
Understanding the Energy Behavior
of Concurrent Haskell Programs

Luís Gabriel Lima

M.Sc. Defense
Informatics Center

Federal University of Pernambuco

Recife, August 2016

Why does it matter?

2
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

Why does it matter?

3
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

Why does it matter?

4
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

This talk!

http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5
http://pt.slideshare.net/ipcc-media/the-challenges-and-opportunities-of-climate-change-an-overview-based-on-the-ipcc-fifth-assessment-report-ar5

It goes beyond saving the planet…
(as if that wasn’t important enough)

5

It goes beyond saving the planet…
(as if that wasn’t important enough)

6

There is No Free Lunch

● Multicore processors are ubiquitous;

● Performance of the existing parallel software is reasonably well-understood;

● Little is known about energy behaviors of multi-threaded programs on the
application level.

7

Haskell in the Concurrency Wilderness

8

The Problem

9

Lack of Knowledge Lack of Tools

The Problem

10

Lack of Knowledge Lack of Tools

The Problem

11

Lack of Knowledge Lack of Tools

Oh Boy! I have no idea on how to
to improve the energy efficiency of
my concurrent program...

The Problem

12

Lack of Knowledge Lack of Tools

Is there any tool to
help me on that?

Goals

1. Enable developers to effectively measure the energy consumption of a
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.

13

Goals

1. Enable developers to effectively measure the energy consumption of a
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.

14

Measuring Energy Consumption

15

RAPL

https://software.intel.com/en-us/articles/intel-power-governor

https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor

Performance Analysis in Haskell

Profiling

GHC Profiler

Benchmarking

Criterion
16

GHC Profiler

17

GHC Profiler

18

Time Profiling

● Uses frequency counting;

● At each tick interval (1 ms), the profiler increments the counter of the
currently executing cost-centre;

● When the execution finishes, we can estimate the time spent by each
cost-centre.

19

Energy Profiling

● Uses accumulators;

● At each tick, adds the energy consumed since the last tick to the
accumulator of the currently executing cost-centre;

● When the execution finishes, each accumulator holds the energy consumed
by its associated cost-centre.

20

Energy Profiling in Action

21

Source Code: https://github.com/green-haskell/ghc

https://github.com/green-haskell/ghc

Energy Profiling in Action

22

Source Code: https://github.com/green-haskell/ghc

https://github.com/green-haskell/ghc

Criterion Microbenchmarking Library

23

Criterion in Action

24

benchmarking fib/9

time 314.4 ns (312.2 ns .. 318.5 ns)

 0.999 R² (0.997 R² .. 1.000 R²)

mean 315.3 ns (314.0 ns .. 319.4 ns)

std dev 7.081 ns (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)

Criterion in Action

25

benchmarking fib/9

time 314.4 ns (312.2 ns .. 318.5 ns)

 0.999 R² (0.997 R² .. 1.000 R²)

mean 315.3 ns (314.0 ns .. 319.4 ns)

std dev 7.081 ns (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)

Time estimate for
 running fib/9 once

Criterion in Action

26

benchmarking fib/9

time 314.4 ns (312.2 ns .. 318.5 ns)

 0.999 R² (0.997 R² .. 1.000 R²)

mean 315.3 ns (314.0 ns .. 319.4 ns)

std dev 7.081 ns (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)

Time estimate for
 running fib/9 once Confidence Interval

Criterion in Action

27

benchmarking fib/9

time 314.4 ns (312.2 ns .. 318.5 ns)

 0.999 R² (0.997 R² .. 1.000 R²)

mean 315.3 ns (314.0 ns .. 319.4 ns)

std dev 7.081 ns (1.625 ns .. 14.63 ns)

variance introduced by outliers: 26% (moderately inflated)

Time estimate for
 running fib/9 once Confidence Interval

Coefficient of determination

Criterion: Other Performance Metrics

28

benchmarking fib/9

time 317.2 ns (314.2 ns .. 319.4 ns)

 0.999 R² (0.999 R² .. 1.000 R²)

mean 314.4 ns (313.3 ns .. 315.8 ns)

std dev 4.117 ns (2.682 ns .. 5.398 ns)

cycles: 0.999 R² (0.999 R² .. 1.000 R²)

 iters 1079.434 (1069.292 .. 1087.144)

 y 924904.370 (562772.048 .. 1358678.998)

variance introduced by outliers: 13% (moderately inflated)

Criterion: Other Performance Metrics

29

benchmarking fib/9

time 317.2 ns (314.2 ns .. 319.4 ns)

 0.999 R² (0.999 R² .. 1.000 R²)

mean 314.4 ns (313.3 ns .. 315.8 ns)

std dev 4.117 ns (2.682 ns .. 5.398 ns)

cycles: 0.999 R² (0.999 R² .. 1.000 R²)

 iters 1079.434 (1069.292 .. 1087.144)

 y 924904.370 (562772.048 .. 1358678.998)

variance introduced by outliers: 13% (moderately inflated)

Estimate of the number of
CPU cycles required for

 running fib/9 once

Criterion + Energy Metrics

30

benchmarking dining-philosophers (forkOS | MVar)

time 2.183 s (1.915 s .. 2.510 s)

 0.997 R² (0.991 R² .. 1.000 R²)

mean 2.179 s (2.113 s .. 2.212 s)

std dev 57.17 ms (0.0 s .. 57.19 ms)

energy: 0.999 R² (0.997 R² .. 1.000 R²)

 iters 180.947 (164.629 .. 200.826)

 y 0.937 (-71.359 .. 37.230)

variance introduced by outliers: 19% (moderately inflated)

Source Code: https://github.com/green-haskell/criterion

https://github.com/green-haskell/criterion

Criterion + Energy Metrics

31

benchmarking dining-philosophers (forkOS | MVar)

time 2.183 s (1.915 s .. 2.510 s)

 0.997 R² (0.991 R² .. 1.000 R²)

mean 2.179 s (2.113 s .. 2.212 s)

std dev 57.17 ms (0.0 s .. 57.19 ms)

energy: 0.999 R² (0.997 R² .. 1.000 R²)

 iters 180.947 (164.629 .. 200.826)

 y 0.937 (-71.359 .. 37.230)

variance introduced by outliers: 19% (moderately inflated)

Estimate of the energy in Joules required for
 running dining-philosophers once

Source Code: https://github.com/green-haskell/criterion

https://github.com/green-haskell/criterion

Goals

1. Enable developers to effectively measure the energy consumption of a
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.

32

Goals

1. Enable developers to effectively measure the energy consumption of a
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.

33

Concurrency in GHC

34

● Main abstraction: Haskell threads;

● Haskell threads are executed on capabilities (or Haskell Execution Context);

● The number of capabilities can be defined at runtime;

● The runtime system has its own scheduler;

● Haskell threads can be migrated among capabilities.

Concurrency in GHC

35

● Main abstraction: Haskell threads;

● Haskell threads are executed on capabilities (or Haskell Execution Context);

● The number of capabilities can be defined at runtime;

● The runtime system has its own scheduler;

● Haskell threads can be migrated among capabilities.

load balancing

Concurrency Layers

36
https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf

https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf
https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf

Concurrent Programming Constructs

Primitives for Sharing Data

MVar

TVar

TMVar

37

Threading Strategies

forkIO

forkOn

forkOS

Threading Strategies

38

OS Thread

HEC

Haskell
Threads

forkIO

OS Thread

HEC

OS Thread

HEC

OS Thread

affinity
bound

Bound
Threads

forkOn forkOS

https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf

https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf
https://takenobu-hs.github.io/downloads/haskell_ghc_illustrated.pdf

Primitives for Sharing Data

39

MVar

● Holds a single value

● Full or empty

● Blocking

TVar

● Holds a single value

● Never empty

● Non-blocking

TMVar

● Mimics an MVar

● Uses a TVar internally

Primitives for Sharing Data

40

MVar

● Holds a single value

● Full or empty

● Blocking

TVar

● Holds a single value

● Never empty

● Non-blocking

Can only be used inside a transaction!

TMVar

● Mimics an MVar

● Uses a TVar internally

Benchmarks

● CPU-intensive: mandelbrot, spectral-norm

● Memory-intensive: k-nucleotide, regex-dna

● I/O-intensive: warp

● Synchronization-intensive: chameneos-redux, dining-philosophers

● Mixed: fasta, tsearch

41

Benchmarks

● CPU-intensive: mandelbrot, spectral-norm

● Memory-intensive: k-nucleotide, regex-dna

● I/O-intensive: warp

● Synchronization-intensive: chameneos-redux, dining-philosophers

● Mixed: fasta, tsearch

42

Computer Language Benchmarks Game Rosetta Code Created by us

Methodology

spectral-norm

43

forkIO-MVar

forkIO-TVar

forkIO-TMVar

forkOn-MVar

forkOn-TVar

forkOn-TMVar

forkOS-MVar

forkOS-TVar

forkOS-TMVar

Methodology

spectral-norm

44

forkIO-MVar

forkIO-TVar

forkIO-TMVar

forkOn-MVar

forkOn-TVar

forkOn-TMVar

forkOS-MVar

forkOS-TVar

forkOS-TMVar

● Each benchmark has up to 9
variants;

● Each variant is a Criterion
microbenchmark;

● Each variant is executed with N
= {1, 2, 4, 8, 16, 20, 32, 40, 64}

Experimental Environment

2x10-core Intel Xeon E5-2660 v2 processors + 256GB DDR3

Ubuntu Server 14.04.3 LTS (kernel 3.19.0-25)

Criterion 1.1.0 with energy extension

GHC 7.10.2

45

Results

46

Small Changes Can Produce Big Savings

47

Small Changes Can Produce Big Savings

48

TMVar is 2.5x worse than MVar

Small Changes Can Produce Big Savings

49

Small Changes Can Produce Big Savings

50

forkOS is 2.3x worse than forkOn

Faster is Not Always Greener

51

Faster is Not Always Greener

52

Faster is Not Always Greener

53

12% faster and 51% less energy-efficient

There is No Overall Winner

54

There is No Overall Winner

55

Case Study: fasta

56

Case Study: fasta

57

Case Study: fasta

58

Best performance and worst energy consumption!

Case Study: fasta

59

Case Study: fasta

60

Worst performance and average energy consumption

How It Works

1. Take seed0 from the shared variable

2. Generate random_numbers and seed1

3. Put seed1 on the shared variable

4. Compute the DNA sequence based on random_numbers

5. Wait until the predecessor DNA sequence is written to output

6. Write DNA sequence to output

61

The Fastests Consume More Energy (1/4)

62

Best performance and worst energy consumption!

The Fastests Consume More Energy (2/4)

63

forkIO-MVar forkIO-TVar

The Fastests Consume More Energy (3/4)

1. Take seed0 from the shared variable

2. Generate random_numbers and seed1

3. Put seed1 on the shared variable

64

The Fastests Consume More Energy (3/4)

1. Take seed0 from the shared variable

2. Generate random_numbers and seed1 MVar vs TVar

3. Put seed1 on the shared variable

65

The Fastests Consume More Energy (3/4)

1. Take seed0 from the shared variable

2. Generate random_numbers and seed1 MVar vs TVar

3. Put seed1 on the shared variable

66

● Using MVar makes the program almost sequential;

● With TVar, all threads are competing to generate the same number;

● Multiple transaction abortions cause high CPU activity.

The Fastests Consume More Energy (4/4)

STM transaction statistics (2016-07-20 19:16:02.445387 UTC):

Transaction Commits Retries Ratio

generate-numbers 299 4138 13.84

output-sync 261 33 0.13

wait-semaphore 2 2 1.00

67

The Fastests Consume More Energy (4/4)

STM transaction statistics (2016-07-20 19:16:02.445387 UTC):

Transaction Commits Retries Ratio

generate-numbers 299 4138 13.84

output-sync 261 33 0.13

wait-semaphore 2 2 1.00

68

The Slowest Consumes Less Energy (1/2)

69

Worst performance and average energy consumption

The Slowest Consumes Less Energy (2/2)

70
forkOS-MVar

A Bug in the Scheduler

71

Discussion

Bad news:

● The relationship between performance and energy is not obvious;

72

Discussion

Bad news:

● The relationship between performance and energy is not obvious;

Good news:

● In most cases, switching between concurrency primitives is very simple;

● For most benchmarks, there is a configuration that most of the time beats the others;

● It's easy (and cheap) to experiment with different settings.

73

Goals

1. Enable developers to effectively measure the energy consumption of a
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.

74

Goals

1. Enable developers to effectively measure the energy consumption of a
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.

75

Use forkOn for embarrassingly parallel problems

Scenario:

● Your program creates multiple threads;

● There is little or no dependency among these threads;

● They perform almost the same amount of work.

76

Use forkOn for embarrassingly parallel problems

Scenario:

● Your program creates multiple threads;

● There is little or no dependency among these threads;

● They perform almost the same amount of work.

Solution:

● Use forkOn to spawn the threads;

● Distribute the threads evenly among the capabilities.

77

Use forkOn for embarrassingly parallel problems

Scenario:

● Your program creates multiple threads;

● There is little or no dependency among these threads;

● They perform almost the same amount of work.

Solution:

● Use forkOn to spawn the threads;

● Distribute the threads evenly among the capabilities.

78

Reduces the scheduling overhead

Use forkOn for embarrassingly parallel problems

Scenario:

● Your program creates multiple threads;

● There is little or no dependency among these threads;

● They perform almost the same amount of work.

Solution:

● Use forkOn to spawn the threads;

● Distribute the threads evenly among the capabilities.

79

Reduces the scheduling overhead

Improves performance

Use forkOn for embarrassingly parallel problems

80

Use forkOn for embarrassingly parallel problems

81

Avoid setting more capabilities than available CPUs

82

Avoid using forkOS, except when you can’t

83

Avoid using forkOS, except when you can’t

84

Goals

1. Enable developers to effectively measure the energy consumption of a
Haskell program;

2. Characterize the energy behavior of Haskell's concurrent programming
constructs;

3. Provide guidelines for developers on how to write energy-efficient code.

85

Contributions

● A tool for fine-grained energy analysis;

● A tool for coarse-grained energy analysis;

● An understanding of the energy behavior of concurrent Haskell programs;

● A list of guidelines on how to write energy-efficient software;

86

Contributions

● A tool for fine-grained energy analysis;

● A tool for coarse-grained energy analysis;

● An understanding of the energy behavior of concurrent Haskell programs;

● A list of guidelines on how to write energy-efficient software;

● A paper published at the main research track of SANER'16.

 Haskell in Green Land: Analyzing the Energy Behavior of a Purely Functional Language

87

Future Work

● Develop a software model for estimating the energy consumed by core;

● Adapt the GHC energy profiler to handle parallel execution;

● Extend ThreadScope to support energy consumption;

● Replicate our study on different hardware (Haswell and Broadwell);

● Study how the various GHC options impact energy consumption;

● In-depth analysis of each benchmark of our suite;

● Analyse other concurrent programming models (e.g. Actor Model).

88

Understanding the Energy Behavior of
Concurrent Haskell Programs

Luís Gabriel Lima lgnfl@cin.ufpe.br

Fernando Castor castor@cin.ufpe.br
(advisor)

João Paulo Fernandes jpf@di.ubi.pt
(co-advisor)

http://green-haskell.github.io/

Thank you!

mailto:lgnfl@cin.ufpe.br
mailto:castor@cin.ufpe.br
mailto:jpf@di.ubi.pt
http://green-haskell.github.io/
http://green-haskell.github.io/

