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Resumo

Há anos eficiência energética é uma preocupação para designers de hardware e software baixo-
nível. Entretanto, a rápida proliferação de dispositivos móveis alimentados por bateria combinado
com o crescente movimento global em busca de sustentabilidade tem motivado desenvolvedores
e pesquisadores a estudar o impacto energético de softwares de aplicação em execução. Tra-
balhos recentes tem estudado o efeito que fatores como obsfucação de código, refatorações em
linguagem orientadas à objetos e tipos de dados tem em eficiência energética. Este trabalho
tenta lançar luz sobre o comportamento energético de programas concorrentes escritos em uma
linguagem puramente funcional, Haskell. Nós conduzimos um estudo empírico para avaliar o
desempenho e o comportamento energético de três diferentes abordagens para gerenciamento de
threads e três primitivas para controle de concorrência usando nove diferentes benchmarks com
um espaço de exploração experimental de mais de 400 configurações. Neste estudo, descobrimos
que pequenas mudanças podem fazer uma grande diferença em termos de consumo de energia.
Por exemplo, em um dos benchmarks, sob uma configuração específica, escolher uma primitiva
de controle de concorrência (MVar) ao invés de outra (TMVar) pode acarretar em uma economia
de 60% em consumo de energia. Percebemos também que nem sempre a relação entre consumo
de energia e desempenho é clara. Em alguns cenários analisados, a configuração com melhor
desempenho também apresentou o pior consumo de energia. Para ajudar desenvolvedores a
entender melhor essa complexa relação, nós estendemos duas ferramentas de análise de desem-
penho existentes para coletar e apresentar dados sobre consumo de energia. Adicionalmente,
baseado nos resultados do nosso estudo empírico, listamos um conjunto de recomendações para
desenvolvedores com boas práticas de como escrever código energeticamente eficiente nesse
ambiente.

Palavras-chave: Eficiência Energética. Consumo de Energia. Haskell. Programação Concor-
rente. Programação Funcional. Análise de Desempenho.



Abstract

Energy-efficiency has concerned hardware and low-level software designers for years. However,
the rapid proliferation of battery-powered mobile devices combined with the growing worldwide
movement towards sustainability have caused developers and researchers to study the energy
impact of application software in execution. Recent work has studied the effect that factors such
as code obfuscation, object-oriented refactorings, and data types have on energy efficiency. In
this work, we attempt to shed light on the energy behavior of concurrent programs written in a
purely functional language, Haskell. We conducted an empirical study to assess the performance
and energy behavior of three different thread management approaches and three primitives for
concurrency control using nine different benchmarks with an experimental space exploration
of more than 400 configurations. In this study, we found out that small changes can make
a big difference in terms of energy consumption. For instance, in one of our benchmarks,
under a specific configuration, choosing one concurrency control primitive (MVar) over another
(TMVar) can yield 60% energy savings. Also, the relationship between energy consumption
and performance is not always clear. We found scenarios where the configuration with the
best performance also exhibited the worst energy consumption. To support developers in better
understanding this complex relationship, we have extended two existing performance analysis
tools also to collect and present data about energy consumption. In addition, based on the results
of our empirical study, we provide a list of guidelines for developers with good practices for
writing energy-efficient code in this environment.

Keywords: Energy-Efficiency. Energy Consumption. Haskell. Concurrent Programming.
Functional Programming. Performance Analysis.
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1
Introduction

Um passo a frente e você não está mais no mesmo lugar

One step forward and you are not in the same place

—CHICO SCIENCE & NAÇÃO ZUMBI (Um Passeio No Mundo Livre)

The evolution of technology is unveiling a reality that could hardly be imaginable some
decades ago. Nowadays, we can buy a multiprocessor computer with a few gigabytes of memory
with the size of a credit card for less than a hundred dollars. The ability to manufacture such small
and potent devices is leading to a rapid proliferation of a variety of mobile computing platforms.
These devices are part of a diverse ecosystem that includes smartwatches, smartphones, tablets,
IoT sensors, and drones. As they grow in popularity, new challenges arise for the development
community. Energy consumption is one of them. It is imperative for delivering a good user
experience that these devices stay up and running for as long as possible. As battery lifetime
is closely related to energy consumption, it means that building energy-efficient systems is
becoming mandatory for providing value to the end user.

This concern, however, goes beyond unwired devices. On the other side of the spectrum,
big internet companies are also affected by low energy efficiency. To deliver fast access to their
services globally, these companies usually have to maintain a huge server infrastructure to host
their products. In this kind of environment, due to its scale, the energy consumption can have a
high impact on the maintenance costs. For instance, Facebook is building data centers inside the
Arctic Circle in order to improve the system’s energy efficiency by reducing the power needed
for cooling1. This is just one example of the economic impact driven by the search for more
efficient solutions. It shows that energy efficiency is becoming a key design attribute for building
computational systems.

Although it may seem like a recent problem, the energy efficiency of computer systems
has been a concern for researchers for a long time. Initially, most of the research focused on
the hardware design layer, developing new ways to build electronic components that wasted

1http://www.bloomberg.com/news/articles/2013-10-04/facebooks-new-data-center-in-sweden-puts-the-heat-
on-hardware-makers
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less energy (CHANDRAKASAN; SHENG; BRODERSEN, 1992). This was motivated by the
assumption that only hardware dissipates power, not software. However, in a computer system,
software plays a fundamental role in deciding how a computational task will be executed on
specific hardware. For this reason, software can have a substantial impact on energy consumption.

From a software perspective, the energy efficiency problem can be tackled at different
levels of abstraction, ranging from machine code level to user-facing applications. Traditionally,
the research in this area has been focused on low-level software. Much progress has been
achieved on building energy-efficient solutions for embedded software (TIWARI; MALIK;
WOLFE, 1994), compilers (HSU; KREMER, 2003), operating systems (MERKEL; BELLOSA,
2006) and runtime systems (RIBIC; LIU, 2014; FARKAS et al., 2000). However, the growing
worldwide movement towards sustainability, including sustainability in software (BECKER et
al., 2015), has motivated the study of the energy impact of application software in execution.

Recent empirical studies have provided initial evidence that high-level decisions can
effectively reduce the energy usage of application software (HINDLE, 2012; TREFETHEN;
THIYAGALINGAM, 2013; PINTO; CASTOR; LIU, 2014b; SAHIN; POLLOCK; CLAUSE,
2014). A big advantage of this kind of optimization is that it is complementary to the low-level
ones, which helps improving the energy efficiency of the system as a whole. Also, it includes
the developer in the loop of deciding how to optimize its software for a certain context. As they
hold the knowledge about the application domain, this can lead to more aggressive optimizations.
In contrast, low-level optimizations have to be usually more generic and, consequently, more
conservative.

Nevertheless, the programming models used for developing software are an important
piece of this puzzle when we talk about writing energy-efficient software. A trend that we
can identify in modern software development is the employment of concurrency techniques
as a way improve the program’s performance. The main reason for this is the increasing
popularity of multicore processors. To leverage this kind of architecture, developers often have
to create multiple flows of control in their programs and manually orchestrate them to guarantee
correctness. This is, however, a difficult and error-prone task to accomplish (SUTTER; LARUS,
2005; HERLIHY; SHAVIT, 2012).

A commonly referred alternative to mitigate this problem is the use of functional pro-
gramming. Several functional programming languages such as Clojure, Erlang, Elixir, and
Scala have gained popularity in the last decade emphasizing features that supposedly makes it
easier dealing with concurrency. Features such as immutable data structures, Actor Model, and
Software Transactional Memory are a few of them. Haskell, in this context, is a language that
stands out for having many different abstractions for parallel and concurrent programming.

Finally, the relationship between energy consumption and concurrency is still uncer-
tain. We have a vast literature on how to improve the performance of programs by employing
concurrency, but we still do not understand with the same depth how these techniques impact
energy consumption. Depending on the scenario, the gains in performance may not be worth the
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decrease in energy efficiency. Recent studies have shed light on this matter for the concurrency
toolkit of the Java programming language (PINTO; CASTOR; LIU, 2014b; PINTO et al., 2016).
In the functional programming world, however, this is a subject yet to be explored.

In this work, we believe that functional programming can play a major role in helping
developers to write correct concurrent programs. Moreover, we think that educating developers
and providing the necessary tools for them to write energy-efficient code in this environment is
crucial for making sure they develop software that meets the usability and business requirements
of the modern world. To achieve this goal, we need to understand how high-level decisions
change the behavior of a program regarding its performance and energy consumption.

1.1 Problem

In this work, we tackle two critical problems in the development of energy-efficient
concurrent applications. The first one is the lack of knowledge. A recent study by Pinto, Castor
and Liu (2014a) shows that, although application developers are consistently more interested in
understanding how to reduce energy consumption in their software, there is a general lack of
information in the community about how it can be achieved. This is unfortunate because it is
very unlikely that developers will be able to build energy-efficient solutions without a logical
and systematical way of reasoning about the energy consumption of the software that they write.

The second problem is the lack of tools. Currently, there is not much tooling in which
developers can rely on to analyze the energy consumption of their programs. Most of the
tools available are closer to the systems side than the software side, which makes it difficult to
establish a relation with the software in execution. This problem is closely related to the previous
one as the availability of such tools can lead to a better understanding about software energy
consumption in general.

1.2 Goal

The goal of this work is to mitigate both aforementioned problems: the lack of knowledge,
and the lack of tools for developing energy-efficient concurrent applications. Moreover, we are
interested in tackling these problems under the functional programming point-of-view, using
Haskell as our platform. To achieve this goal, we investigate the following key research questions:

RQ1. How can we effectively measure the energy consumption of a Haskell application?

RQ2. Do alternative concurrent constructs have different impacts on energy consumption?

RQ3. How can developers improve the energy efficiency of their concurrent applications?

To answer RQ1, we studied two performance analysis tools of the Haskell ecosystem in
order to understand how they could be extended to measure the energy consumption of a Haskell
program. To answer RQ2, we conducted an empirical study aiming to illuminate the relationship
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between the choices and settings of six concurrent programming constructs available in Haskell
and energy consumption. In these six, we have three thread management constructs (forkIO,
forkOn, and forkOS) and three primitives for sharing data (MVar, TMVar, and TVar). This
study consisted of an extensive experimental space exploration over both microbenchmarks and
real-world Haskell programs, which were manually modified to use each of constructs that we
described. Finally, to answer RQ3, we elaborated a list of guidelines based on the results of our
empirical study for educating developers on how to improve the energy consumption of their
concurrent applications.

1.3 Contributions

This work sheds light on the energy behavior of Haskell programs. To the best of our
knowledge, this is the first attempt to analyze energy efficiency in the context of functional
programming languages. Moreover, this work makes the following contributions:

� A tool for fine-grained energy analysis. We extend the GHC profiler to collect and
report fine-grained information about the energy consumption of a Haskell program;

� A tool for coarse-grained energy analysis. We extend the Criterion microbench-
marking library to collect, perform and report statistical performance analysis of the
energy consumption of Haskell code;

� An understanding of the energy behavior of concurrent Haskell programs. We
conduct an extensive experimental space exploration illuminating the relationship
between the choices and settings of Haskell’s concurrent programming constructs,
and performance and energy consumption over both microbenchmarks and real-world
Haskell programs;

� A list of guidelines on how to write energy-efficient software in Haskell. We
provide some recommendations for helping software developers to improve the
energy efficiency of their concurrent Haskell programs.

1.4 Outline

The remainder of this work is structured as follows:

� Chapter 2 reviews essential concepts used throughout this work. First, we briefly
introduce the Haskell programming language. We show through a series of code
samples some important and distinct features of the language. Second, we present
an overview of the fundamentals of concurrent programming. Finally, we present
how Haskell approaches concurrent programming. We show which abstractions the
language provides for both creating new threads of execution and sharing data among
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these threads. We also present an overview of how the Haskell’s runtime system
handles threading on multiprocessors;

� Chapter 3 shows how to measure the energy consumption of Haskell programs.
First, we explain what is RAPL and how it can be used to collect energy data. Then,
we present in details two performance analysis tools of the Haskell ecosystem that
we extended to also work with the energy consumption metrics;

� Chapter 4 shows how different concurrent constructs impact energy consumption.
We present an empirical study that we conducted considering three distinct thread
management constructs and primitives for sharing data. Through an extensive experi-
mental space exploration over microbenchmarks and real-world Haskell programs, we
produce a list of findings about the energy behaviors of concurrent Haskell programs;

� Chapter 5 presents a list of recommendations for Haskell developers on how to write
energy-efficient software. These recommendations are based on the results of our
empirical study;

� Chapter 6 discusses previous research related to this work;

� Chapter 7 present our concluding remarks and discuss where this work might lead.

In its essence, the content presented in Chapter 4 has been one of the core contributions
of a paper that has been published at the main research track of the IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering (SANER’16) (LIMA et al.,
2016). When writing this dissertation, this chapter was extended and revised. A new version of
this paper including these extensions and the remainder of this dissertation is under work to be
submitted to a software engineering journal.
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2
Background

Sometimes, the elegant implementation is just a function.

Not a method. Not a class. Not a framework.

Just a function.

—JOHN CARMACK

In this chapter, we review and introduce some essential concepts used in this work.
First, we give a short introduction to the Haskell Programming Language in Section 2.1. Later,
we briefly describe the fundamentals of concurrency in Section 2.2. Finally, we present the
primitives and constructors for concurrent programming in Haskell in Section 2.3.

2.1 Haskell

Haskell is a purely functional programming language. Being functional means that
functions are the building blocks of programs written in this language. Being pure means
that no side-effect happens when evaluating a function. These two characteristics together
make Haskell fundamentally different from imperative programming languages. In imperative
programming languages, a program is expressed as a sequence of instructions that mutate data. In
Haskell, a program is expressed as a composition of expressions where all state is controlled by
passing arguments to function calls and returning values from them. Also, having no side-effect
guarantees that, in a given execution context, a function executed with a given argument will
always produce the same result. This property is known as referential transparency. It enforces
that a program’s behavior cannot depend on history, which improves reasoning about programs.

Haskell is also a lazy programming language. Lazy refers to a non-strict evaluation
strategy also known as call-by-need. This strategy delays the evaluation of an expression until its
value is needed. It avoids repeated evaluations, which can lead to performance improvements.
This strategy also makes it possible to construct potentially infinite data structures.

Regarding programming style, recursion is the norm in Haskell since regular iterative
loops require state mutation. To make it easier to express recursive functions, Haskell also has
pattern matching. In Code 2.1, we can see an example of a recursive function using pattern
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matching. Line 1 is the base case, when the factorial receives zero as an argument, and
Line 2 is the general case.

Code 2.1: A recursive factorial function

1 factorial :: Int -> Int
2 factorial 0 = 1
3 factorial x = x * factorial (x - 1)

Functions in Haskell can be polymorphic, which means that a function can be generalized
to work with multiple types instead of a single one. Other programming languages have similar
features such as generics in Java and templates in C++. Code 2.2 shows an example of a
polymorphic function that can reverse a list of any type. In this example, t is a parametric type

used to bind the input type to the output type of reverse. It reads: reverse receives a list of
any type and returns a list of the same type as the input. This kind of polymorphism is known as
parametric polymorphism (CARDELLI; WEGNER, 1985).

Code 2.2: A polymorphic function to reverse a list

1 reverse :: [t] -> [t]
2 reverse l = rev l []
3 where
4 rev [] a = a
5 rev (x:xs) a = rev xs (x:a)

Another characteristic of Haskell is that functions are values. This means that a function
can receive other functions as arguments, and can also be the result of a function evaluation. This
feature is known as high-order functions. It enables very popular functional patterns such as
map, filter, and reduce. In Code 2.3, we can see map implemented in Haskell. It returns
the list obtained by applying the provided function to each element of the input list.

Code 2.3: The map function

1 map :: (a -> b) -> [a] -> [b]
2 map _ [] = []
3 map f (x:xs) = f x : map f xs

In Haskell, a developer can also extend the built-in primitive types by defining new
abstract data types. Code 2.4 shows an example defining the Tree data type and the function
depth to calculate the depth of the tree. As this example shows, the parametric polymorphism
also works for abstract data types. Here, Tree has two constructors Node and Empty, where
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the first one holds three elements: the value of the node, the left, and right sub-trees. Pattern
matching can be used to walk through a Tree as shown in Lines 5 and 6.

Code 2.4: A data type for binary tree and a function to calculate its depth

1 data Tree t = Node t (Tree t) (Tree t)
2 | Empty
3

4 depth :: Tree t -> Int
5 depth Empty = 0
6 depth (Node _ l r) = 1 + max (depth l) (depth r)

There is also a concept called type classes that enhances the definition of new types in
Haskell. A type class is similar to an interface in Java. It defines a set of functions that can
be applied to a particular type. This set of functions can be seen as a protocol to which a type
must comply. So to instantiate a type class, a type must have its own implementation of each
function defined by the protocol. As interfaces in Java, type classes were designed as a way for
implementing ad hoc polymorphism in Haskell. The main difference between the two concepts is
that type class instances are declared separately from the declaration of the corresponding types;
while in Java, the definition of a class must declare any interfaces it implements. In Code 2.5, we
show an example of instantiation of the Eq type class for the Tree type defined earlier. It states
that a Tree is comparable for equality if its contained type is also comparable for equality.

Code 2.5: Definition of an Eq typeclass instance for the Tree data type

1 instance Eq a => Eq (Tree a) where
2 (==) Empty Empty = True
3 (==) Empty (Node _ _ _) = False
4 (==) (Node _ _ _) Empty = False
5 (==) (Node x xl xr) (Node y yl yr) = (x == y) && (xl == yl) && (xr == yr)

The Monad typeclass is particularly important for Haskell because it allow developers
to emulate mutable behavior and side-effects in a purely functional manner. Its definition can be
seen in Code 2.6. The most important functions of this interface are (>>=), also known as bind,
and return, also called unit. The first one binds the contained value of the monad m to the
parameter of its argument function. The second one wraps a value in the monad m and returns it.
It is a common idiom to call a monad any type that is an instance of class Monad.

Two monads are particularly important for this work: IO and STM. The first one defines
an environment to execute input/output operations. The second defines an environment for
Software Transactional Memory, which is presented in Section 2.3. In Code 2.7, we have a
basic example of how to perform I/O in Haskell. For instance, the functions putStrLn and
getLine from the module System.IO print and read a String from the standard I/O,
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Code 2.6: Definition of type class Monad

1 class Monad m where
2 (>>=) :: m a -> (a -> m b) -> m b
3 (>>) :: m a -> m b -> m b
4 return :: a -> m a
5 fail :: String -> m a

respectively. The result type of main is IO(), where () is an empty tuple value. It represents
that no value is returned, analogous to the type void on imperative languages.

Code 2.7: Basic IO example

1 -- Using Monad operators
2 main :: IO ()
3 main = putStrLn "What is your name?" >> getLine
4 >>= \name -> putStrLn ("Hey " ++ name ++ ", you rock!")
5

6 -- Using do-notation
7 main :: IO ()
8 main = do
9 putStrLn "What is your name?"

10 name <- getLine
11 putStrLn ("Hey " ++ name ++ ", you rock!")

Finally, as you can see in Code 2.7, there is a notation in Haskell that makes it easier
to express operation within a monad, the do-notation. Using do, a series of monadic function
calls is sequenced as if in an imperative program. It works mainly as syntactic sugar for (>>=)
and (>>) calls, binding variables that later become arguments of other functions and mainly
sequentially composing the calls.

2.2 Concurrency

Concurrency and concurrent programming are on the rise nowadays due to the prolifer-
ation of multicore processors. However, these concepts are present in computer science since
the early 1970s with the introduction of time-sharing (LEA, 2006). This model enables, for
example, multi-tasking, which allows users to do several things at the same time in a computer
such as browsing the Internet, playing music, and writing a document. To make this possible, the
operating system scheduler has to share the processor time between all other processes that want
to use this resource. By doing so, the user feels like the programs are executing at the same time
although the processor is actually executing each program in a different time slice.

Concurrency is also usually associated (sometimes indistinctly) to parallelism. Although
they are similar concepts, they are not the same. Concurrency consists in logically structuring
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programs in distinct control flows. The execution of these control flows is interlaced to simulate
simultaneity when the underlying processor has only one core. On the other hand, parallelism
is concerned with improving a program’s performance by executing several computations in
parallel, which requires a multicore processor. Depending on the number of cores available, the
execution of a program can be literally parallel, entirely time-shared, or a combination of both.

In operating systems, there are two well-known concurrent programming abstractions
to express an alternative flow of control: processes and threads. A process is a self-contained
execution environment that holds all the information needed to run a program. Creating a new
process is an onerous operation due to the significant number of resources it requires such as
memory, registers, and address space. For this reason, they are known to be heavyweight. On
the other hand, threads are the smallest concurrency unit in modern operating systems (TANEN-
BAUM, 2007). As threads are contained within a process, there is a low overhead associated
with creating new threads because they all share the same memory and address space. Due to
this fact, threads are known to be lightweight. For instance, creating a thread is around 100 times
faster than creating a process in POSIX systems (BUTENHOF, 1997).

In high-level programming languages, threads are the weapon of choice for concurrent
programming. When compared to processes, they are faster and easier to manage. However,
creating new threads by itself is not enough for building complex concurrent systems. We
need mechanisms to enable coordination among the different flows of control. There are two
mainstream communication strategies that enable cooperation between threads. The first one
is sharing memory. In this approach, threads communicate with each other through reads and
writes to a common memory location. To ensure program consistency, they need to control
the access to these common locations. This control is commonly achieved through different
synchronization mechanisms such as semaphores and mutexes. In these strategies, a thread has
to acquire a lock as a way to communicate its access to a resource. However, this method is very
prone to concurrency hazards such as deadlocks and livelocks (HERLIHY; SHAVIT, 2012).

The other communication mechanism is message passing. In this approach, the compo-
nents communicate by exchanging messages. Each component (or process) is isolated, which
means that there is no memory sharing. Two particular styles of message passing are popular: the
Actor Model (AGHA, 1986) and Communicating Sequential Processes (CSP) (HOARE, 1978).
The main difference is that the first is asynchronous while the second is synchronous. In CSP, a
process that is sending a message blocks until the receiver accepts it. In the Actor Model, the
messages are kept in the receiver’s mailbox to avoid blocking the sender. The Actor Model is
very popular in functional programming languages such as Erlang (ARMSTRONG, 2007) and
Scala (HALLER; ODERSKY, 2009). The CSP model serves as inspiration for the concurrency
abstractions of the Go programming language (PIKE, 2012).

Another mechanism to consistently coordinate concurrent threads in a shared memory
scenario is Transactional Memory (TM). The basic idea is very simple. The runtime should
take care of controlling the access to common memory locations. It uses an abstraction called
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transaction that behaves similarly to database transactions. In this approach, code that access
shared memory is wrapped inside a transaction. Any conflicts that occur when threads are
concurrently accessing the same location activate recovery strategies. These strategies ensure
that each transaction is executed as if atomically and in isolation (with no intermediary state
visible to other threads).

The first time this idea of using an abstraction such as database transactions to ensure
consistency of shared data was presented by Lomet (1977). It was then formalized as Transac-
tional Memory by Herlihy and Moss (1993). They proposed a hardware-supported transactional
memory as a mechanism for building lock-free data structures. Although the original proposal
required specialized hardware, we can now see implementations of Software Transactional
Memory (STM) (SHAVIT; TOUITOU, 1995). There are several distinct implementations for
different programming languages, including C/C++, Clojure, Java, Scala, and Haskell. Both
Clojure and Haskell have STM support built into the core language. We will provide more details
on Haskell’s STM in the next section.

There is a fundamental difference between the two approaches for consistent data sharing.
While locking strategies such as semaphores and mutexes try to avoid conflicts by not allowing
concurrent access to shared data, STM assumes that no conflict will happen and, in case it
happens, some action is taken to rollback the affected state. For this reason, the former is called
pessimistic concurrency whereas the latter is called optimistic concurrency.

2.3 Concurrency in Haskell

The main component of the Haskell ecosystem is the Glasgow Haskell Compiler
(GHC) (PEYTON-JONES et al., 1993). GHC provides a complete infrastructure for build-
ing, running, debugging, and profiling Haskell programs. It is composed of two core pieces: the
compiler itself and the runtime system. The compiler translates source language into assembly
code executable by a native host. The runtime system is a support library for primitive language
services such as memory management and IO. As we will see in this section, concurrency in
Haskell is enabled by a combination of both high-level constructs on the source language and a
low-level infrastructure that is part of the GHC runtime system (RTS) (LI et al., 2007).

Haskell threads, also known as green threads (MARLOW, 2012), are the main abstraction
for concurrent programming in Haskell. These are special threads managed by the GHC runtime
system. They are multiplexed over a much smaller number of operating system threads. The
RTS takes care of scheduling green threads to execute on a set of virtual processors. These
virtual processors are also known as Haskell Execution Contexts (HECs) or capabilities. Each
one can run one Haskell thread at a time. Each capability also has a run queue for keeping the
Haskell threads that will run next.

The runtime system has an internal scheduler to manage the green threads. It uses a
round-robin scheduling policy to manage the capabilities’ run queue. So, each thread in the queue
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runs for a time slice1 before being interrupted to the next one to run. The scheduler also performs
load-balancing of Haskell threads. It moves threads from a capability’s run queue to another
to avoid CPU idle time2. These features make Haskell threads considerably more lightweight
than regular OS threads. The GHC documentation states that: "Typically Haskell threads are an

order of magnitude or two more efficient (in terms of both time and space) than operating system

threads."3 Another advantage of Haskell threads is the low context-switching overhead when
comparing to OS threads. This is crucial for some systems with a high performance requirements
such as web servers (VOELLMY et al., 2013).

Figure 2.1: Layers of concurrency in a Haskell stack
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Source: Made by the author. Inspired on slides from the "GHC illustrated" presentation (TANI, 2015)

In Figure 2.1, we show the various layers involved in a concurrent system written in
Haskell. In this example, the underlying machine has two cores. For this reason, there are two
HECs associated with two OS threads. Although depicted this way, a developer can configure it
differently. For instance, the number of capabilities can be set when the program is executed by
passing a command line argument for the RTS (in this case, -N). Also, it is important to note that
a program in Haskell can be linked with either threaded RTS or non-threaded RTS. The program
should be linked to the threaded runtime to leverage multicore processors (as in Figure 2.1).4

1The default rescheduling time is 20ms. The developer can change it by passing a different value to the RTS via
the -i command line argument

2The strategy used to move work from one capability to another is currently fixed, but there are some work
towards making this policy customizable (SIVARAMAKRISHNAN et al., 2014)

3http://hackage.haskell.org/package/base-4.8.2.0/docs/Control-Concurrent.html#g:11
4This can be achieved by passing -threaded to GHC when compiling the program
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Code 2.8: The thread creation interface

1 forkIO :: IO () -> IO ThreadId
2 forkOn :: Int -> IO () -> IO ThreadId
3 forkOS :: IO () -> IO ThreadId

From a higher-level perspective, the original framework for concurrency in Haskell is
called Concurrent Haskell (PEYTON-JONES; GORDON; FINNE, 1996). It represents a thread
as a computation in the IO monad. We have three main functions to create a new thread in
Haskell as Code 2.8 shows. forkIO spawns a Haskell thread. It takes an IO computation to be
executed concurrently and returns a pointer to the newly created thread. forkOn also spawns a
Haskell thread but lets the developer specify on which capability the thread should run. Unlike
threads created with forkIO, the scheduler cannot migrate threads created with forkOn from
one capability to another. For instance, if a program creates all its threads using forkOn, the
scheduler will not be able to perform load-balancing. Finally, forkOS spawns a bound thread.
A bound thread is a Haskell thread that is bound to an specific OS thread. They are treated by
the scheduler the same way as other Haskell threads. The only difference is when it is time to
run a bound thread. The capability has to run it on its bound OS thread. Figure 2.2 shows the
difference between each thread creation function.

Figure 2.2: Thread creation functions
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The basic concurrency control primitive of Haskell is the MVar. A value of type MVar t
is a mutable location that is either empty or contains a value of type t. Code 2.9 shows the
Application Programming Interface (API) for manipulating an MVar. The more commonly used
functions are newMVar, newEmptyMVar, takeMVar and putMVar. The first one creates
an MVar with a value inside. The second creates an empty MVar. The takeMVar function
takes a value from an MVar, returning it in the IO monad. The operation returns immediatly
if the MVar is full. For empty ones it will block until they are filled. The opposite applies to
putMVar. The function puts a value in an MVar. It will return immediatly if the MVar is
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empty. Otherwise, the function will block until the MVar is emptied. An MVar combines both
locking and condition-based synchronization in a single primitive. It also has a formally defined
semantics (PEYTON-JONES; GORDON; FINNE, 1996).

Code 2.9: The MVar interface

1 -- Type definition
2 data MVar a
3

4 -- MVar manipulation
5 takeMVar :: MVar a -> IO a
6 putMVar :: MVar a -> a -> IO ()
7 tryTakeMVar :: MVar a -> IO (Maybe a)
8 tryPutMVar :: MVar a -> a -> IO Bool
9 isEmptyMVar :: MVar a -> IO Bool

10

11 -- MVar creation
12 newMVar :: a -> IO (MVar a)
13 newEmptyMVar :: IO (MVar a)

In Haskell, we can also use software transactional memory to coordinate concurrency.
Its implementation is called STM Haskell (HARRIS et al., 2005). Code 2.10 shows the API for
STM in Haskell. The transactional variable, or TVar, is the main abstraction of this framework.
A TVar t is a mutable location that holds a value of type t. Reads and writes to a TVar can
only be accomplished inside the STM monad. To execute an STM monad we have to use the
atomically function. This function runs an STM monad as a transaction, which makes a
sequence of operations to take place atomically with respect to the rest of the program. The
atomically function also acts as a bridge between the IO and STM monads, which allows
STM operations to be executed by threads. It is important to note that, as STM and IO are different
monads, Haskell’s type system does not allow manipulating a TVar outside a transaction, nor
does it allow performing an IO operation inside a transaction. This is an important property that
is hard to ensure on other STM implementations.

In concurrent programming, it is crucial to be able to block when we need to wait for
some condition to be true. We can achieve this behavior in STM Haskell using the retry
function. When retry is called, the atomically block will immediately terminate. It makes
the transaction restart from scratch, with any previous modifications unperformed. The Haskell
implementation is also smart enough not to restart the transaction immediately. It will do so only
when one or more of the variables involved in the transaction changes. This makes it possible to
block the execution of a thread on arbitrary conditions.

Having blocking semantics also enables the creation other types, such as TMVar. As the
name implies, it works as a transactional variant of MVar. It blocks when the TMVar is full and
we try to put a new value on it, or when the TMVar is empty and we try to take a value from
it. However, it blocks using retry, which aborts the transaction it is in and makes it restart
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Code 2.10: The STM interface

1 -- The STM monad
2 data STM a
3 instance Monad STM -- support "do" notation and sequencing
4

5 -- Transactional variable
6 data TVar a
7 newTVar :: a -> STM (TVar a)
8 readTVar :: TVar a -> STM a
9 writeTVar :: TVar a -> a -> STM ()

10

11 -- Transactional MVar
12 data TMVar a
13 newTMVar :: a -> STM (TMVar a)
14 takeTMVar :: TMVar a -> STM a
15 putTMVar :: TMVar a -> a -> STM ()
16 tryTakeTMVar :: TMVar a -> STM (Maybe a)
17 tryPutTMVar :: TMVar a -> a -> STM Bool
18

19 -- Running STM computations
20 atomically :: STM a -> IO a
21 retry :: STM a
22 orElse :: STM a -> STM a -> STM a

from the beginning. This makes the order in which the threads are woken up by the scheduler to
differ between MVar and TMVar. MVar functions are guaranteed to be woken up one at a time
while TMVar functions follow the retry semantics. So, while MVars are guaranteed to be fair,
TMVars have no such guarantees.

As we can see, Haskell has a robust set of constructs and primitives for concurrent
programming. There are several ways we can write an application to achieve a specific goal.
Throughout this work, we will study how the choices we make for expressing concurrency in our
Haskell programs impacts performance.
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3
Measuring Energy Consumption

The tools we use have a profound (and devious!) influence on our thinking

habits, and, therefore, on our thinking abilities.

—EDSGER DIJKSTRA (How do we tell truths that might hurt?)

How to measure the energy consumption of a computer system is a hot topic that expands
over a broad area of research. There are several ways we can accomplish this task. They can
be categorized into two separate approaches: power measurement and energy estimation. The
first one, power measurement, makes use of special power measurement hardware to collect
power samples of the running system. These samples are often measured in watts. To obtain the
energy (in joules), we have to multiply the power by the time: E = P× t. The second approach,
energy estimation, uses software-based techniques to predict how much energy the system is
consuming at runtime. It collects data from the running system to be used as predictors of energy
consumption. For instance, powertop1 is a Linux tool that uses this approach. It monitors CPU
states, devices drivers and kernel options to report how the active components of the system are
behaving regarding power consumption.

For this work, we chose to use an energy estimation approach for measuring the energy
consumption of Haskell programs. In Section 3.1, we present more details about RAPL, which is
the interface we use. Later, in Section 3.2 and Section 3.3, we present two different performance
analysis tools of the Haskell ecosystem: the GHC profiler and Criterion. We explain how these
tools work and how we extended them also to analyze energy consumption.

3.1 RAPL

Running Average Power Limit (RAPL) (DAVID et al., 2010) is an interface designed
by Intel to enable chip-level power management. It was introduced with the Sandy Bridge
microarchitecture. Nowadays, RAPL is widely supported by the Intel architectures, including
Xeon family CPUs, that targets server systems, and the popular Core i5 and i7 families, that
targets domestic use. This interface provides a set of counters with energy and power con-

1https://01.org/powertop
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sumption information. To estimate energy consumption, RAPL uses a software power model.
This model is based on various hardware performance counters, temperature, leakage models,
and I/O models (WEAVER et al., 2012). Its precision and reliability have been extensively
studied (ROTEM et al., 2012; HäHNEL et al., 2012).

Figure 3.1: Physical representation of the RAPL domains

Source: "Intel® Power Governor" article (DIMITROV et al., 2012)

With RAPL, developers can monitor energy consumption and set power limits. The
access to this information is divided into different domains. Each domain is a physically
meaningful domain for power management, as we can see in Figure 3.1. The RAPL domains that
are available in a platform vary across product segments. Typically, the desktop platforms have
access to {PKG, PP0, PP1}, while the server platforms have access to {PKG, PP0, DRAM}. Each
of these domains provides fine-grained reports and control for power management. In Table 3.1,
we show what each domain supports. For this work, we are interested in the ENERGY_STATUS
information as it provides the current measured energy consumption of a specific domain.

Table 3.1: List of controls supported by the RAPL domains

POWER_UNIT Provides the scaling factors for each unit
POWER_LIMIT Allows software to set power limits
ENERGY_STATUS Reports measured actual energy usage
PERF_STATUS Reports the performance impact of power limiting
POWER_INFO Reports power range information for RAPL usage

The interaction with RAPL is done via Machine-Specific Registers (MSRs). Each control
listed in Table 3.1 for each domain is a separate MSR. MSRs are special control registers present
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in the x86 instruction set that are typically used for debugging, monitoring performance, and
toggling CPU features. Accessing MSRs requires ring-0 access to the hardware, which is usually
only allowed to the operating system kernel. This means that accessing the RAPL readings
requires a kernel driver. In Linux, we do not have a specific driver to access the RAPL MSRs.
Instead, we have a generic msr driver (or kernel module) that exports MSR access to the
userspace. The register readings are exposed as files inside the CPU device directories (e.g.
/dev/cpu/0/msr). These files have read-only permission for superusers (root).

Manipulating these registers is not a very straightforward process. To do this, a developer
needs knowledge of system programming and familiarity with the processor instruction set to
know how to interpret the raw values exposed by the readings. Also, developers using RAPL need
to handle possible register overflows. In a high power consumption scenario, for example, the
ENERGY_STATUS MSR of the PKG domain have a wraparound time of around 60 secs (INTEL,
2016, p. 2465). So to abstract these low-level interfaces from Haskell developers, we present in
the next sections two performance analysis tool that we extended to collect energy consumption
information using RAPL.

3.2 GHC Profiler

A profiler is a tool for helping the development of efficient programs. Its main function
is to provide the necessary information for developers to identify performance bottlenecks. Once
the hot spots in a program have been identified, the developer can work on the code to improve
its performance and continuously check the effect of each modification. To achieve this goal,
a profiler should keep track of important program resources. Moreover, the data gathered by
the profiler must be related to the program source code in a way that is meaningful to the
developer. This is usually accomplished by reporting the measurements by program structures
(e.g. functions or methods) or source code structures (e.g. lines).

However, it is hard to establish this correspondence between measurements and source
code for high-level languages. Usually, these languages provide abstractions and constructs that
are unrelated to the way that the underlying execution engine works. Haskell is not different.
Features such as polymorphism, high-order functions, and lazy evaluation make this task even
harder. For example, in the presence of lazy evaluation, the evaluation of an expression can
be interleaved with the evaluation of the inputs that this expression demands. This makes the
resulting order of execution of expressions bear no resemblance to the source code.

To address this problem, the GHC profiler uses cost centres (SANSOM; PEYTON-
JONES, 1995). They are the logical components of the program to which the profiler associates
the gathered data. A cost centre is simply a label to which we attribute execution costs. They
are represented by annotations around expressions. So the costs incurred by the evaluation of
the annotated expression are assigned to the enclosing cost centre. The cost centres can be
automatically generated by the compiler or manually specified by the developer through the {-#
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SCC #-} directive. In Code 3.12, we show an example of how it can be manually specified by
the developer (line 10). In this example, all the costs incurred by the evaluation of sum xs /

fromIntegral (length xs) will be attributed to the mean cost centre. It is important
to point out that cost centres have a formally defined semantics (SANSOM; PEYTON-JONES,
1995) that specify how the cost attribution works.

Code 3.1: Haskell program to calculate the mean of a list of numbers

1 import System.Environment
2 import Text.Printf
3

4 main :: IO ()
5 main = do
6 [d] <- map read ‘fmap‘ getArgs
7 printf "%f\n" (mean [1..d])
8

9 mean :: [Double] -> Double
10 mean xs = {-# SCC mean #-} sum xs / fromIntegral (length xs)

Currently, the GHC profiler is capable of measuring time and space usage. In GHC, the
profiler is part of the runtime system, which means that the profiling routines are contained
within the final program executable. So to build a program for profiling, we need to pass to
GHC the -prof flag when compiling it. Then, to run this program in profiling mode, we need
to specify it to the runtime system by passing the +RTS -p argument. It makes the runtime
system collect time and memory usage data from the execution to produce a detailed report at
the end. Figure 3.2 shows a profiling report for the program in Code 3.1.

As we can see in this example, we can split the report into three different sections. The
first one is the header. It shows how the program was executed (which flags and arguments were
passed to run it), and the total time and memory allocated during the whole execution of the
program. The second part shows a break-down of the most costly cost centres. In this case, the
top-level MAIN and the user-defined mean.

The third section shows a break-down by cost centre stack (MORGAN; JARVIS, 1998).
A cost centre stack is similar to a call graph. It defines a hierarchy of cost centres. In this case,
we can see that MAIN is the root of the cost centre stack, followed by mean and some instances
of CAF as children. A Constant Applicative Form (CAF) is an expression that contains no free
variables, i.e. it is a constant expression. So a CAF cost centre represents the one-off costs of
evaluating such constants. Also, in this section of the report, we have multiple columns showing
the profiling data. The time and memory usage percentage columns are shown into two different
groups: individual and inherited. The former is the total of program resources spent by
this cost centre while the latter is the total of program resources spent by this cost centre and its

2This code example was extracted from (O’SULLIVAN; GOERZEN; STEWART, 2008)
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Figure 3.2: Example of profiling report for the mean program

Source: Generated by the GHC profiler

children. The other columns are no., which is the id of the cost centre, and entries, which is
the number of times that the expression enclosed by this cost centre was evaluated.

So to help on our journey of understanding the energy behavior of Haskell programs,
we have extended the GHC profiler to add a new metric: energy consumption. The idea is to
collect energy consumption readings from RAPL and use the GHC infrastructure to calculate
the energy spent by each cost centre. Having this, we can display two new columns in the final
report accounting the percentage of energy consumed by each cost centre. We based our solution
on the approach used by the time profiler. To measure the execution time, the profiler keeps in
each cost centre a tick counter. At any moment, the cost centre that is currently executing is held
in a special register by the runtime system. Then, a regular clock interrupt3 runs a routine to
increment this tick counter of the cost centre in execution. At the end of the program execution,
the value held in the tick counter of each cost centre enables the profiler to determine and report
the relative execution time cost of the different parts of the program.

Similarly, our extended version of the GHC profiler keeps in each cost centre an accu-
mulator. At each clock interrupt, the profiler adds to the accumulator of the cost centre that is
currently in execution the energy consumed between the previous and current interrupt. This is
accomplished by always saving the previous and current energy readings obtained from RAPL.
If an overflow occurs on RAPL during the (extremely small) interval between two consecutive
interrupts, we do not update the accumulator in this tick. At the end of the program execution, the

3By default this interval is 20ms. However, the user can change it by passing a custom value to the runtime
system via the -V argument.
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profiler will be able to report the energy consumed by each cost centre based on its accumulator
value. Figure 3.3 shows the report of our extended GHC profiler the same program from Code 3.1.
As we can see in this report, we have now energy consumption information on each section
of the report. In the header, we have the total energy consumed during the execution of the
program. In the second and third sections, we have extra columns showing the percentage of
energy consumed by each cost centres.

Figure 3.3: Example of profiling report with energy metrics for the mean program

Source: Generated by the GHC profiler

Our modified version of GHC is publicly available on GitHub4. It is based on GHC
7.10 and includes the profiler with energy metrics. However, it is important to note that our
implementation has one limitation. We can provide more accurate results only for programs that
use a single capability. The main reason for this is the fact that RAPL does not provide the energy
consumed by a single core. It provides only the energy consumption of the cores altogether, so if
two cost centres are executing in parallel, we cannot tell how much energy each one consumed
separately. However, we could easily adapt the current implementation to handle this case once
the underlying API provides the energy by core information. Also, it is easy enough to change
the use of RAPL for another API that provides energy consumption information if needed.

Despite this limitation, the profiler tool is particularly useful for providing fine-grained
information about energy consumption. It enables developers to find the energy hot spots of
Haskell programs. In the next section, we present another performance analysis tool called Crite-
rion. Different from a profiler, it uses a coarse-grained approach for evaluating the performance
of a program.

4http://github.com/green-haskell/ghc/tree/wip/green
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3.3 Criterion

Criterion (O’SULLIVAN, 2009a) is a microbenchmarking library that is used to measure
the performance of Haskell code. Its main objective is to estimate the cost of running a small,
independent piece of code. At a first glance, it may seem that it does the same job of a profiler,
but this is not the case. Criterion is not designed to find hot spots in a program. Instead, it is
useful for analyzing the cost of a given operation. A profiler is about taking a snapshot of a single
execution of a program and reporting fine-grained information about its performance. Criterion,
however, is about running a certain piece of code several times to analyze its performance. It
reports to the developer a statistically-backed estimation of the cost of running the selected piece
of code once. As Criterion does not analyze the performance for each cost centre, only the
benchmarked code as a whole, we say its analysis is coarse-grained.

Code 3.2: Definition of a Criterion benchmark for the fib function

1 import Criterion.Main
2

3 fib :: Int -> Int
4 fib m | m < 0 = error "negative!"
5 | otherwise = go m
6 where
7 go 0 = 0
8 go 1 = 1
9 go n = go (n-1) + go (n-2)

10

11 main :: IO ()
12 main = defaultMain [
13 bench "fib/9" (whnf fib 9)
14 ]

Criterion provides a framework for both executing benchmarks as well as analyzing their
results. This framework is based on a simple API that hides most of the complexity involved
in performing benchmarks. In Code 3.25, we show an example of how to define a Criterion
benchmark. Here, we want to analyze the performance of the fib function. The benchmark is
defined to execute fib passing nine as argument. In this example, we are using three important
functions of Criterion’s API:

� defaultMain: takes care of executing a set of benchmarks

� bench: creates a benchmark based on an action provided by the developer

� whnf: makes sure the benchmarked action is evaluated to weak head normal form to
stop it from being evaluated only once due to Haskell’s laziness

5This example was extracted from <http://www.serpentine.com/criterion/tutorial.html>

http://www.serpentine.com/criterion/tutorial.html


3.3. CRITERION 37

Figure 3.4: Output of the fib benchmark

1 benchmarking fib/9
2 time 314.4 ns (312.2 ns .. 318.5 ns)
3 0.999 R² (0.997 R² .. 1.000 R²)
4 mean 315.3 ns (314.0 ns .. 319.4 ns)
5 std dev 7.081 ns (1.625 ns .. 14.63 ns)
6 variance introduced by outliers: 26% (moderately inflated)

Source: Generated by Criterion

In Figure 3.4, we show the output for the benchmark described in Code 3.2. The first
line shows time, which is the estimation of the time needed for executing fib 9 once. It is
obtained using an Ordinary Least Squares (OLS) regression model. Inside the parenthesis, after
the time estimation, we can see the lower and upper bounds of the confidence interval that is
calculated using bootstrapping (DAVISON; HINKLEY, 1997). It means that when randomly
resampling the data, 95% of estimates fell between the lower and upper bounds of the interval.
So the quality of the estimation is better when the bounds are closer to its value. The second
line shows the coefficient of determination, or R2, which is a statistical measure of how well the
linear regression model approximates the observed measurements. An R2 between 0.99 and 1
indicates an excellent approximation. The mean and std dev lines are the mean execution
time and the standard deviation, respectively. Finally, the last line indicates the degree to which
the standard deviation is inflated by outlying measurements.

Figure 3.5: Measurement chart generated for the fib benchmark

Source: Generated by Criterion

This kind of information that Criterion provides is quite useful for making sure that the
measurements are not being tainted by external factors such as other loads on the operating
system. Alongside with the textual report, Criterion can also generate some charts like the one
shown in Figure 3.5. In this graph, the x-axis indicates the number of loop iterations, while the



3.3. CRITERION 38

y-axis shows the execution time for a given number of iterations. The blue circles are the raw
measurements while the orange line is the linear regression generated from this data. The closer
the dots are from the line; the better is the regression model.

As we can see from this example, each sample that Criterion uses for the regression model
corresponds to the measurements collected during a distinct number of consecutive executions of
the benchmarked code. This specific number of loop iterations is the independent variable of the
regression model, which the author calls iters. The number of different iters that Criterion
performs for a given benchmark depends on how much time the benchmarked code takes to run.
Criterion tries to run it as much as possible so that: (1) it collects enough measurements for
properly resampling the data, and (2) it generates enough measurements that have long spans of
execution to outweigh the cost of measurement. For short-lived benchmarks such as Code 3.2, in
the order of nanoseconds, we can see that Criterion collects several samples with a high number
of consecutive iterations (in the order of a hundred thousand). For longer benchmarks, in the
order of tens of seconds, it is guaranteed that Criterion will collect at least five samples, from
one to five iterations each, respectively6.

Figure 3.6: Output with CPU cycles of the fib benchmark

1 benchmarking fib/9
2 time 317.2 ns (314.2 ns .. 319.4 ns)
3 0.999 R² (0.999 R² .. 1.000 R²)
4 mean 314.4 ns (313.3 ns .. 315.8 ns)
5 std dev 4.117 ns (2.682 ns .. 5.398 ns)
6 cycles: 0.999 R² (0.999 R² .. 1.000 R²)
7 iters 1079.434 (1069.292 .. 1087.144)
8 y 924904.370 (562772.048 .. 1358678.998)
9 variance introduced by outliers: 13% (moderately inflated)

Source: Generated by Criterion

Besides elapsed time, Criterion can also perform linear regression on other metrics such
as CPU time, CPU cycles, bytes allocated, and the number of garbage collections. It can be
done by passing the other metric as a command line argument when running the benchmark.
For example, passing --regress cycles:iters will regress the number of CPU cycles
against the number of loop iterations. Figure 3.6 shows the output for such example for Code 3.2.
As we can see, there are three new lines in the report. The first one corresponds to the R2 for this
new regression. The second line we have the estimation of how much cycles each iteration costs,
which is the slope of the regression curve. The last line is where the curve intercepts the y-axis.
This feature allows for developers to have a good overview from different perspectives about the
performance of the benchmarked code.

To take advantage of Criterion in our work, we have extended it to add a new metric:

6This information is not available in the library documentation. We got it by inspecting the source code.
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energy consumption. The fact that Criterion’s infrastructure already supports estimating the cost
of other metrics than elapsed time helped us to modify it in a "cleaner" way. However, the way the
energy data is collected is different from the other metrics because RAPL registers are susceptible
to overflows. In Code 3.3, we show how Criterion currently collects the measurements. As we
can see, it saves the counters before and after it executes the benchmarked code iters times.
If we used the same approach for energy consumption, in the presence of an overflow, the data
collected would be inconsistent.

Code 3.3: Internal function that execute the benchmarks in Criterion

1 measure :: Benchmarkable -> Int64 -> IO (Measured, Double)
2 measure (Benchmarkable run) iters = do
3 startStats <- getGCStats
4 startTime <- getTime
5 startCpuTime <- getCPUTime
6 startCycles <- getCycles
7 run iters
8 endTime <- getTime
9 endCpuTime <- getCPUTime

10 endCycles <- getCycles
11 endStats <- getGCStats
12 let !m = applyGCStats endStats startStats $ measured {
13 measTime = max 0 (endTime - startTime)
14 , measCpuTime = max 0 (endCpuTime - startCpuTime)
15 , measCycles = max 0 (fromIntegral (endCycles - startCycles))
16 , measIters = iters }
17 return $ (m, endTime)

To overcome this problem, we collect the energy consumption differently from the other
metrics. We have to read the RAPL counters constantly during the benchmark execution in order
to detect overflows. One way we could accomplish this task is by spawning a background thread
to collect the energy data. However, this approach is not very lightweight. It would increase
the measurement overhead and possibly influence the result of more sensitive benchmarks. So
instead, we have used native Linux signals. It works as follows: before Criterion runs the
benchmarked code, we register a Linux signal to be fired every 10ms. When registering this
signal, we attach a signal handler that we implemented. Inside this handler, we read the RAPL
counters, check if an overflow happened and, if not, we save the energy consumed between
the last two readings into an internal accumulator. At the end, when the benchmark finishes
executing, we can deregister the signal and get the value held by the accumulator, which is the
energy measurements.

To implement this solution, similarly to how the time and cycles data is collected, we use
native C code. The communication with the Criterion code, which is implemented in Haskell,
is done straightforwardly via foreign function interface (FFI) calls. The interface with Linux
to use signals is done using the sigaction and setitimer syscalls. We developed this
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extension with the cooperation of our colleagues Gilberto Melfe and João Paulo Fernandes from
University of Beira Interior. The source code of our modified version of Criterion is publicly
available on GitHub7. In Figure 3.7, we show an example of a benchmark output using Criterion
with the energy metrics. In this case, the benchmark was executed passing the --regress
energy:iters argument to regress energy consumption against the number of loop iterations.
As we can see in the output, a single execution of this program is expected to consume 180.9
joules of energy.

Figure 3.7: Output example of Criterion with energy metrics

1 benchmarking dining-philosophers (forkOS | MVar)
2 time 2.183 s (1.915 s .. 2.510 s)
3 0.997 R² (0.991 R² .. 1.000 R²)
4 mean 2.179 s (2.113 s .. 2.212 s)
5 std dev 57.17 ms (0.0 s .. 57.19 ms)
6 energy: 0.999 R² (0.997 R² .. 1.000 R²)
7 iters 180.947 (164.629 .. 200.826)
8 y 0.937 (-71.359 .. 37.230)
9 variance introduced by outliers: 19% (moderately inflated)

Source: Generated by Criterion

Criterion is a powerful tool. It provides a robust methodology to benchmark Haskell
code. In the next chapter, we present an empirical study where Criterion was heavily employed
to measure the performance and energy consumption of various concurrent Haskell programs.

7<http://github.com/green-haskell/criterion>

http://github.com/green-haskell/criterion
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4
The Energy Efficiency of Concurrent Haskell

In this chapter, we present an empirical study evaluating the performance and energy
consumption characteristics of three thread management constructs and three data-sharing
primitives of Concurrent Haskell. We start by providing a brief overview (Section 4.1) of the
study and state the research questions. Section 4.2 describes the benchmark we developed, the
environment and the methodology we used. Sections 4.3, 4.4, and 4.5 present our results. Finally,
Section 4.6 list the threats to validity.

4.1 Overview

Recently, the software engineering community has been showing a keen interest in
researching about the development of energy-efficient software. As multicore architectures
are the norm nowadays, this interest also extends for energy-efficiency from the perspective of
concurrent software running on multicore architectures (TREFETHEN; THIYAGALINGAM,
2013; RIBIC; LIU, 2014; PINTO; CASTOR; LIU, 2014b). However, the same cannot be said
about functional programming. This is unfortunate as functional programming languages are
seen as a good alternative for making concurrent programming less error-prone. Particularly,
Haskell provides a solid foundation for building concurrent software, and we know very little
about its energy behavior.

We believe that the first step towards optimizing energy consumption of concurrent
programs is to gain a comprehensive understanding of their energy behaviors. This chapter
presents an empirical study that aims to understand the energy behaviors of Haskell concurrent
programs on multicore architectures. In particular, our study focuses on how programmer’s
decisions may impact energy consumption and performance. The following questions motivate
our research:

RQ1. Do alternative thread management constructs have different impacts on energy
consumption?

RQ2. Do alternative data-sharing primitives have different impacts on energy consumption?

RQ3. What is the relationship between the number of capabilities and energy consumption?
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To answer RQ1, we select three thread management constructs: forkIO, forkOn and
forkOS. As we saw in Section 2.3, these are the three functions available in Haskell to spawn
a new thread of execution. To answer RQ2, we select three data-sharing primitives: MVar,
TMVar and TVar. Given these constructs, our investigation aims to understand how the energy
consumption can be impacted by changing the concurrency primitives used in a Haskell program.
Finally, to answer RQ3, we explore various capabilities settings to see how it can impact energy
consumption and performance on a multicore environment.

4.2 Study Setup

In this section we describe the benchmarks that we analyzed, the infrastructure and the
methodology that we used to perform the experiments.

4.2.1 Benchmarks

We selected a variety of concurrent Haskell programs to use as benchmarks in our
study, listed as follows. Benchmarks 1-6 are from The Computer Language Benchmarks
Game (CLBG)1. CLBG is a benchmark suite aiming to compare the performance of various
programming languages. Benchmark 7 is from Rosetta Code 2, a code repository of solutions to
common programming tasks. Benchmarks 8-9 were developed by us.

1. chameneos-redux: In this benchmark chameneos creatures go to a meeting place
and exchange colors with a meeting partner. It encodes symmetrical cooperation
between threads.

2. fasta: This benchmark generates random DNA sequences and writes them in
FASTA format3. The size of the generated DNA sequences is in the order of hundreds
of megabytes. In this benchmark, each worker synchronizes with the previous one to
output the sub-sequences of DNA in the correct order.

3. k-nucleotide: This benchmark takes a DNA sequence and counts the occur-
rences and the frequency of nucleotide patterns. This benchmark employs string
manipulation and hashtable updates intensively. There is no synchronization in the
program besides the main thread waiting for the result of each worker.

4. mandelbrot: A mandelbrot is a mathematical set of points whose boundary is a
distinctive and easily recognizable two-dimensional fractal shape. Mandelbrot set
images are created by sampling complex numbers and determining for each one
whether the result tends toward infinity when a particular mathematical operation is

1http://benchmarksgame.alioth.debian.org/
2http://rosettacode.org/
3https://en.wikipedia.org/wiki/FASTA_format
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iterated on it. The only synchronization point in this benchmark is the main thread
waiting for the result of each worker.

5. regex-dna: This benchmark implements a string-based algorithm that performs
multiple regular expression operations, match and replace, over a DNA sequence.
The only synchronization point is the main thread waiting for the result of each
worker.

6. spectral-norm: The spectral norm is the maximum singular value of a matrix.
It synchronizes the workers using a cyclic barrier.

7. dining-philosophers: An implementation of the classical concurrent pro-
gramming problem posed by Dijkstra (1971). The philosophers perform no work
besides manipulating the forks and printing a message when eating.

8. tsearch: A parallel text search engine. This benchmark searches for occurrences
of a sentence in all text files in a directory and its sub-directories. It is based
on a previous empirical study comparing STM and locks (PANKRATIUS; ADL-
TABATABAI, 2011).

9. warp: Runs a set of queries against a Warp server retrieving the resulting webpages.
Warp is the default web server used by the Haskell Web Application Interface (WAI),
part of the Yesod Web Framework. This benchmark was inspired by the Tomcat
benchmark from DaCapo (BLACKBURN et al., 2006).

We selected the benchmarks based on their diversity. For instance, chameneos-redux
and dining-philosophers are synchronization-intensive programs. mandelbrot and
spectral-norm are CPU-intensive and scale well on a multicore machine. k-nucleotide
and regex-dna are CPU- and memory-intensive, while warp is IO-intensive. tsearch
combines IO and CPU operations, though much of the work it performs is CPU-intensive.
fasta is peculiar in that is CPU-, memory-, synchronization- and IO-intensive.

Also, some benchmarks have a fixed number of workers (chameneos-redux, k-
nucleotide, regex-dna, and dining-philosophers) and others spawn as many
workers as the number of capabilities (fasta, mandelbrot, spectral-norm, tsearch
and warp). For the dining-philosophers benchmark, it is possible to establish prior to
execution the number of workers.

4.2.2 Experimental Environment

For our study, all experiments were conducted on a machine with 2x10-core Intel
Xeon E5-2660 v2 processors (Ivy Bridge microarchitecture), 2.20 GHz, with 256GB of DDR3
1600MHz memory. It has three cache levels (L1, L2, L3): L1 with 32KB per core, L2 with
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256KB per core, and L3 with 25MB per socket (Smart cache). This machine runs the Ubuntu
Server 14.04.3 LTS (kernel 3.19.0-25) operating system, GHC 7.10.2, and our modified Criterion
based on version 1.1.0 of the official release (Section 3.3).

All experiments were performed with no other load on the OS. We conform to the
default settings of the operating system. For each benchmark, we used the same compilation and
runtime flags employed in the original benchmark suites. This is important to preserve the same
performance characteristics as intended by the implementers. Both the energy consumption and
the performance are measured by Criterion.

4.2.3 Methodology

Most of the benchmarks we used were implemented in their respective suites using a
single thread management construct and a single data-sharing primitive. For example, the ones
from CLBG use originally forkIO and MVar. In order to analyze the impact of both thread
management constructs and data-sharing primitives, we manually refactored each benchmark to
create new variants using different constructs. Changing the thread management construct is a
straightforward process. The functions have almost the same signature. The only exception is
forkOn that requires an extra argument representing in which capability the thread will run.
For this study, we distributed the threads evenly among the capabilities when using forkOn.
However, changing the data-sharing primitive is not always simple since the semantics of TVars
and MVars differ considerably. To properly perform this refactoring, we used the techniques
proposed by Soares-Neto (2014) to refactor the benchmarks to use STM.

As a result of this process, each benchmark has up to nine distinct variants covering a
number of different combinations of both thread management constructs and data-sharing primi-
tives. However, it is important to note that there are some cases like dining-philosophers
where not all possible combinations were created. In this particular implementation, the shared
variable is also used as a condition-based synchronization mechanism. In such cases, where
MVars are used to implement both mutual exclusion and condition-based synchronization, we
did not create the TVar variants. We limited ourselves to the variants using MVars and TM-
Vars since a TMVar is very similar to an MVar while executing inside a transaction. In other
benchmarks like tsearch and warp, we changed only the thread management construct as
they are complex applications and it would not be straightforward to change the synchronization
primitives without introducing potential bugs.

In the end, each variant we created is represented by a standalone executable. This
executable is a Criterion microbenchmark that performs the experiment by calling the original
program entry point multiple times. We run each benchmark under nine different configurations
of capabilities. We used the following values for N: {1,2,4,8,16,20,32,40,64}. Where 20 and
40 are the number of physical and virtual cores, respectively.

In Appendix A, we provide an example of one of the benchmarks we used. We show the
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description of the problem that this benchmark solves and the implementation of each variant
we generated to use in this study. It can also be accessed on GitHub at <http://github.com/
green-haskell/concurrency-benchmark>. In this repository, we made publicly available the
implementation of all benchmarks variants as well as the scripts and instructions necessary to
replicate this experiment.

4.3 Study Results

In this section, we report the results of our experiments with concurrent Haskell pro-
grams. The results are presented in Figures 4.1, 4.2 and 4.3. Here, the odd rows are energy
consumption results, while the even rows are the corresponding execution time results. We
omitted the experiments using 64 capabilities in order to make the charts more readable. The
charts including this configuration as well as all the data and source code used in this study are
available at green-haskell.github.io.

Small changes can produce big savings. One of the main findings of this study is that simple
refactorings such as switching between thread management constructs can have considerable im-
pact on energy usage. For example, in spectral-norm, using forkOn instead of forkOS
with TVar can save between 25 and 57% energy, for a number of capabilities ranging between 2
and 40. Although the savings vary depending on the number of capabilities, for spectral-
norm, forkOn exhibits lower energy usage independently of this number. For mandelbrot,
variants using forkOS and forkOn with MVar exhibited consistently lower energy consump-
tion than ones using forkIO, independently of the number of capabilities. For the forkOS
variants, the savings ranged from 5.7 to 15.4% whereas for forkOn variants the savings ranged
from 11.2 to 19.6%.

This finding also applies to data sharing primitives. In chameneos-redux, switching
from TMVar to MVar with forkOn can yield energy savings of up to 61.2%. Moreover, it is
advantageous to use MVar independently of the number of capabilities. In a similar vein, in
fasta, going from TVar to MVar with forkIO can produce savings of up to 65.2%. We
further discuss the implications of this finding in Section 4.5.

Faster is not always greener. Overall, the shapes of the curves in Figures 4.1, 4.2 and 4.3 are
similar. Although, for six of our nine benchmarks, in at least two variants of each one, there are
moments where faster execution time leads to a higher energy consumption. For instance, in
the forkOn-TMVar variant of regex-dna, the benchmark is 12% faster when varying the
number of capabilities from 4 to 20 capabilities. But at the same time, its energy consumption
increases by 51%. Also, changing the number of capabilities from 8 to 16 in the forkIO variant
of tsearch makes it 8% faster and 22% less energy-efficient.

In one particular benchmark, fasta, we had strongly divergent results in terms of

http://github.com/green-haskell/concurrency-benchmark
http://github.com/green-haskell/concurrency-benchmark
http://green-haskell.github.io/
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Figure 4.1: Energy and Time results for Benchmarks 1, 2, 3 and 7
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Figure 4.2: Energy and Time results for Benchmarks 4, 5, 6 and 8
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Figure 4.3: Energy and Time results for Benchmark 9
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performance and energy consumption for some of the variants. For this benchmark, the variants
employing TVar outperformed the ones using TMVar and MVar. For example, when using a
number of capabilities equal to the number of physical cores of the underlying machine (20), the
forkOS-TVar variant was 43.7% faster than the forkOS-MVar one. At the same time, the
TVar variants exhibited the worst energy consumption. In the aforementioned configuration,
the forkOS-TVar variant consumed 87.4% more energy. We analyze this benchmark in details
in Section 4.4.

There is no overall winner. Overall, no thread management construct or data sharing primi-
tive, or combination of both is the best. For example, the forkIO-TMVar variant is one of
most energy-efficient for dining-philosophers. The forkOS-TMVar variant consumes
more than six times more energy. However, for the chameneos-redux benchmark, the
forkIO-TMVar variant consumes 2.4 times more energy than the best variant, forkIO-MVar.
This example is particularly interesting because these two benchmarks have similar characteris-
tics. Both dining-philosophers and chameneos-redux are synchronization-intensive
benchmarks and both have a fixed number of worker threads. Even in a scenario like this, using
the same constructs can lead to discrepant results.

Choosing more capabilities than available CPUs is harmful. The performance of most bench-
marks is severely impaired by using more capabilities than the number of available CPUs. In
chameneos-redux, for example, moving from 40 to 64 capabilities can cause a 13x slow-
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down. This suggests that the Haskell runtime system was not designed to handle cases where
capabilities outnumber CPU cores. We discuss this matter further in Chapter 5.

4.4 Case study: fasta

This section expands the analysis of the fasta benchmark as it behaves differently
from the other benchmarks.

4.4.1 How it works

In fasta, each worker thread executes independently, generating a piece of the resulting
DNA sequence. This piece is generated using a set of random numbers that are calculated by
each worker based on a seed value. The current seed is kept in a shared variable. Each worker
takes it, calculates the random numbers, and puts a new seed back. The following steps can
describe the workers’ loop:

1. Take seed0 from the shared variable

2. Generate random_numbers and seed1

3. Put seed1 on the shared variable

4. Compute the DNA sequence based on random_numbers

5. Wait until the predecessor DNA sequence is written to output

6. Write DNA sequence to output

As mentioned above, the worker thread has to wait (if needed) to write its DNA sequence
after the one generated using the predecessor seed. This step is necessary to guarantee that the
final DNA sequence is assembled in the correct order. However, it takes approximately the same
time for each worker to generate its piece of DNA sequence as the sequences have the same size.
So this particular blocking behavior is not a bottleneck as it takes more time to compute the DNA
sequence than to write it to output.

4.4.2 The fastests consume more energy

In Figure 4.2, looking at the results for the TVar variants of fasta, we can see they
have a peculiar behavior. First, execution time and energy consumption are pretty similar
for all three variants and for each capabilities settings. So every thread management strategy
impacts performance in the same way for the TVar variants. This behavior is unusual in other
benchmarks where the combination of both thread management strategy and synchronization
primitive seems to affect performance differently. Second, the TVar variants have the best
overall execution time while they are the least energy-efficient. This is also an unexpected
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behavior. In the other benchmarks, when comparing the charts for execution time and energy
consumption for the same benchmark, the ordering of the curves is preserved for most cases.

In order to better understand this scenario, we have used the eventlog4 feature of
GHC to profile the execution of fasta. The log records the activity of the Haskell runtime
system throughout the whole program execution. The ThreadScope (JONES JR.; MARLOW;
SINGH, 2009) readings of the log can be seen in Figures 4.4 and 4.5 for the forkIO-MVar and
forkIO-TVar variants, respectively. The first row of the report shows the overall CPU activity
while the others show the activity on each capability (or HEC, as named in the pictures). In this
particular example, we executed both variants using 20 capabilities. Although only the first two
capabilities are shown in these images, the activity of the other capabilities behaves similarly.

Figure 4.4: ThreadScope readings for the forkIO-MVar variant of fasta

Source: Made by the author

Figure 4.5: ThreadScope readings for the forkIO-TVar variant of fasta

Source: Made by the author

As we can see, the overall activity of the TVar variant is high during the whole execution
while the MVar variant is the opposite. During profiling, the TVar variant is around 30% faster
than the MVar variant, but it uses around 8x more CPU resources. These results show that,

4<http://ghc.haskell.org/trac/ghc/wiki/EventLog>

http://ghc.haskell.org/trac/ghc/wiki/EventLog
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although the MVar variant has several worker threads, its execution is mostly sequential. This
happens because, as we use an MVar to store the seed value, only one thread is generating its
random numbers at a time. For the TVar variant, however, we use a TVar to store the seed value
and the whole random number generation is enclosed by a transaction. In this case, the other
threads are not blocked as reads to TVars are non-blocking. This leads to several threads using
the same seed to generate random numbers. However, only one thread succeeds in generating
these numbers because when the first one that finishes writes the new seed (seed1 from the
third step of the worker’s loop, Section 4.4.1) into the shared variable, the other transactions are
aborted and retry.

Considering this scenario we just described, a possible explaination for the high energy
consumption of the TVar variants is the transaction that encloses the random number generation
being frequently aborted and re-executed. To assess this hyposesis, we have used the stm-
stats5 library. This library provides a wrapper to Haskell’s atomically function that
tracks the state of each transaction and counts how often the transaction was retried until it
succeeded. This function is called trackNamedSTM and besides the STM action, it also receives
as a parameter a String that we can use to identify each transaction. Figure 4.6 shows the
output of the forkIO-TVar variant of fasta using the trackNamedSTM function instead of
atomically. As we can see, the assumption is correct. Line 3 shows that, for the transaction
that encloses the random number generation, there were 299 transactions that succeeded while
4138 others failed, which represents 13.84x more executions than necessary.

Figure 4.6: Output of stm-stats for forkIO-TVar variant of fasta

1 STM transaction statistics (2016-07-20 19:16:02.445387 UTC):
2 Transaction Commits Retries Ratio
3 generate-numbers 299 4138 13.84
4 output-sync 261 33 0.13
5 wait-semaphore 2 2 1.00

Source: Generated by stm-stats

4.4.3 The slowest consumes less energy

Another curious result is the forkOS-MVar behavior. Its execution time is considerably
worse than all other variants while the energy consumption is in the middle ground. Some
profiling has shown that there was no activity in some capabilities. As we can see in Figure
4.7, capabilities 0, 1, and 2 are working normally whereas capabilities 3 and 4 are idle. In this
example, we executed the benchmark using 20 capabilities. The others that does not appear
in this image are also iddle. This fact matches the results since having less active capabilities

5<http://hackage.haskell.org/package/stm-stats>

http://hackage.haskell.org/package/stm-stats
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Figure 4.7: ThreadScope readings for the forkOS-MVar variant of fasta

Source: Made by the author

implies less parallelization, which makes the program slower. However, this behavior does not
seem correct. For some reason, the runtime system is scheduling the threads only for some
capabilities. We also noticed that this happens only with the forkOS-MVar variant, changing
either the thread management construct or the type of shared variable is enough for the scheduler
to work as expected. We were also able to reproduce it on other machines. We observed that
usually only four capabilities are used while the others stay without work.

We believe that this behaviour occurs due to a bug in Haskell’s runtime system scheduler
and we filed a ticket on the GHC bugtracker6. Simon Marlow, the mantainer and core contributor
of the GHC runtime system, confirmed that he found a bug investigating this case. The bug
occurs when, for instance, there are two threads on the run queue of a capability and one of
them is bound to the current OS thread. In this case, the scheduler would fail to migrate any
threads. He submitted a patch to fix this problem7, which is currently under review. This patch
improves parallelism in programs that have lots of bound threads. However, he also points out
that after fixing this bug, the ThreadScope readings using forkIO and forkOS still do not
look identical: "even after the patch the threadscope profiles don’t look identical. I don’t think

there is an actual problem, just that the program itself isn’t very parallel - if you zoom in, there’s

lots of time in each thread where no work is being done. The difference in scheduling is due to

the way that forkOS has to hand-shake with the new thread to get its ThreadId".

6<https://ghc.haskell.org/trac/ghc/ticket/12419>
7<https://phabricator.haskell.org/D2430>

https://ghc.haskell.org/trac/ghc/ticket/12419
https://phabricator.haskell.org/D2430
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4.5 Discussion

Generally, especially in the sequential benchmarks, high performance is a proxy for
low energy consumption. In cooperation with our colleagues from University of Beira Interior,
we conducted a complementary study (LIMA et al., 2016) that highlighted this for a number
of different data structure implementations and operations. Concurrency, however, makes the
relationship between performance and energy less obvious. Also, there are clear benefits in
employing different thread management constructs and data-sharing primitives. This section
examines this in more detail.

Switching between thread management construct is very simple in Haskell. Functions
forkOn, forkIO, and forkOS take a computation of type IO as parameter and produce
results of the same type. Thus, the only difficulty is in determining on which capability a thread
created via forkOn will run. This is good news for developers and maintainers. Considering
the seven benchmarks where we implemented variants using different data sharing primitives, in
five of them the thread management construct had a stronger impact on energy usage than the
data sharing primitives. Furthermore, in these five benchmarks and also in warp it is clearly
beneficial to switch between thread management constructs.

Alternating between data sharing primitives is not as easy, but still not hard, depending
on the characteristics of the program to be refactored. Going from MVar to TMVar and back
is straightforward because they have very similar semantics. The only complication is that,
since functions operating on TMVar produce results of type STM, calls to these functions must
be enclosed in calls to atomically to produce a result of type IO. Going from MVar to
TVar and back is harder, though. If a program using MVar does not require condition-based
synchronization, it is possible to automate this transformation in a non-application-dependent
manner (SOARES-NETO, 2014). If condition-based synchronization is necessary, such as is the
case with the dining-philosophers benchmark, the semantic differences between TVar
and MVar make it necessary for the maintainer to understand details of how the application was
constructed.

In spite of the absence of an overall winning thread management construct or data-sharing
primitive, we can identify a few cases where a specific approach excels under specific conditions.
For instance, we can see that in both mandelbrot and spectral-norm, forkOn has
a slightly better performance than forkIO and forkOS. In mandelbrot, the forkOn

variants are around 20% more energy-efficient than the forkIO variants. In spectral-norm,
forkOn can be up to 2x greener than forkOS. These two benchmarks are both CPU-intensive.
They also create as many threads as the number of capabilities. In a scenario such as this, a
computation-heavy algorithm with few synchronization points, keeping each thread executing in
a dedicated CPU core is beneficial for the performance. This is precisely what forkOn does.
We further explore this topic in Chapter 5.

Although there is no overall winner, for most benchmark we can point out a configuration
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Figure 4.8: Energy and Time results on Alternative Platform
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that beats the others in terms of energy consumption and performance. We can observe that the
ordering of the curves are more or less preserved when comparing the graph of each metric. This
is amazing news for developers because: (1) small changes can make big differences; (2) it is
very easy to change concurrent constructs; (3) it is cheap to experiment and perform benchmarks;
and (4) it is easy to identify which configuration excels.

4.6 Threats to Validity

This work focused on the Haskell programming language. It is possible that its results
do not apply to other functional programming languages, especially considering that Haskell is
one of the few lazy programming languages in existence. Moreover, we analyzed only a subset
of Haskell’s constructs for concurrent and parallel programming. It is not possible to extrapolate
the results to other constructs for concurrent and parallel execution. Nonetheless, our evaluation
comprised a large number of experimental configurations that cover widely-used constructs of
the Haskell language.

It is not possible to generalize the results of this study to other hardware platforms
for which Haskell programs can be compiled. Factors such as operating system scheduling
policies (YUAN; NAHRSTEDT, 2003) and processor and interconnect layouts (SOLERNOU
et al., 2013) can clearly impact the results. We take a route common in experimental program-
ming language research, by constructing experiments over representative system software and
hardware, and the results are empirical by nature. To take a step further, we have re-executed
the experiments in additional hardware configurations. The primary goal is to understand the
stability and portability of our results. We ran some of the benchmarks on another machine, a
4-core Intel i7-3770 (IvyBridge) with 8 GB of DDR 1600 runing Ubuntu Server 14.04.3 LTS
(kernel 3.19.0-25) and GHC 7.10.2. Figure 4.8 shows the results of mandelbrot running on
this i7 machine. The results show analogous trends in which the curves have similar shapes to
the results of Figure 4.2. The same trend can be observed for the remaining benchmarks.

It is also not possible to generalize the results to other versions of GHC. Changes in the
runtime system, for example, can lead to different results. This work also did not explore the
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influence of the various compiler and runtime settings of GHC. As the options range from GC
algorithms to scheduling behaviour, it can have a significant impact on performance, especially
for concurrency. For the benchmarks we developed, we used the default settings of GHC.
For the ones from CLBG, we used the same settings used there to preserve the performance
characteristics intended by the developers.

One further threat is related to our measurement approach We have employed RAPL
to measure energy consumption. Thus, the results could be different for external measurement
equipment. Nonetheless, previous work (HäHNEL et al., 2012) has compared the accuracy of
RAPL with that of an external energy monitor and the results are consistent.
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5
Guidelines for Haskell Developers

It is far, far easier to make a correct program fast than it is to make a fast

program correct.

—HERB SUTTER

In this chapter, we provide guidelines for software developers to improve the energy
efficiency of their concurrent Haskell programs. These guidelines are organized as suggestions
where each one is composed by a brief description and a rationale. Each suggestion is presented
as a section in this chapter.

It is important to point out that these guidelines are based solely on our experimental
results from Chapter 4. Both performance and energy consumption are very sensitive to the
experimental conditions in which a program is executed. For this reason, developers should be
aware that some contructs can behave differently on other settings. However, as we used an
experimental environment with a popular and widely available architecture, we expect that our
suggestions can lead to positive results in most scenarios.

5.1 Use forkOn for embarrassingly parallel problems

Description: Both the performance and energy consumption of a program can be improved by
using forkOn to create new threads of execution when there is little or no dependency among
these threads and they perform almost the same amount of work.

Rationale: A problem that can be decomposed into parallel tasks that do not need to communi-
cate with each other to make progress is called embarrassingly parallel (HERLIHY; SHAVIT,
2012). Three of the benchmarks from Chapter 4 fit this description: mandelbrot, regex-
dna, and spectral-norm. The results from our study has shown that, for these benchamrks,
the variants using forkOn superseded the others in both performance and energy consumption.
This result shows that manually distributing the workload in an even manner among the capabili-
ties instead of handing this job to the runtime system scheduler improves performance. It makes
sense because we know beforehand that each worker thread is doing exactly the same amount of
work. In such scenarios, there is no need to migrate a thread from one capability to another since
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Figure 5.1: Performence of mandelbrot and spectral-norm with different number of
workers
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an even distribution is the one which contributes the most for the program’s progress. It makes
sure that each capability will have the same workload. So using forkOn in these cases reduces
the overhead incurred by the Haskell runtime system.

However, regex-dna is implemented differently from mandelbrot and spectral-
norm. The first one uses a fixed number of worker threads (350) while in the others the number
of threads can be set by the developer. For the experiments of Chapter 4, we set these benchmarks
to spawn as many threads as the number of capabilities. We decided to run another experiment
with mandelbrot and spectral-norm to check how they behave if we overpopulate the
capabilities’ work queue. In Figure 5.1, we can see the results for the forkOn-MVar variant of
both benchmarks with N, 1.5N and 2N worker threads, where N is the number of capabilities.
As we can see, although the performance is similar, one thread per capability is the configuration
with the best performance. This result makes sense because it reduces the costs of context-
switching between threads of the capabilities’ work queue. Thus, creating one worker thread per
capability benefits both performance and energy consumption.

Additionally, there are two RTS options that, in conjunction with forkOn, can affect
the performance of some embarrassingly parallel algorithms. The first one is the -qa option.
It tries to pin OS threads to CPU cores using native OS facilities1. Using this option, the OS
threads associated with a capability i are bound the CPU core i. The other one is the -qm option.
It disables automatic migration of threads between CPUs. The former seems to fit perfectly in

1In Linux, GHC uses the sched_setaffinity() syscall
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Figure 5.2: Performence of regex-dna and spectral-norm using -qa and -qm
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this context since it increases the probability of a Haskell thread being kept running on the same
CPU core during the execution of the program. However, it is not clear how different the latter is
from simply creating all threads with forkOn as we are proposing here. To get a picture of their
influence, we executed our embarrassingly parallel benchmarks with these options. In Figure 5.2
we show results for the forkOn-MVar variant of both regex-dna and spectral-norm.
Here, we executed the benchmarks without either of the options, only with -qa, only with
-qm, and with both options. As we can see, the RTS options affect the performance of both
benchmarks. However, the behavior is not predictable. In spectral-norm, using only -qa
improves both performance and energy consumption regardless of the number of capabilities.
In regex-dna, however, using any combination of the RTS options has a negative impact
on performance. It also increases considerably the energy consumption for more than eight
capabilities. We recommend developers to experiment with these options to assess how they
affect the performance of a given program.

5.2 Avoid setting more capabilities than available CPUs

Description: Using more capabilities than the number of available virtual CPU cores can seri-
ously degrade both performance and energy consumption of a concurrent Haskell program.

Rationale: A capability is thought to act as an abstraction of a CPU for the Haskell runtime
system. It is the entity that can execute Haskell code. This definition implies that we can achieve
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maximum parallelization by creating as many capabilities as the number of CPUs. In fact, this
is precisely what the official GHC documentation recommends for developers: to set N to be
the same as the number of the processor’s CPU cores. In our experiments from Chapter 4, we
analyzed how each benchmark behaved for different capabilities settings. The results have shown
that, for most benchmarks, the performance improved as we added more capabilities. It also
confirmed the intuition that it does not make sense to outnumber the CPU cores. For eight of our
benchmarks, both the performance and energy consumption were severely impaired by going
from N=40 to N=64.

However, modern Intel processors are equipped with a feature called hyperthreading.
This technology increases the number of independent instructions in the processor’s pipeline. For
each processor core that is physically present, the operating system addresses two separate virtual
cores. So from the developer’s point of view, there is twice the number of CPU cores available.
In this context, the GHC documentation leaves as an open question if virtual cores should be
accounted: "Whether hyperthreading cores should be counted or not is an open question; please

feel free to experiment and let us know what results you find."2. In our experiments, only the
spectral-norm benchmark presented a significant improvement in both performance and
energy consumption when going from N=20 to N=40. All the others were negatively impacted
by this change, which suggests that, in general, virtual cores should not be accounted for setting
the number of capabilities.

5.3 Avoid using forkOS to spawn new threads

Description: Using forkOS undeliberately to spawn new threads of execution can degrade
both performance and energy consumption of a concurrent Haskell program.

Rationale: A call to forkOS creates a bound thread. From a high-level perspective, it works
the same way as an unbound thread created via forkIO or forkOn. They are treated as
regular Haskell threads by the runtime system scheduler. However, bound threads are executed
differently from the unbound ones. Each bound thread is associated with its own OS thread.
So the capability has to switch OS threads when it is time to execute a bound thread. The
motivation for having this kind of thread is to support interoperability with native libraries that
use thread-local state. This is the scenario where the Haskell documentation recommends the use
of forkOS. In our experiments from Chapter 4, we analyzed how each benchmark behaved if the
worker threads were bound threads. The results show that none of the benchmarks benefited from
using forkOS instead of forkIO or forkOn. Both performance and energy consumption
deteriorate considerably when we use bound threads. Probably, this degradation is associated
with the overhead of switching OS threads. In our benchmarks, as all threads were created
using the same primitive, there is a large number of bound threads and each capability has to

2http://downloads.haskell.org/ ghc/7.10.2/docs/html/users_guide/using-smp.html#ftn.idp12916656
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frequently switch OS threads in order to execute the scheduled action. Based on these results, we
recommend developers to avoid using forkOS unless it is strictly required for calling foreign
functions.
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6
Related Work

If I have seen further it is by standing on the shoulders of giants.

—ISAAC NEWTON

In this chapter, we present a short description of the research which has been conducted
in areas related to our work.

6.1 Performance Analysis in Haskell

Runciman and Wakeling (1993) introduced the first heap profiler for a lazy functional
language on the Chalmers hbc/lml compiler. Later, Sansom and Peyton-Jones (1995) evolved
this idea for the GHC profiler. Besides a heap profiler, they also introduced a time profiler and
created the notion of cost centres. Morgan and Jarvis (1998) extended the GHC profiler with
the notion of cost centre stacks for defining a hierarchy of cost centres, similar to a call graph.
In this work, we take advantage of all this infrastructure provided by the GHC profiler to add
energy consumption as a new profiling metric.

Jones Jr., Marlow and Singh (2009) developed a parallel profiling system for GHC.
It defines a trace file format and a tool for visualizing parallel execution. This tool is called
ThreadScope, and it enables developers to see a visual representation of the program execution
by showing the activity of each capability and other events from the runtime system such as
garbage collection. de Vries and Coutts (2014) created a tool called ghc-events-analyze
that uses the same trace file for generating a different visualization of the program’s execution. It
lets developers view the CPU activity across all Haskell threads while ThreadScope shows the
CPU activity across all capabilities. It also enables developers to label periods of time during
program execution by instrumenting the source code with special trace calls. We did not explore
these parallel profiling tools on our work. The main reason for that is that RAPL, the engine we
used for collecting energy data, does not provide fine-grained energy information by cores, only
the cores combined. Estimating the energy consumed by each core based on the RAPL readings
is an interesting idea that we aim to tackle in the future.

Partain (1992) introduced the nofib benchmark suite for Haskell. This was the first
attempt to build a benchmark suite for enabling a quantitative performance assessment of lazy
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functional programming systems. Currently, nofib is integrated with GHC for guaranteeing no
major performance regressions in new releases. From time to time, new benchmarks are added
to the suite to keep it up-to-date with the language evolution. Some of the benchmarks from
The Computer Language Benchmarks Game that we employed in our study are also part of the
nofib suite. O’Sullivan (2009b) created Criterion, a new library for measuring the performance
of Haskell code. It uses a robust statistical framework for performing reliable performance
analysis. We extended this tool also to work with energy consumption. We also employed it
heavily in our empirical study.

6.2 Software Energy Consumption

Studying energy efficiency at the application level is an emerging direction. Traditionally,
this problem has been tackled at the lower levels of the computer stack. For example, for
building energy-efficient solutions for embedded software (TIWARI; MALIK; WOLFE, 1994),
compilers (HSU; KREMER, 2003), operating systems (MERKEL; BELLOSA, 2006), and
runtime systems (RIBIC; LIU, 2014; FARKAS et al., 2000). The programming language
community has also been active researching this topic through the design of energy-aware
programming languages such as Eon (SORBER et al., 2007), Green (BAEK; CHILIMBI, 2010),
EnerJ (SAMPSON et al., 2011), and Energy Types (COHEN et al., 2012). In this kind of
approach, the energy behavior information is encoded in the language as a first-class citizen. We
take a different route in our work by trying to educate developers on writing energy-efficient
software using the tools and languages that they already use.

Several related works study the impact of software changes on energy consumption.
Hindle (2012) studied the effects of Mozilla Firefox’s code evolution on its energy efficiency,
showing a consistent reduction in energy usage correlated to performance optimizations. Pinto,
Castor and Liu (2014b) studied the energy consumption of different thread management primi-
tives in the Java programming language. We took a similar route in assessing the consumption
for Haskell’s thread management and data sharing constructs. Sahin, Pollock and Clause (2014)
provide an analysis of the effects of code refactorings on energy consumption for nine Java
applications. For six commons refactorings, such as converting local variables to fields, they
showed an impact on energy consumption that was difficult to predict. Our work focuses on
Haskell programs and the impact of changes regarding concurrent structures used. Those changes
could be expressed as refactorings since the compared versions have the same program behavior.

Kwon and Tilevich (2013) reduced the energy consumption of mobile apps by offloading
part of their computation transparently to programmers. Moura et al. (2015) studied the commit
messages of 317 real-world non-trivial applications to infer the practices and needs of current
application developers. A recurring theme identified in this study is the need for more tools to
measure/identify/refactor energy hotspots. Manotas, Pollock and Clause (2014) described an
automated support for systematically optimizing the energy usage of applications by making code-
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level changes. Bruce, Petke and Harman (2015) used Genetic Improvement to reduce the energy
consumption of applications, reaching up to 25% reduction. Both Pinto et al. (2016) and Pereira
et al. (2016) studied the energy characteristics of several collections of the Java programming
language. The former analyzed it under the concurrency point-of-view, studying 16 thread-safe
collections, while the latter studied other collections from the Java Collection Framework in
sequential scenarios. All these approaches show the potential for program transformation, in
general, and refactorings, in particular, to reduce energy consumption. We explored this potential
further in this work by targeting Haskell’s concurrency framework.

6.3 Refactoring

Murphy-Hill, Parnin and Black (2009) provide an analysis on the use of refactoring.
Their study indicates how refactoring is common, even if only executed manually. Dig, Marrero
and Ernst (2011) present some reasons why developers choose to apply program transformations
to make their programs concurrent. They studied five open-source Java projects and found four
categories of concurrency-related motivations for refactoring: Responsiveness, Throughput,
Scalability and Correctness. Their findings show that the majority of the transformations (73.9%)
consisted of modifying existing project elements, instead of creating new ones. Our work shows
that modifying existing elements can also lead to energy savings, yet another motivation for
refactoring.

Various papers address the problem of refactoring Haskell programs. Li, Thompson
and Reinke (2005) present the Haskell Refactorer infrastructure to support the development
of refactoring tools. Lee (2011) used a case study to classify 12 types of Haskell refactorings
found in real projects, mostly dealing with maintainability. Brown, Loidl and Hammond (2011)
specified and implemented refactorings for introducing parallelism into Haskell programs, con-
sidering mainly performance concerns. Soares-Neto (2014) described refactorings for rewriting
concurrent Haskell programs to STM. Just as mentioned previously, our study may influence
future Haskell program maintenance as energy efficiency becomes a mainstream concern. We are
not aware of previous work analyzing the energy efficiency of Haskell programs, in particular, or
purely functional programming languages, in general.
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7
Conclusion

In the morning it was morning and I was still alive.

—CHARLES BUKOWSKI (Post Office)

This chapter present our concluding remarks.

7.1 Contributions

In this work, we have shedded light on the energy behavior of concurrent Haskell
programs. To the best of our knowledge, this is the first attempt to analyze energy efficiency in
the context of functional programming languages. Moreover, this work makes the following
contributions:

� A tool for fine-grained energy analysis. We have extended the GHC profiler to
collect and report fine-grained information about the energy consumption of a Haskell
program;

� A tool for coarse-grained energy analysis. We have extended the Criterion mi-
crobenchmarking library to collect, perform and report statistical performance analy-
sis of the energy consumption of Haskell code;

� An understanding of the energy behavior of concurrent Haskell programs. We
have conducted an extensive experimental space exploration illuminating the re-
lationship between the choices and settings of Haskell’s concurrent programming
constructs, and performance and energy consumption over both microbenchmarks
and real-world Haskell programs;

� A list of guidelines on how to write energy-efficient software in Haskell. We
have provided some recommendations for helping software developers to improve
the energy efficiency of their concurrent Haskell programs.

An earlier version of Chapter 4 of this dissertation has been one of the core contributions
of a paper that has been published at the main research track of the IEEE 23rd International
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Conference on Software Analysis, Evolution, and Reengineering (SANER’16) (LIMA et al.,
2016). An updated version of this paper including the extensions that we made and the remainder
of this dissertation is under work to be submitted to a software engineering journal.

We hope our findings will ease the development of energy-efficient Haskell programs.
We also hope that this work motivates other developers and researchers from the functional
programming and software engineering communities to engage in exploring the software energy
consumption area.

7.2 Future Work

For improving the developers’ tooling, a natural next step is enabling the GHC energy
profiler to properly analyze the energy consumption of parallel programs. This involves de-
veloping a software model for estimating the energy consumed by each CPU core based on
the energy consumed by all cores. This technique could also be incorporated into the parallel
profiling system of GHC to add energy information to the trace file format. It would allow us
to extend the ThreadScope tool to make it energy-aware. We plan to investigate this further
because we believe that fine-grained energy analysis has the potential to improve significantly
the developers’ knowledge about software energy consumption, especially with visualization
tools such as ThreadScope and ghc-events-analyze.

For the concurrent programming constructs, we intend to replicate our study on different
hardware. Newer Intel microarchitectures such as Haswell and Broadwell have shown significant
improvement over the previous generations regarding power management (HUANG et al.,
2015). We want to investigate if these changes have consequences on the energy behavior of
our benchmarks. We also want to explore how the various GHC options available for both
the compiler and the runtime system can affect the energy consumption and performance of
concurrent programs. These options enable the customization of several different aspects of
the compilation and execution process, which can have a direct impact on energy consumption.
Additionally, we plan to do an in-depth analysis of each benchmark of our suite to better
understand its characteristics and how they differ among themselves. This can lead to the
addition of new benchmarks to our suite so we can improve its diversity. Another idea under
our radar is to investigate the energy behavior of other concurrent programming models that are
popular in functional programming languages such as the Actor Model (AGHA, 1986).
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A
The spectral-norm Benchmark

This benchmark is part of The Computer Language Benchmarks Game suite. It is based
on a MathWorld challenge called "Hundred-Dollar, Hundred-Digit Challenge Problems" by Eric
W. Weisstein1. To submit a solution for this problem on The Computer Language Benchmarks
Game, the program should not only give the correct result, but also use the same algorithm to
calculate that result. Each program should:

1. Calculate the spectral norm of an infinite matrix A, with entries a11 = 1,a12 =
1
2 ,a21 =

1
3 ,a13 =

1
4 ,a22 =

1
5 ,a31 =

1
6 ...

2. Implement 4 separate functions to:

� Return element (i, j) of infinite matrix A

� Multiply vector V by matrix A

� Multiply vector V by matrix A transposed

� Multiply vector V by matrix A and then by matrix A transposed

Following, we show the implementation we used for this benchmark. In this case, we are
showing only the source code for the forkIO variant as the refactoring to change the thread
management construct is straightforward. We split it in multiple sections to better present it
here, but it can be seen as a whole on GitHub2. Code A.1 is the entry point of the program
where we define the Criterion benchmark that will call spectral-norm. Code A.2 and
Code A.3 are common parts that were not refactored. Code A.4, Code A.5 and Code A.6 show
the implementation of the CyclicBarrier type for the MVar, TMVar and TVar variants,
respectively. Finally, Code A.7 shows the fours functions required by the problem statement.

1http://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html
2https://github.com/green-haskell/concurrency-benchmark
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Code A.1: The Criterion benchmark

1 import Criterion.Main
2 import Program as S (exec)
3

4 main :: IO ()
5 main = defaultMain [
6 bench "spectral-norm #4" $ nfIO (S.exec 10000)
7 ]

Code A.2: Entry point of spectral-norm

1 module Program (exec,main) where
2

3 import Utils(redirectStdOutAndRun)
4

5 import System.Environment
6 import Foreign.Marshal.Array
7 import Foreign
8 import Text.Printf
9 import Control.Concurrent

10 import Control.Monad
11 import GHC.Base hiding (foldr)
12 import GHC.Conc
13 import System.IO
14 import System.Directory (removeFile,getTemporaryDirectory)
15 import GHC.IO.Handle
16

17 type Reals = Ptr Double
18

19 main = do
20 n <- getArgs >>= readIO . head
21 exec’ n
22

23 exec n = redirectStdOutAndRun exec’ n
24

25 exec’ n = do
26 allocaArray n $ \ u -> allocaArray n $ \ v -> do
27 forM_ [0..n-1] $ \i -> pokeElemOff u i 1 >> pokeElemOff v i 0
28

29 powerMethod 10 n u v
30 printf "%.9f\n" =<< eigenvalue n u v 0 0 0

Code A.3: A function to calculate the eigenvalue of a matrix

1 eigenvalue :: Int -> Reals -> Reals -> Int -> Double -> Double -> IO Double
2 eigenvalue !n !u !v !i !vBv !vv
3 | i < n = do ui <- peekElemOff u i
4 vi <- peekElemOff v i
5 eigenvalue n u v (i+1) (vBv + ui * vi) (vv + vi * vi)
6 | otherwise = return $! sqrt $! vBv / vv
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Code A.4: CyclicBarrier defined for the MVar variant

1 data CyclicBarrier = Cyclic !Int !(MVar (Int, [MVar ()]))
2

3 await :: CyclicBarrier -> IO ()
4 await (Cyclic k waitsVar) = do
5 (x, waits) <- takeMVar waitsVar
6 if x <= 1 then do
7 mapM_ (‘putMVar‘ ()) waits
8 putMVar waitsVar (k, [])
9 else do

10 var <- newEmptyMVar
11 putMVar waitsVar (x-1,var:waits)
12 takeMVar var
13

14 newCyclicBarrier :: Int -> IO CyclicBarrier
15 newCyclicBarrier k = liftM (Cyclic k) (newMVar (k, []))

Code A.5: CyclicBarrier defined for the TMVar variant

1 data CyclicBarrier = Cyclic !Int !(TMVar (Int, [TMVar ()]))
2

3 await :: CyclicBarrier -> IO ()
4 await (Cyclic k waitsVar) = do
5 (x, waits) <- atomically $ takeTMVar waitsVar
6 if x <= 1 then do
7 mapM_ (\x -> atomically $ putTMVar x ()) waits
8 atomically $ putTMVar waitsVar (k, [])
9 else do

10 var <- newEmptyTMVarIO
11 atomically $ putTMVar waitsVar (x-1,var:waits)
12 atomically $ takeTMVar var
13

14 newCyclicBarrier :: Int -> IO CyclicBarrier
15 newCyclicBarrier k = liftM (Cyclic k) (newTMVarIO (k, []))

Code A.6: CyclicBarrier defined for the TVar variant

1 data CyclicBarrier = Cyclic !Int !(TVar (Int, [TMVar ()]))
2

3 await :: CyclicBarrier -> IO ()
4 await (Cyclic k waitsVar) = join $ atomically $ do
5 (x, waits) <- readTVar waitsVar
6 if x <= 1 then do
7 mapM_ (\x -> putTMVar x ()) waits
8 writeTVar waitsVar (k, [])
9 return $ return ()

10 else do
11 var <- newEmptyTMVar
12 writeTVar waitsVar (x-1,var:waits)
13 return $ atomically $ takeTMVar var
14

15 newCyclicBarrier :: Int -> IO CyclicBarrier
16 newCyclicBarrier k = liftM (Cyclic k) (atomically $ newTVar (k, []))
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Code A.7: The four functions to manipulate the matrix

1 powerMethod :: Int -> Int -> Reals -> Reals -> IO ()
2 powerMethod z n u v = allocaArray n $ \ !t -> do
3 let chunk = (n + numCapabilities - 1) ‘quotInt‘ numCapabilities
4 !barrier <- newCyclicBarrier $! (n + chunk - 1) ‘quotInt‘ chunk
5 let timesAtAv !s !d l r = do
6 timesAv n s t l r
7 await barrier
8 timesAtv n t d l r
9 await barrier

10 let thread !l !r = foldr (>>) (return ()) $ replicate z $ do
11 timesAtAv u v l r
12 timesAtAv v u l r
13 let go l = case l + chunk of
14 r | r < n -> forkIO (thread l r) >> go r
15 | otherwise -> thread l n
16 go 0
17

18 timesAv :: Int -> Reals -> Reals -> Int -> Int -> IO ()
19 timesAv !n !u !au !l !r = go l where
20 go :: Int -> IO ()
21 go !i = when (i < r) $ do
22 let avsum !j !acc
23 | j < n = do
24 !uj <- peekElemOff u j
25 avsum (j+1) (acc + ((aij i j) * uj))
26 | otherwise = pokeElemOff au i acc >> go (i+1)
27 avsum 0 0
28

29 timesAtv :: Int -> Reals -> Reals -> Int -> Int -> IO ()
30 timesAtv !n !u !a !l !r = go l
31 where
32 go :: Int -> IO ()
33 go !i = when (i < r) $ do
34 let atvsum !j !acc
35 | j < n = do !uj <- peekElemOff u j
36 atvsum (j+1) (acc + ((aij j i) * uj))
37 | otherwise = pokeElemOff a i acc >> go (i+1)
38 atvsum 0 0
39

40 --
41 -- manually unbox the inner loop:
42 -- aij i j = 1 / fromIntegral ((i+j) * (i+j+1) ‘div‘ 2 + i + 1)
43 --
44 aij (I# i) (I# j) = D# (
45 case i +# j of
46 n -> 1.0## /## int2Double#
47 (((n *# (n+#1#)) ‘uncheckedIShiftRA#‘ 1#) +# (i +# 1#)))
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