PAGE
	[image: image1.png]BRAZIL IP

[image: image2.wmf]
	[image: image3.wmf]

[image: image4.wmf]

Guidelines

Implementation

Fênix McBSP

Version : 1.1
Revision History

	Date
	Version
	Description
	Author

	<01/19/09>
	1.0
	Inclusion of all topics.
	lgr2

	<01/20/09>
	1.1
	Document corrections.
	lgr2

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

51.
Introduction

51.1
Scope

51.2
Document Structure

52.
Files

52.1
Naming

52.2
Documentation

62.3
Declaration

63.
Variables, ports and signals of classes, instances and constants

63.1
Naming

73.2
Documentation

73.3
Declaration

74.
Methods

74.1
Naming

74.2
Documentation

85.
Local Variables, ports, signals and parameters

85.1
Naming

85.2
Documentation

85.3
Declaration

96.
Commands

96.1
Return

96.2
while, for, repeat

96.3
if-the-else

106.4
case

106.5
Block Documentation

117.
Spacing and indentation

117.1
Line width

117.2
Line brake

127.3
Empty lines

127.4
Empty spaces

138.
Constructor

138.1
Naming

138.2
Documentation

148.3
Declaration

149.
References

1. Introduction

The purpose of the Implementation Guidelines is to gather the main information necessary to program, using a specific programming language, that have been designed previously.

This document has as objective to define a codification standard that, when used, guarantees a better understanding for any person who knows and follows the same.

1.1 Scope

This document refers to the Fenix McBSP Project and defines the codification standards that must be followed during the project implementation.

1.2 Document Structure

This section describes this document structure

· Section 1 – Introduction: Purpose and organization of this document.

· Section 2 – Files: Standards for files implementation

· Section 3 – Variables, ports and signals of classes: Standards for class variables, ports and signals implementation

· Section 4 – Methods: Standards for methods implementation

· Section 5 – local variables, ports and signals: Standards for Local Variables, ports, signals implementation

· Section 6 – Commands: Standards for commands implementation

· Section 7 – Spacing and indentation: Standards for spacing and indentation

· Section 8 – Constructor: Standards for constructors implementation

· Section 9 – References: Bibliografy mentioned in this document.

2. Files

2.1 Naming

The file must have the same name of the module it implements.

2.2 Documentation

At the beginning of each file, the following header must be present.

/***

 Universidade Federal de Pernambuco - UFPE

 Centro de Informática - CIn

 Adviser: Edna Natividade da Silva Barros

 Project: Fênix McBSP
 Date: [date_of_the_beginning_of_the_module]

 ***/

/***

 [file_name].extension – A description of the module

 Original Authors: authors affiliation e-mail

 ***/

/***

 MODIFICATION LOG - name, affiliation, date and

 description of the changes must be registered here.

 Name, Affiliation, Date:

 Description of Modification:

 ***/

2.3 Declaration

After the comments of the module, must be declared define and include clauses as in the example below:

`define [module_name]

`include “[wanted_module.extension]”
Only one module must be declared in each file.

3. Variables, ports and signals of classes, instances and constants

3.1 Naming

The classes and instances variable names follow the requirements below:

· No use of capital letters and the words are separated by underscores.

· The names are not shortened, except in the cases that its abbreviation is more suggestive than the full name.

· Do not mix words of different languages.

· Do not use any special character or any character that is specific of a language.

· The constants names (define) are composed by non abbreviated words, separated by underscores and with all characters in upper case.

· Every variable name starts with a letter.

· Some variables have suffix, used to make easier the identification of certain types of variables. The suffixes are:

i. *_clk – Clock Signal

ii. *_next – Signal before register it.
iii. *_n – Active signal in low state.

iv. *_xi – Circuit input.

v. *_xo – Circuit output.

See below names of constants and variables of classes and instances:

CYCLE_NUMBER //constant

vector_address //class variable
bit_clk //clock variable
3.2 Documentation

The documentation of a variable, port, signal or Constant is done in line except in cases when it doesn’t fit in a code line. Is part of documentation the description of the invariant that is related to the variable as, for example, the 1 to 31 interval to a integer variable that indicates the day of month.

3.3 Declaration

Only one variable, signal, port or constant can be declared in each line.

4. Methods

4.1 Naming

The method names follow the requirements below:
· No use of capital letters and the words are separated by underscores.

· The names are not shortened.

· No one special character is used.

Despite the application of this standard resulting in bigger names, needing extra tipping, the effect of its conformity is a code easier to understand; therefore the intention of the method is already clarified in its name.

See some method naming examples below:

reset_system(void)

swap(void)

set_register(void)

4.2 Documentation

Every method has a documentation header that provides enough information to its understanding and corrects utilization. Initially, is registered what the method does and why it’s done. After this, all the parameters needed to its calling, the return clause, if exists, and the date of creation are related.

See a method documentation example below:

/**

 * This function checks the active bank and return the corresponding register

 *

 * @param psw The actual program status work

 *

 * @return The register address

 *

 * @since 05/25/2003

 */

The in line comments can be used in some parts of the code providing some clarification, bugs advice or corrections.

5. Local Variables, ports, signals and parameters

5.1 Naming

The variables, ports and local signals and parameters naming is the same used for Variables, ports and signals of classes, instances and constants (See section 3.1), but, for convenience, this naming have some exceptions for these cases below:

· Counters – alphabet letters are used to name counters. The letter i is the first to be used; if another counter is necessary, a letter j is declared and so on until the last letter in the alphabet.

5.2 Documentation

The local variables, ports and signals naming is the same used for Variables, ports and signals of classes and instances (See section 3.2).

5.3 Declaration

When declaring variables, ports and signals in a class, input ports must be declared first and, after this, the output ports, the signals and finally the variables, separated by an empty line.

A good programming tip, which should be followed by the programmer, is the declaration of auxiliary variables to the ports. The programmer would never work directly with the port values. In the beginning of the method, the programmer must attribute the port value to a variable of the same type and use it. This action guarantees the data consistence into a method.

6. Commands

6.1 Return

A return sentence with the return value does not use parentheses, except when it helps the sentence understanding.

6.2 while, for, repeat
See below the formatting styles for these commands:

while (condition) begin
 commands;

end
for (initialization; condition; actualization) begin
 commands;

end
repeat(value) begin

commands;
end

6.3 if-the-else

The if-then-else command is used with the “{ }” to avoid ambiguity in the command scope.

See below the valid formatting styles for this command:

if (condition) begin
 commands;

end
if (condition) begin
 commands;

end

else begin
 commands;

end
if (condition1) begin
 commands;

end
else if (condition2) begin
 commands;

end
 else begin
 commands;

end
6.4 case
See below the valid formatting styles for this command:

case (variable) {

123:

 commands;

 break;

456:

 commands;

 break;

789:

 commands;

 break;

default:

 commands;

 break;

}

//NÃO ACHEI ESSA PARADA DO BREAK

Comments:
An if-else and case statement requires all the cases to covered for combination logic.

For-loop as same as C, but no ++ or – operator.
6.5 Block Documentation

The comments in the block declarations are in line and after the block closing character “}”.

Below are presented some examples of block comments:

if (condition) begin
...

end

// end of if (condition)

case (variable) {

...

} // end of case (variable)

for (exp1; exp2; exp3) begin
...

end
// end of for(exp1; exp2; exp3)

7. Spacing and indentation

Four (4) empty spaces are used as indentation unit.

7.1 Line width

The code lines have less than 80 characters to facilitate the printing and visualization of the code.

7.2 Line brake

When an expression does not fit in a line, the following rules are used:

· The line brakes after a comma – “,”

· The line brakes before an operator.

· If possible, break the line in a higher-level expression.

· The new line is aligned with the beginning of the same level expression in the last line.

See an example of a method calling where more than one line is necessary:

 set_registers(register1, register2, register3,

 register4, register5, register6,

 register7, register8);

See some examples of arithmetic expressions where more than one line is necessary:

longName1 = longName2 * (longName3 + longName4 - longName5)

 + 4 * longname6; // PREFER!

longName1 = longName2 * (longName3 + longName4

 - longName5) + 4 * longname6; // AVOID!

The line break in the if statement, into the methods, uses an eight (8) spaces indentation, as shown below:

//Do not use this indentation

if ((condition1 && condition2)

 || (condition3 && condition4)

 || !(condition5 && condition6)) {

 commands;

}

// Use this one

if ((condition1 && condition2)

 || (condition3 && condition4)

 || !(condition5 && condition6)) begin
 commands;

end
// Or this one

if ((condition1 && condition2) || (condition3 && condition4)

 || !(condition5 && condition6)) begin

 commands;

end
7.3 Empty lines

There are two (2) empty lines in the following situation:

· Between the class declaration and the variables, ports and instance signals block.

There is one (1) empty line in the following situations:

· Between the method declarations.
· Between the local variable, ports and signals declarations and the beginning of the method.

· Before a comment.

· Before a variable, port or signal declaration.

· Between logical blocks inside the body of a method.

· Between the last method declaration in a class and the end of the class (“}”).

7.4 Empty spaces
A reserved word followed by parentheses is separated from it by an empty space:

 while (condition) begin
 commands;

end
There is an empty space after each comma in a parameters list or in the initialization of array elements.

int i, j, l;
All the binary operators are separated of its operands by an empty space, as the example below:

a += c + d;

a = (a + b) / (d * c);

The expression in a for command are separated by empty spaces. Example:

for (exp1; exp2; exp3) begin
 commands;

end
8. Constructor

8.1 Naming

The standard SystemC constructor must allways be used: SC_CTOR(moduleName).

8.2 Documentation

The programmer must inform witch processes will be called in the constructor, as well as its sensibility list.

See below the declaration of the constructors of the readCard and process methods:

 /**

 * Constructor for the AluInt module

 *

 * SC_METHOD process sensitive << PdataA << PdataB << Pselection

 *

 * SC_THREAD readCard << clk.pos()

 *

 */

 SC_CTOR(AluInt) {

 SC_METHOD(process);

 sensitive << PdataA;

 sensitive << PdataB;

 sensitive << Pselection;

 SC_CTHREAD(readCard, clk.pos());

 }

Note that in the SC_METHOD(process) is one port per line in the process sensibility list. In the case of SC_CTHREAD the method sensibility must be declared into parentheses and not using the << operator.

8.3 Declaration

Only one constructor must be declared in each method.

9. References

[1] SystemC brazilip_fenix_usb_guidelines_implementation document.
[2] WWW....

PAGE
	<Project Name>
	Documento1
	Page 10/13

