Universidade Federal de Pernambuco Centro de Informática Bach. em Ciência da Computação

1

IF672cc Algoritmos e Estr. de Dados 2014.1

Profs. Katia Guimarães, Paulo Fonseca

Prova Final — 08 de Agosto de 2014

- Esta prova tem 07 questões divididas em duas partes.
- Responda cada parte em uma folha separada, sem esquecer de assinar cada folha.
- A duração da prova é de 02h00min.

PARTE I	

■ **QUESTÃO 1** (Análise de algoritmos – 1,0pt)

Assinale V (verdadeiro) ou F(falso). Não é preciso justificar. Cada alternativa errada anula uma certa.

- a)
- b)
- c)
- d)
- e)

■ **QUESTÃO 2** (Tabelas de dispersão – 1,0pt)

Represente a tabela de dispersão de tamanho m = 11 resultante da inserção das chaves

nesta ordem, utilizando a política de hashing fechado com resolução de colisões por sondagem linear (linear probing) e utilizando a função de dispersão $h(k) = k \mod m$.

■ **QUESTÃO 3** (Árvores binárias – 1,0pt)

Enumere em (a) *pré-ordem* e (b) *pós-ordem* a árvore AVL resultante das inserções sucessivas das chaves

nesta ordem.

■ **QUESTÃO 4** (Heaps binárias – 1,0pt)

Represente na *forma de array*, a heap (fila com prioridades) resultante da inserção sucessiva das chaves a seguir.

As chaves representam datas de nascimento no formato YYYY-MM-DD e a relação de prioridade é: os mais velhos têm prioridade sobre os mais novos.

■ **QUESTÃO** 5 (Union-find – 1,0pt)

A estrutura de dados de floresta para conjuntos disjuntos constituidos por elementos num universo $\mathcal{A} = \{a_1, \ldots, a_n\}$ pode ser representada por um array $P = (P[1], \ldots, P[n])$, onde P[i] representa o 'pai' do elemento a_i .

Considerando uma partição inicial P = (10, 1, 10, 4, 5, 5, 7, 9, 9, 10) de A, represente o vetor P após as operações

Union
$$(5,8)$$
 e Union $(2,9)$,

nesta ordem, assumindo as heurísticas de *união ponderada* com *compressão de caminhos*. Lembre-se que Union(i,j) é implementado como Link(Find(i),Find(j)). Assumimos que, em caso de empate, Link deve escolher o representante do primeiro conjunto para representante da união.

PARTE II _

■ **QUESTÃO** 6 (2,5pt)

Considere a seguinte lista de Adjacências:

$$\begin{array}{cccc} 1 \to 3,4,5,6 & 4 \to 1,5,3 & 7 \to 9,8 \\ 2 \to 8,5,6 & 5 \to 1,2,5,8 & 8 \to 2,5,7,3 \\ 3 \to 1,8,4 & 6 \to 2,1 & 9 \to 7 \end{array}$$

Preencha a tabela abaixo, *indicando a ordem de visita às arestas do grafo* especificado pela estrutura de Listas de Adjacências acima, durante uma *Busca em Profundidade*, iniciando no vértice 1.

Ordem	Extremoa 1	Extremo 2	Tipo (A/R)	Conteúdo da Pilha
1	1	3	A	1
2				
:	:	:	:	:
26				

Na tabela acima:

Extremo 1 = Vértice v_1 correspondente à entrada do array de listas de adjacências sendo visitada;

Extremo 2 = Elemento da lista de adjacências de v_1 sendo considerado no momento;

Tipo (A/R) = Tipo de aresta (se é uma aresta da Árvore ou uma aresta de Retorno);

Conteúdo da Pilha = Configuração atual da pilha de vértices.

QUESTÃO 7 (2,5pt)

Dê exemplo de um grafo G=(V,E), conexo e não-direcionado, com peso nas arestas dado pela função custo: $E\to \mathbb{Z}$ tal que:

- i. $7 \le |V| \le 8$
- ii. $|E| \ge 10$
- iii. A função custo tem valores inteiros positivos e negativos, sendo que pelo menos 4 arestas têm peso positivo e pelo menos 3 arestas têm peso negativo.
- iv. Não há em *G* ciclos de custo negativo (custo ciclo = soma dos custos das arestas no ciclo).
- v. O Algoritmo *Dijkstra*(1) para calcular as distâncias do vértice 1 a cada um dos vértices do grafo calcula errado a distância de 1 a pelo menos dois vértices de *G*.

Você deve indicar claramente:

- 1) Os vértices cuja distância a 1 são calculados de forma errada,
- 2) As distâncias corretas de 1 a cada vértice do grafo e
- 3) O valor da distância que o Algoritmo Dijkstra encontra para cada vértice.