
Detecting, Understanding and Resolving Build and
Test Conflicts

Léuson Silva
Informatics Center

Federal University of Pernambuco, Brazil
lmps2@cin.ufpe.br

Abstract—Collaborative software development allows develop-
ers to contribute to the same project simultaneously performing
different activities. Although this might increase development
productivity, it also brings conflicts among developers contribu-
tions. Different kinds of conflicts can arise, but previous studies
have often focused on merge conflicts. So we aim to further
investigate build and test conflicts occurrence, that are conflicts
revealed by failures when building and testing integrated code,
respectively. For that, we intend to study the causes of build and
test conflicts, their adopted resolution patterns, and the factors
that are associated with the conflict occurrence. Based on these
results, we plan to develop a tool for helping developers when
resolving build and test conflicts. Our initial results, analyzing
Java projects, show that most build conflicts are caused by
missing declarations removed or renamed by one developer but
referenced by the changes of another developer. We also verified
these conflicts are often resolved by removing the dangling
reference. Based on such finding, we developed a prototype that
recommends fixes for these build conflicts.

Index Terms—Collaborative development, build fails, build
conflicts, test conflicts, conflicting contributions

I. INTRODUCTION

When collaborating, developers create and change software
artifacts often without full awareness of changes being made
by other team members. While such independence is essential
for non-small teams, and might increase development pro-
ductivity, it might also result in conflicts when integrating
developers changes. In fact, high degrees of parallel changes
and integration conflicts have been observed in a number of
industrial and open-source projects that use different kinds of
version control systems [1]–[3]. This has been observed even
when using advanced merge tools [4]–[6] that avoid common
spurious conflicts identified by the state of the practice tools.

Resolving such integration conflicts might be time-
consuming and is an error-prone activity [7], negatively im-
pacting development productivity. So, to avoid dealing with
them, developers have been adopting risky practices such
as rushing to finish changes first [7], and partial check-ins.
Similarly, partially motivated by the need to reduce conflicts,
or at least avoid large conflicts, development teams have been
adopting techniques such as trunk-based development and
feature toggles, which are important to support actual Con-
tinuous Integration, but might lead to extra code complexity.
Although evidence in the literature is mostly limited to merge
conflicts [1], [6] and other kinds of build errors [8], [9], a
couple of studies investigate the frequency of build and test

conflicts [2], [3], that is, conflicts revealed by failures when
building and testing integrated code. Better understanding
these aspects might help us to derive guidelines for avoiding
conflicts, improve awareness tools to better assess conflict risk,
and develop new tools for helping developers when resolving
conflicts.

Thus, this thesis aims to investigate how build and test
conflicts occur and their impact during software development.
The remainder of this paper is organized as follows. Section II
describes our research questions and the associated research
approach proposed to address this thesis problem. Section III
states our initial answers, expected contributions, and future
work.

II. PROBLEM STATEMENT AND RESEARCH APPROACH

To guide our work while trying to address this thesis
problem, we define three research questions that allow us to
study the characteristics of conflicts, and the development of
tools responsible for helping developers. Next, we present our
research questions (RQs):

RQ1. What are the frequencies, causes and resolution
patterns associated with builds and test conflicts?
Previous studies [2], [7] investigate build and test conflicts
with focus on identifying superficial characteristics of con-
flicts, like frequency and limited structure of changes. To have
a better and general understanding of the characteristics of
conflicts, this RQ investigates the structure of changes per-
formed during different contributions (merge scenarios), that
are responsible for the occurrence of conflicts after integration.
Additionally, for each identified conflict, its resolution pattern
is also investigated.

RQ2. What are the human-technical factors that are asso-
ciated with the occurrence of build and test conflicts?
With the findings of the previous RQ, we aim to investigate the
factors associated with build and test conflicts. Previous studies
investigate factors that are associated with the occurrence
of conflicts during software development, but none of them
focuses on build and test conflicts [10]. Once these factors
are identified, they could be applied into predictive models
contributing to the reduction of conflict occurrence.

RQ3. How assistive tools could help developers when
resolving build and test conflicts?
The third research question investigates new alternatives for
helping the resolution of build and test conflicts. For that, we



intend to develop an assistive tool. As a result, we expect that
the time spent to fix the conflicts decrease contributing to the
developer productivity. Additionally, the quality of the released
product would be positively impacted once resolving conflicts
represents an error-prone activity.

To address each RQ, we adopt different research methods.
For RQ1, we intend to analyze Java project repositories aiming
to verify the occurrence of conflicts. We have initial answers
that are presented in Section III. Based on the answers of RQ1,
for RQ2 we intend to analyze the found conflicts identifying
factors that can be associated with the occurrence of these
conflicts. We also plan to analyze technology web forums and
interview software engineers exploring different dimensions
of software development. We are interested on aspects related
to the development process, task assignments, and team and
projects characteristics. We also plan to explore task duration
aspects, like size and number of commits, time spent and
number of developers involved in the whole task.

Finally, to address RQ3, we intend to develop a tool aiming
to help developers when resolving conflicts. This tool may
recommend a possible fix for the conflict, and the developer
may evaluate whether he/she accepts the fix. For each conflict
type, a specific recommendation will be defined by the tool.
These recommendations will be extracted from the catalogue
of resolution patterns identified during the RQ1.

III. RESULTS

We have initial answers for the first research question (RQ1).
For that, an empirical study evaluated 57065 merge scenarios
from a sample of 504 open source Java projects hosted on
GitHub and are active on Travis CI. As a result, we find
consistent cases of build conflicts, 647 conflicts spread on 128
merge scenarios, deriving a catalogue of causes. Additionally,
we also identified a catalogue of common conflict resolution
patterns.

The frequency of build conflicts shows that most conflicts
are caused by declarations removed or renamed by one de-
veloper but referenced by the changes of another developer.
Moreover, these conflicts are often resolved by removing
the dangling reference. Based on this finding, we developed
a prototype that recommends to developers fixes for build
conflicts caused by Unavailable Symbol. Considering a build
breakage caused by a dangling reference for a variable, the tool
identifies the new variable name. Thus, it asks the developer if
he/she wants to accept the recommendation. Once the answer
is positive, the tool applies the required changes and creates a
new commit for the implemented fix.

Although we identified a consistent catalogue of build
conflicts, the results for test conflicts are superficial and limited
yet. For the next steps, we intend to select more projects
analyzing private and developer workspace repositories from
local companies. Our claim is that build and test conflicts
happen more often than we verified, but they do not come to
remote repositories as developers treat them locally, in their
particular workspaces.

A. Contributions and Future Work

This thesis may bring insights about software maintenance
and evolution, but from the perspective of contribution inte-
gration. As a result, it is expected to be provided:

• datasets and catalogues of build and test conflicts and
their resolution patterns (RQ1) that could be explored and
support further research;

• a set of technical-human factors associated with conflict
occurrence (RQ2), which might be applied into predictive
models;

• a tool for helping developers to resolve these con-
flicts (RQ3) that could be integrated into the developer
workspace.

I has just started my second PhD year, and before starting to
write my PhD thesis, I plan to execute the proposed research
questions as they are presented here. This year I will continue
to work on RQ1 focusing on test conflicts. Next year, I plan to
work nine months in RQ2 starting with the interviews, and then
additional steps described on Section II. After that, I will start
the development of the proposed tool (RQ3) and its evaluation.
The last six months will be saved to work on the PhD thesis,
which may be defended by February 2022.

IV. ACKNOWLEDGMENT

I thank my adviser Paulo Borba for his continuous sup-
port and patience. This work is partially supported by INES
(National Software Engineering Institute), and the Brazil-
ian research funding agencies CNPq (grant 309741/2013-0),
FACEPE (IBPG-0692-1.03/17 and APQ/0388-1.03/14) and
CAPES.

REFERENCES

[1] T. Zimmermann, “Mining workspace updates in CVS,” in International
Workshop on Mining Software Repositories. IEEE, 2007, pp. 11–11.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in European software engineering conference
and Foundations of Software Engineering. ACM, 2011, pp. 168–178.

[3] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization
through optimized task scheduling,” in International Conference on
Software Engineering. IEEE, 2013, pp. 732–741.

[4] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with auto-
tuning: balancing precision and performance,” in International Confer-
ence on Automated Software Engineering. ACM, 2012, pp. 120–129.

[5] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving
semistructured merge,” ACM on Programming Languages, vol. 1, no.
OOPSLA, p. 59, 2017.

[6] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured
merge conflict characteristics in open-source java projects,” Empirical
Software Engineering, pp. 1–35, 2017.

[7] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantir: Early
detection of development conflicts arising from parallel code changes,”
IEEE Transactions on Software Engineering, pp. 889–908, 2012.

[8] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: a case study (at Google),” in International
Conference on Software Engineering. ACM, 2014, pp. 724–734.

[9] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows of java-
based open-source software,” in International Conference on Mining
Software Repositories. IEEE Press, 2017, pp. 345–355.

[10] M. Cataldo and J. D. Herbsleb, “Coordination breakdowns and their
impact on development productivity and software failures,” IEEE Trans-
actions on Software Engineering, vol. 39, no. 3, pp. 343–360, 2013.


	Introduction
	Problem Statement and Research Approach
	Results
	Contributions and Future Work

	Acknowledgment
	References

