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1. INTRODUCTION

Suffix arrays were introduced in 1990 [Manber and Myers 1990, 1993], along with
algorithms for their construction and use as a space-saving alternative to suffix trees.
In the intervening fifteen years, there have certainly been hundreds of research articles
published on the construction and use of suffix trees and their variants. Over that
period, it has been shown that

—practical space-efficient suffix array construction algorithms (SACAs) exist that re-
quire worst-case time linear in string length [Ko and Aluru 2003; Kärkkäinen and
Sanders 2003];

—SACAs exist that are even faster in practice, though with supralinear worst-
case construction time requirements [Larsson and Sadakane 1999; Burkhardt and
Kärkkäinen 2003; Manzini and Ferragina 2004; Maniscalco 2005];

—any problem whose solution can be computed using suffix trees is solvable with the
same asymptotic complexity using suffix arrays [Abouelhoda et al. 2004].

Thus, suffix arrays have become the data structure of choice for many, if not all, of the
string processing problems to which suffix tree methodology is applicable.

In this survey article, we do not attempt to cover the entire suffix array literature. Our
more modest goal is to provide an overview of SACAs, in particular those modeled on
the efficient use of main memory—we exclude the substantial literature (e.g., Crauser
and Ferragina [2002]) that discusses strategies based on the use of secondary storage.
Further, we deal with the construction of compressed (“succinct”) suffix arrays only
insofar as they relate to standard SACAs. For example, algorithms and techniques
such as those discussed in Grossi and Vitter [2005] and Navarro and Mäkinen [2007]
and references therein are not covered.

Section 2 provides an overview of the SACAs known to us, organized into a “taxonomy”
based primarily on the methodology used. As with all classification schemes, there is
room for argument: there are many cross-connections between algorithms that occur in
disjoint subtrees of the taxonomy, just as there may be between species in a biological
taxonomy. Our aim is to provide as comprehensive and, at the same time, as accessible
a description of SACAs as we can.

Also, in Section 2, we present the vocabulary to be used for the structured descrip-
tion of each of the algorithms, including new hybrid algorithms, that will be given in
Section 3. Then, in Section 4, we report on the results of experimental results on many
of the algorithms described and so draw conclusions about their relative speed and
space-efficiency.

2. OVERVIEW

We consider throughout a finite nonempty string x = x[1..n] of length n ≥ 1, defined
on an indexed alphabet � [Smyth 2003]; that is,

—the letters λ j , j = 1, 2, . . . , σ of |�| are ordered: λ1 < λ2 < · · · < λσ ;
—an array A[λ1..λσ ] can be defined in which, for every j ∈ 1..σ , A[λ j ] is accessible in

constant time;
—λσ − λ1 ∈ O(n).

Essentially, we assume that � can be treated as a sequence of integers whose range is
not too large, an assumption almost universal for strings processed in a computer and
thus a requirement for most efficient string processing algorithms. Typically, the λ j
may be represented by ASCII codes 0..255 (English alphabet) or binary integers 00..11
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A Taxonomy of Suffix Array Construction Algorithms 3

(DNA) or simply bits, as the case may be. We shall generally assume that a letter can
be stored in a byte and that n can be stored in one computer word (four bytes).

We are interested in computing the suffix array of x, which we write SAx or just
SA; that is, an array SA[1..n] in which SA[ j ] = i iff x[i..n] is the j th suffix of x in
(ascending) lexicographical order (lexorder). For simplicity, we will frequently refer to
x[i..n] simply as “suffix i”; also, it will often be convenient for processing to incorporate
into x at position n an ending sentinel $ assumed to be less than any λ j .

Then, for example, on alphabet � = {$, a, b, c, d , e}:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA = 12 11 8 1 4 6 9 2 5 7 10 3

Thus SA tells us that x[12..12] = $ is the least suffix, x[11..12] = a$ the second least,
and so on (alphabetical ordering of the letters assumed). Note that SA is always a
permutation of 1..n.

Often used in conjunction with SAx is the lcp array lcp = lcp[1..n]: for every j ∈ 2..n,
lcp[ j ] is just the length of the longest common prefix of suffixes SA[ j − 1] and SA[ j ].
In our example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA = 12 11 8 1 4 6 9 2 5 7 10 3
lcp = − 0 1 4 1 1 0 3 0 0 0 2

Thus, the longest common prefix of suffixes 11 and 8 is a of length 1, while that of
suffixes 8 and 1 is abca of length 4. Since lcp can be computed in linear time from SAx
[Kasai et al. 2001; Manzini 2004], also as a byproduct of some of the SACAs discussed
below, we do not consider its construction further in this article. However, the average
lcp—that is, the average lcp of the n − 1 integers in the lcp array—is as we shall see a
useful indicator of the relative efficiency of certain SACAs, notably Algorithm S.

We remark that both SA and lcp can be computed in linear time by a preorder traver-
sal of a suffix tree.

Many of the SACAs also make use of the inverse suffix array, written ISAx or ISA:
an array ISA[1..n] in which

ISA[i] = j ⇐⇒ SA[ j ] = i.

ISA[i] = j therefore says that suffix i has rank j in lexorder. Continuing our example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
ISA = 4 8 12 5 9 6 10 3 7 11 2 1

Thus, ISA tells us that suffix 1 has rank 4 in lexorder, suffix 2 rank 8, and so on. Note
that ISA is also a permutation of 1..n, and so SA and ISA are computable, one from the
other, in �(n) time:

for j ← 1to n do
SA

[
ISA[ j ]

] ← j

As shown in Figure 1, this computation can if required also be done in place.
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Fig. 1. Algorithm for computing ISA from SA in place.

Many of the algorithms we shall be describing depend upon a partial sort of some or
all of the suffixes of x, partial because it is based on an ordering of the prefixes of these
suffixes that are of length h ≥ 1. We refer to this partial ordering as an h-ordering of
suffixes into h-order, and to the process itself as an h-sort. If two or more suffixes are
equal under h-order, we say that they have the same h-rank and therefore fall into the
same h-group; they are accordingly said to be h-equal. Usually an h-sort is stable, so
that any previous ordering of the suffixes is retained within each h-group.

The results of an h-sort are often stored in an approximate suffix array, written SAh,
and/or an approximate inverse suffix array, written ISAh. Here is the result of a 1-sort
on all the suffixes of our example string:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA1 = 12 (1 4 6 8 11) (2 9) 5 7 (3 10)
ISA1 = 2 7 11 2 9 2 10 2 7 11 2 1

or 6 8 12 6 9 6 10 6 8 12 6 1
or 2 3 6 2 4 2 5 2 3 6 2 1

The parentheses in SA1 enclose 1-groups not yet reduced to a single entry, thus not yet
in final sorted order. Note that SAh retains the property of being a permutation of 1..n,
while ISAh may not. Depending on the requirements of the particular algorithm, ISAh
may as shown express the h-rank of each h-group in various ways:

—the leftmost position j in SAh of a member of the h-group, also called the head of
the h-group;

—the rightmost position j in SAh of a member of the h-group, also called the tail of
the h-group;

—the ordinal left-to-right counter of the h-group in SAh.

Compare the result of a 3-sort:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA3 = 12 11 (1 8) 4 6 (2 9) 5 7 10 3
ISA3 = 3 7 12 5 9 6 10 3 7 11 2 1

or 4 8 12 5 9 6 10 4 8 11 2 1
or 3 6 10 4 7 5 8 3 6 9 2 1

Observe that an (h + 1)-sort is a refinement of an h-sort: all members of an (h + 1)-
group belong to a single h-group.
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We now have available a vocabulary sufficient to characterize the main species of
SACA as follows:

(1) Prefix-Doubling. First, a fast 1-sort is performed (since � is indexed, bucket
sort can be used); this yields SA1/ISA1. Then, for every h = 1, 2, . . . , SA2h/ISA2h are
computed in �(n) time from SAh/ISAh until every 2h-group is a singleton. Since there
are at most log2 n iterations, the time required is therefore O(n log n). There are two
algorithms in this class: MM [Manber and Myers 1990, 1993] and LS [Sadakane 1998;
Larsson and Sadakane 1999].

(2) Recursive. Form strings x ′ and y from x, then show that if SAx ′ is computed,
therefore SAy and finally SAx can be computed in O(n) time. Hence the problem of
computing SAx ′ recursively replaces the computation of SAx. Since |x ′| is always chosen
so as to be less than 2|x|/3, the overall time requirement of these algorithms is �(n).
There are three main algorithms in this class: KA [Ko and Aluru 2003], KS [Kärkkäinen
and Sanders 2003], and KJP [Kim et al. 2004].

(3) Induced Copying. The key insight here is the same as for the recursive
algorithms—a complete sort of a selected subset of suffixes can be used to “induce”
a complete sort of other subsets of suffixes. The approach however is nonrecursive: an
efficient string sorting technique (e.g., Bentley and McIlroy [1993], McIlroy et al. [1993],
McIlroy [1997], Bentley and Sedgewick [1997], and Sinha and Zobel [2004]) is invoked
for the selected subset of suffixes. The general idea seems to have been first proposed in
Burrows and Wheeler [1994], but it has been implemented in quite different ways [Itoh
and Tanaka 1999; Seward 2000; Manzini and Ferragina 2004; Schürmann and Stoye
2005; Burkhardt and Kärkkäinen 2003; Maniscalco 2005]. In general, these methods
are very efficient in practice, but may have worst-case asymptotic complexity as high
as O(n2 log n).

The goal is to design SACAs that

—have minimal asymptotic complexity �(n);
—are fast “in practice” (i.e., on collections of large real-world data sets such as Hart

[1997]);
—are lightweight—that is, use a small amount of working storage in addition to the

5n bytes required by x and SAx.

To date none of the SACAs that has been proposed achieves all of these objectives.
Figure 2 presents our taxonomy of the fifteen main species of SACA that have been

recognized so far. Table I specifies a worst-case asymptotic time complexity for each of
these algorithms, together with a few others that have been proposed in the literature;
the table also gives average time and space requirements over a range of cases tested in
our experiments (Section 4). The worst-case complexities given are those claimed by the
designers of the algorithms, though it is possible for some of those that include the term
n2 log n that a somewhat lower worst-case bound holds. This could be a subject of future
research. It should be remarked that in practice the behavior of all the algorithms is
linear; in other words, over strings of homogeneous data (i.e., all English-language or
all DNA), the execution time of each algorithm increases linearly in string length.

3. THE ALGORITHMS

3.1. Prefix-Doubling Algorithms [Karp et al. 1972]

Here we consider algorithms that, given an h-order SAh of the suffixes of x, h ≥ 1,
compute a 2h-order in O(n) time. Thus, prefix-doubling algorithms require at most
log2 n steps to complete the suffix sort and execute in O(n log n) time in the worst case.
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Fig. 2. Taxonomy of suffix array construction algorithms.

Normally prefix-doubling algorithms initialize SA1 for h = 1 using a linear-time
bucket sort. The main idea [Karp et al. 1972] is as follows:

OBSERVATION 1. Suppose that SAh and ISAh have been computed for some h > 0,
where i = SAh[ j ] is the j th suffix in h-order and h-rank[i] = ISAh[i]. Then, a sort using
the integer pairs

(ISAh[i], ISAh[i + h])

as keys, i+h ≤ n, computes a 2h-order of the suffixes i. (Suffixes i > n−h are necessarily
already fully ordered.)

The two main prefix-doubling algorithms differ primarily in their application of this
observation:

—Algorithm MM does an implicit 2h-sort by performing a left-to-right scan of SAh that
induces the 2h-rank of SAh[ j ] − h, j = 1, 2, . . . , n;

—Algorithm LS explicitly sorts each h-group using the ternary-split quicksort (TSQS)
of Bentley and McIlroy [1993].

MM [Manber and Myers 1990, 1993].
Algorithm MM employs Observation 1 as follows:

If SAh is scanned left to right (thus, in h-order of the suffixes), j = 1, 2, . . . , n, then the suffixes

i − h = SAh[ j ] − h > 0

are necessarily scanned in 2h-order within their respective h-groups in SAh.
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A Taxonomy of Suffix Array Construction Algorithms 7

Table I. Performance Summary of the Construction Algorithms

Algorithm Worst Case Time Memory
Prefix-Doubling

MM [Manber and Myers 1993] O(n log n) 30 8n
LS [Larsson and Sadakane 1999] O(n log n) 3 8n

Recursive
KA [Ko and Aluru 2003] O(n) 2.5 7–10n
KS [Kärkkäinen and Sanders 2003] O(n) 4.7 10–13n
KSPP [Kim et al. 2003] O(n) — —
HSS [Hon et al. 2003] O(n) — —
KJP [Kim et al. 2004] O(n log log n) 3.5 13–16n
N [Na 2005] O(n) — —

Induced Copying
IT [Itoh and Tanaka 1999] O(n2 log n) 6.5 5n
S [Seward 2000] O(n2 log n) 3.5 5n
BK [Burkhardt and Kärkkäinen 2003] O(n log n) 3.5 5–6n
MF [Manzini and Ferragina 2004] O(n2 log n) 1.7 5n
SS [Schürmann and Stoye 2005] O(n2) 1.8 9–10n
BB [Baron and Bresler 2005] O(n

√
log n) 2.1 18n

M [Maniscalco and Puglisi 2007] O(n2 log n) 1.3 5–6n
MP [Maniscalco and Puglisi 2006] O(n2 log n) 1 5–6n

Hybrid
IT+KA O(n2 log n) 4.8 5n
BK+IT+KA O(n log n) 2.3 5–6n
BK+S O(n log n) 2.8 5–6n

Suffix Tree
K [Kurtz 1999] O(n log σ ) 6.3 13–15n

Time is relative to MP, the fastest in our experiments. Memory is given in bytes
including space required for the suffix array and input string and is the aver-
age space required in our experiments. Algorithms HSS and N are included,
even though to our knowledge they have not been implemented. The time for
algorithm MM is estimated from experiments in Larsson and Sadakane [1999].

After the bucket sort that forms SA1, MM computes ISA1 by specifying as the h-rank
of each suffix i in SA1 the leftmost position in SA1 (the head) of its group:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA1 = 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA1 = 2 7 11 2 9 2 10 2 7 11 2 1

To form SA2, we consider positive values of i − 1 = SA1[ j ] − h for j = 1, 2, . . . , n:

—for j = 1, 7, 8, 9, 10, identify in 2-order the suffixes 11, (1, 8), 4, 6 beginning with a;
—for j = 11, 12, identify in 2-order the 2-equal suffixes (2, 9) beginning with b;
—for j = 3, 6, identify in 2-order the 2-equal suffixes (3, 10) beginning with e.

Of course, groups that are singletons in SA1 remain singletons in SA2, and so, after
relabeling the groups, we get

1 2 3 4 5 6 7 8 9 10 11 12

SA2 = 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)
ISA2 = 3 7 11 5 9 6 10 3 7 11 2 1

To form SA4, we consider positive values of i − 2 = SA2[ j ] − h for j = 1, 2, . . . , n:

—for j = 11, 12, we identify in 4-order the 4-equal suffixes (1, 8) beginning with ab;
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8 S. J. Puglisi et al.

Fig. 3. Algorithm MM.

—for j = 2, 5, we identify in 4-order the 4-distinct suffixes 9, 2 beginning with be;
—for j = 1, 9, we identify in 4-order the 4-distinct suffixes 10, 3 beginning with ea.

Hence:
1 2 3 4 5 6 7 8 9 10 11 12

SA4 = 12 11 (1 8) 4 6 9 2 5 7 10 3
ISA4 = 3 8 12 5 9 6 10 3 7 11 2 1

The final SA = SA8 and ISA = ISA8 are achieved after one further doubling that
separates the abea’s (1, 8) into 8, 1.

Algorithm MM is complicated by the requirement to keep track of the head of each
h-group, but can nevertheless be implemented using as few as 4n bytes of storage, in
addition to that required for x and SA. In fact, if the contents of x are not required
after SA is computed, n bytes can be saved by initially storing one character as an
integer in ISA and then overwriting each character with its corresponding 1-group
value, available after a counting sort. If this is acceptable, then MM requires 8n bytes
total. The algorithm can be represented conceptually as shown in Figure 3. A time and
space-efficient implementation of MM is available at McIlroy [1997].

LS [Sadakane 1998; Larsson and Sadakane 1999].
After using TSQS to form SA1, Algorithm LS computes ISA1 using the rightmost (rather
than, as in Algorithm MM, the leftmost) position of each group in SA1 to identify
h-rank[i].

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA1 = 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA1 = 6 8 12 6 9 6 10 6 8 12 6 1

In addition to identifying h-groups in SAh that are not singletons, LS also identifies
runs of consecutive positions that are singletons (fully sorted). For this purpose an
array L = L[1..n] is maintained, in which L[ j ] = � (respectively, −�) if and only if j is
the leftmost position in SAh of an h-group (respectively, run) of length �:

1 2 3 4 5 6 7 8 9 10 11 12

L = −1 5 2 −2 2

Left-to-right processing of L thus allows runs to be skipped and non-singleton h-groups
to be identified, in time proportional to the total number of runs and h-groups. TSQS
is again used to sort the suffixes i in each of the identified h-groups according to keys
ISAh[i + h], thus yielding, by Observation 1, a collection of subgroups and subruns in
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2h-order. A straightforward update of L and ISA then yields stage 2h:

1 2 3 4 5 6 7 8 9 10 11 12

SA2 = 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)
ISA2 = 4 8 12 5 9 6 10 4 8 12 2 1

L = −2 2 −2 2 −2 2

A further doubling yields

1 2 3 4 5 6 7 8 9 10 11 12

SA4 = 12 11 (1 8) 4 6 9 2 5 7 10 3
ISA4 = 4 8 12 5 9 6 10 4 7 11 2 1

L = −2 2 −8

and then the final results SA8 and ISA8 are achieved as for Algorithm MM, with L[1] =
−12.

Observe that, like MM, LS maintains ISA2h[i] = ISAh[i] for every suffix i that is
a singleton in its h-group. However, unlike MM, LS avoids having to process every
position in SAh (see the for loop in Figure 3) by virtue of its use of the array L—in fact,
once for some h, i is identified as a singleton, SAh[i] is never accessed again.

In fact, as observed in Larsson and Sadakane [1999], L can be eliminated entirely.
L is not required to determine non-singleton h-groups because for every suffix i in
such a group, ISAh[i] is by definition the rightmost position in the group. Thus, in
particular, at the leftmost position j of the h-group, where i = SAh[ j ], we can com-
pute the length � of the group from � = ISAh[i] − j + 1. Of course L also keeps track
of runs of fully sorted suffixes in SAh, but, as just remarked, positions in SAh corre-
sponding to such runs are thereafter unused—it turns out that they can be recycled
to perform the run-tracking role. This implementation requires that SAh be recon-
structed from ISAh in order to provide the final output, a straightforward procedure (see
Section 2).

Algorithm LS thus requires 4n additional bytes of storage (the integer array ISA),
and like MM can save n bytes during processing by overwriting the input string. As
shown in Larsson and Sadakane [1999], LS executes in O(n log n) time, again the same
as MM; however, in practice its running time is usually much (10 times or so) faster.

3.2. Recursive Algorithms [Farach 1997]

In this section, we consider a family of algorithms that were all discovered in 2003
or later, that are recursive in nature, and that generally execute in worst-case time
linear in string length. All are based on an idea first put forward in Farach [1997] for
linear-time suffix tree construction of strings on an indexed alphabet: they depend on
an initial assignment of type to each suffix (position) in x that separates the suffixes
into two or more classes. Thus the recursion in all cases is based on a split of the given
string x = x(0) into disjoint (or almost disjoint) components (subsequences) that are
transformed into strings we call x(1) and y(1), chosen so that, if SAx (1) is (recursively)
computed, then in linear time

—SAx (1) can be used to induce construction of SAy (1) , and furthermore
—SAx (0) can then also be computed by a merge of SAx (1) and SAy (1) .

Thus, the computation of SAx (0) (in general, SAx (i) ) is reduced to the computation of SAx (1)

(in general, SAx (i + 1) ). To make this strategy efficient and effective, two requirements
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10 S. J. Puglisi et al.

Fig. 4. General algorithm for recursive SA construction. The convention procedure name(input; output) is
used (input and output parameters are separated by a semicolon).

need to be met:

(1) At each recursive step, ensure that
|x(i+1)|/|x(i)| ≤ f < 1;

thus the sum of the lengths of the strings processed by all recursive steps is

|x|(1 + f + f 2 + . . .) < |x|/(1 − f ).
In fact, over all the algorithms proposed so far, f ≤ 2/3, so that the sum of the
lengths is guaranteed to be less than 3|x|—for most of them ≤ 2|x|.

(2) Devise an approximate suffix-sorting procedure, semisort say, that for some suffi-
ciently short string x(i+1) will yield a complete sort of its suffixes and thus terminate
the recursion, allowing the suffixes of x(i), x(i−1), . . . , x(0) all to be sorted in turn. En-
sure moreover that the time required for semisort is linear in the length of the string
being processed.

Clearly, suffix-sorting algorithms satisfying the above description will compute SAx (or
equivalently ISAx) of a string x = x[1..n] in �(n) time. The structure of such algorithms
is shown in Figure 4.

All of the algorithms discussed in this subsection compute x ′ (i.e., x(1)) and y (i.e.,
y(1)) from x (i.e., x(0)) in similar ways: the alphabet of the split strings is in fact the set
of suffixes (positions) 1..n in x, so that x ′ and y together form a permutation of 1..n.

Attention then focuses on ranking the positions i′ of x ′, a string of length n′ ≤ 
 f n�.
This ranking is based on computing the ranks of the corresponding suffixes

x[x ′[i′]..n] (1)

of x, taking into account only those suffixes that have been assigned to x ′. We call this
string of ranks ISAx ′ = ISAx ′ [1..n′].

Since computation of ISAx ′ may require more than �(n′) time, we therefore invoke a
procedure semisort that in �(n′) time computes an approximation ISA′ = ISA′[1..n′] of
ISAx ′—that is, a partial ranking (h-ranking) of the suffixes (1) that breaks ties among
them only up to some common prefix of a predetermined constant length h. At some
level of recursion, the approximation ISA′ will be exact (its entries will be distinct)—and
so we may write ISAx ′ = ISA′, then invert ISAx ′ to form SAx ′ .

If however ISA′ is not exact, then it is used as the input string for a recursive call
of the construct procedure, thus yielding the suffix array, SA′ say, of ISA′—the key
observation made here, common to all the recursive algorithms, is that since SA′ is the
suffix array for the (approximate) ranks of the suffixes identified by x ′, it is therefore
the suffix array for those suffixes themselves. We may accordingly write SAx ′ = SA′.
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Fig. 5. Algorithm KA-merge.

In our discussion below of these algorithms, we focus on the nature of split and
semisort and their consequences for the induce and merge procedures.

KA [Ko and Aluru 2003, 2005].
Algorithm KA’s split procedure assigns suffixes i < n in left-to-right order to a sequence
S (respectively, L) iff x[i..n] < (respectively, >) x[i+1..n]. Suffix n ($) is assigned to both
S andL. Since x[i] = x[i+1] implies that suffixes i and i+1 belong to the same sequence,
it follows that the KA split requires time linear in x.

Then x ′ is formed from the sequence of suffixes of smaller cardinality, y from the
sequence of larger cardinality. Hence, for KA, |x ′| ≤ |x|/2.

For example,

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
type = L S L L S L L S L L L S/L

yields |S| = 4, |L| = 9, x ′ = 2 5 8 12, y = 1 3 4 6 7 9 10 11 12.
For every j ∈ 1..|x ′|, KA’s semisort procedure forms i = x ′[ j ], i1 = x ′[ j + 1] (i1 =

x ′[ j ] if j = |x ′|), and then performs a radix sort on the resulting substrings x[i..i1],
a calculation that requires �(n) time. The result of this sort is a ranking ISA′ of the
substrings x[i..i1], hence an approximate ranking of the suffixes (positions) i = x ′[ j ].
In our example, semisort yields

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
x ′ = 2 5 8 12

ISA′ = 3 3 2 1

If after semisort the entries (ranks) in ISA′ are distinct, then a complete ordering of
the suffixes of x ′ has been computed (ISA′ = ISAx ′ ); if not, then as indicated in Figure 4,
the construct procedure is recursively called on ISA′. In our example, one recursive call
suffices for a complete ordering (12, 8, 5, 2) of the suffixes of x ′, yielding ISAx ′ = 4321.

At this point KA deviates from the pattern of Figure 4 in two ways: it combines the
induce and merge procedures into a single KA-merge (see Figure 5), and it computes
SAx directly without reference to ISAx.1

1In Ko and Aluru [2003], it is claimed that the ISA must be built in unison with the SA for this procedure to
work, but we have found that this is actually unnecessary.
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12 S. J. Puglisi et al.

First SA1 is computed, yielding 1-groups for which the leftmost and rightmost posi-
tions are specified in arrays head[1..α] and tail[1..α], respectively. Since in each 1-group
all the S-suffixes are lexicographically greater than all the L-suffixes, and since the S-
suffixes have been sorted, KA-merge can place all the S-suffixes in their final positions
in SA—each time this is done, the tail for the current group is decremented by one. (In
this description, we assume that |S| ≤ |L|; obvious adjustments yield a corresponding
approach for the case |L| < |S|.)

The SA at this stage is shown below, with “−” denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (− 8 5 2) (−) (− −) (− − − −)
type = S L S S S L L L L L L L

To sort the L-suffixes, we scan SA left to right. For each suffix position i = SA[ j ] that
we encounter in the scan, if i − 1 is an L-suffix still awaiting sorting (not yet placed in
the SA), we place i − 1 at the head of its group in SA and increment the head of the
group by one. Suffix i − 1 is now sorted and will not be moved again. The correctness of
this procedure depends on the fact that when the scan of SA reaches position j , SA[ j ]
is already in its final position. In our example, placements begin when j = 1, so that
i = SA[1] = 12. Since suffix i − 1 = 11 is type L, it is placed at the front of the a group
(of which it happens to be the only member):

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (−) (− −) (− − − −)
type = S L S S S L L L L L L L

Next the scan reaches j = 2, i = SA[2] = 11, and we place i − 1 = 10 at the front of
the c group at SA[7] and increment the group head.

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (−) (10 −) (− − − −)
type = S L S S S L L L L L L L

The scan continues until finally

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Algorithm KA can be implemented to use only 4n bytes plus 1.25n bits in addition to
the storage required for x and SA.

KS [Kärkkäinen and Sanders 2003; Kärkkäinen et al. 2006].
The split procedure of Algorithm KS first separates the suffixes i of x into sequences
S1 (every third suffix in x: i ≡ 1 mod 3) and S02 (the remaining suffixes: i ≡ 1 mod 3).
Thus in this algorithm three types 0, 1, 2 are identified: x ′ is formed from S02 by

x ′ = (i ≡ 2 mod 3) (i ≡ 0 mod 3),

while y is formed directly from S1. For our example string

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $

we find x ′ = (2 5 8 11)(3 6 9 12), y = 1 4 7 10. Note that |x ′| ≤ 
2|x|/3�.
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Construction of ISA′ using semisort begins with a linear-time 3-sort of suffixes i ∈ S02
based on triples ti = x[i..i +2]. Thus, a 3-order of these suffixes is established for which
a 3-rank ri can be computed, as illustrated by our example:

i 2 3 5 6 8 9 11 12
ti add dda add dda acc cca a$− $−−
ri 4 6 4 6 3 5 2 1

These ranks enable ISA′ to be formed for x ′:

1 2 3 4 5 6 7 8

ISA′ = (4 4 3 2) (6 6 5 1)

As with Algorithm KA, one recursive call on x ′ = 44326651 suffices to complete the
ordering, yielding ISAx ′ = 54328761—this gives the ordinal ranks in x of the suffixes
x ′ = 2 5 8 11 3 6 9 12.

The induce procedure sorts the suffixes specified by y based on the ordering ISAx ′ .
First SAx ′ = 12 11 8 5 2 9 6 3 is formed by linear-time processing of ISAx ′ . Then a left-
to-right scan of SAx ′ allows us to identify suffixes i ≡ 2 mod 3 in increasing order of
rank and thus to select letters x[i − 1], i − 1 ≡ 1 mod 3, in the same order. A stable
bucket sort of these letters will then provide the suffixes of y in increasing lexorder.
In our example SAx ′ [2..5] = 11 8 5 2, and so we consider x[10] = c, x[7] = x[4] = d ,
x[1] = b. A stable sort yields bcdd corresponding to SAy = 1 10 7 4.

Thus, we may suppose that SAx ′ and SAy are both in sorted order of suffix. The
KS merge procedure may then be thought of as a straightforward merge of these two
strings into the output array SAx, where at each step we need to decide in constant
time whether suffix i02 of SAx ′ is greater or less than suffix i1 of SAy. Observing that
i1 + 1 ≡ 2 mod 3 and i1 + 2 ≡ 0 mod 3, we identify two cases:

—if i02 ≡ 2 mod 3, then i02 + 1 ≡ 0 mod 3, and so it suffices to compare the pairs
(x[i02], rank(i02 + 1)) and (x[i1], rank(i1 + 1));

—if i02 ≡ 0 mod 3, then i02 + 2 ≡ 2 mod 3, and so it suffices to compare the triples
(x[i02..i02 + 1], rank(i02 + 2)) and (x[i1..i1 + 1], rank(i1 + 2)).

We now observe that each of the ranks required by these comparisons is available in
constant time from ISAx ′ ! For if i ≡ 2 mod 3, then

rank(i) = ISAx ′ [
(i + 1)/3�],

while if i ≡ 0 mod 3, then

rank(i) = ISAx ′ [
(n + 1)/3� + 
i/3�].

Thus the merge of the two lists requires �(n) time.
Excluding xand SA, Algorithm KS can be implemented in 6n bytes of working storage.

A recent variant of KS [Na 2005] permits construction of a succinct suffix array in O(n)
time using only O(n log σ logq n) bits of working memory, where q = log2 3.

KJP [Kim et al. 2003, 2004, 2005; Hon et al. 2003].
The KJP split procedure adopts the same approach as Farach’s suffix tree construction
algorithm [Farach 1997]: it forms x ′, the string of odd suffixes (positions) i ≡ 1 mod 2 in
x, and the corresponding string y of even positions. ISAx ′ is then formed by a recursive
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sort of the suffixes identified by x ′. Algorithm KJP is not quite linear in its operation,
running in O(nloglogn) worst-case time.

For KJP, we modify our example slightly to make it more illustrative:

1 2 3 4 5 6 7 8 9 10 11

x = b a d d d d a c c a $

yielding x ′ = 1 3 5 7 9 11, y = 2 4 6 8 10.
The KJP semisort 2-sorts prefixes pi = x[i..i + 1] of each odd suffix i and assigns to

each an ordinal rank ri:

i 11 7 1 9 3 5

pi $− ac ba ca dd dd
ri 1 2 3 4 5 5

As in the other recursive algorithms, a new string ISA′ is formed from these ranks;
in our example,

1 2 3 4 5 6

ISA′ = 3 5 5 2 4 1

As with the other recursive algorithms, one recursive call suffices to find ISAx ′ =
365241 corresponding to x ′ = 1 3 5 7 9 11. At this point KJP computes the inverse array
SAx ′ = 11 7 1 9 5 3. The KJP induce procedure can now compute SAy, the sorted list of
even suffixes, in a straightforward manner: first set SAy[i] ← SAx ′ [i]−1, and then sort
SAy stably, using x[SAy[i]] as the sort key for suffix SAy[i]:

1 2 3 4 5 6

SAx ′ = 11 7 1 9 5 3
SAy = 10 2 8 6 4

The KJP merge is more complex. In order to merge SAx ′ and SAy efficiently, we need
to compute an array C[1..�n/2�], in which C[i] gives the number of suffixes in SAx ′ that
lie between SAy[i] and SAy[i−1] in the final SA (with special attention to end conditions
i = 1 and i = |y| + 1). In Kim et al. [2004], it is explained how C can be computed in
log |x ′| time using a suffix array search (pattern-matching) algorithm described in Sim
et al. [2003]. We omit the details; however, for our example we would find

1 2 3 4 5 6

C = 0 1 1 0 1 1

With C in hand, merging is just a matter of using each C[i] to count how many consec-
utive SAx ′ entries to insert between consecutive SAy entries.

There are two other algorithms that, like KJP, perform an odd/even split of the suf-
fixes. Algorithm KSPP [Kim et al. 2003] was the first of these, and although its worst-
case execution time is �(n), it is generally considered to be of only theoretical interest,
mainly due to high memory requirements. On the other hand, Algorithm HSS [Hon
et al. 2003] uses “succinct data structures” [Munro 1996] effectively to construct a (suc-
cinct) suffix array in O(n log log σ ) time with only �(n log σ ) bits of working memory.
(Compare the variant [Na 2005] of Algorithm KS mentioned above.) It is not clear how
practical these lightweight approaches are, since their succinctness may well adversely
affect speed.
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3.3. Induced Copying Algorithms [Burrows and Wheeler 1994]

The algorithms in this class are arguably the most diverse of the three main divi-
sions of SACAs discussed in this article. They are united by the idea that a (usually)
complete sort of a selected subset of suffixes can be used to induce a fast sort of the
remaining suffixes. This induced sort is similar to the induce procedures employed in
the recursive SACAs; the difference is that some sort of iteration is used in place of
the recursion. This replacement (of recursion by iteration) probably largely explains
why several of the induced copying algorithms are faster in practice than any of the
recursive algorithms (as we shall discover in Section 4), even though none of these
algorithms is linear in the worst case. In fact, their worst-case asymptotic complexity
is generally O(n2 log n). In terms of space requirements, these algorithms are usually
lightweight: for many of them, use of additional working storage amounts to less than
n bytes.

We begin with brief outlines of the induced copying algorithms discussed in this
section:

—Itoh and Tanaka [1999] select suffixes i of “type B”—those satisfying x[i] ≤ x[i +1]—
for complete sorting, thus inducing a sort of the remaining suffixes.

—Seward [2000] on the other hand sorts certain 1-groups, using the results to induce
sorts of corresponding 2-groups, an approach that also forms the basis of Algorithms
MF [Manzini and Ferragina 2004] and SS [Schürmann and Stoye 2005].

—A third approach, due to Burkhardt and Kärkkäinen [2003], uses a small integer h
to form a “sample” S of suffixes that is then h-sorted; using a technique reminiscent
of the recursive algorithms, the resulting h-ranks are then used to induce a complete
sort of all the suffixes.

—The algorithm of Maniscalco [Maniscalco and Puglisi 2007] computes ISAx using
an iterative technique that, beginning with 1-groups, uses h-groups to induce the
formation of (h + 1)-groups.

—Finally, the new algorithm of Maniscalco and Puglisi [2006] extends the IT/KA split-
ting idea to select a small sample of suffixes that are sorted in a cache-friendly way
and then used to obtain the full SA.

Before describing the algorithms in more detail, we mention one other approach
[Baron and Bresler 2005] that is also related to the Burrows–Wheeler transform. The
authors describe a method in which suffixes are inserted in descending order of position
in x into a suffix list maintained in lexorder. Three implementations are described, of
which the fastest has time complexity O(n

√
log n) and, according to our experiments,

a speed in practice somewhat faster than that of Algorithm LS (Section 3.1). However,
due to the need to use pointers, the space requirement of the fastest version is several
times that of the lightweight algorithms (averaging 17.6n in our experiments), and is
thus not suited to long strings.

IT [Itoh and Tanaka 1999].
Algorithm IT classifies each suffix i of x as being type A if x[i] > x[i + 1] or type B if
x[i] ≤ x[i + 1] (compare types L and S of Algorithm KA). The key observation of Itoh
and Tanaka [1999] is that once all the groups of type B suffixes are sorted, the order of
the type A suffixes is easy to derive. For example:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
type = A B B A B B A B B A A B
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To form the full SA, we begin by computing the 1-group boundaries, noting the be-
ginning and end of each 1-group with arrays head[1..σ ] and tail[1..σ ] (recall σ = |�|).
Each 1-group is further partitioned into two portions, so that in the first portion there
is room for the type A suffixes, and in the second for the type B suffixes. For each group
the position of the A/B partition is recorded. Observe that, within a 1-group, type A
suffixes should always come before type B suffixes. The SA at this stage is shown below,
with “−” denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (− 2 5 8) (−) (− 9) (− − 3 6)
type = B A B B B A A B A A B B

Algorithm IT now sorts the B suffixes using a fast string sorting algorithm. In Itoh and
Tanaka [1999], multikey quicksort (MKQS) [Bentley and Sedgewick 1997] is proposed,
but any other fast sort, such as burst sort [Sinha and Zobel 2004] or the elaborate
approach introduced in Algorithm MF (see below), could be used:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (− 8 5 2) (−) (− 9) (− − 6 3)
type = B A B B B A A B A A B B

To sort the A-suffixes, and complete the SA, we scan SA left to right, j = 1, 2, . . . , n.
For each suffix position i = SA[ j ] that we encounter in the scan, if i − 1 is an A-suffix
still awaiting sorting (i.e., it has not yet been placed in the SA), then we place i − 1 at
the head of its group in SA and increment the head of the group by one. Suffix i − 1
is now sorted and will not be moved again. Like Algorithm KA, the correctness of this
procedure depends on SA[ j ] already being in its final position when the scan of SA
reaches position j . In our example, placements begin when j = 1, i = SA[1] = 12.
Suffix i − 1 = 11 is type A, so we place 11 at the front of the a group (of which it
happens to be the only unsorted member), and it is now sorted:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (−) (− 9) (− − 6 3)
type = B A B B B A A B A A B B

Next the scan reaches j = 2, i = SA[2] = 11, and so we place i − 1 = 10 at the front
of its c group at SA[7] and increment the group head, completing that group:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (−) 10 9 (− − 6 3)
type = B A B B B A A B A A B B

The scan continues, eventually arriving at the final SA :

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Figure 6 gives an algorithm capturing these ideas. The attentive reader will note the
similarity between it and Algorithm KA (Section 3.2). In fact, the set of B-suffixes used
in Algorithm IT is a superset of the S-suffixes treated in Algorithm KA.
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Fig. 6. Algorithm IT.

Clearly, IT executes in time linear in n except for the up to σ suffix sorts of the
possibly �(n) B-suffixes in each 1-group; these sorts may require O(n2 log n) time in
pathological cases. In practice, however, IT is quite fast. It is also lightweight: with
careful implementation (e.g., both head and tail arrays do not need to be stored, and
suffixsort can be executed in place), IT requires less than n bytes of additional working
storage when n is large (megabytes or more) with respect to σ .

S [Seward 2000].

Algorithm S begins with a linear-time 2-sort of the suffixes of x, thus forming SA2 in
which the boundaries of each 2-group are identified by the head array—also used to
mark boundaries between the 1-groups. Therefore in this case head = head[1..σ, 1..σ ],
allowing access to every boundary head[λ, μ] for every λ, μ ∈ �. For our example, the
result of the 2-sort could be represented as follows:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
SA2 = 12 (11 8 [2 5]) 1 (10 9) ([4 7] [3 6])

where () encloses non-singleton 1-groups, [ ] encloses non-singleton 2-groups.
Now consider a 1-group Gλ corresponding to a common single-letter prefix λ. Suppose

that the suffixes of Gλ are fully sorted, yielding a sequence G∗
λ in ascending lexorder.

Imagine now that G∗
λ is traversed in lexorder: for every suffix i > 1, the suffix i − 1 can

be placed in its final position in SAx at the head of the 2-group for x[i − 1]λ—provided
head[x[i −1], λ] is incremented by one after the suffix is placed there, thus allowing for
correct placement of any other suffixes in the same 2-group. The lexorder of G∗

λ ensures
that the suffixes i − 1 also occur in lexorder within each 2-group.

This is essentially the strategy of Algorithm S: it uses an efficient string sort [Bentley
and McIlroy 1993] to sort completely the unsorted suffixes in a 1-group that currently
contains a minimum number of unsorted suffixes, then uses the sorted suffixes i to
induce a sort of suffixes i − 1. Thus, all suffixes can be completely sorted at the cost of
a complete sort of only half of them.

The process can be made still more efficient by observing that when Gλ is sorted, the
suffixes with prefix λ2 can be omitted, provided that the 2-group λ2 is the last 2-group
of Gλ to be traversed. To see this, suppose there exists a suffix λkμv in Gλ, k ≥ 2, μ = λ.
Then, the suffix λμv will have been sorted into G∗

λ and already processed to place suffix
x[i..n] = λ2μv at head[λ, λ]. Thus, when λ2μv is itself processed, suffix x[i − 1]λ2μv will
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be placed at head[x[i − 1], λ]—this will again be (the now incremented) head[λ, λ] if
k ≥ 3 (x[i − 1] = λ).

We can apply Algorithm S to our example string:

Iteration 1. The 1-group corresponding to λ = $ contains only the singleton unsorted
suffix i = 12. Thus, the sort is trivial: 12 is already in its final position in SA, and suffix
i − 1 = 11 is put in final position at head[a, $] = 2.

Iteration 2. The minimum 1-group corresponding to b contains only suffix i = 1,
which is therefore in final position. Since i − 1 = 0, there is no further action.

Iteration 3. The minimum 1-group corresponds to λ = c; it again has only one entry
to be sorted, since one of the 2-groups represented is cc. Thus suffix i = 10 is in final
position at head[c, a] = 7, and determines the final position of suffix i − 1 = 9 at
head[c, c] = 8. Then, finally for i = 9, the final position of suffix i − 1 = 8 is fixed at
head[a, c] = 3.

Iteration 4. The 1-group for λ = a now contains only the two unsorted suffixes 2 and
5, since 11 and 8 have been put in final position by previous iterations. The sort yields
SA[4] = 5, SA[5] = 2, so that the completely sorted 1-group becomes SA[2..5] = 11 852.
For i = 11, suffix i−1 = 10 is already in final position; for i = 8, suffix i−1 = 7 is placed
in final position at head[d , a] = 9; then, for i = 5, after head[d , a] is incremented, suffix
i − 1 = 4 is placed in final position at head[d , a] = 10; for i = 2, i − 1 = 1 is already in
final position.

Iteration 5. The final group corresponds to λ = d ; by now its only unsorted suffixes,
3 and 6, belong to the 2-group dd and so do not require sorting. As a result of Iteration
4, SA[9..10] = 74. Thus, for i = 7, suffix i − 1 = 6 is placed at head[d , d ] = 11, while
for i = 4, the final suffix i − 1 = 3 is placed at head[d , d ] = 12.

For this example, only one simple sort (of suffixes 2 and 5 in Iteration 4) needs to be
performed in order to compute SAx!

Algorithm S shares the O(n2 log n) worst-case time of other induced copying algo-
rithms, but is nevertheless very fast in practice. However, its running time sometimes
seems to degrade significantly when the average lcp, lcp, is large, for reasons that are
not quite clear. This problem is addressed by a variant, Algorithm MF, discussed next.
Like IT, Algorithm S can run using less than n bytes of working storage.

MF [Manzini and Ferragina 2004]
Algorithm MF is a variant of Algorithm S that replaces TSQS [Bentley and McIlroy
1993], used to sort the 2-groups within a selected 1-group, by a more elaborate and
sophisticated approach to suffix-sorting. This approach is two-tiered, depending ini-
tially on a user-specified integer lcp∗, the longest lcp of a group of suffixes that will be
sorted using a standard method. (Typically, for large files, lcp∗ will be chosen in the
range 500..5000.) Thus, if a 2-group of suffixes is to be sorted, then MKQS [Bentley and
Sedgewick 1997] (rather than TSQS) will be employed until the recursion of MKQS
reaches depth lcp∗: if the sort is not complete, this defines a set Im = {i1, i2, . . . , im},
m ≥ 2, of suffixes such that

lcp(i1, i2, . . . , im) ≥ lcp∗
.

At this point, the methodology used to complete the sort of these m suffixes is chosen
depending on whether m is “large” or “small”.

If m is small, then a sorting method called blind sort [Ferragina and Grossi 1999]
is invoked that uses at most 36m bytes of working storage. Therefore, if blind sort is
used only for m ≤ n/Q , its space overhead will be at most (36/Q)n bytes; by choosing

ACM Computing Surveys, Vol. 39, No. 2, Article 4, Publication date: June 2007.



A Taxonomy of Suffix Array Construction Algorithms 19

Q ≥ 1000, say—and thus giving special treatment to cases where “not too many”
suffixes share a “long” lcp—it can be ensured that for small m, the space used is a very
small fraction of the 5n bytes required for x and SAx.

Blind sort of Im depends on the construction of a blind trie data structure [Ferragina
and Grossi 1999]: essentially the strings

x[i j + lcp∗
..n], j = 1, 2, . . . , m

are inserted one-by-one into an initially empty blind trie; then, as explained in
Ferragina and Grossi [1999], a left-to-right traversal of the trie obtains the suffixes
in lexorder, as required.

If m is large (> n/Q), Algorithm MF reverts to the use of a slightly modified TSQS,
as in Algorithm S; however, whenever at some recursive level of execution of TSQS a
new set of suffixes I ′

m is identified for which m ≤ n/Q , then blind sort is again invoked
to complete the sort of I ′

m.
Following the initial MKQS sort to depth lcp∗, the dual strategy (blind sort/TSQS)

described so far to complete the sort is actually only one of two strategies employed by
Algorithm MF. Before resorting to the dual strategy, MF tries to make use of general-
ized induced copying, as we now explain.

Suppose that for i1 ∈ Im and for some least � ∈ 1..lcp∗ − 1,

x[i1 + �..i1 + � + 1] = λμ,

where [λ, μ] identifies a 2-group that as a result of previous processing has already
been fully sorted. Since the m suffixes in Im share a common prefix, it follows that every
suffix in Im occurs in the same 2-group [λ, μ]. Since moreover the m suffixes in Im are
identical up to position �, it follows that the order of the suffixes in Im is determined by
their order in [λ, μ]. Thus, if such a 2-group exists, it can be used to “induce” the correct
ordering of the suffixes in Im, as follows:

(1) Bucket-sort the entries i j ∈ Im in ascending order of position (not suffix), so mem-
bership in Im can be determined using binary search (Step (3)).

(2) Scan the 2-group [λ, μ] to identify a match for suffix i1 + �, say at some position q.
(3) Scan the suffixes (positions) listed to the left and to the right of q in 2-group [λ, μ];

for each suffix i, use binary search to determine whether or not i − � occurs in (the
now-sorted) Im. If it does occur, then mark the suffix i in [λ, μ].

(4) When m suffixes have been marked, scan the 2-group [λ, μ] from left to right: for
each marked suffix i, copy i − � left-to-right into Im.

Step (2) of this procedure can be time-consuming, since it may involve a �(n)-time
match of two suffixes; in Manzini and Ferragina [2004], an efficient implementation of
step (2) is described that uses only a very small amount of extra space.

Of course, if no such �, hence no such 2-group, exists, then this method cannot be
used: the dual strategy described above must be used instead.

In practice, Algorithm MF runs faster than any of Algorithms KS, IT or S; in common
with other induced copying algorithms, it uses less than n bytes of additional working
storage but can require as much as O(n2 log n) time in the worst case.

SS [Schürmann and Stoye 2005]
Algorithm SS could arguably be classified as a prefix-doubling algorithm. Certainly, it
is a hybrid: it first applies a prefix-doubling technique to sort individual h-groups, then
uses Seward’s induced copying approach to extend the sort to other groups of suffixes.
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For SS, the integer h is actually a user-specified parameter, chosen to satisfy h <
logσ n. First, a radix sort is performed to compute SAh, then the corresponding ISAh,
in which the h-rank of each h-group is formed from the tail of the h-group in SAh (the
same system used in Algorithm LS). Thus, for example, using h = 2, the result of the
first phase of processing would be just the same as after the second iteration of LS:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA2 = 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA2 = 4 8 12 5 9 6 10 4 8 12 2 1

In its second phase, SS considers h-groups in SAh that are not singletons. Let H be
one such h-group. The observation is made that since every suffix i in H has the same
prefix of length h, therefore, the order of each i in H is determined by the rank of suffix
i + h; that is, by ISAh[i + h]. A sort of all the non-singleton h-groups in SAh thus leads
to the construction of SA2h and ISA2h:

1 2 3 4 5 6 7 8 9 10 11 12

SA4 = 12 11 (1 8) 4 6 9 2 5 7 10 3
ISA4 = 3 8 12 5 9 6 10 3 7 11 2 1

Observe that as a result of the prefix-doubling, the h-groups (2 9) and (3 10) have become
completely sorted.

To entries in h-groups that become completely sorted by prefix-doubling, SS applies
Algorithm S: if suffix i is in fixed position in SA, then the final position of suffix i−1 can
also be determined. Thus, in our example, the sort of the h-group (2 9) that yields 2h-
order 9, 2 induces a corresponding sorted order 8, 1 for the 2h-group (1 8), completing
the sort.

Algorithm SS iterates this second phase—prefix-doubling followed by induced
copying—until all entries in SA are singletons. Note that after the first iteration, the
induced copying will as a rule refine the h-groups so that they break down into (h + k)-
groups for various values of k ≥ 0; thus, after the first iteration, the prefix-doubling is
approximate.

Algorithm SS has worst-case time complexity O(n2) and appears to be very fast in
practice, competitive with Algorithm MF. However, it is not quite lightweight, requiring
somewhat more than 4n bytes of additional working storage.

BK [Burkhardt and Kärkkäinen 2003; Kärkkäinen et al. 2006]
In a way similar to the recursive algorithms of Section 3.2, Algorithm BK computes
SAx by first ordering a sample of the suffixes S. The relative ranks of the suffixes in S
are then used to accelerate a basic string sorting algorithm, such as MKQS [Bentley
and Sedgewick 1997], applied to all the suffixes. Of the recursive algorithms, Algorithm
KS is particularly related to Algorithm BK—a relationship elucidated in a recent pa-
per [Kärkkäinen et al. 2006].

Central to BK is a mathematical construct called a difference cover, which defines
the suffixes in S. A difference cover Dh is a set of integers in the range 0..h − 1 such
that for all i ∈ 0..h − 1, there exist j , k ∈ Dh such that i ≡ k − j (mod h). For a chosen
Dh, S contains the suffixes of x beginning at positions i such that i mod h ∈ Dh.

For example, D7 = {1, 2, 4} is a difference cover modulo 7. If we were to sample
according to D7, then, for the string

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x = b a d d a d d b a d d a d d b a d d $
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we would obtain S = {1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25}. Observe for every i ∈ S that
i mod 7 is in D7.

In practice, only covers Dh with |Dh| ∈ �(
√

h) are suitable. However, for the chosen Dh
a function δ(i, j ) must also be precomputed. For any integers i, j , δ(i, j ) is the smallest
integer k ∈ 0..h − 1 such that (i + k) mod h and ( j + k) mod h are both in Dh. A lookup
table allows constant time evaluation of δ(i, j )—we omit the details here.

Algorithm BK consists of two main phases. The goal of the first phase is to com-
pute a data structure ISAx ′ allowing the lexicographical rank of i ∈ S, relative to the
other members of S, to be computed in constant time. To this end, BK first h-sorts S
using MKQS (or alternative) and then assigns each suffix its h-rank in the resulting
h-ordering. For our example the h-ranks are:

i ∈ S 1 2 4 8 9 11 15 16 18
h-rank 3 6 4 3 6 4 2 5 1

These ranks are then used to construct a new string x ′ (compare to x ′ for Algorithm
KS) as follows

i ∈ S 1 8 15 2 9 16 4 11 18

x ′ = (3 3 2) (6 6 5) (4 4 1)

The structure of x ′ is deceptively simple. The h-ranks, ri, appear in |Dh| groups in
x ′ (indicated above with ()) according to i modulo h. Then, within each group, ranks ri
are sorted in ascending order according to i. Because of this structure in x ′, its inverse
suffix array, ISAx ′ , can be used to obtain the rank of any i ∈ S in constant time. To
compute ISAx′ , BK makes use of Algorithm LS as an auxiliary routine (recall that LS
computes both the ISA and the SA). Although LS is probably the best choice, any SACA
suitable for bounded integer alphabets can be used.

With ISAx ′ computed, construction of SAx can begin in earnest. All suffixes are h-
ordered using a string sorting algorithm, such as MKQS, to arrive at SAh. The sorting
of the non-singleton h-groups that remain is then completed with a comparison-based
sorting algorithm using ISAx ′ [i + δ(i, j )] and ISAx ′ [ j + δ(i, j )] as keys when comparing
suffixes i and j . We note that the tactic of storing ranks of some suffixes to later limit
the sort depth of others is also adopted in the algorithm of Khmelev [2003], albeit in a
quite different way, and with worse performance (both asymptotically and in practice).

In Burkhardt and Kärkkäinen [2003] it is shown that by choosing h = log2 n an
overall worst case running time of O(n log n) is achieved. Another attractive feature of
BK is its small working space—less then 6n bytes—made possible by the small size of
S relative to x and the use of inplace string sorting.

Finally, we remark that the ideas of Algorithm BK can be used to ensure any of the
induced copying algorithms described in this section execute in O(n log n) worst-case
time.

M [Maniscalco 2005; Maniscalco and Puglisi 2007]
Algorithm M differs from the other algorithms in this section in that it directly computes
ISAx and then transforms it into SAx in place.

At the heart of Algorithm M is an efficient bucket-sorting routine. Most of the work is
done in what is eventually ISAx, with extra space required for a few stacks. The bucket
sort begins by linking together suffixes that are 2-equal, to form chains of suffixes. For
example, the string

1 2 3 4 5 6 7 8

x a a a b a b a a $

would result in the creation of the following chains
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8 7,2,1 5,3 6,4
a$ aa ab ba

We define an h-chain in the same way as an h-group—that is, suffixes i and j are in
the same h-chain iff they are h-equal. Thus, the chains above are all 2-chains, and the
chain for a$ is a singleton.

The space allocated for the ISA provides a way to efficiently manage chains. Instead
of storing the chains explicitly as above, Algorithm M computes the equivalent array

1 2 3 4 5 6 7 8

x a a a b a b a a $
ISA ⊥ 1 ⊥ ⊥ 3 4 2 ⊥

in which ISA[i] is the largest j < i such that x[ j .. j + 1] = x[i..i + 1] or ⊥ if no such j
exists. In our example, the chain of all the suffixes prefixed with aa contains suffixes 7,
2 and 1 and so we have ISA[7] = 2, ISA[2] = 1 and ISA[1] = ⊥, marking the end of the
chain. Observe that chains are singly linked, and are only traversable right-to-left. We
keep track of h-chains to be processed by storing a stack of integer pairs (s, h), where s
is the start of the chain (its rightmost index), and h is the length of the common prefix.
Chains always appear on the stack in ascending lexicographical order, according to
x[s..s + h − 1]. Thus, for our example, initially (8, 2) for chain a$ is atop the stack, and
(6, 2) for chain ba at the bottom.

Chains are popped from the stack and progressively refined by looking at further
pairs of characters. So long as we process the chains in lexicographical order, when we
pop a singleton chain, the suffix contained has been differentiated from all others and
can be assigned the next lexicographic rank. Elements in the ISA that are ranks are
differentiated from elements in chains by setting the sign bit; that is, if ISA[i] < 0,
then the rank for suffix i is −ISA[i]. The evolution of the ISA for our example string
proceeds as follows in subsequent sorting rounds:

1 2 3 4 5 6 7 8

x a a a b a b a a $
ISA ⊥ 1 ⊥ ⊥ 3 4 2 ⊥ Initial chains (8, 2)a$(7, 2)aa(5, 2)ab(6, 2)ba
ISA ⊥ 1 ⊥ ⊥ 3 4 2 −1 Pop (8, 2)a$ and assign rank
ISA ⊥ ⊥ ⊥ ⊥ 3 4 ⊥ Split chain (7, 2)aa into (7, 4)aa$(1, 4)aaab(2, 4)aaba
ISA −3 −4 ⊥ ⊥ 3 4 −2 Pop (7, 4)aa$(1, 4)aaab(2, 4)aaba, assign ranks
ISA ⊥ ⊥ ⊥ 4 Split chain (5, 2)ab into (5, 4)abaa(3, 4)abab
ISA −6 ⊥ −5 4 Pop (5, 4)abaa(3, 4)abab, assign ranks
ISA ⊥ ⊥ Split chain (6, 2)ba into (6, 4)baa$(4, 4)baba
ISA −8 −7 Pop (6, 4)baa$(4, 4)baba, assign ranks
ISAx 3 4 6 8 5 7 2 1 Completed Inverse Suffix Array

When the value in a column becomes negative, the suffix has been assigned its (negated)
rank and is effectively sorted. We reiterate that when a chain is split, the resulting
subchains must be placed on the stack in lexicographical order for the subsequent
assignment of ranks to singletons to be correct. This is illustrated in the example above
when the chain for aa is split, and the next chain processed is the singleton chain for
aa$. An algorithm embodying these ideas is shown in Figure 7.

Algorithm M adds two powerful heuristics to the string sorting algorithm described
in Figure 7. We discuss only the first (and more important) of these heuristics here and
refer the reader to Maniscalco and Puglisi [2007] for details of the second.

The processing of chains in lexicographical order allows for the possibility of us-
ing previously assigned ranks as sort keys for some of the suffixes in a chain. To
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Fig. 7. Bucket sorting of Algorithm M.

elucidate this idea, we first need to make some observations about the way chains are
processed.

When processing an h-chain, suffixes can be classified into three types: suffix i is of
type X if the rank for suffix i + h − 1 is known, and is of type Y if the rank for suffix
i + h is known. If i is not of type X or type Y , then it is of type Z . Any suffix can be
classified by type in constant time by virtue of the fact that we are building the ISA
(we inspect ISA[i + h − 1] or ISA[i + h] and a checked sign bit indicates a rank). Now
consider the following observation: lexicographically, type X suffixes are smaller than
type Y suffixes, which in turn are smaller than type Z suffixes.

To use this observation, when we refine a chain, we place only type Z suffixes into
subchains according to their h+1st symbol and place type X and type Y suffixes to one
side. Now, the order of the m suffixes of type X can be determined via a comparison-
based sort, using for suffix i the rank of suffix i + h − 1 as the sort key. Once sorted, the
type X suffixes can be assigned the next m ranks by virtue of the fact that chains are
being processed in lexicographical order. Type Y suffixes are treated similarly, using
the rank of j + h as the sort key for suffix j . In Maniscalco and Puglisi [2007], this
technique is referred to as induction sorting.2

Loosely speaking, as the number of assigned ranks increases, the probability that
a suffix can be sorted using the rank of another also increases. In fact, every chain of
suffixes with prefix α1α2 such that α2 < α1 will be sorted entirely in this way. Clearly,
induction sorting will lead to a significant reduction in work for many texts.

One could consider the induction sorting of Algorithm M to be an extension of the
ideas in Algorithm IT. As noted above, suffixes in a 2-chain with common prefix α1α2
and α1 > α2 are sorted entirely by induction (like the type A suffixes of Algorithm IT).
However, the lexicographical processing of suffixes in Algorithm M means this property
can be applied to suffixes at deeper levels of sorting (when h > 2).

In practice, Algorithm M is very fast. By carefully using the space in ISA, and con-
verting it to SA in place, it also achieves a small memory footprint—rarely requiring
more than n bytes of additional working space.

MP [Maniscalco and Puglisi 2006]
Algorithm MP takes the sampling method of KA and IT a step further, introducing a
way of splitting suffixes that is more separative and that thus allows the order of more
suffixes to be induced cheaply. Recall the way algorithm KA divides suffixes into sets
S and L, by classifying each suffix as either type S or type L, as shown in the example

2In fact, we can sort the type X and Y suffixes in the same sort call by using as a key for a type X suffix i
the rank of i + h − 1 and for a type Y suffix the negated rank of i + h.
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string below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x e d a b d c c d e e d a b $
type L L S S L S S S L L L S L −

Algorithm KA sorts the set containing fewer suffixes, which, in this example, would
be S. In Maniscalco and Puglisi [2006], it is shown that only a subset of S need in fact
be sorted (a fact contemporaneously discovered by Mori [2006]). This subset, denoted
T , is defined as follows:

T = {i: i ∈ S and i + 1 ∈ L}.

That is, only the rightmost suffix in every run of S suffixes is included in T —thus for
the example string T = {4, 8, 12}, of size two less than S. From the order of the suffixes
in T , the order of those in S can be inferred; from this point on, the algorithm is identical
to algorithm KA.

We will shortly explain how algorithm MP sorts the suffixes in T , but for now assume
they have been sorted, and have been placed in their final positions in SA, as shown
below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SA (−) 12 (−) (−) 4 (−) (−) (− −) (−) 8 (− −) (−)
group $ ab b$ bd cc cd da dc de ed ee

The parentheses (), as usual, indicate group boundaries, in this case 2-group boundaries,
which are easily computed with a counting sort. To sort the type S suffixes, we scan
SA in its current state from right to left. For each suffix (i.e., non-empty location) SA[i]
that we encounter in the scan, if SA[i] − 1 is of type S, we place SA[i] − 1 at the current
end of the group for x[SA[i] − 1]x[SA[i]] and decrement the end of that group.

When the scan is complete, all the members of S are in their final place in SA, and a
method identical to that described for algorithm KA is used to complete the construction
of SA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Description
SA (−) 12 (−) (−) 4 (−) (−) (− −) (−) 8 (− −) (−) Initial
SA (−) 12 (−) (−) 4 (−) 7 (− −) (−) 8 (− −) (−) SA[11] = 8, 7 ∈ S, place 7
SA (−) 12 (−) (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[7] = 7, 6 ∈ S, place 6
SA (−) 12 (−) (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[6] = 6, 5 /∈ S, no action
SA (−) 12 3 (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[5] = 4, 3 ∈ S, place 3
SA (−) 12 3 (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[3] = 3, 2 /∈ S, no action
SA (−) 12 3 (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[2] = 12, 11 /∈ S, no action
group $ ab b$ bd cc cd da dc de ed ee

Clearly, in general, |T | ≤ |S| (consider the string an$ to see the case where |T | = |S|).
However, in Maniscalco and Puglisi [2007], measurements are given indicating that in
practice there is a marked difference between the schemes, with T rarely containing
more than 30% of suffixes.

Algorithm MP collects the sample suffix pointers in an array SP[1..|T |] and sorts them
with a variation of MKQS. Before sorting begins, however, the input string x[1..n] is
mapped onto an array of integers ISA′[1..n] by setting ISA′[i] to be the tail of the 1-
group boundary for symbol x[i]. An important property of the transformation is that
the lexorder of the suffixes of ISA′ is the same as for x, so sorting the suffixes of ISA′
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is equivalent to sorting those of x. This recoding allows for the first of Algorithm MP’s
heuristics.3

For each symbol α ∈ � a counter next rank[α] is maintained, initially set to the head
of the 1-group for α. When the final position of a sample suffix i prefixed with α becomes
known relative to the other sample suffixes in SP, ISA′[i] is set to next rank[α] and
next rank[α] is incremented. Because of the initial transform and the maintenance of
next rank counters, MKQS continues to sort suffixes correctly in the face of the changing
ISA′ values. The only other requirement for this to work correctly is that when suffix
SP[i] is placed in its final position, suffixes in SP[0..i − 1] are already sorted—this is a
natural consequence of MKQS.

Modifying ISA′ on-the-fly in this way will ultimately lead to faster sorting as the
number of unique symbols (sort keys) in ISA′ increases. The idea is essentially the
induction sorting technique utilized by algorithm M (see above); the major difference
here is that the sorted rank information is stored so it is immediately available when it
is needed and does not have to be retrieved from another part of memory—the MKQS
procedure carries on regardless, and the use of rank information is “seamlessly” inte-
grated. This ultimately means algorithm MP will incur far fewer CPU-cache misses
than algorithm M.

It is also shown in Maniscalco and Puglisi [2006] how MKQS can be modified to reveal
repetitions (adjacent repeating substrings) in the input and how, once revealed, they
can sort them efficiently without the need for extraneous symbol comparisons. This
allows MP to avoid the catastrophic slowdowns incurred by many induced copying
algorithms on highly repetitive inputs.

Because ISA′ and SA can be implemented to use the same memory space and because
the maximum sample size is n/2, algorithm MP is able to cap its memory usage at 6n
bytes, and in practice uses little more than 5n bytes. It is also the fastest algorithm we
tested.

3.4. Hybrid Algorithms

In this section, we briefly describe three hybrid SACAs not previously described in the
literature or implemented. While there are likely many ways in which the ideas of
various SACAs can be combined, our aim here is to deal with the obvious cases and
close some open questions in the literature. The hybrids are as follows:

(1) IT+KA. It was observed earlier that algorithms IT and KA divide suffixes in a simi-
lar way—in particular, IT chooses a subset of the suffixes chosen by KA. The hybrid
algorithm selects suffixes as KA does: it labels each suffix L or S and chooses the
set containing fewer members. These suffixes are then sorted with a string sorting
algorithm into their final place in the L/S partitioned 1-groups (as in algorithm
IT). The final phase is then a pass over the SA to move the remaining suffixes into
place. Such an algorithm will undoubtedly be faster than IT as more suffixes have
their order induced automatically. A disadvantage is that the type of a suffix can no
longer be determined in constant time, unless n extra bits of working space are used.

(2) BK+S. This hybrid was mentioned by Burkhardt and Kärkkäinen [2003] as a pos-
sible way to improve the average running time of algorithm BK. The combination
of the ideas is simple: we select a sample of suffixes as in BK and sort them. Then
sorting of the 1-groups in algorithm S using MKQS stops at depth h, where h is the
modulus of the difference cover. To complete the sort, the ranks of suffixes in the
sample are used as sort keys. The pointer-copying of algorithm S operates as usual.

3Actually, the transformation is more complex, but this simplified version will do for our purposes here.
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Table II. Description of the Data Set Used for Testing. LCP Refers to the Longest
Common Prefix Amongst All Suffixes in the String

Mean Max Size
String LCP LCP (bytes) σ Description
eco 17 2,815 4,638,690 4 Escherichia coli genome
chr 1,979 199,999 34,553,758 5 Human chromosome 22

bibl 14 551 4,047,392 63 King James bible
worl 23 559 2,473,400 94 CIA world fact book
prot 89 7,373 109,617,186 66 SwissProt database
rfc 93 3,445 116,421,901 120 Concatenated IETF RFC files
how 267 70,720 39,422,105 197 Linux Howto files
reut 282 26,597 114,711,151 93 Reuters news in XML format
jdk 679 37,334 69,728,899 113 JDK 1.3 documentation
etext 1,108 286,352 105,277,340 146 Texts from Gutenberg project

(3) BK+IT+KA. We can obtain a hybrid algorithm similar to BK+S by combining BK
with algorithm IT, or perhaps better with the IT+KA hybrid described above.

Tests of these hybrids are included in the experiments described in the next
section.

4. EXPERIMENTAL RESULTS

To gauge the performance of the SACAs in practice we measured their runtimes and
peak memory usage for a selection of files from the Canterbury corpus4 and from the
corpus compiled by Manzini5 and Ferragina [2004]. Details of all files tested are given in
Table II. The table also provides several statistics for each file; the Mean and Maximum
LCP values provide a rough guide to suffix sorting difficulty [Sadakane 1998], and give
the average and maximum number of character comparisons respectively, required by
a string sorting algorithm to separate two suffixes.

We implemented Algorithm IT as described in Itoh and Tanaka [1999] and Algorithm
KS with heuristics described in Puglisi et al. [2005]. We also implemented the hybrid
algorithms IT+KA, BK+IT+KA and BK+S, and had them use MKQS for string sorting.
Two implementations of Algorithm KA were tested: one by Lee and Park, and the other
due to Ko [Lee and Park 2004; Ko 2006]. Implementations of all other algorithms were
obtained either online or by request to respective authors. For completeness, we also
tested a tuned suffix tree implementation [Kurtz 1999]. We did not include algorithm
MM in experiments because results in Larsson and Sadakane [1999] show it to be
many times slower than other algorithms such as LS. We are confident that all tested
implementations are of high quality.

Algorithm MF was run with default parameters and Algorithm SS with parameter
h = 7 for genomic data (files eco and chr) and h = 3 otherwise, as used for testing
in Schürmann and Stoye [2005]. Algorithm BK and the hybrids BK+S and BK+IT+KA
used parameter h = 32, as in Burkhardt and Kärkkäinen [2003].

All tests were conducted on a 2.8-GHz Intel Pentium 4 processor with 2Gb main
memory. The operating system was RedHat Linux Fedora Core 1 (Yarrow) running
kernel 2.4.23. The compiler was g++ (gcc version 3.3.2) executed with the -O3 option.
Running times, shown in Table III, are the average of four runs and do not include time
spent reading input files. Times were recorded with the standard unix time function.
Memory usage, shown in Table IV, was recorded with the memusage command available
with most Linux distributions.

4http://www.cosc.canterbury.ac.nz/corpus/
5http://www.mfn.unipmn.it/~manzini/lightweight/corpus/
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Table III. CPU Time (seconds) on Test Data. Minimum is Shown in Bold for Each String

eco chr bib wor prot rfc how reut jdk etex
MP 2 15 1 1 49 48 14 57 30 50
M 2 18 2 1 59 61 18 73 44 58
SS 2 25 2 1 99 93 22 133 64 92
MF 2 16 2 1 74 65 18 147 82 76
IT 2 416 1 1 125 108 38 278 286 331
IT+KA 2 205 1 1 119 86 31 281 274 335
S 3 29 2 1 126 110 37 258 217 290
BK 4 40 3 2 200 171 43 280 152 141
BK+IT+KA 3 27 2 1 129 103 27 176 97 116
BK+S 3 29 3 2 164 126 31 240 132 116
LS 4 35 3 2 144 154 40 183 105 146
BB 3 26 3 2 117 113 43 84 40 131
KA(Ko) 5 43 4 2 118 109 39 121 57 138
KA(Lee) 6 47 5 3 183 179 63 185 98 202
KS 5 57 4 2 306 288 55 377 204 219
KJP 4 31 4 3 183 189 61 192 102 179
Tree 6 51 5 3 183 193 80 141 52 226

Table IV. Peak Memory Usage (Mbs)

eco chr bib wor prot rfc how reut jdk etex
MP 23 167 20 12 542 560 194 571 340 572
M 25 182 21 14 555 580 197 564 342 519
SS 40 297 36 24 942 1,006 368 988 604 915
MF 22 165 19 12 524 557 188 548 333 503
IT 22 165 19 12 523 555 188 547 332 502
IT+KA 23 169 19 12 536 569 193 561 340 514
S 22 165 19 12 523 555 188 547 332 502
BK 26 194 23 14 614 652 221 643 391 590
BK+IT+KA 27 198 23 14 627 666 226 657 399 603
BK+S 26 194 23 14 614 652 221 643 391 590
LS 35 264 31 19 836 888 301 875 532 803
BB 78 580 68 42 1,840 1,954 662 1,925 1,170 1,767
KA(Lee) 58 429 50 31 1,359 1,443 526 1,422 864 1,406
KA(Ko) 47 332 32 19 805 752 282 847 495 832
KS 43 334 37 23 1,279 1,230 389 1,434 870 1,071
KJP 58 427 58 36 1,574 1,673 571 1,645 1,000 1,509
Tree 74 541 54 32 1,421 1,554 526 1,444 931 1,405

Results are summarized in Figure 8. Algorithm MP is the fastest (or equal fastest)
algorithm on all files, and shades algorithm M by about 33% on average. These two
algorithms (MP, M) have a clear advantage over the next fastest algorithms, MF and
SS, which are approximately 70% and 80% slower on average respectively, than MP.
On the shorter files (eco,bib,wor), the times of MP are equalled by several algorithms.
This result fits with the observations of several authors that on short files, which tend
to have low average LCP, simple SACAs that do not deviate tremendously from their
underlying string sorting algorithms give acceptable behavior.

The speed of MP, M and MF for the larger inputs is particularly impressive given
their small working memory: 5.13n, 5.49n and 5.01n bytes on average respectively. The
lightweight nature of these algorithms separates them from SS which requires slightly
more than 9n bytes on average. Times in Table III for Algorithm SS versus Algorithm
MF seem to run contrary to results published in Schürmann and Stoye [2005]; however,
our experiment is different. In Schürmann and Stoye [2005], files were bounded to at
most 50,000,000 characters, making many test files shorter than their original form.
We suspect the full length files are harder for Algorithm SS to sort.

It is important to note an advantage of MF over MP is the stability of its memory
use. In the worst case, MF can garauntee only 5.01n bytes will be used, whereas MP, in
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Fig. 8. Resource requirements of the algorithms averaged over the test corpus. Error bars are one stan-
dard deviation. Abscissa error bars for algorithms MF, S, IT, IT+KA, BK, BK+S, BK+IT+KA, BB and LS
are insignificantly small. Ordinate error bars for algorithms S, IT, IT+KA, BK and BK+S are not shown
to improve presentation (standard deviations 0.009, 0.0036, 0.0019, 0.0006 and 0.00053 respectively).

the worst case, may require 6n bytes. Thus, when memory is especially tight, MF may
be the algorithm of choice. We also remark that while Algorithm BK is not amongst the
fastest algorithms tested, its central concept (the difference cover) provides a simple
strategy to provide O(n log n) worst case behavior to the faster algorithms without
heavily impacting on their speed or space usage.

All three hybrid algorithms improve the average speed of their component algorithms.
Algorithm IT+KA removes the wild variation of IT’s runtime by reducing the amount
of suffixes sorted with MKQS to less than n/2 for all files. This is at the cost of n bits of
space required to store the type of each suffix. As one would expect, algorithms BK+S
and BK+IT+KA improve on the runtime of BK for every file by reducing the need for
string sorting. In constrast, BK brings stability to S and IT+KA: variation in runtime
is diminished, but a slight slowdown is incurred on some files. Such slowdowns occur
when the time taken to sort the sample required by BK outweighs the time saved by
limiting the depth of the string sort. We observed the time taken for this phase was
around 20–25% of overall runtime—a significant improvement here would make the
BK hybrids more competetive with the leaders.

The large variation in performance of Algorithm KS can be attributed to the occa-
sional ineffectiveness of heuristics described in Puglisi et al. [2005]. Of interest also is
the general poor performance of the recursive algorithms KS, KA and KJP. These algo-
rithms have superior asymptotic behavior, but for many files run several times slower
than the other algorithms and often consume more memory than the suffix tree (KJP
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in particular). Memory profiling reveals that the recursive algorithms suffer from very
poor cache behavior, which largely nullifies their asymptotic advantage.

5. CONCLUDING REMARKS

Over the last few years, suffix arrays—algorithms for their construction and use—
have constituted, along with the closely-related topic of string sorting, an intense area
of research within computer science. While this article was in review, two new (as yet
unpublished) algorithms appeared on the Internet that are nearly as fast as Algorithm
MP and use a similar amount of space [Malyshev 2006; Mori 2006].

The algorithms surveyed in this article are a testament to the ingenuity of many
researchers who have collectively made the suffix array the data structure of choice for
a wide range of applications—replacing the suffix tree, whose “myriad virtues” were
already well-recognized 20 years ago [Apostolico 1985].

Impressive as the progress has been, ingenious as the methods have been, there still
remains the challenge to devise a SACA that is lightweight, linear in the worst case,
and fast in practice.

We hope that by a timely exposition of existing SACAs to a wider audience, we will
contribute to further progress in a fascinating and important area of research.
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KÄRKKÄINEN, J., SANDERS, P., AND BURKHARDT, S. 2006. Linear work suffix array construction. Journal of the
ACM 53, 6 (Nov.), 918–936.

KARP, R. M., MILLER, R. E., AND ROSENBERG, A. L. 1972. Rapid identification of repeated patterns in strings,
trees and arrays. In Proceedings of the 4th Annual ACM Symposium on Theory of Computing (Denver,
CO). ACM, New York, 125–136.

KASAI, T., LEE, G., ARIMURA, H., ARIKAWA, S., AND PARK, K. 2001. Linear-time longest-common-prefix compu-
tation in suffix arrays and its applications. In Proceedings of the 12th Annual Symposium (CPM 2001).
Lecture Notes in Computer Science, vol. 2089. Springer-Verlag, Berlin, Germany, 181–192.

KHMELEV, D. V. 2003. Program suffsort version 0.1.6. http://www.math.toronto.edu/dkhmelev/PROGS/tacu/
suffsort-eng.html.

KIM, D. K., JO, J., AND PARK, H. 2004. A fast algorithm for constructing suffix arrays for fixed-size alphabets.
In Proceedings of the 3rd Workshop on Experimental and Efficient Algorithms (WEA 2004), C. C. Ribeiro
and S. L. Martins, Eds. Springer-Verlag, Berlin, Germany, 301–314.

KIM, D. K., SIM, J. S., PARK, H., AND PARK, K. 2003. Linear-time construction of suffix arrays. In Proceed-
ings of the 14th Annual Symposium Combinatorial Pattern Matching, R. Baeza-Yates, E. Chávez, and
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in Computer Science, vol. 2676. Springer-Verlag, Berlin, Germany, 200–210.

KO, P. AND ALURU, S. 2005. Space efficient linear time construction of suffix arrays. J. Disc. Algor. 3, 143–156.
KURTZ, S. 1999. Reducing the space requirement of suffix trees. Softw. Pract. Exper. 29, 13, 1149–1171.
LARSSON, J. N. AND SADAKANE, K. 1999. Faster suffix sorting. Tech. Rep. LU-CS-TR:99-214 [LUNFD6/(NFCS-

3140)/1-20/(1999)], Department of Computer Science, Lund University, Sweden.
LEE, S. AND PARK, K. 2004. Efficient implementations of suffix array construction algorithms. In AWOCA

2004: Proceedings of the 15th Australasian Workshop on Combinatorial Algorithms, S. Hong, Ed. 64–72.
MALYSHEV, D. 2006. DARK the universal archiver based on BWT-DC scheme. http://darchiver.narod.ru/.
MANBER, U. AND MYERS, G. W. 1990. Suffix arrays: A new method for on-line string searches. In Proceedings

of the 1st ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 319–327.
MANBER, U. AND MYERS, G. W. 1993. Suffix arrays: A new method for on-line string searches. SIAM J.

Comput. 22, 5, 935–948.
MANISCALCO, M. A. 2005. MSufSort. http://www.michael-maniscalco.com/msufsort.htm.
MANISCALCO, M. A. AND PUGLISI, S. J. 2006. Faster lightweight suffix array construction. In Proceedings

of 17th Australasian Workshop on Combinatorial Algorithms, J. Ryan and Dafik, Eds. Univ. Ballavat,
Ballavat, Victoria, Australia, 16–29.

MANISCALCO, M. A. AND PUGLISI, S. J. 2007. An efficient, versatile approach to suffix sorting. ACM J. Exper-
iment. Algor. To appear.

MANZINI, G. 2004. Two space saving tricks for linear time LCP computation. In Proceedings of 9th Scan-
dinavian Workshop on Algorithm Theory (SWAT ’04), T. Hagerup and J. Katajainen, Eds. Lecture Notes
in Computer Science, vol. 3111. Springer-Verlag, Berlin, Germany, 372–383.

MANZINI, G. AND FERRAGINA, P. 2004. Engineering a lightweight suffix array construction algorithm. Algo-
rithmica 40, 33–50.

MCILROY, M. D. 1997. ssort.c. http://cm.bell-labs.com/cm/cs/who/doug/source.html.
MCILROY, P. M., BOSTIC, K., AND MCILROY, M. D. 1993. Engineering radix sort. Comput. Syst. 6, 1, 5–27.
MORI, Y. 2006. DivSufSort. http://www.homepage3.nifty.com/wpage/software/libdivsufsort.html.
MUNRO, J. I. 1996. Tables. In Proceedings of the 16th Conference on Foundations of Software Technology and

Theoretical Computer Science (FSTTCS). Lecture Notes in Computer Science, vol. 1180. Springer-Verlag,
London, UK, 37–42.

ACM Computing Surveys, Vol. 39, No. 2, Article 4, Publication date: June 2007.



A Taxonomy of Suffix Array Construction Algorithms 31

NA, J. C. 2005. Linear-time construction of compressed suffix arrays using O(nlogn)-bit working space
for large alphabets. In Proceedings of the 16th Annual Symposium Combinatorial Pattern Matching,
A. Apostolico, M. Crochemore, and K. Park, Eds. Lecture Notes in Computer Science, vol. 3537. Springer-
Verlag, Berlin, Germany, 57–67.
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