
Big Data Linkage for Product Specification Pages
Disheng Qiu

Università Roma Tre
disheng@dia.uniroma3.it

Luciano Barbosa
Universidade Federal de Pernambuco

luciano@cin.ufpe.br

Valter Crescenzi
Università Roma Tre

crescenz@dia.uniroma3.it

Paolo Merialdo
Università Roma Tre

paolo.merialdo@uniroma3.it

Divesh Srivastava
AT&T Labs – Research
divesh@research.att.com

ABSTRACT
An increasing number of product pages are available from thou-
sands of web sources, each page associated with a product, contain-
ing its attributes and one or more product identifiers. The sources
provide overlapping information about the products, using diverse
schemas, making web-scale integration extremely challenging. In
this paper, we take advantage of the opportunity that sources pub-
lish product identifiers to perform big data linkage across sources
at the beginning of the data integration pipeline, before schema
alignment. To realize this opportunity, several challenges need to
be addressed: identifiers need to be discovered on product pages,
made difficult by the diversity of identifiers; the main product iden-
tifier on the page needs to be identified, made difficult by the many
related products presented on the page; and identifiers across pages
need to be resolved, made difficult by the ambiguity between iden-
tifiers across product categories. We present our RaF (Redundancy
as Friend) solution to the problem of big data linkage for product
specification pages, which takes advantage of the redundancy of
identifiers at a global level, and the homogeneity of structure and
semantics at the local source level, to effectively and efficiently link
millions of pages of head and tail products across thousands of head
and tail sources. We perform a thorough empirical evaluation of
our RaF approach using the publicly available Dexter dataset con-
sisting of 1.9M product pages from 7.1k sources of 3.5k websites,
and demonstrate its effectiveness in practice.
ACM Reference format:
Disheng Qiu, Luciano Barbosa, Valter Crescenzi, Paolo Merialdo, and Divesh
Srivastava. 2018. Big Data Linkage for Product Specification Pages. In Pro-
ceedings of 2018 International Conference on Management of Data, Houston,
TX, USA, June 10–15, 2018 (SIGMOD/PODS ’18), 15 pages.
https://doi.org/10.1145/3183713.3183757

1 INTRODUCTION
A huge and continually increasing amount of structured data is
available on the Web, in the form of named entity pages. Each such
page is associated with a single entity, contains attributes of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3183757

entity and their values, including one or more names that serve
to identify the entity and distinguish it from other entities in the
same domain. Some examples of named entity pages on the Web
are Wikipedia entity pages, product specification pages, organiza-
tion pages, etc. A named entity is usually associated with multiple
named entity pages provided by different web sources, often with
partially overlapping and sometimes conflicting information. Sev-
eral techniques have been proposed to collect named entity pages
from different web sources [3, 24, 28]. Integrating the data that they
provide to create a comprehensive, unified view of each entity repre-
sents a foundational step that can enable uncountable applications.
However, performing web-scale integration of named entity pages
raises novel and intriguing challenges due to its volume, velocity,
variety and veracity [13].

The product domain represents one of the largest and most chal-
lenging domains, because of its huge number and variety of web
sources and entities. RaF (Redundancy as Friend) is an ongoing
research project that addresses the issue of integrating data ex-
tracted from product specification pages, i.e., named entity pages
that publish structured information about a product. RaF aims at
processing a very large number of sources across the entire web,
not just a small number of pre-selected sources.

One might argue that a relatively small number of web sources
offers most of the data about most of the products (for example,
consider Amazon.com, which publishes data about an impressive
number of products). Therefore, focusing on data offered by these
head sources could in principle mitigate the variety and hetero-
geneity of information and alleviate the burden of product data
integration. However, valuable information is actually published by
an enormous number of tail sources [9, 12], i.e., sources that each
provide a small number of product entities. Their data are impor-
tant because: (i) they can improve entity coverage, since they often
refer to tail products, i.e. entities that are present in a very small
number of sources; and (ii) they can improve attribute coverage
because they might provide tail attributes of the target entity. The
goal of RaF is to integrate both head sources and tail sources to create
a comprehensive, unified view of both head products and tail products.

Traditional approaches to data integration rely on a pipeline pro-
cess that consists of three major stages: schema alignment, data link-
age (or entity resolution) and data fusion [13]. Unfortunately, with
a very large number of sources, this traditional pipeline becomes
infeasible because schema alignment techniques cannot address
the huge variety and heterogeneity that occurs in practice.

To illustrate a concrete scenario, we report the results of an
analysis conducted on the publicly available Dexter dataset [28],
which consists of 1.9M pages with product specifications from 3.5k

https://doi.org/10.1145/3183713.3183757
https://doi.org/10.1145/3183713.3183757

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA D. Qiu et al.

websites. The specifications extracted from the dataset contained
more than 86k distinct attribute names.1 Most of the attributes
(85k) are each present in less than 3% of the sources, while only
80 attributes occur in 10% of the sources, with the most popular
attribute occurring in 38% sources. We obtained a more skewed
distribution considering attribute pairs for analyzing how attributes
co-occur: a vast majority of pairs (25M) appears in less than 3% of
the sources, and only 11 pairs are present in 20% of the sources.

The RaF approach for integrating product specifications from
thousands of sources aims at taking advantage of the opportunity
that products are named entities, and hence a product specification
page usually publishes the product identifier (or simply ‘id’). From
a manual analysis over 1100 product pages of the Dexter dataset,
we have observed that 91% of the pages have ids. The presence of
ids suggests that, unlike the traditional data integration pipeline, a
potential strategy to address Web scale data integration for prod-
uct specifications is to tackle data linkage at the beginning of the
pipeline, before performing schema alignment on the sources.

Ids are present in product specification pages mainly for commer-
cial reasons: product pages are largely published by e-commerce
websites that need to expose the product ids to let them be indexed
by shopping agents and available to customers who search products
for comparing prices or consulting specifications. Moreover, the
largest e-commerce marketplaces strongly encourage sellers and
retailers to publish product ids, as they improve efficiency both for
the internal management of data and for the exchange of data with
search engines like Google and Bing.

While the presence of ids represents an opportunity, the volume
and variety of sources raise several challenges as well:
• Discovering Ids – It is not easy to locate, within the html of the
product specification pages, the string that represents the id; some
sources adopt microdata markups (such as schema.org), but their
diffusion is limited [25]. Usually ids consist of a single token2
that, for a few categories of products, follow specific patterns. But
at Web scale, it is not possible to focus on discovering ids using
specific patterns (as done, in [29]) or to generalize these patterns
(as done, for instance, in [23], which concentrated on a handful of
sources) because of their large variety and skewed distribution.
In the Dexter dataset we observed 20k patterns, with the most
frequent one matching less than 6.62% of values.

• Identifying the Primary Id – Product specification pages usually
contain ids not only for themain product presented in the page, but
also for related products (e.g. similar products, suggested products,
etc.). Consider Figure 1, which shows a product page. Observe
that it contains many product ids, but only region (1) reports the
id of the main product presented in the page.

• Resolving Ids – There are several kinds of ids (UPC, SKU, model
number, etc.), classified either as local ids, used to distinguish
products within the same source (hence, not useful for linkage
across sources), or as global ids, used by multiple sources. Local ids
from different sources may conflict; similarly, conflicts may occur
among global ids of products from different categories. Hence,

1Attribute names have been normalized by lowercasing the string and removing all
the non alpha-numeric characters.
2From our analysis of the Dexter dataset, this is true for 97.5% of the ids found in
product pages.

different product specification pages associated with the same id
are not guaranteed to refer to the same product.

Figure 1: Regions (dotted rectangles) that contain identifiers
(ellipses) in a page from amazon.com.

In this paper we present the RaF solution to the problem of big
data linkage for product specifications on the Web. Unlike tradi-
tional record linkage solutions [13], RaF aims to scale not only with
the volume of data, but also the number of sources. RaF leverages
the presence of product ids in the pages, and exploits the opportu-
nities that derive from the redundancy of information at the global
level, and from the uniqueness and homogeneity of information at
the individual source level, as follows:
• At the global level, we observe redundant information: head (pop-
ular) products are present in several head (large) sources as well
as in many tail (small) sources. Therefore, we expect that the ids of
head products are spread across many sources. Further, many head
products in a category will often co-occur in multiple sources.

• At the individual source level, we observe uniqueness and homo-
geneity of information: sources usually do not publish multiple
product pages for the same product, and the structure and the
semantics of information, within every source, tend to be regular.
Hence, we expect that (i) the id of the product presented in a
specification page is published in the same html region for every
page in the same source, and (ii) the id extracted from that region
is unique within that source. Consider again Figure 1: every page
from the same source was built from a local template, and the
semantics of the six regions (red dotted rectangles) is consistent in
all the pages of the source: region (1) contains the id of the primary
product, while regions (2 − 6) contain ids of related products.

Figure 2 illustrates the key intuitions underlying our approach to
meet the RaF goal of effectively and efficiently integrating head and
tail sources by linking all pages of head and tail entities: starting
from known head entities in head sources, on the one hand it takes
advantage of uniqueness and homogeneity of information at the
local level to extract a global id for tail entities in head sources (even
head sources offer many tail entities); on the other hand, it exploits
the presence of head entities across sources, to extract a global id
for known head entities in tail sources (even tail sources offer a few
head entities). Again, starting from the known head entities in tail

Big Data Linkage for Product Specification Pages SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

Figure 2: The RaF approach.

sources, it exploits uniqueness and homogeneity of information at
the local level to extract a global id for tail entities in tail sources.

Our approach exploits the presence of product ids, but product
specification pages also contain product titles and textual descrip-
tions. Although these texts represent rich information, they are not
effective to link across sources: different products can have very
similar descriptions and titles (consider for example the MacBook
descriptions in Figure 1), as well as, conversely, the same product
can have different descriptions in different sources (some sources
are terse, others publish verbose descriptions).
Contributions.Wemake several contributions in this paper. First, we
introduce the novel RaF solution for linking a large diversity of both
popular and rare product specifications from thousands of head
and tail web sources, based on discovering and resolving product
identifiers from the product specification pages (Section 2); the RaF
big data linkage solution aims to scale not only with the volume
of data, but also the number of sources. Second, we develop a two-
phase architecture to solve the product identifier-based linkage
problem: the first phase (Sections 3-5) extracts high-quality product
identifiers, and the second phase (Section 6) generically resolves
the potential ambiguity of identifiers across sources to determine
which ones refer to the same products. Third, we report results
from an extensive experimental evaluation of the RaFmethodology
on the publicly available Dexter dataset of product specification
pages; the results (Section 7) demonstrate the effectiveness and
efficiency of RaF in practice.

2 PROBLEM DEFINITION AND OVERVIEW
Websites usually organize product pages in categories by adopting
locally defined taxonomies. From our perspective, local categories
are interesting since product pages within the same site-category
pair usually present a uniform html template, whereas even within
the same website, product pages belonging to different categories
may use quite different html templates. As a consequence, we find
convenient to consider every site-category pair as an independent
source of product pages:

Definition 2.1 (Source). A source s is the set of product pages that
belong to the same local category in a website: s = {p1, . . . ,pm }.

Usually products are distinct within a source, so we assume
uniqueness of information within every source,3 but they may (and
3This is not always true; for example, sources that publish used products may have
multiple pages for different instances of the same product. However, this is a valid
assumption for a vast majority of sites; and our techniques are tolerant to exceptions.

Figure 3: Overview of the RaF pipeline.

often do) overlap across different sources. We assume that every
source publishes product pages having structural and semantic
homogeneity: pages in the same source refer to the same local
category and have a uniform structure, i.e. they conform to the
same html template.

We define our problem as follows:

Definition 2.2 (Problem Definition). Given a set of sources S, our
goal is to compute a partitioning P of the pages in S, such that
each set in P contains all and only pages in S that refer to the same
named entity (product).

A conventional solution to our problemwould be to first perform
schema alignment between all the sources, and then link products
in these sources based on matches of their attribute names and
values. This strategy, however, would be extremely costly since we
are dealing with a very large number of sources. To have a feasible
solution, we perform the linkage up-front, by using the ids of the
products, which are usually available in product pages.

However, locating the product ids in those pages at theWeb scale
is challenging: (i) ids do not comply to any specific pattern, and
standard html annotations are not widely adopted; (ii) in addition
to the id of the main product present in the page, ids of several other
products may be present in the same page, e.g., those of related and
suggested products; (iii) some ids may only be local, not useful for
linkage across sources, and some global ids may conflict with local
ids of other products in other sources.

To address these challenges, we propose a pipeline, depicted in
Figure 3, that aims at extracting global ids that can be used to achieve
high precision and high recall in product linkage. Our approach lever-
ages the redundancy of information that occurs at the global level
and the regularities of the sources and uniqueness of information
that occur at the individual source level. The RaF pipeline consists
of an iterative phase followed by a linkage phase. The first iterative
phase is composed of three stages, as follows:
• Search: We start from a seed set of high quality product ids, which
are used as keywords for searching other product pages (global
redundancy). As depicted in Figure 2, ids of head entities allow
the retrieval of pages from both head and tail sources.

• Extractors Generation: Next, for every retrieved product page,
we infer an extractor for every html region containing an occur-
rence of the searched ids. The extractors are used to obtain regions
containing new ids from all the other product pages in the same
source. The rationale is that due to the local regularities of the
sources, it is likely that the same html region that contains an id in
a certain page also contains an id in all the other pages of the same
source. From every region returned by the extractors, we select a
token that represents a candidate id for the primary product of
the corresponding page.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA D. Qiu et al.

• Ids & Extractors Filtering: The previous step may produce in-
correct ids, for many reasons: a wrong selection of the candidate
ids; a region returned by an inaccurate extractor; the presence
of regions containing ids that do not refer to the main product
of the page (e.g., similar products). To improve the precision, we
take advantage of local uniqueness (usually, a source provides at
most one page for a product) and consider the duality between
good extractors and correct ids: an extractor is good if the ids of
its regions are correct; similarly, an id is correct if it come from a
region returned by a good extractor.

The fresh ids selected during the execution of the first phase are
then iteratively used to trigger another search. To retrieve a larger
number of pages, the search is performed preferring head ids, thus
exploiting global redundancy.

The second phase of the pipeline consists of a single stage that
resolves the ids collected by the iterative process to link products.

• Ids Resolution & Linkage: Due to the variety of information
across sources, and the presence of local and global ids, different
products could share the same id across sources. To improve the
accuracy of linkage, we identify these conflicting ids. We con-
sider that every source consists of a homogeneous set of products:
although the criteria that define the uniformity of the product
categories are local, not global, with a large enough dataset it is
likely that many pairs of products co-occur in many sources be-
cause they adopt similar (even if they are not identical) categories.
Then, we consider ids that co-occur with multiple ids in many
sources more reliable for the purpose of linking.

To ensure efficiency of the process, we exploit the categorization of
head/tail ids and head/tail sources. Head ids are used as keywords
of search engine queries to identify new product pages and sources:
we expect to get tail sources this way, since they might also contain
at least a few head product ids. The learned extractors are then used
to extract the ids of tail entities from the (head and tail) sources.

The search could happen within the pages obtained from a global
crawl or may involve querying an external search engine. We adopt
the first solution, working on the Dexter dataset to leverage the
public availability of this dataset and enable reproducibility of our
results, but our techniques apply equally to both cases.

3 REGIONS EXTRACTION AND IDS
SELECTION

Every iteration begins with a search that returns a set of sources,
those containing pages matching the ids used as keywords.

We compute an extractor for every region (of a page in a source)
containing an occurrence of an id used as keyword in the previous
search; then, we apply every extractor over all the pages of the
corresponding source. Because of the local regularity, we expect that
every region located by a given extractor has the same semantics
in all the pages of the source (and hence contains an id). However,
as shown in the example of Figure 1, the extracted regions may
contain several tokens, and therefore we need to select the token
that represents the global id of the main entity of the page.

In this section we describe our techniques to select, within the
extracted regions, the token that most likely represents a global id
of the product described in the page.

3.1 Validation of the Region Extractors
Our approach to generate the extractors is based on the studies
on wrapper inference developed in [2, 5, 7, 8, 16]. We consider
the document object model (DOM) tree representation of input
web pages, and we adopt XPath expressions as concrete tool for
extractors. Every textual leaf node of the tree is considered as a
region of the page. Let r be an extractor and p a page: r (p) denotes
the region returned by the application of r over p. Let x be one
of the regions of page p containing a token matching with an id.
To produce an extractor, we compute the XPath expression rooted
at the deepest ancestor node of x that occurs exactly once in a
significant percentage of pages of the source.4

Example 3.1. Figure 4 presents the DOM trees of three pages, p11,
p12, p13 from the (fictional) source s1. Assume that MF839LLA was
the keyword id that made the search return these pages. Rectangles
denote leaf nodes matching such a keyword. The yellow rectangle
corresponds to a region containing the correct product id in every
page; the white rectangles correspond to regions that contain ids
that are not suitable for our purposes, as they do not refer to the
main product on the pages; the gray rectangle, whose region pub-
lishes a used article, could be correct, but for some pages it may
miss the id (as for page p12). Let us now concentrate on the node
associated with the yellow rectangle on page p11, and consider its
ancestors. The node p is the deepest that appears (exactly) once in
every page of the source. A straightforward XPath expression to
locate its occurrences in every page is //p; this base expression is
then used for building an XPath expression descending to the tar-
get region: //p/span[1]/text(). Note that such an expression works
correctly also on p12 and p13.

As a final validation step, we filter out extractors returning re-
gions that are unlikely to contain the id of the product in the page,
as follows. First, we eliminate extractors that produce null values
for more than 50% of the pages in the source. The rationale is that a
region that includes the main product id should be present in most
pages of the source. Second, we eliminate extractors that do not
return different values from page to page. Since we are assuming
uniqueness of information at the source level, extractors that pro-
duce duplicates cannot be considered valid. These simple heuristics
filter out not only wrong extractors, (e.g., those extracting pieces
of the page template), but also some of the extractors that return
regions containing the ids not related to the main product in the
pages. Continuing our example referring to Figure 4, any extractor
returning the region corresponding to the first similar item (e.g.
/div[2]/span[2]/text()), would be discarded, as in pages p12 and
p13, every extracted node has identical contents.

3.2 Selecting the Identifiers
The extractors return regions that are likely to contain the single-
token representing the ids of the products in the corresponding
pages. However, since these regions typically consist of several
tokens, for every page we need to identify the token that most
likely represents an id for the main product presented in that page.

4We have empirically observed that 30% is a good threshold.

Big Data Linkage for Product Specification Pages SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

html

div

span

As new!
MacBook
MF839LLA

span

Used
items:

div

. . .span

Apple
MacBook
MMGG2LLA
Air 13.3-Inch

span

Similar
items:

div

span

p

span

Apple
MacBook
MF839LLA
13.3-inch

img

html

div

span

Refurbished
MacBook
Air 13.3”

span

Used
items:

div

. . .span

Apple
MacBook
MF839LLA
13.3-inch

span

Similar
items:

div

span

p

span

Apple
MacBook
MMGG2LLA
Air 13.3-Inch

img

html

div

span

Brand new
MacBook
MF840LLA

span

Used
items:

div

. . .span

Apple
MacBook
MF839LLA
13.3-inch

span

Similar
items:

div

span

p

span

Apple
MacBook
MF840LLA
13.3-Inch

img

span

Last
items
in stock!

p11 p12 p13

Figure 4: DOM tree representation of three (fictional) web pages.

For example consider region 1 in Figure 1: the id MF839LLA is part
of a long textual description of the product.5

Let r (p) = [t1, t2, . . .] denote the sequence of tokens composing
the region r (p) located by the extractor r from page p. Our goal is
to identify the token id(r ,p) ∈ r (p), that most likely represents the
id for the entity in p.

To select ids within textual regions, we leverage on the local
uniqueness of informationwithin the sources. We take the frequency
of the tokens to assess their ability to serve as ids, and we select
the token of the region with the smallest number of occurrences
within the source. The rarest and most selective tokens should be
considered good candidate ids. However, considering every source
separately does not work well when searching for global ids. It turns
out that many sources, especially tail sources, contain some tokens
that are locally rare but do not represent global ids. For example,
in many tail sources there is just one laptop with a touchscreen: if
the keyword touchscreen is used along with the description of the
product, it would be very selective (at the source level) and thus it
could be erroneously regarded as a good candidate id. Even if these
tokens might appear as very selective at local level, they are much
more frequent if considered globally, especially in the head sources.
Continuing the above example, touchscreen is a pretty frequent
token at the global level.

Therefore, we introduce a scoring function by considering the
collection frequency, defined as the total number of occurrences of
a token in the whole collection of input pages P. We compute for
each token its frequency in P and, namely, for each token t ∈ r (p),
we compute the idScore(t ,P), as follows:

idScore(t ,P) = loд |P |
|{p ∈ P : t ∈ r (p)}| . (1)

Given a ranking of all the tokens t ∈ r (p), with p ∈ P, we select
as candidate id from the region r , the token with the highest score:

id(r ,p) = argmax
t ∈r (p)

idScore(t ,P).

Our definition of the idScore leverages both local and global
characteristics: A good id is required to be both as selective as
possible at local level, and as redundant as possible at global level.

Example 3.2. Consider again the pages in Figure 4. Suppose we
obtained two extractors, r11 and r12, which return the regions in the

5Our analysis on the Dexter dataset reports that 46% of the ids are in textual descrip-
tions. Appendix A.3 reports the distribution of the average number of tokens returned
by the extractors computed in a complete run of our pipeline on the Dexter dataset.

yellow and gray nodes, respectively (the extractors inferred from
the regions corresponding to the nodes in the white rectangles are
eliminated by the extractor validating step). Figure 5 shows the
sequences of tokens extracted by r11 and r12 from the pages p11,
p12, and p13, ordered by the associated idScore . As the product ids
are much less frequent than tokens such as MackBook or Apple, they
appear first. Note that r12 associates the token Refurbished with
page p12. In the next section, we discuss our approach to filter out
these erroneous regions and ids.

4 CORRECT IDS AND GOOD EXTRACTORS
Due to the irregularities in the html template of the pages, or to
the quality of the ids used to infer the extractors, the previous step
might select tokens which are not correct ids.

Our approach to filter out these incorrect ids is based on the
intuition that a good extractor provides regions containing correct
ids, and vice-versa correct ids are located in regions returned by
good extractors. The redundancy of information among sources is
the key ingredient to exploit this duality. We jointly evaluate the
correctness of ids and the quality of extractors by using a mutual
reinforcement approach.

We represent the relationships between extractors and ids by
means of a weighted bipartite graph between the set of values of the
candidate ids extracted by the previous stage I = {id1, . . . , idn },6
and the set of extractors computed for the whole dataset, R =
{r1, . . . , rm }, where there is an edge between an extractor r and an
id id , if there is a region, extracted by r , that contains id as candidate
id. Edges are weighed based on our belief that a candidate id is a
correct id for the entity published in the page fromwhich it has been
extracted by extractor r . We consider natural properties that derive
from the global redundancy of information of our setting. Namely,
we decrease our belief that id is correct if it has been discarded by
some other source (it was in the region, but another token, with
a higher idScore , has been preferred as candidate id). Similarly,
considering our local uniqueness of information assumption, we
decrease our belief on the correctness of id extracted by r if it is
proposed as candidate id for multiple pages from the same source.

Following these observations, we introduce a weight for the
edges of our bipartite graph between the ids and extractors. Let
1(·) denote the indicator function, which returns 1 if its argument
is true, 0 otherwise. Given the extractor r j for the source s , and a

6We are considering distinct values: the same id can be extracted from different sources.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA D. Qiu et al.

s1 s2 s3
r11(p11) = [MF839LLA, MacBook, Apple] r21(p21) = [MF839LLA, Refurbished, MacBook, Guaranteed] r31(p31) = [MF839LLA, MacBook]
r11(p12) = [MMGG2LLA, MacBook, Apple, Air] r21(p22) = [MMGG2LLA, MacBook, as, new,] r31(p32) = [MMGG2LLA, MacBook]
r11(p13) = [MF840LLA, MacBook, Apple] r21(p23) = [MF840LLA, fully, working,box, original]
r12(p11) = [MF839LLA, MacBook, New!] r22(p21) = [MF839LLA, compare] r32(p31) = [MF839LLA]
r12(p12) = [Refurbished, MacBook, Air] r22(p22) = [accessories, this, product, for] r32(p32) = [MMGG2LLA]
r12(p13) = [MF840LLA, MacBook, Brand new] r22(p23) = [accessories, related]

Figure 5: Extractors and tokens from three sources.

page p ∈ s , the weight of idi wrt r j is set as follows:

idWeiдht(idi , r j) =
1

1 + c1(idi , r j) + c2(idi , r j)
, (2)

where:
• c1(idi , r j) = 1(∃p′ ∈ s ′, r ′ |idi ∈ r ′(p′)\ {id(r ′, (p′)}∧s ′ , s), that
is, idi has been discarded by another source s ′, s ′ , s;

• c2(idi , r j) = 1(∃p′ ∈ s |idi ∈ r j (p′)), that is, idi has been consid-
ered an id extracted using the same r j for two distinct pages of
the same source s .
We represent our weighted bipartite graph by means of the

bi-adjacency n ×m matrix C, called confidence matrix: if idi is a
candidate id extracted by r j , C(i, j) is equal to weiдht(idi , r j), i.e.,
our confidence that it is a correct id, otherwise C(i, j) is equal to 0.

4.1 Mutual Reinforcement of Belief
We exploit the duality between correct ids and good regions tomutu-
ally reinforce our belief of their quality. Let I denote a n-dimensional
vector, where each element I(i) is a weight indicating our belief that
idi is a correct id. Similarly, let R denote a m-dimensional vector,
where each element R(j) is a weight indicating our belief that the
extractor r j returns regions that contain correct ids.

Given the belief of correctness of the ids and the confidence
matrix C, we can update our belief in the extractors. In particular, if
the ids extracted by r j are correct, we consider r j a good extractor.

This can be represented by: R(j) =
m∑
k=1

I(k) · C(j,k) which can be

written in matrix-like form: R = I × C.
Analogously, we can update I from R and C: if an extractor is

good, the ids that come from the regions that it produces are likely
to be correct. This can be represented by: I(i) =

n∑
k=1

R(k) · C(k, i)

which can be written in matrix-like form: I = R × CT .
The above equation exploits the global redundancy of information:

the more regions select an id, the more reliable is such an id.
As reported in Algorithm 1, we exploit the duality between good

extractors and correct ids by jointly computing the two vectors
iteratively until convergence.7 We begin from a configuration in
which all the extractors are considered equally good, i.e., we set
their initial weights to α = 0.5. At the end of the iteration, we select
the extractors and ids whose weights are greater than a threshold,
Tid and Tr respectively.8

7It is worth observing that our algorithm corresponds to Kleinberg’s HITS [22] on a
bipartite graph, whose convergence is proved [18].
8We set Tid = Tr = .5. We have empirically observed the approach is robust w.r.t.
the thresholds.

input : set of candidate ids, I = {id1, . . . , idn }
input : set of extractors, R = {r1, . . . , rm }
output : set of extractors R ⊆ R
output : set of id I ⊆ I

1 for i = 1 . . .m do
2 R(i) = α ;
3 end
4 repeat
5 I = R × CT ;
6 R = I × C;
7 normalize I and R;
8 until R does not changes;
9 R = {ri ∈ R | R(i) > Tr };

10 I = {idi ∈ I | I(i) > Tid };
11 return R, I ;
Algorithm 1: Filtering identifiers and extractors by mutual rein-
forcement of belief.

Example 4.1. Consider again source s1 = {p11,p12,p13}, from
Example 3.1. Let s2 = {p21,p22,p23}, s3 = {p31,p32} be two more
sources of our dataset. Suppose that s1 is associated with the extrac-
tors r11, r12; s2 with r21, r22; s3 with r31, r32. Also, suppose that these
extractors, applied over the pages of the corresponding sources, pro-
duce the sequences of tokens (ordered by idScore) shown in Figure 5.
Observe that MF839LLA, MMGG2LLA, and MF840LLA are always proposed
as the best candidate ids. Conversely, Refurbished is ranked first
once in r12(p12), while it is out-ranked by another token in r21(p21),
thus decreasing the confidence on the correctness of it as an id, as
well as of the extractors that produce it. Similarly, notice that the
token accessories is extracted from two different pages in the same
source s2. Also in this case, our confidence on the correctness of
the involved id and extractor is lower. The bipartite graph between
the set of ids I and the set of extractors R is then represented by
the following matrix:

C =

©«

r11 r12 r21 r22 r31 r32

MF839LLA 1 1 1 1 1 1
MMGG2LLA 1 0 1 0 1 1
MF840LLA 1 1 1 0 0 0
Refurbished 0 1

1+1+0 0 0 0 0
accessories 0 0 0 1

1+0+1 0 0

ª®®®®®®®®¬
Applying Algorithm 1 to the above matrix, we obtain the fol-
lowing weights: R = [1.0, 0.69, 1.0, 0.43, 0.75, 0.75] and I =
[1.0, 0.75, 0.58, 0.07, 0.04]. Note that r11 and r21 (whose weights

Big Data Linkage for Product Specification Pages SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

are 1) are considered better than r12 and r22 (whose weights are
0.69 and 0.43, respectively). Similarly, ids MF839LLA, MMGG2LLA, and
MF840LLA (whose weights are 1, 0.75 and 0.58, respectively) are
considered more correct than Refurbished and accessories (whose
weights are 0.07 and 0.04, respectively).

5 SEARCH AND ITERATIONS
The ids extracted and filtered in the first phase are used as keywords
to trigger new searches and iterate the process. Every search returns
a set of sources, namely those containing pages that match the
keywords. From these sources new ids are obtained. The iteration
concludes when no more ids are found. Two main aspects affect
the performance of the iteration: (i) the choice of the sources from
where to extract the ids in the current iteration, and (ii) the selection
of the ids for feeding the search in the next iteration.

Our strategy to govern the iterations leverages information re-
dundancy. As for the choice of the sources, there is a twofold ad-
vantage to process sources having many matches with the ids used
by the previous searches. First, there are many more matching ids
belonging to regions that refer to the same extractor, so favoring
the production of robust extractors. Second, if several ids match the
pages of the source, the overall costs can be significantly reduced,
as one of the most expensive operation, i.e., parsing html pages
to build DOM trees, needs to be performed only once for many
matches, instead of being repeated after every match.

As for the selection of the ids, we exploit the evidence accumu-
lated in the previous iterations: the more popular is an id across
sources, the more likely it is a correct global id. Therefore, we rank
ids by their number of occurrences in the sources, and we feed
every iteration of the search process with a bulk of head ids. As
illustrated in Figure 2, by expanding the search with head ids we
can also reach and analyze tail sources as soon as there is enough
evidence for including them in the process. Because of their popu-
larity, head ids are more likely than tail ids to bring out multiple
new tail sources.

Concretely, the RaF strategies to govern the iteration of the pro-
cess can be detailed as follows: we perform searches using the top-k
head ids; from the retrieved sources we process those accumulating
a sufficient number of matching ids. Since the distribution of the
size of the sources is skewed, we process a new source only if it has
a minimum number of matches, which works for head sources, or
a minimum percentage of matches with respect to the source size,
which works for tails sources that could not reach the threshold on
the minimum number of matches.

6 CONFLICTING IDS RESOLUTION
Once we have associated an id with every page, we could conclude
the process by trivially grouping pages that share the same id and
thus considering the linkage of the corresponding product entities.
However, because of the heterogeneity of the data, it may hap-
pen that some ids conflict: though identical, they refer to different
products. To give an example, consider the id H4614, which is asso-
ciated both with a model of eyeglasses and with a toilet accessory (a
towels hook). Another typical example of these conflicting ids are
product codes locally assigned by the sources: the scope of these ids
should be local to the sources, but it happens that some codes are

incidentally adopted by different sources for completely unrelated
products. If these codes are selected as ids by the previous iterative
phase of the pipeline, for our data linkage purposes, they might
create clusters of pages that actually refer to different entities. Con-
flicting ids may also arise due to noise introduced by the extraction
and filtering stages. For example, in the pages where the product is
an accessory related to another product (e.g., headphones for smart-
phones), the ids of the two distinct items (accessory and related
product) can be confused.

To reduce the number of these incorrectly linked pages, we ex-
ploit the semantic homogeneity that locally occurs in every source,
and the global redundancy of information across sources. Our key
intuition is that an id is unlikely to correctly link together two
products if it has been associated with several products that belong
to different categories, e.g., sunglasses vs toilet accessories.

Ideally, we could consider the input coarse categories of the
Dexter dataset. However, due to the heterogeneity of the sources,
any coarse classification is inherently noisy. For example, we have
found sources that offer products belonging to distinct categories
(e.g., monitors with laptops). Also, coarse categories, due to classifi-
cation errors or ambiguities, might include heterogeneous sources,
such as, a source about lenses in the cameras category.

Yet another option is to consider the names of the local cate-
gories as associated by the website containing the source itself, and
provided by the focused crawler used to gather up the pages of
the Dexter dataset. Unfortunately, also this solution is infeasible
because of the significant variety among the sources. In theDexter
dataset there are 1, 028 distinct category names, with a power law
distribution (only 20 names occur in more than 10 sources). Such
a heterogeneity prevents a direct adoption of local categories; an
id for a product under the category Smartphone of a given website
could be considered inconsistent if associated with a product under
the category Samsung Mobile Phone of another website. Therefore,
to conclude, every source uses a local, sometimes surprising, taxon-
omy for its products, and the local classification schemes adopted
by such big number of sources can hardly be reconciled under an
unified superimposed taxonomy.

To overcome this issue, we adopt a data-driven approach, cre-
ating clusters of sources that are more likely to be similar based
on the products they include. Our approach consists of computing
a partition of the sources in S, and to consider valid for linkage
only the ids that belong to sources grouped in the same cluster;
conversely, we filter out linkages coming from ids whose sources
have been classified in different clusters. The clustering procedure
is implemented by means of the Louvain Method [4], a popular, effi-
cient and scalable graph clustering algorithm. We create a complete
graph, where nodes represents the sources in S, and the weight of
every edge is the similarity between the connected pair of sources.

A crucial aspect here is how to compute the similarity between
two sources. As a source is a set of products whose ids have been
already found, one may consider a standard approach such as the
Jaccard-index over the set of ids discovered in the previous phase,
that is: Jaccard(si , sj) =

| {id,id ∈si }∩{id,id ∈sj } |
| {id,id ∈si }∪{id,id ∈sj } | .

However, in our setting the Jaccard-index is not reliable and,
most importantly, it has all the limitations of any local (i.e., based
only on information of the two compared sources) similarity score,

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA D. Qiu et al.

as it does not consider the context (that is to say, for our setting,
all other sources) in which the two sources occur. Consider for
example a pair of sources of unrelated products (say, sunglasses
and toilet accessories) and suppose that the two sources adopt
the same internal codes for their products, e.g., simple sequential
numbers in the same range. The Jaccard-index would consider the
two sources very similar, which is undesirable, even if no other
website would list all these ids within a single (local) category.

6.1 Global Co-Occurrence Source Similarity
We introduce a novel similarity index tailored to our problem set-
ting, denotedGβ , which aims at exploiting global evidence from our
big data context.Gβ is based on the observation that the greater the
number of sources in which two ids co-occur, the more confident
we are that these two ids are associated with the same product.
Every time that a website puts in the same local category, i.e., the
same source, two ids, the website is somehow expressing a “vote”
on the semantic homogeneity of the corresponding products, at
least according to the taxonomy of categories it locally adopted.

Given a pair of ids ida and idb such that ida , idb , let β(ida , idb)
be the number of sources where ida and idb co-occur, normalized
with respect to the number of sources, as follows:

β(ida , idb) =
|{s ∈ S s .t . ida ∈ s ∧ idb ∈ s}|

|S| .

Observe that β(ida , idb) equals 0 if the two ids never co-occur, 1 if
they co-occur in every source. Given a pair of sources si and sj , we
define the similarity index Gβ (si , sj), as follows:

Gβ (si , sj) =

∑
(ida,idb)∈si×sj

β(ida , idb)

|si × sj |
.

Note that Gβ (si , sj) assumes higher values if si and sj share many
ids that globally co-occur in many sources. It equals 1 if si and sj
share all the ids, and every pair (ida , idb) ∈ si × sj occurs in all the
sources S. Conversely, if si and sj share all the ids, but these do
not co-occur in any other source, Gβ (si , sj) assumes a small value,
whereas the standard Jaccard-index would be 1.

Example 6.1. Consider Figure 6, which shows a set of sources
with their related ids. Note that some sources have ids of products
from heterogeneous categories (we use suitable placeholders ti and
mj for ids of tvs andmonitors, respectively). β(MF839LLA, MMGG2LLA)
equals 1/3, since the pair (MF839LLA, MMGG2LLA) occurs in 2 out of 6
sources (s1 and s4). Similarly β(MF839LLA, t2) is 0 as no source con-
tains them both. Observe source s2: it shares 2 ids with s1 (MMGG2LLA
and MF840LLA), as well as with s6 (t1 and t2). While the Jaccard-index
for s2 is equally similar to s1 and s6 (namely, 0.4), theGβ index con-
siders it closer to s1 (0.22 vs. 0.14), as its ids co-occur more often
in the dataset. All the values of the indexes for this example are
detailed in Appendix A.5.

7 EXPERIMENTS
For the experimental evaluation of the RaF pipeline we use the
publicly available Dexter dataset: 1.9M pages from 3.5k websites
that have been collected by means of a focused crawler [28] trained
to gather product pages from 10 coarse categories: camera, cutlery,

source (categories) set of ids
s1 (laptop) {MF839LLA, MMGG2LLA, MF840LLA}

s2 (laptop and tv) {MMGG2LLA, MF840LLA, t1, t2 }
s3 (laptop) {MMGG2LLA, MF840LLA, MPTT2LLA}

s4 (laptop and monitor) {MF839LLA, MMGG2LLA, MF840LLA,m1 }
s5 (laptop and monitor) {MF839LLA, MF840LLA,m1,m2 }

s6 (tv) {t1, t2, t3 }

Figure 6: Sources and ids for Example 6.1.

headphone, monitor, notebook, shoes, software, sunglasses, toilets,
tv. The crawler grouped pages in 7, 145 clusters, corresponding to
the local categories exposed by the websites (e.g., “led monitors”).
These clusters correspond to our definition of sources.

Although the goal of the Dexter system was to crawl only
detailed product specification pages describing individual products,
the corpus contains also several pages that, in our perspective,
represent noise: summary pages listing many products, pages of
news, general error pages. From our analysis of a random sample
of 1100 pages, we estimated that these noisy pages cover about 30%
of the corpus.

We classify every source as either head or tail by taking the
median of the source size distribution (the sum of the sizes of heads
equals the sum of the sizes of tails) as a threshold between the two
categories. In the Dexter dataset, the vast majority of sources are
tails as the median for sources is 133 pages. We provide additional
details on the Dexter dataset in Appendix A.1.

The seed set to start the RaF pipeline was obtained by leverag-
ing the microdata annotations that are present in a portion of the
sources. We considered the pages adopting the schema.org stan-
dard, and we extracted all the values marked with the following
properties: gtin(8-14), productID, sku, mpn, model. In total, we ob-
tained 127k ids, from which we randomly chose 10% as seed set to
start our pipeline. The remaining are used as a ground truth for a
evaluating the recall of id discovery.

We now present the results of our experimental analysis to eval-
uate the RaF pipeline. We present experiments to assess the per-
formance of the various components, considering them both in
isolation and during end-to-end pipeline executions.

7.1 Extraction and Ids Selection
To evaluate the quality of the extraction process we compare the
values extracted by a golden set of hand-crafted rules, with those
returned by the set of extractors generated by our technique.

To build the golden set we have randomly selected 125 sources
from our dataset and we have written all the XPath expressions
extracting the regions with the main product ids.

As metrics we adopt precision and recall at the level of the
extracted values. Given an extractor r , let r (U) denote the set of
values extracted from the set of pagesU ; we compute precision (P),
recall (R), and F-measure (F) wrt the corresponding golden rule rд ,
as follows: P = |rд (U)∩r (U) |

|r (U) | ; R = |rд (U)∩r (U) |
|rд (U) | ; F = 2 P ·R

P+R .
The number of ids used as keywords in every search may vary, as

it depends on the ids that have been already discovered. Therefore,
the quality of the extractors can be affected by the quality and
quantity of the ids used as keywords during every search. In this first

Big Data Linkage for Product Specification Pages SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

 0.25

 0.5

 0.75

 1

 20 40 60 80 100

%ids

P R F

(a) without validation

 0.25

 0.5

 0.75

 1

 20 40 60 80 100

%ids

P R F

(b) with validation

Figure 7: Quality of region extraction.

 0.25

 0.5

 0.75

 1

 20 40 60 80 100

%ids

P R F

(a) without validation

 0.25

 0.5

 0.75

 1

 20 40 60 80 100

%ids

P R F

(b) with validation

Figure 8: Quality of region extraction and id selection.

experiment, we considered increasing percentage of input correct
ids to infer the extractors: Figure 7(a) shows average precision and
recall in the absence of the validation step for extractors. Whereas
the recall improves with the percentage of ids, the precision slightly
decreases. This negative effect can be explained by considering that
a larger number of ids entails a larger number of matches with
wrong regions, i.e., regions containing ids that do not correspond
to the main product presented in the page. Figure 7(b) presents
the same results with the extractor validation step enabled. Even if
there is a loss in precision, it is more important not to inject noisy
ids, since recall can be recovered. We will see that the positive
effects of the validation are much more evident for the selection of
the ids, and in the presence of noise.

Ids Selection. To evaluate the ids selection based on the IdScore ,
we have applied our method over the regions extracted in the
previous experiment, and we have compared the set of the tokens
with the highest score with a golden set of manually selected correct
ids from the same set of 125 sources. Figure 8 shows the results of
this experiment. It is worth observing that, compared to the results
of the extraction in isolation (Figure 7), the validation produces
a much more apparent gain in precision. There is also a loss in
recall, but since this can be recovered by subsequent iterations of
the pipeline, it is even more important not to inject noisy ids, as
we discuss in the next experiment.

Influence of search quality on region extraction. The quality of
the extractors is influenced by the quality of the ids used as key-
words to locate the regions during the search. To evaluate how
our extraction process is resilient to this aspect, we have set up
another experiment by considering for every source of the previous
experiment a set of keywords containing 20% of the correct ids; to
this set we added a set of noisy tokens randomly taken from the
leaf nodes of the pages of the source (to let them match with the

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100
 0

 50

 100

 150

 200

%noise

#extractors
P

R
F

(a) without validation

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100
 0

 50

 100

 150

 200

%noise

#extractors
P

R
F

(b) with validation

Figure 9: Quality of region extraction corrupting the search
with noisy keywords.

pages themselves). Then, we have evaluated again precision and
recall of the generated extractors, varying the percentage of noisy
ids. Figure 9 shows how important is the role of the validation, as it
improves significantly the precision, with a small drop of the recall.
The validation step produces also positive results by reducing the
number of generated extractors by one order of magnitude: Figure 9
plots the average number of generated extractors (gray bars, whose
scale is in the right vertical axis) with and without validation by
varying the percentage of noisy ids in the search. While in absence
of noise the number of extractors is rather limited (about 2, on
average), the validation step is important to prevent the noisy ids
from introducing too many noisy extractors.

Results on the end-to-end pipeline. Overall, out of 967k extractors
generated during a run of the pipeline, the validation removes 644k
extractors (66%). Specifically, 628k are eliminated because they
extract toomany null values, and 15k (on average 2 for every source)
because of duplicated values. The average number of regions per
source is 56, a surprising high number that can be explained by
considering the results of the experiment depicted in Figure 9 (it
shows how the number of generated extractors increases with the
noise), and the noise in the input Dexter dataset, which contains
several product listings pages (as they publish many ids, they give
rise to a large number of regions). A manual inspection of the
sources generating a large number of extractors revealed that this
phenomenon is more frequent on the smallest sources, because the
heuristics of the extractors validation step are less effective on small
collections of pages. Overall, the majority of pages have less than 7
extractors, as shown in Figure 11(a), which plots the distribution
of regions per page. As we discuss in the next section, many other
regions are filtered in the following phase of the pipeline.

7.2 Ids and Extractors Filtering
The mutual reinforcement of belief aims at selecting correct ids
as well as good extractors, filtering out those that are unlikely to
extract regions containing correct ids.

In order to evaluate effects on precision and recall of this pro-
cess we have randomly chosen 25% of the golden ids, i.e., the ids
extracted by the set of hand crafted rules, from each of the 125
sources of the previous experiment. Then, we retrieved the pages
matching these golden ids searching the whole Dexter dataset.
Before performing the searches, we simulated the presence of noise
by injecting noisy keywords as in the previous experiments. On
the set of returned pages, we extracted and filtered the ids and

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA D. Qiu et al.

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100

%ids

P R F

(a) IdScore

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100

%ids

P R F

(b) Mutual reinforcement of belief

Figure 10: Quality of ids filtering vs percentage of noise.

we computed the precision and recall of the resulting ids, accord-
ing to the idScore (Eq. 1), and the score obtained from the mutual
reinforcement of belief approach by using the idWeiдht (Eq. 2).
Figure 10 compares the results of mutual reinforcement of belief to
idScore and shows that the mutual reinforcement of belief is robust
to noise, as it produces highly precise results and prevents the low
quality extractors from introducing too many noisy ids within the
pipeline iterative phase.

Results on the end-to-end pipeline. In a complete run of the RaF
pipeline, 65% of the extractors surviving to the validation step did
not survive the filtering based on the mutual reinforcement of belief
(only 112k extractors out of 322k were saved). Similarly, about 60%
of the ids (1.6M out of 2.61M) were filtered out by Algorithm 1.
Figure 11(b) plots the distribution of regions after the filtering step.
Compared to the same distribution before the filtering (Figure 11(a)),
it is apparent that the mutual reinforcement of belief has polished
many regions: the total number of pages that contain at most 3
regions after filtering is almost doubled (541k vs. 288k).

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

#
p
a
g
e
s

w
it

h
 r

e
g
io

n
s

#regions (log)

(a) Before filtering

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

#
p
a
g
e
s

w
it

h
 r

e
g
io

n
s

#regions (log)

(b) After filtering

Figure 11: Number of regions per pages. The red line indi-
cates the median of the distribution.

7.3 Iterations
We now focus on evaluating our redundancy-driven strategies to
govern the iteration (Section 5). To this end, we have run the first
iterative phase of the pipeline (composed of three stages) with
different configurations, until termination. We set as a baseline
a random approach: in every iteration a bulk of 100k random ids
is used to feed the search, and we randomly select the sources
to process in the next iteration. A second configuration adopts
our redundancy-driven strategy: we select the top 100k head ids,
and we process the sources that have a least 10% or at least 100
pages matching with those ids. To compare the costs of the two
configurations, we consider a simple cost model assigning an unit

 10

 100

 1000

 0 20 40 60 80 100 120 140

iteration

redundancy-driven: head sources
baseline: head sources

redundancy-driven: tail sources
baseline: tail sources

(a) Discovered sources (log scale)

 10000

 100000

 1x106

 0 20 40 60 80 100 120 140

iteration

redundancy-driven: head ids
baseline: head ids

redundancy-driven: tail ids
baseline: tail ids

(b) Discovered identifiers (log scale)

Figure 12: Ids and sources discovered during the iterations.

to every html page processed during the iterations. Also, since
we aim at studying the evolution of the iterations across several
configurations, we fix a bound to the cost of every iteration (that
is, to the total number of processed pages) so that we can fairly
compare the results obtained during the end-to-end execution of
the pipeline in terms of iterations.

Figures 12(a) and 12(b) plot the (cumulative) number of sources
and ids discovered by the iterative phase of the RaF pipeline. The
prioritized configuration discovers sources more efficiently, because
of the exploitation of head ids in the search process.

The two configurations converged to the same results (they
differ for less than 1%) demonstrating that our redundancy-driven
strategy does not introduce any significant bias: they found 1.07M
distinct ids, with 1.55M occurrences in 652k pages (on average
about 2.37 ids per page) from 5, 477 sources (152 heads, and 5, 325
tails), 75% of the sources in the Dexter dataset. Using the ground
truth composed by the ids extracted with microdata annotations,
RaF discovered 70% of the ids. To understand these results, we note
that the Dexter dataset contains about 1.9M pages, but about 30%
of them are noisy. Analyzing the sources that we lost, we realized
that they include a dozen of large sources containing reviews and
descriptions of used products. These sources, which are not product
specification pages (and hence may be considered out of the main
scope of our goals) violate our assumptions, e.g., used product pages
in the same ebay.com category do not have the same template as
sellers are free to customize the layout of a portion of the page; also,
several distinct used product pages of a source contain the same id.

The two configurations produce the same number of ids, but
have different costs. The redundancy-driven strategy allows the
pipeline to converge to 99% of the ids in 132 iterations, while the
baseline needs 152 iterations to obtain the same results. The gain
is evident also considering the coverage of the sources, i.e., the
number of sources for which at least one id has been extracted. In
this case 99% of the sources has been discovered after 103 iterations
vs. 136 discovered by the baseline. The strongest gains occur during
the early iterations (in the first 15 iterations, redundancy-driven
is about 2× more effective than the baseline) wrt the number of
sources, as shown by the solid lines in Figure 12(a), while parsing
many fewer pages.

This experiment has been conducted by using quite a loose cost
bound (100k pages) per iteration. This facilitates the baseline as it
has good chances to pick up a significant number of head entity
ids in one iteration even if it makes random choices. By repeating
the experiment with a smaller cost per iteration, ranging from 100
to 10k , the advantages of the redundancy-driven approach become

Big Data Linkage for Product Specification Pages SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

 1000

 10000

 100000

 1x106

 0 20 40 60 80 100 120 140

iteration

redundancy-driven: head ids
redundancy-driven: tail ids

(a) Linkages (log scale)

 1000

 10000

 100000

 1x106

 0 20 40 60 80 100 120 140

iteration

redundancy-driven: head sources
redundancy-driven: tail sources

(b) Linkages grouped by sources (log
scale)

Figure 13: Linkages discovered during the iterations.

much more apparent: by using a bound for the cost as low as 100,
the random baseline cannot even find any id for several iterations.

Figure 12(b) shows that the redundancy-driven strategy performs
better also for discovering ids. Similarly to sources, to classify ids
as either head or tail we consider the median of the distribution of
id occurrences as a threshold separating head ids from tail ids. We
found 238k head id occurrences, and 842k tail id occurring at least
in two sources. However, as expected, many ids (868k) occur in just
one source and cannot be used for linkage. By eliminating those
singletons, tail ids and head ids are 38k and 168k , respectively.

Pages in linkage. As our goal is to extract ids to perform data
linkage on the product specification pages, we analyze the number
of pairs of pages that are associated with the same id discovered.
The head ids (38k) gave rise to 3.0M linkages, whereas the tail ones
(168k) generated 1.4M linkages. Conversely, in terms of sources,
linkages involving pairs of tail sources are many more than those
with pairs of head sources: 2.3M versus 864k .

Figures 13(a) and 13(b) plot the evolution of the linkages, i.e.,
groups of pages sharing the same id, during the iterations, consid-
ering our classification of head and tail ids, head and tail sources.
Notice that many tail sources are rapidly found in the first iterations.

To evaluate the recall of the RaF output linkage we have taken a
random set of 1000 unique ids from the ground truth extracted by
using microdata annotations (and disjoint from the set of seed ids)
and we used them as keywords for searching the Dexter corpus.
We computed all the unique pairs in every group of pages matching
the same id. From the resulting set of pairs, we randomly picked
a sample of 1500 pairs of pages. A manual inspection of all these
pairs produced a ground truth of only 284 pairs of pages in linkage,
i.e., pages actually showing as main product the same product. We
looked for these pairs in the set of linkages computed at the end of
the iterations and we found 187 pairs (65.8%) of the ground truth.

7.4 Id Conflict Resolution
We conclude this section presenting experiments on the last step of
our pipeline, which aims to resolve conflicting ids. Running this step
over the pairs of ids obtained after the completion of the iterations
filtered out about 44% of the linkages: we reduced the 4.4M linkages
produced by the iterative phase of our pipeline to 2.5M .

We compare the results of our conflicting ids resolution tech-
nique with different alternatives: Baseline – the linkage obtained
without applying any conflict resolution, i.e., linkages are based
only on the equality of the ids; Cosine – we also consider page

contents, i.e., cosine similarity between set of words contained in
the page.9 Then, we also considered several other configurations
that filter linkages of pages associated with the same ids by further
analyzing the categories of the two pages: Category – we directly
use the coarse categories bundled within the Dexter dataset (only
linkages involving pages of the same category are considered valid);
Louvain GB – we check whether our id resolution approach based
on the clustering with the Gβ index classifies the two ids in the
same cluster; and finally, Louvain GB & Category – we consider
the conjunction of two latter methods: a pair is consider valid if its
pages belong to the same Dexter coarse category and to the same
cluster as computed by our redundancy-driven approach.

To compare these configurations, we have built a ground truth
by manually inspecting the pages of 3000 linkages (that is, pairs of
pages with identical ids) randomly chosen among those computed
at the end of the iterations. We used the ground truth to count: the
number of pairs linked correctly (true positives, tp), i.e., the number
of pairs of pages actually showing the same product on both pages
of the pair; the number of pairs linked incorrectly (false positives,
f p); the number of pairs correctly not linked (true negatives, tn);
and the number of missing pairs (false negatives, f n). Then we
have computed precision (P = tp

tp+f p), recall (R = tp
tp+f n), and

F-measure (F = 2 P ·R
P+R).

The results of these experiments are shown in Figure 14. For
every configuration, we report precision, recall and F-measure for
ids classified as either head or tail ids. Observe that Louvain Gβ
has the highest precision over all ids and over head ids. Conversely,
it loses precision with tail ids. This is expected, as our techniques
are strongly based on the redundancy which, by definition, is less
available for tail ids thus making theGβ index less reliable. The best
results come from the combination of Louvain Gβ and the input
coarse categories of the dataset. The redundancy-driven approach
of the Louvain Gβ for clustering sources is able to correct many of
the errors arising from the noise in the input dataset. Interestingly,
the loss in recall is compensated by a gain in precision.

Analyzing the clusters computed by the Louvain Gβ approach
we have observed that many disjoint sources, i.e., not sharing any
id, are correctly grouped in the same cluster. On average, 36% of
the pairs of sources of every cluster are disjoint.

Influence of local ids. Our method for removing conflicting ids
can be influenced by the presence of local ids that overlap among dif-
ferent sources. In presence of many common local ids (e.g., ID0001,
ID0002, ...) recurring in several sources, their co-occurrences can
induce our approach to create false communities. To evaluate this
aspect, we have taken all the ids discovered at the end of the first
phase of the pipeline for a pair of large categories (tv and monitor);
then, in order to simulate the presence of local ids that overlap
across sources, we have artificially injected to a given percentage
of their sources a number of fake overlapping ids. We have run our
conflicting ids resolution algorithm (in the Louvain Gβ configura-
tion) on these corrupted sources, by varying from 10% to 30% both
the percentage of the corrupted sources and of their overlapping
ids (our analysis of the Dexter dataset show that these scenarios is
9The linkage of a pair of pages associated with the same ids are discarded whenever
their cosine similarity is lower than a threshold (set to 10% in our experiments) that
we have empirically tuned to be good.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA D. Qiu et al.

(a) All (head and tail) identifiers. (b) Head identifiers. (c) Tail identifiers.

Figure 14: Linkage Resolution.

rather pessimistic). To evaluate the performance of the resolution
algorithm, we used the same metrics (precision, recall, F-measure)
and the same ground truth of the previous experiment (but selecting
only the 821 pairs involving the sources of this experiment). A sig-
nificant drop of the F-measure (from 85% to 73%) is observable only
when 30% of the sources contain at least 20% of overlapping fake
ids. The complete results of this experiment are in Appendix A.6.

8 RELATEDWORK
There has been a great number of previous studies in the area of
record linkage, but traditional solutions mainly concentrate on the
volume of data (see [6] for a survey), while RaF aims at processing
a very large number of sources. In the context of big data linkage,
Efthymiou et al. [14] propose a scalable blocking strategy that uses
MapReduce to parallelize the comparisons of entities. They share
with us the idea of exploiting the co-occurrence of entities, but their
approach is designed for a small number of very large sources.

Many works have addressed the record linkage issue in the prod-
uct domain. De Bakker et al. [10] presented a method to perform
record linkage of products from different websites. Their approach
first tries to match products based on the presence of ids in the title
of pages. If the ids do not match, it tries to match products based
on text similarity measures. A similar approach performs entity
resolution of product pages based on enriched representations of
their titles [15]. The enrichment is performed querying a search
engine with the original title: tokens with high frequency in the title
of the result pages are added to the original title. Pages are matched
based on the cosine similarity of their enriched titles. Our solution,
that exploits local regularities to infer extractors, generalizes these
approaches, as we can extract the identifier from any leaf node
of the page. Another drawback for these approaches is due to the
restrictions imposed by search engines. Nguyen et al. [26] proposed
a method to add product offers to a product catalog, containing a
big set of products, and a product taxonomy. Their approach as-
sumes schema alignment is solved and the linkage is based on the
similarity of attributes. Agrawal and Ieong [1] studied the problem
of determining the price history of a product, given a set of offers
from different sources. They consider the existence of incorrect
linkages, i.e., offers that do not correspond to the same product,
and propose a probabilistic framework to come up with the correct
price history of the product and a correction of erroneous matches.
Similarly, Kannan et al. [21] consider the problem of linking prod-
uct text snippets to the structured data of a large product catalog.
These proposals address the variety issue of big data integration,
but they require a reliable, structured head source.

Talaika et al. presented a method, IBEX, to collect product ids
from Web pages and to associate those ids with their product
names [29]. To identify the ids, they use regular expressions for
pre-defined types of ids, such as, GTIN for products, ISBN for books,
CAS for chemical substances. In contrast, we do not rely on any pre-
defined pattern, which have a limited coverage, as shown by our
experimental analysis. An entity resolution approach for products
from e-shops is proposed in [20]: the authors assume the prod-
uct name has been extracted and develop a solution based on a
weighted combination of different similarity measures (e.g., Lev-
enshtein and Jaccard) to match the product names. Petrovski et
al. [27] developed a pipeline to integrate products from websites
that use microdata. As they rely on the annotated attributes they
follow a traditional data integration pipeline, where entity resolu-
tion (performed by means of a genetic programming approach) is
done after schema alignment. The main limitation of this approach
is due to the necessity of microdata annotations.

Gulhane ed alt. [17] proposed a system to exploit content redun-
dancy over templated websites by taking as input a few annotated
examples. However their techniques target a dataset composed of
a handful of head sources from vertical domains, such as restau-
rants and bibliography, whose heterogeneity is significantly less
pronounced than in our setting.

Our work is related also to projects that aim at building and
enriching large knowledge graphs with web data, such as, Knowl-
edge Vault [11] and YAGO [19]. However these projects follow a
closed Information Extraction model: they identify only entities that
are present in a reference (head) source (Freebase for Knowledge
Vault, Wikipedia for YAGO). Our approach differs because one of
our major goals is to include tails entities of tail sources, as well.

9 CONCLUSIONS AND FUTUREWORK
We have presented the RaF approach to big data linkage for product
specification pages. RaF leverages the opportunities offered by the
redundancy of information to address typical big data challenges,
not only for the volume of data but also for the variety of the sources
and of the entities involved. Our approach does not rely on any
a priori knowledge, such as product ids patterns, which cannot
work at web scale, but exploits natural, statistical, structural and
semantic properties that hold in the product domain. As futurework,
we plan to solve the big data schema alignment and data fusion
problems on product specifications, given the linkages computed
by our techniques in this paper, in a holistic way.

Big Data Linkage for Product Specification Pages SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] Rakesh Agrawal and Samuel Ieong. 2012. Aggregating web offers to determine

product prices. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 435–443.

[2] Arvind Arasu and Hector Garcia-Molina. 2003. Extracting structured data from
web pages. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. ACM, 337–348.

[3] Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. 2008. Sup-
porting the automatic construction of entity aware search engines. In Proceedings
of the 10th ACM workshop on Web information and data management. ACM,
149–156.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[5] Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. 2013. Ex-
traction and integration of partially overlapping web sources. Proceedings of the
VLDB Endowment 6, 10 (2013), 805–816.

[6] Peter Christen. 2012. A survey of indexing techniques for scalable record linkage
and deduplication. IEEE transactions on knowledge and data engineering 24, 9
(2012), 1537–1555.

[7] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. 2013. A framework for
learning web wrappers from the crowd. In Proceedings of the 22nd international
conference on World Wide Web. ACM, 261–272.

[8] Nilesh Dalvi, Philip Bohannon, and Fei Sha. 2009. Robust web extraction: an
approach based on a probabilistic tree-edit model. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. ACM, 335–348.

[9] Nilesh Dalvi, Ashwin Machanavajjhala, and Bo Pang. 2012. An analysis of
structured data on the web. Proceedings of the VLDB Endowment 5, 7 (2012),
680–691.

[10] Marnix de Bakker, Flavius Frasincar, and Damir Vandic. 2013. A hybrid model
words-driven approach for web product duplicate detection. In International
Conference on Advanced Information Systems Engineering. Springer, 149–161.

[11] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge vault:
A web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 601–610.

[12] Xin Luna Dong. 2016. How Far Are We from Collecting the Knowledge in the
World?. In Keynote at 19th International Workshop on Web and Databases. ACM.

[13] Xin Luna Dong and Divesh Srivastava. 2015. Big data integration. Vol. 7. Morgan
& Claypool Publishers. 1–198 pages.

[14] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,
and Themis Palpanas. 2017. Parallel meta-blocking for scaling entity resolution
over big heterogeneous data. Information Systems 65 (2017), 137–157.

[15] Vishrawas Gopalakrishnan, Suresh Parthasarathy Iyengar, Amit Madaan, Rajeev
Rastogi, and Srinivasan Sengamedu. 2012. Matching product titles using web-
based enrichment. In Proceedings of the 21st ACM international conference on
Information and knowledge management. ACM, 605–614.

[16] Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ramamirtham,
Rajeev Rastogi, Sandeep Satpal, Srinivasan H Sengamedu, Ashwin Tengli, and
Charu Tiwari. 2011. Web-scale information extraction with vertex. In Data
Engineering (ICDE), 2011 IEEE 27th International Conference on. IEEE, 1209–1220.

[17] Pankaj Gulhane, Rajeev Rastogi, Srinivasan H. Sengamedu, and Ashwin Tengli.
2010. Exploiting Content Redundancy for Web Information Extraction. Proc.
VLDB Endow. 3, 1-2 (Sept. 2010), 578–587.

[18] Xiangnan He, Ming Gao, Min-Yen Kan, and Dingxian Wang. 2017. Birank: To-
wards ranking on bipartite graphs. IEEE Transactions on Knowledge and Data
Engineering 29, 1 (2017), 57–71.

[19] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.
2013. YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia. Artificial Intelligence 194 (2013), 28–61.

[20] Andrea Horch, Holger Kett, and Anette Weisbecker. 2016. Matching product
offers of e-shops. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 248–259.

[21] Anitha Kannan, Inmar E Givoni, Rakesh Agrawal, and Ariel Fuxman. 2011. Match-
ing unstructured product offers to structured product specifications. In Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 404–412.

[22] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) 46, 5 (1999), 604–632.

[23] Hanna Köpcke, Andreas Thor, Stefan Thomas, and Erhard Rahm. 2012. Tai-
loring entity resolution for matching product offers. In Proceedings of the 15th
International Conference on Extending Database Technology. ACM, 545–550.

[24] Robert Meusel, Peter Mika, and Roi Blanco. 2014. Focused crawling for structured
data. In Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management. ACM, 1039–1048.

[25] Robert Meusel, Petar Petrovski, and Christian Bizer. 2014. The webdatacommons
microdata, rdfa and microformat dataset series. In International Semantic Web
Conference. Springer, 277–292.

[26] Hoa Nguyen, Ariel Fuxman, Stelios Paparizos, Juliana Freire, and Rakesh Agrawal.
2011. Synthesizing products for online catalogs. Proceedings of the VLDB Endow-
ment 4, 7 (2011), 409–418.

[27] Petar Petrovski, Volha Bryl, and Christian Bizer. 2014. Integrating product data
from websites offering microdata markup. In Proceedings of the 23rd International
Conference on World Wide Web. ACM, 1299–1304.

[28] Disheng Qiu, Luciano Barbosa, Xin Luna Dong, Yanyan Shen, and Divesh Srivas-
tava. 2015. Dexter: Large-scale discovery and extraction of product specifications
on the web. Proceedings of the VLDB Endowment 8, 13 (2015), 2194–2205.

[29] Aliaksandr Talaika, Joanna Biega, Antoine Amarilli, and FabianM Suchanek. 2015.
IBEX: harvesting entities from the web using unique identifiers. In Proceedings of
the 18th International Workshop on Web and Databases. ACM, 13–19.

A APPENDIX
A.1 The Dexter dataset
The Dexter contains 1.9M pages from 10 product categories (cam-
era, cutlery, headphones, monitor, notebook, shoes, software, sun-
glasses, toilets, tv). Pages were collected from 3.5k websites; the
crawler grouped them in 7, 145 sources, corresponding to the local
categories exposed by the websites.

Figure 15 plots the size (number of pages) of the sources, in non-
increasing order of source size. The vertical red line indicates the
median of the curve (the sum of the sizes of the sources on its left
equals to the sum of the sizes of the sources on the right), which
we consider the ideal border between head (large) and tail (small)
sources. It occurs at 113: the vast majority of sources belong to the
tail.

 1

 10

 100

 1000

 10000

 100000

 2000 4000 6000 8000

#
p
a
g
e
s

source

Figure 15: Size (number of pages) of the sources in the
Dexter dataset, in non-increasing order of the size of
sources.

Table 1 details the percentage of head sources for the 10 product
categories of the Dexter dataset, together with number of sources
and pages.

A.2 At the Web scale patterns are infeasible
We rely on the Dexter dataset to concretely illustrate this problem.
Table 2 reports the distributions of the most frequent patterns for
the ids from the seed set (left) and from the output of a complete
run of our pipeline (right). To describe the patterns, we use a sim-
plified form of regular expressions: a matches with a single ASCII
alphabetic character in [A-Z, a-z], d indicates a single digit in [0-9],
and the number in curly braces indicates the repetition count. So,

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA D. Qiu et al.

category #sources #pages %head
toilets 102 78,608 2%

sunglasses 551 233,959 5%
shoes 189 116,848 5%
tv 998 137,077 3%

cutlery 588 155,258 2%
notebook 847 289,879 3%
headphone 559 195,508 2%
camera 1,478 351,418 3%
monitor 1,175 195,542 2%
software 658 139,357 2%

Table 1: Sources in the Dexter dataset.

Seed Set Pipeline output
Pattern ids (%) Pattern ids(%)
d{8} 22.37% d{5} 6.62%
d{7} 14.38% d{6} 4.51%
d{6} 6.04% a{7} 4.07%
d{15} 5.81% a{8} 3.93%
d{10} 3.60% a{6} 3.83%
d{9} 3.10% a{9} 3.36%

GTIN-13 3.02% GTIN-12 3.26%
a{1}n{14} 2.94% a{5} 2.89%
GTIN-12 2.89% a{10} 2.73%
GTIN-8 2.64% a{11} 2.03%

other patterns 33.21% other patterns 62.78%

Table 2: Distribution of patterns for the ids in the Seed
Set and in the output of the RaF pipeline from the Dexter
dataset.

for example, the id ‘abcd123e’ would be considered as obeying
to the pattern a{4}d{3}a{1}. After a basic normalization on the
extracted token values, the seed set contains ids matching with 930
different patterns out of 33,281 values: the frequency of the most
adopted pattern (a sequence of 8 digits) is less than 23%. In the set of
ids produced by a complete run of our pipeline, we counted 20,020
different patterns; the most frequent one (5 digits) occurring just
6.62%.

A.3 Distribution of tokens
Figure 16 plots the distribution of the average number of tokens
returned by the extractors computed in a complete run of our
pipeline. The power-law distribution makes clear that a good part
of the extractors return regions containing several tokens. Less
than 15% of the extractors return a single token for at least 50% of
the pages in the source.

A.4 Distribution of identifiers
Figure 17 plots the distribution of the number of ids per page. About
52% of the pages (for which we found an id) have more than one id.
About 20% of the pages have more than four ids.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

e
xt

ra
ct

o
rs

 (
co

u
n
t)

average number of tokens

Figure 16: Distribution of the average number of tokens in
the regions returned by the extractors.

 1

 10

 100

 1000

 10000

 100000

 1 10 100

p
a
g
e
s

(c
o
u
n
t)

number of ids per page

Figure 17: Distribution of the number of ids per per page.

 1

 10

 100

 1000

 10000

 100000

 1 10

id
s

(c
o
u
n
t)

redundancy (#sources)

Figure 18: Redundancy of the ids.

Figure 18 shows the redundancy (wrt to the number of sources)
of the ids produced by the first phase of the RaF pipeline.

Big Data Linkage for Product Specification Pages SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

A.5 Source similarities
Table 3 reports the Gβ index and the Jaccard-index (within paren-
thesis) for the sources of Example 6.1.

s1 s2 s3 s4 s5 s6
s1 - .22 (.4) .28 (.5) .32 (.75) .26 (.4) .07 (0)
s2 .22 (.4) - .19 (.4) .21 (.33) .17 (.14) .14 (.4)
s3 .28 (.5) .19 (.4) - .38 (.25) .19 (.17) .08 (0)
s4 .32 (.75) .21 (.33) .38 (.25) - .25 (.6) .06 (0)
s5 .26 (.4) .17 (.14) .19 (.17) .25 (.6) - .02 (0)
s6 .07 (0) .14 (.4) .08 (0) .06 (0) .02 (0) -

Table 3: Gβ (Jaccard) index between sources of Example 6.1.

A.6 Influence of local ids
Figure 19 shows the detailed results of the experiment to evaluate
the influence of local ids on our id conflict resolution technique
described in Section 7.4. Using the original sources we obtained:
P=.85, R=.85, F=.85.

10% overlap 20% overlap 30% overlap
P R F P R F P R F

10% sources .84 .87 .85 .85 .85 .85 .85 .85 .85
20% sources .80 .84 .82 .85 .85 .85 .80 .68 .73
30% sources .81 .81 .81 .80 .76 .78 .79 .68 .73

Figure 19: Influence of local ids on the conflicting resolu-
tion.

A.7 Performance and running times
All the experiments have been run on a single machine with 32
cores and 128GB ram. To complete the iterations, the system run
for 336 hours. Every iteration processed 100k pages (remember that
the number of pages is bounded) from 200 sources (on average). Fig-
ure 20 reports detailed running times for the main tasks performed
in the pipeline. Observe that most of the costs are related to pages
processing during the iterative phase and it is worth observing that
most of the performed tasks that can be largely parallelized and
scaled on several machines.

Task Running Time Percentage
extractors generation 2,310 min. 11.2%

extraction 15,400 min. 74.4%
filtering 1,540 min. 7.4%

conflicting id resolution 1,440 min. 7.0%
Total 14.37 days

Figure 20: Running times for a complete execution.

	Abstract
	1 Introduction
	2 Problem Definition and Overview
	3 Regions Extraction and Ids Selection
	3.1 Validation of the Region Extractors
	3.2 Selecting the Identifiers

	4 Correct Ids and Good Extractors
	4.1 Mutual Reinforcement of Belief

	5 Search and Iterations
	6 Conflicting Ids Resolution
	6.1 Global Co-Occurrence Source Similarity

	7 Experiments
	7.1 Extraction and Ids Selection
	7.2 Ids and Extractors Filtering
	7.3 Iterations
	7.4 Id Conflict Resolution

	8 Related Work
	9 Conclusions and Future Work
	References
	A Appendix
	A.1 The Dexter dataset
	A.2 At the Web scale patterns are infeasible
	A.3 Distribution of tokens
	A.4 Distribution of identifiers
	A.5 Source similarities
	A.6 Influence of local ids
	A.7 Performance and running times

