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Location-Aware Access to Hospital
Information and Services

Marcela D. Rodríguez, Jesus Favela, Edgar A. Martínez, and Miguel A. Muñoz

Abstract—Hospital workers are highly mobile; they are con-
stantly changing location to perform their daily work, which
includes visiting patients, locating resources, such as medical
records, or consulting with other specialists. The information
required by these specialists is highly dependent on their location.
Access to a patient’s laboratory results might be more relevant
when the physician is near the patient’s bed and not elsewhere. We
describe a location-aware medical information system that was
developed to provide access to resources such as patient’s records
or the location of a medical specialist, based on the user’s location.
The system is based on a handheld computer which includes a
trained backpropagation neural-network used to estimate the
user’s location and a client to access information from the hospital
information system that is relevant to the user’s current location.

Index Terms—Context-aware computing, hospital information
systems (HISs), location estimation, mobile collaboration.

I. INTRODUCTION

WORK AT hospital settings requires considerable mo-
bility and coordination due to the complexity of the

tasks performed, the intensity of the information exchange,
and the fact that information and resources are distributed
throughout the premises. A hospital’s staff might be distributed
in space (i.e., different location within the settings) or time (i.e.,
working different shifts) and their information needs are highly
dependent on their location and other contextual conditions
such as their role or time of the day.

Artifacts are used in hospitals to support the staff’s coordina-
tion or as distributed repositories of information. Whiteboards
hung on walls, for instance, help to communicate information
regarding patients’ conditions and locations, and to infer the lo-
cation of nurses [2]. Medical records integrate patients’ clinical
data and constitute a main source of reference for their care. An
important trend in medical informatics is the adoption of elec-
tronic patient record systems that facilitate access to clinical in-
formation and work toward preventing the loss or misplacement
of information.

At the same time, physicians are increasingly using handheld
computers in their professional practice. It was estimated that
26% of all physicians in the U.S. used a handheld in 2001, a
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number that was expected to grow to 50% for 2004 or 2005 [12].
In fact, several medical schools in the U.S. are requiring stu-
dents to have a handheld computer. Such an instance is UCLA’s
David Geffen’s School of Medicine that established this require-
ment “to enable ‘point of contact’ access to information re-
sources; and to prepare students for practicing medicine in the
21st century” (www.medstudent.ucla.edu/pdareq/). This trend
has generated interest in the development of medical applica-
tions for personal digital assistants (PDAs) and evaluating their
use [10], [14].

To date, the most popular medical applications on handheld
devices are the ones that provide access to reference material,
such as drug information databases.

PDAs wirelessly connected to a hospital information system
(HIS) can give physicians access to patient medical records from
anywhere within the hospital. Even with their limited screen
size there are clear advantages from having this increased avail-
ability of information.

In this paper, we explore the use of context-aware computing
to go one step further. We present a handheld system that pro-
vides medical staff with information based on their context of
work, mainly, their location. The location-aware HIS discussed
in this paper can be used to retrieve medical information rele-
vant to the user’s current activity. For instance, a patient’s med-
ical record can be made available when the physician is near her
bed. The system can also be used to locate peers and devices,
tasks performed quite often in hospitals. This work is based on
previous efforts we made to support context-aware communica-
tion of the hospital’s staff [16].

The remainder of the paper is organized as follows. Section II
presents the requirements for a location-aware HIS and a sce-
nario used in its design. Section III gives an introduction to the
field of context-aware computing. In Section IV, we describe
recent efforts aimed at estimating user location within buildings
and describe our own approach based on a wireless local area
network (WLAN) and a backpropagation neural network. In
Section V, we describe how the location-estimation method
proposed is integrated into a location-aware HIS. Finally,
Section VI discusses our results and in Section VII we present
the conclusions.

II. REQUIREMENTS FOR LOCATION-AWARE

HOSPITAL SERVICES

We conducted a field study in a local public hospital. From
interviews with the hospital’s staff and the observation of work
practices, we identified the following information and services
that medical workers need to access and depend on the user’s
location:
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1) Documents such as patient’s records, laboratory results,
and forms to be filled. Considerable coordination ef-
forts are required to locate relevant documents. Clinical
records are often misplaced and laboratory results could
take hours to be delivered to the person who requested
them even to the point of making them useless.

2) The location of patients and colleagues. For instance, a
physician might need to locate a specialist with whom to
consult a clinical case, or a head nurse might require the
help of nurses to attend an emergency.

3) Locating devices. Medical equipment, beds, and other
devices need to be moved within the hospital as needed.
Identifying the availability and location of these artifacts
takes time and effort. For instance, a nurse might be
tracking the availability of a bed to transfer a patient to
the emergency room, or a doctor might want to display
the laboratory results he has just received on the nearest
public display.

These needs have shaped our design of the location-aware
HIS. We illustrate the desired functionality of the system with a
sample scenario:

While Dr. Diaz is checking the status of a patient (Bed
222), he realizes that he should request a laboratory study.
Using his handheld, he makes this request through the pa-
tient’s electronic clinical record. When the chemist respon-
sible for taking samples for the analysis visits the internal
medicine area, his handheld informs him that in Bed 222
a patient requires laboratory analysis. When the chemist
stands in front of the patient, his handheld lists the sam-
ples he must take and the type of analysis to be performed.
Once he performs these analyses, he adds the results to the
patient’s clinical record. Afterwards, when Dr. Diaz visits
the patient on his next round, the laboratory results will be
displayed on his handheld. On the basis of these results, he
re-evaluates the patient and decides to fill a medical note
requesting the nurse in charge to increase the doses of the
patient’s medication.
We use this particular scenario because we learned from our

site study that laboratory results could take up to 8 h to be de-
livered once the results are obtained. This is true even though
the processing of the samples is almost completely automated
and normally takes only a few minutes. We were informed by
the hospital staff that often the results are delivered when they
are of little or no use.

In this scenario, the system is continuously estimating the lo-
cation of Dr. Diaz and communicating this information to the
HIS, which updates the physician’s location on all other users’
handhelds. After a few seconds of Dr. Diaz being near Bed 222,
the medical record of this patient is displayed on his PDA. Thus,
the system adapts to the context, and in particular to the lo-
cation, of its user. Context-aware computing is a growing area
of research that deals with the design of this type of adaptable
systems.

III. CONTEXT-AWARE COMPUTING

Context-aware computing refers to an application’s ability to
adapt to changing circumstances and respond based on the con-

text of use. A system is context-aware if it uses context to pro-
vide relevant information and/or services to the user, where rel-
evancy depends on the user’s task [7]. Among the main types
of contextual information considered relevant are identity, time,
activity, and location which are known as primary context [7],
[20]. This information answers the questions of who, when,
what, and where, which can be used to identify if a specific in-
formation is relevant to establish context. Primary context can
be used to derive additional related information which is called
secondary context.

Context is difficult to use for several reasons [8]. First, cap-
turing primary context information requires the use of sensors
and computing devices. Context must be abstracted to make
sense to the application, for instance, the ID of a mobile user
must be abstracted into the user’s name or role. Finally, context
is dynamic, i.e., a mobile tour guide must update its display as
the user moves, which require tracking the user’s location by
gathering information from multiple sensors, and using tech-
niques that estimate the user’s location or guess the route that a
user will follow, which may introduce uncertainty.

A number of location-based services have been implemented
in recent years, such as the Guide systems that provide city vis-
itors with a hand-held context-aware tourist guide [5]. The in-
formation presented to visitors is tailored based on their profile
and contextual information, such as time and the unit’s physical
location. For instance, the ordering of the tour recommended
by the system can change dynamically when the visitor stays
at a location longer than anticipated. “Safe & Sound” is a loca-
tion-tracking system that allows parents to monitor their chil-
dren’s position [15]. The child has a phone that continuously
streams location information to the parent’s phone. If the child
is outside a secure zone previously defined by the parents, both
the parent and the child receive a sound alert and a voice channel
between them enables negotiating with the child.

Undoubtedly, location is important to understand the context
of mobile users [9]. Location becomes a useful indexing infor-
mation from which to infer the overall context that a system will
use to provide services and information to mobile users. Fur-
thermore, mobile users constantly change their context, most
notably their location. This is particularly true in a hospital set-
ting where the staff is constantly moving and the activities they
perform are highly dependent on their location. For instance, ac-
cess to patient’s records is most relevant when near the patient’s
bed. In addition, resources, such as clinical records, laboratory
results, or devices are highly distributed and people spend time
tracking them.

IV. ESTIMATING USER LOCATION IN WLANs

A. Location Estimation Methods

Estimating the location of a user has been a subject of consid-
erable attention in context-aware computing in recent years. The
first location-based computer applications reported in the litera-
ture were based on the Active Badge system which made use of
infrared signals emitted by badges and received by infrared sen-
sors located in a building [22]. Advances in Global Positioning
Systems allow mobile computers to determine its location with
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considerable accuracy in outdoor environments. They use trian-
gulation of the signals received from multiple satellites to de-
termine location with an approximate accuracy of 10 m. Other
techniques involve the use of ultrasound [13], sensors placed in
the floor [17], and the use of multiple cameras and computer vi-
sion techniques [6].

Radio frequency identification (RFID) tags have become in-
creasingly popular to track and identify products and people.
A major feature of RFID is its read–write capability. Users can
seamlessly record and transfer data, such as serial numbers, per-
sonal records, account information, etc., from their computer
system to an RFID tag (or vice versa). These tags can be attached
to a wristband or a smartcard. Several uses of this technology
have been identified for the healthcare domain where wristbands
with RFID tags are already being commercialized. For instance,
RFID systems can help streamline operations and ensure posi-
tive patient identification to reduce medical errors by facilitating
real-time confirmation of the right patient, right drug and dose.
This type of RFID tag is passive since it must be closely coupled
with a reader to transmit information. With a read distance gen-
erally limited to three feet, a high concentration of tags would
be required to continuously track the location of people, as re-
quired for the uses we envisioned for this technology. There are
also active RFID tags with transmission distances of over 100
feet that use a battery to power the chip’s circuitry and broadcast
a signal to a reader. This solution, however, requires the installa-
tion of a dedicated infrastructure besides the computer network
as is the case with most of the solutions discussed above.

Of particular interest are location estimation techniques
that make use of an existing WLAN infrastructure, since they
have better scalability and less installation and maintenance
costs than ad hoc solutions, which are requirements for easily
surveying a location system using its own infrastructure and
components [21]. These methods use the radio frequency (RF)
signal strength (SS) between a mobile device and several access
points of the WLAN to estimate location. A signal propagation
model could be used to estimate this distance, but rather com-
plex models would be required, since the signal is affected by
the presence of walls, furniture, and other people and devices.
To work around this complexity, empirical methods have been
advanced. In these methods, the strength of the RF signal is
measured at predefined locations and used to train a pattern
recognition model that can then be used to estimate the user’s
location.

The RADAR location system uses an IEEE 802.11 WLAN
and an empirical method based on the nearest neighbor algo-
rithm [1]. Similarly, the Nibble system uses the signal-to-noise
ratio (SNR), which is more stable than SS to compute the dis-
tance to the access point. Nibble uses a Bayesian network to
estimate the probability of the mobile being at one of a set of
discrete locations [3].

A recent trend is to estimate the user’s location by fusing the
readings from different sensor technologies to obtain a more
precise estimation of the measured variables; this process is
known as sensor fusion. Such an approach is used in [11], which
presents an indoor location-measuring system that processes
data from infrared and ultrasonic sensors. In spite of their in-
creased accuracy, these procedures require a specialized infra-

Fig. 1. Simplified architecture of the neural network used to estimate the
location of mobile users.

structure, which may not be suitable for wide deployment sce-
narios [21].

B. Neural Networks for Location Estimation

In our work, we are using backpropagation neural networks
trained to map RF signals from a WLAN to two-dimensional co-
ordinates. A backpropagation neural network, or multilayer per-
ceptron, is a supervised nonparametric model that learns from
a training set by adjusting the weights that shape the strength
of the signals propagated between processing units, or neurons.
Once trained, the neural network can be used to classify in-
coming patterns into labeled classes.

The architecture of a backpropagation neural network is made
of two or more layers of processing nodes with each of the nodes
of layer connected to each of the nodes in layer . The con-
nections have different strengths (or weights) that represent the
influence that a particular node has in a node of a subsequent
layer. Each node computes an activation value that is the result
of applying a nonlinear function (typically the sigmoid function,
when the errors are assumed to be Gaussian) to the sum of the
products of the activation weights of the previous layer, times
the weight that connect each of those nodes with the unit per-
forming the computation.

A network that is presented with an input pattern in the first
layer will then generate a pattern in the output (or last) activation
layer. The most important aspect of neural networks, though,
is not how they compute these output patterns, but rather how
they learn from a set of examples. The backpropagation learning
algorithm calculates how the nodes in the internal layers will be
penalized (adjusted) when presented with a training pair (a tuple
of input and output patterns). The details of the algorithm can
be found in [19].

Fig. 1 shows a simplified version of the architecture of the
neural network we have used. The SS from each access point is
presented to the input layer. We have used a single hidden layer
and a two-node output that represents the and coordinates
of the location.

C. Experimental Setup and Results

To train the neural network, we measured the SS and SNR
from five access points located in a 40 20 m building, as il-
lustrated in Fig. 2. We took measurements on 154 different lo-
cations within the building. At each location and for each direc-
tion (north, south, east, and west), we recorded seven samples
of the signals from the access points to the mobile device, the
seven samples were averaged to obtain a total of 616 samples.
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Fig. 2. Map of the building where measurements were taken.

We trained the network with 432 of the 616 patterns and used
the remainder 184 to determine the estimation error of the dif-
ferent configurations of neural network that we trained.

We trained several neural networks using different configura-
tions and learning algorithms. In all cases, the output layer had
two neurons corresponding to the and coordinates we want
to estimate.

In the input layer, we experimented with three different alter-
native inputs: 1) five neurons with the SS from each of the five
access points; 2) five neurons with the SNR from each of the ac-
cess points; and 3) ten neurons with both the SS and SNR from
each of the access points. The best results were obtained with
the SNR, which is more stable than SS as has been reported [3].

We used a single hidden layer and performed experiments
with 4, 6, 8, and 16 neurons in this layer. The best results were
obtained with 16 nodes in the hidden layer. As activation func-
tion, we used the sigmoid function on the input and hidden
layers, and the identity function in the output layer.

We used backpropagation as the learning method to train the
neural network. Although backpropagation is the most popular
algorithm for supervised neural networks, it has a poor conver-
gence rate. There are a number of variations of the basic algo-
rithm that are based on other standard optimization techniques,
such as conjugate gradient and Newton methods [4]. We com-
pared eight different backpropagation variants, from which, the
most efficient was the conjugate gradient with Polak–Ribiére
updates. This algorithm performs a lineal search in each itera-
tion to find the learning coefficient in which the average error
decreases the most with respect to the previous iteration. More-
over, the conjugate gradient algorithm fulfills several conditions
that guarantee that an optimum learning coefficient was found.

To compare the different configurations and variants of the
learning algorithm, we used an euclidian error, measured as the
distance between the actual and estimated patterns in the test
set. The best results were obtained with a 5-16-2 configura-
tion, using the SNR as input, and the conjugate gradient with
Polak–Ribiére updates. For this case, we obtained an average
error of 2.0947 m. The cumulative distribution function for the
best configuration is displayed in Fig. 3. The graph shows the
percentage of patterns that fall within a given distance. It can be
seen that 80% of the patterns are within 3 m of their target.

Fig. 3. Cumulative distribution of the error estimated on the location of a
mobile device.

D. Implementation of the Location Estimation Module

The training of the location estimation methods was per-
formed using Mathlab and its Neural Network Toolbox.

The measurements for the training and test sets were taken
with a laptop computer with an Orinoco Silver 802.11b network
card. To collect the samples of the signal intensity from each ac-
cess point, we used the Orinoco Client Manager software v.2.9,
which communicates directly with the network card. The access
points used included one Apple Airport model and four Orinoco
AP-200. Afterwards, we tested our solution estimating the loca-
tion of the laptop while it moved using real-time readings of the
SNR to the access points.

We implemented the location estimation module in a hand-
held, our target device. The Windows API was used to read the
SNR from a Dell TrueMobile 802.11b card of a Dell Axim hand-
held with the Pocket PC 2003 operating system. To facilitate
the integration of this module within a location-aware hospital
system, the neural network was wrapped as a software agent as
described in the next section.

V. SUPPORTING LOCATION-AWARE HOSPITAL SERVICES

A. System’s Implementation

The location-aware hospital system was conceived as an
agent-based system that was developed with SALSA, a mid-
dleware that provides a set of abstract classes for implementing
autonomous agents that act on behalf of users, represent ser-
vices, or wrap a system’s functionality [18]. Agent technology
is a useful abstraction for the design of complex systems with
distinct and independent components by enabling the aggrega-
tion of different functionalities.

A SALSA agent contains several components: a protocol to
register the agent with an Agent Directory; an instant messaging
(IM) client through which users, users’ agents, and devices’
agents interact by sending extended markup language (XML)
messages; and finally, the subsystem that implements the
agent’s intelligence that includes components for perception,
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Fig. 4. Architecture of the location-aware hospital system.

reasoning, and action. The perception module gathers knowl-
edge through the IM client from the environment’s sensors,
other agents, or directly from users or services. The reasoning
subsystem governs the agent’s actions, including deciding
what to perceive next. The action component interacts with the
environment by sending messages using a predefined protocol.

As mentioned above, the location estimation component is
implemented as a SALSA agent. The trained neural network to
estimate the user’s location was wrapped in the reasoning com-
ponent of the location-estimation agent (LE-a). The perception
module reads the SNR from the access points and the action
component notifies the estimated location to the location-aware
application in the handheld.

Since the SS decays considerably from floor to floor, one esti-
mation agent is trained for each hospital floor. When the strength
of the signal from the access points in one floor goes below a cer-
tain threshold, a new estimation agent is loaded into the PDA.
This will correspond to the agent trained for the floor with the
access points that report higher SS.

The components of the LE-a interact to estimate the user’s
location, as describe next. The agent’s perception module in-
cludes a PassiveEntityToPerceive object, which reads
the SNR from the wireless network card, and then notifies it
to the PassivePerception object. When the SNR value
is changed, the PassivePerception object sends the new
value to the Reasoning component, which makes a new esti-
mation of the user’s location. This information is communicated
by the Acting component to the location-aware client. The lo-
cation-aware hospital application will map the coordinates
to an area identifier (bed number, room, etc.) and will commu-
nicate this new location to the rest of the system’s agents and
users trough its IM client.

Fig. 4 illustrates how the LE-a is integrated in the location-
aware hospital system. Besides the LE-a, the handheld computer
carried by physicians and nurses includes an application that
provides them with information relevant to their location, and
allows them to fill forms and communicate with other mem-
bers of the staff. The interface of the location-aware client is

based on the IM paradigm and requires only peripheral atten-
tion. Through this interface, users are notified of the availability
of other users and their location. This information is displayed
in the form of a list (as in traditional IM system) or in a map
showing the area surrounding the user (Fig. 4). The location-
aware client provides access to the HIS. Information considered
relevant to the user’s location and role is offered by default, but
users can consult additional information either by navigation or
querying the system.

The information received in the handheld is obtained from an
HIS that manages and stores the patient’s clinical records and
other data relevant to the hospital, such as what patients are in
what beds. An agent (HIS agent) acts as proxy of the HIS, it
provides access to, and monitors the state of, the information
contained in it. Rules are used to indicate what type of informa-
tion should be delivered to a user given its current location and
role. For instance, considering the scenario explained in Sec-
tion II, when Dr. Diaz stands in front of the patient, the HIS
agent perceives Dr. Diaz’ position through its IM client, and an-
alyzes the context information, such as the user’s role, and the
availability of the patient’s laboratory results, and then acts by
notifying these results to the doctor’s client. This agent runs as
a daemon on a computing device with connectivity to an agent
directory and the IM server.

Finally, the last component of the architecture is an IM server
that acts as an agent broker. Our implementation uses and ex-
tends the Jabber open-source IM server (www.jabber.org) and
its extensible messaging and presence protocol (currently an In-
ternet Engineering Task Force draft) to report the state of people
and agents and to handle the interaction among people, agents,
and devices through XML messages.

B. Sample Scenario

We illustrate the use of the location-aware hospital system
with the scenario presented in Section II.

Fig. 5 illustrates how the components of the system’s archi-
tecture interact for this scenario. Dr. Díaz begins his daily rou-
tine by visiting each one of his patients. While he moves around
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Fig. 5. Sequence diagram for the request of laboratory analysis.

the patient’s rooms, the context-aware client in his PDA com-
municates with the LE-a to constantly update his position. When
his location changes, the LE-a sends, through the IM server, the
doctor’s position to all users and agents who have him registered
in their rosters, such as the HIS agent. Then the IS agent veri-
fies if its contextual conditions match the new context, i.e., the
user’s role and location, in order to send him a message through
which he can directly retrieve the patient’s clinical record.

After consulting both the record and the patient, Dr. Diaz de-
cides to request a laboratory analysis by using the form illus-
trated in Fig. 6(a), which is customized for him based on his
identity (Dr. Diaz), role (physician), and current location (Bed
222). Once he selects the “Laboratory Study Request” option,
the HIS creates the laboratory form, which includes some of the
patient’s data such as his name and bed number, as shown in
Fig. 6(b). Dr. Diaz fills the laboratory form and sends it to the
HIS to be added to the patient’s clinical record.

The HIS will inform the chemist of the analysis to be per-
formed and the medical samples to be taken. Once the chemist
performs the analyses, he adds the results to the patient’s clin-
ical record.

The next time Dr. Diaz is near the patient, the HIS will send
him a message indicating that the laboratory results are avail-
able and offering to display them on his handheld, as shown in
Fig. 7(a). After analyzing these results, the doctor decides to fill

Fig. 6. Requesting a laboratory analysis for the patient.

a medical note requesting an increase in the doses of the pa-
tient’s medication [see Fig. 7(b)].

VI. RESULTS

Based on the room size and bed concentration of the hospital
we have used as our site study, we had set as target a maximum
error of 2 m in order to deliver location-aware information, such
as patient’s records, to the hospital’s staff. For the purpose of
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Fig. 7. (a) Physician receives the laboratory results and (b) as a result of his
diagnosis fills a medical form.

locating people within the hospital, a 4-m maximum error is
considered adequate, since within this range a person can be
reached visually or by calling her name.

The results we have obtained indicate a probability that we
would satisfy our criteria 92% of the time for locating people,
but only 50% of the time for the delivery of patient related infor-
mation. This would indicate that the location-estimation method
we have used is suitable for the first task, but not for the second.
However, these results are the errors from independent estima-
tions; they do not take into account the fact that people move
smoothly seldom exceeding a speed of 1.5 m/s when walking
in closed public spaces. When people move at speeds higher
than 1.5 m/s, they are normally in a hurry and a precise esti-
mation of their location may be of little importance for a loca-
tion-aware hospital system. In fact, for our purposes, hospital
staff will spend at least several seconds in the area of interest (a
patient’s bed, a laboratory, or an office) and, thus, a better esti-
mation of its location can be obtained.

We have modified our algorithm to include a simple criterion
that takes into account this fact. Of this, we make four read-
ings in one second of the SNR from each access point and esti-
mate the location for each of them independently. The resulting
estimation is computed from the average of the four estima-
tions. However, if one of the estimations is more than 1.5 m
away from the average, it is eliminated and the location is cal-
culated using the other three estimations. Using this criterion,
with the same data we were able to reduce the average estima-
tion error from 2.09 to 1.87 m. For this case, 96% of the esti-
mations fall within 4 m and 58% are within 2 m. This is how-
ever, just a simple strategy for estimating continuous movement.
Hidden Markov Models or algorithms for time series prediction,
including neural networks, could be used to improve location es-
timations. Furthermore, continuous location estimation can also
be used to determine the direction of the user being tracked,
which can be used to infer her current task or availability.

We have compared our results with the k-Nearest Neighbor
algorithm and obtained equivalent precision. Using the contin-
uous estimation criterion mentioned above, for instance, we ob-
tain an average error of 1.9 m versus the 1.87 we have obtained

with the use of neural networks. Neural networks, however,
offer the advantage of being less memory intensive, an impor-
tant feature given the limitations of PDAs. With the configura-
tion and data we have used, for instance, the nearest neighbor
approach will require the storage of 27 times more data than
neural networks. This is important not only in terms of storage,
but also for the transfer of this data through the wireless network
when a user moves to a new floor.

Another important issue raised by context-aware computing
is that of privacy. Our approach deals with this issue in two
fronts, from the technological and the social point of view. From
the technical side, location is estimated at the handheld device,
thus, this information is shared with other users and the HIS only
if, and with whom, the user whishes to do so. Additionally, at
the server side, the area can be configured in a way that prevents
from sharing the location of users in certain rooms. For instance,
it could be decided that the location of a subject will not be
shared if he is in the lounge or the bathroom.

From the social point of view, people who work in hospi-
tals are expected to have a certain degree of availability to their
peers, and in fact locating them through various ways, including
the use of speakers or sending text messages to their cellular
telephones, is common practice. The location-aware system we
are proposing does not seem to provide a threat to their privacy.

Security is also an important concern when dealing with hos-
pital information. The system authenticates PDA users requiring
them to login when they start the location-aware hospital system
and will only provide access to information relevant to their
work. This would not prevent someone from stealing a PDA and
accessing patient records if he knows the user’s login and pass-
word. However, there are commercial PDAs that incorporate fin-
gerprint scanners to identify its user; the use of these devices
would prevent intruders from accessing the hospital server.

VII. CONCLUSION

Hospitals are complex work environments where information
and people are distributed, thus requiring considerable coordi-
nation and communication among the professionals that work
in such settings. Electronic medical records are an important
step toward providing adequate access to clinical information.
However, the most precious resource is the attention of the med-
ical personnel. With adequate support to estimate the context of
work, context-aware systems can deliver information that is rel-
evant to the user’s location, identity, and/or role. In particular,
location is an important factor to establish the information that is
relevant to a given user and, thus, reduce the burden of locating
people or data, or even worse, making decisions without it.

We have presented a handheld-based HIS that can be used to
deliver information based on the location of medical staff. A lo-
cation estimation method, based on a backpropagation network,
is used by the system to locate the mobile device and the user
that carries it. Our results show that estimation errors are ade-
quate to locate people but higher than required to deliver rele-
vant patient information. Additional work is required to improve
the estimation by tracking the user over time rather than relying
only on individual samples.



RODRÍGUEZ et al.: LOCATION-AWARE ACCESS TO HOSPITAL INFORMATION AND SERVICES 455

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based lo-
cation and tracking system,” in IEEE INFOCOM 2000, Tel-Aviv, Israel,
2000.

[2] C. Bossen, “The parameters of common information spaces: the hetero-
geneity of cooperative work at a hospital ward,” in Proc. ACM Conf.
Computer-Supported Cooperative Work, New York, 2002, pp. 176–185.

[3] P. Castro, P. Chiu, T. Kremenek, and R. Muntz, “A probabilistic room
location service for wireless networked environments,” in Proc. 3th Int.
Conf. Ubiquitous Computing (UbiComp 2001, LNCS 2201), Atlanta,
GA, 2001, pp. 18–34.

[4] C. Charalambous, “Conjugate gradient algorithm for efficient training
of artificial neural networks,” in Proc. Inst. Elect. Eng., Part G, vol. 139,
1992, pp. 301–310.

[5] K. Cheverst, N. Davies, K. Mitchell, and A. Friday, “Experiences of
developing and deploying a context-aware tourist guide: The GUIDE
project,” in Proc. Mobile Computing and Networking, 2000, pp. 20–31.

[6] T. Darrell et al., “Integrated person tracking using stereo, color, and pat-
tern detection,” in Proc. Conf. Computer Vision and Pattern Recognition,
Los Alamitos, CA, 1998, pp. 601–608.

[7] F. D. Davis and V. Venkatesh, “Measuring user acceptance of emerging
information technologies: An assessment of possible method biases,” in
Proc. 28th Hawaii Int. Conf. System Sciences, 1995, pp. 729–736.

[8] A. K. Dey, “Understanding and using context,” in Personal and Ubiq-
uitous Computing. London, U.K.: Springer-Verlag, 2001, vol. 5, pp.
4–7.

[9] A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday, and K. Palfreyman,
“Exploiting space and location as a design framework for interactive
mobile systems,” ACM Trans. Compter-Human Interaction, vol. 7, no.
3, pp. 321–385, Sept. 2000.

[10] S. Fischer, T. Stewart, S. Mehta, R. Wax, and S. Lapinsky, “Handheld
computing in medicine,” J. Amer. Med. Inform. Assoc., vol. 10, no. 2,
pp. 139–149, Mar./Apr. 2003.

[11] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Boriello, “Bayesian
filtering for location estimation,” IEEE Pervasive Computing, vol. 2, pp.
24–33, July/Sept. 2003.

[12] “Harris Interactive. Physicians’ use of handheld personal computing
devices increases from 15% in 1999 to 26% in 2001,” Harris Interactive
Health Care News, vol. 1, no. 25, Aug. 15, 2001.

[13] M. Hazas and A. Ward, “A novel broadband ultrasonic location system,”
in Proc. 4th Int. Conf. Ubiquitous Computing (UbiComp 2002), Gote-
borg, Sweden, 2002, pp. 264–280.

[14] A. Lapinsky, J. Weshler, S. Mehta, M. Varkul, D. Hallett, and T. Stewart,
“Handheld computers in critical care,” Critical Care, vol. 5, no. 4, pp.
227–231, 2001.

[15] N. Marmasse and C. Shmandt, “Safe & Sound—A wireless leash,” in
Proc. CHI 2003 Extended Abstracts on Human Factors in Computing
Systems, pp. 726–727.

[16] M. Muñoz, M. Rodriguez, J. Favela, V. M. Gonzalez, and A. I. Mar-
tinez-Garcia, “Context-aware mobile communication in hospitals,”
IEEE Computer, vol. 36, pp. 60–67, Sept. 2003.

[17] R. J. Orr and G. D. Abowd, “The smart floor: A mechanism for natural
user identification and tracking,” in Proc. 2000 Conf. Human Factors in
Computing Systems (CHI 2000), New York, 2000.

[18] M. Rodríguez and J. Favela, “Autonomous agents to support interop-
erability and physical integration in pervasive environments,” in Proc.
Atlantic Web Intelligence Conf. (AWIC 2003), 2003, pp. 278–287.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructures of Cognition, Vol. 1:
Foundations, D. E. Rumelhart and J. L. McCelland, Eds. Cambridge,
MA: MIT Press, 1986.

[20] B. N. Schilit and M. M. Theimer, “Disseminating active map informa-
tion to mobile hosts,” IEEE Network, vol. 8, no. 5, pp. 22–32, Sept./Oct.
1994.

[21] J. Scott and M. Hazas, “User-friendly surveying techniques for location-
aware systems,” in Proc. Ubicomp 2003, Berlin Heidelberg, 2003, pp.
44–53.

[22] R. Want, A. Hoopper, V. Falcao, and J. Gibbons, “The active badge lo-
cation system,” ACM Trans. Inform. Syst., vol. 10, no. 1, pp. 91–102,
1992.

Marcela D. Rodríguez received the M.Sc. degree in
computer science from CICESE, Ensenada, Mexico,
and the B.Sc. in computer engineering from the
Autonomous University of Baja California (UABC),
Mexicali, Mexico. She is working toward the Ph.D.
degree in computer science at CICESE.

She is a Professor in Computer Engineering at
the UABC. Her research interests include ubiquitous
computing, autonomous agents, and CSCW.

She is a Student Member of the Association for
Computing Machinery.

Jesus Favela received the B.S. degree from the Na-
tional Autonomous University of Mexico (UNAM)
and the M.Sc. and Ph.D. degrees from the Massachu-
setts Institute of Technology, Cambridge, MA.

He is a Professor of Computer Science at CICESE,
Ensenada, Mexico, where he leads the Collaborative
Systems Laboratory and heads the Department of
Computer Science. His research interests include
CSCW, ubiquitous computing, and information
retrieval.

He is a Member of the IEEE Computer Society,
Association for Computing Machinery, and the current President of the So-
ciedad Mexicana de Ciencia de la Computacion (SMCC).

Edgar A. Martínez received the B.Sc. degree in
Computer Engineering from the Tecnológica de la
Mixteca University, Oaxaca, México, in 2004.

During the summers of 2002 and 2003, he was a
Research Assistant in the Department of Computer
Science, CICESE. His research interests include
wireless communications, neural networks, and
context-aware computing.

Miguel A. Muñoz received the B.Sc. degree in
computer engineering from the Instituto Tecnológico
de Zacatecas (ITZ). He received the M.Sc. degree
in computer science at CICESE’s Research Center,
Ensenada, Mexico.

His research interests are in context-aware com-
puting, ubiquitous computing, and CSCW.


	toc
	Location-Aware Access to Hospital Information and Services
	Marcela D. Rodríguez, Jesus Favela, Edgar A. Martínez, and Migue
	I. I NTRODUCTION
	II. R EQUIREMENTS FOR L OCATION -A WARE H OSPITAL S ERVICES
	III. C ONTEXT -A WARE C OMPUTING
	IV. E STIMATING U SER L OCATION IN WLANs
	A. Location Estimation Methods


	Fig.€1. Simplified architecture of the neural network used to es
	B. Neural Networks for Location Estimation
	C. Experimental Setup and Results

	Fig.€2. Map of the building where measurements were taken.
	Fig.€3. Cumulative distribution of the error estimated on the lo
	D. Implementation of the Location Estimation Module
	V. S UPPORTING L OCATION -A WARE H OSPITAL S ERVICES
	A. System's Implementation


	Fig.€4. Architecture of the location-aware hospital system.
	B. Sample Scenario

	Fig.€5. Sequence diagram for the request of laboratory analysis.
	Fig.€6. Requesting a laboratory analysis for the patient.
	VI. R ESULTS

	Fig.€7. (a) Physician receives the laboratory results and (b) as
	VII. C ONCLUSION
	P. Bahl and V. N. Padmanabhan, RADAR: an in-building RF-based lo
	C. Bossen, The parameters of common information spaces: the hete
	P. Castro, P. Chiu, T. Kremenek, and R. Muntz, A probabilistic r
	C. Charalambous, Conjugate gradient algorithm for efficient trai
	K. Cheverst, N. Davies, K. Mitchell, and A. Friday, Experiences 
	T. Darrell et al., Integrated person tracking using stereo, colo
	F. D. Davis and V. Venkatesh, Measuring user acceptance of emerg
	A. K. Dey, Understanding and using context, in Personal and Ubiq
	A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday, and K. Palfr
	S. Fischer, T. Stewart, S. Mehta, R. Wax, and S. Lapinsky, Handh
	D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Boriello, Bayes

	Harris Interactive. Physicians' use of handheld personal computi
	M. Hazas and A. Ward, A novel broadband ultrasonic location syst
	A. Lapinsky, J. Weshler, S. Mehta, M. Varkul, D. Hallett, and T.
	N. Marmasse and C. Shmandt, Safe & Sound A wireless leash, in Pr
	M. Muñoz, M. Rodriguez, J. Favela, V. M. Gonzalez, and A. I. Mar
	R. J. Orr and G. D. Abowd, The smart floor: A mechanism for natu
	M. Rodríguez and J. Favela, Autonomous agents to support interop
	D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning inte
	B. N. Schilit and M. M. Theimer, Disseminating active map inform
	J. Scott and M. Hazas, User-friendly surveying techniques for lo
	R. Want, A. Hoopper, V. Falcao, and J. Gibbons, The active badge



