Universidade Federal de Pernambuco (UFPE) Centro de Informática (CIn) Graduação em Ciência da Computação e Engenharia da Computação

> Informática Teórica (IF689) 2º Semestre de 2009 3ª Prova 27 de Novembro de 2009

1. (1,5) (Máquinas de Turing)

Para cada um dos enunciados abaixo, diga se é Verdadeiro ou Falso. (Uma resposta em branco vale 30% do valor da resposta certa, caso pelo menos 30% dos itens da questão tenha sido respondido.)

- (i) Se o complemento de uma linguagem L não é reconhecível, então L não é decidível.
- \bigvee (ii) Se L_1 e L_2 são decidíveis, então $L_1 \circ L_2$ também é decidível.
- \sqsubset (iii) Se a linguagem L não for decidível, então não existe um enumerador para L.

2. (2,0) (Decidibilidade)

Para cada um dos enunciados abaixo, diga se é Verdadeiro ou Falso. (Uma resposta em branco vale 30% do valor da resposta certa, caso pelo menos 30% dos itens da questão tenha sido respondido.)

- \bigvee (i) O problema de se determinar, dado um AFD A, se L(A) contém alguma cadeia que começa com 0 e termina com 1 'e decidível.
- \bigvee (ii) O problema de se determinar, dado um AFD A, se L(A) é infinita é decidível.
- \checkmark (iii) O problema de se determinar, dados uma MT M, uma cadeia w, e um estado q de M, se, quando M roda com w como entrada, M passa pelo estado q é inde-
- (iv) O problema de se determinar se uma GLC G com $\Sigma = \{0,1\}$ gera alguma cadeia do tipo 1* é indecidível. (v) A linguagem $L=\{\langle G,x\rangle\mid G$ é uma GLC que gera alguma cadeia w da qual x é uma subcadeia} é reconheível.
- (vi) A linguagem $L = \{\langle M \rangle \mid M \text{ rejeita pelo menos duas cadeias de comprimento}$ par} é recursivamente enumerável.

3. (2,5) (Redutibilidade)

Para cada um dos enunciados abaixo, diga se é Verdadeiro ou Falso. (Uma resposta em branco vale 30% do valor da resposta certa, caso pelo menos 30% dos itens da questão tenha sido respondido.)

(i) O problema \overline{REG} de se determinar, dada uma MT M, se L(M) regular, é indecidível porque o problema da aceitação para MTs é redutível por mapeamento a REG.

(ii) O problema de se determinar se duas GLCs são equivalentes é decidível. \bigvee (iii) Se $A \leq_{\mathbf{m}} B$ e B for Turing-reconhecível, então A é Turing-reconhecível. \bigvee (iv) Se $A \leq_m B$ e A não for Turing-reconhecível, então B não é Turing-reconhecível. (v) A linguagem $L = \{\langle M \rangle \mid M \text{ é uma MT e } L(M) = \{\langle M \rangle \} \}$, não é Turing-reconhecível mas é co reconhecível mas é co-Turing-reconhecível. (vi) O problema da correspondência de Post é indecidível porque ele é redutível por mapeamento ao problema da aceitação de palavras por máquinas de Turing. 4. (2,5) (Complexidade de Tempo) Para cada um dos enunciados abaixo, diga se é Verdadeiro, Falso ou Indefinido. (Uma resposta em branco vale 20% do valor da resposta certa, caso pelo menos 30% dos itens da questão tenha sido respondido.) (i) A classe NP dos problemas verificáveis em tempo polinomial é fechada sob complementação. (ii) $NP \cap co-NP = \emptyset$. (iii) Se $A \leq_{\mathbf{P}} B$ e $A \in \mathbf{P}$, então $B \in \mathbf{P}$. \bigvee (iv) Se A for NP-completa e $A \leq_{\mathbb{P}} B$ tal que $B \in \mathbb{NP}$, então B é NP-completa. (v) Se o problema do isomorfismo de grafos for solúvel em tempo polinomial, então P = NP. (vi) A prova do Teorema de Cook-Levin mostra que SAT é NP-completo construindo, para uma $A \in NP$ qualquer, uma fórmula booleana a partir da MT não-determística de tempo polinomial que decide A, e de uma palavra de entrada w, mas com custo que depende somente de w. 5. (1,5) (Complexidade de Espaço) Para cada um dos enunciados abaixo, diga se é Verdadeiro, Falso ou Indefinido. (Uma resposta em branco vale 20% do valor da resposta certa, caso pelo menos 20% dos itens da questão tenha sido respondido.) F (i) PSPACE C NPSPACE. (ii) Toda linguagem decidível em espaço f(n) por uma MT não-determinística pode ser decidida por uma MT determinística de espaço f(n). (iii) NLOGSPACE ≠ coNLOGSPACE. (iv) O teorema de Savitch diz que toda máquina de Turing não-determinística de espaço polinomial pode ser simulada por uma máquina de Turing determística de tempo polinomial. (v) Seja $L = \{\langle G, s, t \rangle \mid G \text{ \'e um grafo direcionado, tal que existe um caminho}\}$ entre s e t}. Então L é NL-completa. (vi) Classes de complexidade de espaço não-determinístico são fechadas sob complementação.