
Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE

LÉUSON MÁRIO PEDRO DA SILVA

BUILD AND TEST CONFLICTS IN THE WILD

2018

www.cin.ufpe.br/~posgraduacao

Léuson Mário Pedro da Silva

BUILD AND TEST CONFLICTS IN THE WILD

A M.Sc. Dissertation presented to the Center for Informatics

of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Paulo Henrique Monteiro Borba

RECIFE
2018

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S586b Silva, Léuson Mário Pedro da

Build and test conflicts in the wild / Léuson Mário Pedro da Silva. – 2018.
 111 f.: il., fig., tab.

 Orientador: Paulo Henrique Monteiro Borba.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2018.
 Inclui referências e apêndices.

 1. Engenharia de software. 2. Conflitos de teste. I. Borba, Paulo Henrique
Monteiro (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2018-059

Léuson Mário Pedro da Silva

Build and Test Conflicts in the Wild

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação da
Universidade Federal de Pernambuco, como
requisito parcial para a obtenção do título de
Mestre em Ciência da Computação.

Aprovado em: 19/02/2018

BANCA EXAMINADORA

 __
Prof. Dr. Marcelo Bezerra d'Amorim

Centro de Informática / UFPE

__
Prof. Maurício Finavaro Aniche

Department of Software Technology

Prof. Dr. Paulo Henrique Monteiro Borba

Centro de Informática
(Orientador)

I dedicate this thesis to all my family, friends and professors

who gave me the necessary support to get here.

ACKNOWLEDGEMENTS

Agradeço a todos que contribuiram diretamente ou indiretamente para a realização deste
trabalho.

Primeiramente ao meu orientador, professor Paulo Borba, pela sua orientação e dedicação
para a realização deste trabalho. Mais do que simplemente uma orientação, o senhor tem me
mostrado a buscar a excelência que um pesquisador necessita ter.

Gostaria de agradecer aos membros do SPG pelos conselhos e amizade. Agradeço
também aos demais integrantes do LabES pelos momentos de descontração. Agradeço ao
CIn/UFPE e aos seus funcionários pela estrutura e recursos fornecidos, assim como ao INES —
Instituto Nacional de Ciência e Tecnologia para Engenharia de Software.

Agradeço também aos professores Marcelo d’Amorim e Maurício Aniche por terem
aceito nosso convite para avaliar esta dissertação.

A meus pais, Aparecida e Lourival, e irmãos, Leidemara, Luzivânia e Lourismar, por
toda a compreensão nos momentos em que estive ausente, e por todo o suporte e apoio que venho
recebendo ao longo de toda a minha vida acadêmica.

Gostaria de agradecer aos meus amigos que perto ou longe sempre estiveram me moti-
vando. Em especial minha colega de orientação Klissiomara, e Neto, pelas conversas e momentos
de descontração. Aos meus amigos João Carlos e Beatriz pela amizade e companheirismo que
só se fortalece ao longo dos anos.

Além desses, também agradeço à Capes por financiar a minha pesquisa.
Por último, não menos importante, agradeço à Deus, por tudo que ele me concedeu e por

todos os sonhos que me permite sonhar.

Daher ist die Aufgabe nicht sowohl zu sehen was noch keiner gesehen hat,

als bei Dem was Jeder sieht, zu denken was noch Keiner gedacht hat.

—ARTHUR SCHOPENHAUER

ABSTRACT

Collaborative software development allows developers to simultaneously contribute to the same
project performing different activities. Although this might increase development productivity,
it also brings conflicts among developers contributions. Conflicts may arise in different devel-
opment phases: during merging, when different contributions are integrated (merge conflicts);
after integration, when building the integration results fail (build conflicts); or when testing,
unexpected software behavior happens (test conflicts). To understand how different contributions
from merge scenarios influence build and test conflicts occurrence, in this thesis we investigate
the frequency, causes and adopted resolution patterns for these conflicts. We perform an em-
pirical study evaluating merge scenarios from Java projects that use Travis CI for continuous
integration and Maven as build manager. To identify conflicts, we access information from git
repositories of the projects and their associated build process. Filters were applied to select
merge commits that present unsuccessful build processes (caused by problems during the build
creation or test execution), while their parent commits have successful build process. Besides
parsing build logs for identifying the causes behind the broken builds, we also parse the source
code to establish interference between contributions. Different from previous studies, we also
evaluate scenarios that caused merge conflicts fixed by integrators, leading us to classify our
results based on contributor and integrator changes to fix the conflicts. Although the number
of build conflicts caused by contributor changes is high (66,4%), we have evidence that build
conflicts can also be caused by changes performed after the integration by integrators (33,6%).
The most recurrent causes of build conflicts concentrate on static semantic problems (80%),
especially Unavailable Symbol (52,8% of all build conflicts that represents the attempt to use
a symbol no longer available in the project). Test conflicts are caused by failed test cases, that
are not restricted to old tests but also new or updated during the merge scenario. Additional
analysis performed after tests execution can also cause test conflicts. Related to the adopted
resolution patterns, build and test conflicts were fixed without returning to an old project version.
Typically, parent commits authors are also responsible for fixing build and test conflicts. Our
findings bring the evidence of build and test conflicts showing they occur independent of merge
conflict occurrence during integration. For build conflicts, we define a catalog of causes that can
be applied to assistive tools on software development aiming to avoid or treat such problems.
For test conflicts, our scripts can be used to develop an assistive tool to developers when trying
to understand the test case failure since we filter the parent’s contributions informing only those
parts involved in the test failure.

Keywords: Collaborative Development. Build failures. Build conflicts. Test conflicts. Conflict-
ing contributions.

RESUMO

Desenvolvimento colaborativo de software permite que desenvolvedores contribuam simul-
taneamente para um mesmo projeto realizando diferentes atividades. Embora esta abordagem
possa aumentar a produtividade de desenvolvimento, ela também traz consigo conflitos entre
contribuições de desenvolvedores. Conflitos podem surgir em diferentes momentos. Durante
cenários de merge, quando contribuições diferentes são integradas (conflitos de merge), como
também após a integração, durante a tentativa de realizar o processo de build, quando este
processo falha devido o resultado da integração falha (conflitos de build), ou mudança no com-
portamento do software (conflitos de teste). Para entender como contribuições diferentes de
cenários de merge influenciam em conflitos de build e teste, nesta dissertação nós investigamos
a frequência, causas e padrões de resolução adotados para resolver estes conflitos. Para tanto,
nós realizamos um estudo empírico avaliando cenários de merge de projetos Java usando Travis
(para integração contínua) e Maven (como gerenciador de build). Para identificar conflitos, nós
acessamos as informações de repositórios git como também seus processos de build associados.
Sucessivos filtros foram aplicados para selecionar commits de merge que apresentavam processos
de build mal-sucedidos (causadas por problemas durante a criação da build ou execução dos
testes), enquanto seus commits pais apresentavam processos bem-sucedidos. Além de analisar os
logs das builds para extrair as causas das quebras, nós também avaliamos o código-fonte para
identificar as interferências entre contribuições. Diferente de estudos anteriores, nós também
avaliamos a ocorrência de conflitos em cenários oriundos de conflitos de merge levando-nos a
classificar nossos resultados baseados nas mudanças dos contribuidores e integradores. Embora
o número de conflitos de build causados por mudanças dos contribuidores seja alto (66,4%),
nós temos evidência que conflitos de build também podem ser causados por mudanças feitas
após a integração por integradores (33,6%). As causas mais recorrentes de conflitos de build
concentram-se em problemas estáticos semânticos, especialmente Símbolo Indisponível (52,8%
de todos os conflitos de build representando a tentativa de usar um símbolo indisponível no
projeto). Conflitos de teste são causados por casos de teste falhos, que não são restritos a casos
de teste antigos como também novos ou atualizados durante o cenário de merge. Análises
adicionais realizadas após a execução de testes também causar conflitos de teste. Em relação aos
padrões de resolução de conflitos, a solução mais utilizada consiste em adaptar as causas dos
conflitos ao novo estado do projeto, ao invés de retornar para um estado antigo. Tipicamente,
desenvolvedores autores pelos commits pais, também são responsáveis por resolver os conflitos.
Nossas descobertas trazem a evidência de conflitos de build e teste mostrando que estes ocorrem
indenpendente de conflitos de merge durante a integração. Em relação aos conflitos de build,
nós identificamos um catálogo de causas que pode ser aplicado em ferramentas de suporte ao
desenvolvimento de software evitando ou tratando estes problemas. Para conflitos de teste,
nossos scripts podem apoiar o trabalho de desenvolvedores durante a tentativa de entender a falha
de um caso de teste, uma vez que nós filtramos as contribuições dos commits pais informando

apenas aquelas envolvidas na falha do teste.

Palavras-chave: Desenvolvimento colaborativo. Falhas de build. Conflitos de build. Conflitos
de teste. Contribuições conflitantes.

LIST OF FIGURES

2.1 Centralised version control paradigm . 20
2.2 Decentralised version control paradigm . 20
2.3 Commits history of a project. Each commit presents an arrows indicating its parent(s) 22
2.4 Merge scenario without merge conflict . 22
2.5 Merge scenario with merge conflict . 23
2.6 Merge scenario with build conflict . 24
2.7 Compilation problem on build process after merge scenario 25
2.8 Merge scenario with dynamic semantic conflict 26
2.9 Failed test case after merge scenario . 26
2.10 Build and test conflicts in practice . 27
2.11 Log of errored build due to compilation problem 27
2.12 Merge scenario with false positive merge conflict 29
2.13 Integrator changes introducing inconsistencies on source code 29
2.14 Merge scenario without merge conflicts reported by improved merge tools 30
2.15 Build process life cycle on Travis CI [1] . 33

3.1 Study design . 37
3.2 Merge scenarios filters adopted during the analysis 39
3.3 Different build status for the same commit. X indicates an errored build, while !

indicates a failed one. 40
3.4 Checking contributions performed on merge scenarios parents 43
3.5 Build log of errored process . 46
3.6 Original version of GumTree diff for conflicting contributions 46
3.7 Build log of errored process due to contributor changes 47
3.8 Original version of GumTree diff for integrator changes 47
3.9 Build log of errored process due to missing dependency 48
3.10 Failed test case on failed build process . 49
3.11 Test conflicts analysis . 51
3.12 Build log of failed process due to unachieved metric 52
3.13 Commits information to identify commit fixes . 53
3.14 Build log of errored process due to unavailable symbol 54
3.15 GumTree diff for commit fix . 54

4.1 Improved messages for different unavailable symbol types 71
4.2 Prototype of assistive tool for test failures . 72

A.1 Build log of broken build due to malformed program 90

A.2 Build log of broken build due to unimplemented method 91
A.3 Build log of broken build due to incompatible method signature 92
A.4 Build log of broken build due to duplicated declaration 93
A.5 Build log of broken build due to incompatible types 93
A.6 Build log of broken build due to unfollowed project guideline 94

C.1 Travis.yml file example for running failed test case 98

LIST OF TABLES

3.1 Build error messages taxonomy and how they related to conflicts or the lack of conflicts? 42
3.2 Unavailable Symbol information from Travis Log 45
3.3 Covered and Changed Classes involved in Test Conflict 51

4.1 Broken builds caused by build and test conflicts. 57
4.2 Causes of build and test conflicts . 59
4.3 Distribution of build conflict causes by category and motivation 60
4.4 Distribution of test conflict causes by category . 63
4.5 Resolution patterns for build and test conflicts . 65

D.1 Sample . 100

E.1 Build conflicts from errored builds . 108
E.2 Build conflicts from failed builds . 110
E.3 Test conflicts from failed builds . 111

1 INTRODUCTION 15
2 BACKGROUND 19
2.1 Version Control Systems . 19
2.1.1 Evolution and Integration in VCS . 21
2.1.2 Conflict Types . 21
2.1.2.1 Merge Conflicts . 23
2.1.2.2 Build Conflicts . 24
2.1.2.3 Test Conflicts . 25
2.1.2.4 Build and Test Conflicts in Practice . 25
2.1.2.5 Build and Test Conflicts by Integrator Changes 28
2.2 Continuous Integration (CI) . 28
2.2.1 CI Life Cycle . 30
2.2.1.1 Build and Compilation . 30
2.2.1.2 Automated Static Analysis . 31
2.2.1.3 Test Execution . 32
2.2.2 Travis CI . 32
3 IDENTIFYING CONFLICTING CONTRIBUTIONS IN MERGE SCENAR-

IOS 35
3.1 Problem Statement . 36
3.2 Study Design . 36
3.2.1 Mining Repositories . 37
3.2.1.1 Sample . 37
3.2.1.2 Filtering Sample Projects . 38
3.3 Conflicts Identification . 40
3.4 Classifying Conflicts . 44
3.4.1 Classifying Conflicting Contributions on Build Conflicts 44
3.4.2 Classifying Conflicting Contributions on Test Conflicts 48
3.5 Resolution Patterns Identification . 52
3.5.1 Resolution Patterns for Build Conflicts . 53
3.5.2 Resolution Patterns for Test Conflicts . 54
4 RESULTS 56
4.1 Research Questions . 56
4.1.1 RQ1: How frequently do build and test conflicts occur? 56
4.1.2 RQ2: What are the structure of the changes that cause build and test conflicts? . 58
4.1.3 RQ3: What are the resolution patterns adopted on build and test conflicts fixes? . 64
4.2 Discussion . 66
4.2.1 Conflicts are recurrent . 66

CONTENTS

4.2.2 Findings and Implications . 68
4.2.2.1 Awareness Tools . 68
4.2.2.2 Automatic Repair Tools . 69
4.2.2.3 Better Guidelines Support for Developers . 71
4.2.2.4 Better Merge Tools . 72
4.3 Threats to Validity . 73
4.3.1 Construct Validity . 73
4.3.2 Internal Validity . 74
4.3.3 External Validity . 77
5 78
5.1 Contributions . 80
5.2 Related Work 80
5.2.1 Empirical Studies . 80
5.2.2 Build Errors Diagnosis . 82
5.3 Future Work 83

85
89

A APPENDIX A - Build Conflicts Identification 90
B APPENDIX B - Build Conflict Fixes 95
C APPENDIX C - Travis Configuration File Instrumentation 97
D APPENDIX D - Study Sample 99
E APPENDIX E - Build and Test Conflicts 107

CONCLUSION

REFERENCES
6 APPENDIX

.

 .

 .

. .

.

. .

151515

1 INTRODUCTION

During collaborative software development, developers often contribute without being
aware of other team members. Each contribution is performed in private copies of a project
supported by Version Control Systems (VCS). Eventually, these individual contributions (par-
ents, composed by one or more commits) are integrated with each other aiming to keep the
main development line stable and accessible for all involved (merge scenario). Although this
might increase productivity, the integration process may lead to conflicts among developer’s
contributions, requiring time and human intervention to fix them.

Conflicts may arise in different development phases: during merging, when different
contributions are integrated (merge conflicts), as also after a merge scenario [2]. For example,
build conflicts happen when the source code result of a merge scenario cannot be compiled and
built during a build process even though the individual contributions of the merge scenario present
a successful compilation and build process. In the same way, test conflicts occur when after
the integration, some of the test cases associated to the project present failed status. However,
these failed test cases were passed before the merge scenario. These conflicts directly impact
developers’ productivity since understanding and solving them is often a demanding and error-
prone activity [3] [4]. Dealing with build and test conflicts is even worse since developers must
be aware of the interaction of their contributions with the work of other team members. The
difficulty is not restricted to understanding the conflict causes but also how to fix it, especially
for test conflicts since any change can impact the software behavior.

Although most reported evidence about the occurrence of conflicts in software develop-
ment relies on merge conflicts [5] [6] [7] [4], there are studies investigating the frequency and
limited characteristics of build and test conflicts [8] [2]. Despite such evidence, it is important to
better understand frequency and the causes behind these conflicts. Once the causes responsible
for conflicts are identified, the circumstances associated with the causes would also arise allowing
the development of approaches to avoid these conflicts. In the same way, the investigation of
how conflicts are fixed would bring information of adopted resolution patterns. This information
might help to improve assistive tools aiming to treat such problems. In this way, this thesis
focuses on verifying the frequency, causes and resolution patterns adopted for fixes of build and
test conflicts.

With that aim, we perform an empirical study evaluating the occurrence rate of build and
test conflicts in 60991 merge scenarios from 529 Java projects. In the end we identify more than

16

150 conflicts in more than 120 merge scenarios. Different from related work [5] [9], we consider
merge scenarios as the triple formed by one merge commit and its Left and Right parents. For
each merge commit, we verify whether its build presents unsuccessful status, while its parents
have superior ones. For example, for builds that present errored status, we consider failed and
passed as superior status. For builds with failed status, only the passed status is a valid superior
status. In case one of the parents has the same status of the merge commit, we assume the broken
build of the merge commit is carried over from the broken parent. So there is not a conflict
between parent commits, but simply a defect in one of the parent contributions, which ended up
reaching the merge commit.

Previous work perform their studies adopting approaches that could bias the results. For
example, building merge commits locally can introduce bias since any difference in environment
configuration could break the build process leading the authors to a wrong conclusion. To
eliminate these threats, we adopt a new perspective for getting information about build process
from merge scenarios. Instead of (re)build all commits, we consider only projects that use
Continuous Integration (CI) [10] to obtain the needed information from CI logs. This practice is
responsible for automatically building and running tests or other analysis to a project, helping to
ensure the quality of contributions [11] and to increase developers productivity [12] [13] [14]. In
this context, Travis CI (one of the most used CI service [15] [16]) provides such information
(build status and associated logs) through its API.

As build and test conflicts arise from unsuccessful build process (broken builds), we
cross-check source code changes and build process information to ensure whether a merge
commit associated with a broken build corresponds to a build or test conflict. In this way,
we investigate how the merge commit parent contributions conflict with each other (causes),
and, when applicable, the resolution patterns adopted for fixing the conflicts. In summary, we
investigate the research questions motivated and presented bellow.

Some studies investigate build and test conflicts during software development. Brun et
al. [8] present 33% of all analyzed scenarios represents cases of build or test conflicts. Kasi
and Sarma [2] present build and test conflicts range from 2%-15% and 6%-35%, respectively.
Despite such evidence, it is important more substantial characteristics about these conflicts since
the previous studies have threats, which could bias the results. Therefore, our first research
question is:

� (RQ1) - Frequency: How frequently do build and test conflicts occur?

To answer RQ1, we assess merge commit status information from Travis. We do the
same for the merge commit parents. Nevertheless, as the information associated with some of
these commits might not be available in Travis because they were not automatically built, we
force the creation of by forking the original project. Exclusively for test conflicts, we use the
information of the Travis log associated with the failed build to replicate each failed test case

https://travis-ci.org/
https://docs.travis-ci.com/api

17

with a new build on Travis. We do this to ensure the failure occurrence is motivated by the parent
contributions (some test failures are caused by external or environment restrictions).

Despite the evidence about build and test conflicts, there is a lack of information about
the causes responsible for them. Seo et al. [17] present the technical causes responsible for
broken builds. Nevertheless, the results are not specific for build and test conflicts. A deeper
analysis focused on the circumstances conflicts happen could bring the causes, and consequently,
insights on how to deal with them. Hence, our second research question is:

� (RQ2) - Causes: What are the structures of the changes that cause build and test
conflicts?

The second question investigates the causes behind the conflicts. For build conflicts,
based on the error messages reported by Travis log, we perform further analysis on source code
parent contributions classifying and categorizing conflicts causes. For example, if a build has
errored status because of a missing method reference, we verify whether one parent commit
removes the referenced method, while the other adds a new reference for it. Depending on
build error cause, we also do further analysis on changes performed by the integrator during
the merge scenario integration. For example, if a missing referenced method is not removed
by one of the parents, we verify whether the integrator is responsible for the removal. For tests
conflicts, we generate the code coverage for each test execution during its replication on Travis.
We compare this coverage with the parent contributions looking for dependencies among them.
If a dependency is identified, we assume the integration of changes causes the test failure, once
the changes isolated do not impact on unexpected software behavior (test failure).

Dealing with conflicts is a demanding and boring task [18] [4], and the way adopted
to fix conflicts is particular for each integrator. For example, in merge conflicts, integrators
normally tend to keep their contributions instead of accepting others [19]. To know how build
and test conflicts are fixed can bring insights of improvements for assistive tools. In the same
way, knowing who does the fixes can inform how difficult is the process to fix build and test
conflicts. For example, merge conflicts do not require knowledge about the contributions intent
since they involve only text. In the other side, build and test conflicts involve additional effort
once semantic aspects must be taken in account. Thus, our third research question is:

� (RQ3) - Resolution Patterns: What are the resolution patterns adopted to fix build
and test conflicts?

� (RQ3.1) - Fixer: Who does fix build and test conflicts?

Finally, to answer RQ3, we identify the closest commit following the merge responsible
for fixing the conflict. For that fix commit, we check its build status on Travis, when possible, to
ensure it is a true fix. Thus, we could verify the changes patterns adopted on each conflict type
as also metrics related to who fixed them.

18

Besides answering our research questions about the evidence and characteristics of build
and test conflicts, we propose applications that our results can be applied. Additionally, for doing
our experiment, we improved GumTree tool aiming to achieve a better and more informative
syntactic diff. All of our scripts are available in our on-line Appendix [20] to the community
encouraging the replication of this study. The remainder of this study is organized as follows:

� Chapter 2 reviews the main concepts used in this study. It includes Version Control
Systems and Continuous Integration principles;

� Chapter 3 motivates our study and presents in detail the research questions. It
also explains how our study is conducted, its mining step, subjects selection, and
evaluation strategy;

� Chapter 4 presents our results and answers to our research questions. We also present
the discussion and the threats to the validity of our study;

� Chapter 5 details our conclusions and discusses related and future work.

191919

2 BACKGROUND

In this chapter, we present the main concepts used in this study. Initially, in Section 2.1,
the concepts related to Version Control Systems (VCS) are presented focusing on the types of
conflicts, and how they arise during software development (Section 2.1.2). In Section 2.2, we
describe the use and history of Continuous Integration (CI), and how a build process works. The
particularities of Travis CI important to this thesis are detailed in Section 2.2.2.

2.1 Version Control Systems

Collaborative software development is only possible due to the adoption of Software
Configuration Management (SCM), and consequently, the use of VCSs. SCMs are responsible
for all software artifacts that can evolve over time. In this way, SCMs provide development
tools and techniques able to deal with the evolution of artifacts, especially when this evolution
includes the parallel work of several developers [21]. VCSs are a particular approach responsible
for dealing with evolution on software artifacts allowing changes and updates, as also ensuring
the share and management of information among developers.

Different paradigms of VCSs can be used for software development differing each other
on the way information is accessed and delivered to developers. For example, in the Centralized
Version Control Systems (CVCS) paradigm, there is a central repository working as the unique
server holding the whole information of the project and getting all associated changes history
(Figure 2.1). Thus, at the beginning of each task, a developer updates its particular repository
from the central one to start doing its contributions. After completing the task, the contributions
are integrated into the central repository (synchronization process) aiming to keep the current
development stable and accessible for all involved. Many services implement this approach,
including Subversion [22] and CVS [23].

In the Decentralized Version Control Systems (DVCS), as the name suggests, there is not
a central repository shared with all developers. Every particular repository (project copy) can be
the source of information for any another contributor holding, individually, its particular changes
history (Figure 2.2). Git [24] and Mercurial [25] are examples of highly used VCSs that follow
this paradigm. In this way, contributions performed by a developer can be accessed and shared by
others directly without the intermediation of a secondary repository (direct communication). This
approach has become popular in software development, especially in the open-source community,

2.1. VERSION CONTROL SYSTEMS 20

Figure 2.1: Centralised version control paradigm
The arrows among the individual repositories and the central one indicate only the central

repository can accept changes from the others. Individual repositories use the central one to
update themselves with new information (synchronization process). Changes from individual

repositories are only accessible if the central repository already holds them.

Figure 2.2: Decentralised version control paradigm
The arrows among the repositories indicate every repository can accept changes and update

themselves from the others. Individual repositories can be accessed directly without any
intermediate repository.

2.1. VERSION CONTROL SYSTEMS 21

because of its simplicity in how information can be propagated in many directions and directly
among developers [26] [27]. Many services implement this idea, including GitHub, the biggest
service available online holding 67 million repositories.

In both paradigms, the evolution of software artifacts is achieved by integration of
different contributions over a project life cycle. During such integration, conflicts (merge, build
and test conflicts) may arise impacting directly on team productivity. The investigation of these
problems might identify improvements for assistive tools. For example, new causes of build
conflicts can reflect in new features for tools like Palantír proposed by Sarma et al. [28]. In the
same way, merge tools can benefit of these findings bringing insights of how to treat build and
test conflict during contributions integration. For example, improved merge tools [7] [29] can
already identify duplicated method declarations in a class, which would break the build process.

2.1.1 Evolution and Integration in VCS

Before presenting conflict types, it is important to detail some concepts related to the
contribution integration process. Such process involves merge scenarios, which we consider
as a triple formed by two parent commits (Left and Right) integrated into a merge commit.
These parent commits evolve based on a common base ancestor commit (the point where the
contributions start to diverge with each other). For instance, as presented in Figure 2.3, the
commit C5 is a merge commit, while the pair of commits [C3, C4 are its parents (the bottom
in Figure 2.3). Commit C4 is also a merge commit having as its parents the pair [C1, C2 (the
bottom in Figure 2.3). The difference between the commits C4 and C5 is perceived when we
look for their base commits. Commit C4 has as its base the commit C1, which is also one of its
parent commits. Scenarios with this property are known as fast-forward (only one of the parents
evolves) [30]. For commit C5, its base commit is also C1. However, none of the parents is the
same to the base commit revealing this case as a valid merge scenario for us (both parents have
evolved). In this thesis, we discard fast-forwards commits.

We present an example of a merge scenario in Figure 2.4. In this example, Left adds
a new attribute (classification) for the class Movie, while Right introduces a new method
declaration (isNewRelease). Although the contributions are performed on the same file, no
problem (conflicts) happens since the contributions are not performed in the same area. As result,
all parents contributions are preserved characterizing this case as a clean merge scenario.

2.1.2 Conflict Types

Conflicts may arise in different development phases: during merging, when different
contributions are integrated (merge conflicts); after integration, when building the integration
result fails (build conflicts); or when testing, unexpected software behavior happens (test conflicts)
[2]. In the next sections, we explain the nature of these conflicts (merge, build and test conflicts),
and how the occurrence of one type can impact in others.

https://octoverse.github.com/

2.1. VERSION CONTROL SYSTEMS 22

Figure 2.3: Commits history of a project. Each commit presents an arrows indicating its parent(s)

Figure 2.4: Merge scenario without merge conflict

2.1. VERSION CONTROL SYSTEMS 23

Figure 2.5: Merge scenario with merge conflict

2.1.2.1 Merge Conflicts

Merge conflicts occur when the text of the contributions to be integrated contain changes
to the same areas. We present an example of a merge scenario in Figure 2.5. In this situation, the
method getDescription is declared in the Base commit. During parent’s contributions, both Left

and Right commit update the return statement of the method. Since the changes are performed in
the same area, specifically in line 4, a conflict is reported (presented in Merge Commit).

As any merge conflict, human intervention is necessary to fix the conflict. Nevertheless,
when trying to solve merge conflicts, integrators might introduce inconsistencies in the source
code. For example, the way adopted to solve a merge conflict cannot preserve all parent
contributions, which would lead to other problems perceived only in next steps of the integration
process. We now present examples of those kinds of conflicts.

2.1. VERSION CONTROL SYSTEMS 24

Figure 2.6: Merge scenario with build conflict

2.1.2.2 Build Conflicts

Build conflicts occur when contributions are successfully merged but they are incompati-
ble in the sense that keeping both contributions leads to a broken build process [28]. We present
an example of build conflict in Figure 2.6.

In this case, Left contribution adds a new method responsible for calculating the discount
for a rent (lines 3-6). The discount to be applied depends on the final amount that is received as a
parameter (total). The method responsible for informing the discount is getDiscount (present in
Base commit and not modified by the Left). Simultaneously, Right renames the method leading to
the new, more intuitive, getDiscountDependingTotal (line 7). Consequently, all calls are updated
for using the new method signature.

During the merge integration, no conflicts happen but the associated build process fails
because a method reference could not be satisfied (Figure 2.7). The problem happens because Left

tries to reference a method with a signature not available, and despite the call updates performed
by Right, the new reference introduced by Left still uses the old signature (getDiscount). In this
scenario, it is clear how a developer impacts the work of other with parallel related tasks.

2.1. VERSION CONTROL SYSTEMS 25

Compilation Failure:
[ERROR] /home/.../Rent.java:[] cannot find symbol
[ERROR] symbol: method getDiscount(java.lang.double)
[ERROR] location: class Rent

Figure 2.7: Compilation problem on build process after merge scenario

2.1.2.3 Test Conflicts

Tests conflicts occur when contributions are merged and a build is successfully created,
but tests that were successfully executed with one of the contributions fail when executed with
the integrated build process [28].

In Figure 2.8, we present a scenario representing a test conflict. The test case totalRentTest

of RentTest file is responsible for evaluating the software behavior related to the calculation
of rents amount (presented in merge commit). In this test case, the assertion (line 4) verifies
whether a set of 4 rents costing of 40 will result in a final amount of 36.

During Left contributions, it updates the getDiscountDependingTotal method of Rent

class only to apply discount for three or more items at the same time (line 6); otherwise, no
discount is applied. Since the test cases is tested with 4 items, the program behaves as expected
resulting in a passed test case.

On the other side, Right changes the way of how the discount is calculated. It decides to
apply discount only for items that have associated movies dated before 2015 (lines 4-8). Since
the 4 rents tested in the test case follow this restriction, the final discount applied for the amount
of 40 is also 36 (passed test case).

During the merge, some merge conflicts happen, but all are fixed leading to the inclusion
of the parents contributions into the merge commit. Running the build process, the merge result
source code is compilable, and a build is successfully generated, but a test case fails. Although
all test cases have passed status during parent’s contributions, when the different contributions
are integrated, it directly impacts in the software behavior arising a test conflict. This failure
happens because the discount is calculated two times (each calculation inserted by one parent).
Hence, an amount of 40 produces a final amount of 32,40 instead of 36 (the expected behavior)
leading the test case to fail (Figure 2.9).

Different from merge conflicts, build and test ones are hard to be identified and treated
by known merge tools, even those improved. Since the nature of these conflicts is related to
semantic issues, they require tools able to take these constraints into consideration when solving
these problems.

2.1.2.4 Build and Test Conflicts in Practice

Here we present an example of a build and test conflict extracted from a real project.
Consider that Lucas and Ray work on the same project in different sites sharing code through a

2.1. VERSION CONTROL SYSTEMS 26

Figure 2.8: Merge scenario with dynamic semantic conflict

Figure 2.9: Failed test case after merge scenario

Results:
Tests in error:
RentTest.totalRentTest unexpected result: expected "36" received "32,40"

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

2.1. VERSION CONTROL SYSTEMS 27

Figure 2.10: Build and test conflicts in practice
Black arrows represent the offspring of commits. The set of commits (orange boxes) between

dashed lines represent the commits performed in a specific branch. Green arrows associate
commits and their builds (blue boxes). Above each build, we present its status (!, X and ! for

successful, failed, and errored builds, respectively).

Compilation failure
[ERROR] /home/[...]/quickml/src/main/java/quickml/StaticBuilders.java:[67,116] cannot
find symbol
[ERROR] symbol: method ignoreAttributeAtNodeProbability(double)
[ERROR] location: class quickml.supervised.classifier.decisionTree.TreeBuilder

Figure 2.11: Log of errored build due to compilation problem

DVCS (git using the GitHub service, as illustrated in Figure 2.10). At some point (commit C0),
they are assigned to different but related tasks. Although Lucas commits his initial contributions
(commit C1), Ray finishes his work before (commit C2) and runs the scripts responsible for
building the application. As a result, a build is successfully created (build B1). Since the main
upstream branch has not evolved, he merges his contributions into it (commit C3, fast-forward).
He runs the build process again. Since no problem happens, he pushes the changes to GitHub
repository updating the main upstream branch (build B2).

One day after, Lucas finishes his task (commit C4). Before merging his contributions
with the main upstream branch, he runs the build process for the most recent commit resulting in
a successful process (build B3). Due to Ray’s contributions, Lucas merges his contributions to the
actual project state (commit C5, merge scenario). Before updating the main upstream, he runs the
build process again. Some minutes later, he realizes the build process fails (errored status, build

B4). Verifying the build log (Figure 2.11), he concludes a method call for ignoreAttributeAtN-

odeProbability of the StaticBuilders class cannot be compiled because its declaration is missing
in TreeBuilder class. Investigating the TreeBuilder and StaticBuilders classes, he confirms the
missing method (ignoreAttributeAtNodeProbability) is not even declared; however, he is sure this
method declaration was available when he performed his task. Consulting the project history, he
notices Ray’s contributions rename the method signature leading to the compilation problem with
the newly added call. To solve the problem, the old call is updated with the new method identifier

https://travis-ci.org/sanity/quickml/builds/53571613
https://travis-ci.org/sanity/quickml/builds/53571613

2.2. CONTINUOUS INTEGRATION (CI) 28

(attributeIgnoringStrategy). After the changes (commit C6), the build process is executed again
(build B5).

This time, the first and second phases of the build process are successfully executed
(build and compilation, and automated static analysis), but one of the associated tests fails (third
phase of the build process). Aiming to understand the cause of the failure, Lucas debugs the test
case trying to find the cause. After a large effort, he concludes two dependent methods executed
by the test case were modified. One method (modified by Lucas) receives as parameter the result
of the other method (modified by Ray). After some time, he realizes both changes are consistent
updating the failed test case (commit C7). As a result, the build process works successfully again
(build B6), and the changes are pushed to main upstream branch.

2.1.2.5 Build and Test Conflicts by Integrator Changes

Although build and test conflicts might happen after clean merge scenarios, as described
in the previous section, conflicts can also arise from unclean scenarios. In these cases, merge
conflicts are manually fixed by the integrator. For example, consider the merge scenario presented
in Figure 2.12. In this case, Left and Right add each one a different method declaration on the
same file area (lines 3-5). Despite the difference in methods signature, the scenario is reported as
a conflict.

If the integrator is not careful, the changes they apply to solve the merge conflict might
introduce build or test conflicts. For instance, if the integrator preserves only Left contributions,
any reference for the non-preserved method of Right contributions (isNewRelease) will break the
build process because of the unavailable method (Figure 2.13, see Section 2.1.2.2). In this way,
build and test conflicts might happen as a consequence of a badly fixed merge conflict.

The conflict of our example is considered a false positive since the parent’s contributions
are different. Such conflict could be fixed by improved merge tools [9] [7] [29] discarding
human intervention, as also the possibility of introducing inconsistencies. These tools treat
source code elements as nodes treating each node individually reducing the incidence of merge
conflicts. Using these tools for merging our scenario, both methods added by the parents would
be preserved on the resulting merge commit as presented in Figure 2.14.

2.2 Continuous Integration (CI)

In this context of collaborative development, CI currently is one of the software engi-
neering practices highly adopted by software development. Such practice is responsible for
automatically building and running tests or other analysis to a project, helping to ensure the
quality of contributions [11] and to increase developers productivity [12] [13] [14].

CI has originally arisen as one of the twelve Extreme Programming (XP) practices
[10]. Its use became common over time with the popularity of collaborative development and

2.2. CONTINUOUS INTEGRATION (CI) 29

Figure 2.12: Merge scenario with false positive merge conflict

Figure 2.13: Integrator changes introducing inconsistencies on source code

2.2. CONTINUOUS INTEGRATION (CI) 30

Figure 2.14: Merge scenario without merge conflicts reported by improved merge tools

open-source projects [27] offering diversity in services/tools for such practice like Travis CI [31]
and Jenkins [32].

2.2.1 CI Life Cycle

A common CI life cycle build process may be composed of many phases. In our
study, we adopt a build process involving three phases: (i) a build and compilation phase, (ii)
Automated Static Analysis (ASAT) execution, and (iii) testing phase.1 Despite the differences
and particularities of programming languages, some steps during the build and compile phase
are necessary only for some languages. The build process is sequential; if a previous phases
fails, all subsequent phases are aborted. We now present the main concepts of a CI build process
focusing on the phases that can fail due to problems caused by changes in source code base.

2.2.1.1 Build and Compilation

The first step of a build process is the compilation phase responsible for translating a
program into a form in which it can be executed by a computer [33]. If any problem in the
source code is detected during this translation, they are reported, and this cycle continues until a
resulting valid translation can be achieved. This process is composed of four general steps done
in sequential mode presented as follows.

The first step is the Lexical Analysis, also known as scanning. It is responsible for
reading a program (source code) and groups set of characters in meaningful sequences called
lexemes (keywords, numbers, operands, and operators).

The second step is Syntax Analysis, also known as parsing. Using the set of tokens,
the parser builds a syntax tree to represent the grammatical structure of the program. Such
process is done based on the programming language grammar. Some errors can arise during
the construction of the syntax tree. In case of a variable declaration, the code must follow the
production rules defined by the language grammar. Any problem in the variable declaration

1We consider the term build process to refer the entire process of building, testing and deploying in CI context.
To refer the first phase of a build process, we adopt the term build and compilation phase.

2.2. CONTINUOUS INTEGRATION (CI) 31

breaks the build process. Thus, checks are done to evaluate the conformity. Common errors
in this phase are inappropriate Variable identifiers (like a reserved keyword, public), missing
required attribution symbol (=), or even a missing semicolon in the end of a line (;).

The third step is Semantic Analysis, which focuses on identifying inconsistencies in
the program according to the programming language. For that, the analysis uses the syntax tree
and the symbol table. An important verification done in this step is the type checking, which
evaluates whether the code uses the required element types. Another verification relies on the
availability of variables and methods. In this case, the attempt to use a method or variable not
declared yet in the program would also lead the process to fail.

Finally, the final step is responsible for Code Generation. The generation translates the
instructions in machine code also treating the mechanical aspects (like allocation of memory,
registers). We do not go further in this step since only problems during the previous steps can be
the causes of broken builds. Thus, if the compilation process comes until this last step, it means
the program is valid, and any problem that could occur would not be motivated by contributions
of the merge scenario.

During this phase of build and compilation, the dependencies of a program are also
satisfied aiming to build the software as an artifact. Project dependencies are not restricted to
tools but also any external dependency required. For example, an external service, which supports
the testing phase (last phase of a build process, see Section 2.2.1.3). Since these dependencies
are well defined, an attempt to achieve them is done. If a dependency could not be satisfied,
the build process will break. On our context, dependencies are organized in a configuration file
(pom.xml) of each project. Just like Syntax problems in source code, the related file can also
not be well formed leading the build process to fail. In the other hand, even dependencies well
formed cannot be satisfied due to external problems (unavailability of dependency repositories)
also breaking the build process. Seo et. al [17] verifies 64,71% of all build process break due to
problems related to unsatisfied dependencies.

2.2.1.2 Automated Static Analysis

Besides the build and compilation phase described in the previous section, build process
might include ASAT. This phase verifies the properties of the code aiming to find pre-defined
problems in the project structure. It involves two kinds of problems: (i) functional and (ii)
maintainability [1]. In functional problems, the tools can identify incorrect logic, like using
integer division instead of floating-point division, which might impact directly in the operation
result. Maintainability problems involve more issues related to project structure. For example,
it can evaluate whether the project contents follow the patterns adopted for the project (style
conventions) or even duplicated code.

Over time many areas have applied ASAT, like security issues [34] and vulnerabilities
on web projects [35]. For Java language, many tools are available to be used, like FindBugs [36],

2.2. CONTINUOUS INTEGRATION (CI) 32

Check Style [37] and IntelliJ IDEA [38]. Any nonconformity found by these tools also breaks
the build process.

2.2.1.3 Test Execution

After the program translation (build and compilation, and ASAT phases), the next phase
is responsible for verifying whether the merge scenario result presents the expected behavior.
Testing phase is not mandatory allowing some projects to skip this important verification for code
quality. A report, using Travis information, shows that 20% of all projects do not include tests in
their build process (in Java this percentage increases to 31%) [39]. For those that include, many
test suite can be executed using a diversity of test types, like unit (most used type), integration
and system tests. If any test case fails or presents errors during its execution (for example, an
exception not treated), the build process breaks, and often, reports the failed test case.

Besides the execution of tests, other dynamic analysis can be performed. For example,
during the execution of test cases, data about the source code exercised by the tests are extracted
and used to compute, for example, code coverage. Depending on the tool for measuring the
coverage, such analysis can also break the build process. For example, Jacoco [40] allows one
to set up the expected coverage percentage working as a test case. If these percentages are not
achieved, the build process also breaks.

We do not explain the steps after the test execution like deployment (releases of generated
software artifacts). These steps involve only technical issues. Errors during the execution are not
caused by parent contributions (they do not motivate the occurrence of build or test conflicts).

2.2.2 Travis CI

Among the diversity of services and tools to support CI, Travis CI [31] is the most
used service offering a free and online service supporting projects hosted on GitHub. Its use
and popularity have increased over time because of its simplicity and support for different
programming languages. For example, the top 10 most used languages in GitHub are supported
by Travis; among the most popular are JavaScript, Ruby, and Java [15].

To enable Travis support for a project, it is necessary to perform the following steps.
Initially, the repository must be hosted on GitHub, and the user (repository owner) must login
into her Travis account using GitHub access data to grant the GitHub access permission. Thus,
events sent to a GitHub repository will be reflected on build process initialization on Travis. The
Travis configuration file (.travis.yml) must also be introduced in the project.

The travis.yml file is composed of instructions (common and optional) holding all
information about how the build process must be performed. Despite the diversity of instructions,
we only detail those that are important to the final build process status (optional instructions are
used in specific cases to support common ones during the build process).

https://octoverse.github.com/

2.2. CONTINUOUS INTEGRATION (CI) 33

Figure 2.15: Build process life cycle on Travis CI [1]

Build Process in Travis

Moving on to how a build process works, some particularities must be explained (in-
volving instructions of travis.yml file as also Travis support). In Figure 2.15, we present a state
machine diagram illustrating a common life cycle build process in Travis, and over the example,
we detail some instructions present in the travis.yml file.

As can be seen, an external event sent to GitHub repository is responsible for starting a
build process (pushes and Pull Requests, PR). In this way, when such event happens, Travis try
to build the project according to the new changes done in the last commit of a branch or of a
PR. Pushes or PRs can involve a collection of commits, but only the most recent is built in the
moment they are sent to GitHub. In this thesis, we only consider push events since we want to
verify the real impact of build and test conflicts in software development. In this way, PR might
represent only the end of many attempts not considering the entire process. However, the build
process for PR follows the same principle we explain here.

During the build process, several steps are performed and their execution determines the
final status of the whole build process. Figure 2.15 only comprises the final status of a build
process not presenting intermediary ones (except for started) since they do not reflect in changes
in the final status.

After the validation of travis.yml file (check of its instructions and structure after Build

Process Start), the first phase of the build process can be initialized (build and compilation

2.2. CONTINUOUS INTEGRATION (CI) 34

phase). A build process in Travis is composed of the steps (i) install and (ii) script (highlighted
in Figure 2.15). The first step is responsible for preparing the environment, which includes
dependencies resolution (external and internal dependencies) and set-up of the project. This
step is composed of three instructions: before_install, install and before_script. If any of them
fails, the build process breaks with an errored status. The second step consists of running the
build process based on the instructions informed on travis.yml file configuration. It is normally
composed of four instructions: script, after_success, after_failure, and after_script. If during
ASAT execution any problem happens, it also leads the build process to break with an errored

status.
With the ASAT phase finished, it starts the testing phases and dynamic analysis are

performed. Some projects might perform additional analysis more related to project structure
like metrics. Others use this time for deploying to a server the generated build artifacts and build
documentation. If any test case fails or any additional step presents an error, the build process
breaks with a failed status. Finally, if the build process does execute all the previous steps
without any problem, the passed status is achieved meaning the CI life cycle was successfully
performed. The last possible final status is canceled, which is motivated by an external event
done at any time during the build process (a user cancels the process before it ends).

Each build in Travis is associated with an exclusively commit. However, a commit can
have many builds. For example, if a commit C1 has a build B1 in Travis, and after some time, a
reset is done to point to this commit (C1), a new build process will be started in Travis (build
B2). Even these different builds are associated to the same commit, they can achieve different
status. The build B1 can be successfully built, while B2 can fail during the first phases since
dependencies can become deprecated over time.

Besides the final build status, for each build, a log is reported showing how the build
process works. Part of this log is composed of the outputs generated by the build manager
adopted for the project. For Java language, Travis allows the adoption of three build managers:
Maven [41], Gradle [42] and Ant [43]. Depending on the adopted build manager, some logs are
more informative than others. For our experiment, a log report as complete as possible is critical
since we use it to get the causes of broken builds and additional information used to perform our
analysis (we detail it in Section 3.3)

https://docs.travis-ci.com/user/languages/java/

353535

3 IDENTIFYING CONFLICTING CONTRIBUTIONS IN MERGE SCENARIOS

The complexity and the difficulty to understand the causes of build and test conflicts are
a common problem in software development. Although we know that build and test conflicts
happen in practice and might involve different and dependent files [8] [2], it is important to better
understand the frequency and causes of these conflicts, so new improvements could be applied to
assistive tools aiming to treat or even avoid such problems.

Previous studies present evidence of build and test conflicts in practice. Brun et al.
[8] reveal 33% of all evaluated merge scenarios (scenarios without merge conflicts) represent
cases of build and test conflicts. In the same way, Kasi and Sarma [2] bring such evidence
separately: build conflicts ranging from 2% to 15%, while test conflicts ranging from 6% to 35%.
Despite such evidence, both studies use the same approach for identifying conflicts (building
and testing all merge commits and checking whether the build process can be successfully built
or present problems), which can introduce bias in the results. For example, they do not check the
parent commit build process even though inconsistencies can come from the parents. Although
they consider a small sample, they execute the build process, and consequently, any different
environment configuration can break the build process leading them to a wrong conclusion.

In this way, to further investigate these kinds of conflicts eliminating these known threats,
we analyze 60991 merge scenarios from 529 GitHub Java projects that use Travis CI revealing
more than 150 conflicts. For each merge scenario, we check whether it leads to a build or test
conflict: the merge commit build is broken while its parent commits present superior status
(successful or failed, for build conflicts, and successful, for test ones). We consider failed status
for build conflicts since the source code associated to a failed build process could at least be
compiled and built during the build process. It means the source code should not have any
problem that could be associated to a build conflict.

In some merge scenarios, some commits do not have an associated build in Travis. For
these cases, we use Travis to build them aiming to achieve completeness in our experiment. In
Section 3.3, we discuss how we check whether a broken build is the result of a build or test
conflict. In both cases, we classify the conflicting contributions between parent’s contributions.
For build conflicts, we use the GumTree tool [44] (a syntactic diff) to compare the contributions
of each parent, and see how they impact each other. For test conflicts, we re-run the failed test
cases aiming to ensure the failure happens in practice (not motivated by external issues, like
parallel test execution and unavailable resource during execution). During this step, we also

3.1. PROBLEM STATEMENT 36

instrument our script to compute the associated code coverage for each test execution. Comparing
coverage with the changes performed by the parent contributions, we look for some intersection
among them (for example, same classes changed by parents and exercised during the test case).

3.1 Problem Statement

Previous studies have investigated the occurrence of conflicts during software develop-
ment [8] [2]. Especially for build and test conflicts, these studies do not focus on investigate
the nature of these types of problems. They perform a superficial analysis aiming to verify the
frequency of each type, and based on their findings, tools are presented responsible for avoiding
such conflicts. Nevertheless, these tools involve superficial characteristics related to conflicts
causes since there is a lack of information about the causes responsible for them.

The first main difference in our study, when compared to related work, is the investigation
of the structures of changes associated with the causes of build and test conflicts. It is known that
build conflicts involve dependent files [2], but there is a lack of information about the level and
direction of such dependency. For example, there are many ways for a dependency involving two
files in a project (like interface implementation, heritance), and it is not known the dependency
types that might cause build conflicts. In the same way, for test conflicts is known that after a
merge scenario, the software behaves unexpectedly presenting failed test cases. However, it is
not known how the contributions in each parent commit impact with each other leading a test
case to fail.

Since the causes of conflicts are not investigated in related work, the resolution patterns
adopted to fix the conflicts might not be verified. We go further and for each conflict we identify
its commit fix. Thus, we check its associated resolution pattern aiming to verify the pattern itself
as also to understand the circumstances such resolutions are applied. We may check whether a
conflict can be fixed involving more than a resolution pattern, and how the fix is related to the
parent’s contributions. For example, whether a fix adapt the conflict to the new project state or
undo contributions going back to an old commit (previous project state). With this information,
we can provide insights or improvements for assistive tolls responsible for dealing with conflicts.

3.2 Study Design

Our experiment consists of three main steps as illustrated in Figure 3.1. The first step
is responsible for getting all information required for the experiment, which includes mining
repositories (source code and builds information). The second step performs verifications aiming
to filter non conflicts. Finally, the last step identifies the causes of build and test conflicts and the
adopted resolution patterns (we identify the closest commit following the merge verifying the
fixes and metrics related to who fixed it, when available).

3.2. STUDY DESIGN 37

Figure 3.1: Study design

3.2.1 Mining Repositories

In the first step of our study, we access source code repositories to collect merge scenarios
and associated information of the build process, indicating whether the build process of a merge
commit fails during its attempt, while the parents commits are successfully built. As subjects,
we first select real Java projects available on GitHub. To obtain the associated information of
build processes, we could run build process for merge scenarios locally (merge and its parent
commits) obtaining the desired information. Given the result of a build process might heavily
depend on environment configuration, generating builds in our machines could introduce bias
in the results. As this would also demand large manual effort, we decide to opt for selecting
projects that use Continuous Integration (CI). As not all CI tools and services provide their data
openly, we focus on projects that use Travis CI (one of the most used CI service [15] [16]). It
openly provides all build information associated with a project through its public API.

3.2.1.1 Sample

To select our sample, we select projects from Munaiah et al. [45] and Beller et al. [46]
database as such studies consider real projects. However, we select only Java projects as there are
many projects with different programming languages. To select a relevant sample, we consider
only projects with more than 40 stars and 50 forks. Such constraints allow us to analyze real
projects excluding those toys. The projects need to be active since we would build some merge
scenarios, and projects with deprecated dependencies would not present successful builds.

With the list of projects selected, for each sampled project, we do three checks: (i) to
verify the presence of the .travis.yml file, (ii) to consult its status on Travis service (active or
not), and (iii) to verify the exclusive presence of the pom.xml file. These checks are necessary to

https://docs.travis-ci.com/api

3.2. STUDY DESIGN 38

ensure only the presence of projects using Maven as build manager as also with data available on
Travis.

Although we have not systematically targeted representativeness or even diversity [47],
we believe that our sample has a considerable degree of diversity concerning, at least, the number
of developers, source code size, and domain. It contains projects from different domains such as
APIs, platforms, and Network protocols. They also vary in sizes and number of developers. For
example, XChange project has only 20,4 KLOC, while Wicket Bootstrap has approximately 282
KLOC. Moreover, Wire project has 37 collaborators, while Java Driver has 92. The list of the
analyzed projects can be found in Appendix D.

3.2.1.2 Filtering Sample Projects

With our sample defined, as presented in the previous section, for each project selected,
we clone it and identify all merge commits using Git API returning a list of all merge commits in
a specific branch.1 To get all merge commits of a project, we locally checkout in every available
branch, and for each branch we collect its commits grouping all commits into a single set. Since
Travis CI is relatively a new technology, most projects adopted it later in their life cycle. For
these projects, the list of commits returned by Git API includes commits performed before the
adoption of Travis, and consequently, they do not have build information available on Travis. To
select only merge commits performed after Travis CI adoption, we parametrize the git command
to return only commits dated after the first build finished in Travis resulting in 60991 merge
commits (step 1 in Figure 3.2). As described in Section 2.1.1, we discard fast-forwards merge
commits.

This filter also contributes to exclude merge scenarios from projects that are configured
to use Travis, but in practice, they do not use [15] [16]. This might happen because the adoption
of Travis is composed by two steps: (i) inclusion of Travis configuration file on the project,
and (ii) permission for the project be built on Travis. However, some projects configure Travis
doing only the first step. We notice such behaviour when a project is configured to adopt Travis
(presence of .travis.yml file), but none build in the Travis repository is associated to the project.

For each selected merge commit, we try to identify its associated build, but not all
commits have an associated build on Travis. For example, in some cases, a merge commit is
built, but one of its parents is not. Other cases, even the merge commit does not have a build in
Travis. This might happen because only the last commit of a push is built; if new commits are
done after a merge integration, these last will have a build instead of the merge commit. Another
reason for commits without build information is the origin of these commits. Depending on the
branch where commits are done, none build will be started on Travis. This might happen due to
Travis restrictions as it is possible to restrict a list of branches to build commits. If one of the
parents was not in this list of branches, it will not have permission to start build process. Another

1git log -merges

https://github.com/timmolter/XChange
https://github.com/l0rdn1kk0n/wicket-bootstrap
https://github.com/square/wire
https://github.com/datastax/java-driver
https://docs.travis-ci.com/user/customizing-the-build/Building-Specific-Branches

3.2. STUDY DESIGN 39

Figure 3.2: Merge scenarios filters adopted during the analysis
Boxes represent the number of remaining scenarios in each step (blue for build conflicts, and
green for test conflicts): (1) All merge scenarios, (2.1, 2.2) errored and failed builds, (3.1, 3.2)
errored and failed builds with superior parent build statuses, (4.1, 4.2) removal cases caused by

external causes or weakness by our scripts, (5.1, 5.2) classification of scenarios based on
parent’s contributions preservation.

reason is related to the lack of continuity when a fork is done. For example, if one of the parents
of a merge commit is done in a fork, build information will be only available in the related Travis
repository of this fork. However, most fork projects do not activate Travis not performing any
build process. We try to access fork repositories on Travis, but only a small percentage of build
process are available.

To make sure all commits in a merge scenario have associated Travis builds, we force the
creation of builds when they are not available. We basically fork each project on GitHub using
its API and perform resets pointing the heads to these commits not built yet in Travis. After this,
we push them to our remote fork, which triggers Travis to start the build process. Although these
new build process are not done in the official environment, Travis ensures each process has the
appropriated environment configuration. After making sure each selected merge commit has an
associated Travis build, we further filter our sample by selecting only the scenarios associated
with errored or failed builds (6903 and 8149, respectively, steps 2.1 and 2.2 on Figure 3.2).

Merge scenarios having merge commits with associated errored or failed builds do not
necessarily represent build or test conflicts. In fact, the issue with the build might have been
inherited from one of the parents, and not caused by conflicting contributions. So we further
filter the samples by selecting only the scenarios having parent commits with superior build
statuses (failed or passed for errored builds, and only passed for failed ones). This results in 473
and 864 scenarios, respectively (steps 3.1 and 3.2 in Figure 3.2). In case one of the parents has
the same status of the merge commit, we assume the broken build of the merge commit is carried
over from the broken parent. So there is not really a conflict between development tasks, but

https://developer.github.com/v3/

3.3. CONFLICTS IDENTIFICATION 40

Figure 3.3: Different build status for the same commit. X indicates an errored build, while !
indicates a failed one.

simply a defect introduced by one of the tasks, eventually, reaching the merge commit.
As a single commit can be associated with more than one build (see Section 2.2.2),

each one with a different final status, we adopt the build status based on the precedence rules
defined by Travis. These rules reflect the final build process status according to the occurrence
of problems during the phases of a build process. Thus, we have: canceled < errored < failed <

passed (organized from the lower to the higher status). For instance, a commit C0 can be linked
to four builds (B0, B1, B2, and B3), each having a different status (Figure 3.3). In this situation,
we consider the status of build B1 as the one associated to the commit C0 (errored status) because
a problem during the compilation and build phase breaks the build process. In the builds B2
and B3, this phase is done without errors. We do not consider the canceled status because it is
triggered by an external event (user cancels the build process) or previous configurations that
cannot be motivated by parent’s contributions. However, different builds related to a single
commit, commonly, present the same result.

As the output of this step (3.1 and 3.2 in Figure 3.2), we have a set of merge scenarios
having merge commits associated with broken builds (473 and 864, errored and failed merge
commit builds, respectively), and parent commits with superior build process statuses.

3.3 Conflicts Identification

To ensure the selected merge scenarios so far are associated with conflicts, and to better
understand what caused the errored or failed status, we need to further investigate the build
status and associated logs (step 2 in Figure 3.1). This is needed because the non passed build
status might have been caused by a number of reasons not related to the merged contributions.
So we analyze, for each build, its Travis log report. Our scripts automatically seek for specific
message errors listed in Table 3.1. The message patterns that compose this table were identified
by a manual exploratory analysis of build logs. Each problem can hold many different message
patterns since different versions of Travis and build managers imply in different patterns. Some
of them are positively related to the occurrence of conflicts, whereas others are certainly not
related. In particular, some of the messages indicate that external (having no relation with the

3.3. CONFLICTS IDENTIFICATION 41

contributions) causes were responsible for interrupting the build process:

� Remote Problems: The build fails because of Travis restrictions or external services
required by a build process. For example, if a build process does not present any
activity in an interval of 10 minutes, the associated build process will break. We
discard these scenarios because they do not reflect issues caused by the developer’s
changes, therefore not characterizing a conflict.

� Environment Configuration: Build process fails due to unresolvable or wrong
project dependencies. We only discard the scenarios with no changes performed
on configuration files during a merge scenario. This restriction ensures an external
problem is responsible for the failure; if contributions change configuration files,
conflicts might arise, leading to this kind of message, and demanding further analysis.

Discarding these scenarios caused by external problems, and also those that our script
cannot evaluate due to its limitations or lack of precise information, the remaining merge
scenarios compose the set we consider to further investigate the occurrence of build and test
conflicts. This corresponds to 117 and 7 merge scenarios, respectively, (steps 4.1 and 4.2 in
Figure 3.2).

We explore the particularities of each kind of broken build. For instance, errored builds
are caused due to problems during build and compilation, and Automated Static Analysis (ASAT)
phases of the build process. In the same way, failed builds are caused when the previous phases
are successful done, but problems happen during the testing phase (see Section 2.2.1). Based on
these problems, we manually investigate a few cases aiming to extract message patterns related to
them. This is detailed when we present our strategy to classify conflicts. For now, we classify the
problems in categories of broken builds informing whether they can cause build or test conflicts.
Table 3.1 presents for each cause of broken build (third column) its related message patterns
(fourth column).

Preserved vs Unpreserved Merges

Build conflicts may arise from merge scenarios with conflicting contributions (contributor
changes), or caused by changes performed after the integration (integrator changes). These
changes made after the integration might be motivated by merge conflicts fixes as also addition
of new contributions. Related work only consider contributor changes as the cause for build
conflicts, because they cannot evaluate merge scenarios resulted of merge conflicts during the
integration. Assuming integrator changes as a potential cause is an attractive area not explored
yet. It is important to mention that an integrator responsible for the integration can also be one of
the contributors of the merge scenario. Nevertheless, our focus at this point is to identify the
conflict cause, and consequently, who was responsible for introducing the inconsistency.

3.3. CONFLICTS IDENTIFICATION 42

Table 3.1: Build error messages taxonomy and how they related to conflicts or the lack of
conflicts?

Conflict Type Category Name Message

Build Conflict

Syntax Malformed Program

illegal start of type
unexpected token
illegal character
missing return statement

Static Semantics

Unimplemented Method
does not override abstract
method

Duplicated Duplication is already defined in

Unavailable Symbol
cannot find (symbol |
method | variable | class)
could not (find|transfer) arti-
fact

Incomp. Methods Signature

no suitable method found
for
cannot be applied to
actual and formal argument
lists differ in length

Incomp. Types
error: incompatible types:
[...] cannot be converted

Other Static Analysis Project Rules
Some classes do not have
the expected license header

Test Conflict
Dynamic Semantics Test failures

There (are|was) test failures
Failed tests:

Other Analysis Unachieved Coverage
Build failed to meet Clover
coverage targets

No Conflict
Environment Resource Remote Problems

The job exceeded the maxi-
mum time limit
for jobs, and has been termi-
nated
No output has been received
in the last [interval time]
Your test run exceeded 50.0
minutes

Dependency Environment Configuration
Could not (find|transfer)
artefact

3.3. CONFLICTS IDENTIFICATION 43

Figure 3.4: Checking contributions performed on merge scenarios parents

In this way, two kinds of changes made by integrators might break builds: (i) changes
applied to fix merge conflicts and (ii) changes performed after the integration. For the first cause,
we could identify improvements for merge tools since the integrator needs to deal with merge
conflicts because of merge tools weakness. For example, as presented in Section 2.1.2.5 (Chapter
2), merge scenarios can present merge conflicts reported only by textual merge tools. Improved
merge tools like S3M [9] are able to treat merge conflicts without reporting them to integrators.
In the other side, for the second cause, we could identify the circumstances that lead an integrator
to perform changes after the integration.

To have a better insight of how incident build conflicts can occur for each cause (contribu-
tor or integrator changes), we classify merge scenarios based in parent’s contribution preservation.
In this way, a merge scenario can be classified as preserved (all parent’s contributions are pre-
served in the merge commit) or unpreserved (at least one parent contribution is not preserved in
the merge commit). This classification allows us to verify if a merge scenario type (preserved or
unpreserved) is likely to have more build conflicts caused by an specific cause (contributor or
integrator changes).

To classify the scenarios, we simulate each merge scenario locally. We checkout in
each parent commit and try to perform a merge between them. If none merge conflict happens,
we compare the integration result with the original merge commit. For simulations without
differences to the original merge commit, we consider the related merge scenario as preserved

(step 5.1 in Figure 3.2). It means all parent’s contributions are preserved. It is important to
mention that new source code can be introduced by the integrator, but this addition does not
imply in parent’s contributions removal. For the 57 merge scenarios classified as preserved, a
compilation problem is likely to be a build conflict since only after the merge integration the
build process breaks. For the remaining simulations (those with merge conflicts), further analysis
is necessary to check whether all parents contributions are preserved even with the occurrence of
merge conflicts and changes performed after the integration. Thus, we use the syntactic diff tool
GumTree [44] to identify and associate changes to either contributors or integrators.

3.4. CLASSIFYING CONFLICTS 44

Understanding Contributions in Unpreserved Merges

To verify whether parents contributions are preserved even with the occurrence of
merge conflicts, we generate syntactic diffs to get the difference between the base and the
parent commits. For that, we extract the base commit (common ancestor) between the merge
parents.2 Our scripts generate a syntactic diff from each parent and the base gathering all changes
performed by each parent (base-parents-diffs, the top diffs illustrated in Figure 3.4). This diff
considers only the changes present in the last commit of each parent. If a previous commit
introduces a new file, and a following commit removes it before the final parent commit, such
action of file introduction/removal will not be present in the diff. The important issue for us is
the set of changes presented in the final commit based on the base commit.

To check if all changes are preserved in the merge commit, we also generate syntactic
diffs between the parents and the merge commit gathering only the changes preserved by each
parent (parents-merge-diff, the bottom diffs illustrated in Figure 3.4). If base-parents-diffs
are not included in parents-merge-diffs, we conclude at least one parent contribution is not
preserved classifying these scenarios as unpreserved. As result, 60 scenarios of build conflicts
are classified as unpreserved merge scenarios (step 5.1 in Figure 3.2).

For test conflicts, we use the same approach to classify the related merge scenarios based
in parent’s contribution preservation (preserved or unpreserved). In this case, 7 unpreserved
scenarios are identified (step 5.2 in Figure 3.2).

3.4 Classifying Conflicts

After the removal of merge scenarios associated with broken builds caused by external
or remote problems, we perform further analysis in the remaining merge scenarios to classify
the conflicts into categories. Next sections we present our approach to classify build and test
conflicts.

3.4.1 Classifying Conflicting Contributions on Build Conflicts

As presented in Table 3.1, errored builds might have many causes. In this section, we
discuss how we classify build conflict causes into categories. Since Malformed Program cause is
related to a syntactically problem on source code, we verify if merge conflicts happen meaning
the integrator is responsible for the conflict. Otherwise, we evaluate the case manually. For
Unavailable Symbol, we analyze whether a new reference for a symbol is added, while such
symbol is removed by the other parent. In the same way, for Incompatible Method Signature,
we verify whether a method declaration is updated (change on parameters list or types), while a
new reference for such method is added. For Duplicated Declaration, we analyze whether two
declarations of the same type sharing the same name are introduced in a class. For Unimplemented

2git merge-base <HASH-commit> <HASH-commit>

3.4. CLASSIFYING CONFLICTS 45

Table 3.2: Unavailable Symbol information from Travis Log

Element Description
Main Class it represents the class that refers the missing symbol

Missing Symbol it represents the identifier of the missing symbol
Secondary Class it is the class that held the missing symbol

Method, we verify whether a new implementing class does not implement a method introduced
in its related interface. For Incompatible Types, we verify whether a type in a call is updated,
while a new reference for such element is done. For Project Rules, we verify whether the classes
follows the project style guidelines. These last two causes are checked manually.

Here we detail how we classify build conflicts due to Unavailable Symbol, which are
related to the attempt to reference an element no longer available in the project, even though such
element is available in the parent commits (step 3 in Figure 3.1). The other causes are similarly
identified and are detailed in Appendix A). The source code of all scripts and classification
algorithms are available in our online repository [20].

An unavailable symbol can be a variable, a method or even an entire class. For example,
Travis log reports for an unavailable symbol triggered by two classes: (i) main class, which
requires the missing symbol, and (ii) secondary class, which should hold the missing symbol.
It is possible that these two classes are the same class or dependent ones. For example, a class
requiring a method inside another method body, or from another class. Although each symbol
type share the same problem nature, each one has its particularity related to classify the conflict.
Here we present our approach to classify build conflicts caused by unavailable method. We
explore three possibilities that might be responsible for a method becoming unavailable in a
project during a merge scenario (caused by contributor or integrator changes, as also due to
project dependency).

To identify interference between parents contributions and classify the conflicts, we use
syntactic diffs generated in previous steps (base-parents-diffs and parents-merge-diffs, see
Section 3.3).

Unavailable Method — Contributors source code changes

To illustrate how we classify unavailable symbol conflicts, we consider first the Java-
driver project presenting an example of build conflict caused by Unavailable Symbol (missing
method) due to contributor changes. Looking at the build log,3 it is possible to see a reference
for a symbol that could not be compiled (cannot find symbol, Figure 3.5). This message means a
symbol becomes unavailable during the merge scenario.

Travis log also presents useful information (Figure 3.5), which are explained in Table
3.2. In this case, the Activator class (main class) requires the use of the missing method
builderWithHighestTrackableLatencyMillis provided by the PerHostPercentileTracker class

3Build ID: datastax/java-driver/144600040 - Merge Commit: 203a409

https://github.com/leusonmario/TravisAnalysis/

3.4. CLASSIFYING CONFLICTS 46

Figure 3.5: Build log of errored process

Compilation failure
[ERROR] /home/[...]/datastax/driver/osgi/impl/Activator.java:[77,89] cannot
find symbol
[ERROR] symbol: method builderWithHighestTrackableLatencyMillis(int)
[ERROR] location: class com.datastax.driver.core.PerHostPercentileTracker

Figure 3.6: Original version of GumTree diff for conflicting contributions

//PerHostPercentileTracker.java
// Diff between Base <4cf58a8> and Left Parent <bc4f313>
Delete SimpleName: builderWithHighestTrackableLatencyMillis(45)

// Empty diff between Base <4cf58a8> and Right Parent <932e387>

//Activator.java.java
// Empty diff between Base <4cf58a8> and Left Parent <bc4f313>

// Diff between Base <4cf58a8> and Right Parent <932e387>
Insert SimpleName: builderWithHighestTrackableLatencyMillis(235)

into MethodInvocation(237) at 1

(secondary class). With this information, we use the syntactic diffs between the base and each
parent commit (base-parents-diffs) and try to verify if their changes caused this problem. Figure
3.6 presents the diff for the PerHostPercentileTracker and Activator classes.

As can be seen, the Left parent removes the missing method declaration (builderWith-

HighestTrackableLatencyMillis) from PerHostPercentileTracker class (secondary class) and
does not perform any change in the requiring class (Activator, main class). On the other hand,
Right adds a reference for the missing symbol in Activator class and also does not perform any
change in the PerHostPercentileTracker class. Thus, we have an example of interference between
parent’s contributions. The change performed by one of the contributors impact the work of the
other. To automatically classify this kind of conflict, our algorithm has the following steps:

� Step 1: Identification of the parent responsible for updating or removing the missing
symbol using the Secondary class diff (in our example, Left parent).

� Step 2: Verification of a new reference for the missing symbol in the Main class diff
in the other parent (in our example, Right parent). If all these steps are successfully
performed, we identify a build conflict caused by integrator changes.

Unavailable Method — Integrator source code changes

If parent’s contributions are not conflicting, we further investigate the changes performed
by the integrator. To illustrate how we classify Unavailable Symbol conflicts caused by integrator

3.4. CLASSIFYING CONFLICTS 47

Figure 3.7: Build log of errored process due to contributor changes

Compilation failure
[ERROR] /home/[...]/downloader/HttpClientDownloaderTest.java:[128,24]
cannot find symbol
[ERROR] symbol: method putParams(java.lang.String,java.lang.String)
[ERROR] location: variable request of type us.codecraft.webmagic.Request

Figure 3.8: Original version of GumTree diff for integrator changes

//Request.java
// Diff between Left <74110e6> and Merge Result <fe95a68>
Delete SimpleName: putParams(355)

// Diff between Right <395396c> and Merge Result <fe95a68>
Delete SimpleName: putParams(433)

changes, consider the merge scenario in the Webmagic project.4 Both merge parents change the
same file area of a class leading the integrator to a merge conflict. After the integrator fixes the
conflict, the resulting build presents an errored status on Travis, as can be seen in Figure 3.7.

The build fails because a test case of HttpClientDownloaderTest (main class) references
the missing method putParams no longer available in the Request class (secondary class).
Analysing the syntactic base-parent-diffs of the Request class, no parent removed the declaration
of the missing method. Nevertheless, the parent-merge-diffs show the removal of the missing
method in both parents as presented in Figure 3.8.

Thus, we conclude the integrator removes the missing method after the merge integration.
The change performed by the parents are not conflicting, but the contributor changes introduces
the cause of the broken build. Based on this idea, our approach is done:

� Step 1: Verification of missing element removal in both Secondary class parent-
merge-diffs. If true, we conclude a build conflict happens due to integrator changes.

Unavailable Method — Integrator configuration code changes

If changes on source code do not cause an errored build, we further investigate whether
changes on project dependencies can cause a build conflict. For example, in the Solo project, an
errored build is caused by unavailable symbol (Figure 3.9).5

Despite the missing symbol in the Markdowns class, only the Right parent performs
changes in configuration files and source code. Some of the modification in the configuration

4Build ID: leusonmario/webmagic/237768118 - Merge Commit: fe95a68
5Build ID: leusonmario/solo/260314193 - Merge Commit: bc6fa3b

3.4. CLASSIFYING CONFLICTS 48

Figure 3.9: Build log of errored process due to missing dependency

Compilation Failure:
[ERROR] /home/[...]/solo/util/Markdowns.java:[53,15] cannot find symbol
[ERROR] symbol: class PegDownProcessor
[ERROR] location: class org.b3log.solo.util.Markdowns
[ERROR] /home/[...]/solo/util/Markdowns.java:[53,55] cannot find symbol
[ERROR] symbol: class PegDownProcessor
[ERROR] location: class org.b3log.solo.util.Markdowns
[ERROR] /home/[...]/solo/util/Markdowns.java:[53,72] cannot find symbol
[ERROR] symbol: variable Extensions
[ERROR] location: class org.b3log.solo.util.Markdowns

file (pom.xml) is to use new dependencies.6 Left parent changes only configuration files (POM

and travis.yml); one of these changes in the POM file is in the same area changed by Right.
Consequently, merge conflicts arise leading the integrator to fix them. Nevertheless, during the
fixes, the new dependency added by the Right parent is removed by the integrator leading to a
broken build. In this scenario, the dependency removed by the integrator during merge conflicts
is responsible for the broken build.

In such cases, we perform a manual analysis to ensure the build conflict occurrence is
caused by dependency issues and categorize its motivation (contributor or integrator changes).

3.4.2 Classifying Conflicting Contributions on Test Conflicts

As presented in Table 3.1, we identify two possible causes of test conflicts, which we
detail as follows (step 3 in Figure 3.1).

Failed Test Cases

Problems during the testing phase of a build process are often caused by failed test cases,
which may be motivated by failures as also errors during the test execution. Failures represent
an unexpected software behavior, while errors represent the incapability of executing a test
case due to unexpected operations.7 This leads to failed builds as discussed previously in this
section (see Table 3.1). Travis log contains for such build process the set of failed test cases,
also indicating for each failed test case, the file containing its declaration. For example, in one
build of the Cloud-Slang project,8 only the test case testSubscribeOnAllEventsWithListener of
the SlangImplTest class fails because of a unexpected software behavior. Figure 3.10 presents
the associated test log highlighting the failed test case.

To ensure test case failure occurs because of the intersection of parent’s contributions
and not by external causes, we decided to individually execute each failed test case again. To

6Pegdown: https://mvnrepository.com/artifact/org.pegdown/pegdown
7These terms come from build manager tools reported as output for each build process.
8Build ID: CloudSlang/cloud-slang/75814949 - Merge Commit: 20bac30

3.4. CLASSIFYING CONFLICTS 49

Results:
Failed tests:
SlangImplTest.testSubscribeOnAllEventsWithListener:
Tests run: 14, Failures: 1, Errors: 0, Skipped: 0

Figure 3.10: Failed test case on failed build process

evaluate whether the methods and classes exercised during the execution are also changed by the
parents commits, we also analyze the coverage of this individual re-execution of the failed test
case (using syntactic diffs). If a failed test case exercises source code changed during parent’s
contributions, these changes might have a direct impact in the unexpected software behaviour.
In the other side, source code changed during parent’s contributions, but not exercised by the
failed test, do not have any impact in the failure since it is not part of the software behavior scope
evaluated by the test case.

Our scripts analyze the Travis log identifying the failed test case and the associated class.
With such information, we use Travis to perform a new build process restricting the testing phase
for each failed test case. We re-execute the failed test case since any external problems could be
responsible for the fail. For example, parallel tests execution or the unavailability of a required
external server. This is done in two phases: (i) test case execution and (ii) analysis of code
coverage and parent’s contributions.

Phase 1 - Test Case Execution

In the first phase, just like the approach used for building non-built commits in merge
scenarios (see Section 3.2), we continue to use Travis to run the build process. However, this
time, our scripts do not only perform resets. Since for computing code coverage information, one
has to change configuration files adding a new dependency for a tool responsible for generating
the coverage. Additionally, it is necessary to deploy this information out of Travis environment.
So our scripts reset the head of the our fork project to point to the merge commit associated
with the failed build and adapt the configuration files to our needs (coverage generation and
deployment on GitHub using tags for each commit). After the test case execution, we instrument
our scripts to save the coverage associated with each test case in GitHub.

Initially, our scripts instrument the POM file with a new dependency (Coverage). Addi-
tionally, we introduce a new dependency, the Maven Surefire plugin, to allow the execution of
a single test case during the build process. In the same way, our scripts change the travis.yml

file to ensure the build process will only execute the steps necessary until the testing phase start.
Thus, if the travis.yml file has instructions for deployment, they are removed and discarded. The
approach adopted for adapting travis.yml file is detailed in Appendix C.

After all changes are performed, we commit and push the new changes to GitHub
associating each commit with a Git tag in the commit message. It is important to mention that a
failed build can be associated with one or more failed test cases. Since we perform for each one

http://cobertura.github.io/cobertura/http://cobertura.github.io/cobertura/
http://maven.apache.org/surefire/maven-surefire-plugin/

3.4. CLASSIFYING CONFLICTS 50

a new build process, we also associate them with an exclusively Git tag. Each tag will be used to
deploy the coverage in GitHub as also to download it during the next phase.

Phase 2 - Parent Contributions and Coverage Analysis

As the previous phase generates the code coverage for a failed test case, we aim to
verify whether the coveraged files involved in the test case execution are also changed during
the parent’s contributions. So this phase is responsible for evaluating the code coverage and
syntactic parent-merge-diffs information.

There are two types of changes we can evaluate about the classes changed by parent’s
contributions: class structure or methods. This observation is important since methods of a
class can be exercised, and the parent’s contributions did not change these methods but the class
structure (information provided by syntactic diffs). For example, the type of an attribute, which
is used in one method not changed by Left, can be modified during a contribution of Right. Our
scripts do not capture such change nature, but they can identify that changes happen in the related
class. We consider these changes can also reflect in direct or indirect impact in the test execution
failure. All this information reflects the scope of source code involved in the test case execution
until the failure occurrence. That means, the combination of these changes causes the failed test
case.

For getting class structure changes, we consider any change done in a class, which can
be identified through the original GumTree report. Although GumTree presents all changes
performed between two files, it does not associate the changes with their methods. Nevertheless,
to perform part of this analysis in this step, our scripts must know the changed methods. To solve
this issue, we improve the GumTree tool report by adding the information of related methods
into diff reports when it applies.9

After the test case execution, we download the coverage information from GitHub
releases. The coverage file presents, for each Java class in the project, its set of methods
(independently of exercised or not). For the exercised methods, a value different from zero (0)
is assigned to the coverage attribute meaning that some part of the method is exercised. After
parsing this file, we have only the list of files with their exercised methods.

Considering the example of failed test case presented previously (see Figure 3.10), in
Table 3.3, we present the coveraged and changed files involved in the test case. Despite many
changes performed by each parent, only the changes in SlangImpl class are exercised in the
failed test case, specifically, the method getAllEventTypes. So we identify a dependency between
the parent contributions. Based in this idea, we analyse the coverage results and the files changes
during parent’s contributions looking for two types of dependency, as presented in Figure 3.11:

� The first possible dependency (A) looks for an intersection among the changed classes
by the parent’s contributions and the code coverage results (Figure 3.11). If (A) is not

9https://github.com/leusonmario/gumtree/commit/b582cdb

3.4. CLASSIFYING CONFLICTS 51

Table 3.3: Covered and Changed Classes involved in Test Conflict

Parent Classes Changes
Left SlangImpl getAllEventTypes (method)

Right SlangImpl getAllEventTypes (method)

Figure 3.11: Test conflicts analysis
Orange and blue circumferences represent the set of changed classes by each parent, while
yellow the set of exercised classes by the test case. (A) Intersection among exercised and

changed parents classes. (B) Intersection between exercised and changed classes for each parent.

empty, merge parents change same classes involved in the failed test case execution.
For these classes, our scripts also verify whether changes on methods, class structure
or both are involved in this potential dependency.

� The second dependency (B) lies on an intersection of exercised and changed files by
a single contributor (Figure 3.11). In this case, if any (B) is not empty, we assume
the associated parent performs changes on dependent files (called at any time during
the test case). For example, Left can modify a method of class, which calls a second
method from another class changed by Right.

Additionally, we verify whether changes happen in the failed test cases leading us to
consider interferences between changed classes and test cases (new, changed or old test cases).
For instance, a parent can change a test case structure, while the other updates methods exercised
during the test execution.

We consider as test conflicts failed test cases of all nature (new, changed or old test cases).
This observation is important since even if a new test case (included in the project by one parent
during the merge scenario) fails, such failure is resulted of intersection between the parent’s
contributions impacting the software behavior as such failed test case presented passed status
before the integration.

Unachieved Coverage Metrics

The other type of test conflict we consider is related to coverage metrics on source code

3.5. RESOLUTION PATTERNS IDENTIFICATION 52

Figure 3.12: Build log of failed process due to unachieved metric

Build failed to meet Clover coverage targets: The following coverage targets
for null were not met:
[ERROR] Total coverage of 93.3% did not meet target of 100%
[ERROR] Method coverage of 95% did not meet target of 100%
[ERROR] Statement coverage of 92.5% did not meet target of 100%
[ERROR] Conditional coverage of 94.4% did not meet target of 100%

that is done after the test execution. In this situation, the coverage metrics established for the
project are not achieved. For example, in JJWT project, the coverage metric defined previously
for the project is not achieved, as presented in Figure 3.12.10

For these scenarios, we do not run any test case since the conflict happens due to the
not-achievement of the metric defined previously. To rerun the test suit would produce the same
coverage results ensuring the test conflict.

3.5 Resolution Patterns Identification

To identify the resolution patterns adopted for build and test conflict fixes, and who is
responsible for applying the fixes, we look for fix commits. As a fix, we consider a commit that
is associated with a superior build status and immediately follows a merge commit associated
with a broken build. In this way, a commit fix has as its parent the merge commit. Nevertheless,
a commit fix may be a merge scenario (the fix commit has two parents, and one of them is the
merge commit). For example, on the Okio project, we have the information of the merge and
its fix commit presented in Figure 3.13. In this case, the fix commit d07412c has as one of its
parents the merge commit ffc28d6.

Since we have the commit fix, we check its build status. If the fix does not present a build
on Travis, or its build status still presents the broken status, we try to identify the next commit
using now the previous fix as the parent commit. We adopt this strategy because many attempts
can be performed trying to fix the conflicts until the fix is achieved. In the same way, a conflict
fix can be performed, but after that, other commits can be done. Consequently, the last commits
will have a build on Travis instead of the commit fix. We do this process until we identify a fix
commit with a build status that reflects a fix. For build conflicts, we consider as a valid build
status failed or passed status. For test conflicts, we consider only the passed status as a valid one.

Once we identify the commit fix, we extract its info using Git API, and who is responsible
for the resolution.11 For that, we extract the name of the author commits (merge parents and fix
commits) and check whether they are the same person. In our example, the developer is involved
in the merge commit and also in the fix.12

10Build ID: jwtk/jjwt/280062604 - Merge Commit: 8cfc9f5
11git cat-file -p <commit>
12We omitted the name of the developers involved in the commits due to ethical issues.

https://github.com/square/okio/commit/d07412c
https://github.com/square/okio/commit/ffc28d6

3.5. RESOLUTION PATTERNS IDENTIFICATION 53

Figure 3.13: Commits information to identify commit fixes

Commit Fix: d07412c
tree 1d0fcc756d746d3878e30106a7fa6ed239ae091a
parent ffc28d67927d01c2900f3646710e564fc945cd7a
parent a462d119ab0dd445022e9be00439acb268a113b3

Merge Commit: ffc28d6
tree ccf9ec544d232ff5f859d0a74cad8d8992722a61
parent 755bde66369d61a11432810dcda61a5043428068
parent 7a9dd8c8c9e0096ba89d9d21960d0eda70de3753

As we identify a commit fix, it is important to know this commit can hold not only
changes for fixing the conflicts but also other changes not related. Nevertheless, our approach to
verify the resolution patterns is based on the the conflicts causes, which we already know. In this
way, we only analyze changes in the classes involved in the conflict. Changes not related with
the conflict fix do not impact our approach.

Each kind of conflict has its approach to identify the resolution patterns, which are
presented in next sections.

3.5.1 Resolution Patterns for Build Conflicts

After finding the fix commit, based on the build conflicts causes and the related infor-
mation (see Table 3.2), we can analyze whether the involved classes in the conflict are changed.
Consider as an example, a build from Quickml project that fails because of a reference for a
method declaration that is no longer available, as presented in Figure 3.14.13

To check how this conflict is fixed, we apply GumTree tool for computing the changes
between the merge commit of the broken build and its commit fix (merge-fix-diff).14 Based
in the information extracted from Travis log (see Table 3.2), we analize the involved classes
looking for pre-defined resolution patterns. As can be seen in Figure 3.15, the call for the method
(missing symbol) is removed from the Main class. This resolution patterns makes clear how the
fix adopts the conflict to the new project state. Instead of reintroducing the missing method or
even updating the method signature to its old one, the request is removed meaning such reference
is not critical to the new project state.

As a conflict might be fixed using different resolution patterns, we further analyze
the merge-fix-diff trying to identify other patterns. We identify resolution patterns checking
manually some fixes leading to get its related message patterns (extracted from syntactic diffs).
For that, we try to match different message patterns into the merge-fix-diff. The other resolution
patterns we consider for this conflict are:

13Build ID: sanity/quickml/53571613 - Merge Commit : 62a2190
14Build ID: sanity/quickml/53575229 - Merge Commit: f98e5eb

3.5. RESOLUTION PATTERNS IDENTIFICATION 54

Figure 3.14: Build log of errored process due to unavailable symbol

Compilation failure:
[ERROR] /home/[...]/StaticBuilders.java:[67,116] cannot find symbol
[ERROR] symbol: method ignoreAttributeAtNodeProbability(double)
[ERROR] location: class TreeBuilder<quickml.data.ClassifierInstance>

Figure 3.15: GumTree diff for commit fix

//StaticBuilders.java

// Diff between Merge <62a2190> and Fix Commit <f98e5eb>
Delete SimpleName: ignoreAttributeAtNodeProbability(224) on Method

getOptimizedDownsampledRandomForest

� Missing symbol reintroduction: in the Secondary class diff, we look for the addi-
tion of the missing symbol in the class using the message pattern:
Insert SimpleName: {missing_symbol_identifier}

� Reference removal: in the Main class diff, we look for the removal of the reference
for the missing symbol using the pattern:
Delete SimpleName: {missing_ symbol_identifier}.

� Reference update: update of the reference (missing symbol) for the new symbol
identifier in the Main class diff using the pattern:
Update SimpleName: {missing_ symbol_identifier} to

{new_method_name}.15

For cases our scripts could not identify the resolution patterns, we perform a manual
analysis. The approach for the other conflicts are detailed in Appendix B.

3.5.2 Resolution Patterns for Test Conflicts

For test conflicts, we manually check for the adopted resolution patterns. For failed test
cases, our analysis is based on two kinds of changes:

� Update on test case: We verify whether the test class and the failed test case are
changed in the fix commit;

� Exercised changes updated: The second verification looks for changes in the set of
classes and methods changed that are involved in the test case failure. These changes
can be in methods as also in the class structure. In case of changes in methods, only

15The new method name is not known. However, the important aspect is that the missing method name is involved
in an action of name update.

3.5. RESOLUTION PATTERNS IDENTIFICATION 55

those involved in the failed test case execution are verified. For example, the methods
presented in Table 3.3.

For test conflicts from dynamic analysis, we look for changes in metrics parameters as
also on the source code.

565656

4 RESULTS

Given the design presented in Chapter 3, we perform an empirical study to check the
frequency, causes and resolution patterns adopted for build and test conflicts. This chapter
details our results answering our research questions. Initially, we mine source code repositories
from GitHub and build information from Travis CI. After the sample selection, we filter merge
scenarios (60991 from 529 projects) to select conflicts and understand their causes. For the
identified build and test conflicts, we investigate the adopted resolution patterns for fixing them.

4.1 Research Questions

Considering the motivation and strategy described in Chapters 2 and 3, respectively,
we want to verify the frequency of build and test conflicts, as also to understand the causes,
resolution patterns and conflict fixer. In summary, we investigate the next research questions:

� Research Question 1 (RQ1) - Frequency: How frequently do build and test conflicts
occur?

� Research Question 2 (RQ2) - Causes: What are the structure of the changes that
cause build and test conflicts?

� Research Question 3 (RQ3) - Resolution Patterns: What are the resolution patterns
adopted to fix build and test conflicts?

� (RQ3.1) - Fixer: Who does fix build and test conflicts?

4.1.1 RQ1: How frequently do build and test conflicts occur?

To answer RQ1, we measure the rate of broken builds resulting from build and test
conflicts. After selecting merge scenarios and discarding non conflicts (see Chapter 3), we found
125 build conflicts and 39 test conflicts (7th row in Table 4.1). Analysing the number of merge
scenarios associated to build and test conflicts in comparison to merge scenarios presenting
broken builds and superior parents status (473 and 864, for errored and failed status respectively,
6th row in Table 4.1), we have a better notion of the relevance of the incidence of conflicts during
development, by computing the proportion of build and test problems caused by conflicts. Under
such perspective, the percentage of build and test conflicts are 24,73% and 0,81%, respectively.

4.1. RESEARCH QUESTIONS 57

Table 4.1: Broken builds caused by build and test conflicts.

Number of Projects 529
Analyzed Merge Scenarios

(MS) 60991

MS with Broken Builds 16076 (26.36%)
7506 (Errored, 12.30%) 8570 (Failed, 14.05%)

Broken MS / Superior parents
status

1337 (2.19%)
473 (Errored, 0.78%) 864 (Failed, 1.42%)

MS with Conflicts
117 errored builds (125

build Conflicts)
7 failed builds (39 Test

Conflicts)

All percentages are calculated considering the total of merge scenarios. Analyzed merge
scenarios (MS) represent all merge scenario we analyzed in this study (second row). MS with
broken builds group only merge scenarios associated with errored and failed builds (third row).

Fifth row presents the rate of broken builds from MS with their parents presenting superior
status. Seventh row represents the merge scenarios with broken builds caused by build and test

conflicts. Note that more than one conflict can be associated with a broken build.

So, roughly, 1 in 4 build problem is caused by a conflict in errored builds, whereas the others
are caused by a single developer mistake, configuration issues, unresolvable dependencies or
unavailability of external services finishes the build process. As these other causes quite often
happen in our experience and are reported in other studies [2] [8], we can conclude the occurrence
of build conflicts might be quite relevant.

Based on these finding, we notice the percentage of test conflicts is low. Such observation
is motivated by not only the nature of the tests (projects without good test coverage) but also
limitations of our scripts. For example, in failed builds, some failed tests when executed alone
do not present errors leading us to conclude the environment circumstances are responsible for
the failure (resource unavailability or parallel tests execution). In other failed builds, despite the
failed status, the Travis log does not report the failed test case impairing our analysis.

Considering all merge scenarios (60991, second row in Table 4.1), the percentage of build
and test conflicts decreases to 0,19% and 0,01%. We believe the low number of conflicts in our
sample is due to the use of Continuous Integration (CI) and Maven. With automated build and
testing processes in these projects, developers can easily build and test their contributions before
sending them to the main repository. They are often, by project guidelines, required to locally
merge their contributions with the current main repository contributions before submission for
approval or final integration. This way, we assume most test and build conflicts are actually
detected and resolved locally, in the contributor’s private repository.

As our study analyzes only the main public repository, we do not have access to prob-
lematic merge scenarios that were locally amended before reaching the main repository. Con-
sequently, ours numbers reflect the number of conflicts that reached main repositories, not
the actual number of conflicts that happened and had to be resolved. This justifies the high
percentage of scenarios with successful build process. This might be also a consequence of

4.1. RESEARCH QUESTIONS 58

developers practices such as committing early and often, which often results in an increased
number of merge scenarios with small contributions that are unlikely to conflict and change build
status.

As can be seen, more than one conflict can be associated with a merge scenario; in our
results, 125 build conflicts for 117 errored builds and 39 test conflicts for 7 failed builds (seventh
row in Table 4.1). In case of build conflicts, the build and compilation phase of a build process
only stops the process in the end of the phase. It means, even if during the phase problems occur,
the phase still continues to execute until its end. Only when the phases ends, the problems are
reported, and the build process cannot continue (broken build). For test conflicts, a test suit is
composed of many test classes. In the same way, the failure of one case does not impact the
testing phase until it ends.

Although we use automatized scripts for the whole study, some scenarios of build con-
flicts could not be automatically evaluated due to lack of information or limitations in our scripts.
For these special scenarios (42 cases, 33,6% of the analyzed scenarios), we perform a manual
analysis. In the end, the conflicts were classified as Unavailable Symbol due to Project (22, all
related to unavailable files), Unavailable Symbol due to Dependency (1), Unimplemented Method
(3, all of related to Super Type), Incompatible Types (3) and Project Rules (13), represented in
Table 4.3 with an asterisk (*). All build and test conflicts identified are available in Appendix E.

In test conflicts, we notice failed builds (18 cases of different merge scenarios) that
should been errored process. Such problem happens when a project is composed of modules,
and only some are involved during the build process. Therefore, when test cases, involving those
modules not built yet, are executed, these modules are built occurring unexpected build conflicts.
Despite such anomaly, we do consider such cases, counting them separately as build conflicts
(numbers presented in Table 4.3 between brackets). All cases are available in Appendix E (Table
E.2).

Thus, we conclude that build and test conflicts happens less in our sample than compared
to related work. We believe these conflicts happen more than reported by our results, but they
are fixed in developers workspace before they are sent to GitHub. Furthermore, more than one
conflict might be responsible for breaking a build process of a merge scenario.

4.1.2 RQ2: What are the structure of the changes that cause build and test conflicts?

Based on conflict occurrence, we proceed with further analysis to answer RQ2 identifying
the associated causes. Table 4.2 shows the causes and their descriptions grouped by cause
categories and type of conflicts (third and fourth column, respectively). Additionally, Tables 4.3
and 4.4 present the frequency for each cause associated with each kind of conflicts. The list of
causes in the table corresponds to the causes identified in our sample. Enlarging the sample likely
will not reveal new causes because, as explained previously, in open-source projects, developers
might treat the conflict occurrence before sending contribution to the final central repository.

4.1. RESEARCH QUESTIONS 59

Table 4.2: Causes of build and test conflicts

Conflict Type Cause Name Description

Build Conflict

Syntax Malformed Program
Files do not present valid
program

Static Semantics

Unimplemented Method
Class does not implement a
method associated with an
interface

Duplicated Declaration
Two or more elements de-
clared with the same identi-
fier

Unavailable Symbol

Reference for a missing ele-
ment in the source code
Reference for an element
not provided by the project
dependencies

Incomp. Method Signature
Reference for a method with
wrong number of parame-
ters or types

Incomp. Types
Type mismatch between pa-
rameter and argument, or
between result type and ex-
pected type

Other Static Analysis Project Rules
Files do not follow the
projects guidelines

Test Conflict

Dynamic Semantic Test Failures
Passed test cases fails due to
contribution integration

Other Analysis Unachieved Coverage
Coverage result does not
achieve the expected level
for the project

4.1. RESEARCH QUESTIONS 60

Ta
bl

e
4.

3:
D

is
tr

ib
ut

io
n

of
bu

ild
co

nfl
ic

tc
au

se
s

by
ca

te
go

ry
an

d
m

ot
iv

at
io

n

C
ha

ng
es

So
ur

ce

B
ui

ld
C

on
fli

ct
C

au
se

s
Sy

nt
ax

St
at

ic
Se

m
an

tic
s

A
SA

T
M

al
f.

Ex
pr

es
.

U
ni

m
p.

M
et

ho
d

D
up

lic
.

D
ec

la
ra

t.
U

na
va

ila
bl

e
Sy

m
bo

l
In

co
m

.M
et

h.
Si

gn
at

ur
e

In
co

m
.

Ty
pe

s
Pr

oj
ec

t
R

ul
es

Pr
oj

ec
t

D
ep

en
d.

Pr
oj

ec
t

D
ep

en
d.

C
on

tri
bu

ito
r

Pr
es

.
3*

(2
.4

%
)

2
(1

.6
%

)
28

*
(2

2.
4%

)[
15

]
5

(4
.0

%
)

1
(0

.8
%

)
6

(4
.8

%
U

np
re

s.
21

(1
6.

8%
)

1
(0

.8
%

)
3*

(2
.4

%
)

13
*

(1
0.

4%
)

In
te

gr
at

or
Pr

es
.

2
(1

.6
%

)
1

(0
.8

%
)

9
(7

.2
%

)[
1]

5
(4

.0
%

)[
1]

U
np

re
s.

6
(4

.8
%

)
4

(3
.2

%
)

3
(2

.4
%

)
8

(6
.4

%
)[

1]
1*

(0
.8

%
)

3
(2

.4
%

)
To

ta
l

6
(4

.8
%

)
6

(4
.8

%
)

3
(2

.4
%

)
6

(4
.8

%
)

66
(5

2.
8%

)
1

(0
.8

%
)

14
(1

1.
2%

)
4

(3
.2

%
)

19
(1

5.
2%

)

T
he

co
nfl

ic
ts

ar
e

gr
ou

pe
d

in
tw

o
pe

rs
pe

ct
iv

es
of

ca
us

es
:c

on
tr

ib
ut

or
an

d
in

te
gr

at
or

ch
an

ge
s.

Fo
re

ac
h

pe
rs

pe
ct

iv
e,

m
er

ge
sc

en
ar

io
s

ar
e

cl
as

si
fie

d
in

pr
es

er
ve

d
(P

re
s.

)
an

d
un

pr
es

er
ve

d
(U

np
re

s.
)

sc
en

ar
io

s.
*

in
di

ca
te

s
so

m
e

ca
se

s
of

su
ch

ca
te

go
ry

w
er

e
ch

ec
ke

d
m

an
ua

lly
.N

um
be

rs
be

tw
ee

n
br

ac
ke

ts
([

])
in

di
ca

te
bu

ild
co

nfl
ic

ts
fr

om
fa

ile
d

bu
ild

s.

4.1. RESEARCH QUESTIONS 61

Most build conflicts are due to Unavailable Symbol

The most frequent cause of build conflicts is Unavailable Symbol (52,8% that represents
a reference for a missing element in the source code). Such missing symbol can manifest in
different ways, as also involving one or more classes. Among the Unavailable Symbol causes,
the most recurrent missing symbols are classes taking 38,4% of all build conflicts. Unavailable
Method (5,6%) and Variable (8,8%) are cases that the missing symbol and its associated reference
can be in the same class as also in dependent ones. For example, in the Okhttp project, the
build breaks because of changes to an available parameter.1 Both parents change the method
read. Left removes the parameter deadline and all references for it, while Right adds a new
verification using this parameter. Since the changes are not in the same file area, no merge
conflict happens. As result, the symbol deadline introduced by Right is neither declared as a
parameter nor declared as a local variable, but is referenced in the method body breaking the
build process.

The second most recurrent cause takes 15,2% of all build conflicts, and it is not motivated
by a problem during the build and compilation phase but due to an nonconformity of Project

Rules. This particular case do not involves direct or indirect dependencies among classes as the
project style conventions must be followed for the whole project.

Duplicated declaration is another conflict cause involving only one class. For example,
in Web Magic project, both parents add the main method declaration in the HuxiuProcessor class
in the same file region. Despite the occurrence of a merge conflict, all parents contributions are
preserved (two methods with the same signature) leading the build process to break.2 A similar
case happens in the Blueprints project, when two test cases are declared with the same signature
(testRemoveNonExistentVertexCausesException) in the test class GraphTestSuite.3 Comparing
the source code of the duplicated methods, in both cases they present the same structure allowing
us to conclude one parent copied it from another resulting in the broken build when integrated.

Integrator changes do cause Build Conflicts

Although most build conflicts are caused by contributors changes (66,4%), integrator
changes performed after the integration are responsible for 33,6% of all build conflicts. In this
situation, the number of conflicts on unpreserved merge scenarios is higher (20%, 8th row in
Table 4.3) than on preserved ones (13,6%, 7th row in Table 4.3). This frequency of build conflicts
caused by integrator changes is an evidence that related work do not evaluate.

Besides to identify these new cases of conflicts, we also investigate the motivation
behind them. Such cases occur when integrators change the merge integration result before
committing it. These changes might be motivated by merge conflicts or even the addition

1Build ID: square/okhttp/19399475 - Merge Commit: 9dfeda5
2Build ID: leusonmario/webmagic/243501513 - Merge Commit: a2fba8c
3Build ID: leusonmario/blueprints/267833702 - Merge Commit: 5a25e3a

4.1. RESEARCH QUESTIONS 62

of new contributions. This confirms our experience that fixing conflicts of contributions of
other developers is often challenging and an error-prone activity. For example, in the CorfuDB
project, the AbstractViewTest class has the method declaration getDefaultRuntime requiring no
parameter.4 During parent’s contributions, both parents change such method. Left changes the
method body, while Right adds a parameter and introduces another method with a different
signature but without requiring parameters. Additionally, Right also add a reference for the
parametrized getDefaultRuntime of AbstractViewTest class in ObjectsViewTest class. Since the
parents change the same file area of AbstractViewTest class, merge conflicts arise. To fix the
conflicts, the integrator keeps only the Left contributions discarding Right changes for this
specific class. However, all Right contributions for ObjectsViewTest class are preserved in the
merge scenario as only Right changes this class. As result, the reference for parametrized method
getDefaultRuntime in ObjectsViewTest class fails as the available method with such name in
AbstractViewTest class has no parameter. In this case, the actual method cannot be applied
representing a case of Incompatible Method Signature.

Concerning about the preservation of parent’s contributions in merge scenarios with
build conflicts, Table 4.3 presents the frequency of conflicts grouped under two perspectives:
contributor and integrator changes. In our sample, 49,6% of all build conflicts happen in
preserved merge scenarios (all parent contributions are preserved) than on unpreserved ones
taking 50,4% of all cases (at least one parent contribution is discarded). Despite the percentage
for each merge scenario perspective, it shows how often parent’s contributions are discarding
during merge integration. Most of these cases are motivated because of merge conflicts fixes,
which lead integrator to introduce inconsistencies in the source code.

We also notice that more than one conflict causes might be associated with a single
errored build. For example, in the Pac4J project, the build breaks because of two distinct causes:
Unimplemented Method and Unavailable Symbol.5 In this case, the integrator changes are
responsible for the failure. So the total numbers we present in the Table 4.3 are actually greater
than the sum of errored builds associated with merge scenarios.

In the DSpace project, a similar case happens in a preserved merge scenario.6 This
time, a merge commit build breaks because of three causes: Incompatible Method Signature,
Incompatible Types and Unavailable Symbol (class). Nevertheless, only the first cause is
motivated by the integrator changes, while contributor changes are responsible for the other
causes. Interesting in this case is how the integrator introduces the inconsistencies. The attempt
to use a method passing a different parameter list is introduced only in the merge commit. The
class containing this reference is not even present in the merge and base commits. Curiously, the
class holding the method reference is also introduced during the merge commit making clear the
integrator confusion.

4Build ID: CorfuDB/CorfuDB/147270257 - Merge Commit: d4f1845
5Build ID: leusonmario/pac4j/291006785 - Merge Commit: 827b7d8
6Build ID: leusonmario/DSpace/263379307 - Merge Commit: 049eb50

4.1. RESEARCH QUESTIONS 63

Table 4.4: Distribution of test conflict causes by category

Changes on
Methods

Test Conflict Causes
Failed Tests Unachieved

CoverageNew Old Changed
Same 1 (2.57%)

1 (2.57%)Dependent 2 (5.12%)
Both 8 (20.51%) 21 (53.85%) 6 (15.38%)

Test conflicts caused by failed tests are classified as new, old, and changed test cases (second,
third and fourth columns, respectively). For each failed test case, the files changed by the parents

and involved in the test execution are classified based on the type of changes. Parents might
changer same and dependent files, or both type of changes (fourth, fifth, and sixth rows,

respectively).

Most Test Conflicts are motivated by Dependent Changes

As presented in Table 4.4, most test conflicts are caused by failed test cases (97,43%,
2nd-4th column). In such circumstances, almost 90% of the parent’s contributions change
same or dependent classes, which are involved in the failed test case execution. It means, the
intersection of changes directly impact on the software behavior. Among the failed test cases, we
observe difference related to the nature of the test cases. For example, most failed cases in test
conflicts happen due to old test cases (56,42%, third column). In the other side, test conflicts are
also caused by updated test cases (20,5%, fourth column) or even new ones introduced by one of
the parents during the merge scenario (20,51%, second column). Such perspective makes clear
how different contributions affect each other even for a new test case included in the project.

An example of a test conflict happens in the Wire project. Left parent updates the test
case while Right updates some of the methods exercised by the test case.7 Although the changes
are not in the same file, when integrated, they result in a test conflict. Another case happens
in the Cloud Slang project when the parents change the same method.8 This case makes clear
how the parent contributions worked without problems, but after the integration, the software
behavior changes leading to a test conflict.

Additional analysis performed after the testing phase can also bring test conflicts. In
this case, an Unachieved Coverage metric represents a conflict (2,57%, fifth column). It is an
unexpected cause since it involves the results of the whole test execution phase. After the merge
scenario integration, the metric coverage is bellow from the expected result.

Before commenting on specific test conflicts, it is important to mention many builds
present failed tests cases but our scripts could not extract the information about the failures.
Although we adopt only projects using Maven as build manager and instrument our script from
Travis logs, the message patterns just like in build conflicts may change impairing our extraction.

7Build ID: square/wire/81124823 - Merge Commit: 6664824
8Build ID: CloudSlang/cloud-slang/75814949 - Merge Commit: 20bac30

4.1. RESEARCH QUESTIONS 64

However, the patterns we already identified, they can be applied to adopt other build managers in
future experiments. Not necessarily the patterns could be reused, but they can guide the process
of inclusion since common failed test cases are reported in a similar way (test class with its failed
test case). In other cases, the problem is not in our scripts but in log report. For example, in
the Clocker project, the log report informs an error happens during the testing phase but neither
informs the file nor the associated test case.9 So our results are actually a rough lower bound on
the number of test conflicts. For replications of our study, our scripts must be probably updated
to compute new patterns of failed test case messages.

Besides this issue with log files, we also potentially miss test conflicts because, in a
number of scenarios, we could not properly instrument the code to obtain coverage information.
After instrumenting the code, we obtained compilation problems that break the build process. In
the Jedis project, for example, 4 different scenarios could not be evaluated due to unexpected
problems during the build and compilation phase. Since we remove some instructions of
travis.yml, it is possible such removal can be responsible for preparing the environment before
the build process start. However, after such removals, we had progress with the test conflicts
that we present here. In other case, we could successfully generate the instrumented build, but
none failure happens in the previous failed test case. Such cases brings evidences that depending
on environment conditions and resource unavailability, test cases fails only because adversed
situations (not an unexpected software behavior). For instance, we observed that in the Blue
Food project.10

4.1.3 RQ3: What are the resolution patterns adopted on build and test conflicts fixes?

After finding the conflicts and their causes, we identify the commits and respective builds
responsible for fixing them. Although all evaluated scenarios are from active projects, not all
conflicts present a fix commit associated with a build in Travis. In fact, fix commits could be
done, but following the fix, new contributions are performed. Thus, when the contributions are
sent to the main repository, no build is started for the fix commit as Travis starts a build process
only for the most recent commit of a push. Consequently, the last contributions are built on
Travis instead of the fix commit.

As motivated previously, only 43,2% of all build conflicts (54) are fixed and present a
build in Travis for the fix commit. These fix commit builds are important because they indicate
whether a conflict is truly fixed. For example, only a fix commit associated with a passed build
can be considered as a fix for a test conflict. For these commit fixes, our scripts analyze them
to identify the resolution patterns adopted. In the end, 29,6% of the resolution patterns related
to fix commits were identified automatically (16) by our scripts. The other resolution patterns
(66,6%) were identified by manual analysis (36). In two cases of the Databind project we could
not identify the fix pattern. In test conflicts, 57,14% of all cases are fixed, which represents 4

9Build ID: brooklyncentral/clocker/124410760 - Merge Commit: c13ed22
10Build ID: leusonmario/blueflood/315017416

4.1. RESEARCH QUESTIONS 65

Table 4.5: Resolution patterns for build and test conflicts

Conflict Type Category Name Solution

Build Conflict

Syntax Malformed Program Syntax Update (100%)

Static Semantics

Unimplemented Method

Unimplementable method imple-
mentation (50%)
Interface method removal (25%)
Interface method update signa-
ture (25%)

Duplicated Duplication
Removal of one duplicated decla-
ration (100%)

Unavailable Symbol

Reference removal for missing
element (37.04%)
Reference identifier update
(22.22%)
Import update (22.22%)
Dependency update (11.11%)
Missing element reintroduction
(7.40%)

Incomp. Methods Signature

Method request update (50%)
Method request removal (25%)
Method signature update
(12.5%)
Unsupported method reintroduc-
tion (12.5%)

Incomp. Types Type adaptation update (100%)

Other Static Analysis Project Rules
Adjust for style convention
(100%)

Test Conflict Dynamic Semantic Test Failures
Test case update (25%)
Changed same methods update
(50%)
Undo all changes (25%)

cases also checked manually. We now present the adopted resolution patterns for build and test
conflicts.

Resolution Patterns adapt the Project to its new state

The adopted resolution patterns basically adapt the project to the parent’s contributions
intention instead of discarding them and returning to an old project state (Table 4.5, fourth
column). Such behaviour is present in 65,38% of all fixes. For example, in the Quickml project,
the reference for the missing symbol ignoreAttributeAtNodeProbability in the TreeBuilder class
was updated to the new method signature attributeIgnoringStrategy.11 In the other hand, the
fix adopted in the Cloud Slang project does not follow the same practice.12 Instead of the
PreCompileValidatorImpl class implementing the new method validateResultName from the

11Build ID: sanity/quickml/53575229 - Fix Commit: f98e5eb
12Build ID: CloudSlang/cloud-slang/158196252 - Fix Commit: 8e9226f

4.2. DISCUSSION 66

PreCompileValidator interface, such method was removed from the interface.
In test conflicts, the changed methods associated with the test case failure execution are

also changed bringing evidence these methods are genuinely involved with the failure. This
happened in the Jedis project when the BinaryJedis class is changed.13 In another case, no
additional change was performed to fix the conflict. The solution adopted was to come back to
a previous commit (without test failures) discarding all changes.14 In the Cloud Slang project,
the fix adopted was to update the test case instead of the parent’s changes (changes on same
methods).15 For test conflicts motivated by unachieved coverage metric, we do not identify any
fix commit.

Most fixes are done by parent commit authors

Once the resolution patterns for build and test conflicts are identified, we investigate who
was responsible for the fixes. Most fix commits are done by integrators, who are also one of the
contributors involved in the merge scenario. For build conflicts, 88,46% of all fixes follows such
pattern. Such finding makes us think the motivations behind such high numbers. We believe
build and test conflicts are even worse when compared to merge conflicts forcing the contributor
to deal with them.

For test conflicts, all 4 merge scenarios with test conflicts are fixed by developers involved
in the associated merge scenarios. Such situation can be also motivated by the difficult behind
dynamic semantic problems.

4.2 Discussion

In this section, we discuss our results and implications, how they can be applied in
solutions, and also future work.

4.2.1 Conflicts are recurrent

Comparing our results with related studies, we conclude build and test conflicts happen
less than reported in the literature (0,19% and 0,01%, respectively). Kasi and Sarma [2] show
build and test conflicts occurrence ranges from 2% to 15%, while test ones range from 6% to
35%. In the same way, Brun et al. [8] present the occurrence of build and test conflicts together
ranged around 33%. This discrepancy can be justified for some limitations and bias in the related
studies. Related studies consider only merge commit builds to identify conflicts without also
checking parent builds. They also try to build the merge commit locally, consequently, any
change on environment configuration breaks build process leaving them to wrong conclusions.
The threats of our work is discussed in Section 4.3.

13Build ID: xetorthio/jedis/44295865 - Fix Commit: 46a34f2
14Build ID: xetorthio/jedis/59489279 - Fix Commit: a52902b
15Build ID: CloudSlang/cloud-slang/75925280 - Fix Commit: d67e404

4.2. DISCUSSION 67

Our findings bring not only information of build and test conflicts frequency from clean
merge scenarios but also unclean ones. Related studies consider only merge scenarios without
merge conflicts. Most build conflicts, 66,4%, arise from contributor changes (36% and 30,4%
for preserved and preserved merge scenario, respectively). In the other side, conflicts caused by
integrator changes is also expressive (33,6%, 13,6% on preserved merge scenarios, and 20% on
unpreserved). Build conflicts caused by integrator changes are due to merge conflict occurrence
requiring human intervention. Consequently, the integrator tries to fix the merge conflict but
introduces inconsistencies in the project.

Related to the build conflict causes, our results conform with the findings reported by Seo
et al. [17]. Although our results focus on specific cases of build errors caused by build conflicts,
Unavailable Symbol is the most recurrent cause of build errors in both studies. This reveals the
common mistake of removing or updating declarations, but possibly not updating all references
to the new identifiers. Assistive tools could be applied to anticipate the emerging conflicts, or
even treat them directly. In this way, they could alert during the tasks development that a new
reference for a symbol will fail during integration since the referenced symbol is removed by
other contributor (in case of build conflicts due to contributor changes).

Only conflicts caused by contributor changes could be anticipated by analysis of develop-
ers workspaces. Such assumption has a direct relationship with the fact that most build conflicts
involve different files (changes spread on dependent files), and new test cases may fail and lead to
test conflicts. For example, Assistive tools like Palantír [28] that consider developers workspace
as source information for predicting conflicts must be aware of dependent files independent of
when changes are performed.

Build conflicts are not restricted to happen involving only dependent files (one file
references another). Build conflicts of Malformed Program and Duplicated Declaration involve
only one single file. Investigating manually some cases, we verify such conflicts arise from merge
scenarios with merge conflicts. The occurrence of merge conflicts reflect how they indirectly
motivated other types of conflict, as also the weakness of merge tools to deal with them (textual
ones). The Duplicated Declaration cases could be actually detected by merge tools like S3M
[9]. Teams using this tool reduce the number of merge conflicts that truly are false positive. For
example, two different method declarations declared in the same file are is reported as a conflict,
while it is not. As commented previously, common merge tools bring many false positives
leading the integrator to deal with them. Better merge tools could decrease the number of false
positives, as also, avoid the unnecessary human intervention preventing build conflicts. We
explain in details application of our results in the next sections.

Build conflicts from unpreserved merge scenarios bring evidence that approaches for
automatically resolving conflicts could be applied independently of parent’s contributions preser-
vation in merge scenarios. For build conflicts, despite the distinct source of the causes, conflict
fixes are similar. For test conflicts, our scripts already identify the methods and files involved
in the failed test case. Thus, if these methods come from developers or integrator changes is

4.2. DISCUSSION 68

irrelevant since a support would be applied to this restricted set of changes.

4.2.2 Findings and Implications

Based on our results, we present here insights of how such knowledge could be used to
not only avoid build conflicts but also treat them. In this way, we propose improvements and
new features on existing assistive tools.

4.2.2.1 Awareness Tools

Awareness tools provide developers with information about the work of other developers
in the same project [48]. Many studies have proposed tools aimed to achieve such goal differing
each other in the way and applied awareness degree. Biehl et al. [49] propose a dashboard
showing edits performed by each developer. Despite the simplicity, developers must regularly
check the board because the report is shared on a screen for everyone. The idea is anyone can
be able to identify an emerging conflict and contact the developers interested. Also in this way,
Hattori and Lanza [50] present the Syde tool able to inform change and conflict information
across developer’s workspaces.

Even if these tools focus on merge conflicts and not specifically on build and test ones,
they could also identify emerging build conflicts for contributions performed on the same file,
especially in the same region. For example, duplicated declaration of variables with the same
identifier on the same scope is an example of build conflict that could be identified unexpectedly
by these tools. In such circumstances, build conflicts would be only verified whether developers
actively used the tool.

Nevertheless, the causes associated with changes across dependent files could not be
detected by such tools. In this way, Sarma et al. [28] propose a tool able to detect emerging build
conflicts when developers edit, simultaneously, dependent files. Our findings could be used for
covering new conflict causes not explored yet. For example, based on the Incompatible Method

Signature cause, awareness tools could alert a developer the method referenced by her has been
renamed by another developer. Thus, developers could already adapt their contributions or wait
for when the modifications had been finished, and they could continue the work. In the same way,
Unimplemented Method addition in interfaces could be supported requiring the implementation
of a new method by its new implementing classes.

It must be taken into consideration that applying this tool for all causes of conflicts
could distracting developers due to the high number of alerts and false positives. For the causes
presented previously, the tool could be applied but presenting different intensity of alerts. For
example, alerts for Unimplemented Method must be stronger than for Incompatible Method

Signature since the reference for a method can be removed but the implementation of a new
interface method must be implemented.

The support could also extend for dependent changes on the same file. For example, a

4.2. DISCUSSION 69

developer references a method/variable while another developer changes the type of the variable
or one of the methods parameter.

4.2.2.2 Automatic Repair Tools

Automated programs repair tools propose and select the better patch to automatically fix
failed programs without human effort [51]. The process works in three steps:

� Fault localization, the motivation behind the problem;

� Patches creation, different solutions can be applied to the same problem;

� Patch validation, a patch can be considered as valid if it can solve the fault.

Although many studies have explored different areas of semantic problems [52] [53],
build conflict causes represent an opportunity for further studies, as also to support known tools
for test failures. In the following sections, we present how our results could be applied in this
area to deal with build and test conflicts. For build and test conflicts, our scripts identify the files
involved in the conflict. This information reduces effort to the whole tool since the first step of
an automatic repair tool is already done.

Build Conflicts

For build conflicts, an tool could explore two categories, related to the causes associated
with the conflicts: (i) automatic and (ii) semi-automatic tools. Although automated program
repair works without human intervention, in the second tool category the user decides the most
appropriated patch to solve the problem. This constraint is essential once different solutions can
involve different semantics. We now specify each category, and how some build conflicts would
be treated by them.

Automatic tools represent genuine repair tools. Based on the causes, they could repair
directly the conflict by changing the source code. For instance, for the Unimplemented Method

cause (one implementing class does not implement a method introduced in its related interface),
the tool could identify such method implementation and use this implementation. Since a new
method is introduced in one interface, all associated classes with such interface must present an
implementation for this method. Thus, the tool could identify this implementation and replicate
it in the class that causes the build conflict.

In the same way, Unavailable Symbol causes could be treated but with some restrictions.
If the missing symbol was renamed in the Left parent, the tool could rename references to the
old name in the code of Right. This information our scripts already identify and could support
this step, which reflect in less effort. The same approach could be adopted if the symbol were
removed. In this case, the tool would reintroduce everything that has caused the build conflict
(removed by one of the parents). Missing class declarations must have particular attention since it

4.2. DISCUSSION 70

is possible they had just moved the files. Instead of reintroducing the file, which would introduce
inconsistencies in the project due to duplications, the tool would update the old import targeting
to the new file location.

The semi-automatic tool is able to identify more than one solution and require human
intervention to apply the solution. Although more than one solution could be applied to result
in a successful build, the way each solution is implemented would be directly depending on
the parent’s contributions. For example, two parents can declare two methods with the same
signature, but each one is responsible for different intentions. In this case, it does not make sense
to remove one of the methods since it performs a required work.

Thus, for Duplicated Declaration of methods, the tool would present different options
for resolutions:

� Removal of one duplicated method;

� Both implementations are kept, and a method signature update is done in one of the
duplicated methods, as also its call;

� Attempt to merge both implementations into just one method like semi- and structured
merge tools work.

Once the conflict is fixed, the tool would run the compilation and build phase from the
build process aiming to ensure the solution adopted fixes the conflict. If such phase presents
a successful status, it means the conflict is fixed and the changes can be saved in the local
repository as a new commit.

Test Conflicts

Duong et al. [52] present a tool able to generate a valid repair for failed suit tests. In the
same way, Tan and Roychoudhury [53] also propose an approach to repair software regression
based on the concept of reconciling problematic changes. To identify the changes responsible
for the fail, a first step is responsible for getting the diff of changes between two version files.
Based on such information, they try to combine changes, eliminating others until to find the
contributions responsible for the failure.

Our results about changed methods involved in the failed test case could support the
process of fault localization of both tools. To identify the changes responsible for the failure,
they consider the difference between two files. However, as we verified, not all changes involved
in parent’s contribution are directly associated with the a failed test. Our scripts could support
this process informing only the files involved in the failure as also changed by the parent’s
contributions. We believe such approach implies in less effort since the scope of changes is
smaller than considering all changes performed in two version files.

4.2. DISCUSSION 71

Figure 4.1: Improved messages for different unavailable symbol types

4.2.2.3 Better Guidelines Support for Developers

Build Conflicts

Travis build logs report how the build process works. However, for some errors, the
messages are not clear enough to understand the causes of the broken builds, which could lead
developers to spend more time than necessary. For instance, Unavailable Symbol file can be
caused by the removal of a file or just a location change, but the log simply reports the file is
not more available. Despite the information veracity, it can lead developers to think the file was
removed, and not consider the file was moved to another directory. As a result, he could put the
file on the old location introducing inconsistencies in the project.

Better support could report two different errors: Unavailable Symbol due to removal, and
file location change. For the last one, it could also inform the new file location (Figure 4.1). Such
improvement on the log report could be done by the build managers since they are responsible
for presenting how the build process works, but also by Travis. For example, after a broken build
process, Travis could internally evaluate the problem and present its own report for the broken
build cause.

Test Conflicts

In failed builds caused by failures in test cases, Travis log presents the related test file and
the set of associated failed test cases (see Figure 3.10). Like the report for compilation problems,
the message is too superficial leaving the developer without any support to identify the causes
of the failures. The common practice is debugging the code until the failure cause is identified.
However, this approach can lead developers to spend time on unnecessary tasks since not all
exercised methods during the execution are changed by parent’s contributions.

Experienced developers could look only for the code changed during the merge scenario.
Although this information can be accessed by git using refined commands, this process can be
difficult for git beginners. On the other way, even if such improvement reduces the scope of
work, we already verified not all source code changed in a merge scenario is involved in a failed

4.2. DISCUSSION 72

Figure 4.2: Prototype of assistive tool for test failures

test case. Therefore, developers would also be spending time on unnecessary tasks.
A tool could inform developers only the files (i) changed during the merge scenario and

also (ii) exercised by the failed test case. Our scripts can support such improvement since we
perform the analysis responsible for getting the required information. In the end, the changes
would be presented based on same and dependent changes. The scream of such possible tool is
presented in Figure 4.2. A click in a file would present the exercised methods associated with
such file. A double click would open the file in the developer workspace.

For now, our scripts only present the information on spreadsheets. Thus, it is necessary
to implement the user interface and the connection between the tool and the developer workspace
making this process of failure identification more natural and easy to perform.

4.2.2.4 Better Merge Tools

Merge tools primordially work using text difference between two files (textual tools).
KDiff3 [54] is one of the most used algorithm applied in merge tools. Although such approach
has been largely used, it introduces many false positives of merge conflicts leading integrators
to deal with them. If two different methods are introduced in the same file area, the merge tool
would not merge the contributions requiring human intervention. As reported by our findings,
the process of solving these conflicts can introduce build conflicts, and consequently, additional
time spent on a problem that could be avoided.

Semi- and structured merge tools [9] [29] [7] are examples of tools that consider the
source code elements as nodes and treat each one separately reducing the incidence of merge
conflicts. Considering the previous example, these tools are able to merge the contributions
preserving both methods. On the other hand, they could also anticipate the treatment for some
build conflicts like Duplicated Declaration. In this way, duplicated methods on a class would be

4.3. THREATS TO VALIDITY 73

identified already in the merge scenario forcing the integrator to treat the problem and avoiding
an emerging build conflict. However, in some cases, only structured tools would be able to detect
conflicts. For example, duplicated variables on the same scope are only taken by structured
tools since semi- ones treat the internal code of an element as normal text (merging using a
conventional merge algorithm, textual merge).

4.3 Threats to Validity

Our empirical study leaves a set of threats which we explain in detail.

4.3.1 Construct Validity

Few cases of build and test conflicts come to GitHub and Travis impacting negatively
our results. Zhao et al. [55] identify such behavior. In their study, they verify a decreasing trend
in builds with errors caused by missing files/dependencies (unavailable symbol) after projects
adopt Travis. In this way, we believe more conflicts happen, but they are fixed before being sent
to the main upstream repository. An experiment considering private repositories could bring
more cases of build and test conflicts than compared to open-source since reputation and code
accessible for everyone could reflect in a cleaner work. However, even in such situations conflicts
could be locally fixed. Instead of using data from commits performed in the past (retroactive
data), the best way to identify such conflicts would be having access to developers workspaces
instantaneously evaluating the cases without any external influence (integrator changes).

Another threat of construct is related to our metric of frequency. In Travis, a build can
be composed by a set of jobs; each job varying in environment configuration, or in the way the
build process must be performed. Different jobs can be used to simulate the same project with
different environment configurations. Therefore, it is possible to declare which jobs should not
be considered for the final build status. In case a conflict happens in a non-valid job, we lose
these scenarios. For future work, during the build process of commits not built yet, we could
edit travis.yml file aiming to consider all jobs for the final build status. However, if the job is
not considered as valid, we can assume non-valid jobs are used only to verify how the project
behaves on a specific configuration, which leads us to conclude its result is not relevant enough
for the project. Hence, problems in such jobs do not demand time of developers to fix them.

Moreover, our sample is composed of projects that use textual merge tools for dealing
with merge conflicts. In this way, one can argue that using better merge tools would reduce
the number of conflicts we found. However, not all kinds of merge conflicts can be treated
by these improved tools leaving cases that would require human intervention also resulting in
possible conflicts. Although they remove some false positive merge conflicts, they also introduce
new false positive and false negative cases, which could lead integrator to deal with them, and
possibly, introduce inconsistencies breaking the build process. To run this study with improved
merge tools is a future work we plan to execute.

4.3. THREATS TO VALIDITY 74

4.3.2 Internal Validity

A first internal threat is related to our study subjects since we decide to build some
merge scenarios not previously built. This approach increases completeness but also introduces
limitations. Despite building commits from the main upstream branch, some projects specify a
list of exclusive branches for having permission to perform builds. Once all pushes done from
our study are performed from the main branch, if such branch is not part of this restricted list, no
build process can be started. If conflicts happen in such merge scenarios, we are loosing them.
In future work, we could check on the travis.yml file which branches have permission and use
them for sending the pushes.

Like related work, we analyse Git projects that supports commands such as rebase,
squash and cherry-pick, that rewrite project development history. Consequently, if a project
adopts such practice, we may have lost merge scenarios with build and test conflicts. Specially
build conflicts caused due to changes made by the integrator since merge conflicts that were
treated by the integrator would not appear in project history [56]. Thus, our results are actually a
lower bound for build and test conflicts.

Still in this context, project configuration is another issue because project dependencies
might not be available leading the build to an errored status. If a project has a dependency
for another GitHub project, and this last is not more available, the related build process will
fail. If conflicts happen in these scenarios, we are also loosing them. However, we selected
active projects that makes us conclude they are evolving and also using dependencies, currently,
available.

In a build process, one can specify failures in certain tests should impact the final build
status. Consequently, if test conflicts happen in such scenarios, we are losing these cases because
the first information we look is the final build status. If a build has passed status, we discard this
scenario and do not perform any analysis in its Travis log report.

Another limitation arises when projects discard Travis CI, and after some time, they start
to use it again. Since we filter merge scenarios from the date of the first build performed on
Travis, if any conflict happens during this time of non-Travis use, no conflict will be identified.
It happens because if we try to build them, all resulting builds will be broken even if Travis is
using the default configuration for a build process. Thereby, we decide to build only commits
with the presence of the travis.yml file in the commit contents.

Like related work, we analyse Git projects that supports commands such as rebase,
squash and cherry-pick, commands that rewrite project development history. Consequently, if
a project adopts such practice, we may have lost merge scenarios with build and test conflicts.
Specially build conflicts caused due to changes made by the integrator since merge conflicts that
were be treated by the integrator, and they do not appear in project history [56]. Thus, our results
are actually a lower bound for build and test conflicts.

We analyse build logs looking for specific message patterns associated to problems that

4.3. THREATS TO VALIDITY 75

cause the broken build. After a patterns is identified we perform additional analysis as explained
in Chapter 3, to ensure the problem is caused by a conflict. During this analysis, if a problem is
reported using a pattern our scripts do not know, we are loosing these cases. However, for each
message patterns we identified variations allowing us to increase completeness and eliminating
eventual problems not supported.

We use GumTree diff to verify the contributions performed by developers and integrators.
However, our approach has some limitations. For example, when we look for a specific method
in the diff of a class, our search uses the method name instead of its signature. It represents
a threat for Duplicated Declaration and Unimplemented Method, since a class can have two
methods with the same name but different signature. When we try to identify build conflicts
caused by contributor changes, we verify the conflicting contributions looking for the method
names in the syntactic diffs, which can lead us to a wrong conclusion. For example, if both
parents introduce two methods with the same name but different signature, and in the merge
commit there are two methods with the same signature, the conflict is motivated by the integrator
changes and not by contributor ones. To verify such possibility, we manually evaluate all cases
of Duplicated Declaration methods revealing all cases were well classified.

However, this problem is not a threat for Unavailable Symbol method. For instance, if
a class has two methods with a different signature, but same names, and one of these methods
are removed/updated, a reference for the removed/updated method would lead to Incompatible

Method Signature instead of Unavailable Symbol. This case happens because the remaining
method would be available in the class, and an attempt to use it would be performed. In the
other hand, our approach for Incompatible Method Signature cause does not have this threat
since we verify the set of methods with a specific name in each parent contribution. For each
different method, we also verify the type of its parameters allowing us to consider different
method signatures for the same method name.

Our approach for identifying Unavailable Symbol variables consider the whole source
code of a class. For example, if a local variable is present in different methods, and one call
for this variable is added in one method, while in another there is a removal or update for
such variable. In this case, we consider this case as a conflict caused by contributor changes is
identified, while it is caused by integrator changes. This case represents a false positive related to
who causes the conflict since the contributions are not conflicting because they occur in different
scopes. The same consideration is valid for Duplicated Declaration of variables since a local
variable can be declared in different methods, and we compute this as a conflict caused by the
contributor changes.

To identify conflicting contributions on test conflicts, we instrument pom.xml and
travis.yml files with information of the failed tests for finding the code coverage associated.
However, we only have access to this coverage if no problem happens in the build process. In
some cases, the build process generates the coverage, but before deploying it, the build process
ends due to unexpected errors. Aiming to simplify such problems, we instrument travis.yml file

4.3. THREATS TO VALIDITY 76

only with necessary and common instructions. In these cases, if test conflicts happen, we are
loosing them since our scripts must have the coverage result to perform our analysis.

During checking for interference on test conflicts, we evaluate changes performed by
parent’s contributions and coverage associated with the failed test case. Although the coverage
represents the real exercised methods by the test case, we also consider general changes on
file structure. Despite this kind of change, we do not explore their nature, like modification
on attributes, update on class structure (interfaces, extensions, inheritance). Thus, if parent’s
contributions perform different changes on files structure, we compute this as changes on the
same file. Such conclusion is not wrong, but a refinement about the changes structure could
imply in a precise evaluation informing whether the changes were on the same or dependent
element. In future work, we could improve our script for getting such refinement.

The threat associated to a wrong conclusion of who caused a build conflict due to the use
of method names instead of its signature also represents a threat here. In this case, when we get
the set of methods changed by parent’s contributions, we only look for the method names; the
same is done for executed methods during the test case execution. If two different methods have
the same name, but only one of them is changed by the parent contributions, and the other is
executed by the test case, we do not differ each one considering both methods as just one and
consider them as changes on same method. In this case, we consider a conflicting contribution
when it is not. However, investigating the fix commit for the conflicts, we confirm the same
method is changed in the parent contribution and during the fix.

To identify the resolution patterns, we try to find the commits responsible for the fix. The
assumption is the fix commit must have as its parents, the commit associated with the broken
build, but in some cases, the commit fix has two parents. Since we do not check whether all
parents contributions are preserved in such situations, our analysis is partial possibly excluding
part of the resolution pattern. Consequently, the adopted resolution pattern does not reflect the
truly fix. However, our analysis for resolution patterns in build conflicts is done based on the
cause of the conflict, that is independent whether all parents contributions are preserved since
they verify only files involved in the failure. In case our analysis for build conflicts cannot be
performed or for test conflicts, we perform a manual analysis. Although such analysis was
performed for one single person, the files (and methods when applied) were known guiding the
analysis. Thus, the person verified only the changes in the files involved in the conflict.

Still in this context of resolution patterns, the commit fix identified must have its build
available on Travis. In cases the builds are not found, we could build such commits aiming to
check whether they are conflicts fixes, and then perform our analysis having more evidence
of resolution patterns. However, we decide to use only data available on Travis since many
processes failed due to external causes. Considering the number of commits having as parents
the broken build commit, many builds could be necessary to be performed, and none could be
the fix. In future work, we could determine a constraint time to select only commits under that
interval time.

4.3. THREATS TO VALIDITY 77

In case a broken commit has more than one fix commit, our analysis considers only the
first fix commit identified. In future works, we could evaluate how other fix commits perform the
fixes having more diversity of adopted resolution patterns.

4.3.3 External Validity

First, our sample is composed of open-source projects that cannot reflect how software is
developed privately. This characteristic can bias our results related to the frequency of conflicts
because developers tend to push commits without errors aiming to keep their reputations clean
and associated with a good work.

Our sample contains only Java projects hosted on GitHub using Travis CI for CI and
Maven as build manager. We analyze Java projects because of its popularity, and because
Java is the second most used language with Travis on GitHub [15]. Moreover, the GumTree
support for such language is very precise when compared to others. About the adoption of
Travis CI, we decided to use it due to its popularity. Travis offers all build information through
its API, differently from other CI services/tools. We only consider projects using Maven for
build manager because its log report is very informative bringing enough information to identify
conflicts automatically.

Our scripts were defined to support the whole experiment but with limitation related to
technology. For example, to run the experiment in other languages, it would be necessary update
the scripts responsible for identifying the conflicting contribution between parent’s contributions.
The same is applied for other build managers since each one can have its own message patterns
related to problems. In a new experiment involving repositories hosted in GitHub and using
Travis, the scripts responsible for the mining repositories can be completely reused. However,
if a study requires other hosting services, Version Control Systems (VCS) or CI services, the
mining scripts must be updated.

We analyze build logs looking for specific message patterns associated to problems that
cause the broken build. After a pattern is identified, we perform additional analysis as explained
in Chapter 3, to ensure the problem is caused by a conflict. For a new sample, different patterns
can arise different impairing our scripts to treat them. Consequently, it is necessary to adapt our
scripts for these new patterns.

787878

5 CONCLUSION

Collaborative software development brings some challenges when developers do their
tasks, separately and simultaneously. When different contributions are integrated, conflicts arise
impairing productivity. Conflicts may arise in different development phases: during merging,
when different contributions are integrated (merge conflicts); after integration, when building the
integration result fails (build conflicts); or when testing, unexpected software behavior happens
(test conflicts).

In this study, we perform an empirical study to verify the occurrence of build and test
conflicts, their causes as also the adopted resolution patterns, and the person responsible for
fixing the conflicts. Our goal is to provide a better understanding of this kind of build and test
conflicts focusing on the circumstances these conflicts occur. We identify 125 and 39 build
and test conflicts, respectively, associated with 117 and 7 merge scenarios, respectively. These
conflicts arise from 60991 merge scenarios from 529 Java projects hosted on GitHub that use
Travis CI for Continuous Integration (CI) and Maven as build manager.

Analysing the number of merge scenarios associated with conflicts in comparison with
the number of merge scenarios presenting broken builds and superior parents status (473 and
864, for errored and failed status respectively), we verify the frequency of build and test conflicts
are 24,73% and 0,81%, respectively. So, roughly, 1 in 4 build problem is caused by a conflict in
errored builds, whereas the others are caused by a single developer mistake, configuration issues,
unresolvable dependencies or unavailability of external services. Considering all scenarios
(60991), we verify the frequencies of conflicts decreases to 0,19% and 0,01%.

Our results reveal build and test conflicts occur less than reported by previous studies.
Brun et al. [8] reveal 33% of all evaluated merge scenarios (scenarios without merge conflicts)
represent cases of build and test conflicts. In the same way, Kasi and Sarma [2] bring such
evidence separately: build conflicts ranging from 2% to 15%, while test conflicts ranging from
6% to 35%. However, we eliminate threats, which related studies are not aware. For example,
besides to check merge commit build status, we check the build process of merge parents. We
also did not perform any build process locally as any change on environment configuration could
lead the build process to fail. Instead of (re)build all commits locally, we consider only projects
that adopt CI (Travis) obtaining the needed information from CI build process logs. For commits
not build yet, we also use Travis service to build them.

Concerning about build conflicts, Unavailable Symbol is the most recurrent cause (52,8%,

79

that represents a reference for an element no longer available in the project). This problem can be
motivated by unavailable elements from the project contents as also due to external dependencies.
It can also involve dependent classes (one class reference an element from another) as also
involving only one class (a reference for a missing element locally). This cause could be treated
by an automatic repair tool without human intervention. Build Conflicts are not only caused by
problem during build and compilation phase of the build process, but also during Automated
Static Analysis (ASAT) phase. The conflicts identified in this category are caused by classes
that do not following the style conventions defined for the project. Concerning about the way
conflicts are fixed, most adopted patterns primarily consist of keeping the parent’s contributions
instead of undoing them and return to an old project state. For example, the update of old method
reference to the new method signatures. Such behavior is present in 65,38% of all fixes for build
conflicts.

Although build conflicts caused by contributor changes are more evident (66,4%), we
have evidence that build conflicts can also be caused by changes done performed after the
integration by integrator (33,6%). The interesting about this finding is the motivation of the
inconsistencies. Integrators cause more build conflicts in scenarios, where at least one parent
contribution is not preserved (59,52%). In these cases, merge conflicts might happens and the
way integrators adopt to fix the merge conflicts are responsible for adding inconsistencies in the
source code. The remaining 40,48% conflicts are from scenarios, where all parents contributions
are preserved in the final merge commit. It means, even if merge conflicts happens, the way
adopted by integrators to fix them preserved all parent’s commits in the merge commit. However,
integrators also introduce new contributions during the integration adding inconsistencies in the
source code. Consequently, the build process fails. Better merge tools could eliminate the need
for integrators lead with merge conflicts since such activity is error-prone.

For test conflicts, there are two types of conflicts identified. The first one is caused by
failed test cases. Failed test case are not restricted to old test cases in the project, but also new
or updated tests during the merge scenario. Changes on methods but also on class structure
represent forms of how an dependent changes can lead a test case to fail. The second type of test
conflict is resulted of analysis performed after the testing phase of the build process. The case
we identified is motivated by unachieved coverage metric after the merge integration. Our scripts
could support developers during the investigation of the causes of the failure. Thus, an assistive
tool will be responsible for informing only the changes that are done by parents and are involved
in the test failure. This information could also be used by automatic repair tools [52] [53]. Fixes
for test conflicts commonly change the methods associated with the test case failure execution
bringing evidence these methods are genuinely involved with the failure.

Our findings reinforce the evidence about build and test conflicts not only from preserved
merge scenarios but also from unpreserved ones. According to the causes and motivations
(contributor or integrator changes), our results and scripts can be used to improve assistive tools
aiming to avoid or even treat conflicts. Insights of new tools are proposed to treat conflicts

5.1. CONTRIBUTIONS 80

without human effort. We now present in details the contributions of this thesis, related and
future work.

5.1 Contributions

This study makes these contributions:

� Quantification, categorization, analysis and identification of resolution patterns of
build and test conflicts. We believe the related frequencies can be higher on private
projects, especially because conflicts can happen, and developers may treat them
before sending to the central repository;

� A catalog of build and test conflicts causes. This catalog is an interesting contribution
since previous work focus only in frequency of clean merge scenarios;

� Improvement applied in GumTree tool for presenting a better and more informative
syntactic diff;

� Insights and improvement for assistive tools, which could be applied to avoid or treat
conflicts;

� Infrastructure to support developers informing the causes and the origin of the
conflicts, especially for test ones;

� Availability of all scripts used to perform this experiment encouraging new replica-
tions [20].

5.2 Related Work

5.2.1 Empirical Studies

Empirical studies about build and test conflicts provide evidence of their occurrence in
practice. In this way, Kasi et al. [2] and Brunn et al. [8] perform studies verifying conflicts
frequency. For doing it, they select open-source projects, 4 and 9, later reduced to 3, respectively,
hosted on GitHub. To identify conflicts, they try to build locally the clean merge scenarios

(merge scenarios without merge conflicts). Finally, if the build process fails, such merge
scenario represents a conflict (build or test ones). Since they identify conflicts only based on
the final build process status of the merge commit, some false positives can be introduced. For
example, the build process of a merge commit can fail due to previous changes performed in
one of its parent commits. Consequently, the problem would be present in the resulting merge
commit. Environment configuration also represents cases of false positives; any variation in the
environment configuration or an unavailable dependency could contribute to the build process to
break leading the authors to a wrong conclusion.

5.2. RELATED WORK 81

We also use open-source projects, but our sample is 132 and 176, respectively, times
larger than adopted by the previous studies. In our study, we use information of merge scenarios
already built on Travis. When some merge or parent commits are not built, we do not reproduce
build process for it setting manually the project environment. First, we fork the project and use
Travis service to build such cases using the specifications defined on the .travis.yml file of each
project.

Another limitation is the sample adopted by the related work. They only consider clean

merges scenarios as valid subjects, while we also consider scenarios resulting from merge
conflicts (unclean scenarios). According to our results, the occurrence of build conflicts in this
new perspective is also expressive. Although merge conflicts occurrence can indirectly influence
for parents contributions not be preserved on the integration result, there are cases the preserved
contributions are not conflicting, and the integrator changes cause the build conflicts (13,6%).

In the same way, Muylaert and De Roover [57] present a similar study using Travis and
Git information. Differently from the previous studies, just like we do, they identify potential
test conflicts verifying the merge and parent commits build status. They present 2,34% of merge
scenarios present failed status while its parents successful ones. However, they do not validate the
causes, which can introduce false positives on their results. For instance, a wrong environment
configuration, a remote problem or time restrictions on Travis could lead the build to break,
which does not represent a conflict.

Relying on the study subjects, they consider not only merge scenarios but also Pull
Requests (PR) (analyzed in different perspective). We decide to not include PRs in our experiment
since we would like to investigate the real impact of conflicts during the development. PRs,
which are not accepted on the related projects, did not impact the development, and consequently,
did not lead someone to spend time on fixing such problems. Therefore, PRs can introduce bias
on results. For example, if one PR is accepted on GitHub project, independently of its status, two
different builds with the same source code will be started on Travis, and possibly, present the
same final status. It is clear the chances of passed PR to be accepted are more prominent than
those presenting broken status. Consequently, the rate of build and test conflicts would decrease.

Although in the previous studies the authors verify the conflicts frequency, they do not
attempt in investigating their causes. We go further and identify how a contribution affects others.
Such information, as reported in Chapter 4, can be used on assistive tools aiming to avoid or
treat conflicts occurrence.

Muylaert and De Roover [57] also attempt at verifying the effort spent on potential test
conflicts. For that, they look for the first passed build after a broken one. We also adopt this
approach for build and test conflicts. In case of build conflict, we consider a fix the first build to
present failed or passed status. Investigating whether the fixed build status of a build conflict is
passed or not represents another interesting area to be investigated. As part of evaluating effort,
the authors also try to inform the files developers change to fix conflicts. However, their approach
is imprecise since the causes of the conflicts are unknown. For instance, if the build fails due

5.2. RELATED WORK 82

to changes in a specific method, and there are changes in files not involved in the failure, their
metric will consider all changes as part of the fix. Our approach is precise on informing only the
changes patterns adopted for fixing the causes since we already knew them.

Beller et al. [39] perform a study focusing exclusively on the relation of tests and
Travis. Their third research question specifically investigates the impact of tests execution in
build in Travis. Although they do not consider only merge scenarios of Java projects but all
general commits (non-merge commits), we can compare their results with ours. Since builds can
present failed tests and still present a passed status (ignoring some partial results), they classify
test failures based on this argument. In our study, we first seek for failed builds, and then we
investigate the causes. If a build presents failed tests but a passed status, we do not investigate
such case since such guideline is defined for the project, which it is aware of such possible
failed tests. Based only on builds with failed final status, they conclude such problem represents
3,9% off all analyzed scenarios while our findings present 0,01% of all scenarios. Despite the
discrepancy between the frequencies, they involve other aspects that we do not consider (failed
test cases due to environment or external issues). For a better comparison, it would be important
the related study knew the causes of tests failures filtering false positives as we already did.

5.2.2 Build Errors Diagnosis

Although build errors manifest during the build process, not so much is known about
the causes that motivate them. Seo et al. [17] perform a study identifying cause categories and
their related frequencies. Although they analyze millions of builds from different projects, such
data could bias the results since they consider only projects of a single company. Aiming to
achieve generality, we selected a sample of 529 different open-source projects. For each build,
they analyze the build log trying to match keywords, which are associated with different error
categories. However, their results gather build failures of non- and merge commits; they do not
separate the findings based on such perspectives. Moreover, the proportions of non- and merge
commits are probably different (more non-merge commits).

Another difference is how Seo’s study treats the Unavailable Symbol cause. They
consider every case of a reference to an unavailable element as a single cause. For example, an
unavailable method on a class and an unresolvable dependency. Besides to categorize unavailable
elements in different perspectives (dependency and project causes), we do further analysis for
this last one. We identify the types of elements that are associated with unavailable symbol
caused due to project contents (unavailable class files, methods, and variables).

Kerzazi et al. [58] also present a study aiming to understand the impact of broken builds.
For that, they use quantitative and qualitative methods. Their second research question is very
related to our second one, as well as some parts of the third. Just like our findings, the primary
cause of broken builds is due to missing files (unavailable symbol). Such results also comply
with the results of Seo’s study.

5.3. FUTURE WORK 83

5.3 Future Work

In this study, we investigate the main characteristics related to build and test conflicts
in open-source projects. The first point of extension concerns on replications of this study
considering different subjects characteristics. For example, private repositories (restricted to not
only projects from companies but also from GitHub) might bring interesting results allowing
us to compare with our findings. We could then evaluate whether the projects origin has
influence on the occurrence and type of conflicts. Once our approach takes some manual
analysis, a complete automated study could eliminate these steps making the experiment easier
to replications. Therefore, we identify the following improvements:

� Investigation of the occurrence of build and test conflicts considering diversity related
to subjects like other languages (Ruby, C#), CI services/tools (Jenkins) and build
managers (Gradle, Ant);

� Although we try to accomplish all message patterns variations (messages used for
getting the error causes and additional information), when we introduce new projects
in our sample, new message patterns arise. A better and complete support of log
information extraction could contribute to identify new conflicts;

� Better instrumentation of travis.yml file for the process of execution of failed test
cases. Such improvement might avoid the occurrence of errored builds (build process
breaks before starting to run the test case) as we already noted;

� For test conflicts, to identify conflicting contributions, our approach considers only
the methods and general changes on files from the parent’s contributions. Further
analysis could be done considering the type of changes on class attributes as also
addition or removal of elements that change the class structure, like interfaces,
extensions;

� Approach for detecting conflicts not restricted to Java files, but also configuration
ones, like pom.xml and travis.yml;

Other studies could investigate other characteristics that can be intrinsic to the occurrence
of build and test conflicts. For example, Cataldo et al. [59] investigate social factors responsible
for motivating failures on contributions integration. A possible factor in build and test conflict
occurrence could be related to the experience level of a developer. Thus, we could evaluate
whether conflicts are more likely to happen with new developers than compared with those
experienced on the project [60].

Lessenich et al. [61] investigate technical indicators for predicting the number of merge
conflicts in merge scenarios. Some of these indicators are the number of commits involved, sub-
stantial contributions and the number of same files changed in both parent commits. Investigating

5.3. FUTURE WORK 84

such technical factors could bring insights for improvements in assistive tools. For example, if
number of files were an indicator, assistive tools could alert the developers still during the tasks
development.

In the same way, a survey and interviews can be done with development teams aiming to
verify their view of the frequency of conflicts over the life cycle of a project. In the end, we could
compare our results with this new information. Diversifying the subjects considering developers
with different origins (for instance, developers from open-source and private projects). Such
diversity could also bring information about how the environment contributes to the conflict
occurrence.

Another interesting study could focus on executing the study with better merge tools, like
S3M [9]. Therefore, it will be possible to verify whether improved merge tools could eliminate
conflicts, especially for those conflicts caused by integrator changes resulted from merge conflicts
(related to build conflicts).

Other studies can concentrate on applying the insights for assistive tools (improvements)
described in Section 4.2.2.

An interesting finding happens when the commit fix of a build conflict results in a failed
build. To investigate how build conflicts fixes can influence on test conflicts occurrence is an
innovative area still untouched. Additionally, it will be possible to verify whether there are
indicators associating changes for build and test conflicts.

858585

[1] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the state of static
analysis: A large-scale evaluation in open source software,” in Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference on,
vol. 1. IEEE, 2016, pp. 470–481.

[2] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization through optimized
task scheduling,” in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 732–741.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Early detection of collaboration conflicts
and risks,” IEEE Transactions on Software Engineering, vol. 39, no. 10, pp. 1358–1375,
2013.

[4] T. Zimmermann, “Mining workspace updates in cvs,” in Fourth International Workshop on
Mining Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 2007, pp. 11–11.

[5] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured merge conflict
characteristics in open-source java projects,” Empirical Software Engineering, pp. 1–35,
2017.

[6] G. Cavalcanti, P. Accioly, and P. Borba, “Assessing semistructured merge in version control
systems: A replicated experiment,” in Empirical Software Engineering and Measurement
(ESEM), 2015 ACM/IEEE International Symposium on. IEEE, 2015, pp. 1–10.

[7] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistructured merge:
rethinking merge in revision control systems,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering.
ACM, 2011, pp. 190–200.

[8] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of collaboration
conflicts,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. ACM, 2011, pp. 168–178.

[9] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving semistructured merge,”
Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA, p. 59, 2017.

[10] K. Beck, Extreme programming explained: embrace change. addison-wesley
professional, 2000.

[11] P. M. Duvall, Continuous integration. Pearson Education India, 2007.

[12] A. Miller, “A hundred days of continuous integration,” in Agile, 2008. AGILE’08.
Conference. IEEE, 2008, pp. 289–293.

[13] G. Dyke, “Which aspects of novice programmers’ usage of an ide predict learning
outcomes,” in Proceedings of the 42nd ACM technical symposium on Computer science
education. ACM, 2011, pp. 505–510.

REFERENCES

REFERENCES 86
[14] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and productivity

outcomes relating to continuous integration in github,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ACM, 2015, pp. 805–816.

[15] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits of
continuous integration in open-source projects,” in Automated Software Engineering (ASE),
2016 31st IEEE/ACM International Conference on. IEEE, 2016, pp. 426–437.

[16] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik, and M. G. van den Brand,
“Continuous integration in a social-coding world: Empirical evidence from github,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference on.
IEEE, 2014, pp. 401–405.

[17] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge, “Programmers’ build
errors: a case study (at google),” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 724–734.

[18] C. Bird and T. Zimmermann, “Assessing the value of branches with what-if analysis,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. ACM, 2012, p. 45.

[19] G. Menezes, “On the nature of software merge conflicts,” Ph.D. dissertation, Federal
Fluminense University, 2016, accessed: 2017-06-16.

[20] Appendix, 2018, uRL: https://github.com/leusonmario/TravisAnalysis//.

[21] R. Conradi and B. Westfechtel, “Version models for software configuration management,”
ACM Computing Surveys (CSUR), vol. 30, no. 2, pp. 232–282, 1998.

[22] Subversion, 2018, uRL: https://subversion.apache.org/.

[23] CVS, 2018, uRL: http://savannah.nongnu.org/projects/cvs/.

[24] GIT, 2018, uRL: https://git-scm.com/.

[25] MERCURIAL, 2018, uRL: https://www.mercurial-scm.org/.

[26] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do centralized and
distributed version control systems impact software changes?” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp. 322–333.

[27] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-based
software development model,” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 345–355.

[28] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantir: Early detection of development
conflicts arising from parallel code changes,” IEEE Transactions on Software Engineering,
vol. 38, no. 4, pp. 889–908, 2012.

[29] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with auto-tuning: balancing
precision and performance,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2012, pp. 120–129.

[30] S. Chacon and B. Straub, Pro git. Apress, 2014.

REFERENCES 87
[31] Travis CI, 2017, uRL: https://travis-ci.org/.

[32] Jenkins, 2017, uRL: https://jenkins-ci.org/.

[33] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and tools.
Addison-wesley Reading, 2007, vol. 2.

[34] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security & Privacy, vol. 2,
no. 6, pp. 76–79, 2004.

[35] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting web
application vulnerabilities,” in Security and Privacy, 2006 IEEE Symposium on. IEEE,
2006, pp. 6–pp.

[36] FindBugs, 2018, uRL : http://findbugs.sourceforge.net/.

[37] CheckStyle, 2018, uRL : http://checkstyle.sourceforge.net/.

[38] IntelliJIDEA, https://www.jetbrains.com/idea/, 2018.

[39] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build: An explorative
analysis of travis ci with github,” in Proceedings of the 14th International Conference on
Mining Software Repositories. IEEE Press, 2017, pp. 356–367.

[40] EclEmma, 2018, uRL : http://www.eclemma.org/jacoco/.

[41] MAVEN, 2018, uRL: https://maven.apache.org.

[42] Gradle, 2018, uRL: https://gradle.org//.

[43] ANT, 2018, uRL: http://ant.apache.org/.

[44] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and
accurate source code differencing,” in Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. ACM, 2014, pp. 313–324.

[45] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for engineered
software projects,” Empirical Software Engineering, vol. 22, no. 6, pp. 3219–3253, 2017.

[46] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: Synthesizing travis ci and github
for full-stack research on continuous integration,” in Proceedings of the 14th working
conference on mining software repositories, 2017.

[47] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in software engineering research,”
in Proceedings of the 2013 9th joint meeting on foundations of software engineering.
ACM, 2013, pp. 466–476.

[48] P. Dourish and V. Bellotti, “Awareness and coordination in shared workspaces,” in
Proceedings of the 1992 ACM conference on Computer-supported cooperative work.
ACM, 1992, pp. 107–114.

[49] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, “Fastdash: a visual dashboard
for fostering awareness in software teams,” in Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 2007, pp. 1313–1322.

REFERENCES 88
[50] L. Hattori and M. Lanza, “Syde: A tool for collaborative software development,” in

Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. ACM, 2010, pp. 235–238.

[51] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in automatic software repair,”
Software Quality Journal, vol. 21, no. 3, pp. 421–443, 2013.

[52] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program repair via
semantic analysis,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 772–781.

[53] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software regressions,” in
Proceedings of the 37th International Conference on Software Engineering-Volume 1.
IEEE Press, 2015, pp. 471–482.

[54] KDIFF3, 2018, uRL: http://kdiff3.sourceforge.net/.

[55] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The impact of continuous
integration on other software development practices: a large-scale empirical study,” in
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 2017, pp. 60–71.

[56] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu, “The
promises and perils of mining git,” in Mining Software Repositories, 2009. MSR’09. 6th
IEEE International Working Conference on. IEEE, 2009, pp. 1–10.

[57] W. Muylaert and C. De Roover, “Prevalence of botched code integrations,” in Proceedings
of the 14th International Conference on Mining Software Repositories. IEEE Press, 2017,
pp. 503–506.

[58] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break? an empirical
study,” in Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 41–50.

[59] M. Cataldo and J. D. Herbsleb, “Coordination breakdowns and their impact on
development productivity and software failures,” IEEE Transactions on Software
Engineering, vol. 39, no. 3, pp. 343–360, 2013.

[60] M. Rebouças, R. O. Santos, G. Pinto, and F. Castor, “How does contributors’ involvement
influence the build status of an open-source software project?” in Proceedings of the 14th
International Conference on Mining Software Repositories. IEEE Press, 2017, pp.
475–478.

[61] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen, “Indicators for merge
conflicts in the wild: survey and empirical study,” Automated Software Engineering, pp.
1–35, 2017.

898989

APPENDIX

909090

APPENDIX A - Build Conflicts Identification

In this Appendix, we continue to present the approach to identify build conflicts (see
Section 3.4.1 in Chapter 3).

A.1 Syntax Conflicts

The problems related to syntax are restricted to malformed programs. Since the parent
commits present successful compilation process, if the merge result has any syntax problem, we
can assume it is introduced by the integrator changes. Thus, our approach to such problem is
straightforward.

A.1.1 Malformed Program

This problem happens when the source code is syntactically incorrect. For example, in
XChange project, the build process breaks because of a missing semi-coma (;) at the end of
a line. Additionally, there is also the presence of a merge conflict header in the source code
(«««) (Figure A.1). To determine the motivator of the build conflict, we verify the occurrence of
merge conflicts during the merge scenario. Thus, if none merge conflict happens, we assume
such problem is caused by the contributor changes; otherwise, it is a problem motivated by the
integrators.

A.2 Static Semantics Conflicts

This category of problems is related to source code syntactically correct but semantically
wrong. Section 2.2.1.1 in Chapter 2 presents how these problems arise during the compilation
process.

Figure A.1: Build log of broken build due to malformed program

Compilation failure
[ERROR] /home/[...]/xchange/[...]/OkCoinUtils.java:[43,1] illegal start of
expression
[ERROR] /home/[...]/xchange/[...]/OkCoinUtils.java:[44,9] ’;’ expected

https://travis-ci.org/leusonmario/XChange/builds/232202095

A.2. STATIC SEMANTICS CONFLICTS 91

Figure A.2: Build log of broken build due to unimplemented method

Compilation failure
[ERROR] /home/[...]/cloudslang/[...]/PreCompileValidatorImpl.java:[46,8]
is not abstract
and does not override abstract method validateResultName(java.lang.String)
in io.cloudslang.lang.compiler.validator.PreCompileValidator

A.2.1 Unimplemented Method (Super Type)

Unimplemented method cause happens when an implementing class does not present
an implementation of a method defined in the related interface (or in some cases extends
for inheritance). For instance, in Cloud Slang project, the build process breaks due to the
missing method implementation (Figure A.2). In this case, the method validateResultName

(unimplemented method) is introduced in the interface PreCompileValidator (secondary class).
However, the implementing class PreCompileValidatorImpl (main class) does not present the
associated new implementation.

A.2.1.1 Build Conflict Motivation

To verify if the conflict is caused by the parent’s contributions or integrator changes, we
adopt the following approach done in five steps:

� Step 1: Identification of the parent responsible for updating or introducing the
unimplemented method in the Secondary class base-parent-diff.

� Step 2: In the other parent, we perform two checks. The first verifies whether the
unimplemented method is added or updated in the Secondary class parent-merge-
diff (ensuring the change in the Secondary class is preserved in the merge result).

� Step 3: The second check is performed on the Main class parent-merge-diff to
ensure the unimplemented method is not added/updated in the implementing class.

� Step 4: If both checks can be done, we conclude a build conflict happens due to
contributor changes.

� Step 5: If one of the previous checks cannot be done, we assume such build conflict
results of integrator changes.

Unimplemented Method of Super Type works in the same way, although such super type
is resulting from a dependency. To define the motivator of the conflict, we perform a manual
analysis.

https://travis-ci.org/CloudSlang/cloud-slang/builds/158194754

A.2. STATIC SEMANTICS CONFLICTS 92

Figure A.3: Build log of broken build due to incompatible method signature

Compilation failure
[ERROR] /home/[...]/ontop/[...]/Quest.java:[569,58] no suitable constructor
found for
for SQLGenerator constructor is not applicable
(actual and formal argument lists differ in length)

A.2.2 Incompatible Method Signature

Different of Unavailable Symbol Method, in this case the required method is available
but the list of parameters or the types expected are different of the received. For instance, in
Ontop project, the build process breaks because the constructor (incompatible method) of Quest

(secondary class) could not be used in the request of SQLGenerator (main class) since the
parameters list differ in length (Figure A.3).

A.2.2.1 Build Conflict Motivation

To verify if the conflict is caused by the parent’s contributions or integrator changes, we
adopt the following approach done in three steps:

� Step 1: Identification of the parent responsible for updating/removing the incompati-

ble method in the Secondary class. Since many methods can have the same name,
differing of each other in the signature, we check the number of methods with the
name of the incompatible method available in the Secondary class of each parent.

� Step 2: If each parent presents a different number of methods or parameter list size,
we assume the incompatible method was available before the merge integration. Thus,
one of the parents removed the method leading the build to break due to contributor
changes.

� Step 3: If one of the previous checks fails, we assume such build conflict has resulted
of integrator changes.

A.2.3 Duplicated Declaration

Different of Incompatible Methods Signature, in this case, two elements with the same
identifier are declared in a class (variables, methods). Thus, when a requestion is done for such
element, the program cannot decide which one to use. Blueprint project has a build process that
breaks because of two declarations of method testRemoveNonExistentVertexCausesException

(duplicated method) in the GraphTestSuite (main class) (Figure A.4).

https://travis-ci.org/ontop/ontop/builds/113479426
https://travis-ci.org/leusonmario/blueprints/builds/267833702

A.3. OTHER STATIC ANALYSIS CONFLICTS 93

Figure A.4: Build log of broken build due to duplicated declaration

Compilation failure
[ERROR] /home/[...]/blueprint/[...]/GraphTestSuite.java:[393,16] error:
method
testRemoveNonExistentVertexCausesException() is already defined in class
GraphTestSuite

Figure A.5: Build log of broken build due to incompatible types

Compilation failure:
[ERROR] /home/[...]/neo4j-timetree/[...]/SingleTimeTreeTest.java:[641,32]
error: incompatible types:
long cannot be converted to TimeInstant

A.2.3.1 Build Conflict Motivation

To verify if the conflict is caused by the parents contributions or integrator changes, we
adopt the following approach done in three steps:

� Step 1: Checking of the introduction of the duplicated method in Main class base-
parent-diff of both parents.

� Step 2: If such check is done, we conclude the build conflict is caused by the
contributor changes.

� Step 3: If the previous check fails, we assume such build conflict is resulted due to
integrator changes.

A.2.4 Incompatible Types

This problem happens when an unexpected type is received or sent at an operation. For
instance, in Neo4J TimeTree project, the build process fails because of a parameter of type long

is sent instead of TimeInstant in getInstant method of TimeTree class (Figure A.5). To define
the motivator of the conflict, we seek for merge conflicts and changes done after the merge
integration. Thus, if none of such actions happen, we assume the contributor changes motivates
the conflict. Otherwise, we perform a manual analysis to determine the motivator.

A.3 Other Static Analysis Conflicts

Static analysis are done after the compilation process (see Section 2.2.1.2 in Chapter 2).

https://travis-ci.org/leusonmario/neo4j-timetree/builds/298701803

A.3. OTHER STATIC ANALYSIS CONFLICTS 94

Figure A.6: Build log of broken build due to unfollowed project guideline

BUILD FAILURE
[ERROR] Failed to execute goal com.mycila:license-maven-
plugin:2.8:check (check-license)
Some files do not have the expected license header

A.3.1 Project Rules

This problem happens when the source code is syntactically and semantically correct,
but it does not follow the conventions/guidelines defined to the project. For instance, in Java
Driver project, a file does not have the expected license header resulting in a broken build
process (Figure A.6). Like the approach adopted for incompatible types, if none merge conflicts
or changes after the merge integration happens, we consider such case is motivated by the
contributor changes. Otherwise, we perform a manual analysis to determine the motivator.

https://travis-ci.org/leusonmario/java-driver/builds/264197134

959595

APPENDIX B - Build Conflict Fixes

In this Appendix, we continue to present the approach to identify the fixes patterns
adopted on build conflicts (see Section 3.5.1 in Chapter 3). All resolution patterns are identified
using the diff between the broken merge and fix commits result-fix-diff.

B.1 Syntax Conflicts

B.1.1 Malformed Program

Basically, fixes for malformed program problems involve adaptations of the source code
to the associated syntax language depending on the problem. For example, source code with
merge conflict headers are fixed eliminating them.

B.2 Static Semantics Conflicts

For almost all problems related to semantic conflicts are treated automatically for our
scripts. In case, the automatize analysis fails, we also perform a manual analysis.

B.2.1 Unavailable Symbol

Besides the verifications presented in Section 3.5.1 in Chapter 3, here we present addi-
tional verifications exclusively for unavailable symbol files.

In case the missing file is caused by unavailable import, we perform two checks aiming
trying to match the following patterns into the diffs:

� Import update using the pattern in the Main class diff: Update QualifiedName:

{missing_file_identifier}

� Import removal using the pattern in the Main class diff: Delete (QualifiedName|

SimpleName|SimpleType): {missing_file_identifier}

B.2.2 Unimplemented Method (Super Type)

In this case, we verify whether the implementing class of an interface introduces a new
implementation for the missing method. We do this looking for the following pattern into the

B.3. OTHER STATIC ANALYSIS CONFLICTS 96

GumTree diff of the Main class:
Insert SimpleName: {missing_method_identifier} into

MethodDeclaration.

B.2.3 Incompatible Method Signature

In this case, we look for the request removal for the missing method in the Main class
diff trying to match the following patterns into the diff:
Delete SimpleName: {missing_method_identifier}.

B.2.4 Duplicated Declaration

In this case, we verify whether the class with the duplicated declaration removes one of
the duplications. We do this trying to match the following pattern in the GumTree diff of the Main

class: Delete SimpleName: {duplicated_declaration_identifier}.

B.2.5 Incompatible Method Signature

Like the identification of conflicts of this category, the associated fixes are also done
manually. Thus, we look for types changes in the request or in the operation that receives it.
Additionally, we also consider the request removal of such operation.

B.3 Other Static Analysis Conflicts

Like syntax fixes, in this category, fixes can be checked looking the guidelines defined
for the project. Thus, in our manual analysis we verify whether the set of files not following
the project guidelines change their structure to adapt them for the styles conventions defined
previously.

979797

APPENDIX C - Travis Configuration File Instrumentation

This Appendix presents our approach to adapting travis.yml file to perform a build
process in Travis generating the associated code coverage for a test case. Figure C.1 presents an
example of an adapted travis.yml file.

� language/jdk: We extract such information from the travis.yml file keeping the same
instruction.

� script: This instruction is completely changed. The DTest arguments are taken from
the Travis log (Figure 3.10). The coverage command is specified in its documentation.
Since the test case can fail, and such behavior is expected, we want the build process
continues and does not stop. So, the argument DfailIfNoTests is set up to false.

� before_deploy: We zip the coverage result informing the path to such file. The path
is default and defined by the own coverage tool.

� deploy: This instruction is composed of many arguments. By default, the argument
provider must be set to releases. Many options can be used to deploy, but since we
choose GitHub tags, the argument tags must be true. To ensure Travis will overwrite
any information and not delete files created during the build, the arguments overwrite

and skip_cleanup are set to true. The argument file indicates the file to be deployed
(in our case, coverage-result.tar.gz). Personal Access Token does the authentication
in GitHub. For each project, we locally encrypt the GitHub token using the indication
of Travis documentation.

� sudo: Since we want to deploy the code result in GitHub, it is necessary to give this
kind of permission.

https://github.com/settings/tokens
https://docs.travis-ci.com/user/encryption-keys/

98

Figure C.1: Travis.yml file example for running failed test case

1. sudo: required
2.
3. language: java
4.
5. jdk:
6. -oraclejdk8
7.
8. script:
9. - mvn clean cobertura:cobertura -Dtest={TestFileName}#{TestCaseName}
-DfailIfNoTests=false
10.
11. before_deploy:
12. - tar -zcvf coverage-result.tar.gz /pathToDirectory/cobertura
13.
14. deploy:
15. provider: releases
16. api_key:
17. secure: "encryptedKey"
18. file: coverage-result.tar.gz
19. file_glob: true
20. overwrite: true
21. skip_cleanup: true
22. on:
23. tags: true

999999

APPENDIX D - Study Sample

This appendix presents the sample we used to perform our study. It is composed of 529
projects involving 60991 merge scenarios. Table D.1 presents the general information of each
project as also some demographic ones.

All scripts used to perform our experiment can be found in our GitHub repository.

https://github.com/leusonmario/TravisAnalysis

100

Table D.1: Sample

Project MergeScenarios (MS) Not Built MS Errored MS Failed MS

GoClipse/goclipse 426 356 8 49
taweili/ardublock 0 0 0 0

twitter/cloudhopper-smpp 23 3 7 1
RichardWarburton/lambda-behave 17 0 2 2

isaiah/jubilee 12 2 4 10
roundrop/facebook4j 63 31 3 0

brooklyncentral/clocker 216 29 29 22
reficio/soap-ws 2 0 0 0

pulse00/Twig-Eclipse-Plugin 8 4 1 4
hcoles/pitest 96 23 5 3

rhuss/docker-maven-plugin 0 0 0 0
kite-sdk/kite 80 3 42 17

javaee-samples/javaee7-samples 106 2 40 132
mpetazzoni/ttorrent 20 0 0 0

analytically/innerbuilder 9 4 4 0
linkedin/pinot 20 11 9 2

Athou/commafeed 56 1 9 0
cryptomator/cryptomator 120 39 6 14

spring-projects/spring-petclinic 25 6 0 1
sqshq/PiggyMetrics 10 4 2 1

apache/hive 65 34 0 29
VerbalExpressions/JavaVerbalExpressions 27 13 0 3

alibaba/java-dns-cache-manipulator 0 0 0 0
CloudSlang/score 154 2 3 8

CloudSlang/cloud-slang 818 247 51 60
nativelibs4java/BridJ 7 0 2 3

effektif/effektif 91 30 5 12
mrwilson/java-dirty 1 0 0 0

locationtech/udig-platform 34 1 25 9
apache/incubator-samoa 3 0 1 1

pac4j/spring-security-pac4j 34 7 4 0
CorfuDB/CorfuDB 594 87 48 30

martinpaljak/GlobalPlatformPro 5 0 0 0
jparsec/jparsec 36 6 9 0

spring-cloud/spring-cloud-consul 69 18 13 13
tbroyer/bullet 0 0 0 0

lookfirst/sardine 49 3 0 22
penberg/fjord 1 0 0 0

Esri/spatial-framework-for-hadoop 32 1 2 0
Esri/geometry-api-java 35 1 2 0

eXist-db/exist 1011 104 215 155
kongchen/swagger-maven-plugin 163 27 40 32

jamesdbloom/mockserver 64 48 3 12
trecloux/yeoman-maven-plugin 4 0 0 0

jsonld-java/jsonld-java 68 7 18 8
spotify/netty-zmtp 13 1 1 0

maxmind/GeoIP2-java 36 0 1 0
bitsofproof/supernode 28 10 6 2

f2prateek/progressbutton 11 0 0 2
gresrun/jesque 24 0 1 4

damnhandy/Handy-URI-Templates 28 3 4 5
apache/accumulo 477 157 77 49

airlift/airlift 1 0 0 0
adamfisk/LittleProxy 139 11 16 22
caelum/caelum-stella 41 2 19 4
FasterXML/aalto-xml 2 0 0 0

mfornos/humanize 8 4 0 1
cosmin/IClojure 0 0 0 0

jhalterman/typetools 12 0 0 0
szegedi/dynalink 2 0 0 1

jooby-project/jooby 129 16 38 48
hansenji/pocketknife 3 0 0 0

immutables/immutables 133 13 0 31
HubSpot/jinjava 135 53 13 2

graphaware/neo4j-reco 14 2 3 1
SpoutDev/Vanilla 21 3 11 4

goodow/realtime-store 0 0 0 0
cloudfoundry/java-buildpack-auto-reconfiguration 50 11 2 8

kzwang/elasticsearch-image 2 0 0 2
jOOQ/jOOL 53 26 32 2
4pr0n/ripme 42 23 11 56

resty-gwt/resty-gwt 93 6 9 14
yusuke/twitter4j 5 0 4 6

searls/jasmine-maven-plugin 51 10 1 2
brianfrankcooper/YCSB 279 11 11 20
rnewson/couchdb-lucene 17 0 2 0

jhy/jsoup 59 27 3 3

101

sculptor/sculptor 37 4 12 20
OpenSmpp/opensmpp 5 0 0 1

mybatis/guice 75 10 2 2
javanna/elasticshell 12 2 1 1

owlike/genson 16 1 3 1
jqno/equalsverifier 253 196 1 2

etsy/statsd-jvm-profiler 16 7 0 0
square/javapoet 251 5 11 5

liaohuqiu/SimpleHashSet 0 0 0 0
google/google-oauth-java-client 8 0 2 0
google/google-http-java-client 3 0 2 0

javaparser/javaparser 789 337 7 2
naver/pinpoint 1453 16 360 120

digitalfondue/lavagna 87 9 14 2
druid-io/druid 1128 4 59 394

GoogleCloudPlatform/DataflowJavaSDK 264 4 20 0
relayrides/pushy 201 39 18 15

aerogear/aerogear-unifiedpush-server 524 9 106 20
languagetool-org/languagetool 232 130 2 17

yegor256/xembly 6 0 5 2
google/auto 182 4 2 35

mesos/hadoop 21 1 2 0
owlcs/owlapi 70 12 8 2

guokr/simbase 0 0 0 0
palantir/eclipse-typescript 32 2 1 0

nurkiewicz/async-retry 3 2 1 0
easymock/objenesis 7 1 3 0

graphaware/neo4j-framework 97 24 33 36
jeevatkm/digitalocean-api-java 16 1 3 0

eveliotc/carbonite 0 0 0 0
sksamuel/elasticsearch-river-neo4j 12 5 4 4

ppat/storm-rabbitmq 20 10 0 0
julman99/gson-fire 9 1 0 0

StripesFramework/stripes 0 0 0 0
bujiio/buji-pac4j 27 1 3 0

usc/wechat-mp-sdk 1 0 0 0
nurkiewicz/LazySeq 0 0 0 0

OpenSextant/SolrTextTagger 15 2 6 0
sps/mustache-spring-view 3 0 0 0

hdiv/hdiv 74 15 13 4
UISpec4J/UISpec4J 0 0 0 0

jhalterman/concurrentunit 2 0 0 0
stefanbirkner/system-rules 0 0 0 0

xebia/Xebium 31 6 3 6
buddycloud/buddycloud-server-java 192 52 9 10

togglz/togglz 56 1 12 4
JakeWharton/salvage 1 0 2 0

logstash/log4j-jsonevent-layout 11 1 0 2
mybatis/jpetstore-6 63 0 0 2
mybatis/generator 131 6 5 18

ralfstx/minimal-json 7 0 0 0
brianm/really-executable-jars-maven-plugin 3 0 0 0

jOOQ/jOOU 6 2 7 0
FasterXML/jackson-dataformat-yaml 30 13 1 2

bkiers/Liqp 41 2 2 0
ning/maven-duplicate-finder-plugin 0 0 0 0

threerings/tripleplay 3 1 1 0
livingsocial/HiveSwarm 5 0 0 0
zeroturnaround/zt-zip 26 0 1 6

CloudifySource/cloudify 225 27 85 86
threerings/playn 13 0 8 0

basho/riak-java-client 386 213 86 57
goldmansachs/gs-collections 0 0 0 0

kevinsawicki/wishlist 1 0 2 0
FasterXML/jackson-databind 670 251 212 65

FasterXML/jackson-core 153 63 19 4
DSpace/DSpace 1226 80 47 134

adyliu/jafka 3 1 0 0
ocpsoft/rewrite 28 0 8 10

asual/lesscss-engine 0 0 0 0
tinkerpop/blueprints 142 28 66 44

searchbox-io/Jest 186 17 26 88
tananaev/traccar 402 204 15 1

nodebox/nodebox 76 23 14 4
tinkerpop/gremlin 14 2 11 2

airlift/airline 0 0 0 0
mikera/clisk 9 2 0 0

killme2008/Metamorphosis 13 8 5 0
tinkerpop/rexster 65 12 39 0
twilio/twilio-java 238 82 19 13

102

Multiverse/Multiverse-Core 9 0 2 0
resthub/resthub-spring-stack 128 19 20 14

essentials/Essentials 133 38 1 73
spullara/mustache.java 58 12 1 5
springside/springside4 32 0 8 12

dynjs/dynjs 53 2 22 6
SpoutDev/Spout 64 29 17 14

salyh/elasticsearch-security-plugin 0 0 0 0
addthis/stream-lib 42 2 4 16

drrb/java-rust-example 0 0 0 0
Spoutcraft/Spoutcraft 14 1 16 2

reficio/p2-maven-plugin 22 10 2 0
structr/structr 1125 776 71 303

hstaudacher/osgi-jax-rs-connector 23 0 0 8
gwt-maven-plugin/gwt-maven-plugin 7 0 0 0

madeye/proxydroid 0 0 0 0
yegor256/s3auth 46 12 3 58

MoriTanosuke/glacieruploader 15 3 1 0
jeluard/semantic-versioning 26 2 2 0
resthub/springmvc-router 29 5 2 3

jOOQ/jOOR 17 2 4 2
DiUS/java-faker 48 10 16 9

pac4j/pac4j 473 3 23 28
pedrovgs/Algorithms 13 6 0 1

Graphify/graphify 3 1 0 4
wix/petri 17 2 1 5

google/guava 1 0 0 0
sstone/akka-amqp-proxies 1 0 0 0

toomasr/skype-bot 1 0 1 0
koraktor/steam-condenser-java 19 6 1 0

bbeck/token-bucket 4 0 0 0
Findwise/Hydra 114 1 8 27

mikaelhg/urlbuilder 13 1 1 4
organicveggie/metrics-statsd 0 0 0 0

tumblr/jumblr 33 6 3 0
mybatis/mybatis-3 304 7 15 11

undera/jmeter-plugins 183 38 44 37
mybatis/spring 104 7 6 1

roboguice/roboguice 103 14 58 21
openpnp/openpnp 437 159 18 51

CamelCookbook/camel-cookbook-examples 19 14 1 2
zhangkaitao/es 11 0 13 4

wstrange/GoogleAuth 18 6 9 0
jmxtrans/jmxtrans 287 10 3 78

OpenGrok/OpenGrok 395 16 6 4
wuman/JReadability 1 0 0 0
doanduyhai/Achilles 47 10 11 2

Yubico/ykneo-openpgp 8 2 0 4
lviggiano/owner 36 1 7 0
perwendel/spark 226 29 3 16

apache/jackrabbit-oak 0 0 0 0
jbehave/jbehave-core 4 1 1 0

webbit/webbit 9 1 4 4
qos-ch/slf4j 43 4 0 3

magro/kryo-serializers 22 0 2 0
opensagres/xdocreport 42 21 0 2

play/play-android 0 0 0 0
Asquera/elasticsearch-http-basic 12 0 0 0

maxmind/geoip-api-java 17 0 0 3
dain/leveldb 2 0 2 0

before/uadetector 0 0 0 0
woorea/openstack-java-sdk 76 3 14 0

caskdata/tephra 94 1 5 2
jwtk/jjwt 77 8 0 16

square/burst 18 0 2 0
spring-cloud/spring-cloud-config 138 53 41 4

sd4324530/fastweixin 54 47 0 0
zafarkhaja/jsemver 0 0 0 0
davidmoten/rtree 27 2 5 0

GlowstoneMC/Glowstone 104 28 38 26
OfficeDev/ews-java-api 115 5 3 0

NLPchina/elasticsearch-sql 127 33 28 24
spring-projects/spring-security-oauth 10 8 0 1

gephi/gephi 92 35 18 12
yasserg/crawler4j 45 5 0 0

socketio/socket.io-client-java 27 1 0 8
pagehelper/Mybatis-PageHelper 1 1 0 0

aws/aws-sdk-java 163 6 16 108
bytedeco/javacpp 0 0 0 0
OpenFeign/feign 79 1 1 10

103

bonnyfone/vectalign 0 0 0 0
vavr-io/vavr 1137 68 31 21

otale/tale 47 3 2 0
bytedeco/javacv 0 0 0 0

jhalterman/failsafe 13 1 2 2
chewiebug/GCViewer 19 5 0 9
ninjaframework/ninja 96 9 4 5

hs-web/hsweb-framework 74 20 13 16
arturmkrtchyan/iban4j 8 0 1 0

siom79/japicmp 68 11 17 1
mgodave/barge 47 7 27 12
torakiki/sejda 23 7 7 0

corydissinger/raw4j 15 2 1 6
justinsb/jetcd 3 0 0 3

microg/NetworkLocation 2 0 2 0
aws/aws-dynamodb-session-tomcat 1 0 0 2

jcgay/maven-color 0 0 0 0
brettwooldridge/NuProcess 24 1 5 0

orientechnologies/spring-data-orientdb 0 0 0 0
davidmoten/rxjava-jdbc 24 0 2 2
redwarp/9-Patch-Resizer 7 0 0 0

la-team/light-admin 15 0 2 1
larsga/Duke 0 0 0 0

dropwizard/metrics 228 15 6 24
IDPF/epubcheck 81 1 2 4
jhalterman/lyra 14 1 0 0

jpush/jpush-api-java-client 80 4 16 1
caelum/vraptor4 566 17 14 58

coverity/coverity-security-library 0 0 0 0
metamx/druid 29 23 4 12
adyliu/zkclient 3 1 0 1

jmock-developers/jmock-library 19 2 1 0
mikera/vectorz 138 31 9 0

FasterXML/jackson-module-jsonSchema 36 12 2 6
oltpbenchmark/oltpbench 68 10 1 7

JodaOrg/joda-beans 6 1 4 0
reidarsollid/RustyCage 3 1 0 0

ajermakovics/eclipse-instasearch 7 0 0 0
jzy3d/jzy3d-api 20 3 4 9

pierre/meteo 1 0 2 0
jruby/joni 17 8 0 10

ganglia/jmxetric 14 1 10 0
sanity/LastCalc 6 1 0 0

jhalterman/expiringmap 8 0 0 1
FasterXML/jackson-datatype-joda 29 13 4 3

ThreeTen/threeten-extra 27 0 2 0
Simmetrics/simmetrics 36 6 18 0

brettwooldridge/SansOrm 10 0 0 0
olap4j/olap4j 4 4 0 0

tbroyer/gwt-maven-plugin 0 0 0 0
wuman/AndroidImageLoader 2 0 4 0

zenobase/geocluster-facet 0 0 0 0
checkstyle/checkstyle 12 0 0 0

google/compile-testing 32 1 1 0
FasterXML/jackson-datatype-hibernate 17 9 1 2

square/wire 504 1 10 70
l0rdn1kk0n/wicket-bootstrap 336 82 262 60

torodb/stampede 407 263 9 19
chanjarster/weixin-java-tools 64 26 0 0

poetix/protonpack 20 0 0 2
sanity/quickml 221 53 80 24

iluwatar/java-design-patterns 318 75 50 18
xerial/sqlite-jdbc 102 0 9 6
OryxProject/oryx 100 1 0 6

sockeqwe/fragmentargs 18 9 2 14
google/guice 70 0 4 6

spotify/docker-maven-plugin 100 72 4 2
ObeoNetwork/UML-Designer 3 0 0 0

google/truth 94 15 2 16
databricks/learning-spark 0 0 0 0

spotify/helios 846 750 29 32
spotify/docker-client 450 183 52 116

xtreemfs/xtreemfs 372 93 31 78
TannerPerrien/picasso-transformations 0 0 0 0

knightliao/disconf 55 7 4 0
tuenti/SmsRadar 2 0 0 0

google/closure-compiler 274 2 26 8
querydsl/querydsl 729 27 92 113

cglib/cglib 30 0 0 12
caelum/mamute 122 5 2 28

104

square/okio 140 0 1 2
igniterealtime/Openfire 626 8 0 36

devnied/EMV-NFC-Paycard-Enrollment 5 2 0 1
oxo42/stateless4j 18 4 1 0

jirutka/spring-rest-exception-handler 0 0 0 0
SonarSource/sonarqube 312 70 4 120

stephanenicolas/robospice 50 6 39 16
psi-probe/psi-probe 437 3 20 20

square/moshi 134 0 7 0
square/keywhiz 270 1 5 4

objectify/objectify 14 1 0 1
vbauer/jackdaw 2 0 0 0
vbauer/caesar 0 0 0 0
mono/sharpen 0 0 0 0

timmolter/XChange 1343 175 96 129
cloudfoundry/cf-java-client 1350 1150 42 102

ktoso/maven-git-commit-id-plugin 120 1 7 2
ryantenney/metrics-spring 43 4 2 2
rtyley/roboguice-sherlock 0 0 0 0

Hidendra/LWC 13 0 0 1
jOOQ/jOOQ 113 10 64 8

jsimone/webapp-runner 16 9 11 4
julianhyde/linq4j 0 0 0 0

square/retrofit 526 3 10 20
geotools/geotools 1242 203 178 510

sematext/HBaseHUT 0 0 0 0
JodaOrg/joda-time 72 1 0 0

tcurdt/jdeb 60 5 9 8
mitreid-connect/OpenID-Connect-Java-Spring-Server 60 28 3 4

jknack/handlebars.java 75 7 23 8
scobal/seyren 135 15 6 10
zxing/zxing 75 50 5 1
weld/core 0 0 0 0

karussell/snacktory 17 9 0 18
kevinsawicki/http-request 3 0 0 0

caelum/vraptor 86 11 15 4
notnoop/java-apns 42 3 7 8

gwtbootstrap/gwt-bootstrap 95 7 24 16
super-csv/super-csv 30 2 0 2

pac4j/play-pac4j 88 6 14 3
asciidocfx/AsciidocFX 156 14 48 2

spotify/cassandra-reaper 139 44 9 4
expectedbehavior/gauges-android 0 0 0 0

apache/drill 58 58 0 1
dkunzler/esperandro 16 4 5 1

trautonen/coveralls-maven-plugin 24 3 8 0
nurkiewicz/spring-data-jdbc-repository 6 2 5 2

dianping/cat 1273 575 133 175
datastax/java-driver 422 92 50 35
paulhoule/infovore 24 12 8 0

Comcast/cmb 4 0 6 0
olivergierke/spring-restbucks 0 0 0 0

klout/brickhouse 9 0 0 0
androrm/androrm 3 2 1 2
Comcast/jrugged 23 0 0 12
yammer/tenacity 52 27 7 2

google/jimfs 9 1 3 0
protostuff/protostuff 105 5 6 0

twitter/hpack 4 1 0 0
WhisperSystems/BitHub 9 4 0 0

gwtbootstrap3/gwtbootstrap3 156 5 3 25
plantuml/plantuml 1 0 0 0

ronmamo/reflections 28 1 0 3
guari/eclipse-ui-theme 10 0 0 0
code4craft/webmagic 106 18 31 10

TheHolyWaffle/TeamSpeak-3-Java-API 7 0 0 0
awslabs/route53-infima 0 0 0 0

jcabi/jcabi-github 225 43 56 107
jreijn/spring-comparing-template-engines 11 1 0 2

uaihebert/uaicontacts 0 0 0 0
ripple/ripple-lib-java 10 1 5 0

Spoutcraft/LegacyLauncher 6 2 0 0
square/seismic 6 0 0 2

ArcBees/GWTP 69 11 60 0
jacoco/jacoco 86 8 22 6

FasterXML/jackson-dataformat-csv 45 21 1 7
square/pollexor 21 0 0 0

restlet/restlet-framework-java 157 38 4 103
square/okhttp 1591 248 260 219
neuland/jade4j 41 20 6 8

105

pulse00/Symfony-2-Eclipse-Plugin 19 2 11 1
neophob/PixelController 39 13 4 0

smooks/smooks 12 0 1 10
julianhyde/optiq 8 2 2 0

fabiomaffioletti/jsondoc 22 0 7 1
cereda/arara 15 7 0 0

pgjdbc/pgjdbc 179 6 6 21
FasterXML/jackson-dataformat-xml 40 21 8 2

lemire/javaewah 36 19 0 2
tinkerpop/frames 34 7 12 0

samskivert/jmustache 5 0 0 0
mpatric/mp3agic 26 2 2 2
timmolter/XChart 76 2 10 18

redline-smalltalk/redline-smalltalk 72 5 6 35
graphaware/neo4j-timetree 34 8 11 7

thelinmichael/spotify-web-api-java 30 12 10 2
shilad/wikibrain 258 104 124 14

codecentric/spring-boot-starter-batch-web 19 5 2 5
clemp6r/futuroid 1 0 0 0

apache/tajo 157 80 23 35
FenixEdu/fenixedu-academic 1005 181 52 16

welovecoding/editorconfig-netbeans 32 18 0 0
greenmail-mail-test/greenmail 53 38 0 0
OpenSOC/opensoc-streaming 25 1 3 0

caskdata/coopr 836 395 234 117
paukiatwee/budgetapp 10 6 2 0

jcabi/jcabi-ssh 6 0 0 40
OrbitzWorldwide/consul-client 8 0 1 0

jmrozanec/cron-utils 194 31 19 80
vdenotaris/spring-boot-security-saml-sample 0 0 0 0

mesos/storm 112 3 0 0
Kixeye/chassis 6 0 4 0

matlux/jvm-breakglass 5 2 0 0
Tillerino/Tillerinobot 18 1 0 0

matlux/jvm-breakglass 5 2 0 0
Tillerino/Tillerinobot 18 1 0 0
alibaba/cobarclient 8 2 1 0

shyiko/mysql-binlog-connector-java 21 0 6 2
SpigotMC/BungeeCord 24 3 2 0
atermenji/IconicDroid 2 0 4 0

davidmoten/geo 9 0 3 0
alexxiyang/shiro-redis 3 1 1 0

groupon/Selenium-Grid-Extras 0 0 0 0
robolectric/deckard-maven 9 0 2 2

forge/roaster 22 5 2 0
jcabi/jcabi-http 36 1 10 61

jprante/elasticsearch-gatherer 0 0 0 0
smola/galimatias 7 0 1 0

headissue/cache2k 5 0 0 0
HolmesNL/kafka-spout 11 0 1 0

recommenders/rival 26 3 1 0
aaberg/sql2o 18 0 0 0

kenglxn/QRGen 44 4 1 7
jmkgreen/morphia 25 0 1 8

sarxos/webcam-capture 27 13 14 0
thinkaurelius/faunus 31 9 12 1

linkedin/parseq 50 0 0 5
square/dagger 359 145 13 21

Berico-Technologies/CLAVIN 36 4 20 9
lemire/JavaFastPFOR 20 1 1 2
ActiveJpa/activejpa 11 0 4 2

marschall/memoryfilesystem 29 2 1 8
thrau/jarchivelib 3 0 0 2
jberkel/pay-me 1 0 0 0

AdoptOpenJDK/lambda-tutorial 2 0 2 0
caspark/eclipse-multicursor 3 0 0 0

Slim3/slim3 5 0 3 0
ontop/ontop 1259 800 81 142
forge/core 37 37 0 0

alecgorge/jsonapi 38 6 18 12
MilkBowl/Vault 7 0 10 0

square/otto 71 0 81 9
vvakame/JsonPullParser 32 2 8 17

qos-ch/logback 62 3 0 23
write2munish/Akka-Essentials 1 0 2 0

jOOQ/jOOX 10 4 4 0
myabc/markdownj 3 0 0 0

serso/android-common 0 0 0 0
tinkerpop/pipes 7 3 0 0

maxcom/lorsource 343 25 31 13

106

eclipse-color-theme/eclipse-color-theme 14 7 0 0
sachin-handiekar/jInstagram 77 38 12 1

FasterXML/jackson-annotations 25 8 1 0
JakeWharton/DiskLruCache 21 0 0 4

SomMeri/less4j 23 3 1 6
winterstein/Eclipse-Markdown-Editor-Plugin 16 7 0 0

stratosphere/stratosphere 50 12 16 0
JavaMoney/jsr354-api 26 1 4 0

eirslett/frontend-maven-plugin 128 4 3 7
kuujo/vertigo 2 0 2 2

VCNC/haeinsa 19 2 4 6
Adobe-Consulting-Services/acs-aem-commons 605 153 57 12

indeedeng/proctor 65 6 19 4
iipc/openwayback 244 129 28 13
torakiki/pdfsam 10 1 4 0
knowitall/reverb 0 0 0 0

dropwizard/dropwizard 736 66 15 49
YannBrrd/elasticsearch-entity-resolution 21 5 1 1

jcabi/jcabi-aspects 58 3 9 33
threerings/getdown 22 0 6 0

aled/jsi 4 0 4 0
sanity/tahrir 20 7 13 14

rest-driver/rest-driver 43 4 0 6
helun/Ektorp 86 4 7 0

apache/pdfbox 1 0 1 0
xetorthio/jedis 256 40 2 114

netty/netty 17 17 0 0
google/j2objc 72 19 7 13
apache/storm 2044 1385 330 435

swagger-api/swagger-core 773 106 116 81
eclipse/che 1176 524 0 652

scribejava/scribejava 87 6 1 33
neo4j/neo4j 0 0 0 0

AsyncHttpClient/async-http-client 27 0 0 14
weibocom/motan 87 11 7 7

java-native-access/jna 266 23 0 25
NLPchina/ansj_seg 40 7 26 4

orientechnologies/orientdb 2132 1802 344 117
apache/zeppelin 0 0 0 0

Atmosphere/atmosphere 269 49 13 178
b3log/solo 300 20 58 0
antlr/antlr4 707 203 360 60

jankotek/mapdb 60 1 0 24
medcl/elasticsearch-analysis-ik 10 1 0 0

apache/flink 3 0 2 2
codecentric/spring-boot-admin 50 15 1 0

Activiti/Activiti 37 26 18 4
twitter/distributedlog 10 1 3 10

rest-assured/rest-assured 35 1 0 6
FasterXML/jackson-jr 21 16 7 6

rombert/desktop-maven-notifier 4 1 0 0
mp911de/logstash-gelf 14 8 0 2

107107107

APPENDIX E - Build and Test Conflicts

In this appendix, we present the build and test conflicts identified during our study. Table
E.1 presents the build conflicts resulting of errored builds, while Table E.2 those cases resulting
of failed builds. The test conflicts are presented in Table E.3.

To access any build, the URL associated to the build is composed by the identifier of the
repository owner and the project name. For example, for build 184169929 of CorfuDB, the valid
URL is https://travis-ci.org/CorfuDB/CorfuDB/builds/184169929. In case, it does not work,
change the the repository owner identifier for leusonmario (commits built during the study).

108

Table E.1: Build conflicts from errored builds

Project Build Conflict BuildID ParentBuild ParentBuild Preserved MS Motivator

CorfuDB/CorfuDB "unavailableSymbolFileSpecialCase" 184169929 182952082 184053786 true contributor

CorfuDB/CorfuDB "incompatibleMethodSignature" 147270257 146731270 147268879 false integrator

CloudSlang/cloud-slang "projectRules" 167353985 167337851 167031283 true contributor

CloudSlang/cloud-slang "unimplementedMethod" 158194754 157904090 157651571 true integrator

CloudSlang/cloud-slang "unavailableSymbolVariable" 108796563 108795960 108776026 false integrator

CloudSlang/cloud-slang "unavailableSymbolVariable" 75952745 75948732 75923848 false integrator

CloudSlang/cloud-slang "incompatibleMethodSignature" 52708270 52624715 52621434 true integrator

CloudSlang/cloud-slang "incompatibleMethodSignature" 48623977 48452656 47642475 false integrator

jparsec/jparsec "unavailableSymbolFileSpecialCase" 298321301 298321674 44292456 false contributor

spotify/netty-zmtp "unavailableSymbolFile" 64970950 49887268 64969308 false contributor

damnhandy/Handy-URI-Templates "unavailableSymbolMethod" 294178999 3279767 8985944 false contributor

graphaware/neo4j-reco "unavailableSymbolFileSpecialCase" 291082366 67313466 291082952 true contributor

square/javapoet "incompatibleMethodSignature" 48276050 48264414 48249131 true contributor

javaparser/javaparser "malformedProgram" 266734913 266735395 232077865 false integrator

graphaware/neo4j-framework "unavailableSymbolFileSpecialCase" 300000699 300001083 300001574 false contributor

graphaware/neo4j-framework "unavailableSymbolFileSpecialCase" 299999324 299999578 300000232 false contributor

hdiv/hdiv "projectRules" 126140680 126121157 126010037 false contributor

CloudifySource/cloudify "malformedProgram" 14913281 14912159 14913175 false integrator

FasterXML/jackson-databind "incompatibleMethodSignature" 261011849 176606678 176914535 true contributor

FasterXML/jackson-databind "unavailableSymbolFile" 261011849 176606678 176914535 true contributor

FasterXML/jackson-databind "unavailableSymbolFile" 243316175 178982350 178982403 true contributor

FasterXML/jackson-databind "unavailableSymbolFile" 243309781 214119107 214497429 false contributor

FasterXML/jackson-databind "unavailableSymbolFile" 242509582 214851840 215034489 false contributor

FasterXML/jackson-databind "unavailableSymbolFile" 231752920 216921134 216949214 true contributor

searchbox-io/Jest "incompatibleTypes" 266666842 7348623 266667301 false contributor

searchbox-io/Jest "unavailableSymbolFileSpecialCase" 266666842 7348623 266667301 false contributor

searchbox-io/Jest "incompatibleMethodSignature" 266665859 266666132 266666455 false contributor

searchbox-io/Jest "unimplementedMethod" 266665859 266666132 266666455 false integrator

FasterXML/jackson-core "duplicatedDeclaration" 49277833 49277342 49277694 false integrator

tinkerpop/blueprints "unavailableSymbolFileSpecialCase" 267838950 7251425 7275268 true contributor

tinkerpop/blueprints "duplicatedDeclaration" 267833702 10006381 10033212 true contributor

tananaev/traccar "unavailableSymbolFile" 248845938 248846728 127767037 false integrator

tananaev/traccar "unavailableSymbolMethod" 232042524 93468836 93456576 true integrator

tananaev/traccar "projectRules" 232041300 232041477 145785480 true contributor

DSpace/DSpace "incompatibleMethodSignature" 263379307 18006409 17867814 true integrator

DSpace/DSpace "incompatibleTypes" 263379307 18006409 17867814 true contributor

DSpace/DSpace "unavailableSymbolFileSpecialCase" 263379307 18006409 17867814 true contributor

yegor256/s3auth "unavailableSymbolFile" 294115389 294116142 27476470 true integrator

pac4j/pac4j "unimplementedMethodSuperType" 291027337 291028699 111151558 true contributor

pac4j/pac4j "unavailableSymbolFile" 291027337 291028699 111151558 true integrator

pac4j/pac4j "unimplementedMethodSuperType" 291006785 291007948 291008489 true contributor

pac4j/pac4j "unavailableSymbolVariable" 291006785 291007948 291008489 true integrator

pac4j/pac4j "unavailableSymbolFile" 291001187 291001416 81744123 true integrator

tumblr/jumblr "unavailableSymbolFileSpecialCase" 15597349 15448857 13923231 true contributor

tumblr/jumblr "unavailableSymbolFile" 15597349 15448857 13923231 true integrator

OpenGrok/OpenGrok "unavailableSymbolFile" 260884854 34401647 260885658 false contributor

perwendel/spark "incompatibleMethodSignature" 229805514 229805715 181120662 true integrator

NLPchina/elasticsearch-sql "incompatibleTypes" 99402562 99401600 98781128 false contributor

NLPchina/elasticsearch-sql "unavailableSymbolFile" 260447690 260448041 260448503 false contributor

NLPchina/elasticsearch-sql "unavailableSymbolFile" 238652770 238653883 238654712 true contributor

vavr-io/vavr "unavailableSymbolMethod" 279623010 279623946 73460929 true contributor

square/wire "unavailableSymbolFile" 157352214 151088900 149644087 true contributor

l0rdn1kk0n/wicket-bootstrap "unavailableSymbolFileSpecialCase" 33711220 32203441 33700856 false integrator

l0rdn1kk0n/wicket-bootstrap "unavailableSymbolFileSpecialCase" 11775898 11766897 11753209 false integrator

square/okio "unavailableSymbolVariable" 53590047 53512697 51230329 true contributor

querydsl/querydsl "unavailableSymbolFileSpecialCase" 120089896 119843675 119841177 true contributor

querydsl/querydsl "unavailableSymbolFileSpecialCase" 68942596 68893274 68518956 true contributor

querydsl/querydsl "unavailableSymbolFileSpecialCase" 32894479 32644663 32870444 true contributor

querydsl/querydsl "unavailableSymbolFileSpecialCase" 28099524 25635609 27786127 false contributor

querydsl/querydsl "unavailableSymbolFileSpecialCase" 26703313 26604028 26689825 true contributor

querydsl/querydsl "unavailableSymbolFileSpecialCase" 25098248 24127367 24926864 true contributor

querydsl/querydsl "unavailableSymbolFileSpecialCase" 245246051 43024946 44344574 true contributor

oxo42/stateless4j "malformedProgram" 291334455 291335307 291335657 false integrator

sanity/quickml "unavailableSymbolMethod" 53571613 53552160 53495563 false contributor

sanity/quickml "unimplementedMethod" 53078374 51295424 52786842 false integrator

sanity/quickml "duplicatedDeclaration" 25549352 25544853 25548698 false integrator

sanity/quickml "unavailableSymbolVariable" 25549352 25544853 25548698 false contributor

sanity/quickml "unavailableSymbolMethod" 261094547 32365230 32339061 false contributor

google/truth "unavailableSymbolFileSpecialCase" 25020324 25016734 25016452 true contributor

timmolter/XChange "unavailableSymbolFile" 265366487 265367118 265367674 false integrator

timmolter/XChange "malformedProgram" 232202095 232202606 232202943 false integrator

datastax/java-driver "unavailableSymbolMethod" 144600040 144584703 144580240 false contributor

datastax/java-driver "incompatibleMethodSignature" 129572210 128966369 129571864 false integrator

datastax/java-driver "unimplementedMethod" 100402057 100359289 100316921 false integrator

datastax/java-driver "unavailableSymbolMethod" 70541417 69694110 70541409 false contributor

https://travis-ci.org/CorfuDB/CorfuDB/builds/184169929
https://travis-ci.org/CorfuDB/CorfuDB/builds/182952082
https://travis-ci.org/CorfuDB/CorfuDB/builds/184053786
https://travis-ci.org/CorfuDB/CorfuDB/builds/147270257
https://travis-ci.org/CorfuDB/CorfuDB/builds/146731270
https://travis-ci.org/CorfuDB/CorfuDB/builds/147268879
https://travis-ci.org/CloudSlang/cloud-slang/builds/167353985
https://travis-ci.org/CloudSlang/cloud-slang/builds/167337851
https://travis-ci.org/CloudSlang/cloud-slang/builds/167031283
https://travis-ci.org/CloudSlang/cloud-slang/builds/158194754
https://travis-ci.org/CloudSlang/cloud-slang/builds/157904090
https://travis-ci.org/CloudSlang/cloud-slang/builds/157651571
https://travis-ci.org/CloudSlang/cloud-slang/builds/108796563
https://travis-ci.org/CloudSlang/cloud-slang/builds/108795960
https://travis-ci.org/CloudSlang/cloud-slang/builds/108776026
https://travis-ci.org/CloudSlang/cloud-slang/builds/75952745
https://travis-ci.org/CloudSlang/cloud-slang/builds/75948732
https://travis-ci.org/CloudSlang/cloud-slang/builds/75923848
https://travis-ci.org/CloudSlang/cloud-slang/builds/52708270
https://travis-ci.org/CloudSlang/cloud-slang/builds/52624715
https://travis-ci.org/CloudSlang/cloud-slang/builds/52621434
https://travis-ci.org/CloudSlang/cloud-slang/builds/48623977
https://travis-ci.org/CloudSlang/cloud-slang/builds/48452656
https://travis-ci.org/CloudSlang/cloud-slang/builds/47642475
https://travis-ci.org/leusonmario/jparsec/builds/298321301
https://travis-ci.org/leusonmario/jparsec/builds/298321674
https://travis-ci.org/jparsec/jparsec/builds/44292456
https://travis-ci.org/spotify/netty-zmtp/builds/64970950
https://travis-ci.org/spotify/netty-zmtp/builds/49887268
https://travis-ci.org/spotify/netty-zmtp/builds/64969308
https://travis-ci.org/leusonmario/Handy-URI-Templates/builds/294178999
https://travis-ci.org/damnhandy/Handy-URI-Templates/builds/3279767
https://travis-ci.org/damnhandy/Handy-URI-Templates/builds/8985944
https://travis-ci.org/leusonmario/neo4j-reco/builds/291082366
https://travis-ci.org/graphaware/neo4j-reco/builds/67313466
https://travis-ci.org/leusonmario/neo4j-reco/builds/291082952
https://travis-ci.org/square/javapoet/builds/48276050
https://travis-ci.org/square/javapoet/builds/48264414
https://travis-ci.org/square/javapoet/builds/48249131
https://travis-ci.org/leusonmario/javaparser/builds/266734913
https://travis-ci.org/leusonmario/javaparser/builds/266735395
https://travis-ci.org/javaparser/javaparser/builds/232077865
https://travis-ci.org/leusonmario/neo4j-framework/builds/300000699
https://travis-ci.org/leusonmario/neo4j-framework/builds/300001083
https://travis-ci.org/leusonmario/neo4j-framework/builds/300001574
https://travis-ci.org/leusonmario/neo4j-framework/builds/299999324
https://travis-ci.org/leusonmario/neo4j-framework/builds/299999578
https://travis-ci.org/leusonmario/neo4j-framework/builds/300000232
https://travis-ci.org/hdiv/hdiv/builds/126140680
https://travis-ci.org/hdiv/hdiv/builds/126121157
https://travis-ci.org/hdiv/hdiv/builds/126010037
https://travis-ci.org/CloudifySource/cloudify/builds/14913281
https://travis-ci.org/CloudifySource/cloudify/builds/14912159
https://travis-ci.org/CloudifySource/cloudify/builds/14913175
https://travis-ci.org/leusonmario/jackson-databind/builds/261011849
https://travis-ci.org/FasterXML/jackson-databind/builds/176606678
https://travis-ci.org/FasterXML/jackson-databind/builds/176914535
https://travis-ci.org/leusonmario/jackson-databind/builds/261011849
https://travis-ci.org/FasterXML/jackson-databind/builds/176606678
https://travis-ci.org/FasterXML/jackson-databind/builds/176914535
https://travis-ci.org/leusonmario/jackson-databind/builds/243316175
https://travis-ci.org/FasterXML/jackson-databind/builds/178982350
https://travis-ci.org/FasterXML/jackson-databind/builds/178982403
https://travis-ci.org/leusonmario/jackson-databind/builds/243309781
https://travis-ci.org/FasterXML/jackson-databind/builds/214119107
https://travis-ci.org/FasterXML/jackson-databind/builds/214497429
https://travis-ci.org/leusonmario/jackson-databind/builds/242509582
https://travis-ci.org/FasterXML/jackson-databind/builds/214851840
https://travis-ci.org/FasterXML/jackson-databind/builds/215034489
https://travis-ci.org/leusonmario/jackson-databind/builds/231752920
https://travis-ci.org/FasterXML/jackson-databind/builds/216921134
https://travis-ci.org/FasterXML/jackson-databind/builds/216949214
https://travis-ci.org/leusonmario/Jest/builds/266666842
https://travis-ci.org/searchbox-io/Jest/builds/7348623
https://travis-ci.org/leusonmario/Jest/builds/266667301
https://travis-ci.org/leusonmario/Jest/builds/266666842
https://travis-ci.org/searchbox-io/Jest/builds/7348623
https://travis-ci.org/leusonmario/Jest/builds/266667301
https://travis-ci.org/leusonmario/Jest/builds/266665859
https://travis-ci.org/leusonmario/Jest/builds/266666132
https://travis-ci.org/leusonmario/Jest/builds/266666455
https://travis-ci.org/leusonmario/Jest/builds/266665859
https://travis-ci.org/leusonmario/Jest/builds/266666132
https://travis-ci.org/leusonmario/Jest/builds/266666455
https://travis-ci.org/FasterXML/jackson-core/builds/49277833
https://travis-ci.org/FasterXML/jackson-core/builds/49277342
https://travis-ci.org/FasterXML/jackson-core/builds/49277694
https://travis-ci.org/leusonmario/blueprints/builds/267838950
https://travis-ci.org/tinkerpop/blueprints/builds/7251425
https://travis-ci.org/tinkerpop/blueprints/builds/7275268
https://travis-ci.org/leusonmario/blueprints/builds/267833702
https://travis-ci.org/tinkerpop/blueprints/builds/10006381
https://travis-ci.org/tinkerpop/blueprints/builds/10033212
https://travis-ci.org/leusonmario/traccar/builds/248845938
https://travis-ci.org/leusonmario/traccar/builds/248846728
https://travis-ci.org/tananaev/traccar/builds/127767037
https://travis-ci.org/leusonmario/traccar/builds/232042524
https://travis-ci.org/tananaev/traccar/builds/93468836
https://travis-ci.org/tananaev/traccar/builds/93456576
https://travis-ci.org/leusonmario/traccar/builds/232041300
https://travis-ci.org/leusonmario/traccar/builds/232041477
https://travis-ci.org/tananaev/traccar/builds/145785480
https://travis-ci.org/leusonmario/DSpace/builds/263379307
https://travis-ci.org/DSpace/DSpace/builds/18006409
https://travis-ci.org/DSpace/DSpace/builds/17867814
https://travis-ci.org/leusonmario/DSpace/builds/263379307
https://travis-ci.org/DSpace/DSpace/builds/18006409
https://travis-ci.org/DSpace/DSpace/builds/17867814
https://travis-ci.org/leusonmario/DSpace/builds/263379307
https://travis-ci.org/DSpace/DSpace/builds/18006409
https://travis-ci.org/DSpace/DSpace/builds/17867814
https://travis-ci.org/leusonmario/s3auth/builds/294115389
https://travis-ci.org/leusonmario/s3auth/builds/294116142
https://travis-ci.org/yegor256/s3auth/builds/27476470
https://travis-ci.org/leusonmario/pac4j/builds/291027337
https://travis-ci.org/leusonmario/pac4j/builds/291028699
https://travis-ci.org/pac4j/pac4j/builds/111151558
https://travis-ci.org/leusonmario/pac4j/builds/291027337
https://travis-ci.org/leusonmario/pac4j/builds/291028699
https://travis-ci.org/pac4j/pac4j/builds/111151558
https://travis-ci.org/leusonmario/pac4j/builds/291006785
https://travis-ci.org/leusonmario/pac4j/builds/291007948
https://travis-ci.org/leusonmario/pac4j/builds/291008489
https://travis-ci.org/leusonmario/pac4j/builds/291006785
https://travis-ci.org/leusonmario/pac4j/builds/291007948
https://travis-ci.org/leusonmario/pac4j/builds/291008489
https://travis-ci.org/leusonmario/pac4j/builds/291001187
https://travis-ci.org/leusonmario/pac4j/builds/291001416
https://travis-ci.org/pac4j/pac4j/builds/81744123
https://travis-ci.org/tumblr/jumblr/builds/15597349
https://travis-ci.org/tumblr/jumblr/builds/15448857
https://travis-ci.org/tumblr/jumblr/builds/13923231
https://travis-ci.org/tumblr/jumblr/builds/15597349
https://travis-ci.org/tumblr/jumblr/builds/15448857
https://travis-ci.org/tumblr/jumblr/builds/13923231
https://travis-ci.org/leusonmario/OpenGrok/builds/260884854
https://travis-ci.org/OpenGrok/OpenGrok/builds/34401647
https://travis-ci.org/leusonmario/OpenGrok/builds/260885658
https://travis-ci.org/leusonmario/spark/builds/229805514
https://travis-ci.org/leusonmario/spark/builds/229805715
https://travis-ci.org/perwendel/spark/builds/181120662
https://travis-ci.org/NLPchina/elasticsearch-sql/builds/99402562
https://travis-ci.org/NLPchina/elasticsearch-sql/builds/99401600
https://travis-ci.org/NLPchina/elasticsearch-sql/builds/98781128
https://travis-ci.org/leusonmario/elasticsearch-sql/builds/260447690
https://travis-ci.org/leusonmario/elasticsearch-sql/builds/260448041
https://travis-ci.org/leusonmario/elasticsearch-sql/builds/260448503
https://travis-ci.org/leusonmario/elasticsearch-sql/builds/238652770
https://travis-ci.org/leusonmario/elasticsearch-sql/builds/238653883
https://travis-ci.org/leusonmario/elasticsearch-sql/builds/238654712
https://travis-ci.org/leusonmario/vavr/builds/279623010
https://travis-ci.org/leusonmario/vavr/builds/279623946
https://travis-ci.org/vavr-io/vavr/builds/73460929
https://travis-ci.org/square/wire/builds/157352214
https://travis-ci.org/square/wire/builds/151088900
https://travis-ci.org/square/wire/builds/149644087
https://travis-ci.org/l0rdn1kk0n/wicket-bootstrap/builds/33711220
https://travis-ci.org/l0rdn1kk0n/wicket-bootstrap/builds/32203441
https://travis-ci.org/l0rdn1kk0n/wicket-bootstrap/builds/33700856
https://travis-ci.org/l0rdn1kk0n/wicket-bootstrap/builds/11775898
https://travis-ci.org/l0rdn1kk0n/wicket-bootstrap/builds/11766897
https://travis-ci.org/l0rdn1kk0n/wicket-bootstrap/builds/11753209
https://travis-ci.org/square/okio/builds/53590047
https://travis-ci.org/square/okio/builds/53512697
https://travis-ci.org/square/okio/builds/51230329
https://travis-ci.org/querydsl/querydsl/builds/120089896
https://travis-ci.org/querydsl/querydsl/builds/119843675
https://travis-ci.org/querydsl/querydsl/builds/119841177
https://travis-ci.org/querydsl/querydsl/builds/68942596
https://travis-ci.org/querydsl/querydsl/builds/68893274
https://travis-ci.org/querydsl/querydsl/builds/68518956
https://travis-ci.org/querydsl/querydsl/builds/32894479
https://travis-ci.org/querydsl/querydsl/builds/32644663
https://travis-ci.org/querydsl/querydsl/builds/32870444
https://travis-ci.org/querydsl/querydsl/builds/28099524
https://travis-ci.org/querydsl/querydsl/builds/25635609
https://travis-ci.org/querydsl/querydsl/builds/27786127
https://travis-ci.org/querydsl/querydsl/builds/26703313
https://travis-ci.org/querydsl/querydsl/builds/26604028
https://travis-ci.org/querydsl/querydsl/builds/26689825
https://travis-ci.org/querydsl/querydsl/builds/25098248
https://travis-ci.org/querydsl/querydsl/builds/24127367
https://travis-ci.org/querydsl/querydsl/builds/24926864
https://travis-ci.org/leusonmario/querydsl/builds/245246051
https://travis-ci.org/querydsl/querydsl/builds/43024946
https://travis-ci.org/querydsl/querydsl/builds/44344574
https://travis-ci.org/leusonmario/stateless4j/builds/291334455
https://travis-ci.org/leusonmario/stateless4j/builds/291335307
https://travis-ci.org/leusonmario/stateless4j/builds/291335657
https://travis-ci.org/sanity/quickml/builds/53571613
https://travis-ci.org/sanity/quickml/builds/53552160
https://travis-ci.org/sanity/quickml/builds/53495563
https://travis-ci.org/sanity/quickml/builds/53078374
https://travis-ci.org/sanity/quickml/builds/51295424
https://travis-ci.org/sanity/quickml/builds/52786842
https://travis-ci.org/sanity/quickml/builds/25549352
https://travis-ci.org/sanity/quickml/builds/25544853
https://travis-ci.org/sanity/quickml/builds/25548698
https://travis-ci.org/sanity/quickml/builds/25549352
https://travis-ci.org/sanity/quickml/builds/25544853
https://travis-ci.org/sanity/quickml/builds/25548698
https://travis-ci.org/leusonmario/quickml/builds/261094547
https://travis-ci.org/sanity/quickml/builds/32365230
https://travis-ci.org/sanity/quickml/builds/32339061
https://travis-ci.org/google/truth/builds/25020324
https://travis-ci.org/google/truth/builds/25016734
https://travis-ci.org/google/truth/builds/25016452
https://travis-ci.org/leusonmario/XChange/builds/265366487
https://travis-ci.org/leusonmario/XChange/builds/265367118
https://travis-ci.org/leusonmario/XChange/builds/265367674
https://travis-ci.org/leusonmario/XChange/builds/232202095
https://travis-ci.org/leusonmario/XChange/builds/232202606
https://travis-ci.org/leusonmario/XChange/builds/232202943
https://travis-ci.org/datastax/java-driver/builds/144600040
https://travis-ci.org/datastax/java-driver/builds/144584703
https://travis-ci.org/datastax/java-driver/builds/144580240
https://travis-ci.org/datastax/java-driver/builds/129572210
https://travis-ci.org/datastax/java-driver/builds/128966369
https://travis-ci.org/datastax/java-driver/builds/129571864
https://travis-ci.org/datastax/java-driver/builds/100402057
https://travis-ci.org/datastax/java-driver/builds/100359289
https://travis-ci.org/datastax/java-driver/builds/100316921
https://travis-ci.org/datastax/java-driver/builds/70541417
https://travis-ci.org/datastax/java-driver/builds/69694110
https://travis-ci.org/datastax/java-driver/builds/70541409

109

datastax/java-driver "projectRules" 264197134 66828290 67548498 false contributor

datastax/java-driver "projectRules" 262590772 66828086 67551312 false contributor

datastax/java-driver "projectRules" 262588978 94195206 93340876 true contributor

datastax/java-driver "projectRules" 262588129 94448188 95393602 false contributor

datastax/java-driver "projectRules" 261827428 66039328 66375528 false contributor

datastax/java-driver "projectRules" 261826973 66851336 67551575 false contributor

datastax/java-driver "projectRules" 261826640 68517283 68544192 false contributor

datastax/java-driver "projectRules" 261825993 91450994 91448081 true contributor

datastax/java-driver "projectRules" 261824238 95643827 95849340 false contributor

datastax/java-driver "projectRules" 261076398 61156227 61168500 true contributor

datastax/java-driver "projectRules" 261075895 61504578 61743199 true contributor

datastax/java-driver "projectRules" 261075340 66038248 66380170 false contributor

datastax/java-driver "projectRules" 261073520 68544200 68546467 false contributor

datastax/java-driver "projectRules" 261072842 80879915 80895179 false contributor

datastax/java-driver "projectRules" 261072181 90114055 90354703 false contributor

datastax/java-driver "projectRules" 261069264 95528461 95854619 false contributor

datastax/java-driver "unavailableSymbolMethod" 261062583 201229321 202731595 false contributor

dianping/cat "incompatibleMethodSignature" 262523939 262524153 262524583 true integrator

protostuff/protostuff "unavailableSymbolFile" 262560987 262561921 54938495 false contributor

code4craft/webmagic "duplicatedDeclaration" 258998355 128642244 258998698 false integrator

code4craft/webmagic "duplicatedDeclaration" 243501513 243501975 11121696 true contributor

code4craft/webmagic "unavailableSymbolMethod" 237768118 216587617 237243090 false contributor

square/okhttp "unavailableSymbolVariable" 19399475 19399433 19398501 true contributor

graphaware/neo4j-timetree "incompatibleTypes" 298701803 31937574 31697048 false contributor

ontop/ontop "incompatibleMethodSignature" 113479426 111166422 112943276 true contributor

ontop/ontop "unimplementedMethodSuperType" 113479426 111166422 112943276 true contributor

ontop/ontop "unavailableSymbolMethod" 109369904 101107434 107247494 true contributor

ontop/ontop "unavailableSymbolFile" 103065874 93966682 103064869 true integrator

ontop/ontop "incompatibleMethodSignature" 101107160 90696395 100866210 true integrator

ontop/ontop "unavailableSymbolFile" 101107160 90696395 100866210 true contributor

ontop/ontop "unavailableSymbolFileSpecialCase" 90071710 89465997 89465245 true integrator

ontop/ontop "incompatibleMethodSignature" 81066148 80620738 80621067 true contributor

ontop/ontop "unavailableSymbolFile" 81066148 80620738 80621067 true contributor

ontop/ontop "incompatibleMethodSignature" 54693559 51374440 54604897 true contributor

ontop/ontop "unavailableSymbolFile" 54693559 51374440 54604897 true contributor

ontop/ontop "unimplementedMethodSuperType" 50878615 50833440 43860836 true integrator

ontop/ontop "unavailableSymbolFile" 50878615 50833440 43860836 true integrator

ontop/ontop "unavailableSymbolMethod" 41598073 39266122 41344362 true contributor

ontop/ontop "duplicatedDeclaration" 41367169 41347143 41344362 true integrator

ontop/ontop "unavailableSymbolMethod" 30971217 26749094 30728790 true contributor

ontop/ontop "unavailableSymbolFile" 26120796 26119005 25772946 true contributor

Adobe-Consulting-Services/acs-aem-commons "unavailableSymbolFileSpecialCase" 292436253 292436909 292437960 false integrator

Adobe-Consulting-Services/acs-aem-commons "unavailableSymbolFileSpecialCase" 292419256 292425982 292421561 true integrator

swagger-api/swagger-core "unavailableSymbolFile" 65300089 65086520 65298512 false integrator

swagger-api/swagger-core "malformedProgram" 65291397 64436476 65265579 false integrator

swagger-api/swagger-core "unavailableSymbolVariable" 65086450 64955895 65083676 false contributor

swagger-api/swagger-core "unavailableSymbolFile" 232521477 230247465 155041327 true contributor

swagger-api/swagger-core "malformedProgram" 232516725 185372812 230242288 false integrator

scribejava/scribejava "unimplementedMethod" 230252127 181964599 230253435 true integrator

b3log/solo "unavailableSymbolFile" 260314193 260315206 134652682 false contributor

https://travis-ci.org/leusonmario/java-driver/builds/264197134
https://travis-ci.org/datastax/java-driver/builds/66828290
https://travis-ci.org/datastax/java-driver/builds/67548498
https://travis-ci.org/leusonmario/java-driver/builds/262590772
https://travis-ci.org/datastax/java-driver/builds/66828086
https://travis-ci.org/datastax/java-driver/builds/67551312
https://travis-ci.org/leusonmario/java-driver/builds/262588978
https://travis-ci.org/datastax/java-driver/builds/94195206
https://travis-ci.org/datastax/java-driver/builds/93340876
https://travis-ci.org/leusonmario/java-driver/builds/262588129
https://travis-ci.org/datastax/java-driver/builds/94448188
https://travis-ci.org/datastax/java-driver/builds/95393602
https://travis-ci.org/leusonmario/java-driver/builds/261827428
https://travis-ci.org/datastax/java-driver/builds/66039328
https://travis-ci.org/datastax/java-driver/builds/66375528
https://travis-ci.org/leusonmario/java-driver/builds/261826973
https://travis-ci.org/datastax/java-driver/builds/66851336
https://travis-ci.org/datastax/java-driver/builds/67551575
https://travis-ci.org/leusonmario/java-driver/builds/261826640
https://travis-ci.org/datastax/java-driver/builds/68517283
https://travis-ci.org/datastax/java-driver/builds/68544192
https://travis-ci.org/leusonmario/java-driver/builds/261825993
https://travis-ci.org/datastax/java-driver/builds/91450994
https://travis-ci.org/datastax/java-driver/builds/91448081
https://travis-ci.org/leusonmario/java-driver/builds/261824238
https://travis-ci.org/datastax/java-driver/builds/95643827
https://travis-ci.org/datastax/java-driver/builds/95849340
https://travis-ci.org/leusonmario/java-driver/builds/261076398
https://travis-ci.org/datastax/java-driver/builds/61156227
https://travis-ci.org/datastax/java-driver/builds/61168500
https://travis-ci.org/leusonmario/java-driver/builds/261075895
https://travis-ci.org/datastax/java-driver/builds/61504578
https://travis-ci.org/datastax/java-driver/builds/61743199
https://travis-ci.org/leusonmario/java-driver/builds/261075340
https://travis-ci.org/datastax/java-driver/builds/66038248
https://travis-ci.org/datastax/java-driver/builds/66380170
https://travis-ci.org/leusonmario/java-driver/builds/261073520
https://travis-ci.org/datastax/java-driver/builds/68544200
https://travis-ci.org/datastax/java-driver/builds/68546467
https://travis-ci.org/leusonmario/java-driver/builds/261072842
https://travis-ci.org/datastax/java-driver/builds/80879915
https://travis-ci.org/datastax/java-driver/builds/80895179
https://travis-ci.org/leusonmario/java-driver/builds/261072181
https://travis-ci.org/datastax/java-driver/builds/90114055
https://travis-ci.org/datastax/java-driver/builds/90354703
https://travis-ci.org/leusonmario/java-driver/builds/261069264
https://travis-ci.org/datastax/java-driver/builds/95528461
https://travis-ci.org/datastax/java-driver/builds/95854619
https://travis-ci.org/leusonmario/java-driver/builds/261062583
https://travis-ci.org/datastax/java-driver/builds/201229321
https://travis-ci.org/datastax/java-driver/builds/202731595
https://travis-ci.org/leusonmario/cat/builds/262523939
https://travis-ci.org/leusonmario/cat/builds/262524153
https://travis-ci.org/leusonmario/cat/builds/262524583
https://travis-ci.org/leusonmario/protostuff/builds/262560987
https://travis-ci.org/leusonmario/protostuff/builds/262561921
https://travis-ci.org/protostuff/protostuff/builds/54938495
https://travis-ci.org/leusonmario/webmagic/builds/258998355
https://travis-ci.org/code4craft/webmagic/builds/128642244
https://travis-ci.org/leusonmario/webmagic/builds/258998698
https://travis-ci.org/leusonmario/webmagic/builds/243501513
https://travis-ci.org/leusonmario/webmagic/builds/243501975
https://travis-ci.org/code4craft/webmagic/builds/11121696
https://travis-ci.org/leusonmario/webmagic/builds/237768118
https://travis-ci.org/code4craft/webmagic/builds/216587617
https://travis-ci.org/leusonmario/webmagic/builds/237243090
https://travis-ci.org/square/okhttp/builds/19399475
https://travis-ci.org/square/okhttp/builds/19399433
https://travis-ci.org/square/okhttp/builds/19398501
https://travis-ci.org/leusonmario/neo4j-timetree/builds/298701803
https://travis-ci.org/graphaware/neo4j-timetree/builds/31937574
https://travis-ci.org/graphaware/neo4j-timetree/builds/31697048
https://travis-ci.org/ontop/ontop/builds/113479426
https://travis-ci.org/ontop/ontop/builds/111166422
https://travis-ci.org/ontop/ontop/builds/112943276
https://travis-ci.org/ontop/ontop/builds/113479426
https://travis-ci.org/ontop/ontop/builds/111166422
https://travis-ci.org/ontop/ontop/builds/112943276
https://travis-ci.org/ontop/ontop/builds/109369904
https://travis-ci.org/ontop/ontop/builds/101107434
https://travis-ci.org/ontop/ontop/builds/107247494
https://travis-ci.org/ontop/ontop/builds/103065874
https://travis-ci.org/ontop/ontop/builds/93966682
https://travis-ci.org/ontop/ontop/builds/103064869
https://travis-ci.org/ontop/ontop/builds/101107160
https://travis-ci.org/ontop/ontop/builds/90696395
https://travis-ci.org/ontop/ontop/builds/100866210
https://travis-ci.org/ontop/ontop/builds/101107160
https://travis-ci.org/ontop/ontop/builds/90696395
https://travis-ci.org/ontop/ontop/builds/100866210
https://travis-ci.org/ontop/ontop/builds/90071710
https://travis-ci.org/ontop/ontop/builds/89465997
https://travis-ci.org/ontop/ontop/builds/89465245
https://travis-ci.org/ontop/ontop/builds/81066148
https://travis-ci.org/ontop/ontop/builds/80620738
https://travis-ci.org/ontop/ontop/builds/80621067
https://travis-ci.org/ontop/ontop/builds/81066148
https://travis-ci.org/ontop/ontop/builds/80620738
https://travis-ci.org/ontop/ontop/builds/80621067
https://travis-ci.org/ontop/ontop/builds/54693559
https://travis-ci.org/ontop/ontop/builds/51374440
https://travis-ci.org/ontop/ontop/builds/54604897
https://travis-ci.org/ontop/ontop/builds/54693559
https://travis-ci.org/ontop/ontop/builds/51374440
https://travis-ci.org/ontop/ontop/builds/54604897
https://travis-ci.org/ontop/ontop/builds/50878615
https://travis-ci.org/ontop/ontop/builds/50833440
https://travis-ci.org/ontop/ontop/builds/43860836
https://travis-ci.org/ontop/ontop/builds/50878615
https://travis-ci.org/ontop/ontop/builds/50833440
https://travis-ci.org/ontop/ontop/builds/43860836
https://travis-ci.org/ontop/ontop/builds/41598073
https://travis-ci.org/ontop/ontop/builds/39266122
https://travis-ci.org/ontop/ontop/builds/41344362
https://travis-ci.org/ontop/ontop/builds/41367169
https://travis-ci.org/ontop/ontop/builds/41347143
https://travis-ci.org/ontop/ontop/builds/41344362
https://travis-ci.org/ontop/ontop/builds/30971217
https://travis-ci.org/ontop/ontop/builds/26749094
https://travis-ci.org/ontop/ontop/builds/30728790
https://travis-ci.org/ontop/ontop/builds/26120796
https://travis-ci.org/ontop/ontop/builds/26119005
https://travis-ci.org/ontop/ontop/builds/25772946
https://travis-ci.org/leusonmario/acs-aem-commons/builds/292436253
https://travis-ci.org/leusonmario/acs-aem-commons/builds/292436909
https://travis-ci.org/leusonmario/acs-aem-commons/builds/292437960
https://travis-ci.org/leusonmario/acs-aem-commons/builds/292419256
https://travis-ci.org/leusonmario/acs-aem-commons/builds/292425982
https://travis-ci.org/leusonmario/acs-aem-commons/builds/292421561
https://travis-ci.org/swagger-api/swagger-core/builds/65300089
https://travis-ci.org/swagger-api/swagger-core/builds/65086520
https://travis-ci.org/swagger-api/swagger-core/builds/65298512
https://travis-ci.org/swagger-api/swagger-core/builds/65291397
https://travis-ci.org/swagger-api/swagger-core/builds/64436476
https://travis-ci.org/swagger-api/swagger-core/builds/65265579
https://travis-ci.org/swagger-api/swagger-core/builds/65086450
https://travis-ci.org/swagger-api/swagger-core/builds/64955895
https://travis-ci.org/swagger-api/swagger-core/builds/65083676
https://travis-ci.org/leusonmario/swagger-core/builds/232521477
https://travis-ci.org/leusonmario/swagger-core/builds/230247465
https://travis-ci.org/swagger-api/swagger-core/builds/155041327
https://travis-ci.org/leusonmario/swagger-core/builds/232516725
https://travis-ci.org/swagger-api/swagger-core/builds/185372812
https://travis-ci.org/leusonmario/swagger-core/builds/230242288
https://travis-ci.org/leusonmario/scribejava/builds/230252127
https://travis-ci.org/scribejava/scribejava/builds/181964599
https://travis-ci.org/leusonmario/scribejava/builds/230253435
https://travis-ci.org/leusonmario/solo/builds/260314193
https://travis-ci.org/leusonmario/solo/builds/260315206
https://travis-ci.org/b3log/solo/builds/134652682

110

Table E.2: Build conflicts from failed builds

Project Build Conflict BuildID ParentBuild ParentBuild Preserved MS Motivator

apache-hive "unavailableSymbolFile"-DEP 199377770 197512044 199361292 true contributor

immutables-immutables "unavailableSymbolVariable" 240160856 80898938 85470778 false integrator

google-auto "methodParameterListSize" 74592079 74524329 237729413 true integrator

buddycloud-buddycloud-server-java "unavailableSymbolFileSpecialCase" 33486099 32341190 33482310 false integrator

DSpace-DSpace "unavailableSymbolFile" 105741793 105654456 104737262 true integrator

xetorthio-jedis "unavailableSymbolVariable" 56165793 56163781 53911782 true contributor

querydsl-querydsl "unavailableSymbolFile" 54450658 54371410 54371065 true contributor

querydsl-querydsl "unavailableSymbolFile" 54372813 54371441 54366634 true contributor

querydsl-querydsl "unavailableSymbolFile" 54366753 54012638 54351283 true contributor

querydsl-querydsl "unavailableSymbolFile" 54225499 53823365 53755742 true contributor

querydsl-querydsl "unavailableSymbolFile" 50977825 50826294 50922338 true contributor

querydsl-querydsl "unavailableSymbolFile" 50512668 50511079 49953864 true contributor

querydsl-querydsl "unavailableSymbolFile" 50510220 50385522 50257458 true contributor

querydsl-querydsl "unavailableSymbolFile" 49706083 49638114 48271040 true contributor

querydsl-querydsl "unavailableSymbolFile" 48995815 48990115 48272327 true contributor

querydsl-querydsl "unavailableSymbolFile" 45787398 45787289 44690452 true contributor

querydsl-querydsl "unavailableSymbolFile" 44600207 44599135 44346495 true contributor

querydsl-querydsl "unavailableSymbolFile" 43494722 43103063 36291679 true contributor

https://travis-ci.org/apache/hive/builds/199377770
https://travis-ci.org/apache/hive/builds/197512044
https://travis-ci.org/apache/hive/builds/199361292
https://travis-ci.org/leusonmario/immutables/builds/240160856
https://travis-ci.org/immutables/immutables/builds/80898938
https://travis-ci.org/immutables/immutables/builds/85470778
https://travis-ci.org/google/auto/builds/74592079
https://travis-ci.org/google/auto/builds/74524329
https://travis-ci.org/leusonmario/auto/builds/237729413
https://travis-ci.org/buddycloud/buddycloud-server-java/builds/74592079
https://travis-ci.org/buddycloud/buddycloud-server-java/builds/74592079
https://travis-ci.org/buddycloud/buddycloud-server-java/builds/74592079
https://travis-ci.org/DSpace/DSpace/builds/105741793
https://travis-ci.org/DSpace/DSpace/builds/105654456
https://travis-ci.org/DSpace/DSpace/builds/104737262
https://travis-ci.org/xetorthio/jedis/builds/56165793
https://travis-ci.org/xetorthio/jedis/builds/56163781
https://travis-ci.org/xetorthio/jedis/builds/53911782
https://travis-ci.org/querydsl/querydsl/builds/54450658
https://travis-ci.org/querydsl/querydsl/builds/54371410
https://travis-ci.org/querydsl/querydsl/builds/54371065
https://travis-ci.org/querydsl/querydsl/builds/54372813
https://travis-ci.org/querydsl/querydsl/builds/54371441
https://travis-ci.org/querydsl/querydsl/builds/54366634
https://travis-ci.org/querydsl/querydsl/builds/54366753
https://travis-ci.org/querydsl/querydsl/builds/54012638
https://travis-ci.org/querydsl/querydsl/builds/54351283
https://travis-ci.org/querydsl/querydsl/builds/54225499
https://travis-ci.org/querydsl/querydsl/builds/53823365
https://travis-ci.org/querydsl/querydsl/builds/53755742
https://travis-ci.org/querydsl/querydsl/builds/50977825
https://travis-ci.org/querydsl/querydsl/builds/50826294
https://travis-ci.org/querydsl/querydsl/builds/50922338
https://travis-ci.org/querydsl/querydsl/builds/50512668
https://travis-ci.org/querydsl/querydsl/builds/50511079
https://travis-ci.org/querydsl/querydsl/builds/49953864
https://travis-ci.org/querydsl/querydsl/builds/50510220
https://travis-ci.org/querydsl/querydsl/builds/50385522
https://travis-ci.org/querydsl/querydsl/builds/50257458
https://travis-ci.org/querydsl/querydsl/builds/49706083
https://travis-ci.org/querydsl/querydsl/builds/49638114
https://travis-ci.org/querydsl/querydsl/builds/48271040
https://travis-ci.org/querydsl/querydsl/builds/48995815
https://travis-ci.org/querydsl/querydsl/builds/48990115
https://travis-ci.org/querydsl/querydsl/builds/48272327
https://travis-ci.org/querydsl/querydsl/builds/45787398
https://travis-ci.org/querydsl/querydsl/builds/45787289
https://travis-ci.org/querydsl/querydsl/builds/44690452
https://travis-ci.org/querydsl/querydsl/builds/44600207
https://travis-ci.org/querydsl/querydsl/builds/44599135
https://travis-ci.org/querydsl/querydsl/builds/44346495
https://travis-ci.org/querydsl/querydsl/builds/43494722
https://travis-ci.org/querydsl/querydsl/builds/43103063
https://travis-ci.org/querydsl/querydsl/builds/36291679

111

Ta
bl

e
E

.3
:T

es
tc

on
fli

ct
s

fr
om

fa
ile

d
bu

ild
s

Pr
oj

ec
t

B
ui

ld
ID

Pa
re

nt
O

ne
Pa

re
nt

Tw
o

Ty
pe

Fi
le

N
am

e
Te

st
C

as
e

N
am

e
Te

st
C

as
e

Sa
m

e
M

et
ho

ds
D

ep
en

de
nt

M
et

ho
ds

jw
tk

/jj
w

t
28

00
62

60
4

27
12

60
84

6
28

00
58

56
0

M
et

ri
c

co
ve

ra
ge

-
-

-
-

-
br

et
tw

oo
ld

ri
dg

e/
H

ik
ar

iC
P

62
02

26
98

61
16

09
37

61
88

56
22

Fa
ile

d
Te

st
Te

st
M

et
ri

c
te

st
M

et
ri

cU
sa

ge
up

da
te

d
(R

ig
ht

)
tr

ue
tr

ue
-t

ru
e

sq
ua

re
/w

ir
e

81
12

48
23

81
12

48
11

81
12

36
48

Fa
ile

d
Te

st
Se

ri
al

iz
ab

le
Te

st
de

co
de

G
ol

de
n

up
da

te
d

(R
ig

ht
)

fa
ls

e
tr

ue
-f

al
se

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

O
bj

ec
tC

om
m

an
ds

Te
st

ob
je

ct
E

nc
od

in
g

ne
w

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

A
llK

in
dO

fV
al

ue
sC

om
m

an
ds

Te
st

re
na

m
eO

ld
A

nd
N

ew
A

re
T

he
Sa

m
e

ne
w

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

C
lu

st
er

C
ou

nt
K

ey
sI

nS
lo

t
ne

w
(R

ig
ht

)
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
30

96
7

21
85

90
57

43
78

56
8

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
R

ed
is

C
lu

st
er

M
ax

R
ed

ir
ec

tio
ns

ne
w

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

A
sk

R
es

po
ns

e
up

da
te

d
(R

ig
ht

)
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
30

96
7

21
85

90
57

43
78

56
8

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
D

is
co

ve
rN

od
es

A
ut

om
at

ic
al

ly
up

da
te

d
(R

ig
ht

)
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
30

96
7

21
85

90
57

43
78

56
8

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
M

ig
ra

te
To

N
ew

N
od

e
ne

w
(R

ig
ht

)
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
30

96
7

21
85

90
57

43
78

56
8

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
C

lo
se

ab
le

ne
w

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

T
hr

ow
E

xc
ep

tio
nW

ith
ou

tK
ey

up
da

te
d

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

C
al

cu
la

te
C

on
ne

ct
io

nP
er

Sl
ot

up
da

te
d

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

M
ig

ra
te

ne
w

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

St
ab

le
Sl

ot
W

he
nM

ig
ra

tin
gN

od
eO

rI
m

po
rt

in
gN

od
eI

sN
ot

Sp
ec

ifi
ed

ne
w

(R
ig

ht
)

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

30
96

7
21

85
90

57
43

78
56

8
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

R
ec

al
cu

la
te

Sl
ot

sW
he

nM
ov

ed
up

da
te

d
(R

ig
ht

)
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
30

96
7

21
85

90
57

43
78

56
8

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
Je

di
sC

lu
st

er
R

un
sW

ith
M

ul
tit

hr
ea

de
d

up
da

te
d

(R
ig

ht
)

fa
ls

e
tr

ue
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

27
26

9
52

89
51

48
59

43
13

89
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

C
lu

st
er

C
ou

nt
K

ey
sI

nS
lo

t
ol

d
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
27

26
9

52
89

51
48

59
43

13
89

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
D

is
co

ve
rN

od
es

A
ut

om
at

ic
al

ly
ol

d
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
27

26
9

52
89

51
48

59
43

13
89

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
M

ig
ra

te
To

N
ew

N
od

e
ol

d
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
27

26
9

52
89

51
48

59
43

13
89

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
C

lo
se

ab
le

ol
d

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

27
26

9
52

89
51

48
59

43
13

89
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

C
al

cu
la

te
C

on
ne

ct
io

nP
er

Sl
ot

ol
d

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

27
26

9
52

89
51

48
59

43
13

89
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

M
ig

ra
te

ol
d

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

27
26

9
52

89
51

48
59

43
13

89
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

St
ab

le
Sl

ot
W

he
nM

ig
ra

tin
gN

od
eO

rI
m

po
rt

in
gN

od
eI

sN
ot

Sp
ec

ifi
ed

ol
d

tr
ue

fa
ls

e
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

27
26

9
52

89
51

48
59

43
13

89
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

R
ec

al
cu

la
te

Sl
ot

sW
he

nM
ov

ed
ol

d
tr

ue
fa

ls
e

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
C

lu
st

er
C

ou
nt

K
ey

sI
nS

lo
t

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
R

ed
is

C
lu

st
er

M
ax

R
ed

ir
ec

tio
ns

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
A

sk
R

es
po

ns
e

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
If

Po
ol

C
on

fig
A

pp
lie

sT
oC

lu
st

er
Po

ol
s

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
D

is
co

ve
rN

od
es

A
ut

om
at

ic
al

ly
ol

d
tr

ue
tr

ue
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

26
09

6
74

49
74

96
74

49
94

79
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

M
ig

ra
te

To
N

ew
N

od
e

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
C

lo
se

ab
le

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
C

al
cu

la
te

C
on

ne
ct

io
nP

er
Sl

ot
ol

d
tr

ue
tr

ue
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

26
09

6
74

49
74

96
74

49
94

79
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

M
ig

ra
te

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
R

et
ur

nC
on

ne
ct

io
nO

nJ
ed

is
C

on
ne

ct
io

nE
xc

ep
tio

n
ol

d
tr

ue
tr

ue
-t

ru
e

xe
to

rt
hi

o/
je

di
s

22
98

26
09

6
74

49
74

96
74

49
94

79
Fa

ile
d

Te
st

Je
di

sC
lu

st
er

Te
st

te
st

St
ab

le
Sl

ot
W

he
nM

ig
ra

tin
gN

od
eO

rI
m

po
rt

in
gN

od
eI

sN
ot

Sp
ec

ifi
ed

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
R

et
ur

nC
on

ne
ct

io
nO

nR
ed

ir
ec

tio
n

ol
d

tr
ue

tr
ue

-t
ru

e
xe

to
rt

hi
o/

je
di

s
22

98
26

09
6

74
49

74
96

74
49

94
79

Fa
ile

d
Te

st
Je

di
sC

lu
st

er
Te

st
te

st
R

ec
al

cu
la

te
Sl

ot
sW

he
nM

ov
ed

ol
d

tr
ue

tr
ue

-t
ru

e
C

lo
ud

Sl
an

g/
cl

ou
d-

sl
an

g
75

81
49

49
75

42
86

82
75

81
10

79
Fa

ile
d

Te
st

Sl
an

gI
m

pl
Te

st
te

st
Su

bs
cr

ib
eO

nA
llE

ve
nt

sW
ith

L
is

te
ne

r
ol

d
tr

ue
fa

ls
e

-f
al

se

https://travis-ci.org/jwtk/jjwt/builds/280062604
https://travis-ci.org/jwtk/jjwt/builds/271260846
https://travis-ci.org/jwtk/jjwt/builds/280058560
https://travis-ci.org/brettwooldridge/HikariCP/builds/62022698
https://travis-ci.org/brettwooldridge/HikariCP/builds/61160937
https://travis-ci.org/brettwooldridge/HikariCP/builds/61885622
https://travis-ci.org/square/wire/builds/81124823
https://travis-ci.org/square/wire/builds/81124811
https://travis-ci.org/square/wire/builds/81123648
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229830967
https://travis-ci.org/xetorthio/jedis/builds/21859057
https://travis-ci.org/xetorthio/jedis/builds/4378568
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229827269
https://travis-ci.org/xetorthio/jedis/builds/52895148
https://travis-ci.org/xetorthio/jedis/builds/59431389
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/leusonmario/jedis/builds/229826096
https://travis-ci.org/xetorthio/jedis/builds/74497496
https://travis-ci.org/xetorthio/jedis/builds/74499479
https://travis-ci.org/CloudSlang/cloud-slang/builds/75814949
https://travis-ci.org/CloudSlang/cloud-slang/builds/75428682
https://travis-ci.org/CloudSlang/cloud-slang/builds/75811079

	Prof. Dr. Marcelo Bezerra d'Amorim
	1 INTRODUCTION
	2 BACKGROUND
	3 IDENTIFYING CONFLICTING CONTRIBUTIONS IN MERGE SCENARIOS
	4 RESULTS
	5 CONCLUSION
	 REFERENCES
	APPENDIX
	APPENDIX A - Build Conflicts Identification
	APPENDIX B - Build Conflict Fixes
	APPENDIX C - Travis Configuration File Instrumentation
	APPENDIX D - Study Sample
	APPENDIX E - Build and Test Conflicts

