lack of Knowledge

Lack of Tools

Gustavo Pinto
Federal University of
Pernambuco
Recife, PE, Brazil
ghlp@cin.ufpe.br

ABSTRACT

A prowing mumber of software solutions have been proposed
to address application-level energy consumption problems in
the last few vears. Howewver, little is known about how much
software developers are concerned about energy consump-
tion, what aspects of energy consumption they consider im-
portant, and what solutions they have in mind for improving
energy efficiency. In this paper we present the first empir-
ival study on understanding the views of application pro-

Mining Questions About Software Energy Consumption

Fernando Castor
Federal University of
Pernambuco
Recife, PE, Brazil
castor@cin.ufpe.br

Yu David Liu
State University of New York
at Binghamton
Binghamton, NY 13302, USA
davidL@cs binghamton.edu

solutions are highly sought after across the compute stack,
with more established results through innovations in hard-
ware farchitecture [, 6], operating systems [0, 15, 270),
and runtime a\a-,h.ms _] In recent years, there is
a growing imterest in bllld\-lllb energy consumption from
higher layers of the compute stack and most of these stud-
iex foeus on application software [15, 22, 05, 7, 17].
These approaches complement prior Iw.niv.are/()\-(eutnc
solutions, so that mprovements at the hardware /08 level
oy) T T 2

10

The Problem

Lack of Knowledge Lack of Tools

Oh Boy! | have no idea on how to
to improve the energy efficiency of
my concurrent program...

11

The Problem

Lack of Knowledge Lack of Tools

Is there any tool to
help me on that?

12

Goals

Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Provide guidelines for developers on how to write energy-efficient code.

13

Goals

Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Provide guidelines for developers on how to write energy-efficient code.

14

Measuring Energy Consumption

RAPL

. package power plane
. pp0/core power plane (all cores on the package)

. ppl/graphics power plane (client only)
. DRAM power plane (server only)

https://software.intel.com/en-us/articles/intel-power-governor
15

https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor

Performance Analysis in Haskell

Profiling Benchmarking

\J \J

GHC Profiler Criterion

16

GHC Profiler

tem.Environment
xt.Printf

main = dc

[d]

printf "= SUGE: I) Main 4e7 +RTS -p -K1000 -hc 1,795,753,043 bytes x seconds Sun Dec 21 18:53 2014

sum

W van

CENTRE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 seconds

GHC Profiler

main = dc

[d] =-

pri (ot NEE I) Main 47 +RTS -p -K1000 -hc 1,795,753,043 bytes x seconds Sun Dec 21 18:53 2014

sum

W van

CENTRE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 seconds

Time Profiling

Uses frequency counting;

At each tick interval (1 ms), the profiler increments the counter of the
currently executing cost-centre;

When the execution finishes, we can estimate the time spent by each
cost-centre.

19

Energy Profiling

Uses accumulators;

At each tick, adds the energy consumed since the last tick to the
accumulator of the currently executing cost-centre;

When the execution finishes, each accumulator holds the energy consumed
by its associated cost-centre.

20

Energy Profiling in Action

sun Feb 8 22:44 2015 Time and Allocation Profiling

Main +RTS -p -K10GM -Dp -RTS 1026

COST CENTRE MODLLE

MATMN MATM
Main

MODULE ; entries

MAIM]
Hain) 1

Source Code: https://github.com/green-haskell/ghc

21

https://github.com/green-haskell/ghc

Energy Profiling in Action

Sun Feb 2 22:44 2015 Time and Allocation Profiling

Main +RTS -p -K10GM -Dp -RTS 1026

(1796 tic

COST CENTRE MODLLE

MATMN MATM
mean Main

COST CENTRE MODULE : entries

MATMN 6]
Maln) 1

i I:I
]
]
]
]
]
]

Source Code: https://github.com/green-haskell/ghc

22

https://github.com/green-haskell/ghc

Criterion Microbenchmarking Library

import Criterion.Main

fik i: Int —> Int
ik m m < 0 = error "negative!"
otherwise = go m
where
go 0 =0
go 1 =1
gon = go (n-1) + go (n—-2)
Madfn == TG {)
main = defaultMain |

bench "fib/9" (whnf fib 9)
]

23

import Criterion.Main

ik :: Ink —3 Ink
ik m m < 0
otherwise = go m

where
go 0 =0
go 1 =1
gon = go (n-1) + go (n—-2)
Madfn == TG {)

main = defaultMain [
bench "fib/9" (whnf fib 9)

Criterion in Action

error "negative!"

benchmarking fib/9

time 314.4 ns (312.2 ns .. 318.5 ns)

0.999 R? (0.997 R2 .. 1.000 R2)
mean 315.3 ns (314.0 ns .. 319.4 ns)
std dev 7.081 ns (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)

24

import Criterion.Main

ik :: Ink —3 Ink
ik m m < 0
otherwise = go m

where
go 0 =0
go 1 =1
gon = go (n-1) + go (n—-2)
Madfn == TG {)

main = defaultMain [
bench "fib/9" (whnf fib 9)

error "negative!"

Criterion in Action

Time estimate for
running fib/9 once

benchmarking fib/9 T

time 314.4 ns (312.2 ns .. 318.5 ns)
0.999 R? (0.997 R2 .. 1.000 R2)

mean 315.3 ns (314.0 ns .. 319.4 ns)

std dev 7.081 ns (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)

25

Criterion in Action

import Criterion.Main . .
Time estimate for

running fib/9 once Confidence Interval

fik i: Int —> Int
ik m m < 0 = error "negative!"
otherwise = go m benchmarking fib/9
whete time 314.4 ns (312.2 ns .. 318.5 ns)

ge 0 =0

go 1 =1 0.999 R2 (0.997 R2 .. 1.000 R2?)

go n = go (n-1) + go (n-2) mean 315.3 ns (314.0 ns .. 319.4 ns)
waln 55 XD 4 std dev 7.081 ns (1.625 ns .. 14.63 ns)
main = defaultMain [variance introduced by outliers: 26% (moderately inflated)

bench "fib/9" (whnf fib 9)

26

Criterion in Action

import Criterion.Main . .
Time estimate for

running fib/9 once Confidence Interval

fik i: Int —> Int
ik m m < 0 = error "negative!"
otherwise = go m benchmarking fib/9
Whereo) time 314.4 ns (312.2 ns .. 318.5 ns)

go =

go 1l =1 Coefficient of determination <e—— ©0.999 R? (0.997 R? .. 1.000 R?)

go n = go (n-1) + go (n-2) mean 315.3 ns (314.0 ns .. 319.4 ns)
waln 55 XD 4 std dev 7.081 ns (1.625 ns .. 14.63 ns)
main = defaultMain [variance introduced by outliers: 26% (moderately inflated)

bench "fib/9" (whnf fib 9)

27

Criterion: Other Performance Metrics

import Criterion.Main
benchmarking fib/9

fib :: Int -> Int time 317.2 ns (314.2 ns .. 319.4 ns)
fik m m < 0 = error "negative!" , , ,
I ©.999 R2 (0.999 R? .. 1.000 R2)
where mean 314.4 ns (313.3 ns .. 315.8 ns)
g0 10! M std dev 4.117 ns (2.682 ns .. 5.398 ns)
go 1l =1
go n = go (n-1) + go (n-2) cycles: 0.999 R? (0.999 R2 .. 1.000 RZ)
iters 1079.434 (1069.292 .. 1087.144)
AETH 23 o2 A 924904.370 (562772.048 .. 1358678.998
main = defaultMain [y : (: ° :)
bench "fib/9" (whnf fib 9) variance introduced by outliers: 13% (moderately inflated)

28

Criterion: Other Performance Metrics

import Criterion.Main
benchmarking fib/9

fib :: Int -> Int time 317.2 ns (314.2 ns .. 319.4 ns)
fik m m < 0 = error "negative!" , , ,
I ©.999 R2 (0.999 R? .. 1.000 R2)
where mean 314.4 ns (313.3 ns .. 315.8 ns)
g0 10! M std dev 4.117 ns (2.682 ns .. 5.398 ns)
go 1l =1
go n = go (n-1) + go (n-2) cycles: 0.999 R? (9.999 R2 .. 1.000 RZ)
iters 1079.434 (1069.292 .. 1087.144)
AETH 23 o2 A 9249p4.370 (562772.048 .. 1358678.998
main = defaultMain [y : (: ° :)
bench "fib/9" (whnf fib 9) variance introduced by ouftliers: 13% (moderately inflated)

Estimate of the number of
CPU cycles required for
running fib/9 once

29

Criterion + Energy Metrics

benchmarking dining-philosophers (fork0S | Mvar)

time 2.183 s (1.915 s .. 2.510 s)
0.997 R? (0.991 R2 .. 1.000 R2)

mean 2.179 s (2.113 s .. 2.212 s)

std dev 57.17 ms (0.0 s .. 57.19 ms)
energy: 0.999 R? (0.997 R2 .. 1.000 R2?)

iters 180.947 (164.629 .. 200.826)

y 0.937 (-71.359 .. 37.230)

variance introduced by outliers: 19% (moderately inflated)

Source Code: https://github.com/green-haskell/criterion

30

https://github.com/green-haskell/criterion

Criterion + Energy Metrics

benchmarking dining-philosophers (fork0S | Mvar)

time 2.183 s (1.915 s .. 2.510 s)
0.997 R? (0.991 R2 .. 1.000 R2)

mean 2.179 s (2.113 s .. 2.212 s)

std dev 57.17 ms (0.0 s .. 57.19 ms)
energy: 0.999 R? (0.997 R2 .. 1.000 R2?)

iters 180.947 (164.629 .. 200.826)

y 0.937 (-71.359 .. 37.230)

variance introduced by oytliers: 19% (moderately inflated)

Estimate of the energy in Joules required for
running dining-philosophers once

Source Code: https://github.com/green-haskell/criterion

31

https://github.com/green-haskell/criterion

Goals

Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Provide guidelines for developers on how to write energy-efficient code.

32

Goals

Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Provide guidelines for developers on how to write energy-efficient code.

33

Concurrency in GHC

Main abstraction: Haskell threads;

Haskell threads are executed on capabilities (or Haskell Execution Context);
The number of capabilities can be defined at runtime;
The runtime system has its own scheduler;

Haskell threads can be migrated among capabilities.

34

Concurrency in GHC

Main abstraction: Haskell threads;

Haskell threads are executed on capabilities (or Haskell Execution Context);

The number of capabilities can be defined at runtime;

The runtime system has its own scheduler; 7 load balancing

Haskell threads can be migrated among capabilities.

35

Concurrency Layers

Haskell Threads Haskell Threads

HEC HEC

OS Thread OS Thread

OS Process ‘

user space

Operating System
software (Linux, Windows, FreeBSD, ...)

kernel space

hardware Physical Processor
(x86, ARM, ...)

Physical Processor
(x86, ARM, ...)

https://takenobu-hs.github.io/downloads/haskell_ghc _illustrated.pdf
36

https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf
https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf

Concurrent Programming Constructs

Threading Strategies Primitives for Sharing Data
forkIO MVar
forkOn TVar

forkOS TMVar

37

Threading Strategies

forkIO . forkOn . forkO0S
RN N . /. Bound
i | Threads
Haskell
Threads o o
N affinity
! bound
HEC HEC / § HEC
| |)
OS Thread OS Thread OS Thread OS Thread

https://takenobu-hs.github.io/downloads/haskell_ghc _illustrated.pdf
38

https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf
https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf

Primitives for Sharing Data

MVar g TVar | TMVar
e Holds a single value e Holds a single value e Mimics an MVar
e Full or empty e Never empty e Uses a TVar internally

e Blocking . e Non-blocking

39

Primitives for Sharing Data

MVar g TVar | TMVar
e Holds a single value e Holds a single value e Mimics an MVar
e Full or empty e Never empty e Uses a TVar internally
e Blocking . e Non-blocking

4 Can only be used inside a transaction!

40

Benchmarks

CPU-intensive: mandelbrot, spectral-norm

Memory-intensive: k-nucleotide, regex-dna

I/O0-intensive: warp

Synchronization-intensive: chameneos-redux, dining-philosophers

Mixed: fasta, tsearch

41

Benchmarks

e CPU-intensive: mandelbrot, spectral-norm

e Memory-intensive: k-nucleotide, regex-dna

e |/O-intensive: warp

e Synchronization-intensive: chameneos-redux, dining-philosophers

e Mixed: fasta, tsearch

‘ Computer Language Benchmarks Game . Rosetta Code . Created by us

42

spectral-norm

Methodology

forkIO-MVar
forkIO-TVar
forkIO-TMVar

forkOn-MVvar
forkOn-TVar
forkOn-TMVar

forkOS-Mvar
forkOS-TVar
forkOS-TMVar

43

spectral-norm

Methodology

forkIO-MVar
forkIO-TVar
forkIO-TMVar

forkOn-MVvar
forkOn-TVar
forkOn-TMVar

forkOS-Mvar
forkOS-TVar
forkOS-TMVar

44

Each benchmark has up to 9
variants;

Each variant is a Criterion
microbenchmark;

Each variant is executed with
={1, 2,4, 8, 16, 20, 32, 40, 64}

Experimental Environment

2x10-core Intel Xeon E5-2660 v2 processors + 256GB DDR3
Ubuntu Server 14.04.3 LTS (kernel 3.19.0-25)

Criterion 1.1.0 with energy extension

GHC 7.10.2

45

Energy (J)

50000
45000
40000
35000
30000
25000
20000
15000
10000

5008

Results

Time (sec)

124 8

16 20
Number of Capabilities

32

40

46

350

—— forklO —— forkOn -—=— forkOS

300 f

250 |
200 r
150
100
50 f

124 8 16 20 32 40
Number of Capabilities

Energy (J)

Small Changes Can Produce Big Savings

—— forklO-MVar — forkOn-MVar
chameneos-redux — forklO-TMVar —=— forkOn-TMVar
7000 120 u
6000 100 F
| P o
o 60 S - -
3000 | ‘ 1€ Ll . -
2000 } L = ,..-——
1000 |}] 20
124 8 16 20 32 40 124 8 16 20 32 40

Number of Capabilities Number of Capabilities

47

Energy (J)

7000

Small Changes Can Produce Big Savings

chameneos-redux

120

6000 |

5000 t
4000 }
3000 t -
5 ,w*"’h—_——ﬂqﬂeﬁr ,/)'r

1000 f

2000

Time (sec)

124 8 16 20 32
Number of Capabilities

40

—— forklO-MVar
—— forklO-TMVar

— forkOn-MVar
—&— forkOn-TMVar

100
80
60
40
20

124 8 16 20

32 40

Number of Capabilities

TMVar is 2.5x worse than Mvar

48

Energy (J)

1200

1000 |
800 |

600 |
400 |
200 |

Small Changes Can Produce Big Savings

spectral-norm

16 20
Number of Capabilities

124 8

49

Time (sec)

—— forklO-MVar
—— forklO-TMVar
- forklO-TVar

forkOn-MVar

—=— forkOn-TMVar

forkOn-TVar

25

—— forkOS-MVar
forkOS-TMVar
—— forkOS-TVar

20
15
10

B
~ —
L L

16 20
Number of Capabilities

124 8

Energy (J)

Small Changes Can Produce Big Savings

1200

spectral-norm

1000 |
800 |

600 |
400 |
200

/

/1248

1 6 20 32
Number of Capabilities

Time (sec)

—— forklO-MVar
—— forklO-TMVar
—« forklO-TVar |

25

20
15
10

forkOn-MVar
—=— forkOn-TMVar
forkOn-TVar |

—— forkOS-MVar
+ forkOS-TMVar
—— forkOS-TVar |

;.“—"""--...ﬂ__- — —
L 1 1

124 8

16 20 32 40
Number of Capabilities

fork0s is 2.3x worse than forkOn

Energy consumption (joules)

11000

Faster is Not Always Greener

regex-dna

M forklO-MVar
I forklO-TMVar
B forkOn-MVar
B forkOn-TMVar
W forkOS-MVar
M forkOS-TMVar

T T Tl

T
4 g 16 20 32 40

Number of Capabilities

51

Time (sec)

110

100+

90

80 -

704

60

50 4

40

30

20

10

-

T T
4 a8 16 20 a2 40

Number of Capabilities

Energy consumption (joules)

11000:
10000
9000
8000
7000
6000
5000
4000
3000
2000

1000

Faster is Not Always Greener

regex-dna

B forkOn-TMVar

T T T T T T

4 B 16 20 3z 40

Number of Capabilities

52

Time (sec)

1104

100 o

90—

80—

70 -

60 -

50

40

304

204

-

T T
16 20
Number of Capabilities

32

Ll
40

Energy consumption (joules)

Faster is Not Always Greener

regex-dna

11000

110
10000
100 |
9000 -
90
8000 —
80 -
7000 — 704
8
6000 — < 804
-]
£

2000 B forkOn-TMVar|F 50
4000 - 404
3000 304
2000 - 20

1000 104

T T T T T T

12 4 8 16 20 3z 40 16 20 32 40
Number of Capabilities Number of Capabilities

-
P —
=
=

12% faster and 51% less energy-efficient

53

Energy (J)

Time (sec)

7000

There is No Overall Winner

chameneos-redux

6000

5000 |
4000 |
3000 r .
L [x//—
1000 f

2000

120

16 20 32 40
Number of Capabilities

—— forklQ-MVar forkOn-MVar
—— forklO-TMVar —=— forkOn-TMVar

124 8

100 |
80 t
60 |
40 t
20 t

16 20 32 40
Number of Capabilities

124 8

54

Energy (J)

Time (sec)

600
500
400

300 |
200 | ¢

100

—— forklO-MVar

dining-philosophers

'\

124 8 16 20 32 40
Number of Capabilities

forkOn-MVar —=— forkOS-MVar

—— forklO-TMVar —=— forkOn-TMVar forkOS-TMVar

14 —

12

10

8

4] \\" .

S

2 o — A‘_.{/"‘:g Y 1

o L= ., X L))
124 8 16 20 32 40

Number of Capabilities

Energy (J)

Time (sec)

7000

There is No Overall Winner

chameneos-redux

6000

5000 |
4000 |
3000 r .
L [x//—
1000 f

2000

120

16 20 32 40
Number of Capabilities

—— forklQ-MVar forkOn-MVar
[—+— forklO-TMVar | —= forkOn-TMVar

124 8

100 |
80 t
60 |
40 t
20 t

16 20 32 40
Number of Capabilities

124 8

55

Energy (J)

Time (sec)

dining-philosophers

600 —rrr

500 |

400 | \

300 |\

200‘\ -

100 _DM
o L . .

124 8 16 20 32 40
Number of Capabilities

—— forklO-MVar
—— forklO-TMVar

forkOn-MVar
—=— forkOn-TMVar

—=— forkOS-MVar
forkOS-TMVar

14 —r

12

10 |

8 .

al \\" .

e

2 _ L M-

0 e il L L In L L
124 8 16 20 32 40

Number of Capabilities

Energy (J)

7000

Case Study: fasta

fasta

6000

5000 f
4000
3000
2000

1000 |

Time (sec)

124 8 16 20 32 40
Number of Capabilities

56

—— forklO-MVar forkOn-MVar —— forkOS-MVar
—— forklO-TMVar —— forkOn-TMVar —— forkOS-TMVar
—=— forklO-TVar forkOn-TVar —— forkOS-TVar

80

0

70

60 |
50 | «
40 | !
30
20
10 |

124 8 16 20 32 40
Number of Capabilities

Energy (J)

7000

Case Study: fasta

fasta

6000

5000 f
4000
3000
2000

1000 |

124 8 16 20 32 40
Number of Capabilities

57

Time (sec)

—— forklO-MVar forkOn-MVar —— forkOS-MVar
—— forklO-TMVar —— forkOn-TMVar —— forkOS-TMVar
—=— forklO-TVar forkOn-TVar —— forkOS-TVar

80

0

70

60 |
50 | «
40 | !
30
20
10 |

124 8 16 20 32 40
Number of Capabilities

Energy (J)

7000

6000
5000 f
4000
3000
2000
1000 |

Case Study: fasta

—— forklO-MVar forkOn-MVar —— forkOS-MVar
fasta —— forklO-TMVar —— forkOn-TMVar —— forkOS-TMVar
—=— forklO-TVar forkOn-TVar —— forkOS-TVar

80 —rr—
70 |
60
50 | 4
40
30
20
1 10 |
- : : : : 0

Time (sec)

124 8 16 20 32 40 124 8 16 20 32 40
Number of Capabilities Number of Capabilities

Best performance and worst energy consumption!

58

Energy (J)

7000

Case Study: fasta

fasta

6000

5000 f
4000
3000
2000

1000 |

Time (sec)

124 8 16 20 32 40
Number of Capabilities

59

—— forklO-MVar forkOn-MVar —— forkOS-MVar
—— forklO-TMVar —— forkOn-TMVar —— forkOS-TMVar
—=— forklO-TVar forkOn-TVar —— forkOS-TVar

80

0

70

60 |
50 | «
40 | !
30
20
10 |

124 8 16 20 32 40
Number of Capabilities

Energy (J)

7000

6000
5000 f
4000
3000
2000
1000 |

Case Study: fasta

—— forklO-MVar forkOn-MVar —— forkOS-MVar
fasta —— forklO-TMVar —— forkOn-TMVar —— forkOS-TMVar
—=— forklO-TVar forkOn-TVar —— forkOS-TVar

80 —rr—
70 |
60
50 | 4
40
30
20
1 10 |
- : : : : 0

Time (sec)

124 8 16 20 32 40 124 8 16 20 32 40
Number of Capabilities Number of Capabilities

Worst performance and average energy consumption

60

How It Works

. Take seed® from the shared variable

. Generate random_numbers and seedl

. Put seed1 on the shared variable

. Compute the DNA sequence based on random_numbers
. Wait until the predecessor DNA sequence is written to output

. Write DNA sequence to output

61

Energy (J)

7000

6000
5000 f
4000
3000
2000
1000 |

The Fastests Consume More Energy (1/4)

—— forklO-MVar forkOn-MVar —— forkOS-MVar
faSta —»— forklO-TMVar —=— forkOn-TMVar +— forkOS-TMVar
—=— forklO-TVar forkOn-TVar —— forkOS-TVar

80 —rr—
70
60 |
50 | «
40 | !
30
20
- 10 |
S . - - 0

Time (sec)

124 8 16 20 32 40 124 8 16 20 32 40
Number of Capabilities Number of Capabilities

Best performance and worst energy consumption!

62

HEC O

HEC1

HEC 2

HEC 3

HEC 4

HEC S

HEC &

The Fastests Consume More Energy (2/4)

5s 10s 15s 20s 25s 30s

QL TR e i vl A A SRR R
000l
0O A AV
O
O

g T e e
forkIO-MVar
63

HEC O

HEC1

HEC 2

HEC 3

HEC 4

HEC S

HEC &

5s 10s 15s
1 | 1

forkIO-TVar

The Fastests Consume More Energy (3/4)

1. Take from the shared variable
2. Generate random_numbers and seedl

3. Put seedl on the shared variable

64

The Fastests Consume More Energy (3/4)

1. Take from the shared variable

2. Generate random_numbers and seedl MVar vs TVar

3. Put seed1 on the shared variable /

65

1

2

3

The Fastests Consume More Energy (3/4)

. Take seed® from the shared variable

. Generate random_numbers and seedl MVar vs TVar

. Put seed1 on the shared variable /

Using MVar makes the program almost sequential;
With TVar, all threads are competing to generate the same number;

Multiple transaction abortions cause high CPU activity.

66

The Fastests Consume More Energy (4/4)

STM transaction statistics (2016-07-20 19:16:02.445387 UTC):

Transaction Commits Retries Ratio
generate-numbers 299 4138 13.84
output-sync 261 33 0.13

wait-semaphore 2 2 1.00

67

The Fastests Consume More Energy (4/4)

STM transaction statistics (2016-07-20 19:16:02.445387 UTC):

Transaction Commits Retries Ratio
generate-numbers 299 4138 13.84
output-sync 261 33 0.13

wait-semaphore 2 2 1.00

68

Energy (J)

7000

6000
5000 f
4000
3000
2000
1000 |

The Slowest Consumes Less Energy (1/2)

—— forklO-MVar forkOn-MVar —— forkOS-MVar
faSta —»— forklO-TMVar —=— forkOn-TMVar +— forkOS-TMVar
—=— forklO-TVar forkOn-TVar —— forkOS-TVar

80 —rr—
70
60 |
50 | «
40 | !
30
20
- 10 |
S . - - 0

Time (sec)

124 8 16 20 32 40 124 8 16 20 32 40
Number of Capabilities Number of Capabilities

Worst performance and average energy consumption

69

The Slowest Consumes Less Energy (2/2)

.55

Activity

O O X

L, 00 00000l
|, AT TR l |

!

i e e

fork0OS-MVar
70

A Bug in the Scheduler

3 semanas atras at

#12419 merge bug
Scheduling bug with forkOS + MVar

do por (ltimo 8 dias atras

Relatado por; luisgabriel

Prioridade normal Marco! 8.02

Componente: Runtime System Versdo: 8.0.1

Palavras-Chave forkS; scheduler Ce: simonmar

Operating System Linux Architecture: x86_64 (amde4)

Type of failure: None/Unknown

Differential Rev(s): C»Phab:D2430, => Phab:D2441

Descrigao

I have noticed a weird scheduling behavior when performing some experiments with the fasta benchmark [

from The Computer Language Benchmarks Game. When I switch forkIo by forkoS the scheduler stops to

assign work for some capabilities, and they stay idle for the whole execution of the program.
ThreadScope view using forkIO: =»https://s31.postimg.org/r3mclspe3/fork_I0_N8_ghc8.png

ThreadScope view using forkOS: =+ https://s31.postimg.org/p9n265fff/fork_OS_N8_ghcg.png

I was able to reproduce this behavior in both GHC 7.10.2 and GHC 8.0.2. I was also able to reproduce it on

two different machines running Ubuntu Server 14.04.3 LTS (kernel 3.19.0-25):
+ 2x10-core Intel Xeon E5-2660 v2 processers (Ivy Bridge), 2.20 GHz, with 256GB of DDR 1600MHz

+ 4-core Intel i7-3770 (IvyBridge) with 8 GB of DDR 1600MHz

Source code + .eventlog files ittps://d|.dropboxusercontent.com/u/5798150/fasta-bug.zip

1] =rhttp://benchmarksgame.alioth.debian.org/u64q/program.php?test=fastaflang=ghcai

Track the lengths of the thread queues Browse files

Sunmary
Knowing the length of the run gueue in O(1) time is useful: for example
we don't have to traverse the run queue to know how many threads we have
to migrate in schedulePushWork()

Test Plan: validate

Reviewers: e Fix to thread migration Browse files

Summary :
If we had 2 threads on the run queue, say [A,B], and B is bound to the

Subscribers:

current Task, then we would fail to migrate any threads. This fixes it
Differential .
S0 that we would migrate A in that case.
b master This will help parallelism a bit in programs that have lots of bound
threads
T3 simonma
Test Plan:

Test program

71

Showing 5 ¢l goes benave . Another try to get thread migration right Browse files

Summary:

Reviewers: € ' ynic j5 surprisingly tricky. There were linked 1ist bugs in the

cubscriners: PreVIOUS version (D2430) tnat showed up as a fest Tailure in

UDSCIIDENS: | Setnumcapabilities@81 (that's a great stress test!).

kg tial
SreMtIAL | rhis new version uses a different strategy that doesn't suffer from

6HC Trac 1ss e Problem tnat @ezyang pointed out in D2439, We now pre-calculate
how many threads to keep for this capability, and then migrate any

e surplus threads off the front of the queue, taking care to account for

i mancac threads that can’t be migrated.

Dsimenmar oy orn
1. setnumcapabilities@dl stress test with sanity checking (+RTS -DS) turned on

Showing 1 ch
cd testsuite/tests/concurrent/should_run
make TEST=setnumcapabilities®@l WAY=threadedl EXTRA_HC_OPTS=-with-rtsopts=-DS CLEANUP=@
while true; do ./setnumcapabilities@@i.run/setnumcapabilities8@i 4 9 2008 || break; done
2. The test case Trom #12419
Reviewers: niteria, ezyang, rwbarton, austin, bgamari, erikd
Subscribers: thomie, ezyang
Differential Revision: https://phabricator.haskell.org/D2441
GHC Trac Issues: #12419
¥ master
T3} simonmar commitied 9 days ago 1 parent cel3ada comnit BOTade9BBT47cTb42d0dc33FCIDTFdce31dBs5Oe

Showing 1 changed file with 62 additions and 99 deletions. Unified | Split

Discussion

Bad news:

e The relationship between performance and energy is not obvious;

72

Discussion

Bad news:

e The relationship between performance and energy is not obvious;

Good news:
e In most cases, switching between concurrency primitives is very simple;
e For most benchmarks, there is a configuration that most of the time beats the others;
e |It's easy (and cheap) to experiment with different settings. @
I

73

Goals

Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Provide guidelines for developers on how to write energy-efficient code.

74

Goals

Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Provide guidelines for developers on how to write energy-efficient code.

75

Use forkOn for embarrassingly parallel problems

Scenario:

e Your program creates multiple threads;
e There is little or no dependency among these threads;

e They perform almost the same amount of work.

76

Use forkOn for embarrassingly parallel problems

Scenario:

e Your program creates multiple threads;
e There is little or no dependency among these threads;

e They perform almost the same amount of work.

Solution:

e Use forkOn to spawn the threads;

e Distribute the threads evenly among the capabilities.

77

Use forkOn for embarrassingly parallel problems

Scenario:

e Your program creates multiple threads;
e There is little or no dependency among these threads;

e They perform almost the same amount of work.

Solution:

e Use forkOn to spawn the threads; —— Reduces the scheduling overhead

e Distribute the threads evenly among the capabilities.

78

Use forkOn for embarrassingly parallel problems

Scenario:

e Your program creates multiple threads;
e There is little or no dependency among these threads;

e They perform almost the same amount of work.

Solution:

e Use forkOn to spawn the threads; —— Reduces the scheduling overhead

e Distribute the threads evenly among the capabilities.—® Improves performance

79

Energy consumption (joules)

11000
10000
9000
8000
7000 |
6000
5000
4000
3000
2000

1000

Use forkOn for embarrassingly parallel problems

T T
4 8 16 20 3z 40

Number of Capabilities

regex-dna

B forklO-MVar
W forklO-TMVar
B forkOn-MVar
B forkOn-TMVar
M forkOS-MVar
M forkOS-TMVar

80

Time (sec)

110 4

100

90—

80

70 4

60—

350

40

304

T T
4 8 16 20 32 40

Number of Capabilities

Energy consumption (joules)

11000:
10000
9000
8000 -
7000 -
6000 —
5000
4000 -
3000 —
2000

1000 -

Use forkOn for embarrassingly parallel problems

o

T T
16 20
Number of Capabilities

32

m
40

regex-dna

110 4
100 4
90 |
80 -
70 |

60 —

Time (sec)

M forkOn-TMVar 50 4

40

304 5

204

T T
16 20
Number of Capabilities

—e
o
-
@

81

32

ol
40

Energy consumption (joules)

Avoid setting more capabilities than available CPUs

70000

60000 —

30000

40000

30000

20000 <

10000 —

regex-dna

M forklO-MVar

| forklO-TMVar
M forkOn-MVar
B forkOn-TMVar
M forkOS-MVar
B forkOS-TMVar

T T m
32 40 64

Number of Capabilities

82

Time (sec)

5003

4350 -

400 -

350

300

250

200

150 4

100 o

904

TT T T T T T T m
8 16 20 32 40 64

Number of Capabilities

Energy (J)

Avoid using forkOS, except when you can’t

dining-philosophers

600

500
400 o e
300 F Vo e T - —— forklO-MVar forkOn-MVar ~ —— forkOS-MVar

200 _\?—/_‘_// —— forklO-TMVar —=— forkOn-TMVar « forkOS-TMVar

100 _,-M 14
12
O ot 6 2 ' o o 10}
124 8 16 20 32 40 3
Number of Capabilities e 8r | e '
[} 6 e — — o |
= 4t \\l 1
2| ——s - —_
0 1 1 1 1

124 8 16 2 32 40
Number of Capabilities

83

Energy (J)

Avoid using forkOS, except when you can’t

penGL

dining-philosophers

600
500

400
300 —— forklO-MVar forkOn-MVar —— forkOS-MVar
200 | & —— forklO-TMVar —= forkOn-TMVar —e— forkOS-TMVar
100 | 14
12 }
0 l I I l I l —~ 10 }
124 8 16 20 32 40 3
Number of Capabilities e 8y
GEJ 6 B “ -
a4t .
2 | B— -
0

124 8 16 20 32 40
Number of Capabilities

84

Goals

Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Provide guidelines for developers on how to write energy-efficient code.

85

Contributions
A tool for fine-grained energy analysis;
A tool for coarse-grained energy analysis;
An understanding of the energy behavior of concurrent Haskell programs;

A list of guidelines on how to write energy-efficient software;

86

Contributions

e A tool for fine-grained energy analysis;

e A tool for coarse-grained energy analysis;

e An understanding of the energy behavior of concurrent Haskell programs;
e A list of guidelines on how to write energy-efficient software;

e A paper published at the main research track of SANER'16.

Haskell in Green Land: Analyzing the Energy Behavior of a Purely Functional Language

87

Future Work

Develop a software model for estimating the energy consumed by core;
Adapt the GHC energy profiler to handle parallel execution;

Extend ThreadScope to support energy consumption;

Replicate our study on different hardware (Haswell and Broadwell);
Study how the various GHC options impact energy consumption;
In-depth analysis of each benchmark of our suite;

Analyse other concurrent programming models (e.g. Actor Model).

88

Understanding the Energy Behavior of
Concurrent Haskell Programs

. Enable developers to effectively measure the energy consumption of a
Haskell program;

Characterize the energy behavior of Haskell's concurrent programming
constructs;

Goals

Provide guidelines for developers on how to write energy-efficient code.

LA

Performance Analysis i Haske

Profiling Benchmarking

GHC Profiler Criterion

Energy (J)

7000
6000
5000
4000
3000
2000
1000

Small Changes Can Produce Big Savings

—— forklO-MVar forkOn-MVar

chameneos-redux = forklO-TMVar e~ forkOn-TMVar

100 e A
80

o
8
g 60
P om-—=——i 5 W Y
20
0
124 8 16 20 32 40 124 8 16 20 32 40

Number of Capabiliies Number of Capabilities

Use forkOn for embarrassingly parallel problems

Scenario:
e Your program creates multiple threads;
e There is little or no dependency among these threads;
e They perform almost the same amount of work.
Solution:

e Use forkon to spawn the threads; —— Reduces the scheduling overhead

e Distribute the threads evenly among the capabilities. —# Improves performance

65

Luis Gabriel Lima lenfl@cin.ufpe.br

Fernando Castor castor@cin.ufpe.br

(advisor)

Joao Paulo Fernandes jpfedi.ubi.pt

(co-advisor)

http://green-haskell.github.io/

Thank you!

Centro de
Informatica

UFPE

mailto:lgnfl@cin.ufpe.br
mailto:castor@cin.ufpe.br
mailto:jpf@di.ubi.pt
http://green-haskell.github.io/
http://green-haskell.github.io/

