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Abstract
The suffix array and its variants are text-indexing data structures that have become indispensable in the field of bio-
informatics.With the uninitiated in mind, we provide an accessible exposition of the SA-IS algorithm, which is the
state of the art in suffix array construction.We also describe DisLex, a technique that allows standard suffix array
construction algorithms to create modified suffix arrays designed to enable a simple form of inexact matching
needed to support ‘spaced seeds’ and ‘subset seeds’ used in many biological applications.
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INTRODUCTION
The problem of finding the occurrences of a pattern

string in a given text is one of the most fundamental

computational tasks in bioinformatics. In most bio-

informatics applications, the text is a huge database

onto which a large volume of pattern queries are

thrown. In such cases, precomputing an indexed

data structure of the text allows efficient processing

of pattern searches.

One simple and effective data structure is a suffix

array, which informally is a list of the starting pos-

itions of the suffixes of the text, sorted by their al-

phabetical order. Suffix arrays are easy to understand

and implement and form the basis for a host of other

sophisticated indexing techniques.

Suffix arrays are related to a slightly more complex

data structure known as a suffix tree. Both suffix

arrays and suffix trees afford time-efficient solutions

to problems of searching for substrings in a text

as well as a variety of other related problems.

Historically, suffix trees received much attention be-

cause time-efficient algorithms for their construction

and use were developed early [1]. In bioinformatics,

several suffix tree-based applications (e.g. [2]) were

developed as well as an influential textbook that lar-

gely focused on them [3]. However, suffix trees

suffer from a relatively large memory requirement

and did not gain widespread popularity. One careful

implementation [4] of suffix trees requires 20 bytes

per input character in the worst case and in practice,

an average of 12.55 bytes per input character for

DNA sequences. In contrast, a suffix array in its sim-

plest form only requires 4 bytes per character (for

text size < 232). This may not be a fair comparison,

as a full-fledged suffix tree is more powerful than a

basic suffix array in the sense that it can be used to

solve more complex problems. Fortunately, subse-

quent advances in theory revealed that suffix arrays

supplemented with additional tables can substitute

for suffix trees [5] and, as we describe here, can be

directly constructed in linear time.

The popularity of suffix arrays in bioinformatics

is evident from their application in a range of tasks

such as pairwise sequence alignment [6–9], error
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correction of reads from high-throughput sequencers

[10, 11], prefix–suffix match finding for genome as-

sembly [12, 13], k-mer counting [14] and sequence

clustering [15], as well as the development of suffix

array software explicitly aimed at bioinformatics ap-

plications [16].

A key requirement of any indexing method is that

it be constructible in a time- and memory-efficient

manner. Progress in the quest for an efficient suffix

array construction algorithm started in 1993 with

Manber and Myers [17] who applied a prefix dou-

bling technique for repeat detection [18] to suffix

array construction, obtaining an Oðn log nÞ time al-

gorithm for an input text of size n. A major break-

through was achieved a decade later with the almost

concurrent discovery of three different linear-time

algorithms by Kim et al. [19], Kärkkäinen and

Sanders [20] and Ko and Aluru [21]. We will not

attempt to recount this long history—but instead

refer the interested readers to a thorough survey of

results up to 2007 by Puglisi et al. [22]. Instead, we

focus only on linear-time algorithms, and in particu-

lar on a recent algorithm called SA-IS proposed by

Nong etal. [23, 24]. SA-IS, which builds on previous

work [21, 25] and their own new ideas, is a beautiful

and practical linear-time algorithm. It is among the

fastest algorithms available at the time of this writing,

and it is also the basis for recent developments in

algorithms that simultaneously optimize both time

and memory usage [26]. The main goal of this article

is to explain SA-IS in a way which can be understood

by anyone having a basic background in algorithms.

We describe SA-IS in section ‘Suffix array construc-

tion’, then discuss and demonstrate the time and

memory performance of SA-IS with some simple ex-

periments in section ‘Computational Complexity’.

With biological sequences, the requirement that

patterns match ‘exactly’ can sometimes be too

strict; rather the search is for regions in the text

that approximately match the query. The definition

of an approximate match depends on the application

at hand, and it determines the feasibility of extending

suffix arrays to handle such queries. By a straightfor-

ward modification of the lexical ordering of suffixes,

suffix arrays can directly support ‘subset’ matching.

Subset matching allows matching to ignore differ-

ences between some or all characters in a predefined

position-specific way. For example, it is possible to

construct a modified suffix array that affords efficient

search for all suffixes matching (a prefix of) the pat-

tern ‘[ga]..c’, i.e. any occurrence of g or a

followed by a c three positions later. Fortunately,

as we describe in section ‘Inexact pattern matching’,

suffix arrays defined under this kind of modified lex-

ical ordering can be constructed in essentially the

same way as conventional suffix arrays [27].

PRELIMINARIES
Mathematical definitions can be an unpleasant sight;

nonetheless, we require a set of definitions and no-

tations that we will use throughout this text. We will

present them in this section. We will also use this

section to formally introduce suffix arrays and briefly

describe their classic application: efficient search of

exact matches to substrings in a text.

Definitions and notations
Let text T be a string of characters T0 � � �Tn�1,

where Ti denotes the ith character of T. The char-

acters T0,:::,Tn�2 are members of a predefined set of

characters called the ‘alphabet’, whereas the end

character Tn�1 is a ‘sentinel’ character (denoted $)

not in the alphabet. For suffix trees, the sentinel is

essential for its role in ensuring that no suffix is a

prefix of another. They are not absolutely necessary

in the discussion of suffix arrays, but are required by

some of the construction algorithms. In bioinfor-

matics, the alphabet is usually fixed and relatively

small. For example, with DNA strings, the alphabet

usually encountered is fa,c,g,t,ng, where n is used

at positions where the base has not been confidently

identified. The lexical ordering between characters

in the alphabet (and therefore for any two strings) is

taken to be the same as they would have appeared in

a dictionary—except for one extra rule that the sen-

tinel character is defined to be lexically smaller than

any other character of the alphabet, or equivalently

that if suffix r is a proper prefix of suffix s, r comes

before s (This is the convention used in the algo-

rithm literature. In practice some software packages

adopt the opposite convention, with the sentinel

character sorting last.). When applied to strings, we

use the symbols <, > and ¼ to denote lexical com-

parison. The ‘size’ or ‘length’ of T is the number of

characters in T and is denoted by jTj. Let Ti::j (i � j)
denote the length j�iþ 1 substring of T starting at

Ti and ending at Tj. Let Ti... denote the ‘suffix’

Ti::n�1 of T. The ‘suffix array’ of T is the lexically

ordered list of its suffixes. Of course, the suffix array

does not hold the actual suffixes, but just the index of
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the starting position of each suffix. An example text

with its suffix array is shown in Figure 1.

Query string search
Given a text T along with its suffix array, which we

denote here by SAT, and a query string P, we can

efficiently locate the occurrences of P in T. The

most straightforward way is binary search. Consider

the starting positions of each match of P in the text;

as SAT is sorted by suffix lexical order, all suffixes

starting with P must be in one contiguous block in

SAT. For example, in Figure 1, the starting indices of

suffixes with prefix gtg are all clustered within pos-

itions 7–9 of the suffix array. Thus, the search for

P entails finding the two boundaries of this block, i.e.

the smallest and largest values of i such that P is a

prefix of the suffix starting at text position SAT ½i�.
Because the suffixes are in lexically sorted order in

SAT, the two boundaries (or their absence if P does

not appear anywhere in T) can be computed by two

rounds of binary searching.

How fast is this search? The size of SAT is equal to

the size of T, so a binary search on it requires

Oðlog jTjÞ steps. At each step at most jPj characters

need to be compared. Therefore, the time complex-

ity of this search method (excluding the time to enu-

merate all the occurrences) is OðjPj log jTjÞ. If jTj is
relatively large, the multiplicative log jTj factor

might be costly (for example for the human

genome, logðjTjÞ is �32).

There are several ways to speed up the search op-

eration, but they come at the cost of memory. A

simple method is to cut down on the number of

steps required for a binary search by constructing a

look-up table that associates a set of k-mers with the

positions in the suffix array where they first appear as

a prefix. Although large values of k are prohibitive,

this method allows some flexibility to balance the

trade-off between search time and memory usage

by selecting an appropriate value of k.
More sophisticated methods also exist. Manber

and Myers [17] show that precomputing the length

of the longest common prefix (LCP) for certain

pairs of suffixes can reduce the search time to

OðjPj þ log jTjÞ. An LCP array stores for each pair

of successive suffixes in a suffix array, the length of

the LCP between them. Abouelhoda et al. [5] show

that using an additional table alongside the suffix

array and LCP array can bring the time further

down to OðjPjÞ, completely removing the depend-

ency on the text size. These methods are attractive

because they give meaningful worst case performance

guarantees. However, they do require at minimum a

few bytes of memory overhead per text character,

which can be a practical problem for bioinformatic

applications (section ‘Computational Complexity’).

SUFFIX ARRAYCONSTRUCTION
With a basic understanding of suffix arrays under out

belts, we move on to the topic of how to construct

them. Given text T, a simple way to build its suffix

array is to sort the suffixes of T using a general string

sorting algorithm such as radix sort [28]. This is

simple and incurs very little memory overhead for

the construction, but its worst case running time is

quadratic in the length of the string. Still it is quite

fast when the input string does not contain many

repeated long substrings. One implementation [6]

based on radix sort constructs a suffix array of the

human genome in �20 min using a decent modern-

day computing machine (Intel(R) Core(TM)

i7-3770K 3.50 GHz CPU and 32 GB RAM). But

note this is for an application in which the n’s do not

need to be sorted, otherwise the long runs of nnn . . .
would cause a catastrophic increase in run-time.

Fortunately, the suffixes of T are not an arbitrary

collection of strings, but rather have the special prop-

erty of being nested. It turns out that exploiting this

property leads to more efficient algorithms, as we

describe in this article. In section Bird’s-eye view,

we briefly outline the first three linear-time algo-

rithms for direct suffix array construction: Kim

et al. [19], Kärkkäinen and Sanders [20] and Ko and

Aluru [21] (Theoretically, linear time can be

achieved by first building a suffix tree and traversing
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Figure 1: A string (above) and its suffix array (shown
vertically) along with the position index on the left and
the corresponding suffixes to the right.
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it to compute a suffix array. But as suffix trees are

memory expensive, this method would largely

defeat the whole point of making suffix arrays a prac-

tical replacement for suffix trees.). (Linear time can be

achieved by first building a suffix tree and traversing it

to compute a suffix array, but suffix trees are memory

expensive). Then in section ‘A close look at SA-IS’,

we give a more detailed description of SA-IS, a recent

algorithm proposed by Nong, Zhang and Chan [23,

24]. SA-IS improves on the method of Ko and Aluru,

making it one of the fastest algorithms available, not

only theoretically but practically as well.

Bird’s-eye view
Interestingly, around the same time in 2003, three

different linear-time methods were proposed inde-

pendently by Kim et al. [19], Kärkkäinen and Sanders

[20] and Ko and Aluru [21]. All of them use a similar

divide-and-conquer (As the solutions lead to a

single-branch recursion, we could use the more pre-

cise (but less familiar) term ‘decrease and conquer’)

strategy based on the idea that as suffixes are inher-

ently nested, we should be able to determine the

lexical order of all suffixes if we knew the order of

only a select number of them. The general strategy

can be outlined as follows:

Divide phase: Given a text T of length n, system-

atically choose a subset S of the suffixes of T.

Construct a new text T 0 of length jSj in such a

way that sorting the suffixes of T 0 is equivalent to

sorting the S suffixes in the original text T.

Conquer phase: Recursively construct the suffix

array of T 0. Sorting the suffixes of T 0 is exactly the

same problem (suffix array construction) we started

with—albeit under a different alphabet and on a

smaller input size.

Combine phase: From the suffix array of T 0, com-

pute the suffix array of T.

The algorithms vary in their choices of S, which

impacts many things downstream: the construction

method and size of T 0, the terminating point of re-

cursion, the complexity of the combine phase and

consequently the running time and memory usage.

For example, Kim et al. [19] take S to be the set of

even-indexed suffixes, i.e.

S ¼ fTi::: j i is even g:

Assuming here for the sake of simplicity that n is

even, they construct a shorter text T 0 of length

n=2 from an alphabet derived from the length two

substrings (2-mers) in T. More precisely, the ith
character of T 0 is defined as:

T 0i ¼ RANKðT2i::2iþ1Þ, for 0 � i < n=2,

where RANK maps a substring T2i::2iþ1 to its rank in

the lexical ordering of the set of 2-mers appearing at

even index positions in T. Figure 2 shows an

example of construction of T 0 from T ¼ accca$.

It is not difficult to see that T 0i::: < T 0j::: ,
T2i::: < T2j::: (0 � i,j < n=2), and therefore, we can

determine the lexical ordering of S from the lexical

ordering of suffixes of T 0. This technique of repla-

cing substrings in an original text by a single charac-

ter (in a new alphabet) representing the substrings’

lexical order is called ‘lexical naming’, and is a recur-

ring theme in this article. The size of T 0 is half that of

T, thus reducing the problem size by half in each

recursion. Unfortunately, the combine phase of the

algorithm of Kim et al. is extremely complicated.

In contrast, the algorithm by Kärkkäinen et al. [20]

selects the suffixes as follows:

S ¼ fTi::: j i mod 3 6¼ 0g:

which leads to a simpler divide and combine phase.

Although we do not describe their algorithm in detail,

we would like to give some intuition for the selection

criterion. The key observation is that for any two

suffix starting positions i,j: in at least one pair among

{ði,jÞ, ðiþ 1,jþ 1Þ, ðiþ 2,jþ 2Þ} neither element is

an exact multiple of three, and therefore the suffixes

corresponding to that pair are both in S. Thus, once

the S suffixes are sorted, the relative ordering of any

two suffixes can be easily determined in constant time.

Technically one may say that the set f1,2g forms a

‘difference cover’ modulo 3, and this strategy can be

generalized to covers of modulo larger than three, as

described by Burkhardt and Kärkkäinen [29].

Unfortunately, by the construction of Kärkkäinen

[20], T 0 is two thirds the size of T, leading to

1 2 0

aa

aa

ccc

ccc

$

$T

T0..1 T2..3 T4..5

T

Figure 2: Divide phase of the algorithm by Kim et al.
Here, T ¼accca$. The set of sampled suffixes
S ¼{accca$,cca$,a$}. T0::1 ¼ac; T2::3 ¼cc;
T4::5 ¼a$. Since a$<ac<cc, RANK(T0::1)¼1,
RANK(T2::3)¼2, and RANK(T4::5)¼0. Therefore,
T0 ¼120.
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computation time and working memory roughly

proportional to 3jTj. This is not competitive with

SA-IS described in the next section, which reduces

the problem size to at most one half in each step and is

faster and more memory efficient.

A close look at SA-IS
Following the divide-and-conquer strategy outlined

in the previous section, we shall now take a deeper

look at the SA-IS algorithm by Nong et al. [23, 24].

To maintain a balance between a readable descrip-

tion and a rigorously complete one, we relegate

some of the proofs to the Supplementary text.

Divide phase
Suffix classification and selection Given a text T of

length n, a suffix Ti��� is classified as % (ascending)

type if Ti��� < Tiþ1��� or & (descending) type if

Ti��� > Tiþ1���. The notation we use here is intended

to be graphically mnemonic. Equivalently, the type

of Ti��� starting with some character, say c, can be

defined relative to the next character x 6¼ c, follow-

ing Ti after a run of zero or more c’s. If x > c then

Ti��� is %, otherwise Ti��� is &. As a special case, the

suffix Tn�1��� consisting of only the sentinel character

is defined to be %. The type of each suffix Ti��� can

be computed efficiently by scanning T in reverse

order and applying the following rule.

When classify Ti��� as:

Ti < Tiþ1 %-type
Ti > Tiþ1 &-type
Ti ¼ Tiþ1 Same as Tiþ1���

The correctness of the first two conditions is ob-

vious. The correctness of the third condition follows

from the observation that if both Ti and Tiþ1 hold

the same character, say c, the pair of suffixes

ðTi���,Tiþ1���Þ can be obtained by prepending c
onto the two suffixes ðTiþ1���,Tiþ2���Þ.

A type-% suffix Ti��� is further classified as a
p

(valley) if Ti�1��� is a & suffix. It might be worth

noting that with this definition, Tn�1��� is always a
p

suffix because the sentinel character is always lex-

ically smaller than its preceding character, and on the

other hand T0���, which has no preceding suffix, is

not a
p

suffix, even when it happens to be an %

one. From this procedural definition, it is easy to see

that we can identify the
p

-type suffixes by slightly

modifying the scan mentioned above. Alternatively,

the
p

suffix positions can be defined in a more

declarative way, as the local minima of the inverse

suffix array—the array for which element i holds the

sorted order rank of suffix Ti���. In Figure 3a, we

demonstrate the classification of the suffixes of

T ¼tgtgtgtgcaccg$. We similarly define

each character Ti to be of type& or% (and possibly

also
p

) in accordance with the type of suffix Ti���.

The divide phase of Ko and Aluru’s algorithm selects

either the set of %-type or &-type suffixes (which-

ever is smaller). Ko and Aluru’s choice results in a

simple combine phase (similar to Step 2 of the SA-IS

algorithm combine phase described later), but a fairly

cumbersome divide phase. SA-IS uses the main

idea of the Ko and Aluru combine phase, but selects
p

-type suffixes instead, and by doing so achieves

both simple divide and combine phases.

We close this section by noting a divide-and-

conquer strategy does not necessarily imply the use

of recursion. Many nonlinear, nonrecursive (or only

partially recursive) algorithms also sort a select set of

suffices first and then use that information to sort the

rest. For example, Itoh and Tanaka [30] select the

suffices Ti��� for which Ti � Tiþ1, while the algo-

rithms of Mori [31] and Maniscalco and Puglisi

[25] use a suffix-selection strategy almost identical

to that used by SA-IS.

Construction of reduced instanceT0 Let us now see how

to construct the reduced instance T 0 from the
p

suffixes. Consider the region in T starting with a
p

suffix and ending with the next
p

suffix. From

the above definitions, it is clear that this region con-

sists of a run of % suffixes followed by a run of &

suffixes, and finally a single % suffix. Again, in the

hopes of being graphically mnemonic, we denote the

substrings going from one
p

suffix to the next as
p p

(read ‘w’) substrings. As a special case,

(a)

(b)
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Figure 3: Divide Phase. (a) String T with its suffixes
classified as %, &,

p
. (b) Construction of reduced in-

stance T0 by lexical naming.
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Tn�1::n�1 consisting of the sentinel character is also

defined to be a
p p

substring.

The
p p

substrings divide T into blocks of sub-

strings with overlap of one character (Figure 3b).

The
p p

substrings are sorted based on the usual

lexical ordering but with one extra rule: if two char-

acters are the same, then we next look at their types,

with% defined to be larger than&. For example in

Figure 3, T5::9 sorts before T3::5 as T7 is& while T5

is %. These rules allow us to sort the set of
p p

substrings in T and from that obtain lexical names

for each
p p

substring. T 0 is obtained by concate-

nating the lexical names of the
p p

substrings in the

order they appear in T. (Figure 3b).

The innocent-looking ‘& sorts before %’ rule is

in fact important. The intuition behind it is that be-

tween a pair of &-type and %-type suffixes of T,

both starting with the same character, the& suffix is

lexically smaller than the % one (Lemma S1). Thus,

the lexical order of two suffixes of T will be correctly

reflected in the order of their corresponding suffixes

in T 0. We provide a formal proof of this in the

Supplementary text (Theorem S1). What is perhaps

more subtle is that this extra rule eliminates the

proper prefix problem that is inherent with lexical

naming of variable-length substrings, by telling us if

the prefix should come before or after the substring

which contains it (section ’The Proper prefix pro-

blem’ in supplementary material gives an example

and more formal discussion of this observation).

At this point, there is one major outstanding issue.

For this algorithm to achieve a linear run-time, we

must be able to sort the
p p

substrings in linear time.

While it is easy to sort the
p p

substrings in quadratic

time, it is not straightforward how to accomplish

this in linear time. Nong et al. found a surprisingly

simple solution, which is nearly the same as the com-

bine phase described in section ‘Combine phase’.

For completeness, however, we explicitly describe

the linear-time sorting of the
p p

substrings in the

Supplementary text (Section S1.3).

Conquer phase
If there are no ties in the sorting of the

p p
sub-

strings (in other words each lexical name is unique),

the order of the
p

suffixes can be determined with-

out the need for further recursion. Otherwise, the

suffix array of T 0 is computed recursively.

Combine phase
The recursion returns the order of the suffixes of T 0,
which tells us the relative order of the

p
-type

suffixes of T. We wish to use this information to

order all the suffixes of T.

Even without this new information, we can say a

few things about the suffix array of T. First, all suffixes

starting with a given character will be in a contiguous

block. Second, as was mentioned earlier, between a

pair of &-type and %-type suffixes, both starting

with the same character, the& suffix is lexically smal-

ler than the% one (Lemma S1). Therefore, the suffix

array of T can be thought of as being partitioned into

buckets, every bucket holding all the suffixes starting

with the same character; and each bucket further par-

titioned into two sub-buckets, one for the &-type

which is to the left of the one for the%-type suffixes.

For example, if T is a DNA string, its suffix array can

be logically partitioned (with some buckets possibly

empty) as shown in Figure 4.

To construct the suffix array of T, we start by allo-

cating an array A the size of T.A will eventually end

up as the suffix array. The procedure can be explained

in three major steps described below. A running ex-

ample with the text T from Figure 3 is provided in

Figures 6 and 7. In the following, we will refer to the

character in the ith position of A as Ai.

Step 0: This step initializes A. Set all elements of A
to the special value of �1. Compute the bucket

boundaries of A, by counting the frequency of

each character type pair (e.g. a%) in the text.

Pointers can be used to mark the boundaries—one

for each &-type bucket pointing to its left end

(head). (After Step 1 below, these pointers can be

reused to point to the right end (tail) of each %-

type bucket). Place the
p

-type suffixes into the ends

of their buckets in their sorted order (Figure 5). Note

that this is not the final resting position of the
p

-

type suffixes.

Step1: This step uses the order of
p

-type suffixes to

sort the &-type suffixes. Scan A from left to right,

skipping any elements with value �1. For each suffix

index Ai encountered, if TAi�1 is &, place Ai�1 at

the current head of its respective bucket, and then

increment that head pointer (Figure 6).

$ a c g t

n - 1 -type-type-type -type-type-type-type

Figure 4: Buckets of a DNA-string suffix array of
length n. Gray indicates &-type positions. The bucket
for T does not have a subbucket for % because there
cannot be any% suffix starting with the lexically great-
est character of the alphabet.
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Step 2: This step uses the order of the &-type suf-

fixes obtained from Step 1 to sort the %-type suf-

fixes. Scan A from right to left. For each suffix index

Ai encountered, if TAi�1 is %-type, place Ai�1 into

the current tail of its respective bucket and decre-

ment that tail pointer (Figure 7).

At the end of Step 2, A is exactly the suffix array

of T!

Although these steps consist of simple operations,

the correctness of Steps 1 and 2 might not be imme-

diately clear. Informally, Step 1 is a clever one-sweep

implementation of the following idea. The order of

two &-type suffixes Ti��� and Tj���, starting with the

same initial character, can be determined recursively

as Ti��� < Tj��� , Tiþ1��� < Tjþ1���. We can end this

recursion when we reach the smallest integer x such

that 1) Tiþx and Tjþx are different characters or 2) at

least one of them is of %-type (i.e. starts a
p

-type

suffix). If exactly one is of %-type suffix, it follows

immediately that it goes after the other in the suffix

array, while if both of them start a
p

-type suffix,

their order is already known from the conquer phase.

Step 2 can be understood similarly—it sorts the

%-type suffixes inductively based on the order of

&-type suffixes. A formal proof of correctness

of the combine phase is provided in the

Supplementary material (Theorems S3 and S4).

In fact, SA-IS uses an almost-identical ‘induced-

sorting’ procedure to sort the
p p

substrings in the

divide phase as well (section ‘The Method’ in sup-

plementary material). Finally, we know what the ‘IS’

in SA-IS stands for!

COMPUTATIONALCOMPLEXITY
Time complexity
The time complexity of SA-IS is linear in the input

text size. This is because each divide phase results in

the problem being reduced into a problem of size

half or even smaller (
p

suffixes occur at boundaries

between& and% suffixes and therefore at most 1=2
of all suffixes can be

p
suffixes), and the additional

work of dividing and combining at each level can be

performed in linear time.

Memory usage
The suffix array of a length-n text can be stored in

�ðn log nÞ bits of space—the suffix array holds n
numbers, and each number can be encoded using

log n bits. Because the suffix array itself does not

13 9 -1 -1 -1 -1 5 3 1 -1 -1 -1

13 9 8 -1 -1 12 -1 5 3 1 -1 -1 -1

13 9 8 -1 -1 12 7 5 3 1 -1 -1 -1

13 9 8 -1 -1 12 7 5 3 1 6 -1 -1

13 9 8 -1 -1 12 7 5 3 1 6 4 -1

13 9 8 -1 -1 12 7 5 3 1 6 4 2

-1

-1

-1

-1

-1

-1

13 9 8 -1 -1 12 7 5 3 1 6 4 2 0

12

13 9 8 -1 -1 12 7 5 3 1 -1 -1 -1 -1

13 9 8 -1 -1 12 7 5 3 1 -1 -1 -1 -1

13 9 8 -1 -1 12 7 5 3 1 -1 -1 -1 -1

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a
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g

g
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g

t ttt
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t

t

t

t

t
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t

t

$

√√√√√

T

Figure 6: Animation of Step1of the combine phase as
the sweep proceeds from left to right. The original
text T is also shown for reference. The " symbols
point to the current heads of &-type subbuckets, the
� symbol shows the current position of the sweep and
cells with thick boundaries indicate changes. For ex-
ample, in the topmost row, suffix index 13 is encoun-
tered; and as T12��� is &-type, 12 is inserted at A5, the
current head of the bucket for&-type suffixes starting
with g. The sweep proceeds accordingly. Whenever a
pointer reaches the edge of its bucket, we change its
representation to a dashed arrow. From sweep position
10 onwards, the array does not change and so this ani-
mation excludes those steps.

13 9 -1 -1 -1 -1 -1 5 3 1 -1 -1 -1 -1

a c g t

Figure 5: Array A at the end of Step 0 in which the
p

suffixes have been placed in their buckets in sorted
order.Gray indicates&-type positions. This order of

p

suffixes is obtained from recursion.
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contain the text itself, we also need to load the text

into main memory to be able to process queries. This

requires another �ðn logsÞ space, where s is the size

of the alphabet.

In many bioinformatics applications, the text

length is shorter than 232, allowing each index to

be represented using 4 bytes. Also, the alphabet

size is small enough that 1 byte is enough to represent

each character. This adds up to a total of 5n bytes.

A haploid human genome contains �3 billion bases,

and therefore it requires a total of 15 GB of memory

just to hold the text and suffix array. Moreover some

genomes are 10s or even 100s of times larger than

that of human, and of course one may want to index

multiple genomes. Thus minimizing memory use is

an important concern when using suffix arrays.

There are several possible workarounds, some-

times at the cost of higher query processing times.

In many cases, the data can be partitioned into logical

segments (e.g. chromosomes in a genome), and the

index for each partition can be treated separately. In

applications where some loss of information is toler-

able, one can choose to store only a subset of the

suffixes (e.g. only every second suffix), an idea

known as a sparse suffix array [32]. Sparse indexing

is not unique to suffix arrays, and in fact is used by

several sequence alignment tools, e.g. BLAT [33],

indexed MegaBLAST [34]. More sophisticated,

suffix-array-like, reduced memory data structures

have been developed, including methods involving

the Burrows–Wheeler Transform [35], FM-index

[36] and compressed suffix arrays [37]. These meth-

ods typically reduce memory use at the expense of

the computation time needed for pattern searches.

Vyverman et al. [38] give a comprehensive review

of the trade-offs offered by these and other indexes.

Apart from the storage memory of the index itself,

we also need to consider the working memory

required by the construction algorithm. This is

defined as the additional memory required by the

construction algorithm, excluding the memory

used to hold the input text and the output suffix

array. Various ‘lightweight’ suffix array construction

algorithms have been proposed (e.g. [39, 40]) which

achieve reduced working memory.

The SA-IS algorithm is elegant not only in terms

of computation time, but also in the way it leads to

an implementation with most of the working

memory allocated to bucket pointers. Assuming the

original text T is from a small fixed alphabet, the

number of distinct characters in the reduced text

T 0 can become as large as jTj=2, and therefore, the

bucket pointers for the first level of recursion can

require almost jTj=2 buckets (often considerably

less in practice), leading to a working memory of

13 9 8 -1 -1 12 7 5 3 1 6 4 2

13 9 8 -1 -1 12 7 5 3 1 6 4 2

13 9 8 -1 -1 12 7 5 3 1 6 4 2

13 9 8 -1 11 12 7 5 3 1 6 4 2
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13 9 8 -1 -1 12 7 5 3 1 6 4 2 0
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Figure 7: Animation of Step 2 of the combine phase as
the sweep proceeds from right to left. The original text
T is also shown for reference. The " symbols point to
the current tails of %-type subbuckets, the � symbol
shows the current position of the sweep, and cells with
thick boundaries indicate changes. For example, in the
topmost row, suffix index 0 is encountered, and there-
fore no action needs to be taken. Next, suffix index 2 is
encountered; and as T1��� is %-type, 1 is inserted at A9,
the current tail of the bucket for %-type suffixes start-
ing with g. Whenever a pointer reaches the edge of its
bucket, we change its representation to a dashed arrow.
From sweep position 2 onwards, the array does not
change and so this animation excludes those steps.
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roughly 2jTj bytes (with 4-byte pointers).

Surprisingly, no working memory is needed to

hold the text or suffix arrays computed during recur-

sion, as these can be computed using the same

memory that ultimately holds SAT. The fact that

this can be done is not obvious and somewhat

involved, so we provide a detailed analysis of the

memory usage of SA-IS in the Supplemental mater-

ial ‘Memory usage of SA-IS’. Intriguingly, Ge Nong

has recently reported a new suffix array construction

algorithm, SACA-K [26], which achieves an O(1)

working space for constant alphabet, while maintain-

ing linear runtime. SACA-K can be understood as a

variant of SA-IS, modified with clever optimizations

to eliminate the need for separate memory for

bucket pointers after the first level of recursion. A

full description is beyond the scope of this article, but

a thorough reading of this review should be of great

help in understanding SACA-K.

Benchmarking
To understand the time and memory performance of

SA-IS in practice, we performed simple experiments

with several biological data sets that are representa-

tive of the kind of data usually encountered in

bioinformatics research. For more comprehensive

benchmarks on general applications, we refer the

reader to [22, 24].

Data sets
The data sets used are summarized in Table 1. The last

entry in the table requires some explanation. We

started with chr22 of the human genome. Using

Dnemulator [41], a package for simulating polymorph-

isms, we simulated several copies of chr22, as if they

were coming from different individuals. Dnemulator

does this by picking real alleles based on their frequen-

cies as reported in snp132Common.txt, a SNP data-

base [42] available from the UCSC Genome Database.

In this manner, we constructed four different data sets

containing 1, 3, 5 and 7 different copies of chr22. This

data set is relevant to bioinformatics because with

increasing amount of sequence data becoming avail-

able, it is likely that data sets contain genomic se-

quences from different individuals of the same species

and/or from similar organisms. Another motivation for

this experiment is to illustrate the problem a nonlinear,

but usually fast, suffix array construction algorithm ex-

hibits when faced with many suffix pairs that share long

common prefixes. Many biological sequences such as

genomic sequences contain many long repeats and are

especially prone to long common prefixes. For algo-

rithms that directly compare suffixes to sort them, this

means the comparison takes longer.

Preprocessing the data sets
For DNA data, usually the character n appears wher-

ever the nucleotide at that position has not been

correctly identified. We removed all occurrences of

n and reformatted the data files as suitable for each

software package to represent the biological se-

quences as a single concatenated text string with a

unique delimiter character placed between adjacent

sequences.

Programs
We benchmarked several freely available suffix array

construction programs based on different algorithms,

including two implementations of SA-IS: one

available from the authors of SA-IS and an implemen-

tation by Yuta Mori (https://sites.google.com/site/

yuta256/sais). We also tested SACA-K [26], a recently

published memory-efficient successor of SA-IS and

included an implementation of the Deep-Shallow al-

gorithm [40], which is theoretically not a linear-time

algorithm, but has been shown to be fast and light-

weight in practice [22]. For each program, we used

the default parameter settings. Finally, for baseline

comparison, we included our implementation of

Table 1: Different biological data sets used for tests

Data set Size: (roughly
	106 characters)

Obtained from

D. melanogaster (fruitfly) genome 165 ftp://ftp.ensembl.org/pub/release-73/fasta/drosophila_melanogaster/dna/
G. gallus (chicken) genome 992 ftp://ftp.ensembl.org/pub/release-73/fasta/gallus_gallus/dna/
UniProtKB/Swiss-Prot protein data set 193 http://www.uniprot.org/downloads
UniProt fungi proteins data set 872 http://www.uniprot.org/uniprot/?query¼taxonomy%3a4751&format¼*
Human chromosome 22 and its copies 36 to 249 http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/ and simulation

(see text)
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radix sort. The links to the programs tested here are

available in the Supplementary material.

Results
We ran the programs on a machine Intel(R)

Core(TM) i7-3770K 3.50 GHz CPU and 32 GB

RAM with a linux-based OS installed. We measured

running time using the usrþ sys time reported

by the Linux time command, and peak memory

usage using the Linux top command. The running

time and peak total memory usage of each program

for each data set is shown in Figure 8.

The SA-IS implementation by Mori shows superior

time and memory performance across all data sets.

However, when compared across implementations

from the same group (Nong et al.), SACA-K outper-

forms SA-IS in both time and memory. Compared

with Mori’s implementation of SA-IS, Deep Shallow

performs significantly poorly for the chr22 data set, but

it is fairly competitive for the other data sets. Radix

sort is slow for the chr22 data set, as one might expect.

For the remainder of the data sets, it is not far off from

the other methods. However, we should note that the

implementation of radix sort we used has an applica-

tion specific advantage in that it does not fully sort the

suffixes, but instead only sorts up to the first delimiter

(i.e. does not sort past the boundaries of the biological

sequences forming the input text).

INEXACT PATTERNMATCHING
With biological sequences, we are not always look-

ing for exact matches. As a simple example, consider

searching for a given string in a protein-coding DNA

sequence. Protein-coding DNA tends to exhibit sub-

stitution at the third position of every codon, as this

often does not affect the encoded amino acid. We

could therefore relax our pattern-matching require-

ments by allowing a mismatch at every third position

of the pattern, for example with a text T ¼ actcg
tact, the substring T0::5 would be a match for the

query pattern acgcga.

Approximate matching comes in different flavors,

necessitating appropriate modification to ordinary

suffix arrays. Here we deal with three kinds of ap-

proximations: spaced seeds that allow any mis-

matches at predetermined positions, subset seeds

that allow only certain kinds of mismatches at pre-

determined positions and finally matches that are

within a prescribed edit/Hamming distance.
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Spaced seeds: patterns with don’t-care
positions
The concept of ‘spaced seeds’ is widely used in

pairwise sequence alignment algorithms that use

BLAST-like seed-and-extend techniques. Given two

sequences T1 and T2, these alignment algorithms first

identify potentially similar regions using ‘seeds’, short

strings that can be found in both T1 andT2. Originally

seeds were required to match exactly, but it has since

been shown that the sensitivity of these alignment al-

gorithms increases significantly when spaced seeds that

allow mismatches at certain positions are used [43–45].

This has resulted in a host of sequence alignment tools

that rely on the concept of spaced seeds (for example,

see [6, 44, 46, 47]). Spaced seeds have also been

applied to the problem of correcting errors in reads

from high-throughput sequencers [48].

Given the tremendous interest in spaced seeds, it is

desirable to have a suffix array-like data structure that

when constructed for a database string and a set of

don’t-care positions facilitates rapid pattern searches.

We devote the rest of this section to describing the

construction of such an index called the ‘spaced

suffix array’. First, let us start with some mathemat-

ical definitions.

Definitions. . .again
The don’t-care positions of a spaced seed can be

described by a ‘mask’ M, a binary vector represented

by a string over the alphabet f0,1g, with the 0 pos-

itions of M corresponding to the don’t-care pos-

itions. Applying M to a length-jMj substring Ti::j

of a string T results in a ‘masked substring’ TMi::j,
which is the string obtained from Ti::j by replacing

Tiþk for each Mk ¼ 0 (i.e. the characters corres-

ponding to the don’t-care positions) by a unique

fixed character. As an example, let

T ¼ cagctat$, M ¼ 101 and * be the replace-

ment character, then applying M to a substring of T,

say T1::3 ¼ agc, we get the masked substring

TM1::3 ¼ a
c.

The definition of masked substring can be ex-

tended to substrings that are not of length jMj in

the following manner. If Ti::j is shorter than M, we

apply only the prefix of M which has the same

length as Ti::j. If Ti::j is longer than M, we apply

the mask cyclically as many times as required, so

for example the mask 101 can be thought of as

101101101 � � �. Using this mask and the same T
as before, TM0::1 ¼ c
 and TM0::4 ¼ c 
 gc
.

This definition naturally extends to the concept of

a ‘masked suffix’ of a suffix Ti���, which we shall

denote by TMi���. The ‘spaced suffix array’ of T
under mask M is a list of the masked suffixes of T
sorted in their increasing lexical ordering.

Depending on the mask and text, a spaced suffix

array is in general different from an ordinary suffix

array of the same text. Figure 9 shows one such

example with T ¼ cagctat$ and M ¼ 101.

Query processing in a spaced suffix array
Because a spaced suffix array is constructed with a

predetermined don’t-care pattern in mind, naturally

the query string must also be processed under the

same pattern. Apart from this, processing queries

in a spaced suffix array is similar to what is done

with ordinary suffix arrays, a topic we discussed in

section ‘Query string search’.

Constructing a spaced suffix array
Given a text T and a mask M, a straightforward so-

lution to computing the spaced suffix array of T
under mask M is to use radix sort that skips the

don’t-care positions. As we have seen in section

‘Benchmarking’, radix sort can become slow for cer-

tain inputs, and therefore faster solutions are desir-

able. Horton et al. [27] describe a method called

‘DisLex’, which uses lexical naming to transform

the input text into a new ‘DisLex text’ (over a

new alphabet), such that the desired spaced suffix

array can be easily derived from the ‘ordinary’

suffix array of the DisLex text. This method con-

structs a masked suffix array in three steps:

Step 1: Transform T to a new text T 0 of similar

length such that sorting the masked suffixes of T is
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Figure 9: Contrasting the ordinary suffix array (left)
of cagctat$ with its spaced suffix array under mask
101 (right). The characters at don’t-care positions have
been replaced by *.
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equivalent to sorting the ordinary suffixes of T 0. The

core idea uses lexical naming, a technique we came

across while discussing suffix array construction algo-

rithms (e.g. Figures 2 and 3).

Step 2: Apply any linear-time suffix array construc-

tion algorithm on T 0.
Step 3: Reverse-transform the suffix array of T 0 to

obtain the spaced suffix array of T.

In Figure 10, we illustrate steps 1 and 2 with the

running example of T ¼ atggacgacact with

M ¼ 101.

TransformingT to T 0 AssumeT does not contain any

sentinel character, and for the sake of simplicity, sup-

pose the length of T is some multiple k of the mask

length m ¼ jMj. Append at the end of T a string

$0$1 � � � $2m�2 of 2m�1 sentinel characters (if T is

not an exact multiple of m, extra sentinel characters

can be added to make it so). The extra characters are

lexically smaller than any character of T, and among

themselves are related as $0 > $1 > $2 > � � �
> $2m�2. The relevance of this padding will be ap-

parent later. From here onwards, T refers to this

padded string of length of mðkþ 2Þ � 1.

Take all distinct length-m masked substrings ofT
and compute their lexical ordering, for example by

radix sorting. Let us define a mapping RANK that

maps each distinct masked substring to its rank in this

ordering (Figure 10b).

Next construct a string 0modm from T0::ðkþ1Þm�1 by

replacing the length-m length substrings Tim::ðiþ1Þm�1,

0 � i � k by RANK(TMim::ðiþ1Þm�1) (Figure 10c).

The reason behind this rather peculiar naming is

that the suffixes of 0modm correspond to those

masked suffixes of T whose index position i has

the property that i mod m ¼ 0. In a similar fashion

of lexically naming length-m substrings, construct

string 1modm from T1::ðkþ1Þm, string 2modm from

T2::ðkþ1Þmþ1, and so on up to ðm�1Þmodm from

Tm�1:::ðkþ2Þm�2 (Figure 10d, e). Finally, concatenate

0modm, 1modm, . . . , ðm� 1Þmodm to obtain the DisLex

text T 0 (Figure 10f).

Reverse transformation Step 2 produces the ordinary

suffix array of T 0. The spaced suffix array of T can

be easily computed using the one-to-one corres-

pondence between the suffixes of T 0 and the

masked suffixes of T. Let us see how to describe

this correspondence in more mathematical terms.

Consider a suffix T 0i��� of T 0. If we think of T 0 in

terms of the m blocks 0modm to ðm� 1Þmodm each

kþ 1 long, then the position index i can be expressed

as i ¼ xðkþ 1Þ þ y for some integer x ð0 � x � mÞ
and some integer y ð0 � y � kÞ—the value x indi-

cates which block T 0i:: starts in and y tells us its
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Figure 10: A demonstration of how DisLex constructs
a spaced suffix array using an example string T ¼ atg
gacgacac$ and mask M ¼101. The characters at
the 0 positions of the mask have been mapped to the
character 
. (a) The input string with extra
padding. (b) Lexically sorting all the length-3 distinct sub-
strings of T. The mapping RANK is defined using this
ordering. (c), (d), (e) Constructing 0mod3, 1mod3 and
2mod3, respectively. (f) Constructing T0 by concatenating
0mod3, 1mod3 and 2mod3. (g) The suffix array of T0 (above)
is transformed to the spaced suffix array of T (below).
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position offset within this block. Then the index of

the corresponding masked suffix of T is ymþ x. For

example in (Figure 10(f,g)), 9 in the suffix array of T’

corresponds to 13 ¼ ymþ x ¼ 4 
 3þ 1 in the

masked suffix array of T. In this computation,

x ¼ 1 because 9 is in the mod1 block of T’

ðb9=ðkþ 1Þc ¼ b9=5c ¼ 1Þ; y ¼ 4 because 9 mod

5¼ 4.

Correctness Why does sorting suffixes of T 0 corres-

pond to sorting masked suffixes of T? It again helps

to think of T 0 as a concatenation of the blocks of

strings 0modm to ðm�1Þmodm. Consider a pair of

masked suffixes TMx��� and TMy��� of T. Suppose

x mod m ¼ i and y mod m ¼ j (with the possibility

that i¼ j), then the suffix of T 0 corresponding to TMx���
starts in the imodm block, and that corresponding to

TMy��� starts in the jmodm block. If we look at just the

strings imodm and jmodm (i.e. isolated from T 0), then

we can see that our lexical naming technique ensures

that the lexical relation between TMx��� and TMy��� is

exactly the same as that between their corresponding

suffixes in imodm and jmodm. However, in T 0, there

could be other characters following imodm and jmodm.

This is where the role of the padding comes in. We

padded T with enough sentinel characters so that the

last character of each block receives a delimiter-type

lexical name (lexically less than any name not invol-

ving sentinel characters). Therefore, it does not

matter that in T 0, blocks imodm and jmodm are fol-

lowed by other characters.

Computation time The running time of the DisLex

transformation is OðjTj 	 jMjÞ time. In practice,

jMj � jTj and the time needed for the DisLex

transformation and reverse transformation is much

less than that needed for the subsequent ordinary

suffix array construction in Step 2. The results of

simple experiments with human Chromosome 1

and two masks are shown in Table 2.

The main practical drawback to DisLex is that,

depending on the mask, the alphabet size of the

DisLex text may in general become quite large

(although always bounded by jTj), even when the

original alphabet size is small. The ‘codon mask’ 101
is relatively innocuous in this respect, as it has only

two care positions and therefore at most squares the

original alphabet size (ignoring the small overhead

due to sentinel characters). Many highly sensitive

seeds are, however, much longer and contain many

more care positions, which can result in a large

alphabet. Recalling the issues raised in section

‘Computational Complexity’ and analyzed in depth

in section ‘Memory usage of SA-IS’ in the supple-

mentary material, we can see that an increased alpha-

bet size increases memory use in two ways: (i)

depending on the mask, the DisLex text may require

4 bytes per character, instead of one; and (ii) when

SA-IS is used as the suffix array construction algo-

rithm in Step 2, a large number of bucket pointers

may be needed to induced-sort T.

Subset seeds
The concept of subset seeds is a generalization of

spaced seeds. With spaced seeds, any kind of mis-

matches are allowed at 0 positions of the mask.

With subset seeds, we can specify the types of mis-

matches that are allowed at each position.

For instance, at some positions we might want to

make no distinction between the two purines a,g
or between the two pyrimidines c,t—the rationale

being that transition mutations have a higher fre-

quency than transversions. For protein sequences,

we might want to allow mismatches between similar

amino acids. It has been shown that a carefully

chosen pattern of subset seeds is even more effective

than spaced seeds in improving the sensitivity of

alignment programs [49, 50].

DNA methylation measurement via bisulfite

sequencing is an important application in which

the need for subset seeds is especially clear. DNA

methylation is an epigenetic modification in which

a methyl group is chemically added to a nucleotide

(typically cytosine) by cellular methyltransferases.

This phenomenon is of great interest because it

plays an important role in gene expression and cel-

lular differentiation. Treating DNA with bisulfite

converts the unmethylated cytosines into uracils,

but leaves methylated cytosines unchanged. In a

subsequent step, PCR (in which uracil acts like

Table 2: Running time (in seconds) of the three steps of
DisLex with human Chromosome1 (�225 million charac-
ters) as input, using the ‘codon mask’ (101) and a mask
used by PatternHunter [44] (111010010100110111)

Mask Time in seconds

Step 1 Step 2 Step 3

101 2 123 2
PatternHunter 4 213 2

The suffix arrayof the LexText in step 2 is constructedwith SA-IS, using
code by P.H. based on GeNong’s SA-IS implementation.
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thymine) is used to amplify those sequences. Thus, in

bisulfite sequencing methylated cytosines appear as

t’s. If we are to then use a seed-and-extend

method to align these sequences to a reference

genome, we need to use subset seeds that allow a

c-t mismatch (g-a mismatch in the reverse strand)

to account for the fact that a t in the query could

have possibly originally been a c.

Like spaced seeds, we can describe a subset-seed

pattern using a mask. Unlike a binary string mask

used to represent spaced seeds, however, a length-m
mask for a subset seed is an m-tuple

ðM0,M1, . . . ,Mm�1Þ, where each Mi is a collection

of disjoint sets, each set defining an equivalence class

of characters for a particular position. For instance,

({{a,g},{c,t}},{{a,c,g,t}},{{a},
{c},{g},{t}}) allows a,g-mismatch and c,t-

mismatch in the first position, any kind of mismatch

in the second and only exact matches in the third.

Thus, applying a subset seed mask to a string can be

thought of as replacing equivalent characters at each

position by some fixed character. As with spaced

seeds, subset seeds are applied cyclically or trimmed

to adjust to the length of the string being masked.

To facilitate subset-seed queries, we would like to

sort the suffixes of a given text under a given mask.

DisLex can easily accommodate subset seeds with a

bit of modification in Step 1. When sorting the

length-m distinct substrings to compute the mapping

RANK, we must apply the subset seed mask.

Approximate patterns based on
edit/Hamming distance
Another type of string search problem is one in

which given a string T, a short query string P
and a positive integer k, we wish to find the oc-

currences of strings in T that are within Hamming

or edit distance k from P. This formulation has

applications for instance in mapping short reads ob-

tained from high-throughput sequencing experi-

ments to a reference genome. Modern-day

sequencers work by first shearing the biological

sample into fragments, and then sequencing the

fragments. This results in billions of short DNA

sequences (often called ‘reads’), which are typically

35 to a few 100 base pairs long depending on the

technology. Often the first step in analyzing the

enormous set of reads is to align each read to a

reference genome, a task often called ‘mapping’).

For shorter reads of length up to a 100 nucleotides,

one popular strategy to tackle the mapping problem

has been to index the reference genome, and for

each read search the index to find the locations that

are within a certain edit distance from the read.

The edit distance threshold accounts for either

genuine differences in the sample and the reference

due to polymorphisms or differences due to se-

quencer errors. Tools like BWA [51], Bowtie

[52], SOAP [53], GEM [54] and Masai [55] use

this model of sequence similarity and employ

index structures closely related to suffix arrays.

Theoretically suffix arrays are poorly suited for

such queries. One approach is to generate the set

of all strings that are within edit distance k of a pat-

tern P and then search each of the strings in the suffix

array, but this does not scale well because the set

grows exponentially in the length of P and in k.
Another strategy is ‘backtracking’ in which the

index is parsimoniously traversed to extract all loca-

tions of approximate matches [56]. The method also

does not scale well for large k, but can be effective

for read mapping [55].

Yet another strategy is to first filter out the loca-

tions that are highly likely to contain matches by

splitting P into shorter substrings and finding exact

matches of the substrings. To get a sense of why this

works, consider searching for occurrences that are

within edit distance 1 of P. If P is partitioned into

nonoverlapping substrings P1 and P2, it is necessary

that either P1 or P2 have an ‘exact’ match at any

location that is within edit distance 1. Once the can-

didate locations are identified, we can then investi-

gate them to verify if they actually contain the

required matches. Again this technique performs

poorly as k increases because the size of the partitions

start getting smaller and there are too many candidate

locations that need to be verified. A modified

suffix array that facilitates faster identification of can-

didate locations of approximate matches is described

in [57].

We refer the readers to [58, 59] for more detailed

discussion on approximate string matching based on

edit distances.

CLOSING REMARKS
We have presented a detailed exposition of the

SA-IS algorithm for suffix array construction, in

the context of other linear-time algorithms and

described techniques to adapt suffix arrays to inexact

matching needed for bioinformatic applications.

Although our exposition is by no means light
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reading, we believe it is considerably more accessible

than the original literature.

To provide a reasonably complete and self-con-

tained document, we intentionally limited the scope

of our discussion. Thus, we chose not to treat many

important topics, in particular distributed computing

and storage of suffix arrays. However, just as the

SA-IS algorithm builds on previous techniques,

future algorithms will most likely build on tech-

niques, such as lexical naming, reviewed in this

article.

The field of genomics is rapidly developing as

sequencing technology continues to advance and

sequencing is applied to more and more areas outside

of traditional genome sequencing, from gene expres-

sion to epigenetics and even quantitative measure-

ment of protein translation. Patient sequencing and

analysis may soon become as routine as X-rays for

medical diagnosis. At the same time, computational

technology is also leaping forward as our field moves

towards further adoption of cloud technology and

data storage moves from peta-bytes to exa-bytes

and even zetta-bytes.

For an article written in such exciting times, this

may seem like a rather stodgy exposition, fastidiously

counting every computational operation and byte of

memory used. However, we would argue that the

coming deluge of sequence data will not be con-

quered by hardware investment alone, but rather

existing and novel efficient algorithms will likely con-

tinue to be the (unsung) heroes—instrumental in

realizing the potential of the sequencing revolution.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Suffix array and related data structures are indispensable to
modern bioinformatics.

� Suffix arrays are used in compute-intensive applications inwhich
their construction andmemory use can be a bottleneck.

� Recently efficient and elegant (albeit somewhat complex) algo-
rithmshavebeendeveloped forefficient suffix arrayconstruction.

� Suffix arrays can be adapted to special needs in bioinformatics
applications such as spaced and subset seeds in sequence hom-
ology search.
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11. Schröder J, Schröder H, Puglisi SJ, et al. SHREC: a short-
read error correction method. Bioinformatics 2009;25(17):
2157–63.

12. Gonnella G, Kurtz S. Readjoiner: a fast and memory effi-
cient string graph-based sequence assembler. BMC
Bioinformatics 2012;13(1):1–19.

13. Hernandez D, François P, Farinelli L, etal. De novo bacterial
genome sequencing: Millions of very short reads assembled
on a desktop computer. Genome Res 2008;18(5):802–9.

14. Kurtz S, Narechania A, Stein JC, et al. A new method
to compute k-mer frequencies and its application to anno-
tate large repetitive plant genomes. BMC Genomics 2008;
9(1):1–18.

15. Hazelhurst S, Lipák Z. KABOOM! A new suffix array based
algorithm for clustering expression data. Bioinformatics 2011;
27(24):3348–55.

16. Homann R, Fleer D, Giegerich R, et al. mkESA: enhanced
suffix array construction tool. Bioinformatics 2009;25(8):1084–5.

17. Manber U, Myers EW. Suffix arrays: a new method for on-
line string searches. SIAM JComput 1993;22(5):935–48.

Forefront of suffix array construction algorithms page 15 of 17
 at U

niversidade Federal de Pernam
buco on February 10, 2014

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

In order t
 -- 
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbt081/-/DC1
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
8 
p
compute 
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


18. Karp RM, Miller RE, Rosenberg AL. Rapid identification
of repeated patterns in strings, trees and arrays. In: Proceedings
of the Fourth Annual ACM Symposium onTheory of Computing
(STOC’72). New York: ACM, 1972, 125–36.

19. Kim DK, Sim JS, Park H, et al. Linear-time construction of
suffix arrays. In: Proceedings of the 14th Annual Conference on
Combinatorial Pattern Matching (CPM’03). Springer-Verlag
Berlin Heidelberg, 2003, 186–99.
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43. Burkhardt S, Kärkkäinen J. Better filtering with gapped
q-grams. In: Proceedings of the 12th Symposium on
Combinatorial Pattern Matching, LNCS 2089. Springer-Verlag
Berlin Heidelberg, 2001, 73–85.

44. Ma B, Tromp J, Li M. PatternHunter: faster and more sen-
sitive homology search. Bioinformatics 2002;18(3):440–5.

45. Brown DG. A survey of seeding for sequence alignment.
In: Bioinformatics Algorithms. John Wiley and Sons, Inc.,
2007, 117–42.
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