Jess Tutorial

Maarten Menken <mrmenken@cs.vu.nl>
Vrije Universiteit, Amsterdam, The Netherlands

December 24, 2002

Contents

1 Facts 7
1.1 Introduction. 7
1.2 The Beginning And The End 7
1.3 Making A List 8
1.4 And Checking It Twice 8
1.5 Clearing Up The Facts 9
1.6 Fields 10
1.7 Retract That Fact 11

2 Rules 13
2.1 Making Good Rules Lo 13
22 TheAgenda L 15
2.3 Write ToMe 16
2.4 Being Efficient o oo o 17
2.5 Other Features 17

3 Adding Details 19
31 StopAnd Go 19
32 Take A Walk 19
3.3 A Question Of Strategy 20
3.4 Deffacts 21
3.5 Debugging 22

4 Variables 23
4.1 Let’s Get Variable 23
4.2 BeAssertive 24
4.3 What The Duck Said 24
4.4 The Happy Bachelor 25
4.5 TIt’snot Important L. 27
4.6 Going Wild 28
4.7 Bound Variables o 30
4.8 The Lucky Duck 30

5 Deftemplates 33
5.1 Mr. Wonderful, 33
52 Bye-Bye 35
53 Ain’t No Strings On Me 36
54 What'sIn AName L o 37

Functions

6.1 Doing Your Own Thing

Modules

7.1 Introduction
7.2 Defining Constructs In Modules
7.3 Modules, Scope And Name Resolution
7.4 Module Focus And Execution Control
7.4.1 The Auto-Focus Declaration
7.4.2 Returning From A Rule Right-Hand-Side

Fuzzy Logic

8.1 Introduction
8.2 Fuzziness

8.3 Example

8.4 Example Results

CONTENTS

Introduction

This article is an introductory tutorial on the basic features of Jess. It is not
intended to be a comprehensive discussion of the entire tool. Prerequisites are
that you have a basic knowledge of expert systems and programming in a high-
level language such as Java or C.

It should be emphasized that this text is merely a compilation of the book
and web pages listed in the bibliography. Most of the text is copied, adapting
the examples and source code to Jess.

What Is Jess?

Jess is an acronym for Java Expert System Shell. It is a rule engine and script-
ing environment written entirely in Sun’s Java language by Ernest Friedman-Hill
at Sandia National Laboratories in Livermore, Canada. Jess was originally in-
spired by the CLIPS expert system shell, but has grown into a complete, distinct
Java-influenced environment of its own. Using Jess, you can build Java applets
and applications that have the capacity to “reason” using knowledge you sup-
ply in the form of declarative rules. Like CLIPS, Jess has a Lisp-like syntax,
which stands either for “List Processing” or “Lots of Irritating, Superfluous
Parentheses,” depending on who you ask.

Jess is a tool for building a type of intelligent software called expert systems.
An expert system is a set of rules that can be repeatedly applied to a collection
of facts about the world. It is specifically intended to model human expertise or
knowledge. Rules that apply are fired, or executed. Jess uses a special algorithm
called Rete to match the rules to the facts.

There are three ways to represent knowledge in Jess:

e Rules, which are primarily intended for heuristic knowledge based on ex-
perience.

e Functions, which are primarily intended for procedural knowledge.

o Object-oriented programming, also primarily intended for procedural knowl-
edge. The five generally accepted features of object-oriented programming
are supported: classes, message-handlers, abstraction, encapsulation, in-
heritance, polymorphism. Rules may pattern match on objects and facts.

You can develop software using only rules, only objects, or a mixture of
objects and rules.

CONTENTS

Chapter 1

Facts

This chapter introduces the basic concepts of an expert system. You'll see how to
insert and remove facts in Jess.

1.1 Introduction

Jess is called an expert system tool because it is a complete environment for
developing expert systems which includes features such as an integrated editor
and a debugging tool. The word shell is reserved for that portion of Jess which
performs inferences or reasoning. The Jess shell provides the basic elements of
an expert system:

e fact-list and instance-list: global memory for data
e knowledge-base: contains all the rules, the rule-base

e inference engine: controls overall execution of rules

A program written in Jess may consist of rules, facts and objects. The
inference engine decides which rules should be executed and when. A rule-
based expert system written in Jess is a data-driven program where the facts,
and objects if desired, are the data that stimulate execution via the inference
engine.

This is one example of how Jess differs from procedural languages such as
Java and C. In procedural languages, execution can proceed without data. That
is, the statements are sufficient in those languages to cause execution. For
example, a statement such as PRINT 2 + 2 could be immediately executed in
BASIC. This is a complete statement that does not require any additional data
to cause its execution. However, in Jess, data are required to cause the execution
of rules.

1.2 The Beginning And The End

To begin Jess, just enter the appropriate run command for your system. You
should see the Jess prompt appear as follows:

7

8 CHAPTER 1. FACTS

Jess, the Java Expert System Shell
Copyright (C) 1998 E.J. Friedman Hill and the Sandia Corporation
Jess Version 6.0 12/7/2001

Jess>

At this point, you can start entering commands directly into Jess. The mode
in which you are entering direct commands is called the top-level.
The normal mode of leaving Jess is with the exit command. Just type

(exit)

in response to the Jess prompt and press the carriage return key.

1.3 Making A List

As with other programming languages, Jess recognizes certain keywords. For
example, if you want to put data in the fact-list, you can use the assert com-
mand.

As an example of assert, enter the following right after the Jess prompt as
shown:

Jess> (assert (duck))

Here the assert command takes (duck) as its argument. You will see the
response

<Fact-0>

which indicates Jess has stored the (duck) fact in the fact-list and given it
the identifier 0. The angle-brackets are used as a delimiter in Jess to surround
the name of an item. Jess will automatically name facts using a sequentially
increasing number and list the highest fact-index when one or more facts is
asserted. Notice that the assert command and its (duck) argument are sur-
rounded by parentheses. Like many other expert system languages, Jess has
a LISP-like syntax which uses parentheses as delimiters. Although Jess is not
written in LISP, the style of LISP has influenced the development of Jess.

1.4 And Checking It Twice

Suppose you want to see what’s in the fact-list. The keyboard command to
see facts is facts. Enter (facts) in response to the Jess prompt and Jess will
respond with a list of facts in the fact-list. Be sure to put parentheses around
the command or Jess will not accept it. The result of the facts command in
this example should be

Jess> (facts)

-0 (MAIN: :duck)

For a total of 1 facts.
Jess>

1.5. CLEARING UP THE FACTS 9

The term £-0 is the fact identifier assigned to the fact by Jess. Every
fact inserted into the fact-list is assigned a unique fact identifier starting with
the letter £ and followed by an integer called the fact-index. On starting up
Jess, and after certain commands such as clear and reset (to be discussed
in more detail later), the fact-index will be set to zero, and then incremented
by one as each new fact is asserted. The reset command will also insert a
fact (initial-fact) as £-0. This fact is often used for convenience to initially
activate rules. Shown following is what happens when a reset is done first.

Jess> (reset)

TRUE

Jess> (facts)

£-0 (MAIN::initial-fact)
For a total of 1 facts.
Jess> (assert (duck))
<Fact-1>

Jess> (facts)

f-0 (MAIN::initial-fact)
f-1 (MAIN: :duck)

For a total of 2 facts.
Jess>

Notice that the fact-index is <Fact-1> after the (duck) fact is asserted
because there are now two facts in working memory and the duck has index 1.

Facts may be removed or retracted. When a fact is retracted, the other facts
do not have their indices changed, and so there may be “missing” fact-indices.

Jess is said to be case-sensitive because it distinguishes between uppercase
and lowercase letters. For example, assert the facts (duck) and (Duck) and
then issue a facts command. You'll see that Jess allows you to assert (duck)
and (Duck) as different facts because Jess is case-sensitive.

1.5 Clearing Up The Facts

The clear command removes all facts from memory, as shown by the following.

Jess> (facts)

£-0 (MAIN::initial-fact)
f-1 (MAIN: :duck)

For a total of 2 facts.
Jess> (clear)

TRUE

Jess> (facts)

For a total of 0 facts.
Jess>

The clear command essentially restores Jess to its original startup state. It
clears the memory of Jess and resets the fact-identifier to zero. Besides removing
all the facts, clear also removes all the rules, as you’ll see in the next chapter.

10 CHAPTER 1. FACTS

1.6 Fields

A fact such as (duck) is said to consist of a single field. A field is a placeholder
(named or unnamed) that may have a value associated with it. Named place-
holders are only used with deftemplates, described in more detail in Chapter 5.
The (duck) fact has a single, unnamed placeholder for the value duck. This is
an example of a single-field fact.

The order of unnamed fields is significant. For example, if a fact was defined

(Brian duck)
and interpreted by a rule as the hunter Brian shot a duck, then the fact
(duck Brian)

would mean that the hunter duck shot a Brian. In contrast, the order of
named fields is not significant, as you’ll see later with deftemplate.

Actually, it is good software engineering to start the fact with a relation that
describes the fields. A better fact would be

(hunter-game Brian duck)

to imply that the first field is the hunter and the second field is the game.

A few definitions are now necessary. A list is a group of items with no implied
order. Saying that a list is ordered means that the position in the list is signifi-
cant. A multifield is a sequence of fields, each of which may have a value. The ex-
amples of (Brian duck), (duck Brian) and (hunter-game Brian duck) are
multifield facts.

There are a number of different types of fields available: INTEGER, LONG,
FLOAT, ATOM, STRING, LIST and EXTERNAL_ADDRESS. The type of each field is
determined by the type of value stored in the field. In an unnamed field, the
type is determined implicitly by what type you put in the field. In deftemplates,
you can explicitly declare the type of value that a field can contain. The use of
explicit types enforces the concepts of software engineering, which is a discipline
of programming to produce quality software.

A fact consists of one or more fields enclosed in matching left and right
parentheses. A fact may be ordered or unordered. All the examples you've
seen so far are ordered facts because the order of fields makes a difference. For
example, notice that Jess considers these as separate facts although the same
values 1, 2, and 3 are used in each.

f-0 (MAIN::coordinates 1 2 3)
f-1 (MAIN::coordinates 1 3 2)

Ordered facts must use field position to define data. As an example, the
ordered fact (Brian duck) has two fields and so does (duck Brian). However,
these are considered as two separate facts by Jess because the order of field values
is different. In contrast, the fact (Brian-duck) has only one field because of the
- concatenating the two values. deftemplate facts, described in more detail
later, are unordered because they use named fields to define data. Multiple
fields normally are separated by white space consisting of one or more spaces,
tabs, carriage returns, or linefeeds.

1.7. RETRACT THAT FACT 11

The following example is a more realistic case in which carriage returns are
used to improve the readability of a list. To see this, assert the following fact
where carriage returns and spaces are used to put fields at appropriate places
on different lines.

Jess> (clear)
TRUE
Jess> (assert (grocery-list
ice—cream
cookies
candy
fudge-sauce))
<Fact-0>
Jess> (facts)
£-0 (MAIN::grocery-list ice-cream cookies candy fudge-sauce)
For a total of 1 facts.
Jess>

As you can see, Jess replaced the carriage returns and tabs with single spaces.

It is good rule-based programming style to use the first field of a fact to de-
scribe the relationship of the following fields. When used this way, the first field
is called a relation. The remaining fields of the fact are used for specific values.
An example is (grocery-list ice-cream cookies candy fudge-sauce).

1.7 Retract That Fact

Now that you know how to put facts into the fact-list, it’s time to learn how to
remove them. Removing facts from the fact-list is called retraction and is done
with the retract command. To retract a fact, you must specify the fact-index
of the fact as the argument of retract. For example, set up your fact-list as
follows.

Jess> (assert (animal-is duck))

<Fact-0>

Jess> (assert (animal-sound quack))
<Fact-1>

Jess> (assert (The duck says "Quack."))
<Fact-2>

Jess> (facts)

£-0 (MAIN::animal-is duck)

f-1 (MAIN::animal-sound quack)

f-2 (MAIN::The duck says "Quack.")
For a total of 3 facts.

Jess>

To retract a fact, you must specify the fact-index. To remove the last fact
with index £-2, enter the retract command and then check your facts as follows.

Jess> (retract 2)
TRUE

12

Jess> (facts)

-0 (MAIN::animal-is duck)

f-1 (MAIN::animal-sound quack)
For a total of 2 facts.

Jess>

CHAPTER 1. FACTS

Chapter 2

Rules

In the previous chapter, you learned about facts. Now you'll see how the rules of
an expert system utilize facts in making a program execute.

2.1 Making Good Rules

To accomplish useful work, an expert system must have rules as well as facts.
Since you’ve seen how facts are asserted and retracted, it’s time to see how rules
work. A rule is similar to an IF-THEN statement in a procedural language like
Java or C. An IF-THEN rule can be expressed in a mixture of natural language
and computer language as follows:

IF certain conditions are true
THEN execute the following actions

The pseudocode for a rule about duck sounds might be

IF the animal is a duck
THEN the sound made is quack

The following is a fact, and a rule named duck-sound which is the pseu-
docode above expressed in Jess syntax. The name of the rule follows immedi-
ately after the keyword defrule.

Jess> (clear)

TRUE

Jess> (assert (animal-is duck))

<Fact-0>

Jess> (defrule duck-sound
(animal-is duck)

=>

(assert (sound-is quack)))

TRUE

Jess>

If you type in the rule correctly as shown, you should see the Jess prompt
reappear. Otherwise, you’ll see an error message. If you get an error message,

13

14 CHAPTER 2. RULES

it is likely that you misspelled a keyword or left out a parenthesis. Remember,
the number of left and right parentheses always must match in a statement.
The same rule is shown following with comments added to match the parts
of the rule. Also shown is the optional rule header comment in quotes,
"Here comes the quack". There can be only one rule-header comment and it
must be placed after the rule name and before the first pattern. Jess tries to
match the pattern of the rule against facts. White space consisting of spaces,
tabs, and carriage returns may be used to separate the elements of a rule to
improve readability. Other comments begin with a semicolon and continue until
the carriage return key is pressed to terminate a line. Comments are ignored
by Jess.

(defrule duck-sound

"Here comes the quack" ; rule header
(animal-is duck) ; pattern
=> ; THEN arrow

(assert (sound-is quack)) ; action

Only one rule name can exist at one time in Jess. Entering the same rule
name, in this case duck-sound, will replace any existing rule with that name.
That is, while there can be many rules in Jess, there can be only one rule which
is named duck-sound. This is analogous to other programming languages in
which only one procedure name can be used to uniquely identify a procedure.

The general syntax of a rule is shown following.

(defrule rule-name
"optional comment"

(pattern-1) ; left-hand side (LHS) of the rule
(pattern-2) ; consisting of elements before the "=>"

(pattern-n)

=>
(action-1) ; right-hand side (RHS) of the rule
(action-2) ; consisting of elements after the "=>"

(action-m)
) ; the last ")" balances the opening "(" to
; the left of "defrule". Be sure all your
; parentheses balance or you will get
; error messages.

The entire rule must be surrounded by parentheses. Each of the rule patterns
and actions must be surrounded by parentheses. An action is actually a function
which typically has no return value, but performs some useful action, such as an
assert or retract. For example, an action might be (assert (duck)). Here
the function name is assert and its argument is duck. Notice that we don’t
want any return value such as a number. Instead, we want the fact (duck)
to be asserted. A function in Jess is a piece of executable code identified by a

2.2. THE AGENDA 15

specific name, which returns a useful value or performs a useful side-effect, such
as printout.

A rule often has multiple patterns and actions. Zero or more patterns may
be written after the rule header. Each pattern consists of one or more fields. In
the duck rule, the pattern is (animal-is duck), where the fields are animal-is
and duck. Jess attempts to match the patterns of rules against facts in the fact-
list. If all the patterns of a rule match facts, the rule is activated and put on the
agenda. The agenda is a collection of activations which are those rules which
match pattern entities. Zero or more activations may be on the agenda.

The symbol => that follows the patterns in a rule is called an arrow. The
arrow represents the beginning of the THEN part of an IF-THEN rule (and may
be read as “implies”).

The last part of a rule is the list of zero or more actions that will be exe-
cuted when the rule fires. In our example, the one action is to assert the fact
(sound-is quack). The term fires means that Jess has selected a certain rule
for execution from the agenda.

A program will cease execution when no activations are on the agenda. When
multiple activations are on the agenda, Jess automatically determines which
activation is appropriate to fire. Jess orders the activations on the agenda in
terms of increasing priority or salience.

2.2 The Agenda

Jess always executes the actions on the right-hand side of the highest priority
rule on the agenda. This rule is then removed from the agenda and the actions
of the new highest salience rule is executed. This process continues until there
are no more activations or a command to stop is encountered.

You can check what’s on the agenda with the agenda command. For exam-

ple,

Jess> (agenda)

[Activation: MAIN::duck f-0 ; time=2 ; salience=0]
For a total of 1 activatioms.

Jess>

£-0 is the fact-identifier of the fact, (animal-is duck), which matches the
activation. If the salience of a rule is not declared explicitly, Jess assigns it the
default value of zero.

If there is only one rule on the agenda, that rule will fire. Since the left-hand
side pattern of the duck-sound rule is

(animal-is duck)

this pattern will be satisfied by the fact (animal-is duck) and so the
duck-sound rule should fire.

Each field of the pattern is said to be a literal constraint. The term literal
means having a constant value, as opposed to a variable whose value is expected
to change. In this case, the literals are animal-is and duck.

To make a program run, just enter the run command. Type (run) and press
the carriage return key. Then do a (facts) to check that the fact was asserted
by the rule.

16 CHAPTER 2. RULES

Jess> (run)

1

Jess> (facts)

-0 (MAIN::animal-is duck)
f-1 (MAIN::sound-is quack)
For a total of 2 facts.
Jess>

An interesting question may occur to you at this time. What if you (run)
again? There is a rule and a fact which satisfies the rule, so the rule should
fire. However, if you try this and (run) again, you'll see that the rule won’t
fire. This may be somewhat frustrating. A rule is activated if its patterns are
matched by

e a brand new pattern entity that did not exist before or,

e a pattern entity that did exist before but was retracted and reasserted,
i.e., a “clone” of the old pattern entity, and thus now a new pattern entity.

The rule, and indices of the matching patterns, is the activation. If either
the rule or the pattern entity, or both change, the activation is removed. An
activation may also be removed by a command or an action of another rule that
fired before and removed the conditions necessary for activation.

The inference engine sorts the activations according to their salience. This
sorting process is called conflict resolution because it eliminates the conflict of
deciding which rule should fire next. Jess executes the right-hand side of the
rule with the highest salience on the agenda, and removes the activation.

2.3 Write To Me

Besides asserting facts in the right-hand side of rules, you also can print out in-
formation using the printout function. Jess also has a carriage return/linefeed
keyword called crlf which is very useful in improving the appearance of output
by formatting it on different lines. As an example,

Jess> (defrule duck-print
(animal-is duck)
=>
(printout t "Quack!" crlf) ; be sure to type in the "t"
)
TRUE
Jess> (run)
Quack!
1
Jess>

The output is the text within the double quotes. Be sure to type the letter
t following the printout command. This tells Jess to send the output to the
standard output device of your computer. Generally, the standard output device
is your terminal (hence the letter t after printout.) However, this may be
redefined so that the standard output device is some other device, such as a
modem or disk.

2.4. BEING EFFICIENT 17

2.4 Being Efficient

Jess is a rule-based language that uses a very efficient pattern-matching algo-
rithm called the Rete Algorithm, devised by Charles Forgy of Carnegie-Mellon
University for his OPS shell. The term rete is Latin for net, and describes the
software architecture of the pattern-matching process.

It is very difficult to give precise rules that will always improve the efficiency
of a program running under the Rete Algorithm. However, the following should
be taken as general guidelines that may help:

1. Put the most specific patterns in a rule first. Patterns with unbound
variables and wildcards should be lower down in the list of rule patterns.
A control fact should be put first in the patterns.

2. Patterns with fewer matching facts should go first to minimize partial
matches.

3. Patterns that are often retracted and asserted, volatile patterns, should be
put last in the list of patterns.

As you can see, these guidelines are potentially contradictory. A non-specific
pattern may have few matches (see guidelines 1 and 2). Where should it go?
The overall guideline is to minimize changes of the partial matches from one
cycle of the inference engine to the next. This may require much effort by the
programmer in watching partial matches. An alternative solution is simply to
buy a faster computer, or an accelerator board. This is becoming more attractive
since the price of hardware always goes down while the price of human labor
always goes up. Because Jess is designed for portability, any code developed on
one machine should work on another.

2.5 Other Features

The declare (salience) command provides explicit control over which rules
will be put on the agenda. You must be careful in using this feature too freely
lest your program become too controlled.

The batch command allows you to execute commands from a file as if they
were typed in at the shell. By convention, the extension clp is used for files
containing Jess code. For example, if you want to load the code from the file
hello.clp, use the following command.

Jess> (batch hello.clp)
TRUE

Jess> (reset)

TRUE

Jess> (run)

Hello, world!

1

Jess>

18

CHAPTER 2. RULES

Chapter 3

Adding Details

In the first two chapters, you learned the fundamentals of Jess. Now you will see
how to build on that foundation to create more powerful programs.

3.1 Stop And Go

Until now, you’ve only seen the simplest type of program consisting of just one
rule. However, expert systems consisting of only one rule are not very useful.
Practical expert systems may consist of hundreds or thousands of rules. Let’s
now take a look at an application requiring multiple rules.

Suppose you wanted to write an expert system to determine how a mobile
robot should respond to a traffic light. It is best to write this type of problem
using multiple rules. For example, the rules for the red and green light situations
can be written as follows.

(defrule red-light
(light red)
=>
(printout t "Stop" crlf)

(defrule green-light
(light green)
=>
(printout t "Go" crlf)

After the rules have been entered into Jess, assert a fact (1ight red) and
run. You’ll see Stop printed. Now assert a (1ight green) fact and run. You
should see Go printed.

3.2 Take A Walk

If you think about it, other possibilities beside the simple red, green, and yellow
cases exist. Some traffic lights also have a green arrow for protected left turns.

19

20 CHAPTER 3. ADDING DETAILS

Some have a hand that lights up to indicate whether a person can walk or not.
Some have signs that say walk or don’t walk. So depending on whether our
robot is walking or driving, it may have to pay attention to different signs.

The information about walking or driving must be asserted in addition to
information about the status of the light. Rules can be made to cover these
conditions, but they must have more than one pattern. For example, suppose
we want a rule to fire if the robot is walking and if the walk-sign says walk. A
rule could be written as follows:

(defrule take-a-walk
(status walking)
(walk-sign walk)

=>
(printout t "Go" crlf)

The above rule has two patterns. Both patterns must be satisfied by facts in
the fact-list for the rule to fire. To see how this works, enter the rule and then
assert the facts (status walking) and (walk-sign walk). When you (run),
the program will print out Go since both patterns are satisfied and the rule is
fired.

You can have any number of patterns or actions in a rule. The important
point to realize is that the rule is placed on the agenda only if all the patterns
are satisfied by facts. This type of restriction is called a logical AND conditional
element in reference to the AND relation of Boolean logic. An AND relation is
said to be true only if all its conditions are true.

Because the patterns are of the logical AND type, the rule will not fire if only
one of the patterns is satisfied. All facts must be present before the left-hand
side of a rule is satisfied and the rule is placed on the agenda.

3.3 A Question Of Strategy

The word strategy was originally a military term for the planning and opera-
tions of warfare. In expert systems, one use of the term strategy is in conflict
resolution of activations. Now you might say, “Well, I'll just design my expert
system so that only one rule can possibly be activated at one time. Then there
is no need for conflict resolution.” The good news is that if you succeed, conflict
resolution is indeed unnecessary. The bad news is that this success proves that
your application can be well represented by a sequential program. So you should
have coded it in Ada, C, or Pascal in the first place and not bothered writing
it as an expert system.

Jess offers two different modes of conflict resolution: depth (LIFO) and
breadth (FIFO). When the depth strategy is in effect (the default), more recently
activated rules are fired before less recently activated rules of the same salience.
When the breadth strategy is active, rules of the same salience fire in the order
in which they are activated. It’s difficult to say that one is clearly better than
another without considering the specific application. Even then, it may be
difficult to judge which is “best.” The command set-strategy lets you specify
the conflict resolution strategy Jess uses.

3.4. DEFFACTS 21

3.4 Deffacts

As you work with Jess, you may become tired of typing in the same assertions
from the top-level. If you are going to use the same assertions every time a
program is run, you can first load assertions from a disk using a batch file. An
alternative way to enter facts is by using the define facts keyword, deffacts.
For example,

Jess> (clear)
TRUE
Jess> (deffacts walk
"some facts about walking"

(status walking) ; fact to be asserted
(walk-sign walk) ; fact to be asserted

)

TRUE

Jess> (reset) ; causes facts from defacts to be
; asserted

TRUE

Jess> (facts)

-0 (MAIN::initial-fact)
f-1 (MAIN::status walking)
f-2 (MAIN::walk-sign walk)
For a total of 3 facts.
Jess>

The required name of this deffacts statement, walk, follows the deffacts
keyword. Following the name is an optional comment in double quotes. Like
the optional comment of a rule, the deffacts comment will be retained with
the deffacts after it’s been loaded by Jess. After the name or comment are the
facts that will be asserted in the fact-list. The facts in a deffacts statement
are asserted using the Jess reset command.

The (initial-fact) is put in automatically by a reset. The fact-identifier
of the initial-fact is always £-0. Even without any deffacts statements, a reset
always will assert an (initial-fact). The utility of (initial-fact) lies in
starting the execution of a program. A Jess program will not start running
unless there are rules whose left-hand sides are satisfied by facts. Rather than
having to type in some fact to start things off, the reset command asserts it
for you as well as asserting the facts in deffacts statements.

The reset has a further advantage compared to a clear command in that
reset doesn’t get rid of all the rules. The reset leaves your rules intact. Like
clear, it removes all activated rules from the agenda and also removes all old
facts from the fact-list. Giving a reset command is a recommended way to
start off program execution, especially if the program has been run before and
the fact-list is cluttered with old facts.

In summary, the reset does three things for facts.

1. Tt removes existing facts from the fact-list, which may remove activated
rules from the agenda.

22 CHAPTER 3. ADDING DETAILS

2. It asserts (initial-fact).

3. It asserts facts from existing deffacts statements.

3.5 Debugging

A useful debugging command is run which takes an optional argument of the
number of rule firings. For example, a (run 21) command would tell Jess to
run the program and then stop after 21 rule firings. A (run 1) command allows
you to step through a program firing one rule at a time.

Chapter 4

Variables

The type of rules that you've seen so far illustrates simple matching of patterns
to facts. In this chapter, you'll learn very powerful ways to match and manipulate
facts.

4.1 Let’s Get Variable

Just as with other programming languages, Jess has variables to store values.
Unlike a fact, which is static or unchanging, the contents of a variable are
dynamic as the values assigned to it change. In contrast, once a fact is asserted,
it’s fields can only be modified by retracting and asserting a new fact with the
changed fields.

The name of a variable, or variable identifier, is always written by a question
mark followed by a symbol that is the name of the variable. The general format
is

?<variable-name>

Before a variable can be used, it should be assigned a value. As an example
of a case where a value is not assigned, try to enter the following and Jess will
respond with the error message shown.

Jess> (clear)

TRUE
Jess> (defrule test
(initial-fact) ; asserted by a (reset) command
=>
(printout t ?x crlf)
)
TRUE
Jess> (reset)
TRUE

Jess> (run)

Jess reported an error in routine Context.getVariable
while executing (printout t 7x crlf)
while executing defrule MAIN::test

23

24 CHAPTER 4. VARIABLES

while executing (run).
Message: No such variable x.
Jess>

Jess gives an error message when it cannot find a value bound to ?x. The
term bound means the assignment of a value to a variable. Only global variables
are bound in all rules. All other variables are only bound within a rule. Before
and after a rule fires, nonglobal variables are not bound and so Jess will give an
error message if you try to query a nonbound variable.

4.2 Be Assertive

One common use of variables is to match a value on the left-hand side and then
assert this bound variable on the right-hand side. For example, enter

(defrule make-quack
(duck-sound ?sound)
=>
(assert (sound-is ?7sound))

Now assert (duck-sound quack), then run the program. Check the facts
and you’ll see that the rule has produced (sound-is quack) because the vari-
able ?sound was bound to quack.

Of course, you also can use a variable more than once. For example, enter
the following. Be sure to do a reset and assert (duck-sound quack) again.

(defrule make-quack
(duck-sound 7sound)
=>
(assert (sound-is ?sound 7sound))

When the rule fires, it will produce (sound-is quack quack) since the
variable ?sound is used twice.

4.3 What The Duck Said

Variables also are used commonly in printing output, as in

(defrule make-quack
(duck-sound ?sound)
=>
(printout t "The duck said " ?sound crlf)

Do a reset, enter this rule, and assert the fact and then run to find out
what the duck said.

More than one variable may be used in a pattern, as the following example
shows.

4.4. THE HAPPY BACHELOR 25

Jess> (clear)
TRUE
Jess> (defrule who-dun-it
(duck-shoot 7hunter ?who)
=>
(printout t 7hunter " shot " ?who crlf)
)
TRUE
Jess> (reset)
TRUE
Jess> (assert (duck-shoot Brian duck))
<Fact-1>
Jess> (run)
Brian shot duck
1
Jess> (assert (duck-shoot duck Brian))
<Fact-2>
Jess> (run)
duck shot Brian
1
Jess> (assert (duck-shoot duck)) ; missing third field
<Fact-3>
Jess> (run)
0 ; rule doesn’t fire, no output
Jess>

Notice what a big difference the order of fields makes in determining who
shot who. You can also see that the rule did not fire when the single-field fact
(duck) was asserted. The rule was not activated because no field of the fact
matched the second pattern constraint, ?who.

4.4 'The Happy Bachelor

Retraction is very useful in expert systems and usually done on the right-hand
side rather than at the top-level. Before a fact can be retracted, it must be
specified to Jess. To retract a fact from a rule, the fact-address first must be
bound to a variable on the left-hand side.

There is a big difference between binding a variable to the contents of a fact
and binding a variable to the fact-address. In the examples that you’ve seen
such as (duck-sound ?7sound), a variable was bound to the value of a field.
That is, ?sound was bound to quack. However, if you want to remove the fact
whose contents are (duck-sound quack), you must first tell Jess the address of
the fact to be retracted.

The fact-address is specified using the left arrow, <-. As an example of fact
retraction from a rule,

Jess> (clear)

TRUE

Jess> (assert (bachelor Dopey))
<Fact-0>

26 CHAPTER 4. VARIABLES

Jess> (facts)

f-0 (MAIN::bachelor Dopey)

For a total of 1 facts.

Jess> (defrule get-married
?duck <- (bachelor Dopey)

=>

(printout t "Dopey is now happily married " ?duck crlf)
(retract ?duck)

)

TRUE

Jess> (run)

Dopey is now happily married <Fact-0>

1

Jess> (facts)

For a total of 0 facts.

Jess>

Notice that the printout prints the fact-index of ?duck, <Fact-0>, since
the left arrow bound the address of the fact to ?duck. Also, there is no fact
(bachelor Dopey) because it has been retracted.

Variables can be used to pick up a fact value at the same time as an address,

as shown in the following example. For convenience, a deffacts has also been
defined.

Jess> (clear)

TRUE

Jess> (defrule get-married
?duck <- (bachelor ?7name)

=>

(printout t ?7name " is now happily married" crlf)
(retract 7duck)

)

TRUE

Jess> (deffacts good-prospects
(bachelor Dopey)
(bachelor Dorky)
(bachelor Dicky)

)

TRUE

Jess> (reset)

TRUE

Jess> (run)

Dicky is now happily married

Dorky is now happily married

Dopey is now happily married

3

Jess>

Notice how the rule fired on all facts that matched the pattern
(bachelor 7name).

4.5. IT’S NOT IMPORTANT 27

4.5 It’s not Important

Instead of binding a field value to a variable, the presence of a nonempty field
can be detected alone using a wildcard. For example, suppose you’re running a
dating service for ducks, and a duckette asserts that she only dates ducks whose
first name is Richard. Actually, two criteria are in this specification since there
is an implication that the duck must have more than one name. So a plain
(bachelor Richard) isn’t adequate because there is only one name in the fact.

This type of situation, in which only part of the fact is specified, is very
common and very important. To solve this problem, a wildcard can be used to
fire the Richards.

The simplest form of wildcard is called a single-field wildcard and is shown
by a question mark, ?. The ? is also called a single-field constraint. A single-field
wildcard stands for ezactly one field, as shown following.

Jess> (clear)

TRUE

Jess> (defrule dating-ducks
(bachelor Dopey 7)

=>

(printout t "Date Dopey" crlf)

)

TRUE

Jess> (deffacts duck
(bachelor Dickey)
(bachelor Dopey)
(bachelor Dopey Mallard)
(bachelor Dinkey Dopey)
(bachelor Dopey Dinkey Mallard)

)

TRUE

Jess> (reset)

TRUE

Jess> (run)

Date Dopey

1

Jess>

The pattern includes a wildcard to indicate that Dopey’s last name is not
important. So long as the first name is Dopey, the rule will be satisfied and
fire. Because the pattern has three fields of which one is a single-field wildcard,
only facts of exactly three fields can satisfy it. In other words, only Dopeys with
exactly two names can satisfy this duckette.

Suppose you want to specify Dopeys with exactly three names? All that
you’d have to do is write a pattern like

(bachelor Dopey 7 7)
or, if only persons with three names whose middle name was Dopey,

(bachelor 7 Dopey 7)

28 CHAPTER 4. VARIABLES

or, if only the last name was Dopey, as in the following:
(bachelor 7 7 Dopey)

Another interesting possibility occurs if Dopey must be the first name, but
only those Dopeys with two or three names are acceptable. One way of solving
this problem is to write two rules. For example

(defrule eligible
(bachelor Dopey 7)
=>
(printout t "Date Dopey" crlf)

(defrule eligible-three-names
(bachelor Dopey 7 7)
=>
(printout t "Date Dopey" crlf)

Enter and run this and you’ll see that Dopeys with both two and three names
are printed. Of course, if you don’t want anonymous dates, you need to bind
the Dopey names with a variable and print them out.

4.6 Going Wild

Rather than writing separate rules to handle each field, it’s much easier to use
the multifield wildcard. This is a dollar sign followed by a question mark, $7, and
represents zero or more fields. Notice how this contrasts with the single-field
wildcard which must match exactly one field.

The two rules for dates can now be written in a single rule as follows.

Jess> (clear)

TRUE

Jess> (defrule dating-ducks
(bachelor Dopey $7)

=>

(printout t "Date Dopey" crlf)

)

TRUE

Jess> (deffacts duck
(bachelor Dicky)
(bachelor Dopey)
(bachelor Dopey Mallard)
(bachelor Dinky Dopey)
(bachelor Dopey Dinky Mallard)

)

TRUE

Jess> (reset)

TRUE

4.6. GOING WILD 29

Jess> (run)
Date Dopey
Date Dopey
Date Dopey
3

Jess>

Wildcards have another important use because they can be attached to a
symbolic field to create a variable such as ?name or $7name. The variable can
be a single-field variable or a multifield variable depending on whether a ?
or $7 is used on the left-hand side. You can think of the $ as a function
whose argument is a single-field wildcard or a single-field variable and returns
a multifield wildcard or a multifield variable, respectively.

As an example of a multifield variable, the following version of the rule also
prints out the name field(s) of the matching fact because a variable is equated
to the name field(s) that match:

Jess> (defrule dating-ducks

(bachelor Dopey $7name)
=>

(printout t "Date Dopey " $7name crlf)

)

TRUE

Jess> (reset)

TRUE

Jess> (run)

Date Dopey (Dinky Mallard)

Date Dopey (Mallard)

Date Dopey ()

3

Jess>

When you enter and run, you’ll see the names of all eligible Dopeys. The
multifield wildcard takes care of any number of fields. Also, notice that multi-
field values are returned enclosed in parentheses.

Suppose you wanted a match of all ducks who had a Dopey somewhere in
their name, not necessarily as their first name. The following version of the rule
would match all facts with a Dopey in them and then print out the names:

Jess> (defrule dating-ducks

(bachelor $7first Dopey $7last)
=>

(printout t "Date " $7first " Dopey " $7last crlf)

)

TRUE

Jess> (reset)

TRUE

Jess> (run)

Date () Dopey (Dinky Mallard)

Date (Dinky) Dopey ()

Date () Dopey (Mallard)

30 CHAPTER 4. VARIABLES

Date () Dopey ()
4
Jess>

The pattern matches any names that have a Dopey anywhere in them.
Single- and multifield wildcards can be combined. For example, the pattern

(bachelor ? $7 Dopey 7)

means that the first and last names can be anything and that the name just
prior to the last must be Dopey. This pattern also requires that the matching
fact will have at least four fields, since the $7? matches zero or more fields and
all the others must match ezactly four.

4.7 Bound Variables

The first time a variable is bound it retains that value only within the rule,
both on the left-hand side and also on the right-hand side, unless changed on
the right-hand side. For example, in the rule below

(defrule bound
(number-1 ?7num)
(number-2 ?7num)

=>

If there are some facts

(number-1 0)
(number-2 0)
(number-1 1)
(number-2 1)

then the rule can only be activated by the pair £-0, £-1, and the other pair
f-2, £-3. That is, fact £-0 cannot match with £-3 because when ?num is bound
to 0 in the first pattern, the value of ?num in the second pattern also must be
0. Likewise, when ?7num is bound to 1 in the first pattern, the value of ?num in
the second pattern must be 1. Notice that the rule will be activated twice by
these four facts: one activation for the pair £-0, £-1, and the other activation
for the pair £-2, £-3.

4.8 The Lucky Duck

Many situations occur in life where it’s wise to do things in a systematic manner.
That way, if your expectations don’t work out you can try again systematically.
One way of being organized is to keep a list. In our case, we’ll keep a list of
duck bachelors, with the most likely prospect for matrimony at the front. Once
an ideal duck bachelor has been identified, we’ll shoot him up to the front of
the list as the lucky duck.

The following program shows how this can be done by adding a couple of
rules to the ideal-duck-bachelor rule.

4.8. THE LUCKY DUCK 31

(defrule ideal-duck-bachelor
(bill big ?name)
(feet wide 7?name)
=>
(printout t "The ideal duck is " 7name crlf)
(assert (move-to-front 7name))

(defrule move-to-front
?move-to-front <- (move-to-front ?7who)
?70ld-list <- (list $?front ?who $7rear)
=>
(retract ?move-to-front 7old-list)
(assert (list ?who $7front $7rear))
(assert (change-list yes))

(defrule print-list
?change-list <- (change-list yes)
(list $71list)
=>
(retract 7change-list)
(printout t "List is : " $7list crlf)

(deffacts duck-bachelor-list
(1ist Dorky Dinky Dicky)

(deffacts duck-assets
(bill big Dicky)
(bill big Dorky)
(bill little Dinky)
(feet wide Dicky)
(feet narrow Dorky)
(feet narrow Dinky)

The original list is given in the duck duck-bachelor-list deffacts. When
the program is run, it will provide a new list of likely candidates.

Jess> (reset)

TRUE

Jess> TRUE

Jess> (run)

The ideal duck is Dicky

List is : (Dicky Dorky Dinky)
3

Jess>

Notice the assertion (change-list yes) in the move-to-front rule. With-

32 CHAPTER 4. VARIABLES

out this assertion, the print-list rule would always fire on the original list.
This assertion is an example of a control fact made to control the firing of an-
other rule. Control facts are very important in controlling the activation of
certain rules, and you should study this example carefully to understand why
it’s used. Another method of control is modules, to be discussed in Chapter 7.

The move-to-front rule removes the old list and asserts the new list. If
the old list was not retracted, two activations would be on the agenda for
the print-1ist rule but only one would fire. Only one will fire because the
print-list rule removes the control fact required for the other activation of
the same rule. You would not know in advance which one would fire, so the old
list might be printed instead of the new list.

Chapter 5

Deftemplates

In this chapter, you will learn about a keyword called deftemplate, which stands for
define template. This feature can aid you in writing rules whose patterns have a
well-defined structure.

5.1 Mr. Wonderful

deftemplate is analogous to a record structure in a high-level language such as
Pascal. That is, the deftemplate defines a group of related fields in a pattern
similar to the way in which a Pascal record is a group of related data. A
deftemplate is a list of named fields called slots. deftemplate allows access
by name rather than by specifying the order of fields. deftemplate contributes
to good style in expert systems programs and is a valuable tool of software
engineering.

A slot is a named single-slot or multislot. A single-slot or simply slot contains
exactly one field while a multislot contains zero or more fields. Any number of
single or multislot slots may be used in a deftemplate. To write a slot, give the
field name (attribute) followed by the field value. Note that a multislot slot with
one value is strictly not the same as a single-slot slot. As an analogy, think of a
cupboard (the multislot) that may contain dishes. A cupboard with one dish is
not the same as a dish (single-slot.) However, the value of a single-slot slot (or
variable) may match a multislot slot (or multislot variable) that has one field.

As an example of a deftemplate relation, see Table 5.1. A deftemplate
may be defined for the relation Prospect as follows, where white space and
comments are used for readability and explanation.

| Attribute | Value |

name “Dopey”
assets rich
age 99

Table 5.1: Attributes of a duck who might be considered a good matrimonial
prospect.

33

34 CHAPTER 5. DEFTEMPLATES

(deftemplate Prospect ; name of deftemplate relation
"vital information" ; optional comment in quotes

(slot name ; name of field
(type STRING) ; type of field
(default "")) ; default value of field name

(slot assets ; name of field

(type ATOM) ; type of field

(default rich)) ; default value of field assets
(slot age ; name of field

(type INTEGER) ; type of field

(default 80)) ; default value of field age

In this example, the components of deftemplate are structured as:

e A deftemplate relation name
e Attributes called fields

e The field type, which can be any one of the allowed types: ANY, INTEGER,
FLOAT, NUMBER, ATOM, STRING, LEXEME, and OBJECT.

e The default for the field value

This particular deftemplate has three single-slot slots called name, assets,
and age.

The deftemplate default values are inserted by Jess when a reset is done
if no explicit values are defined. For example, enter the deftemplate for
Prospect, and assert it as shown.

Jess> (assert (Prospect))

<Fact-0>

Jess> (facts)

f-0 (MAIN::Prospect (name "") (assets rich) (age 80))
For a total of 1 facts.

Jess>

You can explicitly set the field values, as the following example shows.

Jess> (assert (Prospect (age 99) (name "Dopey")))

<Fact-1>

Jess> (facts)

f-0 (MAIN::Prospect (name "") (assets rich) (age 80))

f-1 (MAIN::Prospect (name "Dopey") (assets rich) (age 99))
For a total of 2 facts.

Jess>

Note that the order that the fields are typed in does not matter since these
are named fields.

5.2. BYE-BYE 35

5.2 Bye-Bye
In general, a deftemplate with n slots has the following general structure:

(deftemplate <name>
(slot-1)
(slot-2)

(slot-n)

A rule which uses the deftemplate follows.

Jess> (reset)
TRUE
Jess> (defrule matrimonial-candidate
(Prospect (name 7name) (assets ?7net-worth) (age 7months))

=>
(printout t "Prospect: " ?7name crlf
?net-worth crlf
?months " months old" crlf)
)
TRUE
Jess> (assert (Prospect (age 99) (name "Dopey")))
<Fact-1>

Jess> (run)
Prospect: Dopey
rich

99 months old
Jess>

Notice that the default value of rich was used for Dopey since the assets
field was not specified in the assert command.

If the assets field is given a specific value such as poor, the specified value
for assets of poor overrides the default value of rich as shown in the following
example about Dopey’s penurious nephew.

Jess> (reset)

TRUE

Jess> (assert (Prospect (name "Dopey Notwonderful")
(assets poor)
(age 95)))

<Fact-1>

Jess> (run)

Prospect: Dopey Notwonderful

poor

95 months old

1

Jess>

A deftemplate pattern may be used just like any ordinary pattern. For
example, the following rule will eliminate undesirable prospects.

36 CHAPTER 5. DEFTEMPLATES

Jess> (defrule bye-bye
?bad-prospect <- (Prospect (assets poor) (name ?name))
=>
(retract ?bad-prospect)
(printout t "Bye-bye " ?7name crlf))
TRUE
Jess> (run)
Bye-bye Dopey Notwonderful
1
Jess>

5.3 Ain’t No Strings On Me

Notice that only single fields were used for the patterns in the examples so far.
That is, the field values for name, assets, and age, were all single values. In
some types of rules, you may want multiple fields. deftemplate allows the use
of multiple values in a multislot.

As an example of multislot, suppose that you wanted to treat the name of
the relation Prospect as multiple fields. This would provide more flexibility
in processing prospects since any part of the name could be pattern matched.
Shown following is the deftemplate definition using multislot and the revised
rule to pattern match on multiple fields. Notice that a multislot pattern, $7name,
is now used to match all the fields that make up the name. For convenience, a
deffacts is also given.

Jess> (clear)
TRUE
Jess> (deftemplate Prospect
(multislot name)
(slot assets
(type ATOM)
(default rich))
(slot age
(type INTEGER)
(default 80))
)
TRUE
Jess> (defrule happy-relationship
(Prospect (name $7name) (assets 7net-worth) (age 7months))

=>
(printout t "Prospect: " $7name crlf
?net-worth crlf
?months " months old" crlf)
)
TRUE

Jess> (deffacts duck-bachelor
(Prospect (name Dopey Wonderful) (assets rich) (age 99))

)
TRUE

54. WHAT’S IN A NAME 37

Jess> (reset)

TRUE

Jess> (run)

Prospect: (Dopey Wonderful)
rich

99 months old

1

Jess>

In the output, the parentheses around Dopey’s name are put in by Jess to
indicate that this is a multislot value. If you compare the output from this
multislot version to the single-slot version, you’ll see that the double quotes
around —Dopey Wonderful— are gone.

Type specification is not allowed for multislots. To specify a default value
for a multislot you have to use the create$ function to create a multifield.

(deftemplate Prospect
(multislot name
(default (create$ anonymous)))

5.4 What’s In A Name

deftemplate greatly simplifies accessing a specific field in a pattern because
the desired field can be identified by its slot name. The modify action can be
used to retract and assert a new fact in one action by specifying one or more
template slots to be modified.

As an example, consider the following rules which show what happens when
duck-bachelor Dopey Wonderful loses all his fish buying Donald Duck posters
and banana fishsplits for his new duckette, Dixie.

Jess> (defrule make-bad-buys
?prospect <- (Prospect (name $7name)
(assets rich)
(age 7months))
=>
(printout t "Prospect: " $7name crlf
"rich" crlf
?months " months old" crlf
crlf)
(modify ?prospect (assets poor))
)
TRUE
Jess> (defrule poor-prospect
?prospect <- (Prospect (name $7name)
(assets poor)
(age 7months))
=>
(printout t "Ex-prospect: " $7name crlf
poor crlf

38 CHAPTER 5. DEFTEMPLATES

?months " months old" crlf
crlf)

)

TRUE

Jess> (deffacts duck-bachelor

(Prospect (name Dopey Wonderful) (assets rich) (age 99))

)

TRUE

Jess> (reset)

TRUE

Jess> (run)

Prospect: (Dopey Wonderful)

rich

99 months old

Ex-prospect: (Dopey Wonderful)
poor
99 months old

2
Jess>

The make-bad-buys rule is activated by a rich prospect as specified by the
assets slot. This rule changes the assets to poor using the modify action. No-
tice that the slot assets can be accessed by name. Without a deftemplate, it
would be necessary to enumerate all the fields by single variables or by using a
wildcard, which is less efficient. The purpose of the poor-prospect rule is sim-
ply to print out the poor prospects, thus demonstrating that the make-bad-buys
rule did indeed modify the assets.

Chapter 6

Functions

In this chapter, you will learn how to define your own functions with deffunction.

6.1 Doing Your Own Thing

Just like other languages, Jess allows you to define your own functions with
deffunction. The deffunction is known globally, which saves you the effort
of entering the same actions over and over again.

Deffunctions also help in readability. You can call a deffunction just like
any other function. A deffunction may also be used as the argument of another
function. A printout can be used anywhere in a deffunction even if it’s not
the last action because printing is a side-effect of calling the printout function.

The general syntax of a deffunction is shown following.

(deffunction <function-name>
(?argl 7arg2 ...7argM [$7argN]) ; argument list. Last one
; may be optional multifield

; argument.
[optional comment]
<action-1> ; action-1 to action-n-1 do
<action-2> ; not return a value
<action-n-1>
<action—-n> ; only last action returns a
; value

The ?7arg are dummy arguments, which means that the names of the argu-
ments will not conflict with variable names in a rule if they are the same. The
term dummy argument is sometimes called a parameter in other books.

Although each action may have returned values from function calls within
the action, these are blocked by the deffunction from being returned to the
user. The deffunction will only return the value of the last action, <action-n>.
This action may be a function, a variable, or a constant.

39

40 CHAPTER 6. FUNCTIONS

The following is an example of how a deffunction is defined to calculate
the hypotenuse, and then used in a rule. Even if the variable names in the rule
are the same as the dummy arguments, there’s no conflict. That’s why they’re
dummy, because they don’t mean anything.

Jess> (deffunction hypotenuse ; name
(7a 7b) ; dummy arguments

(sqrt(+ (x 7a 7a) (*x 7b 7b))) ; action
)
TRUE
Jess> (defrule calculate-hypotenuse
(dimensions 7base Theight)
=>
(printout t "Hypotenuse=" (hypotenuse ?base 7height) crlf)
)
TRUE
Jess> (assert (dimensions 3 4))
<Fact-0>
Jess> (run)
Hypotenuse=5.0
1
Jess>

Deffunctions may be used with multifield values, as the following example
shows.

Jess> (deffunction count ($7arg)
(length$ $7arg)

)

TRUE

Jess> (count 1 2 3 a duck "quacks")

6

Jess>

Chapter 7

Modules

Modules allow a knowledge base to be partitioned. Every construct defined must
be placed in a module. The programmer can explicitly control which constructs in
a module are visible to other modules and which constructs from other modules are
visible to a module. The visibility of facts between modules can be controlled in a
similar manner. Modules can also be used to control the flow of execution of rules.

7.1 Introduction

A typical rule-based system can easily include hundreds of rules, and a large
one can contain many thousands. Developing such a complex system can be a
difficult task, and preventing such a multitude of rules from interfering with one
another can be hard too.

Jess provides support for the modular development and execution of knowl-
edge bases with the defmodule construct. Jess modules allow a set of constructs
to be grouped together such that explicit control can be maintained over restrict-
ing the access of the constructs by other modules. This type of control is similar
to global and local scoping used in languages such as Java or C (note, however,
that the global scoping used by Jess is strictly hierarchical and in one direc-
tion; only if module A can see constructs from module B, then it is not possible
for module B to see any of module A’s constructs). By restricting access to
deftemplate and defrules constructs, modules can function as blackboards,
permitting only certain facts to be seen by other modules. Modules are also
used by rules to provide execution control.

The commands for listing constructs let you specify the name of a module,
and can then operate on one module at a time. If you don’t explicitly specify a
module, these commands (and others) operate by default on the current module.
If you don’t explicitly define any modules, the current module is always the main
module, which is named MAIN. All the constructs you've seen so far have been
defined in MAIN, and therefore are often preceded by MAIN: : when displayed by
Jess.

Besides helping you to manage large numbers of rules, modules also provide
a control mechanism: the rules in a module will fire only when that module has
the focus, and only one module can be in focus at a time.

41

42 CHAPTER 7. MODULES

7.2 Defining Constructs In Modules

You can define a new module using the defmodule construct:

Jess> (defmodule WORK)
TRUE
Jess>

You can place a deftemplate, defrule, or deffacts into a specific module
by qualifying the name of the construct with the module name:

Jess> (deftemplate WORK::Job (slot salary))
TRUE

Jess> (list-deftemplates WORK)

WORK: : Job

For a total of 1 deftemplates.

Jess>

Once you have defined a module, it becomes the current module:

Jess> (clear)

TRUE

Jess> (get-current-module)
MAIN

Jess> (defmodule COMMUTE)
TRUE

Jess> (get-current-module)
COMMUTE

Jess>

If you don’t specify a module, all deffacts, templates and rules you define
will automatically become part of the current module:

Jess> (deftemplate Bus (slot route-number))
TRUE
Jess> (defrule take-the-bus
?bus <- (Bus (route-number 76))
(have-correct-change)
=>
(get-on 7bus)
)
TRUE
Jess> (ppdefrule take-the-bus)
"(defrule COMMUTE: :take-the-bus
?bus <- (COMMUTE: :Bus (route-number 76))
(COMMUTE: :have-correct-change)
=>
(get-on 7bus))"
Jess>

You can set the current module explicitly using the set-current-module
function. Note that the implied template have-correct-change was created in
the COMMUTE module, because that’s where the rule was defined.

7.3. MODULES, SCOPE AND NAME RESOLUTION 43

7.3 Modules, Scope And Name Resolution

A module defines a namespace for templates and rules. This means that two
different modules can each contain a rule with a given name without conflicting
—i.e., rules named MAIN: :initialize and COMMUTE: :initialize could be de-
fined simultaneously and coexist in the same program. Similarly, the templates
COMPUTER: :Bus and COMMUTE: : Bus could both be defined. Given this fact, there
is the question of how Jess decides which template the definition of a rule or
query is referring to.

When Jess is compiling a rule or deffacts definition, it will look for templates
in three places, in order:

1. If a pattern explicitly names a module, only that module is searched.

2. If the pattern does not specify a module, then the module in which the
rule is defined is searched first.

3. If the template is not found in the rule’s module, the module MAIN is
searched last. Note that this makes the MAIN module a sort of global
namespace for templates.

The following example illustrates each of these possibilities:

Jess> (assert (MAIN::mortgage-payment 2000))
<Fact-0>
Jess> (defmodule WORK)
TRUE
Jess> (deftemplate Job (slot salary))
TRUE
Jess> (defmodule HOME)
TRUE
Jess> (deftemplate Hobby (slot name) (slot income))
TRUE
Jess> (defrule WORK::quit-job
(Job (salary 7s))
(HOME: :Hobby (income 7i&: (> ?i (/ 7s 2))))
(mortgage-payment 7m&: (< ?m ?i))
=>
(call-boss)
(quit-job)
)
TRUE
Jess> (ppdefrule WORK::quit-job)
"(defrule WORK::quit-job
(WORK: : Job (salary 7s))
(HOME: :Hobby (income ?i&: (> ?i (/ ?s 2))))
(MAIN: :mortgage-payment 7m&: (< ?m 7i))
=>
(call-boss)
(quit-job))"
Jess>

44 CHAPTER 7. MODULES

In this example, three deftemplates are defined in three different mod-
ules: MAIN::mortgage-payment, WORK: : Job, and HOME: : Hobby. Jess finds the
WORK: : Job template because the rule is defined in the WORK module. It finds the
HOME: :Hobby template because it is explicitly qualified with the module name.
And the MAIN: :mortgage-payment template is found because the MAIN module
is always searched as a last resort if no module name is specified.

Commands which accept the name of a construct as an argument (like
ppdefrule, ppdeffacts, etc) will search for the named construct in the same
way as is described above.

Note that many of the commands that list constructs (facts,
list-deftemplates, rules, etc) accept a module name or * as an optional
argument. If no argument is specified, these commands operate only on the
current module. If a module name is given, they operate on the named module.
If * is given, they operate on all modules.

7.4 Module Focus And Execution Control

In the previous sections I described how modules provide a kind of namespace
facility, allowing you to partition a rulebase into manageable chunks. Modules
can also be used to control execution. In general, although any Jess rule can
be activated at any time, only rules in the focus module will fire. Note that the
focus module is independent from the current module discussed above. Initially,
the module MAIN has the focus:

Jess> (defmodule DRIVING)
TRUE
Jess> (defrule get-in-car
=>
(printout t "Ready to go!" crlf)
)
TRUE
Jess> (reset)
TRUE
Jess> (run)
0
Jess>

In the example above, the rule doesn’t fire because the DRIVING module
doesn’t have the focus. You can move the focus to another module using the
focus function (which returns the name of the previous focus module:)

Jess> (focus DRIVING)
MAIN

Jess> (run)

Ready to go!

1

Jess>

Note that you can call focus from the right-hand-side of a rule to change
the focus while the engine is running.

7.4. MODULE FOCUS AND EXECUTION CONTROL 45

Jess actually maintains a focus stack containing an arbitrary number of mod-
ules. The focus module is, by definition, the module on top of the stack. When
there are no more activated rules in the focus module, it is “popped” from the
stack, and the next module underneath becomes the focus module. You also can
manipulate the focus stack with the functions pop-focus, list-focus-stack,
get-focus-stack, and clear-focus- stack.

7.4.1 The Auto-Focus Declaration

You can declare that a rule has the auto-focus property:

Jess> (defmodule PROBLEMS)

TRUE

Jess> (defrule crash
(declare (auto-focus TRUE))
(DRIVING: :me ?location)
(DRIVING: :other-car 7location)

=>

(printout t "Crash!" crlf)
(halt)

)

TRUE

Jess> (defrule DRIVING: :travel
?me <- (me 7location)

=>

(printout t ".")
(retract 7me)
(assert (me (+ 7location 1)))

)

TRUE

Jess> (assert (me 1))

<Fact-1>

Jess> (assert (other-car 4))

<Fact-2>

Jess> (focus DRIVING)

MAIN

Jess> (run)

...Crash!

4

Jess>

When an auto-focus rule is activated, the module it appears in is automati-
cally pushed onto the focus stack and becomes the focus module. Modules with
auto-focus rules make great “background tasks.”

7.4.2 Returning From A Rule Right-Hand-Side

If the function return is called from a rule’s right-hand-side, it immediately
terminates the execution of that rule’s right-hand-side. Furthermore, the current
focus module is popped from the focus stack. This suggests that you can call

46 CHAPTER 7. MODULES

a module like a subroutine. You call the module from a rule’s right-hand-side
using focus, and you return from the call using return.

Chapter 8
Fuzzy Logic

Jess can be used to create programs that encode fuzzy operations and fuzzy rea-
soning. Fuzzy logic programs fit nicely into the rule based paradigm.

8.1 Introduction

In the real world there exists much fuzzy knowledge, i.e., knowledge that is vague,
imprecise, uncertain, ambiguous, inexact, or probabilistic in nature. Human
thinking and reasoning frequently involve fuzzy information, possibly originating
from inherently inexact human concepts and matching of similar rather than
identical experiences. In systems based upon classical set theory and two-valued
logic, it is very difficult to answer some questions because they do not have
completely true answers. Humans, however, can give satisfactory answers, which
are probably true. Expert systems should not only give such answers but also
describe their reality level. This level should be calculated using imprecision and
the uncertainty of facts and rules that were applied. Expert systems should also
be able to cope with unreliable and incomplete information and with different
expert opinions.

8.2 Fuzziness

Fuzziness occurs when the boundary of a piece of information is not clear-cut.
For example, words such as young, tall, good, or high are fuzzy. There is no
single quantitative value which defines the term young when describing a fuzzy
concept (or fuzzy variable) such as age. For some people, age 25 is young, and
for others, age 35 is young. The concept young has no clean boundary. Age
1 is definitely young and age 100 is definitely not young; however, age 35 has
some possibility of being young and usually depends on the context in which
it is being considered. In fact an age can have some possibility of being young
and also some possibility of being old at the same time (note that these are
NOT probabilities and the sum of all the possibilities does not need to sum to
1.0). The representation of this kind of information is based on the concept of
fuzzy set theory. Unlike classical set theory where one deals with objects whose
membership to a set can be clearly described, in fuzzy set theory, membership
of an element in a set can be partial, i.e., an element belongs to a set with a

47

48 CHAPTER 8. FUZZY LOGIC

| Age | Grade Of Membership |

25 1.0
30 0.8
35 0.6
40 0.4
45 0.2
50 0.0

Table 8.1: Fuzzy term young.

certain grade (possibility) of membership. More formally a fuzzy set F in a
universe of discourse U is characterized by a membership function

FZU—>[O,1}

which associates a number p(z) in the interval [0, 1] with each element z of
U. This number represents the grade of membership of z in the fuzzy set F
(with 0 meaning that x is definitely not a member of the set and 1 meaning
that it definitely is a member of the set). For example, the fuzzy term young
might be defined by the fuzzy set in Table 8.1.

One might also write

young(25) = 1, young(30) = 0.8, ..., young(80) =0

Grade of membership values constitute a possibility distribution of the term
young as applied to the fuzzy variable age. The Table can also be shown graph-
ically (see Figure 8.1).

The possibility distribution of a fuzzy concept like somewhat young or very
young can be obtained by applying arithmetic operations to the fuzzy set of the
basic fuzzy term young, where the modifiers somewhat and very are associated
with specific mathematical functions. For instance, the possibility values of each
age in the fuzzy set representing the fuzzy concept somewhat young might be
calculated by taking the square root of the corresponding possibility values in
the fuzzy set of young (see Figure 8.2). These modifiers are often referred to
as hedges. The available hedges include among others: not, more_or_less,
somewhat, very, extremely and slightly.

8.3 Example

A small example will serve to introduce the basic concepts for creating fuzzy
rules in Jess. In this example everything is done using only Jess code. There
is quite a bit of opportunity to create code that is a mix of Jess and Java, but
Jess can easily reference Java classes and this allows one to work entirely in Jess
when appropriate.

The pseudocode for a rule might be

IF temperature is hot
THEN pressure is low or medium

8.3. EXAMPLE

Fuzzy Value: age
Linguistic Value: young (%)

O OO O OO OO ODODODOOOOO0OO OO O+

. OOk skkokok ok sk sk ok sk sk sk ok ok ok ok

.95

.90 *

.85 *

.80 *

.75

.70 *

.65 *

.60

.55 *

.50 *

.45 *

.40

.35 *

.30 *
.25 *
.20

.15 *
.10 *
.05 *
.00 sk sk sk sk ok ok ok ok ok ok ok ok o o ok ok ok ok ok koK

R R e B e B B e e
0.00 17.00 34.00 51.00 68.00 85.00

Figure 8.1: Possibility distribution of young.

49

50 CHAPTER 8. FUZZY LOGIC

Fuzzy Value: age
Linguistic Value: somewhat young (*)

. OOk ok ko koo ko koo

.95 *

.90 *%

.85 *

.80 *

.75 *

.70 *

.65 *

.60 *

.55 *

.50 *

.45

.40 *

.35

.30 *

.25

.20

.15

.10 *

.05

.00 ko sk kb ok k ok ok sk ok skok o ok ko o

[-===|-===|==== || === | === | === | === | === | == |

0.00 17.00 34.00 51.00 68.00 85.00

ol el eolNeolNolNeolNolNolNolNeolNolNolNolNolNolNolNolNolNolNolN

Figure 8.2: Possibility distribution of somewhat young.

8.3. EXAMPLE 51

Then by providing an input value for the temperature, in this case tempera-
ture is very medium, the rule can be fired and an actual conclusion is provided
as the output of the rule firing.

; two globals to hold our fuzzy variables for temperature and
; pressure
(defglobal 7*fuzzy-temperaturex =
(new nrc.fuzzy.FuzzyVariable "temperature" 0.0 100.0 "C"))
(defglobal 7*fuzzy-pressure* =
(new nrc.fuzzy.FuzzyVariable "pressure" 0.0 10.0
"kilopascals"))

(defrule init
"initialization rule that adds the terms to the fuzzy
variables and asserts the input fuzzy value °‘temperature
is very medium’’"

?fact <- (initial-fact)
=>
(retract 7fact)

(load-package nrc.fuzzy.jess.FuzzyFunctions)

(bind 7x-hot (create$ 25.0 35.0))
(bind ?y-hot (create$ 0.0 1.0))
(bind ?x-cold (create$ 5.0 15.0))
(bind ?y-cold (create$ 1.0 0.0))

; terms for the temperature fuzzy variable
(?xfuzzy-temperaturex addTerm "hot" ?x-hot ?y-hot 2)
(?xfuzzy-temperaturex addTerm "cold" ?7x-cold ?y-cold 2)
(?*fuzzy-temperature* addTerm "veryHot" "very hot")
(?*fuzzy-temperature* addTerm "medium"

"not hot and (not cold)")

; terms for the pressure fuzzy variable
(?xfuzzy-pressure* addTerm "low"

(new nrc.fuzzy.ZFuzzySet 2.0 5.0))
(?7*fuzzy-pressure* addTerm "medium"

(new nrc.fuzzy.PIFuzzySet 5.0 2.5))
(?xfuzzy-pressure* addTerm "high"

(new nrc.fuzzy.SFuzzySet 2.0 5.0))

; add the fuzzy input °‘temperature is very medium’’
(assert (temperature
(new nrc.fuzzy.FuzzyValue 7*fuzzy-temperaturex
"very medium")))

(defrule temperature-hot-pressure-low-or-medium

52 CHAPTER 8. FUZZY LOGIC

"if temperature hot then pressure low or medium"

(temperature 7temperature&:(fuzzy-match 7temperature "hot"))
=>
(assert (pressure
(new nrc.fuzzy.FuzzyValue 7*fuzzy-pressure*
"low or medium")))

(defrule do-the-printing
"print some interesting things"

(temperature 7temperature)
(pressure 7pressure)
=>

(bind ?fuzzy-values (create$
(new nrc.fuzzy.FuzzyValue 7*fuzzy-temperature* "hot")
7temperature))

(printout t (call nrc.fuzzy.FuzzyValue plotFuzzyValues "*+"
0.0 50.0 ?7fuzzy-values) crlf)

(printout t (call (new nrc.fuzzy.FuzzyValue 7*fuzzy-pressurex*
"low or medium") plotFuzzyValue "x") crlf)

(printout t (7pressure plotFuzzyValue "*") crlf)

The first part is pretty straight forward, create the fuzzy variables we need
to represent the concepts of temperature and pressure. We store these in global
variables.

A fuzzy variable defines the language that will be used to discuss a fuzzy
concept such as temperature, pressure, age, or height. The class FuzzyVariable
is used to create instances of a fuzzy variable, providing a name (for example,
temperature), the units of the variable if required (for example, degrees C),
the universe of discourse for the variable (for example a range from 0 to 100),
and a set of primary fuzzy terms (like hot, cold and warm) that will be used
when describing the specific fuzzy concepts associated with the fuzzy variable.
The name and units are strings that are mainly used for textual display in a
program. The universe of discourse defines a set of upper and lower bounds for
the values of the fuzzy sets used to describe the concepts of the fuzzy variable.
All numbers involved in fuzzy reasoning have to be of type real.

We have an initialization rule that adds the appropriate terms to the fuzzy
variables so we can describe our concepts. We add many more terms than
we need for the example but it does show various ways to define the terms.
Nothing too weird here or hard to understand if you check out the addTerm
method for a FuzzyVariable in the API documentation and you know that the
load-package function loads some necessary user functions (such as fuzzy-match)
that support fuzzy capabilities.

The fuzzy terms are described using a term name such as hot, along with
a fuzzy set that represents that term. The fuzzy variable terms along with a
set of system supplied and user defined fuzzy modifiers, as well as the operators
and and or (fuzzy set intersection and union respectively) and the left and

8.3. EXAMPLE 53

right parentheses provide the basis for a grammar that allows one to write fuzzy
linguistic expressions that describe fuzzy concepts in an english-like manner.
For example,

(very hot or warm) and slightly cold

consists of the terms hot, warm and cold, along with the fuzzy modifiers very
and slightly. These expressions are used when defining fuzzy values, the spe-
cific fuzzy concepts that are appropriate for the problem at hand. FuzzyValue
associates a fuzzy set with a fuzzy variable to describe the fuzzy concept. The
fuzzy sets can be described using the linguistic expressions definable for the
fuzzy variable and restricted by the universe of discourse for the variable. The
fuzzy sets can also be described using an instance of a FuzzySet object or by
sets of x, y values.

The last thing done in the init rule is to assert a temperature fact that has
a fuzzy value in it:

(temperature (new nrc.fuzzy.FuzzyValue 7*fuzzy-temperature*
"very medium"))

We used an ordered fact in this case but slots in unordered facts can also
hold fuzzy values.

The next rule is the heart of the program. Notice that it is quite compact
and not too difficult to read the intent. So, what is happening here? When a
temperature fact is asserted that has a fuzzy value in it, the fuzzy-match will
compare the fuzzy value in the fact to the fuzzy value hot. In this case the
fuzzy-match function will succeed since there is overlap between the two fuzzy
values. Internally Jess will remember the pair of fuzzy values that matched for
use when the rule fires and tries to assert other facts with fuzzy values. Using all
of the remembered antecendent /input pairs that matched on the LHS of the rule,
a fuzzy rule is constructed (if it has not already been constructed by another
assert on the RHS of the rule). The fuzzy values identified in the fact being
asserted are added as outputs for the fuzzy rule and it is fired, producing the
actual fuzzy values that will be placed in the fuzzy value positions of the asserted
fact. In our case, the antecedent and the input fuzzy values are temperature hot
and temperature very medium. They overlapped and were remembered and used
to construct the fuzzy rule. The output fuzzy value from the assert function,
pressure low or medium, is added to the rule and it is fired. The output fuzzy
value is then placed into the actual fact that is asserted. The actual results are
shown below. This might sound complicated but the Jess user does not need
to be aware of all of these details. The user simply needs to know that it is
necessary to use the fuzzy-match function on the LHS of a rule to match fuzzy
values and that assertions done on the RHS of a rule that have fuzzy values in
them will automatically be adjusted to account for fuzzy matching on the LHS
of the rule.

Of course it is possible to create rules with many fuzzy value patterns on the
LHS and many fuzzy values asserted in fact on the RHS. These can be mixed
with non-fuzzy facts and various tests.

54 CHAPTER 8. FUZZY LOGIC

Fuzzy Value: temperature
Linguistic Value: hot (%), very medium (+)

.00 +++++++++++ ok ok ok ok ok ok ok sk sk ok ok ok ok ok k

.95

.90 *

.85

.80 + + *

.75

.70 *

.65 + +

.60 *

.55

.50 + + %

.45

.40 *

.35 +

.30 *

.25 + +

.20 *

.15 + +

.10 + * +

.05 + +

. QO+ sk sk sk ok sk ok sk ok sk ok ok ok sk ok ok ok %k ok +4+++++++H
R B e B B B B B e Bl

0.00 10.00 20.00 30.00 40.00 50.00

el eoleolNolNolNeolNolNolNeolNolNolNolNolNolNolNolNolNolNoRoR 4

Figure 8.3: The antecedent (hot) and the input (very medium) fuzzy values.

8.4 Example Results

The Jess rules in the example would produce the Figures 8.3-5 as output. Note
that when displaying these text plots it is necessary to use a mono-spaced (non-
proportional) font.

8.4. EXAMPLE RESULTS 55

Fuzzy Value: pressure
Linguistic Value: low or medium (%)

O OO O OO OO ODODODOOOOO0OO OO O+

L Q0% kK% ok kK kokk K *

.95 * * %

.90 * *k *k

.85 *

.80

.75 * * *

.70

.60

.55 * x *

.50

.45 *k

.40 *

.35

.30 *
.25

.20

.15 *
.10 *
.05 *
.00 sk 3k ok 3 ok 3 ok 3 ok 3k ok 3k K K

Figure 8.4: The conclusion fuzzy value.

56 CHAPTER 8. FUZZY LOGIC

Fuzzy Value: pressure
Linguistic Value: 777 (%)

.00

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

.45

L ALQ kK ok ok sk ok sk ok ok s ok sk sk ok ok ok s ok sk sk ok o ok ok sk ok ok ok ok ok
.35

.30 *
.25

.20

.15 *
.10 *
.05 *
.00 sk 3k 3k 3k ok 3k ok 3 ok 3 ok K ok K

ol el eolNeolNolNeolNolNolNolNeolNolNolNolNolNolNolNolNolNolNolN

Figure 8.5: The output using MamdaniMinMaxMinRuleExecutor.

Bibliography

e Giarratano, J.C. (1998, August 5). “CLIPS User’s Guide, Version 6.10”.

e Friedman-Hill, E.J. (2001, December 7). “Jess, The Expert System Shell
for the Java Platform, Version 6.0”. Retrieved March 14, 2002 from the
World Wide Web: http://herzberg.ca.sandia.gov/jess/docs/60/.

e Orchard, R.A. (2001, June). “NRC FuzzyJ Toolkit for the Java™ Plat-
form, User’s Guide, Version 1.2”. Retrieved April 11, 2002 from the World
Wide Web: http://ai.iit.nrec.ca/IR public/fuzzy /fuzzyJDocs/index.html.

o7

