	[image: image1.jpg]

[image: image47.png]BRAZIL IP

	[image: image47.png]

[image: image48.wmf]

[image: image49.wmf]
Design document

McBSP
Fenix Project
 Brazil-IP

[image: image50.wmf]
Version : 1.0
Revision History

	Date
	Version
	Description
	Author

	01/15/2009
	0.1
	Document construction
	acv2,lgr2

	01/16/2009
	1.0
	Protocol corrections and document review
	acv2, hra, lgr2, lvn, mcrs, prga2

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

61.
Introduction

61.1
Document Overview

61.2
Definitions, Acronyms and Abbreviations

62.
Package diagrams

72.1
McBSP

72.1.1
Capsules Diagram

72.1.2
Main capsules

182.1.3
Protocols

283.
References

Figures

6Figure 1: McBSP Package

7Figure 2: Capsules Diagram

7Figure 3: Transmit capsule

8Figure 4: Transmit state diagram

8Figure 5: Receive capsule

8Figure 6: Receive state diagram

9Figure 7: SPI Master capsule

9Figure 8: SPI Master state diagram

10Figure 9: SPI Slave capsule

11Figure 10: SPI Slave state diagram

12Figure 11: Sample Rate Generator capsule

12Figure 12: Saple Rate Generator state diagram

12Figure 13: Transmit Multichannel capsule

13Figure 14: Transmit Multichannel state diagram

13Figure 15: Receive Multichannel capsule

14Figure 16: Receive Multichannel state diagram

14Figure 17: Register Bank capsule

16Figure 18: Register Bank state diagram

16Figure 19: Companding Internal Data capsule

17Figure 20: Companding Internal Data state diagram

17Figure 21: General Purpose capsule

18Figure 22: General Purpose state diagram

19Figure 23: Device Clock and Frame Protocol

20Figure 24: Device Clock and Frame state diagram

20Figure 25: Device Data protocol

21Figure 26: Device Data state diagram

21Figure 27: Receive interrupt system protocol

22Figure 28: Receive interrupt system state diagram

22Figure 29: Receive sample rate generator protocol

22Figure 30: Receive sample rate generator state diagram

23Figure 31: Receive Multichannel receive protocol

23Figure 32: Receive Multichannel state diagram

24Figure 33: Register bank system protocol

24Figure 34: Register bank system state diagram

25Figure 35: Sample rate generator SPI master protocol

25Figure 36: Sample rate generator SPI master state diagram

25Figure 37: Sample rate generator SPI slave protocol

25Figure 38: Sample rate generator SPI slave state diagram

26Figure 39: Transmit Interrupt System protocol

26Figure 40: Transmit Interrupt System state diagram

26Figure 41: Transmit sample rate generator protocol

26Figure 42: Transmit sample rate generator state diagram

27Figure 43: Transmit multichannel transmit protocol

27Figure 44: Transmit multichannel transmit state diagram

1. Introduction

The design document is used to guide the project development through the explanation of the capsules and its protocols, to have a better understanding of project artifacts.
1.1 Document Overview

This document is composed by the following sections:

· Section 2 – Package diagram this section describes and explains the packages that form the module, its capsules and its protocols.

· Section 3 – References: this section provides a complete list of all documents referenced elsewhere in this document.

1.2 Definitions, Acronyms and Abbreviations XE "2.2 Infra-estrutura de Redes"
This table is used for specify any terms used some times in this text.

Table 1: Definitions, Acronyms and Abbreviations.

	Term
	Description

	CAP
	Capsule

	PROT
	Protocol

	SD
	State diagram

2. Package diagrams

[image: image2.png]e

Figure 1: McBSP Package
2.1 McBSP
2.1.1 Capsules Diagram

[image: image3.png]=)

Figure 2: Capsules Diagram
2.1.2 Main capsules

[CAP 001] Transmit
The transmit capsule has two main methods. First, and most important, is the transmit method, that contains all the necessary aspects for a transmission, including the second method, that is a copy of data from DXR register to the XSR register.

[image: image4.jpg]<<Capsule>>
Transmit

transmit(data : Data) - Data
-+ DXRioXSReopy(data : Data) - Data

Figure 3: Transmit capsule
[SD 001] Transmit state diagram

[image: image5.png]activate transmission interrupt CPU

Figure 4: Transmit state diagram
When the transmission is activated, it waits for the clock and frame generated or synchronized by the Sample Rate Generator, after that, the McBSP interrupts the CPU or DMA and goes to the next state, the data is read from the bus and stored in DXR. From the DXR, the data is shifted to the XSR through the companding, in that state, the data can be compressed if desired. The next state waits for the frame sync pulse that can be external or internal. When the frame sync pulse occurs, the data is sent from XSR to Device through the DX port.
[CAP 002] Receive

Following the idea of the transmit capsule, the receive capsule has a main method, receive, that involves all the receive process, and includes the other two methods of the capsule, responsible for the internal copy between the registers.

[image: image6.jpg]<<Capsule>>
Receive

[receive(data - Data) - Data
[+RSRioRBRcopy(data : Data) : Data
|+RBRt0DRRcopy(data : Data) : Data

Figure 5: Receive capsule
[SD 002] Receive state diagram

[image: image7.png]activate reception

interrupt CPU

Figure 6: Receive state diagram
The first reception state after its activation is the wait clock and frame from SRG, in that state, the reception capsule waits from the SRG for the generation or synchronization of Clock and Frame. In the next state, when the frame sync pulse occurs, the reception of data begins and the data is stored on RSR. After that, a copy from RSR to RBR occurs followed by a copy from RBR to DRR through companding, where the data can be expanded as desired. Then, the McBSP interrupts the CPU or DMA and writes the data on bus.

[CAP 003] SPI Master

The SPI Master capsule has two methods responsible for the reception and transmission in SPI mode. CPUtoDeviceTransfer is a method equivalent to a transmission in a non SPI Mode, and sends the data according to the SPI protocol. Same as above, DeviceToCPUTransfer method receives the data from the device, according to the SPI protocol.

[image: image8.jpg]<<Capsule>>
SPI Master

[+CPUtoDeviceTransfer(data - Data) - Data
[+DeviceToCPUTransfer(data : Data) : Data

Figure 7: SPI Master capsule
[SD 003] SPI Master state diagram

[image: image9.png]Generated

@<

&0

Generated

Figure 8: SPI Master state diagram
There are two independent state machines in this diagram: the first controls the transfer from Device to CPU and the second controls the transfer from CPU to Device.

In the initial state of the first state machine, the SRG will be warned to generate the clock and frame sync pulses. So, the SPI_Master goes to wait confirmation, and stays in this state until it receives the confirmation that the clock and frame sync pulses were generated. After the confirmation, the SPI_Master will warn the SRG to send the clock and frame sync pulses. So, in the next state, the SRG will receive data from DR and store it in RSR. In the next state, it will copy from RSR to RBR. After this, in the next state, it will copy from RBR to DRR (passing through companding) and finally, the SPI_Master sends an interrupt signal and write the data on bus.

In the initial state of the second state machine, the SRG will be warned to generate clock and frame sync pulses. So, the SPI_Master goes to wait confirmation, and stays until it receives the confirmation that the clock and frame sync pulses were generated. In the next state, the SPI_Master interrupts the CPU and it reads data from the bus to DXR. After this, in the next state, it will copy from DXR to XSR (passing through companding). Now, the SPI_Master will warn the SRG to send the frame and clock sync pulses and finally, in the next state, the SPI_Master will shift out the data from XSR to device.

[CAP 004] SPI Slave

The SPI Slave capsule is dependent of a method, SRGStatusInterpreter that verify if it is possible to receive (DeviceToCPUTransfer) or transmit (CPUToDeviceTransfer) in a SPI protocol, i.e., the other methods are only enabled when the status is received.

[image: image10.jpg]<<Capsule>>
SPI Slave

[+CPUToDeviceTransfer(data - Data) : Data
[+DeviceToCRUTransfer(data : Data) : Data.
[+SRGStatusinterpreter(signal : bit)

Figure 9: SPI Slave capsule
[SD 004] SPI Slave state diagram

[image: image11.png]Tiaster Clock
ss

Send Tierruption

TR Tiaster Clock

ss

Send interruption

Figure 10: SPI Slave state diagram
There are two independent state machines in this diagram: the first controls the transfer from Device to CPU and the second controls the transfer from CPU to Device.

In the initial state of the first state machine, the SPI_Slave will wait the activation from the SRG to receive the Master Clock and the SS (Slave Enable), the SPI_Slave stays in this state until it to receive the activate. After the activation, the SPI_Slave will shift data from DR into RSR. In the next state, it will copy from RSR to RBR. After this, in the next state, it will copy from RBR to DRR (passing through companding) and it sends an interrupt signal.

In the initial state of the second state machine, the SPI_Slave will wait the activation from the SRG to receive the Master Clock and the SS (Slave Enable), it stays until it to receive the activate. In the next state, the SPI_Slave copies data from the bus to DXR. After this, in the next state, it will copy from DXR to XSR (passing through companding) and it sends an interrupt signal.
[CAP 005] Sample Rate Generator
The Sample Rate Generator capsule has 4 methods of selection. These methods verify the register configuration to choose the input values of the transmission/reception clock and frame. After that, the method frameAndClockGeneration is used to generate clock and frame.

[image: image12.jpg]<<Capsule>>
SRG

[elockReceptionselection(CLKR : Clock, CLKG - Clock) : Clock
[+ clockTransmissionSelection(CLKG : Clock, CLKX : Clock) : Clock.
[+frameReceptionSelection(FSG - Frame, FSR : Frame) : Frame
[+frameTransmissionSelection(FSG : Frame, FSX : Frame) : Frame
[+frameAndClockGeneration(CLKS : Clock, FSR : Frame, InternalClock : Clock) : ClockandFrame

Figure 11: Sample Rate Generator capsule

[SD 005] Sample Rate Generator state diagram

[image: image13.png]activate generate clock

= - e - —

ifitis not used

Figure 12: Saple Rate Generator state diagram
After the Sample Rate Generator is activated, it interprets the registers SRGR and PCR to get the necessary information to configure the module. The next step, the clock and frame are generated, and a verification of the input clock (CLKSM) is done. If it is not used, the FSM goes to the final state, but if it is used, and CLKS is also used, the next state is the one responsible for activate the clock division and frame division registers by the signals CLKS, GSYNC and FSR. After that, the clock is divided by the value in CLKGDV, the frame period is set, the frame width is set, the clock is selected, the frame is selected and then the FSM goes to the final state.
[CAP 006] Transmit Multichannel

The Transmit Multichannel capsule is formed by seven methods, and each one of these methods is responsible for one step of the multichannel transmission. Selection of the partition mode, selection of the content of partition A and B, the masked channels, the enabled channels, the multichannel selection and the masked and enabled channels.

[image: image14.jpg]<<Capsule>>
Transmit Multichannel

[+partitionModeselection(signal : bit)

[+aPantitionSelection(signal : 2 bits) : 3 bits

[+ bPartitionselection(signal : 2 bits) : 3 bits

[+maskChannel(channels : 32 bits) - 32 bits

[+enableChannel(channels - 32 bits) - 32 bits
[+muttichannelSelection(signal - 2 bits)

|+ maskAndEnableChannels(maskVector : 32 bits, enableVector : 32 bits)

64 bits

Figure 13: Transmit Multichannel capsule
[SD 006] Transmit Multichannel state diagram

[image: image15.png]activate
mutichannel

2 partitions
mode 1

8 partitions

2 partitions 8 partitions mode 1

mode3 mode 3

TuTichannel end

Figure 14: Transmit Multichannel state diagram
When the multichannel is activated, the first state is the verification of the selection mode and the number of partitions. After the module reads the registers according to the configuration set, it sends the content of the desired registers to the Transmit module. If the Transmit has already read the registers information the signal “read” is set and the Transmit multichannel module goes back to read the registers again to get their new configuration. If the Transmit hasn't read the registers information yet, the Transmit Multichannel module waits the reading of the Transmit to read the registers again. If the Transmit Multichannel is deactivated, it starts again from the initial state.
[CAP 007] Receive Multichannel

The Receive Multichannel capsule is a set of methods to configure the reception with the multichannel mode. The methods are the selection of the partition mode, selection of the content of partition A and B and the selection of the enable channels.

[image: image16.jpg]<<Capsule>>
Receive Multichannel

[+partitioniodeselection(
[+aPartitionSelection(vector : 32 bits) : 32 bits
[+bPartitionselection(vector - 32 bits) : 32 bits
[+enableChannelvector : 32 bits) : 32 bits

Figure 15: Receive Multichannel capsule
[SD 007] Receive Multichannel state diagram
[image: image17.png]activate
muttichannel

end muttichannel

end muttichannel

2 partitions
RMCHE

8 partitions
RMCHE

Figure 16: Receive Multichannel state diagram
When the Receive Multichannel is activated, the first state checks the number of partitions. After that, if 2 partitions mode is set, the module is going to read the RPABLK, RPBBLK and RCER, configuration registers of 2 partitions multichannel. If 8 partitions mode is selected, the module is going to read RCBLK and RCEREn. Then it sends the registers information to the Receive module. If the Receive has already read the registers information the signal “read” is set and the Receive Multichannel must read the registers again, sending the new configuration. If the Receive hasn't read the register information yet, the Receive multichannel must wait until the reading occurs. Finally, if the Receive Multichannel is deactivated, the machine state waits the activation and starts from the initial state.
[CAP 008] Register Bank

The methods of the Register Bank capsule are responsible of starting the McBSP. The McBSPInitialization initializes the whole McBSP. After that, all the controls of the port are set by the method setControl.

[image: image18.jpg]<<Capsule>>
Register Bank

[+ cBSPIniialization0
[+ setControlg

Figure 17: Register Bank capsule
[SD 008] Register Bank state diagram

[image: image19.png]write

CLKXM = 0 or CLKRM CLIM = 1 and CLKRM = 1

CLKXor CLKR CLKSRG

CLKXor CLKR LSRG

CLKXor CLKR

CLKsRG

CLKXor CLKR CLKsRE

[image: image20.png]FSRM = 0 or FSXM

FSRM =1 and FsxM = 1

Figure 18: Register Bank state diagram
The registers in the Register Bank can be accessed and edited by the System at the initialization or during the McBSP operation (only the dynamical registers). The state machines on the right and left represents them, respectively.
The left state machine is simple and its first state waits for a read or write signal. If there is a read operation, the next state decodes the field and leaves the data to bus. In case of a write operation, the next state decodes the field and stores the value on the correct register.
The right state machine is responsible for the McBSP initialization. It verifies if all the portions are in the reset state and, if so, it starts to configure the registers in the Register Bank. It is here where the clock and frame, interruptions and exceptions settings are configured.
[CAP 009] Companding Internal Data

The Companding Internal Data has the main method, modeSelection, which checks the current configuration, and compresses and expands through the NON-DLBTransfer method, or the DLBTransfer method.

[image: image21.jpg]<<Capsule>>
Companding Internal Data

[Fmodeselection
[+NON-DLBtransfer(data : Data)
[+DLBtransfer(data - Data)

Figure 19: Companding Internal Data capsule
[SD 009] Companding Internal Data state diagram

[image: image22.png]activate companding
internal data

LB transfer

non-DLE transer|

— T
[
&D

—

Figure 20: Companding Internal Data state diagram
In the initial state, the Companding Internal Data will choose the transfer mode, which can be DLB transfer or non-DLB transfer.

If the chosen mode is DLB transfer, then, in the next state, the Companding Internal Data will interrupt the CPU or DMA. So, in the next state, it reads data from bus to DXR. After this state, it will copy from DXR to XSR, passing through the companding hardware. After this, in the next state, it will copy from XSR to RSR. After, in the next state, it will copy from RSR to RBR. After this, in the next state, it will copy from RBR to DRR, passing through the companding hardware. So, in the next state, it waits that the CPU or DMA reads the data. After read, the Companding Internal Data returns to state where it interrupts the CPU or DMA.

However, if the chosen mode is non-DLB transfer, then in the next state the Companding Internal Data reads data from bus to DXR. After this state, it will copy from DXR to DRR, passing through companding hardware. After, in the next state, it waits four clock cycles. So, in the next state, it leaves the data on bus. After this, the Companding Internal Data returns to state where it reads data from bus to DXR.
[CAP 0010] General Purpose

The General Purpose has two methods: the receiveGP is responsible for the reception ports: CLKR and FSR, depending of the CLKRM and FSRM configuration, these ports can be set as output or input. The transmitGP is responsible for the transmission ports: CLKX and FSX.

[image: image23.jpg]<<Capsule>>
General Purpose

[+receiveGP(data bi
[+transmitGP(data : bit)

Figure 21: General Purpose capsule
[SD 0010] General Purpose state diagram

[image: image24.png].ﬂvnnsmw Threser

CLKRu=1
FSRu=1

Figure 22: General Purpose state diagram
The Capsule General Purpose has two State Diagrams, one for transmission and one for reception. To activate the general purpose transmission, the McBSP transmit portion must be in reset state, in that case, occurs a verification of CLKXM and FSXM configurations. If CLKXM = 0 and FSXM = 0, both ports CLKX and FSX are inputs and read, where their values are stored in CLKXP and FSXP. If CLKXM = 1 and FSXM = 0, CLKX is set input and FSX output. If CLKXM = 0 and FSXM = 1, CLKX is set output and FSX input. If CLKXM = 1 and FSXM = 1, both CLKX and FSX are set output and the bits stored in CLKXP and FSXP are sent through them. The DX port always actuates as an output and its value is driven by the DX_STAT field.
The general purpose reception occurs as the transmission, but the configuration affects the CLKR and FSR ports and the CLXP and FSXP fields. The CLKS and DR ports are always inputs and their values are stored in the DR_STAT and CLKS_STAT fields, respectively.
2.1.3 Protocols

[PROT 001] Device Clock and Frame
[image: image25.jpg]<<SocProtocol>>
Device._clockandFrame

e
cLir
l-cLks
Fsx
Fsm

[rgetClIocg - clock
[+GetCLKRQ : clock
[+getCLKs - clock.
[+getFsX0 - frame
[+getFSRO : rame
[#setcLix(clock)
[#setCLER clock)
[+setFsx(irame)

[+setFsR(rame)

Figure 23: Device Clock and Frame Protocol
· CLKX: Clock synchronization pulse for transmission

· CLKR: Clock synchronization pulse for reception
· CLKS: External clock source
· FSX: Frame synchronization pulse for transmission

· FSR: Frame synchronization pulse for reception
[SD 0011] Device Clock and Frame state diagram

[image: image26.png]TR

TR

TR

Tl

oM

KR =0
CLKRN = 1
Fsxu

Foxm =

FsRu =

FSRu =

getClock.

putClock

d

getClock.

putClock

getframe

.

getframe

putFrame

putFrame

getClock.

Figure 24: Device Clock and Frame state diagram
For the clock and frame ports (CLKX, CLKR, FSX and FSR, that can be inputs or outputs), a configuration field must be checked. For each, if the field analyzed (CLKXM, CLKRM, FSXM and FSRM, respectively) is cleared, the port is an input and the clock or frame must be driven by the external source; else (if the field is set), the port is an output and the pin receives the clock or frame coming from the Sample Rate Generator. As the CLKS port is always an input, there is no decision to make and the clock is received from the external source.
[PROT 002] Device data

[image: image27.jpg]<<SocProtocol>>
Device_data

[Fputoi
[+get0 - it

Figure 25: Device Data protocol
· DX: Signal responsible for free the data in the DX pin.
· DR: Signal responsible for warn the DR pin to receive data.
[SD 0012] Device Data state diagram

[image: image28.png]getsit
TR

Figure 26: Device Data state diagram
Here, there are two protocol state machines: one for the reception and one for the transmission.

In the reception one, the first state waits for the data to come from the Device, through the DR port. Once it has arrived, the next state gets the bit and shifts it to RSR, returning again to the previous state, to wait for the next bit, until the whole data is transferred.

In the transmission state machine, the first state receives the data coming from XSR and goes to the next state, where the first bit is passed to the Device through DX port. The FSM returns then to the previous state and send the next bit of the data receive previously, until the whole data is transferred.
[PROT 003] Receive interrupt system

[image: image29.jpg]<<SocProtocol>>
Receive_interrupt_System

FRINT
REVT

Figure 27: Receive interrupt system protocol
· RINT: Signal that warns the CPU that an interruption happened in a reception.

· REVT: Signal that warns the DMA that an event happened in a reception.

[SD 0013] Receive interrupt system state diagram

[image: image30.png]Initial

interrupt

Figure 28: Receive interrupt system state diagram
In this very simple state machine, the first state waits the interrupt sign and interrupts the System (CPU or DMA), sending a RINT or REVT signal. In the next state, data will be sent to the System. At the end of this transfer, the FSM returns to the first state.
[PROT 004] Receive sample rate generator

[image: image31.jpg]<<SocProtocol>>

Figure 29: Receive sample rate generator protocol
· activateSRG: Signal responsible for activate the Sample Rate Generator to receive clock and frame.

· ready: Signal that warns the presence of the generated clock and frame by the sample rate generator, and they are ready for use.

[SD 0014] Receive sample rate generator state diagram

[image: image32.png]Waiting actwate
TR

Activare SRC

Ready

W:amnq R:ztwjmn

Figure 30: Receive sample rate generator state diagram
The first state waits a signal to activate the Sample Rate Generator. The next state waits the clock and frame generation and then sends a ready signal warn this generation.
[PROT 005] Receive Multichannel receive

[image: image33.jpg]<<SocProtocol>>
ReceiveMultichannel_Receive

FactivateMuitichannel
[-receptionstart
[-partitionshiumber
-RCER

[putPartition(partitionshiumber)
[+pUtRCERRCER)

Figure 31: Receive Multichannel receive protocol
· activateMultichannel: Signal responsible for activate the multichannel

· receptionStart: Signal to warn the receive multichannel to reconfigure the registers

· partitionNumber: Signal that represents the number of partitions involved in the receive multichannel

· RCER: Vector that is the copy of the Receive channel enable register, used to disable or enable the corresponding channel

[SD 0015] Receive Multichannel state diagram

[image: image34.png]Initial

Activate

Teceptionstant

Figure 32: Receive Multichannel state diagram
The first state waits the multichannel activation and then goes to the waiting configuration state. The multichannel fields on the Register Bank will be read and the enabled/unmasked channels and number of partitions will be sent. The next state waits for a receptionStart signal to reanalyze the previous fields, returning to the previous state.
[PROT 006] Register bank system

[image: image35.jpg]<<SocProtocol>>
Register Bank_System

B
RCR.
lxcR
-srcR
l-pcr
-McR
-RCER
lxcer
Adress
l-writeData

[+putData(data - Data)
[+getata0 : Data.
[+reado

l+write0
[+wait_requesto

Figure 33: Register bank system protocol
· SPCR: content of the SPCR register
· RCR: content of the RCR register

· XCR: content of the XCR register
· SRGR: content of the SRGR register
· PCR: content of the PCR register
· MCR: content of the MCR register
· RCER: content of the RCER register
· XCER: content of the XCER register

· Address: vector that informs what register will receive the data

· WriteData: signal that activates the writing in the Register Bank
[SD 0016] Register bank system state diagram

[image: image36.png]Initial

No request

request

GetData

oy

address

Figure 34: Register bank system state diagram
In the first state, the FSM waits for a request. When it comes, it goes to the next state to receive the operation address and a read or write signal. If it is a write operation, the bus is read and the register corresponding to the address received is updated. If it is a read operation, the register is read and this value is sent to bus.
[PROT 007] Sample rate generator SPI master

[image: image37.jpg]<<SocProtocol>>
SRG_SPIMaster

Figure 35: Sample rate generator SPI master protocol
· activateSRG: Signal responsible for activate the Sample Rate Generator to receive clock and frame.

· ready: Signal that warns the presence of the generated clock and frame by the sample rate generator, and they are ready for use.

[SD 0017] Sample rate generator SPI master state diagram

[image: image38.png]Waiting actwate
TR

Activare SRC

Ready

:Wamnq:(m(k and Frame Ceneration

Figure 36: Sample rate generator SPI master state diagram
This state machine is identical to the Receive Sample Rate Generator state machine, described in the SD0014 section.
[PROT 008] Sample rate generator SPI slave

[image: image39.jpg]<<SocProtocol>>
SRG_SPIStave

FactivatesRG
ready

Figure 37: Sample rate generator SPI slave protocol
· activateSRG: Signal responsible for activate the Sample Rate Generator to receive clock and frame.

· ready: Signal that warns the presence of the generated clock and frame by the sample rate generator, and they are ready for use.

[SD 0018] Sample rate generator SPI slave state diagram

[image: image40.png]Waiting actwate
TR

Aciivare SC

Ready

:amnq:(\uck ndFrame Xvnj

Figure 38: Sample rate generator SPI slave state diagram
This state machine is identical to the Receive Sample Rate Generator state machine, described in the SD0014 section.

[PROT 009] Transmit Interrupt System

[image: image41.jpg]<<SocProtocol>>
Transmit_interrupt_System

BT
IxevT

Figure 39: Transmit Interrupt System protocol
· XINT: Signal that warns the CPU that an interruption happened in a transmission.
· XEVT: Signal that warns the DMA that an event happened in a transmission.
[SD 0019] Transmit Interrupt System state diagram

[image: image42.png]Initial

interrupt

Figure 40: Transmit Interrupt System state diagram
Similarly to the Receive Interrupt System state machine, the first state waits the interrupt sign and interrupts the System (CPU or DMA), sending a RINT or REVT signal. The main difference is that in the next state, the data will be received from the System. When the data transfer is finished, the FSM returns to the first state.
[PROT 0010] Transmit sample rate generator

[image: image43.jpg]<<SocProtocol>>
Transmit_SRG

CactivatesRG
-ready

Figure 41: Transmit sample rate generator protocol
· activateSRG: Signal responsible for activate the Sample Rate Generator to receive clock and frame.

· ready: Signal that warns the presence of the generated clock and frame by the sample rate generator, and they are ready for use.
[SD 0020] Transmit sample rate generator state diagram

[image: image44.png]Waiting actwate
TR

Activare SRC

Ready

W:amnquansmwssmn

Figure 42: Transmit sample rate generator state diagram
This state machine is identical to the Receive Sample Rate Generator state machine, described in the SD0014 section.

[PROT 0011] Transmit multichannel transmit

[image: image45.jpg]<<SocProtocol>>
TransmitMultichannel_Transmit

FactivateMuitichannel
ltransmissionstart
[-partitiontiumber
[-multichannelMode.
-RCER

|-xcER

[+putPartition(partitionumben)
[+puthode(multichannelldode)
[+pUtRCERRCER)
[+pUDKCERKCER)

Figure 43: Transmit multichannel transmit protocol
· activateMultichannel: Signal responsible for activate the multichannel

· transmissionStart: Signal for warn the the transmit multichannel to reconfigure the registers

· partitionNumber: Signal that represents the number of partitions involved in the receive multichannel

· multichannelMode: Vector that represents one of the three possible modes of the transmit multichannel

· RCER: Vector that is the copy of the Receive channel enable register, used to disable or enable the corresponding received channel
· XCER: Vector that is the copy of the transmit channel enable register, used to disable or enable the corresponding transmitted channel
[SD 0021] Transmit multichannel transmit state diagram

[image: image46.png]Initial

WartingA ctivation

Activate

Waiting Configuration

putPartition

PURCER

puthiods

PUDKCER

TransmssTonStar

Waiting Transmission

Figure 44: Transmit multichannel transmit state diagram
The first state waits the multichannel activation. After that, the multichannel registers are analyzed and the multichannel mode, the number of partitions and the enabled/unmasked channels are sent. The next state waits for a transmissionStart signal to return to the previous state and reanalyze the multichannel configurations.
3. References

[1] McBSP Use Case Document: http://www.brazilip.org.br/fenix/projetos/ufpe-mcbsp/docs/brazilip_fenix_mcbsp_use_case_document.doc
[2] McBSP Glossary Document: http://www.brazilip.org.br/fenix/projetos/ufpe-mcbsp/docs/brazilip_fenix_mcbsp_glossary_document.doc
[3] TMS320C6000 DSP Multichannel Buffered Serial Port Reference Guide. December, 2006. Texas Instruments. Literature Number: SPRU580G.
[4] TMS320C642x DSP Multichannel Buffered Serial Port Interface User’s Guide. September, 2007. Texas Instruments. Literature Number: SPRUEN2B.
[5] Ipprocess Guideline for Analysis and Architecture: http://www.lincs.org.br/ipprocess/?q=filemanager/active&fid=284

PAGE
	Fenix Project - McBSP
	Brazilip_fenix_mcbsp_design_document
	Page 8/28

