Flexible Pattern Matching in Strings

String matching problems range from the relatively simple task of searching a single text for
a string of characters to searching a database for approximate occurrences of a complex
pattern. Recent years have witnessed a dramatic increase of interest in sophisticated string
matching problems, especially in information retrieval and computational biology.

This book presents a practical approach to string matching problems, focusing on the
algorithms and implementations that perform best in practice. It covers searching for
simple, multiple, and extended strings, as well as regular expressions, exactly and
approximately. It includes all of the most significant new developments in complex
pattern searching.

The clear explanations, step-by-step examples, algorithms pseudo-code, and implementation
efficiency maps will enable researchers, professionals, and students in bioinformatics,
computer science, and software engineering to choose the most appropriate algorithms for
their applications.

Gonzalo Navarro obtained his Ph.D. in computer science at the University of Chile in 1998
and was appointed Assistant Professor in 1999. His interests include design and analysis of
algorithms, information retrieval, text searching, text compression, approximate text
searching, and searching in metric spaces. He has co-authored more than 80 papers on these
topics, and has been a program committee member of several international conferences, as
well as program committee chair of SPIRE’2001. He is a member of the ACM and the Chilean
Computer Science Society.

Mathieu Raffinot received his Ph.D. in theoretical computer science at the University of
Marne-la-Vallée in 1999. Since October 2000 he has worked as a CNRS bioinformatics
researcher at the Laboratoire Génome et Informatique. His interests include design and
analysis of algorithms, pattern matching, and computational biology. He is the co-author of
numerous articles in international conferences and journals in computer science and
bicinformatics, and he works as a consultant for bioinformatics companies, including
Gene-1IT, the provider of the software application LASSAP.

Flexible Pattern Matching in Strings

Practical On-Line Search Algorithms for
Texts and Biological Sequences

GONZALQO NAVARRO MATHIEU RAFFINOT
University of Chile Cenire Nationale de
Recherche Scientifique,

Marne-La-Vallee, France

CAMBRIDGE

UNIVERSITY PRESS

oA
PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 100114211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcén 18, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Gonzalo Navarro, Mathieu Raffinot 2002
This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.
First published 2002
Printed in the United Kingdom at the University Press, Cambridge
Typeface Computer Modern 11/14 pt. System L, T X [AU]
A catalog record for this book is available from the British Library.
Library of Congress Cataloging in Publication Data
Navarro, Gonzalo, 1969—
Flexible pattern matching in strings : practical on-line search algorithms for texts and
biological sequences / Gonzalo Navarro, Mathieu Raffinot.
p. cm
Includes bibliographical references and index.
ISBN 0-521-81307-7
1. Computer algorithms. 2. Database searching. 1. Raffinot, Mathieu, 1973~ IL. Title.

QAT6.9 .A43 N38 2002
005.74-dc21 2001043704

ISBN 0 521 81307 7 hardback

A Betina, Martina, mis padres y hermana,
quienes, cada uno a su tiempo y manera,
me han hecho feliz.

A Paris, por lo mismo.

A toute ma famille, & Pia Marcela del
Campo Rojas, 4 Matthieu Latapy, aux
oursins, et bien stir, au Pisco Sour.

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.34

2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6

3.1
3.2
3.2.1
3.2.2

Contents

Introduction

Why this book? Our aim and focus
Overview

Basic concepts

Bit-parallelism and bit operations
Labeled rooted tree, trie

Automata

Complexity notations

String matching

Basic concepts

Prefix based approach
Knuth-Morris-Pratt idea

Shift- And /Shift-Or algorithm
Suffix based approach
Boyer-Moore idea

Horspool algorithm

Factor based approach
Backward Dawg Matching idea

Backward Nondeterministic Dawg Matching algorithm

Backward Oracle Matching algorithm
Experimental map
Other algorithms and references

Multiple string matching
Basic concepts

Prefix based approach
Multiple Shift-And algorithm
Basic Aho-Corasick algorithm

vil

viil
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.6

4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.4
4.5
4.5.1
4.5.2
4.6
4.7

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.5
5.5.1

Contents

Advanced Aho-Corasick algorithm
Suffix based approach
Commentz-Walter idea

Set Horspool algorithm
Wu-Manber algorithm

Factor based approach

Multiple BNDM algorithm .

Set Backward Dawg Matching idea,
Set Backward Oracle Matching algorithm
BExperimental maps

Other algorithms and references

Extended string matching
Basic concepts

Classes of characters

Classes in the pattern

Classes in the text

Bounded length gaps
Extending Shift-And

Extending BNDM

Optional characters

Wild cards and repeatable characters
Extended Shift-And

Extended BNDM

Multipattern searching

Other algorithms and references

Regular expression matching
Basic concepts

Building an NFA

Thompson automaton

Glushkov automaton

Classical approaches to regular expression searching

Thompson’s NFA simulation
Using a deterministic automaton
A hybrid approach

Bit-parallel algorithms
Bit-parallel Thompson
Bit-parallel Glushkov

Filtration approaches
Multistring matching approach

54
54
55
56
59
62
63
68
69
74
74

7
(4
78
78
80
81
82
84
87
89
91
93
96
97

29

99
102
102
105
111
111
111
115
117
118
122
125
126

5.5.2
5.5.3
5.6
5.7
5.8

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
6.7.3
6.8
6.9

7.1

7.1.1
7.1.2
7.1.3
7.14
7.1.5
7.2

7.2.1

Contents

Gnu’s heuristic based on necessary factors
An approach based on BNDM
Experimental map

Other algorithms and references

Building a parse tree

Approximate matching

Basic concepts

Dynamic programming algorithms
Computing edit distance

Text searching

Improving the average case

Other algorithms based on dynamic programming
Algorithms based on automata
Bit-parallel algorithms

Parallelizing the NFA

Parallelizing the DP matrix

Algorithms for fast filtering the text
Partitioning into & + 1 pieces
Approximate BNDM

Other filtration algorithms

Multipattern approximate searching

A hashing based algorithm for one error
Partitioning into & + 1 pieces
Superimposed automata

Searching for extended strings and regular expressions
A dynamic programming based approach
A Four-Russians approach

A bit-parallel approach

Experimental map

Other algorithms and references

Conclusion

Available software

Gnu Grep

Wu and Manber’s Agrep

Navarro’s Nrgrep

Mehldau and Myers’ Anrep

Other resources for computational biology
Other books

Books on string matching

ix

130
131
137
139
139

145
145
146
146
147
148
150
150
152
152
158
162
163
166
170
171
171
173
174
175
176
178
180
181
183

185
185
185
186
187
188
189
190
190

X Contents

7.2.2 Books on computational biology 192
7.3 Other resources 193
7.3.1 Journals 183
7.3.2 Conferences 193
7.3.3 On-line resources 194
7.4 Related topics 194
7.4.1 Indexing 195
7.4.2 Searching compressed text 196
7.4.3 Repeats and repetitions 199
7.4.4 Pattern matching in two and more dimensions | 200
7.4.5 Tree pattern matching 202
7.4.6 Sequence comparison k 203
7.4.7 Meaningful string occurrences 205
Bibliography 207
Index ' 219

1

Introduction

1.1 Why this book? Our aim and focus

String matching can be understood as the problem of finding a pattern with
some property within a given sequence of symbols. The simplest case is that
of finding a given string inside the sequence. -

This is one of the oldest and most pervasive problems in computer science.
Applications requiring some form of string matching can be found virtually
everywhere. However, recent years have witnessed a dramatic increase in
interest in string matching problems, especially within the rapidly growing
communities of information retrieval and computational biology.

Not only are these communities facing a drastic increase in the text sizes
they have to manage, but they are demanding more and more sophisticated
searches. The patterns of interest are not just simple strings but also include
wild cards, gaps, and regular expressions. The definition of a match may
also permit slight differences between the pattern and its occurrence in the
text. This is called “approximate matching” and is especially interesting in
text retrieval and computational biology. '

The problems arising in this field can be addressed from different view-
points. In particular, string matching is well known for being amenable
to approaches that range from the extremely theoretical to the extremely
practical. The theoretical solutions have given rise to important algorithmic
achievements, but they are rarely useful in practice: A well-known fact in
the community is that simpler ideas work better in practice. Two typical
examples are the famous Knuth-Morris-Pratt algorithm, which in practice is
twice as slow as the brute force approach, and the well-known Boyer-Moore
family, whose most successful members in practice are highly simplified vari-
ants of the original proposal.

2 Introduction

It is hard, however, to find the simpler ideas in the literature. In most
current books on text algorithms, the string matching part covers only the
classic theoretical algorithms. There are three reasons for that.

First, the practical algorithms are quite receut, the oldest one being just
a decade old. Some recent developments are too new to appear in the es-
tablished literature or in books. These algorithms are usually based on
new techniques such as bit-parallelism, which has appeared with the recent
generation of computers.

The second reason is that in this area the theoretical achievements are
dissociated from the practical advantages. The algorithmic community is
interested in theoretically appealing algorithms, that is, those achieving the
best complexities and involving complicated algorithmic concepts. The de-
velopment community focuses solely on algorithms known to be fast in prac-
tice. Neither community pays much attention to what the other does. Only
in the last few years have new algorithms emerged that combine aspects of
both theory and practice (such as BNDM), and the result has been a new
trend of fast and robust string matching algorithms. These new algorithms
have also not yet found a place in the established literature.

Finally, the search for extended patterns, of much interest nowadays, is
largely unrepresented in the established literature. There are no books
dealing with such new search problems as multiple or approximate pattern
matching.

These reasons make it extremely difficult to find the correct algorithm if
one is not in the field: The right algorithms exist, but only an expert can
find and recognize them. Consider the case of software practitioners, compu-
tational biologists, researchers, or students who are not directly involved in
the field and are faced with a text searching problem. They are forced to dig
into dozens of articles, most of them of theoretical value but extremely com-
plicated to implement. Finally, they get lost in an ocean of choices, without
the background necessary to decide which is better. The typical outcomes
of this situation are {a) they decide to implement the simplest approach,
which, when available, yields extremely poor performance and affects the
overall quality of development; and (b) they make a (normally unfortunate)
choice and invest a lot of work in implementing it, only to obtain a result
that in practice is as bad as a naive approach or even worse.

The aim of our book is to present, for a large class of patterns (strings, sets
of strings, extended strings, and regular expressions) the existing exact and
approximate search approaches, and to present in depth the most practical
algorithms. By “practical” we mean that they are efficient in practice and
that a normal programmer can implement them in a few hours. Fortunately,

1.2 Querview 3

these criteria normally coincide in string matching. We focus on on-line
searching, which means that we do not build data structures on the text.
Indexed searching, although based on on-line searching, would deserve a
complete volume by itself.

This book is intended to be of use to a large audience. Computer scientists
will find everything needed to understand and implement the fastest search
algorithms. If they want to go further in studying text algorithms, we give
precise links and research references (books, proceedings, articles) to many
related problems. Computational biologists will be able to enter in depth
in the pattern matching field and find directly the most simple and efficient
algorithms for their sequence searches.

We have implemented and experimented with all the algorithms presented
in this book. Moreover, some are ours. We give experimental maps whenever
possible to help the reader see at a glance the most appropriate algorithms
for a particular application.

This book is not a complete survey on text algorithms. This field is too
large for a single book. We prefer to focus on a precise topic and present it
in detail. We give a list of related recent books in Section 7.2.

1.2 Overview
Chapter 2: String matching

A string is a sequence of characters over a finite alphabet T. For instance,
ATCTAGAGA is a string over X = {4, C, G, T}. The string matching problem
is to find all the occurrences of a string p, called the pattern, in a large string
T on the same alphabet, called the text. Given strings z, y, and z, we say
that z is a prefix of zy, a suffix of yz, and a factor of yzz.

We present string matching algorithms according to three general ap-
proaches, depending on the way the pattern is searched for in the text.

The first approach consists in reading all the characters in the text one
after the other and at each step updating some variables so as to identify a
possible occurrence. The Knuth-Morris-Pratt algorithm is of this kind,
as is the faster Shift-Or, which is extensible to more complicated patterns.

The second approach consists in searching for the string p in a window
that slides along the text 7. For every position of this window, we search
backwards for a suffix of the window that maitches a suffix of p. The Boyer-
Moore algorithm uses this approach, but it is generally slower than one of
its simplifications, Horspool. And when it is not, it is slower than other
algorithms of other approaches.

4 Introduction

The third approach is more recent and leads to the most efficient al-
gorithms in practice for long enough p. As with the second approach, the
search is done backward in a window, but this time we search for the longest
suffix of the window that is also a factor of p. The first algorithm using this
approach was BDM, which, when p is short enough, leads to the simpler
and more efficient BNDM. For longer patterns, a new algorithm, BOM, is
the fastest.

We give an experimental map to easily choose the fastest algorithm ac-
cording to the length of the pattern and the size of the alphabet.

The three approaches represent a general framework in which the most
efficient algorithms fit. There exist other algorithms, for instance, those
based on hashing, but they are not efficient enough. We give references to
these algorithms in the last section.

Chapter 3: Multiple string matching

A set of strings P = {p',p?,...,p"} can be searched for in the same man-
ner as a single string, reading the text once. Many search algorithms for
searching a single string have been extended to search a set, with more or
less success. This chapter is a survey of the most efficient algorithms. Sur-
prisingly, many of them have just been published as technical reports and
it is quite difficult for a nonexpert to know of their existence.

All three approaches to search for a single string lead to extensions to a set
of strings. The first one leads to the well-known Aho-Corasick algorithm
and, when the sum of the pattern lengths, |P|, is very small, to the Multiple
Shift-And algorithm.

The second one leads to the famous Commentz-Walter algorithm, which
is not very efficient in practice. The extension of the Horspool algorithm,
Set Horspool, is efficient for very small sets on large alphabets. A last
algorithm, Wu-Manber, mixes the suffix search approach with a hashing
paradigm and is usually fast in practice.

The third approach permits an extension of BOM, the SBOM algorithm,
which becomes very efficient when the minimum pattern length grows. Sim-
ilarly to Shift-Or, BNDM leads to Multiple BNDM when |P] is very
small.

We give experimental maps that permit choosing which algorithm to use
depending on the total pattern size |P|, the minimum length, and the size
of the alphabet.

1.2 QOverview 5

Chapter 4: Extended sitring matching

In many applications, the search pattern is not just a simple sequence of
characters. In this chapter we consider several extensions that appear nor-
mally in applications and show how to deal with them. All these extensions
can be converted into regular expressions (Chapter 5), but simpler and faster
particular algorithms exist for the ones we consider here.

The simplest extension is to permit the pattern to be a sequence of classes
(sets) of characters instead of just characters. Any text character in the class
will match that pattern position. It is also possible for the classes to appear
in the text, not only in the pattern. »

A second extension is bounded length gaps: Some pattern positions are
designated to match any text sequence whose length is between specified
minimum and maximum values. This is of interest in computational biology
applications, for example, to search for PROSITE patterns. o

A third extension is optional and repeatable characters. An optional
pattern character may or may not appear in its text occurrence, while a
repeatable character may appear one or more times. '

Problems arising from these three extensions and combinations thereof
can be solved by adapting Shift-Or or BNDM. Both algorithms involve
bit-parallelism to simulate a nondeterministic automaton that finds all the
pattern occurrences (see Section 1.3). In this case we have more complex
automata, and the core of the problem is finding a way to simulate them.
Extending Shift-Or leads to an algorithm unable to skip text characters but
whose efficiency is unaffected by the complexity of the pattern. Extending
BINDM, on the other hand, is normally faster, but the efficiency is affected
by the minimum length of an occurrence, the alphabet size, and the sizes of
the classes and gaps. No classical algorithm can be extended so easily and
obtain the same efficiency. '

Finally, we show that a small set of short strings can be searched for using
a similar approach, and give references to other theoretical algorithms that
search specific kinds of extended strings. ‘ ‘

Chapter §5: Regular expression matching

Regular expressions give an extremely powerful way to express a set of search
patterns, containing all the previous types of problems we have considered
so far. A regular expression specifies simple strings and concatenations,
unions, and repetitions of other subexpressions. The algorithms addressing
them are more complex and should be used only when the problem cannot
be expressed as a simpler one.

6 Introduction

Searching for a regular expression is a multistage process. First, we need
to parse it to obtain a more workable tree representation. We show at
the end of Chapter 5 how to do this. We then use the tree representation
throughout the chapter.

The second stage is to build a nondeterministic finite automaton (NFA)
from the pattern. The NFA is a state machine which has some states active
that change as we read text characters, recognizing occurrences when states
designated as “final” are reached. There are two interesting ways to obtain
an NFA from a regular expression. Thompson’s algorithm obtains an NFA
whose number of transitions is proportional to the length of the regular
expression and which satisfies some regularity properties that are of interest.
Glushkov’s algorithm produces an NFA that has the minimum number of
states and other interesting regularities.

The NFA can be used directly for searching (we call this algorithm NFA-
Thompson) but this is slow because many states can be active at any time.
It can also be converted into a deterministic finite automaton (DFA), which
has only one active state at a time. The DFA is appealing for text searching
and is used in one of the most classical algorithms for regular expression
searching. We call this algorithm DFA Classical. Its main problem is that
the size of the DFA can be exponential on that of the NFA, which makes
the approach workable only for small patterns. On longer patterns, a hybrid
approach that we dub DFAModules builds an NFA of small DFAs and
retains a reasonable efficiency.

Another trend is to simulate the NFAs using bit-parallelism instead of
converting them to DFAs. We present two relatively new approaches, BP-
Thompson and BPGlushkov, which are based on simulating the respec-
tive NFAs using their specific properties. We show that BPGlushkov
should always be preferred over BPThompson.

A third approach, also novel, permits skipping text chara,cters The al-
gorithm MultiStringRE computes the minimum length #min of an occur-
rence of the regular expression and computes all the prefixes (of that length)
of all the occurrences. Tt then conducts a multistring search (Chapter 2) for
all those strings. When one such prefix is found, it tries to complete the
occurrence. An extension of it, MultiFactRE, selects a set of strings of
length ¢min such that some of these strings must appear inside any oc-
currence (the set of prefixes is just one option). Finally, RegularBNDM
extends BNDM by simulating Glushkov’s NFA.

Choosing the best algorithm is a complex choice that depends on the
structure of the regular expression. We give simple criteria based on prop-
erties of the pattern to decide which algorithm to use.

1.2 Overview 7
Chapter 6: Approximate matching

Approximate matching is the problem of finding the occurrences of a pattern
in a text where the pattern and the occurrence may have a limited number
of differences. This is becoming more and more important in problems such
as recovering from typing or spelling errors in information retrieval, from
sequence alterations or measurement errors in computational biology, or
from transmission errors in signal processing, to name a few.

Approximate matching is modeled using a distance function that tells how
similar two strings are. We are given the pattern and a threshold %, which
is the maximum allowed distance between the pattern and its occurrences.
In this chapter we concentrate on the Levenshtein (or edit) distance, which
is the minimum number of character insertions, deletions, and substitutions
needed to make both strings equal. Many applications use variants of this
distance.

We divide the existing algorithms into four types. The first is based on
dynamic programming. This is the oldest approach and still the most flexible
one to deal with distances other than edit distance. However, algorithms of
this kind are not among the most efficient.

The second type of algorithm converts the problem into the output of an
NFA search, which is built as a function of the pattern and &, and then makes
the automaton deterministic. The resulting algorithms behave reasonably
well with short patterns, but not as fast as newer techniques.

Bit-parallelism is the third approach, and it yields many of the most
successful results. The algorithms BPR and BPD simulate the NFA, while
BPM simulates the dynamic programming algorithms. BPM and BPD
are the most efficient of the class, but BPR is more flexible and can be
adapted to more complex patterns.

Finally, the fourth approach is filtration. A fast algorithm is used to dis-
card large text areas that cannot contain a match, and another (nonfiltra-
tion) algorithm is used to check the remaining text areas. These algorithms
are among the fastest, but their efficiency degrades quickly as k& becomes
large compared to the pattern length m.

Among the many filtration algorithms, we present the two most efficient
ones. PEX splits the pattern in k + 1 pieces and resorts to multistring
searching of them, as at least one must appear unaltered in any occurrence.
ABNDM is an extension of BNDM that simulates the NFA of approximate
searching.

We present an experimental map comparing these algorithms. In general,
filtration approaches work better for low k/m values. ABNDM is best for

8 Introduction

small alphabet sizes (such as DNA) while PEX is best for larger alphabets
(such as proteins or natural language). For larger k/m values, and also to
verify the text areas that the filters cannot discard, the best algorithms are
the bit-parallel ones.

There are some developments for approximate searching of other types of
patterns. For multiple pattern matching with errors, the main algorithms
are MultiHash, which works only for & = 1 but is efficient even when the
number of patterns is large; MultiPEX,, which takes k+ 1 strings from each
pattern and is the most efficient choice for low k/m values; and MultiBP,
which superimposes the NFAs of all the patterns and uses the result as a
filter, this being the best choice for intermediate k/m values.

For matching extended strings and regular expressions with errors, there
are a few approaches: one based on dynamic programming for regular ex-
pressions, one based on an NFA of DFAs permitting errors, and a bit-parallel
one based on BPR. This last one is the most attractive because of the com-
bination of simplicity and efficiency it offers.

1.3 Basic concepts
1.8.1 Bit-parallelism and bit operations

The bit-parallelism technique takes advantage of the intrinsic parallelism of
the bit operations inside a computer word. That is, we can pack many
values in a single word and update them all in a single operation. By taking
advantage of bit-parallelism, the number of operations that an algorithm
performs can be cut down by a factor of up to w, where w is the number of
bits in the computer word. Since in current architectures w is 32 or 64, the
speedup is very significant in practice.

Let us introduce some notation to describe bit-parallel algorithms. We
use exponentiation to denote bit repetition, for example, 031 = 0001. A
sequernce of bits by...b; is called a bit mask of length ¢, which is stored
somewhere inside the computer word of length w. We use C-like syntax for
operations on the bits of computer words, that is, “|” is the bitwise OR, “&”
is the bitwise AND, “A” is the bitwise XOR, “~” complements all the bits,
and “<<” (“>>") moves the bits to the left (rvight) and enters zeros from
the right (left), so that, for example, bpby_1 ... bob; << 3 = by_3...byb;000.

We can also perform arithmetic operations on the bits, such as addition
and subtraction. These operate on the bits as if they formed a number. For
instance, 00010110 + 00010010 = 00101000 and 10010000 — 1 = 10001111.

We may have to use many computer words to store a given set of values,
and in this case the operations described have to be applied over this entire

1.3 Basic concepls 9

representation. This is quite trivial for most operations, but the arithmetic
ones need some care because we have to consider the propagation effects. For
example, imagine that we have to simulate Z < X+Y or Z <~ X -Y, where
X =X;...X1 and Y = Y;...Y; are each represented using ¢ computer
words. Figure 1.1 shows the algorithm for both operations.

Add(X =X;... X3,Y =Y,... Y1)

1 carry + 0

Foricl...t Do
Z; + X; + Y.+ carry
If Z; < X; or (Y; = 1" AND carry = 1) Then carry « 1
Else carry + 0

End of for

Return Z =2;... 72

ooy

No e

Subtract(X = X;... X3,V =Y;... Y1)

8. carry 0

9. Foriel...t Do

10. Zi+— X; =Y —carry

1. If Z; > X; or (Y; = 1¥ AND carry = 1) Then carry « 1
12. Else carry «+ 0

13. End of for
14. Return Z2 =27;... 41

Fig. 1.1. Algorithms for adding and subtracting unsigned numbers stored in multi-
ple machine words. The first word, Z1, is the least significant. We ignore the final
overflow in the operation, but the overflow information is contained in the variable

carry.

1.3.2 Labeled rooted tree, trie

Most of the data structures presented in this book are based on classical
strings and rooted trees. A rooted tree is a set of nodes linked together with
unidirectional links. The source node of each link is called the parent and
the target is called a child. One special node has no parent; this node is
denoted root. The rest of the nodes of the tree have exactly one parent each.
Nodes with no children are called leaves.

For our purpose, it is convenient to attach a label to each link, which is
normally a character of the alphabet 3. An example of such a tree is shown
in Figure 1.2. ’

When the labeled rooted tree is associated to a set of strings, it is called
a trie. A complete presentation of the trie structure is given in Chapter 3.

10 Introduction

OO0

>(0)
x@ *_A_,(Dy@
&/
| A\@

Fig. 1.2. A labeled tree. State 0 is the root. Each node, except the root, has a
unique parent.

An algorithm that uses a labeled rooted tree performs computations over
the nodes in a specific order. In prefix order, the algorithm performs the
computation first over a node and then over its children (if any). In postfiz
order, the computation over the node is done after those over the children.
For instance, for the tree in Figure 1.2, the nodes we compute over in prefix
order are 0, 1, 3, 5, 8, 2, 4, 6, 7, and in postfix order they are 8, 5, 3, 1,
7, 6, 4, 2, 0. The specific order in which sibling nodes are processed is not
relevant.

Another frequently used order is the transversal order. The level of a node
is its distance, in terms of the number of intermediate nodes, to the root. In
transversal order the nodes are processed in increasing level order. Inside a
level, the order has generally no importance, but sometimes we impose one
to simplify the algorithms. Two transversal orders are shown in Figure 1.3.
The dashed arrows represent the way the nodes are processed.

o

()
A 7

;) .

» /I [/’ t
OGN
. e

y”@ B Ol
N ; A é}'@

Fig. 1.3. Tree traversals. State 0 is the root. The traversals are shown in dashed
arrows.

1.8 Basic concepts 11
1.83.3 Automata

The term aufomaton has many meanings in computer science. For our
purposes, a finite automaton, which we call simply an automaton, is a finite
set of states O, among which one is initial (state I € Q) and some are final
or terminal (state set F C). Transitions between states are labeled by
elements of 1 U {e}. These are formally defined by a transition function
D, which associates to each state ¢ € Q a set {q1,92,--.,qr} of states of
Q for each o € T U {e}. An automaton is then totally defined by A =
(Q,%,I,F,D). '
In practice, we distinguish two general types of automata, depending
on the form of the transition function. If the function D is such that
there exists a state ¢ associated by a given character o to more than one
state, say D(g,a) = {g1,92,---,qk}, k > 1, or there is some transition
labeled by ¢, then the automaton is called a nondeterministic finite automa-
ton (NFA), and the transition function D is denoted by the set of triples
A = {(¢g,0,¢), ¢ € Q0 € U {e},¢ € D{g,a)}. Otherwise, the au-
tomaton is called a deterministic finite automaton (DFA), and D is denoted
by a partial function § : @ x X — @, such that if D(q,a) = {q'}, then
8(g, @) = ¢'. We give examples of both types of automata in Figure 1.4.

A

B cE=oE ok CENOENO
s R AT

(a) Nondeterministic automaton {b) Deterministic automaton

Fig. 1.4. Two automata. In both, the state 0 is initial and the double-circled states
are terminal. The left automaton is nondeterministic since from the state 0 by
T we reach 2 and 6. The right one is deterministic because for a fixed transition
character all the states lead to at most one state.

A string is recognized by the automaton A = (Q,%,I,F,A) or A =
(Q,%,1,F,0) if it labels a path from an initial to a final state. The lan-
guage recognized by an automaton is the set of strings it recognizes. For
instance, the language recognized by the automaton in Figure 1.4 (a) is the
set of strings: A in state 8, ATAT in states 7 and 8, T in state 6, TC in state
8, TAG in state 6, and finally TAGC in state 8.

12 Introduction

In NFAs, we accept that some transitions are labeled with the empty string
g, and they are called e-transitions (or empty transitions). This means that
we do not have to read a character to go through the transition. If we are
at the source state of the e-tramsition, we can simply jump to its target
state. This can also be seen as reading an empty string. These transitions
are generally used to simplify the construction of the NFA, but there always
exists an equivalent automaton, recognizing the same language without e-
transitions. ‘

Both in NFAs and DFAs, if a string z labels a path from I to a state s,
we say that s is active after reading x. DFAs have at most one active state
at a time, while NFAs may have many.

The two automata shown in Figure 1.4 have a simple form, in the sense
that the transitions do not form cycles. Such automata are called acyclic,
whether they are deterministic or not. However, we can easily conceive of
cyclic automata. These automata are useful for regular expression matching,
The two automata of Figure 1.5 are cyclic. The language recognized by a
cyclic automaton can be infinite. For instance, the automaton of Figure 1.5
(a) recognizes TAG, but also TA-GAA-G, TA-GAA-GAA-G, TA-GAA-GAA-GAA-G, and
S0 on.

OG5 1) D)2 -
S S RN
>(o)—7 ol Ja -» NO y@ C

(a) Nondeterministic cyclic automaton (b) Deterministic cyclic automaton

Fig. 1.5. Two cyclic automata. In both, the state 0 is initial and the double-circled
states are terminal. The cycles are marked in bold.

1.8.4 Complexity notations

We will generally describe the efficiency of our pattern matching algorithms
in terms of the number of character comparisons and other basic operations,
depending on the size of the pattern, m, and of the text, n. We do not usually
give a precise function of n and m, only its growth rate or complezity order.
The O notation is used to express this idea.

1.8 Basic concepts 13

Definition A function g(n) is said to be O(f(n)) if there exist two con-
stants C' and ng such that g(n) < C x f(n) for all n > ng.

For instance, 2n% + 3n + loglogn is O(n?), nlogn + 120n + logn is
Ofnlogn), and n* + 3n3 + 1502 + n is O(n?). A deeper presentation of
complexity notations and their meanings can be found in [Sed88, CLR90].

This notation permits us to compare algorithms of different complexities.
For example, if algorithm A takes time O(n) and algorithm B takes time
O(nlog{m)/m), then we know that for large enough m algorithm B will
be faster than algorithm A. We do not know how large is “large enough.”
Moreover, when both algorithms have the same complexity we do not know
which is better.

Sometimes a finer analysis can be done, comparing the exact number
of text inspections, table accesses, register accesses, and so on, that are
performed by each algorithm. These values are not only more complex to
obtain, but they also do not guarantee that we can predict which algorithm
is better on a given computer: Not only may the accesses have different
costs depending on the architecture, but also caching and pipelining effects
complicate any prediction.

The O notation is independent of the architecture, but its predictive power
is limited. In many cases we must resort to empirical measures to determine
which algorithm is better depending on the instance.

Two complexities are usually studied in the analysis of an algorithm. Its
worst-case complexity corresponds to the maximum cost over every possible
input. Its average-case or expected-case complexity refers to averaging the
cost over all the inputs. This involves assuming a probabilistic distribution
of the data. In this book we assume that the pattern and text characters
are independent and uniformly distributed over a finite alphabet.

2
String matching

2.1 Basic concepts

The string matching problem is that of finding all the occurrences of a given
pattern p = pips...pm in a large text T = t1ta...¢,, where both 7" and p
are sequences of characters from a finite character set ¥. Given strings z,
y, and z, we say that x is a prefix of zy, a suffix of yz, and a factor of yzz.

Many algorithms exist to solve this problem. The oldest and most famous
are the Knuth-Morris-Pratt and the Boyer-Moore algorithms. These
algorithms appeared in 1977. The first is worst-case linear in the size of the
text. This O(n) complexity is a lower bound for the worst case of any string
matching algorithm. The second is O{mn) in the worst case but is sublinear
on average, that is, it may avoid reading some characters of the text. An
O(n logjsyym /m) lower bound on the average complexity has been proved in
[Yao79].

Since 1977, many studies have been undertaken to find simpler algorithms,
optimal average-case algorithms, algorithms that could also search extended
patterns, constant space algorithms, and so on. There exists a large variety
of research directions that have been tried, many of which lead to different
string matching algorithms.

The aim of this chapter is not to present as many algorithms as possible,
nor to give an exhaustive list of them. Instead, we will present the most ef-
ficient algorithms, which means the algorithms that for some pattern length
and some alphabet size yield the best experimental results. Among those
that have more or less the same efficiency, we will present. the simplest.

The algorithms we present derive from three general search approaches,
according to the way the text is searched. For all of them, a search window
of the size of the pattern is slid from left to right along the text, and the
pattern is searched for inside the window. The algorithms differ in the way

15

16 String matching

in which the window is shifted. The general scheme is shown Figure 2.1,
together with onr favorite running example on English, which we will show
for all our algorithms.

Search window

Text
]ClPIMIMIJnJu!u}a]I‘uic o]n‘f‘e] elnlclel_lajn[nlofulnlc €|
184

Pattern !a[nln(o|u‘n;c[e[

Fig. 2.1. The search is done in a window that slides along the text. The search
window has the size of the pattern.

In general, strings that are searched for in natural language texts are
simpler than in DNA sequences because the former contain fewer intrinsic
repetitions. To show all the tricky cases that could appear, we also show
the behavior of all our algorithms when searching for the string ATATA in
the sequence AGATACGATATATAC.

The three search approaches are presented below.

Prefix searching (Figure 2.2) The search is done forward in the search
window, reading all the characters of the text one after the other. For each
position of the window, we search for the longest prefix of the window that
is also a prefix of the pattern. The Knuth-Morris-Pratt dlgorxthm uses
this approach. :

Text , Forward search
————

HHHWMHTJIHH‘HUJIIIU
Patiern Wéill

Fig. 2.2. First approach: We search for a prefix of the pattern in the current win-
dow.

Suflix searching (Figure 2.3) The search is done backwards along the
search window, reading the longest suffix of the window that is also a suf-
fix of the pattern. This approach enables us on average to avoid reading
some characters of the text, and therefore leads to sublinear average-case
algorithms. The most famous algorithm using this technique is the Boyer-
Moore algorithm, which has been simplified by Horspool and by Sunday.

Factor searching (Figure 2.4) The search is done backwards in the
search window, looking for the longest suffix of the window that is also

2.2 Prefiz based approach 17

Text : Sufﬁx_seﬂ:h_?
rhitiileEZZZE TT I]]]

Pattern | [Z=

Fig. 2.3. Second approach: We search for a suffix of the pattern in the current
window.

Text ' 4ﬂ:t_m_s_eairch'
REEEEEEERERRE - EEEREEEEEEEEEEER
Pattern | P o

Fig. 2.4. Third approach: We search for a factor of the pattern in the current
window.

a factor of the pattern. As with suffix searching, this approach leads to
sublinear expected algorithms, and even to optimal algorithms. The main
drawback is that it requires a way to recognize the set of factors of the
pattern, and this is quite complex.

These three approaches lead to algorithms that are efficient in several
cases, depending on the size of the pattern and the size of the alphabet. An
experimental map of their relative performances is given in Section 2.5.

2.2 Prefix based approach

Suppose that we have read the text up to position ¢ and that we know the
length of the longest suffix of the text read that corresponds to a prefix of
the pattern p. When this length is [p| we have an occurrence. The main
algorithmic problem is to find an efficient way to compute this length when
we read the next character of the text. There exist two classical ways to
solve this problem:

e The first is to find a mechanism to effectively compute the longest suffix
of the text read that is also a prefix of p, preferably in amortized constant
time per character. This is what the algorithm of Knuth, Morris, and
Pratt, KMP, does [KMPT77].

e The second is to maintain a kind of set of all the prefixes of p that are also
suffixes of the text read, and update the set at each character read. The
bit-parallelism technique enables managing such a set in an efficient way
if the pattern is short enough. This leads to the Shift- And and Shift-Or
algorithms [WM92b, BYG89b)].

18 String matching

We do not give pseudo-code for the Knuth-Morris-Pratt algorithm, nor
a deeper study, for this algorithm improves in practice over suffix or factor
searching only for strings of less than 8 characters. In this range, the Shift-
And or Shift-Or algorithms can be run on any computer, and are at least
twice as fast and much simpler to implement.

2.2.1 Knuth-Morris-Pratt idea

The Knuth-Morris-Pratt (KMP) algorithm updates for each text char-
acter read the length of the longest prefix of the pattern that is also a suffix
of the text. The mechanism is based on the following observation. Let us
complete Figure 2.2 of the general prefix matching approach with a repre-
sentation of what what we would like to obtain. This is shown in Figure 2.5,
The string v is a new potential prefix of the pattern that could be the new
longest prefix of p that is also a suffix of ¢y ... t;+1. We observe that v is a
suffix of u, and also a prefix. We call it a border of w. Also, the character S
has to be equal to t;1; (o on the figure). |

. Forward search

Text

SEEREN-z---CERARENNRSEEERREEREN
raem p 2] |
%Mlilﬁ

Fig. 2.5. The shift in the Knuth-Morris-Pratt algorithm. The string v is a suffix
of the prefix u, and also a prefix. The character B differs from o, which differs from
the text character o, on which the prefix search failed. '

The original idea, due to Morris and Pratt [MP70], is

® Precompute the longest border b(u) for each prefix u of the pattern.

® Now, in the current position, let u be the longest prefix of p that is a
suffix of £ ...¢;. We read the character o = t;+1 of the text. If o = Plul+1
(denoted o in Figure 2.5), then the new longest prefix is Up|yi+1- However,
if o # Pluj+1, then we compare o with Puw)+1- H o = Pib(u)|+1, then
b(w)Pjp(u)|+1 is the new longest prefix of p that is a suffix of ti.. tipq. If
o F* Djb(u)}+1, then we compare it with o = Pis(b(u))|+1 and so on, until one
border is followed by o, or until there are no more borders (the empty
border ¢ does not have a border), in which case the new longest prefix is
the empty string .

2.2 Prefiz based approach 19

Knuth proposed the following improvement. We know that if the com-
parison of ¢ = #;41 with py,,; fails, the letter that follows any border of u
must differ from py,(1 if it is to match 0. So at the precomputing phase, we
can precompute for each proper prefix u of p (p = uw, w # ¢€) the longest
border v that satisfies pj, i1 # Pjyj41-

The KMP algorithm is O(n) in the worst and average case for the search-
ing phase. For the preprocessing phase, the goal is to compute two things:
first, for each proper prefix u of the pattern, the longest border v such
that pjyj+1 # Poj+1; and second, for the pattern itself, its own longest bor-
der. Now, if we read the pattern p; ...p,, character by character, and if we
want to compute at each position p;.; the length of the longest border of
P1...Pir1, We want, in fact, to compute the longest suffix of p; ... p;41 that
is also a prefix of p. It turns out that we are applying the KMP algorithm
for searching p itself. The preprocessing phase of KMP can also be done
with KMP, and its complexity is O(m). :

We do not explain KMP further. Details can be found in [KMP77, CR94].
Many studies and variants exist. We give in Section 2.6 the most important
bibliographic references.

2.2.2 Shift-And/Shift-Or algorithm

The idea of the Shift-And and the Shift-Or algorithms is much simpler
than that of KMP. It consists in keeping a set of all the prefixes of p that
match a suffix of the text read. The algorithms use bit-parallelism to update
this set for each new text character. This set is represented by a bit mask
D=d,,...d. :

We first explain the Shift- And algorithm, which is easier to explain than
Shift-Or.

We put a 1 in the j-th position of D (the j-th position of D is said to
be active) if and only if p; ...p; is a suffix of ¢;...¢;. If the size of p is less
than w, then this array will fit in a computer register. We report a match
whenever d,,, is active. .

When reading the next text character ¢;.1, we have to compute the new
set D'. A position § + 1 in this set will be active if and only if the position
J was active in D, that is, p; ... p; was a suffix of ¢;...¢; and ;1.1 matches
pj+1- This new set is easy to compute in constant time using bit-parallel
operations.

20 String matching

The algorithm first builds a table B, which stores a bit mask by .+ .. by for
each character. The mask in Blc] has the j-th bit set if p; = c..

We initially set D = 0™, and for each new text character t;+1 we update
D using the formula

D'« (D<<1) 0™ M) & Bltip] (2.1)

Intuitively, the “<<” shifts the positions to the left to mark at step ¢+ 1
which positions of p were suffixes at step . We also mark the empty string
¢ as a suflix, so we OR the new bit mask with 0™ '1. Now, we keep from
these positions only those such that #;,, matches Pj+1, by AND-ing this set
of positions with the set B[t;11] of positions of £; ¢ in p.

The cost of this algorithm is O(n), assuming that the operations in for-
mula (2.1) can be done in constant time, in practice when the pattern fits
in a few computer words.

The Shift~-Or algorithm is a tricky implementation of Shift-And. The
idea is to avoid using the “0™~11” mask of formula (2.1) in order to speed up
the computation. For this, we complement all the bit masks of B and use a
complemented bit mask D. As the shift “<<” operation will introduce a 0 to
the right of D', the new suffix coming from the empty string is already in D'.

Shift-And (p=pips .. .pm, T =tits...t,)

Preprocessing

For ¢ € ¥ Do B¢} «+ o™

‘For j€1...m Do Blp;] + Blp;] | 6™ 7167 *
Searching

D+ o™

Forposecl...n Do

D ((D<<1) | 0™ 1) & Bltpos

IfD & 10™* #£ 0™ Then repo1t an occurrence at pos —m + 1
End of for

e I

- Fig. 2.6. Shift-And algorithm.

The Shift-And and the Shift-Or algorithms can be seen as the sim-
ulation of a nondeterministic automaton that searches for the pattern in
the text (Figure 2.7). Formula (2.1) is then related to the moves in the
nondeterministic automaton for each new text character: Each state gets
the value of the previous state, but only if the text character matches the
corresponding arrow..

The | 0"™~11” after the shift allows a match to begin at the current

2.2 Prefix based approach 21

text position. This corresponds to the self-loop at the beginning of the
automaton.

ﬁEQ”@“@"@"@“@“@“@%)

Fig. 2.7. Nondeterministic automaton recognizing all prefixes of the pattern
“announce”.

The automaton point of view is also valid for KMP, which can be seen as
an economical method to compute a deterministic automaton that searches
for the pattern in the text. The difference between KMP and Shift-Or is
that the former uses a deterministic automaton that the latter simulates with
bit-parallelism. However, Shift-Or is in practice twice as fast as KMP, is
simpler to implement, and can handle extended strings (Chapter 4).

Example using English We search for the string “announce” in the text
“annual_announce”. :

200000001 00000011
cl 01000000 6. Readingl 00000000
< TT0000000 D= 00000000
000001000 7. Reading . 00000000
u]00010000 D= 00000000

* 00000000
00000001
D=00000000 8. Readinga 00000001
D= 00000001
006000001 00000011
1. Readinga 00000001 9. Readingn 00100110
D= 00000001 D= 00000010
00000011 00000101
2. Readingn 001001190 10. Readingn 00100110
D= 00000010 ‘ D= 00000100
00000101 00001001
3. Readingn 001001190 11. Readingo 10001000
D= 00000100 D= 00001000
00001001 00010001
4. Readinguw 00010000 12. Readingu 00010000
D= 00000000 D= 00010000
00000001 60100001
5. Readinga 00000001 13. Readingn 00100110
D= 00000001 D= 00100000

22 String matching 2.3 Suffiz based approach 23

01000001 1 .
14. Readingec 01000000 ‘ 15. Readinge 1 g 8 g 8 g 8 (1) we have failed on a text character ¢ that does not match the next pattern
D= 01000000 D= 10000000 character a (Figure 2.3).
The last bit is set; we mark an occur-
rence.

First case The suffix v occurs in another position as a factor of p. Then
a safe shift is to move the window so that u in the text matches the next
occurrence of v in the pattern. This situation is shown in Figure 2.8. The

Example using DNA We search for the string ATATA in the sequence

AGATACGATATATAC. idea. is to compute for each suffix of the pattern the distance to the position
TTT0T0T 01011 16101 of its next occurrence backwards in ‘th.e Pattern. We .ca.ll th1§ function dj.
B={dITI01010 6. ReadingC 00000 12, Readingd 16101 If the suffix u of p does not appear again in p, then u is associated by dj to
* 000600 D= 00000 D= 10101 the size m of the whole pattern.
D=00000 00001 The last bit is set; we
00001 7. Reading G 00000 mark an occurrence. o : Suffix search
1. Readingd 10101 D= 00000 : : i u .
D= 00001 01011 (Tl leeZzZZZZE [T TT T T IIIT I T]
, . 00001 13 ReadingT 01010 : * 0
‘ 00011 8. Readingsd 10101 D= 01010 raen | | o
2. ReadingG 00000 - D= 00001 g
D= 00000 10101 st | P |
00011 14, Readinga 10101 o
00001 9. ReadingT 010190 D= 10101
3. Reeghﬁg 4 (1)0 101 D= 06010 The last bit is set; we Fig. 2.8. First shift function dy of the Boyer~-Moore algorithm. The pattern is
= 0001 60101 mark an occurrence. shifted to the next occurrence of u.
. 00011 10. Readingd 10101 _
4. ReadingT 01010 D= 00101 01011 : .
D= 00010 01011 15. Re%img ¢ 88888 Second case The suffix u does not occur in any other position as a factor
© 00101 11. ReadingT 01010 h of p. This does not mean that we can safely skip the whole search window,
5. Rea];liﬂg A (1)8 i g 1 D= 01010 for the situation shown in Figure 2.9 can occur. A suffix v of 4 can also be
= 1

a prefix of the pattern. To manage this case, we compute a second function
dy for all suffixes of the pattern. It associates to each suffix u of p the length
of the longest prefix v of p that is also a suffix of u.

2.3 Suffix based approach

Suffix search
- ——

The main difficulty in the suffix based approach is to shift the window in a Text

, u '
safe way, which means without missing an occurrence of the pattern. LT Tl lTleEZEZEZZZZZE T T
We present the Boyer-Moore (BM) algorithm [BM77] and then the : LI ‘ ‘
Horspool simplification [Hor80]. We do not give any pseudo-code for the pasern]| (xW
first, nor a deeper study, for although BM improves over the algorithms of Safe shift = | [[1]]

the other two general approaches, it is never the fastest. '

Fig. 2.9. Second shift function dy of the Boyer-Moore algorithm. No other oc-
currence of u exists in p. The pattern is shifted to the longest prefix of p that is
also a suffix of .

2.3.1 Boyer-Moore idea

The Boyer-Moore algorithm precomputes three shift functions di, dy, ds
that correspond to the following three situations. For all of them, we have
- read a suffix u of the search window that is also a suffix of the pattern, and

Third case The backward search has failed on the text character o. If we
shift the window with the first function d; and this letter is not aligned with

24 String mateching

a o in the pattern, we will perform an unnecessary verification of the new
search window. This case is shown in Figure 2.10. The third function, ds,
is computed to ensure that the text character ¢ will correspond to a o in
the pattern for the next verification. It associates to each character o of the
alphabet the distance of its rightmost occurrence to the end of the pattern.
If a character o does not occur in p, it is associated with m.

Suffix search
Text 1 o
LIti T eBEZZZZ TT I T T T I]]]
Paenn | | a2
Safeshift —{o| | | [[] [|

no G in this part

Fig. 2.10. Third shift function ds of the Boyer-Moore algorithm. The pattern is
shifted to the next occurrence of ¢ in p.

To shift the window after we read u and failed on o, the Boyer-Moore
algorithm compares two shifts:

» the maximum between the shifts given by dy(u) and ds(c), since we want
to align u with its next occurrence in the pattern, knowing that the o of
the text has to match another o in the pattern;

e the minimum between the result of the previous maximum and m — da(u),
since the latter expression is the maximum safe shift that can be per-
formed.

However, if the beginning of the window has been reached, which means
that we have found an occurrence, only the function dy is used to shift the
search window. '

The search part of BM has O(mn) worst-case complexity, but it is sub-
linear on average. Many variations have been designed to make it linear in
the worst case. The most important references are given in Section 2.6.

The main inconvenience of BM is the computation of the functions d;,
d2, and d3. They can be computed in O(m) time, but that is difficult
[Ryt80]. We now present a simplification that leads to algorithms that are
- more efficient than BM itself in numerous cases.

2.8 Suffix based approach 25

2.3.2 Horspool algorithm

The BM algorithm was first simplified by Horspool [Hor80], who assumed
that, for a reasonably large alphabet, the shift function d3 will always yield
the longest shift. Horspool just considered a small modification of d3 that
is easy to compute and yields longer shifts. The resulting algorithm works
as follows (Figure 2.11). ‘ ;

For each position of the search window, we compare its last character (8
in the figure) with the last character of the pattern. If they match, we verify
the search window backward against the pattern until we either find the
pattern or fail on a text character (o in the figure). Then, whether there
was a match or not, we shift the window according to the next occurrence
of the letter 8 in the pattern. Pseudo-code for the Horspool algorithm is
given in Figure 2.12.

Suffix search |

Text : o Suffix search ,

SNENNNSND-z---EEAESRENSREERNNN
ven || T

TR T T T
st = [[T[T

B

no § in this part

Fig. 2.11. Horspool algorithm. The pattern is shifted according to the last char-
acter of the search window. ‘

Horspool (p=pips .. .pm, T =tita.. . tn)

While j > 0 AND tposyj = p; Do j+—j—1
If j = 0 Then report an occurrence at pos + 1
0. pos ¢ pos + dltpostm]
1 End of while

1. Preprocessing

2. For c € ¥ Do dc] « m
3. Forj€l..m—-1Dodp]l+m—j
4. Searching .

5. pos <0

6. While pos < n—m Do
7. j+m

8.

9.

1

il

Fig. 2.12. Horspool algorithm.

26 String matching
We notice that:

e The verification also could have been done forward. Many implementa-
tions use a built-in memory comparison instruction.

e The main loop can be “unrolled,” which means that we can first shift the
search window until its last character matches the last character of the
pattern, and then perform the verification.

The variant of Sunday Instead of shifting the window using its last char-
acter, we may use the next character after the window, which leads on aver-
age to longer shifts. This algorithm has been proposed by Sunday [Sun90].
Although the shifts are longer, the lower number of memory references of
the unrolled Horspool algorithm makes it faster in general.

Example of the Horspool algorithm using English We search for the
string “announce” in the text “CPM_annual_conference_announce”.

ajcinjoiug*

ABEP AR YRR the window matches the last character

of the pattern. We continue the back-
ward verification [nferen[ce]] ,

[nfere[nce]] , and it fails on the

m:8,d:{

1. |CPM_annu | al_conference_announce

u#e, dul=3 next character. We re-use the last char-
acter of the window, dfe] = 8.
2. CPM I-annual-l conference_announce
Fe d]=8 5. CPM.anuual_conference I_a_zmounc e
c#e dlc]=1
3. CPM.annual_ ce_announce
n#e dn]=2 6. CPM_annual._conference.
The last character [announc[e]] of
4. CPM_annual_co _announce the window matches the last character
: of the pattern. We verify backward the
The last character [nferencfe]] of window and find the occurrence.

Example of the Horspool algorithm using DNA We search for the
string ATATA in the sequence AGATACGATATATAC.

m=8, d :{ AIT) = backward verification [AG 1,

21115
[AGIATA| 1 , and it fails on the next
chararacter. We re-use the last charac-
ter of the window, d{A] = 2.

1. CGATATATAC

The last character [AGA 1 of 2. AG |ATACG | ATATATAC

the window matches the last character G
A, df6] =
of the pattern. We continue the # b dle] =5

2.4 Factor based approach 27

4. AGATACGAT c

3. AGATACG | ATATA | TAC

The last character [ATA 1 of The last character [ATA 1 of
the window matches the last character the window matches the last character
of the pattern. We verify backward the of the pattern. We verify backward the
window and find the occurrence. We window and find the new occurrence.
then shift by re-using the last character ‘We then shift by re-using the last char-

acter of the window, dfA] = 2. Then,

of the window, d[A] = 2.
pos > n — m and the search stops.

2.4 Factor based approach

The factor based approach leads to optimal average-case algorithms, assum-
ing that the characters of the text are independent and occur with the same
probability. .

The idea for moving the search window with this approach is elegant and
simple. It is shown in Figure 2.13. Suppose that we have read backward a
factor u of the pattern, and that we failed on the next letter 0. This means
that the string ou is no longer a factor of p, s0 no occurrence of p can contain
ou, and we can safely shift the window to after o.

Factor search

Text

EEEEEEENNEGZ- - EENEENSNEEEREEEE
Pattern |]_I
Safe shift. —— EREEEEEN

Fig. 2.13. Basic idea for shifting the window with the factor search approach. If
we failed to recognize a factor of the pattern on o, then ou is not a factor of the
pattern and the window can be safely shifted after o.

The main drawback to this approach is that it requires recognizing the set
of factors of the pattern. We first present the Backward Dawg Match-
ing (BDM) algorithm [CCG'94]. This algorithm uses a suffix automaton,
which is a powerful but complex structure. We will not describe it in this
chapter for two reasons: ‘ '

(i) When the pattern is short enough, of size less than w, the suffix au-
tomaton can be simulated efficiently with bit-parallelism. This algo-
rithm, Backward Nondeterministic Dawg Matching [NR00], is
faster than BDM, simpler to implement, and applicable to extended
patterns (Chapter 4). ‘

28 String matching

(ii) When the pattern is longer, the Backward Oracle Matching algo-
rithm [ACRO1], based on'a modification of the factor based approach,
leads to the same experimental times as BDM, but with a much sim-
pler automaton, called the factor oracle.

2.4.1 Backward Dawg Matching idea

The Backward Dawg Matching algorithm uses a suffix automaton to
perform the factor search, and it also improves the basic search approach.

We begin with a general description of the suffiz automaton and then explain
the main parts of the algorithm.

Suffix automaton We need to recognize whether a given word u is a fac-
tor of the pattern p. There exist many indexing structures that enable us
to determine whether v is a factor of p in O(lu]) time. The most classic
structure is the compact suffiz tree [McC76]. However, in this structure,
the transitions are coded as factors of the pattern, and to pass through a
transition we need access to an arbitrary part of the pattern. ‘The suffiz
automaton has the same efficiency, but its transitions are labeled with single
characters. This speeds up the search and the pattern matching algorithms
that use it. The interested reader can find a complete survey of the suffix
automaton in [CH97, CR94]. We simply recall its three basic properties:

Pry It enables us to determine whether a string v is a factor of a string p in
O(Ju]) time. A string is a factor in the suffix automaton built on p if
and only if there is a path labeled u beginning at the initial node.

Pry It enables us to recognize the suffixes of the pattern on which it is built.
It a path beginning at the initial node reaches a terminal state of the
automaton built on p, it means that the label of this path is a suffix of p.

Pr3 It can be built on p = P1P2 - - P in O(m) time with an on-line algorithm,
which means that the characters p;j can be added one after another into

the structure, updating at each step j the suffix automaton of the prefix

P1...pj—1 to obtain that of py .. . Dj-

Search algorithm The BDM algorithm [CCG™94] makes use of the prop-
erties of the suffix automaton. The general approach of Figure 2.13 is pos-
sible using the suffix automaton. Moreover, property Prs enables a tricky
improvement,
To search a pattern p = pips. .. Pm inatext T = ¢ty ... ¢,, the suffix au-
tomaton of p™ = p,p., 1 ...p; is built. The algorithm searches backwards
‘along the window for a factor of the pattern using the suffix automaton.

2.4 Factor based approach 29

Factor search
Pty
Text

HTIHiHW HEEEEREEEEEEERE
|

“ast

'
1
f
'

[TTTT] 1]
EEEEEEEE

Fig. 2.14. Basic search of the BDM algorithm with the suffix automaton. The
variable last stores the beginning position of the longest suffix of the part read that
is also a prefix of the pattern.

Pattern

Safe shift

During this search, if a terminal state is reached that does not correspond
to the entire pattern, the position in the window is stored in a variable last.
Due to property Pro, this corresponds to finding a prefiz of the pattern
starting at position last inside the window and ending at the end of the
window since the suffixes of p™¥ are the reverse prefixes of p. Since we stored
the last prefix recognized backwards, we have the longest prefix of p in the
window. This backward search ends in two possible ways: ' C

(i) We fail to recognize a factor, that is, we reach a letter o that does
not correspond to a transition in the suffix automaton of p™. We
then shift the window so that its new starting position corresponds
to the position last. We cannot miss an occurrence because in that
case the suffix automaton would have found its prefix in the window.
This situation is shown in Figure 2.14.

(ii) We reach the beginning of the window, thus recognizing the pattern
p. We report the occurrence, and we shift the window exactly as in
the previous case. '

The algorithm is O(mn) time in the worst case. However, it is the optimal
O(nlogys; m/m) on average under the assumption that the text characters
are independent and have the same occurrence probabilities.

2.4.2 Baékward Nondeterministic Dawg Matching algorithm

The Backward Nondeterministic Dawg Matching (BNDM) algo-
rithm uses the same search approach as BDM, but the factor is searched
using bit-parallelism. Compared to the original BDM algorithm, BNDM
is simpler, uses less memory, has more locality of reference, and is easier to
extend to more complex patterns (Chapter 4).

The idea is to maintain a set of positions on the reverse pattern that are
the beginning positions of the string u read in the text. This set is stored

30 String matching 2.4 Factor based approach 31

with 0 and 1 as with Shift-And. The number 1, representing an active
state at position j of p, means that the factor p;.. Pjtlu-1 is equal to w.
Figure 2.15 shows this relationship. If the pattern is of size less that w, then
the set fits in a computer word D = d,, ... d;.

BNDM (p=mp2...0m, T =tita...tn)
1 Preprocessing
2 For ¢ € ¥ Do Blc] + 0™ '
3. For j € 1...m Do Blp;] « Blp;] | 0971 10™~7
4. Searching

ractor search 5 pos « 0

' 6

7

8

Text While pos < n—m Do

1
uy
|

T T e [T T LT T | hm
ﬁ’ : ; 9. While D # 0™ Do
Pattern % % f 10. D+« D & B[tpos+j]
11. jeg-1
D table ﬂlﬂﬂﬂ.ﬂﬂ 12. IfD & 10! # 0™ Then
13. If § > 0 Then last + j
Fig. 2.15. Bit-parallel factor search. The table D keeps a list of the positions in P 14. Else report an occurrence at pos + 1
where the factor u begins. 15. End of if
16. _ D+D<<1
/ ; ‘ 17. End of while
We need to update the array D to D’ after reading a new character o of 18. pos + pos + last
19. End of while

the text. A state j of D' is active if it corresponds to the beginning of the
string ou in the pattern; that is, if

Fig. 2.16. Bit-parallel pseudo-code for BINDM.
e u began at position j 4 1 in the pattern, Wthh means that the (j + 1)-th

position in D is active, and .
the position of the window is stored in the variable last. Pseudo-code for
the algorithm is given in Figure 2.16.

BNDM has the same worst-case complexity O(mn) as BDM, and also
the same optimal average complexity O(n logyy m/m).

e o is in position j in the pattern.

If we precompute a table B exactly as for Shift-And that associates to each
letter of p the set of its positions in p with a bit mask, then we obtain D’
from D by the following formula:

D« (D << 1) & Blo] (2.2)

' \\\ ‘\ \ \ € \‘\s \\\E \\‘E
¥ v 7 v v v J \
OO O QOO O DO

Fig. 2.17. Nondeterministic automaton recognizing all factors of the reverse string
of “announce”.

However, there is a problem with the initialization. We would like to
mark in the initial table D that each position of D matches the empty
string, which means D should be 1™. But in that case, the first shift will
give (D << 1) = 1™710 and we will miss the first factor, which corresponds
to the entire word. The simplest solution would be to take D of size m + 1,
initialized to 1™*1. However, it reduces to w— 1 the maximum length of the
string that can be searched. Instead we split formula (2.2) into two parts.

We first perform the operation D] + D & Blo] and verify the match,
and then we perform the register shift D' « D{ << 1. The initialization
is then D = 1™. A string read in the text is a prefix of p if the first posmon
is active, that is, if in D] the position d,, is active.

The BNDM algorithm is the same as BDM, except that the factor search

‘is done with the bit-parallelism technique. Each time the bit d,, is active,

From an automaton point of view, the bit-parallel factor search is a sim-
ulation of a nondeterministic automaton that recognizes all suffixes of the
reverse pattern. For example, if we search the pattern “announce”, we sim-
ulate the automaton shown in Figure 2.17. It turns out that the minimal
deterministic version of this automaton is the suffix automaton used in the
clagsic BDM. The difference between BNDM and BDM is conceptually
the same as that between Shift-Or and KMP. The former simulates a non-
deterministic automaton using bit-parallelism, and the latter first obtains a
representation of the deterministic automaton.

32 String matching 2.4 Factor based approach 33

Example of BNDM using DNA We search for the string ATATA in the
sequence AGATACGATATATAC.

Example of BNDM using English We search for the string “announce”
in the text “CPM_annual _conference_announce”.

Readinga 10101

D= 10100

the search stops.

. A110101
a] 10000000 - ;
< 00 000 0 10 4. CPH.annual.conference. B = { ;1: g (1) (O) é 8 The pOSitiOn d5 is active, but] > 0, S0
= 100000001 we set last +— 2.
B={[w 01100100 last 38 D=11111
01000106000 ; Liiidits 1. | AGATA | CGATATATAC ; proov
00001000 Readinge 00000001 Reading T 01010
0006000 D= 00000001 last « 5 5—01500
11111 ‘
. 000000190 . 100060
D=11111111 ‘ Readingc 00000010 Reading4 10101 Reading s 10101
D= 00000010 D= 10101 D= 10000
1. al_conference_announce 00000100 01010 " L .
last « 8 Readingn 01100100 Reading T 01010 e oo, 1= 020
. D= 01010 we mark an occurrence.
11111111 D= 00000100
Readingu 000010600 10100
0001000 .
D= 00001000 Reading 00001000 Reading 4 10101 4. AGATACGAT [ATATA] ¢
00010000 D= 00001000 D= 10100 last 5 |
R . . a.
Read:r];giz g(l)(l)gg(l)gg 60010000 The position ds is active, but j > 0, so 11111
= Readingo 00010000 we set last < 2. Reading A 10101
2. CPM.annurence_announce : D= 00010000 01000 D= 10101
last « 8 _ 00100000 Reading @ 00000 01010
11111111 Readingn 01100100 D= 00000 ReadingT 01010
Readinge 00000001 D= 00100000 D="01010
D= 00000001 _ 01000000 2. AG [ATACG] ATATATAC 10100
000060010 Readingn 01100100 last « 5 Reading A 10101
Readingf 00000000 D= 01000000 11111 D= 10100
= Reading¢ 00000 :
D 00000000 . 10000000 Dg'= 50000 The position ds is active, but 7 > 0, so
" 1 conf Readinga 100060000 we set last <— 2.
3. lCMt"jiln;a _conenounce D= 10000000 . AGATACGTAC ‘
as 11111111 The position ds is active and j = 0, so . 010600
Readingn 01100100 we mark an occurrence. last < 5 ReadingT 01010
D= 01100100 Priid b= 010600
Reading 4 10101 - 10000
Roads iéggéggg D= 10101 Reading & 10101
B = T0000000 01010 b= 10000
ReadingT 01010 Th ition dx is acti .
o . . . D= 01010 e position ds is active and § = 0, so
The position ds is active, but 5 > 0, so we mark a new occurrence. We then
we set last « 6. 10100 shift to pos + last and pos > n—~m, so

34 String matching
2.4.3 Backward Oracle Matching algorithm

For patterns longer than w, the normal BDM algorithm would be necessary
but the complexity of the construction of the suffix automaton makes it
impractical. A solution has been proposed recently [ACRO1]. Tt is based
on the observation that, to shift the window in the general factor search
approach (Figure 2.13), it is not necessary to know that w is a factor. It
suffices to know that gu is not.

The factor oracle structure has this particularity. Built on a string p, it
recognizes more than the set of factors of p, but it is easy to understand
and implement and is compact, so that the efficiency lost by reading more
letters in the backward search is recovered by doing fewer page faults.

To simplify notation, we denote by 8 an object that is not defined. For
instance, in an automaton, §(¢,a) = 6 means that there is no outgoing
transition from ¢ labeled with .

2.4.8.1 Factor oracle

The factor oracle built on a string p = p1ps ... pp, is a deterministic acyclic
automaton that has m + 1 states and m to 2m — 1 transitions. We denote
its transition function by 4.

The m+1 states correspond to the m+ 1 positions between the characters
of p, including a first position 0 before the whole pattern. A state 0 < i <m
corresponds to the prefix py...p;.

The first m transitions spell out the pattern itself in a line; for 0 < i < m,
we build a transition from state i — 1 to ¢ labeled pi- In practice, these
transitions and states can be stored implicitly with the pattern itself.

Then, we build what we call the “external transitions,” of which there are
at most ™ — 1. We associate to each state ¢ another state j < i, called its
“supply state” and denoted j = S(¢). This function is the “supply function.”
It is built together with the external transitions. S(0) is set to 8.

The construction algorithm proceeds by inspecting each state from 1 to
m. We assume that we have reached state i — 1 and begun to inspect the i-th
state. We go down the supply function from state i — 1. We use a variable
k initialized to S(i — 1) and we repeat the following steps.

STy If k = 6, then S(i) « 0.

ST, If k # 0 and there does not exist a transition from state % labeled by p;,
then build a transition from state k to state ¢ by p;, and return to step
STy with k + S(k).

ST3 If k # 0 and there exists a transition from k labeled by p; leading to a

state j, then set S(i) « j and stop processing state i.

2.4 Factor based approach 35

This construction is simaple. Moreover, it is clear that it can be done on-
line, which means that we can add the letters p; one after another and build
the new state ¢ and all the new transitions at this time. Pseudo-code for the
on-line construction is given in Figure 2.18. The algorithm is linear in the
size of the pattern.

Oracle_add_letter{Oracle(p = pip2...pm), o)

Create a new state m + 1

d{m,o) —m+1

k« 8(m)

While k # 8 AND §(k,0) =6 Do
d(k,0) «—m+1
k+— S{k)

End of while

k=0 Thens<+ 0

Else s + §(k,0)

S(m+1) s

Return Oracle(p = pip2...pmo)

-~ e

Oracle-on-line(p = pipz ... pm)
12. Create Oracle(e) with:

13. One single initial state 0

14. S(0) + 6

15. Forjel...m Do

186. Oracle(p = p1p2 ... pj} + Oracle_add_ letter(Oracle(p = pipa...pj-1), p5)

17. End of for

Fig. 2.18. Construction of the factor oracle. The function Oracle_add_letter ac_ids
a letter o to Oracle(p = pip2 .. .pm) to get Oracle(po). The on-line construction
algorithm adds the letters p; one by one to obtain finally Oracle(p = py1p2 ... 0m).

The factor oracle built on p recognizes all the factors of p. It really
recognizes more, but not so many in practice, and it recognizes only one
string of size m, the pattern itself.

To code it, the easiest way in practice is to use a (m+1) X A table, where
A is the alphabet size of the pattern. This representation has the advantage
of giving O(1) access time to the transitions, which speeds up the search
algorithm. However, for very long patterns, an implementation in O(m)
space has to be considered.

2.4.3.2 Search with the factor oracle

The search algorithm with the factor oracle, called Backward Oracle
Matching (BOM), is the simple transcription of the factor search approach
(Figure 2.13). We read backwards in the window the text characters in the

36 String matching ; 2.4 Factor based approach 37

factgr oracle of the reverse pattern p"’. If we fail on a letter o after reading : Example using English We search for the string “announce” in the text
a ‘strmg u, we know that ou is not a factor of p and we can safely shift the «CPM_annual_conference.announce”. The factor oracle of the reverse pat-
vs./mdow after the letter o. If the beginning of the window is reached, then, : tern of “announce” is given in Figure 2.20.
since the factor oracle recognizes only one string of size |p|, we mark a match
and we shift the window by one character. Pseudo-code for BOM is given ‘ L al.conference.announce Reading [announfcle 1 in the fac-
in Figure 2.19. Reading [CPM.ann[u]] in the fac- tor oracle.
: ‘ tor oracle. Reading [anno@ce 1 in the fac-
Fail on the next character n. tor oracle.
Reading [anno[ulnce 1 in the fac-
tor oracle.
BOM(p = coPmy T =tita. . 1 ‘
" (Prepf‘i)}::?e s 11; g, 162) 2. ;Plfl_ann erence_announce Reading [an n@unce 1 in the fac-
5. Oracle-on-line(p"™) ail on the character £f. tor oracle.
§ is its transition function ; o Reading [an[njounce] in the fac-
3 Searching 3. CPM_annual_conf nnounce tor oracle.
4 pos + 0 : . . - ;)
. Reading [erence] in the fac- Reading [Qu.nce 1 in the fac-
Z Whﬂc’e pos tS n—m 1130 tor oragle {=] tor oracle. :
. 'urrent <— initial state of Oracle(p”” ' . ' . '
7. jem ate of Oracle(p™) Fail on the next character _. Readmgl [[2nounce] in the fac-
8. While j > 0 AND Current # 6 Do i;fr 01ac1e.
?0]C;“_'r’";’ﬁ ;“ 8(Current, tpos+;) | ‘ 4. CPM_annual_conference. € mari an occurrence.
11. End of while : Reading [announcle]] in the fac-
12. If Current # 6 Then tor oracle.
13. mark an occurrence at pos+ 1 ‘
14. End of if
15 . pas 4— pos+ j+1 . ' .)
16. End of Whl,{le / ' Example using DNA We search for the string ATATA 1n the sequence AG-

ATACGATATATAC. The factor oracle of the reverse pattern of ATATA is given
in Figure 2.21.

Fig. 2.19. Pseudo-code of the BOM algorithm.
. ST TN
G DD 2D D0

Fig. 2.21. Factor oracle for the reverse string of ATATA.

L. CGATATATAC | 3. AGATACG TAC

Reading [AGA] in the factor Reading [ATATE 1 in the factor
2 : , oracle. oracle.

{K%’ﬁ /n\\ //—#/——‘:\j Reading [AG] in the factor Reading [AT 1 in the factor
. ¢ T u - \ oracle. oracle. :
5(0) (D) = (D) 2o (3) (D)= (5 —2(5) n\@ . Reading [AQAJTA 1 in the factor Reading [ATAJTA 1 in the factor

oracle. oracle.

\¥M~——~~/,L/ Reading [A[T]ATA 1 in the factor

T 3 " Fail on the next character G. oracle.

9. aG [ATACG| ATATATAC Reading [ATA] in the factor

oracle.

BOM is O(mn) time in the worst case. From experimental results it is
conjectured that it is optimal on average.

Fig. 2.20. Factor oracle for the reverse string of “announce”.

Fail on the character G. " We mark an occurrence.

38 String matching

4. AGATACGA !TATATI AC

: . oracle.
gii?:lg f TAT 1 in the factor ggic (liomg [a A 1 in the factor
g«;aglieil.ﬂg : TA 1 the factor iir:i?:lg { ATA >J in the factor
?rii(li:lg DINTRT 1 in the factor iii??g { ATA 1 in the factor
g’i.ac?gg : AT 1 in the factor We mark a new occurrence.

Fail on the character T.

5. AGATACGAT ¢

Reading [ATA 1 in the factor

oracle.

6. AGATACGATA

Fail on the character C.

2.5 Experimental map

We present in this section a map of the efficiency of different string matching
algorithms, showing zones where they are most efficient in practice. The
experiments were performed on a w = 32 bits Ultra Sparc 1 running SunOs
5.6. Texts of 10 megabytes were randomly built, as were the patterns. The
experiments were repeated until we obtained a relative error below 2% with
95% confidence. We tested optimized implementations of all the algorithms
presented. However, only Shift-Or, Horspool, BNDM, and BOM have
a zone in the map, since the others were too slow. ;

The map is shown in Figure 2.22. We show the length w of a register word
to recall that it is the maximum size of string that BNDM can manage with
a single word implementation.

Results on DNA sequences turn out to be the same as those for a random
text of size 4. A more surprising fact is that results on English are about
the same as those for a random text of size 16. :

The map shows clearly that the Horspool algorithm becomes more and
more difficult to beat as the alphabet grows. The BNDM algorithm is
confined to a small zone for small alphabet sizes, but the map does not
reflect its ability to handle extended strings. The Shift-Or wins only for
small strings on very small alphabet sizes.

Reading [ATA 1 in the factor

2.6 Other algorithms ond references 39

> 4 -
)
64 -
32 -
Horspool
English 16 —~—
8§ ——
DNA 4 —— 3
4
Shift-Or 50 ———
2T 9 10
| | |] | .
{ | { } ! i 1 {
2 4 8 16 32 64 128 256 m

Fig. 2.22. Map of experimental efficiency for different string matching algorithms.

2.6 Other algorithms and references

Many other algorithms exist for searching a string in a text. We give in this
section the most important references on string matching research.

On the Knuth-Morris-Pratt algorithm Many variants exist based on
MP [MP70] and KMP [KMP77], the most important one being the Simon
algorithmn [Sim93]. Simon shows that the underlying automaton of KMP
can be completed and stored in an efficient way. Some complete analyses on
KMP can be found in [Rég89]. The Simon algorithm has been analyzed
in [Han93).

On the Boyer-Moore algorithm As for KMP, many va}”iants of BM
[BM77] exist. The principal ones are the Boyer-Moore-Galil [Gal79] and
the Turbo-BM [CGR92] algorithms. The BM algorithm has been analyze'd
in [BYGR90, BYR92, Col94]. The underlying automaton was analyzed in
[BYG89a, Cho90, BYCG94, BBYDS96]. The Horspool algorithm has been
analyzed in [MRS96].

40 String matching

On the Backward Dawg Matching algorithm The BDM algorithm | 3
used together with a KMP algorithm is linear in the worst case. An example

of this is the TurboBDM algorithm [CCG*+94], and another is TurboRF | Multi ’ '
;, ultiple string matchin
[CCG194]. The Double Forward Dawg Matching algorithm [AROQ] is P © g

the simplest worst-case linear time and optimal on average.

Constant space algorithms Tn 1981 there appeared in [GS81] the first
linear time string matching algorithm that uses only a constant amount of
additional space. Since then, many others have appeared [CP91, Cro92,

CR95]. Finding a constant space algorithm that is optimal on average is an
open problem.

Hashing The most famous hashing algorithm is Karp- i i
is analyzed in {GBY90]. 8 p-Rabin [KRST]. 1t 3.1 Basic concepts
The single string matching problem may be extended in a natural way to
search simultaneously for a set of strings P = {p',p?,...p"}, where each p' is
a string p* = piph ... p, over afinite character set ¥. Denote by | P| the sum
of the lengths of the strings in P, more formally |P| = Y7 , |p'| = ZZ 1 ™My
Let ¢min be the minimum length of a pattern in P and fmaz the maximum.
As before, the search is done in a text T = #1¢5..
Strings in P may be factors, prefixes, suffixes, or even the same as others.
For example, if we search for the set {ATATA, TATA} in a DNA sequence, each
time we find an occurrence of ATATA we also find an occurrence of the second
string. Hence, the total number of occurrences can be r x n. To make the
multistring matching problem precise, we consider that we are interested in
reporting all pairs (i, j) such that ¢; ;... 45 is equal to P
The simplest solution to this problem is to repeat r searches with one of
the algorithms of Chaptcx 2. This leads to a total worst-case complexlty of
~ O(|P]) for the preprocessing and O(r X n) for the search.
The worst-case search complexity can be reduced to O(n + nocc), where
noce is the total number of occurrences, by using some kind of extension of
the search algorithms for a single pattern. The average complexity can also
be improved, although it is difficult to think in terms of “average” complex-
ity, since many parameters play a role in the running time of the algorithms.
The most important parameters are the size of the alphabet, the number
of patterns, the distribution of the lengths of the patterns (partlcularly the
minimum size), and the memory available. :
We again denote by @ an object that is not defined. For instance, when
we write While g # 8 Do, it means we iterate while ¢ is defined.
Troughout this chapter, we will consider the example in Figure 3.1. We

41

42 Multiple string matching

will simultaneously search for the three strings “announce”, “annual”, and
“annually”.

Text
(P[] aln]n ula[i]Telolnal]e[rle[alclel [alnlno]ulnlc]e]

lala]n[o]uin]c]e
Setofpatterns | [aln]n|ujafl]
lafn[nfufafr{t]y]

Fig. 3.1. Simultaneously searching three strings in our example text.

As with a single string, sets of natural language strings usually con-
tain fewer repetitions than sets of DNA sequences. To show the tricky
cages that could occur, we also show the behavior of our algorithms when
searching for the set of strings ATATATA,TATAT,ACGATAT in the sequence
AGATACGATATATAC. ’

The three approaches for searching a single string (Chapter 2) lead to
several extensions for searching a set of strings. For each approach, there are
usually many possible extensions, according to the way the set of patterns
is managed and the way the shifts are obtained. The notion of a search
window is not relevant for multiple string matching, which will become clear
soon. We present in this chapter the empirically most efficient extensions,
which are usually also the simplest. '

Prefix searching (Figure 3.2) The search is done forward, reading the
characters of the text one after another with an automaton built on the set
P. For each position of the text, we compute through this automaton the
longest suffix of the text read that is also a prefix of one of the strings of
P. The most famous algorithm that uses this approach is Aho-Corasick
[ACT5]. '

Suffix searching (Figure 3.3) A position pos is slid along the text, from
which we search backward for a suffix of any of the strings. As with a single
pattern, we shift pos according to the next occurrence of the suffix read in
P. This approach may avoid reading all the characters of the text.

Factor searching (Figure 3.4) A position pos is also slid along the text,
from which we read backwards a factor of some prefix of size #min of the
strings in P. It also may avoid reading all the characters of the text.

3.1 Basic concepls 43
Tgxt E Forward search
EEEEEE"~ DEEREEEEEEENEREEEEEE

oz |]

Set of patterns

Fig. 3.2. First approach: We compute the longest prefix of a pattern in the set that
is also a suffix of the text read. It requires reading all the characters of the text at
least once.

Text Suffix search pci)s
ERENEEEErZ - HEEEEERENEEEEREE
Br==z7>

... Set of pat‘tems’
HEEEEREN

Fig. 3.3. Second approach: We search backwards for a suffix of one of the strings.
It avoids, on average, reading all characters of the text.

Before describing these three approaches in depth, we introduce a basic
data structure on a set of strings, called a trie. This structure is used by
most of the classical multistring matching algorithms. The trie of the set
P = {p',p%,...p"} is a rooted directed tree that represents the set P; that
is, every path starting from the root is labeled by one of the strings p',
and, conversely, every string p* € P labels a path from the root. Below,

- unless specified, paths start at the root. Every state ¢ corresponding to an

entire string is marked as terminal, and a function F(g) points to a list of

pos

Text ; Factor search E
(T TeeEA T
Oz REREN
Set of patterns m
| [leEZ [T

Fig. 3.4. Third approach: We search for a factor of any of the patterns in the
current window. .

44 Multiple string matching

all the numbers of the strings in P that correspond to q. We give the trie
for P = {announce,annual,annually} in Figure 3.5.

/@H@ --®—=-®-@)_
\@---»oaw%

Fig. 3.5. Trie for P = {announce,annual,annually}. The function F of each

terminal state is represented with squares. It indicates the identifier of the string
in P.

A e Ol O by

We usually use the automata notation for describing a trie, since a trie
is also a deterministic acyclic automaton recognizing the corresponding set
of strings. The trie of a set P can be built in O(]P|) time by inserting the
strings p* one by one into the tree, starting at the root, and building the
corresponding transitions. Pseudo-code for the trie construction is given in
Figure 3.6.

Trie(P = {p",p°,...,»"})

1. Create an initial non terminal state 0

2. Foriel...r Do

3. Current + initial state 0

4. je1

5. While § < m; AND &(Current, p}) # 6 Do
6. Current - 8(Current, p})

7. J+i+1

8. End of while

9. While j < m; Do

10. Create a new non terminal state State
11. §(Current,p’) « State

12. Clurrent + State

13. jei+1

14. End of while

15.

If Current is already terminal Then F{Current) < F(Current) U {i}
16. Else mark Current as terminal, F(Current) < {i} ’
17. End of for)

Fi%. 3.6. Pseudo-code for the construction of a trie from a set of strings P =
{p*,p?,...,p"}. The strings are taken one by oue and inserted into the tree.

The size of the trie depends on the implementation of the transitions.
The simplest implementation is for each state ¢ of the trie to code d(g, *)
in a table of size |X|. Then the total size of the trie of a set P is worst-
case |X| x |P|. This representation is usually used when the sizes of the set

3.2 Prefiz based approach 45

of strings and of the alphabet are not too large. It has the advantage of
passing through a transition in constant time O(1) by performing an access
to a table.

Since the total number of transitions is at most | P}, it is possible to code
all the transitions in O(|P]) space, independently of the size of the alphabet.
However, the time to pass through a transition increases. If the transitions
of each state are coded with a linked list, sorted or not, this time grows to

O(|%)) in the worst and average cases. It can be reduced to O(log |Z]) by
coding the transitions with balanced trees [CLRY0], but this complicates the
code.

We now describe in detail the three general approaches to search for a set
of strings.

3.2 Prefix based approach

The extension of the prefix based approach leads to the Multiple Shift-
And and Aho-Corasick algorithms. As with a single pattern (Section 2.2),
we assume that we have read the text up to position 7 and that we know the
length of the longest suffix of ¢;...#; that is a prefix of a pattern ke P.
The algorithmic problem is to calculate this length after reading the next
character of the text.

In the single pattern case, there were two ways of ﬁndlng thls length.
One was based on managing a bit array with bit-parallelism. For multiple
pattern matching, this technique is only practical for very small patterns,
because the total length |P| has to be smaller than a few computer words.
Nevertheless, this possibility is widely used for extended string maftching
(Chapter 4) and approximate string matching (Chapter 6). We call this
algorithm Multiple Shift-And.

The solution, when the length of the set is too large to fit in computer
words, is to find a mechanism that computes the size of the longest suffix
of the text read that is also a prefix of one of the strings of P, in amortized
constant time per character. This is what the Aho-Corasick algorithm
does, with a linear time O(|P|) preprocessing phase. ’

3.2.1 Multiple Shift-And algorithm

The bit-parallelism approach is only valuable when the set P = {p',....0"}
has a total length |P| small enough to fit in a few computer words. For
simplicity, we assume below that |P| is smaller than w. The idea is to
perform with bit-parallelism all the computations required by the Shift-

46 Multiple string matching

And algorithm (Section 2.2.2) for the r strings in the same computer word
[BYG89b)].

By Ps p2 Py

L C | | :)

computer word.

my, m; my m

Fig. 3.7. Multiple Shift-And algorithm. The total size of the patterns has to fit
in w.

We pack the strings together in the computer word, as in Figure 3.7.
Then, for each new character of the text, we perform the computations for
the strings of P like in the Shift-And algorithm. The initialization word
DI is the concatenation of the initialization words for each string, that is,

DI o™l gme~tjgmi-1g

Similarly, the final test is

DF « 10m—=1 1gme-ligmi—1

The main loop is the same as for the Shift-And algorithm. Pseudo-code is
given in Figure 3.8. '

The Shift-Or trick (Section 2.2.2) cannot be used here, since the shift
“<<” only introduces a zero to the right, and we need a zero in each position
that begins a new string of P in the computer word.

Example using English We search for the set of strings P = {announce,
annual, annually} in the text “annual announce”.

Table B
00010001010600100000001

1. Reading a

3.2 Prefiz based approach

Multiple Shift-And(P = {p*,p?,...,p"}, T =t:t2.. .tn)‘

1 Preprocessing

2 For ¢ € £ Do B¢ + 0!F!

3 £+ 0 b

4, Forkel...r Do ‘ _
5. For j € 1...my, Do Bpf] « Blph] | 01F1-t-d1pt+i—2
6 £ £+ my

7 End of for

8. DI + 0™ =11, gm2lygmitiy

9. DF « 10™~ 1gm2—tigme !

10. Searching

11. D + ol

12. For pos€l...n Do :

13. D+ ((D<<1)| DI} & Bltyos)

14, If D & DF # 07! Then

15. Check which patterns match

16. Report the corresponding occurrences ending in pos
17. End of if

18. End of for

Fig. 3.8. Multiple Shift-And algorithm. The total lerigth of the patterns |P| has

to be less than w. We let my, = |p*|.

4. Reading u

0000100100100100001001
Blu] 000010060001000000610000

8. Reading a

0000000100000100000001
Bla] 0001000101000100000001

D= 00001000001000000000060

5. Reading a

0001000101000100000001
Bfa] 0001000101000100000001

D= 00000001006000100000001

9. Reading n

0000001100001100000011
Bfn] 00000110600011000100110

0000000000000001000000
0000000000000010000000
0110000010000000000000
0000011000011000100110
0000000000000000001000
00001600001000006010000
10000000000000060000000

¥ (E{OM[HIB[a(m

6000000100000100000001
Bla] 00010001010600100000001

D= 0001000101000100000001
6. Reading 1

0010001110001100000011
B[] 0110000010000000000000

D= 0000001000001000000010

10. Reading n

0000010100010100000101
Bn] 0000011000011000100110

D= 0000000700000100000001
2. Reading n

0000001100001100000011
Bfn] 0000011000011000100110

0000000000000000000000

DI =0000000160000100000601
DF =1000000010000010000000
D =0000000000000000000000

D= 0000007000001000000010
3. Reading n

0000010100010100000101
Bla] 6000611000011000100110

D= 0010000010000000000000

D & DF # 071, we check the patterns
that match, and we mark an occurrence of

annual.

7. Reading .

0100000100000100000001
B[] 00000000000600000000000

D= 0000010000010000000100

11. Reading o

0000100100100100001001
Blo] 0000000000000000001000

D= 0000010000010000000100

D= 00000000000000000600000

D= 00000000000000000010060

12. Reading u

0000000100000100010001
Bfuy] 0000100000100000010000

D= 0000000000000000010000

47

Multiple string matching ’ 3.2 Prefix based approach 49

. Reading n 15. Reading e ' 12. Reading A 14. Reading A

0000000100000100100001 000006001000060110000001 0000001010110010101 0000001010111010101
00000110000611000100110 Blc] 00006000000000010000000 : BlaA] 0101001010101010101 Bia] 0161001010101010101

L

0000000000000000100000 D= 0000000000000010000000 » D= 0000001010100010101 D= 0000001010101010101

D & DF # o!Pl, we check the patterns . ' D & DF # 0P}, we check the patterns
that match, and we mark an occurrence of : 13. Reading T that match, and we mark an oécurrence of
00000001000600101000001. announce. : 0000011101610101011 ATATATA.
0000060000000000100000¢0 . B[1] 1010000101010101010

0000000000000001000000C : D= 0000000101010101010 15. Reading C

D & DF # 0Pl we check the patterns
that match, and we mark an occurrence of

. Reading ¢

, 0000011101010101011
~ TATAT B[C] 0000010000000000000
Example using DNA We search for the set of strings P = {ATATATA,) D= 0000000000000000000

TATAT, ACGATAT} in the text AGATACGATATATAC.

3.2.2 Basic Aho-Corasick algorithm
Table B

6. Reading € The algorithm of Aho and Corasick [ACT75] is an extension of the Knuth—
0101001010101010101 ‘

5000010000000000000 - gggggiéggégégggégéé Morris-Pratt algorithm (Section 2.2.1) for a set of patterns. ‘

00001000000000060000 |. D =00000100005G6000G0T : The algorithm uses a special automaton, called the Aho-Corasick automa-
1010000101010101010 = . e . . “ o
9000000000000000000 7. Reading G ton, built on P. It is the trie of P augmented with a “supply function” Sac.

00000010000160000001 ; - Formally, we denote by ¢ a state of the trie of P, and by L(q) the label
1000000100001000000 0000101000016000001 ‘ of the path from the initial state to g. Then Sac(q) is defined, except for
00000006000000000000 B[] 00001000000060000000 E

000010000000G000000 the initial state, as the state reached when the automaton reads the longest

suffix of L(g) that is also a prefix of some p* € P. This is a kind of extension
of a border (Section 2.2.1) to a set of strings. The supply state of the initial
0000001000010000001 BlA] gggiggig?g?éggggggi state is set to 8. A supply link goes from each state g to SAC(g), and a

B[A] 0101001010101010101 — : . : . :
P 0000001000000000001 D= 0001001000000000001 supply path is a chain of supply links.

. Reading A 8. Reading A

2. Reading G 9. Reading T

0000011600010000011 9010011000010000011 B Oh @ Q O ‘@
B[] 1010000101010101010 . B

B[6] 0000100000000000000 S T0000T000 0000000 : @ ___________

D= 0000000000000000000

» ; Vry/ ‘_ .
3. Reading A 10. Reading A N \C\ O ‘ O ‘,Q‘,O

. 0000001000010000001 0100001000110000101
; BlA] 0101001010101010101
B[A] 01010601010101010101 97100001000100000101
D= 0000001000000000001)

11. Reading T

of @”* O O
100001100101 0001011

00000110006010000011 Bit] 1010000101010101010 Fig. 3.9. Aho-Corasick automaton for the set {ATATATA, TATAT,ACGATAT}. The
Blr] 10106000101010101010 D= 10000000610100010710 dashed links represent the state-to-state supply function Sac. Double-circled states
0000000000010000010 are terminal.
D & DF # 0Pl we check the patterns
5. Reading A . that match, and we mark an occurrence of :
00000010060110600101 ACGATAT. The Aho-Corasick automaton for the set {ATATATA, TATAT, ACGATAT} is
Bl4] 0101001010101010101 shown in Figure 3.9. On this automaton, for instance, L{15) = ACGATA, its

D= 0000001000100000101 longest suffix that is also a prefix of one of the patterns is ATA, which leads

4. Reading T

50 Multiple string matching

to state 7, and hence S4¢(15) = 7. The terminal states are those of the
trie that correspond to an entire pattern, and also all states whose supply
paths go down through another terminal state on their way to the root. In
Figure 3.9, for instance, state 16 is terminal because S4¢(16) is terminal.

We assume that a prefix ¢1¢y...4; of the text has already been read, and
that the longest suffix of ¢;...4 that is also a prefix of one of the pat-
terns leads to a state Current in the Aho-Corasick automaton. We denote
this longest suffix v = L(Current). We want to read t;4; and compute for
t1...%it;41 the new longest suffix . There are two cases.

1. If there exists an outgoing transition from Current to another state
f in the trie labeled by ¢;,1, then the new Current state becomes 7,
and u = L(f) = ut;y, is the new longest prefix of one of the patterns
that is a suffix of ¢;...4;4;.

2. If not (i.e., , we fail reading #;;1 in the tree), we go down the supply
path of ¢ until either

(a) we find a state on the path followed by #;.,. In this case, the
' current state becomes the arrival state f by the transition titis
and u = L(f).
(b) we reach 6, which means that the longest suffix u we search for is
the empty string ¢, and we move to the initial state.

Pseudo-code for the search algorithm is given in Figure 3.10. The com-
plexity of the search phase is simple to evaluate, if we observe that we cannot
go down more supply links than text characters we read. The mumber of
supply links crossed through is then bounded by n, and the number of transi-
tions used (real transitions plus supply links) is bounded by 2n. The number
of character comparisons depends on how the traunsitions of the automaton
are implemented. The complexity is O(n + nocc) if they are coded with a
table, and O(n log|X| + nocc) with balanced trees.

To construct the Aho-Corasick automaton we begin by building the trie
of the set of strings P with the algorithm in Figure 3.6. The states of
the Aho-Corasick automaton are those of the trie. The initial state is the
same and the terminal states of the trie are also terminal. We build the
supply function S4¢ on this trie in transversal order, which is the order we
numbered the states in Figure 3.9.

We assume that we have computed the supply function of all the states
before state Current in transversal order. We consider the parent Parent of
Current in the trie, leading to Current by o, that is, Current = § ac (Parent,
o). The supply state Sac(Parent) has already been computed. We search

3.2 Prefiz based approach 51

Aho-Corasick(P = {p',p%,...,p"}, T = tit2...ts)

1. Preprocessing

2, AC + Build_AC(P)

3. Searching

4. Current < Initial state of the automaton AC

5. For pose€l...n Do

6. While JAC(Cmrent tpos) = B AND SAU(C’urrent) # 8 Do
7. Current < Sac(Current)

8. End of while

9. If ac(Current, tpos) # 8 Then

10. Current ¢~ Sac{Current, tpos)

11. Else Current + initial state of AC

12. End of if

13. If Current is terminal Then

14, Mark all the occurrences {F(Current), pos)
15, End of if

16. End of for

Fig. 3.10. Aho-Corasick algorithm to search for a set P = {p!,p?,...,p"} of
strings. It uses the Aho-Corasick automaton to compute at each text character tp,,s

the longest prefix of any pattern p* that is also a suffix of the text read t; .. . ,0s.

for the state where u ends, u being the longest suffix of v = L(Current) that
labels a path in the trie. The string v has the form v'o. If there exists such
a nonempty string u, since it is a suffix of v, it must be of the form u = /0.
In that case, v is a suffix of v/ that is the label of a path in the trie.

If S4c(Parent) has an outgoing transition by o to a state h, then w =
L{S ac(Parent)) is the longest suffix of v’ that is the label of a path, and wo
is also a label of a path in the trie. Consequently, it is the longest suffix u
of v = v'o that we are searching for, and Sac(Current) has to be set to h.

- If Sac(Parent) does not have an outgoing transition by o, we consider
Sac(Sac{Parent)) and so on. We repeat the operation, until either we find
a state on the supply path that has an outgoing transition by o, or we find
6, which means that u is the empty string ¢ and S4¢(Current) has to be set
to the initial state. o
The mechanism is similar to the Aho-Corasick search algorithm itself.
Its pseudo-code is given in Figure 3.11. Complexity is evaluated with the
observation we made for the whole algorithm: We do not go down more
supply links than the total number of real transitions, which is bounded by
O(|P]). So the number of total transitions used (real transitions plus supply
links) is bounded by 2 x |P|. Like for the search phase, the complexity in
terms of comparisons of characters depends on how the transitions of the

52 Multiple string matching

automaton are implemented. It is O(|P]) if they are coded with a table, and
O(|P|log |X|) with balanced trees.

Builld AC(P = {p',p%,...,p"})
1. AC.trie + Trie(P)
S4c is its transition function
2. Initial _state < root of AC trie
3. Sac(Initial_stote) < 6

4. For Current in transversal order Do
5 Porent < parent of Current in AC 1irie
6. o + label of the transition from Parent to Current
7 Down « Sac(Parent)
8. While Down # 6 AND ac(Down, o) =8 Do
9. Down <+ Sac(Down)
10. End of while
11. If Down # 6 Then
12. Sac(Current) - dac(Douwn, o)
13. If Sac(Current) is terminal Then
14. " Mark Current as terminal
15. F(Current) < F(Current) U F(Sac(Current)}
16. End of if
7. EBlse Sac{Current) + Initial_state
18. End of if

19. End of for

Fig. 3.11. Construction of the Aho-Corasick automaton. The state Current goes in
transversal order through the trie AC trie built on P. The state Down goes down
the supply links from the parent of Current, looking for an outgoing transition
labeled with the same character as between Current and its parent. F (Current) is
initialized as empty when Current is first marked as terminal.

Example using English We search for the set of strings P = {announce ,
annual, annually} in the text “annual_announce”. The Aho-Corasick
automaton built on P is shown in Figure 3.12.

Fig. 3.12. Aho-Corasick automaton of our example set P = {announce, annual,
annually}. Double-circled states are terminal.

3.2 Prefiz based approach 53

Current < 0.
1. Reading a 8. Reading a

Current + 1 = 6(0,a) Current < 1 = §(0,a)
2. Reading n 9. Reading n

Current + 2 = 6{1,n) Current + 2 = 8(1,n)
3. Reading n 10. Readingn

Current + 3 = 6(2,n) Current + 3 = §(2,n)
4. Reading u 11. Reading o

Current + 5 = (3, u) Current < 4 = §(3,0)
5. Reading a 12. Reading u »

Current + 7 = 6(5,a) " Current < 6 = §{4,u)

: 13. Reading n

6. Reading 1 _

Current < 9 = 6(7,0a). Current 8 = §(6,n)

The state 9 is terminal; we maxk an 44 Reading ¢

occurrence of F{9) — annual. Current + 10 = 6(8)
7. Reading - 15. Reading e

8(9,) = 8. We jump to 0 = Sac(9).
6(0,.) = 6, we jump to § = S4c(0).
We continue the search from the initial
state 0, Current + 0.

Example using DNA We search for the set of strings P =

Current + 12 = §{10,).

_The state 12 is terminal; we mark an

occurrence of F(12) — announce.

{ATATATA,

TATAT, ACGATAT} in the text AGATACGATATATAC. We again use the Aho-
Corasick automaton built on P already shown in Figure 3.9.

Current < 0.

1. Reading &
Current + 1 = §(0, A)

2. Readlng ¢
8(1,G) = 6. We jump to 0 = Sac(1).
8(0,G) = 8; we jump to 8 = Sac(0).
‘We continue the search from the initial
state 0, Current <« 0.

3. Reading 4
Current + 1 = §(0, A)

4. Reading T
Current + 4 = §(1,T)

Reading A
Current + 7 = 6(4, A)

. Reading C

8(7,C) = 6. We jump to 5 = Sac(7).
5(5,C) = 6; we jump to 1 = Sac(7).
3(1,C) = 3, Current + 3.

Reading G
Current « 6 = §(3,G)

Reading A
Current < 9 = §(6, A)

Multiple string matching ; 3.3 Suffiz based approach 55

‘ %eadh‘? T s 14. Reading A » " the suffix based approach to sets of patterns. The first attempt was that of
urrent 12 = 8(9,T) .C“T’"fm? 8= 9(16,A). The state 18 - Commentz-Walter in 1979 [CW79]. It is a direct extension of the Boyer-

is terminal; we mark an occurrence of] . :
. Reading A F(18) — ATATATA. Moore algorithm. The Horspool algorithm has also been extended, but it
Current « 15 = §(12, 4) is much less powerful for multiple string matching than for single patterns. A

. Reading T - Reading € stronger extension is the Wu-Manber algorithm, which is practical, simple,

Current < 17 = §(12, T). The state 17 6(18,C) = 8. We jump. to 13 = and efficient.
is terminal; we mark an occurrence of Sac(18). 6(13,C) = 6; we jump to :
F(17) — ACGATAT. , 11 = 540(13). §(11,C) = 6; we jump

to 7= S40(11). §(7,C) = 8; we jump

' (Isl((ia%d%g A= 6. We jump to 10 = :3. #0(0): 3(1,6) =3, Gurrent 3.3.1 Commentz-Walter idea

S4c(17). 6(10, 4) = 13, Current « 13. The Commentz-Walter [CW79] algorithm is a “natural” extension of the

. Reading T ’ Boyer-Moore algorithm (Section 2.3.1). This algorithm is never faster in

Current < 16 = §(13,T). The state 16 ‘ practice than Aho-Corasick or other algorithms presented below. How-

lli(tg)m S?A;Z;mark an occurrence of ever, it is historically important because it was the first expected sublinear

multistring matching algorithm, and it was implemented in the second ver-

sion of the Unix application Grep. Currently, this algorithm does not have
; a real case of application, and we just present the idea it is based on. .

3.2.3 Advanced Aho-Corasick algorithm o : The Commentz-Walter algorithm represents P = {p!,...,p"} using a

The above algorithm permits a powerful variant. The idea is to precom- : trie of the reverse patterns P = {(p!)",...,(p")™} inside which the text
pute all the transitions simulated by the supply function. We then obtain is read. A position pos is slid along the text, beginning at po§i‘?i0n ¢min so
a complete automaton (all the states have an outgoing transition by every as not to skip a possible occurrence. For each such new position, we read
character of the alphabet) that we name the extended Aho-Corasick automa- backwards the longest suffix u of ¢; ... pos that is also a suffix of one of the
ton. patterns. If we find an occurrence, we mark it. Then, we shift the position

"This completion can be computed using the supply function. We first com- ; of the search to the right, using the three functions dy, ds, d3 of the Boyer-
plete the outgoing transitions of the initial state with a loop, which means Moore algorithm extended to a set of strings. The first two functions are
5(0,0) + 0 for each new letter o. Now, let Current be a state of the automa- computed for each state of the trie, and to shift we consider them at the
ton taken in transversal order. We compute the missing outgoing transitions last state g we crossed when reading the longest suffix u.

of Current by using the formula §(Current, o) = 6(Sac(Current), o) for each

new letter o e di(g) is the minimal shift such that v = L(g) matches a factor of some

pl € P.
e do(g) is the minimal shift such that a suffix of u = L(q) matches a prefix
of some p’ € P.

The drawback to this automaton is the large amount of memory space
it requires. It is O(|P| x |X|) independently of the way the transitions
are implemented. This construction is useful for relatively small sets and
alphabets. A trade-off that is often used is to compute the new transitions
on the fly if there is memory left. This was done in the first version of the
well-known Unix application Grep. '

The last function dzfa, k] is computed for each character « of the alphabet
for positions 0 < k < fmaz. It is the minimal shift such that « read at
position pos — k matches another character of some p/ € P.

For a visual idea of what these three functions do, the reader may refer
to Figures 2.8, 2.9, and 2.10 of Chapter 2, where the three corresponding
functions of the Boyer-Moore algorithm are shown.

The experimental results of Chapter 2 show that the suffix based approach , We combine these three functions to compute a shift. Suppose that we
-is usually faster than the prefix based one. So it is natural to try to extend ; read backwards k characters of the text from a position pos and this led to

3.3 Suffix based approach

56 Multiple string matching
state g. The shift s[g, pos, k] is then computed with the following formula:

max(dh g}, ds[tpos—i, k)
da[q]

The formula is the direct extension of the computation of the window
shifts in the Boyer-Moore algorithm. As dy < Zmin, the longest shift
is bounded by #min, which is a necessary condition to avoid skipping an
occurrence when shifting the position pos.

The Commentz-Walter algorithm is worst-case time O(n x £maz) but
sublinear on average if the number of patterns is not too large. The com-

putation of the three functions di, dp, and d3 can be done in O(|P|) time.

slg, pos, k] = min{

3.3.2 Set Horspool algorithm

The Horspool algorithm, similarly to Boyer-Moore, is directly extensible
to a set of patterns. The new algorithm, which we call Set Horspool, can
also be considered as a simplification of Commentz-Walter.

Reverse trie of the patterns
tl
H
Text ;
]

EENNNENNLCZ. 7. uEnARERE T

" — .
Suffix search ! New search position

EEEEEENENEEEE RN EEE

'
i

:
'

—— :

! '

! '

S ¢ i
i 1

i i

3 —

no B in this part

Fig. 3.13. Horspool algorithm for a set of patterns. The set is shifted according
to the last character of the search window.

The general scheme is shown in Figure 3.13. We start reading the text
backwards from a position pos initialized to £min to avoid skipping any
occurrence. We read these characters in the trie built on the reverse patterns.
If we reach a terminal state, we mark an occurrence. When we fail reading
the text, we shift the position pos using the first character read (£ in the
figure). We shift until 8 is aligned with another § in the trie. If such a g
does not exist, we simply shift by &min characters.

The Set Horspool algorithm is O{n X fmaz) time in the worst case. In

3.3 Suffiz based approach 57

Set Horspool (P = {p*,p%,...,p"}, T = titz..tn)
1. Preprocessing

2. HO ¢ Trie(P™ = {(p")™,...,(®")"})
Sy o is its transition function
3 For ¢ € £ Do d|c] « émin
4. Forjel...r Do » ‘
5. For k € 1...m; — 1 Do dlp}} + min(d[p}}, m; — k)
5 End of for » ,
7 Searching
8. pos {min
9. While pos < n Do
10. § 0, Current < initial state of HO
11. While pos — j > 0 AND 8ro(tpos—j, Current) # 6 Do
12. If Current is terminal Then '
13. Mark all the occurrences (F(Current), pos)
14. End of if
15. Current & 8mo(tpos—j, Current)
16. j+j+1
17. End of while
18. P08 < pos + d{tpos]
19. End of while

Fig. 3.14. Horspool algorithm for a set of patterns. The shift is obtained with the
first character ¢p,s Tead. : : :

general, it is only efficient for a very small number of patterns on a relatively
large alphabet.

Example using English We search for the set P = {announce, annual,

annually} in the text “CPM._annual conf erence_announce”. The trie of the

reverse patterns is shown in Figure 3.15

OO QOO0 =0 Q)
2@ @O0 -0 O -0,
[NCESCENCR @@ @0 @

Fig. 3.15. Trie for the reverse set of P = {announce, annual, annually}, P™ =
{ecnuonna, launna, yllaunna}. Double-circled states are terminal.

Multiple string matching

fmin = 6, 5. CPM_annual_confe ence.announce

r & {e,1,y}, dfx] =

d:acelnouy*
11176]112]4(21616

6. CPM.annual_conference. E] nnounce

ag{e,1,y} dla] =1

1. CPM.a @ nual_conference_announce
n ¢ {e,1,y}, dfn} =2
7. CPM_annual. conference.a [n| nounce

n¢{e,1,y}, dn] =

2. CPM_ann [u] al_conference.announce
ud {el,y}, du=2
8. CPM_annual.conference_ann E unce

3. CPM_annua -conference_announce od {e,1,y} d{o] =4
3 b b) e

We read in the trie 1, a, u, n, n, a. We
reach the terminal state 17 and mark

an occurrence of F(17) — annual. 9. CPM.annual_conference.announc [e]
We re-use the first character read .
dfi] = 1. ’ We read in the trie e, ¢, n, u, o, n,

n, a. We reach the terminal state 21
and mark an occurrence of F(21) —

4. CPM_annual [5] conference.announce
announce.

-#{e,1,y}, d[]=6
Example using DNA We search for the set of strings P = {ATATATA,

TATAT, ACGATAT} in the text AGATACGATATATAC. The trie of the reverse
patterns is shown in Figure 3.16

/@ 0@ 40 0@ _
5@ g o D-=OE)
NG @) T A Q

Fig. 3.16. Trie for the reverse set of P = {ATATATA, TATAT,ACGATAT}, P™ =
{ATATATA, TATAT, TATAGCA}. Double-circled states are terminal.

min = 5, 2. AGATA [C] GATATATAC

AICIGIT] = C%{A,T},d[C]:
5={ 514 : ’

1 115 ;

3. AGATACGATA [T] ATAC ‘
We read in the trie T, A, T, A, 6, C, A. We
reach the terminal state 15 and mark
an occurrence of F'(15) — ACGATAT.

We re-use the last character of the win-
dow, d[T] =

1. AGAT [A] CGATATATAC

We read in the trie A, T, 4, and we fail
on the next G. We re-use the last char-
acter of the window, d[4] = 1.

3.8 Suffix based approach 59

4. AGATACGATAT [4] TAC
We read in the trie A, T, 4, T, A, and we
fail on the next G.

6. AGATACGATATAT [A] ¢
Weread inthe trie 4, T, 4, T, A, T, A. We
reach the terminal state 14 and mark
an occurrence of F(14) — ATATATA.

We re-use the first character read,

d[a] = 1. We re-use the first character read,

dia] = 1.
5. AGATACGATATA [T] AC

We read in the trie T, 4, T, 4, T. We 7. AGATACGATATATA

reach the terminal state 11 and mark C ¢ {4,T}, d[c] = 5. Then pos > n and
an occurrence of F(11) — TATAT. we stop the search.

We re-use the first character read,
dit} = 1.

3.3.3 Wu-Manber algorithm

The poor performance of the extension of Horspool to search a set of
patterns is a direct consequence of the fact that the lengths of the shifts are
usually decreasing, due to the high probability of ﬁndmg each character of
the alphabet in one of the strings.

The algorithm of Wu and Manber [WM94] bypasses this obstacle by read-
ing blocks of characters, which reduces the probability that each block ap-
pears in one of the patterns. We consider blocks of length B. The difficulty
is that there could be |X|? different blocks, requiring too much memory if
B becomes large.

Wu and Manber overcome this problem by hashing all the possible blocks
using a function h; into a limited size table SHIFT. Two blocks By and Bs
can be associated with the same position in SHIFT. If we consider that for
each new position we are reading a block Bl instead of the last character of
the Horspool algorithm, then the shift given by Bl, SHIFT(hj(Bl)), must
be safe. To guarantee this, we save in SHIFT(j) the minimum of the shifts
of the blocks Bl such that j = h{(Bl). More precisely, the table SHIFT is
built in the following way: '

o If a block Bl does not appear in any string of P, we can safely shift
¢min — B + 1 characters to the right. Hence we initialize the table by
placing ¢min — B + 1 everywhere.

e If Bl appears in one of the strings of P, we find its rightmost occurrence
ending in j in a string p', and set the value of SHIFT(h1(BI)) to m; — j.
To compute all the values of the table SHIFT, we consider separately each
p' =pi...pi, . For each block B = P%_py1---P%, we find its correspond-
ing cell ~1(B) in SHIFT, and we place in SHIFT(h,(B)) the minimum
between the previous value and m; — j.

Multiple string matching

Wu-Manber(P = {p! p? . PThH T =tita.. . ta)

1 Preprocessing

2 Computation of B

3 Construction of the hash tables SHIFT and HASH
4 Searching

5. Pos +— fmin

6 While pos < n Do

7 t < hy (tpo,g~B+l e tpos)

8. If SHIFTY] = 0 Then

9. list + HASH'[hz(ipos~B+l .. .tpos) }

10. Verify all the patterns in list one by one against the text
11. pos + pos+1

12. Else pos + pos + SHIFTY]

13. End of if

14. End of while

Fig. 3.17. Wu-Manber algorithm for searching a set of Strings.

The size B varies with ¢min, with the number of patterns, and with the
size of the alphabet. Wu and Manber show that the value B = log)z(2 x
£min x r) yields the best experimental results. The size of the table SHIFT

can also vary with the memory space available.

We can shift the search position along the text as long as the value of
the shift is strictly positive. When the shift is zero, the text to the left of
the search position may be one of the pattern strings. In this case Wu and
Manber use a new hash table HASH. Each position HASH(j) contains a list
of all the strings whose last block is hashed to J by a second hash function
hy. This table permits us to select from P a subset of strings whose last
block maps the block Bl read in the text. :

For the search, similarly to the Set Horspool algorithm, we slide a
position pos along the text, reading backwards a block Bl of B charac-
ters. The position pos is initialized to fmin. If J = SHIFT(hy(Bl)) > 0,
then we shift the window to pos + J and continue the search. Otherwise,
SHIFT(hi(Bl)) = 0 and we select a set of strings using HASH that we
compare to the text. Pseudo-code is given in Figure 3.17.

The original description of the algorithm [WM94] is quite fuzzy. Nothing
Is given in the article that permits you to calculate the best size of the
tables SHIFT and HASH. Likewise, the hash functions are not specified.
All these parameters affect the complexity. In practice, well parametrized,
this algorithm is very fast. It is implemented in Agrep (Section 7.1.2).

3.8 Suffiz based approach 61

We now present our two running examples. The Wu-Manber algorithm
uses many hash functions and tables that are difficult to represent. We have
chosen some that do not correspond to a real example, but permit us to
show the interesting cases. We let B = 2 in the following tables.

Example using English We search for the set P = {announce, annual,
annually} in the text “CPM_annual_conference_announce”.

string |} 11 { no ou | an { un nc {ua al | 1y | nn nu | ce f
SHIFTIBI] ={ shit | 11 3 4] 1 5 10 2 (013
string ce 1y | ua al | *
HASH|BI] = { string number in P {f 3,1 2 0

1. CPM. @ nual_conference_announce 6. CPM_annual_conferenc announce

SHIFT{an] = 4. SHIFTle.] = 5. '
7. CPM_annual_conference.ann nce
2. CPM_annu -conference_announce SHI;IQL"[non] ey
SHIFTal] = 0. L = HASH[al] = {2}. ;
Wi ? soainst the text and O CPM-annual conference_ announ
Ve compare p° agains _ _ _
mark its occurrence. We then shift the {Sgﬁ’T[ce] 0. L HASH]ce]
search position by 1. R N
We compare p* and p® against the bext.
3. CPM.annua E conference.announce The test succeeds for the string p .

SHIFT1.} =5. Hence, we mark its occurrence.

4. CPM_annual.con rence_announce
SHIFT{te] = 5.

5. CPM_annual_conferen .announce
SHIFTice] = 0. L = HASHce] =
{3,1}. _

We compare p* and p® against the text.
No string matches. We shift the search
position by 1.

Example using DINA We search the set of strings P = {ATATATA, TATAT,
ACGATAT} in the text AGATACGATATATAC.

string || GA TA | AT | CG GA { AC | *
shift 0 0] 3 4 14

SHIFTIBI] = {

string TA | AT | %
HASH[BY = { string number in P || 1 | 2,3

Multiple string matching 3.4 Factor based approach 63

- AGA CGATATATAC - 6. AGATACGATAT AC As we aim to present the simplest and most efficient algorithms, we will not
SHIFT[TA] = 0. L = HASH[TA] = {1}. SHIFTIAT) = 0. L = HASH[AT] = describe these two. v
2,3}. . , ' -
We compare p' against the text. The 2.3 The two algorithms left that use the factor based approach are Set Ba.ck
test fails. We shift the search position We compare p® and p® against the text. ward Dawg Matching (SBDM) and Set Backward Oracle Matching
R The string p* matches. We mark its oc- (SBOM) [AR99]. They extend BDM and BOM, respectively (Chapter 2).

currence. We shift the search position

2. AGAT [AC] GATATATAC by 1. We present the SBDM idea, on which SBOM is based.
SHIFTIAC] = 4.

. Bit-parallelism is only valuable for a small set of strings. However, sim-
. AGATACGATATA [TA| ¢ _ . o . [o officiont cx.
. AGATACGA TATAC SHIFT[TA] = 0. L = HASH[TA] = {1}. ilarly to the Multiple Shift-And (Section 3.2.1), it permits efficient ex

SHIFT[TA] = 0. L = HASH[TA] = {1}. tended string matching (Chapter 4) and also approximate matching (Chap-

We compare p' against the text. The ter 6). We present it first.

We compare p' against the text. The string p' matches. We mark its occur-

test fails. We shift; the search position rence. We shift the search position by
by 1. 1.

- 3.4.1 Multiple BNDM algorithm
. AGATACGAT ATAC . AGATACGATATAT : : , . —] s
SHIFTIAT} = 0. L = HASH[AT] = SHIFTIAC] = 4. The use of bit-parallelism to search a set of strings P {p*,...,p"} is

12,3} ‘ efficient for sets such that r x fmin fits in a few computer words [NROO].
We compare p? and p° against the text. ' For simplicity we assum-e below that r x fmin < w. . .

The string p® matches. We mark its oc- To perform longer shifts, we keep only the prefixes of size fmin of .the
currence. We shift the search position patterns. If we match a prefix, we directly verify the entire string against

1.
by the text.
. AGATACGATA |TA| TAC

: . TV v . 2 v . 1 v
SHIFT{TA] = 0. L = HASH|TA] = {1}. : Profimin® Prefipn®Y Prefimin®®) prefin, (D

We compare p* against the text. The : icom r ; : i i
L ¢ E puter word b Imin

test fails. We shift the search position ; fin tri e

by 1.

Fig. 3.18. Multiple BNDM algorithm. The total r x £min has to fit in w. The
notation prefunmi,(p') denotes the prefix of size min of pt.

The prefixes are packed together as in Figure 3.18 and the search is similar
to BNDM (Section 2.4.2), with the search performed for all the prefixes
The general factor based approach can be extended directly to a set of at the same time. The only difference is that we need to clear some bits
strings. We search backwards for the longest suffix u of the text that is also after a shift. The mask CL in Figure 3.19 does that. It prevents the bits
a factor of one of the strings in P. If we fail on a letter o, then ou is not a used to search for p* from interfering with those used for p'*!. The variable
factor in any of the strings; thus no string of P can overlap ou. last is still used, but in this case it represents the position where a prefix of

There are, however, two technical difficulties to overcome. The first prob- ‘ one of the strings begins. Pseudo-code of the whole algorithm is shown in
lem is to shift the set of patterns safely to avoid skipping an occurrence; the » Figure 3.19.

second difficulty is to recognize the factors of a set of strings. -
The first two factor based algorithms were the Dawg-Match [CCG*93, g Example using English We search the text “CPM_annual._conference_an~

CCG*99] and the MultiBDM [CR94, Raf97]. They were developed with ; nounce” for the set of strings P = {announce, annual, annually}.
the aim of obtaining fast algorithms on average with good worst-case com-

plexity. Indeed, they are all worst-case linear in the size of the text. But
~ they are inherently complicated, and in practice their performance is poor.

3.4 Factor based approach

64

Multiple string matching

1
2
3
4.
5.
6
7
8

9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.

Preprocessing
For ¢ € ¥. Do Bjc] + 0!F!
£+ 0 '
Forkel...r Do
£+ L+ tmin

Maultiple BNDM (p=p1ps...pm, T =tifa...1,)

For j € 1...¢min Do Bpf] « Bp}] | 0171 +i-119t~3

End of for
CL - (]_t’min.—lo)r
DF « (1olmin——1)r
Searching
pos - 0
While pos < n —m Do
J + fmin, last + tmin
D =17
While D # 0 Do
D+—D& B[tpos+j]
j=i-1

If D & DF # 0! Then
If j > 0 Then last < j

Else

/* at least one prefix matches */

Check which prefixes of length £min match
' needs to be checked if

D& 0]Pi—Zminxiloémin—loeminx(i—l)

£ 07!

Verify the corresponding string(s) against the text
Report the occurrence(s) at pos + 1

End of if
End of if

D+ (D<<1)&CL

End of while
pos 4— pos + last
End of while

/* Shifting and cleaning */

DF
CL

Fig. 3.19. Bit-parallel code for the Multiple BNDM algorithm.

100000100000100000
111110111110111110

1. {CPM_an | nual_conference_announce

last + 6.
D+«—111111111111111111

2a]1000103100010100000 111111111111111111
1]000001000001000000 Blu] 011000011000011001
n | 011000011000011001 D= 011000011000011001
©|000000000000000100 1100006110600110010
uj0001006000100000010 Bla] 100016100010100000
+1000060060000000060 D= 100000100000100000

D & DF # 0% and j > 0, then
last+~’4

Bl]

0000000600000000000
000000000000000000

D=

000000000000000000

3.4 Factor based approach 65

2. CPM. _conference_announce

last + 6.
D«11t1111131111111111

1111111111111 11111
000001000001000000

4.

CPM_annual.confe| rence. Jannounce

last + 6.
D+111113112111111111

Bl

1111111311111311111
800000000000000000

000001000001000000

¢G000100000100000060
100010100010100000

0000100000100006000

0060100000100000000
0001000001000060010

0001000001000000060

001000001000000000
011000011000011001

0010006001000000000

0100000100000000600
011000011000011001

010000010000000000

1000001000000000080
100010100010100000

100000100000000000

D & DF # 0" and j = 0, so we check

the patterns “annua

" and “annually”

against the text and mark the occur-
rence of “annual”.

. CPM_annual| _confe rence.announce

last + 6.
D+«t11t1i1t1tii11tr1111t

1111111111311111111

Ble] 000000000000000000

D

000000000000000000

D=

0000000000000000080

CPM_annual_conference. ce

last + 6.
De1t11111111111111111

11111113111131111111
011000011000011001

011000011000011001

1100001100001100180
0001000006100000010

0000000000060000010

000000000000000100
000000000000606100

000000000000000100

000000000000001000
011000011000011001

000000000000001000

00000000006000190000
011000011000011001

000000000000010000

000000000000100000
10001010001010000¢0

000000000000100000

D & DF # 07! and j = 0, so we check
the string “announce” against the text
and mark its occurrence.

The next shift of the search window
gives pos > n — fmin and the search

stops.

Example using DNA We search for the set of strings P = {ATATATA,
TATAT, ACGATAT} in the text AGATACGATATATAC.

701010101010010

000000000001000

0000000000001600

LRIk i Rl ad

010101010100001

000000000000000

DF
CL

66 Multiple string motching

1. CGATATATAC

lost + 5.
D+1111111311111111

111111111111111
B[] 101010101010010
D= 1010101010610010

D & DF # 0l and j > 0, then
last + 4 :

010101010000100
Bl1] 010101010100001
D= 010101010000000

D & DF # 0¥ and j > 0, then
last + 3

101000100000000
B[A] 101010101010010
D= 101000100000000

D & DF # 0 and j > 0, then
last + 2

010001000000000
BlG] 00060060000600100
D= 0000006000000000

2. AG ATATATAC

last + 5.
D+«1111111113111111

111111111111111
000000000000100
000000000000100

000000000001000
000000000001000
000000000001000

000000000010000
101010101010010
000000000010000

D & DF # 0! and j > 0, then
last + 2

0000600000060000
BiT] 010101010100001
D= 0000000600G000000

3. AGAT ATATAC

lost + 5.
De111111111111111

11111111111
01010100001
010101000601

1111
B[1] 0101
D= 0101

D & DF # 0! and j > 0, then

last « 4

101000101000010
BfA] 1010101010106010
D= 101000101000010

D & DF # 0l and j > 0, then

last <~ 3

010001010000100
0006000000000100
000600000000100

000000000001000
00000600600001000
600000000001000

000000000010000
101010101010010
0000000000100060

D& DF # 0" and j = 0, so we check
the pattern ACGATAT against the text
and mark its occurrence.

. AGATACG TAC

last + 5.
D+«111111111111111

1111131111111111
BA] 101010101010010
D= 101010101061G010

D & DF # 0! and j > 0, then
last +— 4

010101010000100
B[] 0101010101060001
D= 010101010000000

D & DF # 0" and j > 0, then
last <— 3

1010001006000060
B[A] 101010101610010
D= 1010001060000000

D & DF # 0¥l and j > 0, then

3.4 Factor based approach 67

last + 2

010001000000000
Blf] 010101010100001
D= 010001000000000

D & DF # 01 and j > 0, then
last + 1

100000000000000
B[A] 101010101010010
D= 100000000000000

D & DF # 0! and j = 0, so we check
the string ATATATA against the text and
mark its occurrence.

. AGATACGA AC

last < b.
D+«111111111111111

111111111111111
B{T] 010101010100001
D~ 010101010100001

D & DF # 0! and j > 0, then
last +— 4

: 101000101000010
Bfa] 1010101010100190
D= 101000101000010

D & DF # 0F and j > 0, then
lost + 3

010001010000100
BlT] 010101010100001
D= 010001010000000

D & DF # 0" and j > 0, then
last « 2

100000100000000
BlA] 101010101010010
D= 100000100000000

D & DF # 01 and j > 0, then
last + 1

000001000000000
B[] 010101010100001
D= 000001000000000

D & DF # 0! and 5 = 0, so we check
the string TATAT against the text and
mark its occurrence.

6. AGATACGAT ¢

last ¢~ 5.
De11t111111111111

111111111111111
BA] 101010101010010

D= 101010101010010

D & DF # 0" and j > 0, then
last + 4

010101010000100
Blr] 010101010100001
D= 010101010000000

D & DF # o' and j > 0, then
last — 3

101000100000000
B[] 101010101010010
D= 101000100000000

D & DF # 0! and j > 0, then
last + 2

0100601000000000
BlT] 010101010100001
D= 010001000000000
D & DF # 0 and j > 0, then
last + 1

100000000000000
B[A] 101010101010010
D= 100000000000000

D & DF # 0! and j = 0, so we check
the string ATATATA against the text,
but we fail to recognize an occurrence.

. AGATACGATA

last 5.
Det111111111111111

111111111111111
B[] 0000060000001000
D= 000000000001000

000000000010000
BlA] 101010101010010
D= 000000000010000
D & DF # 0"l and j > 0, then
last + 3

000000000000000
Bfr] 610101010100001
D= 000000000000000

68

69
Multiple string matching 3.4 Factor based approach

3.4.2 Set Backward Dawg Matching idea of the suffix automaton with a lighter and simpler data structure. SBOM

. . is fa SBDM in all cases.
The SBDM algorithm uses a suffix automaton to recognize backwards the is faster than) . L . .
factors in a window of size fmin that is shifted alohg the text. , ; Note that the algorithm can be improved using the variable last, as was

done for BDM (Section 2.4.1).
3.4.2.1 Suffizx automaton for a set of strings

The suffix automaton for a set of strings [BBE*87] is an automaton that . .

recognizes the suffixes of the set of strings P it is built on. Let v be the ; 3.4.3 Set Backward Oracle Matching algorithm

number of states of the trie built on P (y < [P| +1). Then the number of The Set Backward Oracle Matching algorithm (SBOM) [AR99] uses

states of the suffix automaton is at least v and at most 2. It is also O(7) a factor oracle of the set of strings. The factor oracle of P recognizes at

in its number of transitions. least all the factors of the strings in P. The search algorithm is similar to
SDBM. We slide a window of size fmin along the text, reading backward

string (Section 2.4.1), but this time the resulting automaton is not neces-

a suflix of the window in the factor oracle. If we fail on a letter o, we can
sarily minimal. The construction is linear in the size of P, but it is complex safely shift the window past o. If not, we reach the beginning of the window
and slow. .

and verify a subset of P against the text.

The construction algorithm is an extension of the construction for a single

'3.4.2.2 Search algorithm
The suffix automaton is built in O(r x £min) time on PJY. . the set of

reverse prefixes of length #min of the strings in P [BBE+87], The search is The factor oracle conétruction on a se.t of strings resemblzs the I‘th)-dCoras:;l;
done through a window of size ¢min, which we slide along the text. In this automaton construction. The onb.r dxfferen(.:e_ appears when gon;g t;\m}X the
window, we read backwards the longest suffix that is also a factor of one of supply path looking for an ou'tgou?g tr'a-nsmon. %abeled by o. 'nt e A Zt
the prefixes of length #min of the strings in P. Two cases may occur. Corasick automaton construction, if this tl‘aﬂSltkIOF does not exist, we ju
jump to the next state on the supply path (Section 3.2.2). In the factor
'oracle construction, we create in addition a transition labeled by ¢ from
each state on the supply path to the state where the original transition
leads. . '
More precisely, we begin by building the trie of the set of strings P with
the algorithm given in Figure 3.6. The states of the factor oracle are those
of the trie as well as the initial state 7 and the terminal states. Hence, the
ngon. ' This means that we recognized a profix L(g) of a string in factor oracle has at most |P| + 1 states, including the initial one. |
F(q) (Section 3.1). We then verify a possible occurrence by compar- : To build the “external transitions,” which are at most |P|, we associate
ing each string in F(q) against the text. We finally move the search to each state ¢ a “supply state,” computed simultaneously with the new
window by 1 and start the search again. | transitions in transversal order. The supply state of the initial state is set
to 6.
To explain the construction, we assume that we have already computed
the supply function of all the states before state Current in transversal order.
We consider the parent Parent of Current in the trie, leading to Current by
o, that is, Current = dogr(Parent,c). The supply state Sgr(Parent) has
already been computed, and wé go down the supply function from state
Sor(Parent). We use a variable Down initialized to Sor(Parent) and we
repeat the following steps.

8.4.3.1 Factor oracle of a set of strings

(i) We fail to recognize a factor, that is, we reach a letter o that does not
correspond to a transition in the suffix automaton of trin- NO other
prefix of a string can overlap the part of the window read. We there-
fore shift the window so that its new starting position corresponds to
the position next to o. '

We reach the beginning of the window in a state g of the suffix au-

The worst-case complexity of SBDM is O(n x |P|), which is very high.
However, for reasonable numbers of strings on a not too small alphabet, this
algorithm is sublinear on average. The practical limit of this algorithm is
the construction of the suffix automaton. For large sets of strings, it is too
slow to be amortized by the time saved on the search phase. Moreover, the
memory the suffix automaton requires quickly becomes too large as the set
increases. We do not describe this algorithm in depth, nor give a pseudo-

+ code, because SBOM uses the same approach but overcomes the bottleneck

70 Multiple string matching

ST If Down = 6, then Sor(Current) « I.

STy If Down # 0 and there does not exist a transition from Down labeled by
o, then build a transition from state Down to state Current by ¢ and
return to step STy with Down + Sogr(Down).

S5T3 If Down # 6 and there exists a transition from Down labeled by ¢ leading

to a state Im, then set Spr(Current) + Im and stop processing state
Current.

"The resulting factor automaton recognizes at least all factors of P [AR99].
"The construction algorithm is worst-case time O(|P|). Its pseudo-code is
given in Figure 3.20.

Build _Oracle_Multiple(P = {p!,p*,...,p"})
OR_trie - Trie(P)
dor is its transition function
Mark the states that correspond to an entire string p’ as terminal
I « root of OR._trie
Sor(I) <6
For Current in transversal order Do
Parent + parent in OR_trie of Current
o + label of the transition from Parent to Current
Down < Sor{Parent)
While Down # 8 AND dor(Doun, o) = 6 Do
dor(Down, o) + Current
Down < Sor(Down)
End of while
If Down # 8 Then
Sor(Current) <+ dor(Down, o)
Else Sor(Current) « I
End of if
End of for

Fig. 3.20. Construction of the factor oracle for a set P = {p!,p?, ..., p"}. The
state Current goes through the trie OR_trie built on P in transversal order. The
state Down goes down the supply links from the parent of Current looking for an
outgoing transition labeled with the same character as between Current and its
parent, creating it if it does not exist.

3.4.3.2 Search with the factor oracle

The factor oracle is built in O(r x #min) time on the reverse prefixes of
length ¢min of the strings in P. The search is done through a window of
size {min, which we slide along the text. In this window, we read backwards

the longest suffix that labels a path from the initial state. Two cases may
" occur.

()

(iD)

3.4 Foctor based approach 71

We fail to recognize a factor, that is, we reach a letter o that does
not correspond to a transition in the factor oracle of P}?. . No other
prefix of a string can overlap the part of the window read. We there-
fore shift the window so that its new starting position corresponds to
the position next to o.

We reach the beginning of the window in a state g of the factor oracle.
When using a suffix automaton in SBDM, we can be sure at this step
that we recognized a prefix of one of the strings. However, the factor
oracle accepts paths of size fmin ending in terminal states that do
not correspond to any prefix. Hence, we have to verify first that we
read the prefix L{g)™ and only if this is the case we verify a possible
occurrence by comparing each string in F(g) against the text. We
finally move the search window by 1 and start the search again.

SBOM(P = {p',p*, ...,0"}s T =tita...tn)

1.

Preprocessing)
£min < minimal length of strings in p* € P
Or « Build_Oracle_Multiple({pre fimin (p')™, pre fomin (p?)""
s Drefimin(5)})
dor 18 1ts transition function
For g state of Or Do F(q) « §
Foricl...r Do -
F(q) + F(q) U {i}, where g is the state reached by prefemin(p*)™
End of for
Searching
pos +— 0
While pos < n — ¢min Do
Current < initial state of Or
J ¢ fmin
While j > 1 AND Current # 6 Do
Current < 8o (Current, tpos+;)
Jei-1
End of while
If Current # 0 AND j = 0 AND Tpos+1...pos+tmin = L{Current)” Then
Verify all the patterns in F(Current) one by one against the text
j+1
End of if
POS — pos +j
End of while

Fig. 3.21. Pseudo-code for the SBOM algorithm. The notation pre Frmin(p?) de-
notes the prefix of size fmin of the string p*.

Pseudo-code for SBOM is given Figure 3.21. Its worst-case complexity
is O(n x |P|), the same as SBDM. However, this algorithm is sublinear

72

Multiple string matching

on average. The construction of the factor oracle is fast and requires little

memory, which permits using this algorithm to search large sets of strings
on relatively small texts.

a

[0
N
=

N~

O n @ n‘@ a.

o,

a

Fig. 3.22. Factor oracle for the reverse set of Py = {announ, annual}. Double-
circled states are terminal.

Example using English We search the text “CPM_annual_conference_an-
nounce” for the set of strings P = {announce, annual, annually}. The
factor oracle of the reverse set of Py, = {announ, annual} is shown in
Figure 3.22.

1. {CPM.an

nual_conference_announce 5. CPM_annual_confer nnounce

We read a in the oracle, but we fail
on the next letter “.”. We shift the
window after “.”.

We read n, a in the factor oracle. We
fail on the next .. We then shift the
window after “”.

2. CPM. | annual | conference_announce 6. CPM.annual_conference_ [announ ce
We read 1, a, u, n, n, a in the fac- We read n, u, o, », n, a in the factor
tor oracle. We reach the beginning of oracle. We reach the beginning of the
the window in state 11. We compare window in state 12. We compare the
the strings F(11) — annual, annually. strings. F(12) — announce. We mark
‘We mark an occurrence of “annual”. an occurrence of “announce”. We then
We then shift the window by 1. shift the window by 1.

3. CPM.a conference_announce 7. CPM_annual_conferencea. e
We fail reading “” in the oracle. We
shift the window after “.

4. CPM_annual. ence._announce

We fail reading = in the oracle. We shift
the window after r.

We fail reading c in the oracle. We
shift the window after ¢. Then pos
> n.~ fmin and the search stops.

3.4 Factor based approach 73

Example using DNA We search for the set of strings P = {ATATATA,
TATAT, ACGATAT} in the text AGATACGATATATAC. The factor oracle for the
reverse set of P = [ATATA, TATAT,ACGAT} is shown in Figure 3.23.

05T S0-0Q,

&@A~/@

—{ 4

1. CGATATATAC

We read A, T, A in the factor oracle, and
we fail on the next G. We then shift the
window after G.

. 4G ATATATAC

We read G, C, 4 in the factor oracle, and
we fail on the next T. We then shift the
window after T.

. AGAT ATATAC

We read T, A, G, C, A in the factor or-
acle. We reach the beginning of the
window in state 12. We compare the
strings F(12) — ACGATAT. We mark an
occurrence and shift the window by 1.

. AGATA [CGATA | TATAC

We read A, T, 4 in the factor oracle, and
we fail on the:next G. We then shift the
window after:G.-

Fig. 3.23. Factor oracle for the reverse set of Ppmin = {ATATA, TATAT,ACGAT}.
Double-circled states are terminal.

. AGATACG TAC

We read A, T, A, T, A in the factor or-
acle. We reach the beginning of the
window in state 11. We compare the
string F(11) — ATATATA. We mark an
occurrence and shift the window by 1.

. AGATACGA AC

We read T, A4, T, 4, T in the factor or-
acle. We reach the beginning of the
window in state 13. We compare the
string F(13) —» TATAT. We mark an
occurrence and shift the window by 1.

. AGATACGAT c

We read 4, T, 4, T, A in the factor or-
acle. We reach the beginning of the
window in state 11. We compare the
string F/(11) — ATATATA and fail. We
shift the window by 1. .

. AGATACGATA

We read C, A in the factor oracle and fail
on the next T. We shift the window and
the search stops since pos > n — min.

74 Muliiple string matching

3.5 Experimental maps

We present in this section some maps of efficiency for the different multiple
string matching algorithms, showing for all of them the zone in which they
are most efficient in practice. The text of 10 megabytes is randomly built,
as are the patterns. The experiments were performed on a w = 32 bits
Ultra Sparc 1 running SunOs 5.6. The sets contain 5, 10, 100, and 1000
strings of the same length, varying from 5 to 100 in steps of 5. We tested
all the algorithms presented. The Wu-Manber algorithm used in these
experiments is the implementation found in Agrep. Its performance may
vary, depending on the hash functions and the sizes of the tables used.

LN

64 —{

Wu-Manber
English 16 ~

4 § {] 3] { | | i 1 | | { ! { | B
1 l ! ! i { 1] 1 [i I i I }; 1 I b
5

i {
li i
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 S0 95 {00 Imin
Fig. 3.24. Map of the most efficient algorithms when searching for 5 strings.

The maps are shown in Figures 3.24 to 3.27. The most efficient algo-
rithms are just Wu-Manber, the advanced Aho-Corasick, and SBOM.
As the set grows in size, SBOM becomes more and more attractive. The
advanced Aho-Corasick also improves in comparison with the others for
short strings, since it reads the text only once.

3.6 Other algorithms and references

Dynamic multiple string matching The algorithms presented in this
chapter preprocess a fixed set of strings (a dictionary) in order to perform
the search. However, if we need to modify the dictionary by adding or
removing a string, we need to preprocess the new dictionary from scratch.
The problem of searching for a set of strings in a text and allowing efficient
modifications of the set is called dynamic siring matching. It has been solved

8.6 Other algorithms and references 75
124
a
.
I
32—
Wu-Manber
English 16 ~—
s
DNA 4 — ’-___'_______,__._’————-——"—“
SBOM
AdAC
2 -
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 83 85 90 95 00 Imin

Fig. 3.25. Map of the most efficient algorithms when searching for 10 strings.
12

64 ——

32— .
‘Wu-Manber
English 16 ——

DNA 4 ——

SBOM
AdAC

| | NN A JRN [S T N A S SV N N U S I N — o
U L R e e e LI A | .
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Imin

Fig. 3.26. Map of the most efficient algorithms when searching for 100 strings.

recently [SV96] with optimal worst-case complexities: (i) preprocessing of
the set of strings in O(|P|) time; (ii) adding or removing a string p in O(|p|)
time; and (iii) finding all occurrences of P in the text in O(n + noce) time,
where nocc is the number of occurrences of P in the text.

An application of dynamic string matching is in the matching of a set of
strings with variable length “don’t cares” [KR95].

On the Commentz-Walter algorithm Several variations of the Com-
mentz-Walter algorithm have been designed to limit its worst-case com-

Multiple string matching

4

e | o Extended string matching

English 16 |

| S I S N NS NN N T i .
L L llllll‘!gsgg

3015 20 25 30 35 40 45 S50 55 60 65 ¢ 75 80 & 90 95 100 Imin

. 4.1 Basic concepts
Fig. 3.27. Map of the most efficient algorithms when searching for 1000 strings.

Up to now we have considered search patterns that are sequences of charac-
plexity [Sr186] by using additional memory. These algorithms are, however, ters. However, in many cases one may be interested in a more sophisticated
not efficient in practice. form of searching. The most complex patterns that we consider in this book
are regular expressions, which are covered in Chapter 5. However, regular
On matching a set of strings on unbounded alphabets The prob- expression searching is costly in processing time and comple'x‘to program,
lem of matching a set of strings of the same length m on an unbounded so one should resort to it only if necessary. In many cases one needs far less
alphabet has been investigated [Bre95]. The resulting algorithm runs in Rexibility, and the search problem can be solved more efficiently with much
O((log(|P])/m + 1) x n) comparisons after an O({P| x m x log|A]) prepro- ; simpler algorithms. v

cessing time, where A is the alphabet on which the set P is built.

We have designed this chapter on “extended strings” as a middle point
between simple strings and regular expressions. We provide simple search
algorithms for a number of enhancements over the basic string search, which
can be solved more easily than general regular expressions. We focus on
those used in text searching and computational biology applications.

We consider four extensions to the string search problem: classes of char-
acters, bounded length gaps, optional characters, and repeatable characters.
The first one allows specifying sets of characters at any pattern or text po-
sition. The second permits searching patterns containing bounded length
gaps, which is of interest for protein searching (e.g., PROSITE patterns
[Gus97, HBFB99]). The third allows certain characters to appear option-
ally in a pattern occurrence, and the last permits a given character to appear
multiple times in an occurrence, which includes wild cards. We finally con-
sider some limited multipattern search capabilities.

Different occurrences of a pattern may have different lengths, and there
may be several occurrences starting or ending at the same text position.
Among the several choices for reporting these occurrences, we choose to

7

78 Eztended string matching

report all the initial or all the final occurrence positions, depending on what
is more natural for each algorithm.

In this chapter we make heavy use of bit-parallel algorithms. With some
extra work, other algorithms can be adapted to handle some extended pat-
terns as well, but bit-parallel algorithms provide the maximum flexibility
and in general the best performance. We show that Shift-And can be
adapted by changing the mechanism to simulate a new nondeterministic au-
tomaton. BNDM can be adapted as well, although we will be faced with
the problem that the pattern occurrences need not have the same length
as the pattern, so it will be necessary to verify, each time we arrive at the
beginning of a window, whether we have a real match or not.

All the techniques in this chapter can be plugged into the algorithms
in Chapter 6 for approximate searching. Some can also be combined with
regular expression searching (Chapter 5).

4.2 Classes of characters
4.2.1 Classes in the pattern

Our simplest extension of string matching permits each pattern position to
match a set of characters rather than a single character. The pattern is a
sequence over p(X), that is, p = p1pa. .. py, where p; © E. We say that
P’ € X* is an occurrence of p whenever p epjforall j €1...m. A simple
string is a particular case of this type of pattern.

It is usual to denote sets of characters by enumerating their components
in square brackets, or by using ranges of characters when a total linear order
is clear. For example, "[Aalunual® matches "Annual® and "annual", while
" [0-9] [0-91/[0~-91[0~9]1/199{0~9] " matches dates in the 1990s. We will
use this notation throughout the chapter, as well as the symbol ¥ to denote
a pattern position matching the whole alphabet.

Two simple extensions that can be expressed using classes of characters
are (1) “don’t care” symbols, which match any text character, corresponding
to the class X; (2) case-insensitive searching, which corresponds to replac-
ing each pattern character by a class formed from its uppercase and its
lowercase version; for example, " [Aa] [Nn] [Nn} [Uul [Aa] [L1]" matches the
string "annual" in case-insensitive form.

Assume that we have a bit-parallel algorithm, such as Shift-And or
BNDM (Chapter 2). The only connection between the pattern and the
text is made at preprocessing time by building a table B, which for each
character ¢ gives the bit mask of the pattern positions matching ¢. Now
assume that p is a sequence of classes of characters. The bit-parallel al-

4.2 Classes of characters 79

gorithms can be used directly provided we change the preprocessing. We
replace line 3 of Shift-And (Figure 2.6) by

Forjel...mDo o
For ¢ € p; Do Blc] + Bl¢] | 0™ 710771
End of for

or, alternatively, line 3.of BNDM (Figure 2.16) by

Forjel...mDo _ ‘
For c € pj Do Blc| + Bl | ¢/~110™7
End of for

Shift-Or needs to reverse the bits and change |” to “&”. Fzgure 4.1 shows
an example of the resulting mask B for the Shift-And.

e Blc] ¢ Blc}

0 10000000000000 9 11100000000000
1 10010000000000 A 00000000000001
2 100000000000060 a 00000000001001
3 100000000060000 f 000001000060000
4 100600000000000 1 00000000010000
5 1000600006006600 n 0000G60000060110
6 10000000000000 o 00000010000000
7 1060060000000000 s 00000000100000
8

10600000006000060 - 06006010901000000

Fxg 4.1. The resulting mask B for the patterﬁ "[Aalnnals_of_199[0-9]".

N on-bit-parallel algorithms can be extended to handle classes of charac-
ters too, but none of them provide the same combination of simplicity and
performance robustness. Let us examine first the Horspool algorithm (Sec-
tion 2.3.2). We need to change, in Figure 2.12, line 3 in the preprocessing
and line 8 in the search. However, the performance of Horspool degrades
rapidly, especially if there is a large class near the end of the pattern. This
is because the shifts for all the characters contained in the large class will
be short. Thus its performance is extremely sensitive to the number, size,
and position of the classes. :

Now consider BDM (Section 2.4.1). No efficient algorithm is known to

80 Extended string matching : ‘ 4.3 Bounded length gaps 81

extend the deterministic suffix automaton to handle classes of characters over, it can be combined with classes of characters in the pattern, which are
[NROO]. The same is true for the BOM algorithm of Section 2.4.3. dealt with when the table B of the normal characters is built.

From the classical algorithms, the extension that performs best is the On small alphabets, such as that of DNA sequences, an interesting choice
classical Boyer-Moore algorithm (Section 2.3.1). However, it is complex is to extend the character set to & = {0...2/"! — 1} and represent the set
to implement and does not perform as well as BNDM [NROO]. , using bit-parallelism. The new alphabet is formed by bit masks of length

Performance of Shift-And/Shift-Or is unaffected by the use of classes ||, where the i-th bit indicates the presence in the set of the i-th character.
of characters. However, it is inferior to that of BNDM in most cases. But - For example, if the alphabet is {4, G, C, T}, then single characters will be
BNDM is affected because it is more likely to find occurrences of pattern - represented by A = 0001, G = 0010, C' = 0100, and 7 = 1000, and classes
factors in the window. A rough analysis is as follows: If S is the average size will be represented by, for example, {4, C} = 0101.
of a class, then the result is the same as if we had an alphabet of size |2|/S, Under this representation we need to build a different table B’ that ranges
and hence the average complexity of BNDM becomes O(n logjsy/s(m)/m). over the integers {0... 2/ —1}. Assume for simplicity that & = {0...|Z|~

Just as BNDM is better than Horspool with smaller alphabets, it is 1}. The construction of B’, given B, is as follows:
more resistant than Horspool to the size and number of classes in the pat-
tern. When the classes become too numerous or too large, it may be better
to switch to Shift-Or, which is slightly faster than Shift-And. However, in
the extensions that we consider next Shift-Or is not faster, and Shift-And
is preferable because it is more intuitive.

B'[0] «+ o™
Force0...|% -1 Do

For j€0...2° -1 Do B'[2°+ ;] + Blc] | B'[j]
End of for '

It takes 0(2’21) time. With DNA, for example, the table B’ has just 16
entries. The search process is unaltered: We simply use B’ instead of B.
4.2.2 Classes in the text

In computational biology applications there may be uncertainty on some
text characters; that is, one knows that a given text position holds some
character in a given set, but cannot tell which one. This situation is modeled
by allowing classes of characters in the text. It is normally represented by
using new character codes that are known to represent given sets of “normal”
character codes.

Formally, the text is a sequence over p(X), that is, T = £1t5...t,, where
t; C X The pattern is said to occur at text position €y ...ty if PiNtiy; #
Qforalljetl...m.

Bit-parallelism gives a simple way to deal with this. Let us say that

4.3 Bounded length gaps

An important case of protein searching is that of PROSITE patterns [Gus97,
HBFB99]. A PROSITE pattern contains classes of characters and bounded
length gaps, which match any string whose length is between given bounds.
In the notation of PROSITE, pattern characters or classes are separated
by hyphens and z(a,b) denotes a gap of length between @ and b. Also,
z(a) = z(a,a) and z = z(1), which is equivalent to the class ¥. For example,
the pattern @ — b — ¢ — 2(1,3) — d — e matches "abcfde" and "abcfddde”,
but not "abcffffde". Although we focus on the concrete case of PROSITE

~ : atterns in this chapter, the algorithms can handle other types of pattern
character code c represents the set {ci, ¢, ..., cx}. Then, after building b et &

~ X with bounded length gaps.
the mask B of the normal characters in the preprocessing of either Shift- .
' : : .2 sh NFA for the pattern a—b—c—x(1,3) —d—e. Between
And or BNDM, we add for each such ¢ Figure 4.2 shows an or the p. (1,3)

the characters "c¢* and "d" we have inserted three transitions that can be

Blc] + o™ : ‘ : followed by any character, which corresponds to the maximurm lengt}‘x of

Foriel...k Do Blc] + Bl | B¢ the gap. Two e-transitions leave the state wher-e "abc® }‘las t?eeIL recognized

R o and skip one and two subsequent edges, respectively. This skips one to three

which makes ¢ match every pattern position that matches some c;. text characters before finding the "de" at the end of the pattern. The initial
This can be extended to permit special characters that are sets of other self-loop allows the match to begin at any text position.

special characters, as long as they are processed in the correct order. More- Let m be the number of symbols in the pattern, each symbol being a class

Eztended string matching 4.8 Bounded length gaps 83

5 states in D. Note that the propagations of different gaps do not interfere

- - h with one another, since all the subtractions have a local effect.

m a | c /:’ ; \\\ e
O OO OO OSRGOSO O

Fig. 4.2. A nondeterministic automaton for the pattern a —b — ¢ — 2(1,3) — d — e.

Gaps-Shift-And (p = p1p2. .. pm, T =t1ts ... 1)

. : i 1. Preprocessing
Dashed arrows represent e-transitions, which can be followed without consuming 9. I + maximum length of an occurrence
any input. 3. For ¢ € £ Do B[d + 0F
4. I« 0F F + o*
5. i 4+ 0
of characters or a gap specification of the form z{a,b). Also let #min and 6. For j€1...m Do
fmaz be the minimum and maximum lengths of a pattern occurrence. Both ;' IEp; Il > f t?T goLr_r? 1€§fib) Then
can be obtained from the pattern in O(m) time by adding 1 for each class 5. F « F|b-G+b-a-ipgitb—e
of characters and adding a for the minimum and b for the maximum for 10. For c € ¥ Do Blc] « Blc] | 0F7 %1%
i i i 1. i i+b
each gap spemﬁcatmn a:(fz, b). I.Fmally, let L be the n'umber of states of the o Blse /* p; is a class of characters */
corresponding NFA, not including the first state. It is not hard to see that i3, For ¢ € p; Do Bjc] « Blc] | 0¥~1~11¢¢
L = fmaz. In our example, m = 6, fmin = 6, and fmaz = L = 8. ‘ 14. i il
We now describe two bit-parallel algorithms presented in [NRO1b] which 12 - dE:'Or;‘dfO‘:‘f if
are able to find patterns quickly patterns with gaps (PROSITE in particu-~ i Searching
lar). They extend Shift-And and BNDM. 18. D « 0% -
. 19. Forpos€l...n Do
' 20. D « ((D<<1) |0 1) & Bltyos]
R) 21. D« Dj(F-(D&D)& ~F)
4.3.1 Eztending Shift-And 22. If D & 10%71 # 0 Then report an oceurrence ending at pos
We augment the representation of Shift-And by adding the s-transitions. . End of for
We call “gap-initial” states those states ¢ from which an e-transition leaves. :
For each gap-initial state 7 corresponding to a gap z(a, b), we define its “gap- Fig. 4.3. The extension of Shift-And to handle PROSITE expressions.
final” state to be (i + b — a + 1), that is, the one following the last state
reached by an e-transition leaving i. In Figure 4.2, we have one gap-initial Figure 4.3 shows the complete algorithm. For simplicity we assume that
state (3) and one gap-final state (6). there are no gaps at the beginning or at the end of the pattern and that con-
We create a bit mask I that has 1 in the gap-initial states and another secutive gaps have been merged into one. The preprocessing takes O(m|3))
mask F that has 1 in the gap-final states. In Figure 4.2, the corresponding - time, while the scanning needs O(n) time. If fmaz > w, however, we need
I and F' masks are 00000100 and 00100000, respectively. After performing several machine words for the simulation, and it then takes O(n[¢maz/w])
the normal Shift- And step, we simulate all the e-moves with the operation time.
D « D | (F-(D&I)& ~F) ; Example of Gaps-Shift-And We search for the pattern a—b~c—x(1,3)~
‘ e —ei "abcabcffdee".
The rationale is as follows. D & I isolates the active gap-initial states. d = ¢ in the text "abcabc 000160
Subtracting this from F has two possible outcomes for each gap-initial state : 8 8 i i ; 8 (1) 3 fp — 8 8 100000
i. First, if ¢ is active, the result will have 1 in all the states from i to (i+b— - To0111100 D =00000000
a), successfully propagating the active state i to the desired target states. B={rg[01111000
Second, if ¢ is inactive, the outcome will have 1 only in state (i +b—a +1). e é g i i i 8 8 g
. . . . ™
This undesired 1 is removed by operating on the result with “& ~ F”. Once

the propagation has been done, we OR the result with the already active

84 Eztended string matching 4.3 Bounded length gaps 85

1. Readinga 00111601 6. Readingec 00111100 The bit-parallel simulation of this automaton is similar to that of the for-
We nofz :app?yo ghg Op?_hoopigaﬁon for- D= 00100100 ward automaton. The only modifications are (a¢) we build it on the reversed
mula on D. The result is ((F — pattern; (b) the bit mask D that registers the state of the search has to be
(()ﬁ)e%og())g ‘Eé 1’1"01}; iuz) (ioool(?ggggga D =00111100. initialized with D = 1% to represent the initial e-transitions; and (c) we do
and hence D does not change. We do not OR D with 02711 when we shift it, since there is no longer an initial
not mention again the propagation for- 7. Reading £ 00111000 loop.
mula unless it has an effect on D. D= 00111000 The backward matching algorithm shifts a window of size fmin along the

Readingb 00111010 8. Readingf 00111000 text. Inside each window, the algorithm traverses the text backwards tryi.ng

D= 00000010 D= 00110000 to recognize a factor of the pattern. Fach time the automaton reaches its

final state we have recognized a pattern prefix and we store the window
position in the variable last.

If the backward search inside the window fails before reaching the begin-
(06100000 —0000000) & 110011 10. Readinge 10111000 k 1_1ing of the window, ther‘l the seaPrch window is shifted to the beginning of
00011100, where states 4 and 5 have D= 10000000 the longest prefix recognized, as in BNDM. . .
been activated. The new D value is The last bit of D is set, so we mark an ‘, If the beginning of the window is reached with the automaton still holding
D =00011100. zggrfg‘fe The gap has matched the active states, then some factor of length #min of the pattern has been rec-

’ ognized in the window. Unlike exact string matching, where all occurrences

4. Readi;gg =a 88 i i i g g i 11. Readinge 10111000 ; have the length Of: the p'attern, reaching the begim%ing of the window here

D= 0000606000 does not automatically imply that we have recognized the whole pattern.

5. Readingb 00111010 : ' We need to verify a possible occurrence, which can be as long as fmaxz,

D= 00110010 starting at the beginning of the window.
. To carry out this verification, we read the characters again from the begin-
4.3.2 Extending BNDM ’ ning of the window with the forward automaton of Figure 4.2, but without

We now try to extend BNDM (Section 2.4.2) to handle patterns with gaps. the initial self-loop. This makes the automaton recognize rather than search

To recognize all the reverse factors of the pattern, we use the same automa- for the pattern. To simulate that automaton without the initial self-loop,

ton of Figure 4.2 on the reversed pattern, but without the initial self-loop, we simply do

and we consider that all the states are active at the beginning, Figure 4.4

shows the automaton for the pattern @ — b—c — z(1,3) —d —e. A string D

read by this automaton is a factor of the pattern as long as there exists at D

least one active state. Note that now the arrows depart from the state next

to "d", but the effect is the same as before.

The propagation formula takes effect
again and produces

Readingc 00111100 9. Readingd 01111000
D= 00000100 D= 01100000

At this point the e-transitions take
effect: ((F'— (D & I)) & ~ F) yields

This forward verification ends when either (1) the automaton reaches its
final state, in which case we have found the pattern; or (2) the automaton
runs out of active states, in which case there is no pattern occurrence starting
at the window. Since there is no initial loop, the forward verification surely
finishes after reading at most £maz text characters. We then shift the search
window to the position of the last pattern prefix recognized and resume the
: ; , search. '

Fig. 4.4. A nondeterministic automaton to recognize all the reversed factors of the Figure 4.5 shows the complete algorithm. Its worst-case complexity is
PROSITE pattern a ~b—c—(1,3) - d —e. O(n x ¢maz), which is poor in theory. In particular, let us consider the

Extended string matching 4.4 Optional characters 87

Example of Gaps-BNDM We search for the pattern a—-b—c—x(1,3)—

Gaps-BNDM (p=pips...pm, T =tit2...t,) d — e in the text "abcabcffdee”,

1 Preprocessing
2 L + maximum length of an occurrence 2100611100 I =00000100
3. fmin < minimum length of an occurrence bj01011100 F =00100000
4 For ¢ € £ Do Bfc] + 0F p-d[c|00T11100 '
5 I « ot F(—OL =34 |60011110 Imin =6, fmax = 8§
6. i+« 0 e 00011101
7. Forjel...m Do #100011100
8 If p; is of the form z(a,b) Then
9. I « I ’()Zfiiol;"(z;b)(:) 1. ffdee 2. abc ee
10. F « Floremiipr—vre
.) last + 6 last 6 ‘
i1bnL—i—b

i; FOYCGZbDO B[C] $— B[C] 101 0 Readmgc 00111100

' P D= 00111100 Readingd 00011110
13. Else /* p; is a class of characters */ . . D= 00011110
14. For ¢ € p; Do Bld] + Bl | 06°10%~~ 1 The propagation mechanism does not -
15. i — 41 introduce any new active states in D. The propagation mechanism is acti-
16. End of if vated, but it produces no effects.
17. End of for Readingb® 01011100 , di

. . £ 111
18. Searching D= 01011000 Rea lgg_. 88811183
19. pos < 0 - =
20. While pos < n — fmin Do Readinga 10011100 The propagation mechanism is acti-
21. j +— Pfmin, last + fmin D= 10010000 vated, but again it produces no effects.
22. D « 1F The last bit of D is activated and j > 0, . ’
23. While D # 0% axp 7 > 0 Do so we set last « 3. Readull)gf 8 8 8]1 1 (1) 3 8
24. D« D & B[t o,s+j} L qs - i
25. D« D|(F-D&1)& ~F) Readinge 00111100 Readingc 00111100
26. jei-1 ‘ D= 00100000 D= 60110000
27. If D & 1057 # 0* Then /* prefix recognized * i : .
28. If j > 0 Then last + / ¢ / Readmgf 01011189 Readingb 01011100
J J D= 010000600 D= 01000000

29. Else check a possible occurrence starting at pos =
30. End of if Readinga 10011100 Readinec¢ 10011100
31. D + D<<1 D= 10000000 D=T0000000
32. End of while The last bit of D is active and j = 0, so T e o -
33. pos - pos -+ last we start a forward verification against gélr?é:;f glggligrg Sfefr?f?cit]i(; %::i;;:
34. End of while the text "abcabcf£". The forward au- it

the text "abcffdee", which produces a
match. Therefore, the current text po-
sition (4). is reported as the beginning
of an occurrence.

The window is shifted by last = 6 and
we finish the search.

tomaton finally dies without finding
the pattern and we proceed to the next
window, shifting by last = 3.

Fig. 4.5. The extension of BNIDM to handle PROSITE expressions.

maximum gap length G in the pattern. If G > fmin, then every text
window of length #min is a factor of the pattern; so we will always traverse
the whole window during the backward scan, for a minimum complexity of
O(n). Consequently, this approach should not be used when G > ¢min.
It has been shown experimentally in [NRO1b] that Gaps-BNDM is better
than Gaps-Shift-And whenever G + 1 < ¢min/2.

4.4 Optional‘ characters

We now allow the possibility that some pattern positions may or may not
appear in the text. We call these “optional characters” (or classes) and
denote them by putting a question mark after the optional position. Con-
sider the pattern "abc?d7efg?h" which matches, for example, "abefh" and
"abdefgh". A nondeterministic automaton accepting this pattern is shown
in Figure 4.6.

Eztended string matching 4.5 Wild cards and repeatable characters 39

/,——~§\ I/"-\E\ R ' ~ first 1 counting from the right to flood all the block bits to its left. We
:\@i’@—b"@—c“’@ subtract I from Df, which is equivalent to subfracting 1 at each block.
: This subtraction cannot propagate outside the block because there is a 1
Fig. 4.6. A nondeterministic automaton accepting the pattern "abc?d?efg?h". coming from “| F” in Df at the highest bit of the block. The effect of the
subtraction is that all the bits until the first 1 (counting from the right)

As the fi h . .) . : are reversed (e.g., 1000000 — 1 = 0111111} and the rest are unchanged. In
s the figure shows, multiple consecutive optional characters could exist. general, byby_y ... by_y107 = 1 = byby_y ... by, 017. When this is reversed

The simpl'est s?h%tion, for ?vhen tha.t'does 'not happen, is to set up a bit by the “~” operation we get ~ by ~ by 1... ~ by_,10°. Finally, when
mask O Wlth, 1’.s in thf: optional positions (in our example, O = 01001100) this is XOR-ed with the same Df = byby_1 ... by_y10° we get je-y+lige+l
and let the 1's in previous states of D propagate tf) therg. Hence, after the This gives the effect we wanted: The first 1 flooded all the bits to the left.
nﬁ)rm&l update to [in, say, the Shift-And algorithm (ie., after line 7 in The 1 itself has been converted to 0, but it is restored when the result is
Figure 2.6), we perform : OR-ed with the original D. This works even if the last active state in the
D « D|((D<<1) &O0) optional block is the leftmost bit of the block. Note that it is necessary to
AND with A at the end to avoid propagating the XOR outside the block. We
This solution works if we have read "abcdef" (then D = 00100000) and will see a combined example at the end of Section 4.5.
the next text character is "h", since the above operation would convert D Note that optional characters cannot be expressed as gaps, since they
into 01100000 before operating it against B[h] = 10000000. However, it does can appear consecutively and they do not necessarily match with arbitrary
not work if the text is "abefgh", where both consecutive optional characters characters. On the other hand, bounded length gaps can be expressed using
have been omitted. " optional characters; for example, @ — b — ¢ — x(1,3) — d — e is equivalent to
A general solution needs to propagate each active state in D so as to flood "abcX 27X 7de". However, the formula for the case of bounded length gaps
with 1’s all the states ahead of it that correspond to optional characters. In is simpler and hence faster.
our example, when D is 00000010 we would like it to become 00001110 after
the flooding. ; :
This is achieved in [Nav0lb] with a mechanism resembling that of Sec- ' 4.5 Wild cards and repeatable characters
tion 4.3. Three masks, A, I, and F, mark the boundaries of blocks of © “Wild card” is a term used to refer to a pattern position that matches
consecutive optional characters. Each block starts at the position before the . an arbitrarily long text string, and it is usually denoted with a star. For
first optional character in the sequence and finishes at the position of the example, "ann*al® matches the texts "annal", "annual", and "annals of
last optional character. For example, in Figure 4.6 the first block starts at biological®. We are not using this notation because we prefer a more
position 2 and ends at position 4. The i-th bit of A is set if position ¢ in general one.
p is optional, that of I is set if ¢ is the position preceding the first optional A wild card is a particular class of a more general feature called a “re-
character of a block, and that of F is set if ¢ is the position of the last op- - peatable character.” A repeatable character is a pattern position that
tional character of a block. In our example, A = 01001100, I = 00100010, can appear zero or more times in the text. We denote it with the char-
and F' = 01001000. After performmg the normal transition on D we do the acter or class of characters followed by an asterisk; for example, AC*TCA
following - matches ATCA, as well as ACCTCA and ACCCCCCCTCA. Another example is
Df « DI|F "la~zA-Z_] [a~zA-Z_0-9] ", whid} match.e‘s valid \.faria,ble npames in most
D « D] (A& ((~(Df = 1)) A Df)) programming languages. Under this definition, a wild card is expressed as
"%, The algorithms for repeatable characters are not slower nor harder
The ﬁrst line sets the positions ﬁmshmg blocks in' D to 1. In the second to program than those for simple wild cards. Following regular expression
line we add some active states to D. Since the states to add are AND-ed notations, we also denote c+ = cex.
with A, let us consider what happens inside a specific block. We want the Figure 4.7 shows a possible automaton for the pattern "abc+defxgh".

90 Faxtended string matching

However, it is difficult to extend to the case where consecutive characters
with stars appear, for example, "abc+def*g*h".

S O SRR OINOER CENCENG

Fig. 4.7. A nondeterministic automaton accepting the pattern "abc+def #gh". The
mechanism cannot be extended to consecutive stars.

A general solution that permits consecutive stars is based on the iden-
tity cx = c+7. We simulate directly the “+” and express the “x” opera-
tor in terms of “4-” and “7”. Figure 4.8 shows the automaton we use for
"abc+def*gh". Hence, to deal with “«” we need to deal with repeatable

and optional characters.

:@i»—@—"»@*@ié@—g»@

Fig. 4.8. A nondeterministic automaton accepting the pattern "abc+def*gh". It
can deal with consecutive stars.

Let m be the pattern length, counting both normal characters and the
three special symbols. The minimum length of an occurrence, #min, is
computed in O(m) time as the number of normal characters in the pattern
excluding those affected by “?” and “+” operators. On the other hand, the
maximum length of an occurrence is unbounded when there are repeatable
characters. Finally, let L be the number of states in the NFA (excluding the
first one) computed as the number of normal characters in p.

For bit-parallel simulation of the operator “+” we need a table S{c] that
for each character c tells which pattern positions can remain active when we
read the character c. In Figure 4.8, S[c] = 00000100 and S[£] = 00100000.
A complete simulation step permitting optional and repeatable characters
after reading text character ¢, is as follows:

D« ((D<<1)]0"') & Bltpos]) | (D & Sltpos))
Df < D|F ;
D« D{(A&((~(Df-1) A Df))
The complete code is quite similar to that of patterns with gaps detailed

in Section 4.3, the only change being in the simulation of a single step of
the NFA. We present extended versions of Shift-And and of BNDM.

4.5 Wild cards and repeatable characters g1

Some experimental results are presented in [Nav01b] regarding the use of
optional and repeatable characters. It is shown that Extended-BNDM
works better in most cases than Extended-Shift-And. The latter choice
should be considered only when ¢min < 3 or when there are large repeatable
classes of characters.

4.5.1 Exztended Shift-And

Figure 4.9 shows pseudo-code for the Shift-And extension. It includes
the necessary preprocessing of the pattern to deal with the symbols "+",
& and "7". The code assumes that there are no optional or repeatable
characters at the beginning or at the end of the pattern. It is not hard to
augment the code to handle classes of characters.

Consider the Extended-Shift-And algorithm preprocessing. The pre-
processing has two parts. Lines 2-17 build the mask A and the tables S and
B, where S stores information about repeatable characters and A stores
information about optional characters. The operator “x” is treated exactly
like “4” followed by “7”. Lines 18-29 build the I and F masks from 4, by
the simnple mechanism of detecting in line 21 whether the current active bit
of A belongs to a new block or not, and, if not, “moving” the bit of F that
signals its end. The preprocessing takes O(m + |X|) time and the search
O(n[L/w]) time.

The search code is simple compared to the preprocessing. It applies the
formula to deal with optional and repeatable characters.

Example of Extended-Shift-And We search for the ending position of
occurrences of the pattern "ab?c*de+f" in the text "acccdfabdeeef". We
have m = 9 and L = 6. For each character we show the effect of the three
lines of the processing done on D and Df.

c B S

2| 000001000000 :
b|000010]000000 A = 000110
c /0060100 000100 I = 000001
a]001000|000000 F = 000100
e|010000(010000 D = 000000
£]100000]/0000600

* 000000000000

Eztended string matching 4.5 Wild cards and repeatable characters 93

‘ : g Readingc B 000100 9. Readingd B 001000
Extended-Shift-And (p = pips. .. pm, T = t1ts. .4 S 0006100 5 000000
Preprocessing (e p e » D 000100 D 001000
L + number of normal characters in p : Df 0606100 ~ Df 001100
For ¢ € ¥ Do B[] « 0%, S[c] « oF The S table permitted the third bit of No propagation effects this time. The
14 —1 D to stay active. previous propagation has allowed us to
Forjeil...m Do ignore a nonexistent "c" in the text.
Hp; = “47 ’I:h:an Sllastc] « S[lasLtc] |10L —i-lyg¢ Readingc B 0001060 ‘
Else If p; = 7 ThenA<—~A]0 —i1gt S 0006100 10. Readinge B 010600
Eilse If p; = “¢” Then " ' D 000100 S 010000
S{lastc] « Slastc] | 0*~7 107 Df 000100 ; D 010060606
A« Aoy D 000100 Df 010100
Else /* p; is a character */ » D 0100600
lastc « p; 5. Readingd B 001000
i 441 ‘ ' S 000000 11. Readinge B 010000
Bltastc] + Bllastc] | 0119 D 001000 S 010000
End of if Df 001100 D 010000
End of for D 001000 Df 010100
I« 0", Fe—OL/*buxldIandF*/ D 010000
Forie 0 s ‘“l —11D? . - Readingf B 100000 The § table permits the automaton to
AL 0 10°. 0" Then 5 000000 stay alive while it keeps reading “e".
If F & 0°'10'"! = 0% Then Dl; 800000
I 1T | oF 10! 00100 '
P <%F!| oL—i-11¢ D 000000 12. Readinge B 0100060
Blse ; 5 010000
F « F & 1L-igpi-t , . Readinga B 000001 D 010000
F P L—i=lqqi S 000000 ‘ Df 010100
—F |0 10 D 0000601 D 010000
End of if f i)
D 000111 13. Readingf B 100000
Find of for . . S5 000000
Searching ; The propagation over the two optional D 100000
. [P t) 3
D « o& : ; characters "b7cx" took effect again. Df 100100
Forpose1l...n Do D 100000
L—1 .
gf <~; ((D' <F< DJ0"7'1) & Bltpos]) | (D & Sftpos)) . Reading b f; 8388%8 The last bit of D is active, 80 we report
D « D tI(A & ((N (Df) A Df)) » , . 5 000010 zlzg occurrence ending at text position
¥ D & 10"~! 3 0" Then report an occurrence ending at pos - Df 000110
End of for _ D 000110
The propagation over the optional
character "c*" took effect.
Fig. 4.9. The extension of Shift-And to handle patterns with optmnal and repeat-
able characters.
Readinga B 000001 2. Readingec B 000100 j 4.5.2 EBxtended BNDM
S 000000 . .
0000 g T : : g 883; 8g : Figure 4.10 shows pseudo-code for the BNDM extension. The preprocess-
Df 000101 Df 00606100 : : ing for Extended-BNDM is the same except that the bits in the mask are
D ooo11r. o D 006100 ~ ‘ in reverse order and we also compute £min. Note that the computation of 1
The propagation over the two optional This time there were no special propa- . 3 i i
characters "b?cx" took effect. gation effects. and F is unaltered even when our pattern is reversed, because the arithmetic

operations always work in the same direction.

Eztended string matching 4.5 Wild cards and repeatable characters 95

The search is more complicated. We initialize D using the last character
Extended-BNDM (p = pipz...pm, T =tits...ts) " of the window. Then the loop checks for a match and afterward processes

Preprocessing . .
L < number of normal characters in p the next window character. As for patterns with gaps, we need a forward

Imin ¢ minimum length of an occurrence verification for windows that may match the pattern.
A - 07 /* build B, § and A */ The fact that the maximum length of an occurrence is in general un-

For T D L — L . oy = >
Zfi ile ° Bie] 07, Sl =0 bounded for extended patterns makes it impossible to know beforehand

Forjc1l...m Do what the maximum number of characters read will be when checking the

I pj = “+” Then S[lastc] « Sllastc] | 0°10%7*~* occurrence of a pattern in the text window. We have to continue until the
Else If p; = “?” Then 4 « A4]0‘1047i"! ‘ . _ , :
Else If p; = “%” Then - automaton runs out of active states, we find the pattern, or the text ends.
Sllastc] « Sflastc] | 0f10% i1 ’
A+ A0t Example of Extended-BNDM We search for the initial position of the

Elsel ({ stfj :_S a}fhalacmr / occurrences of the pattern "abZ?c*de+f" in the text "acccdfabdecef”.
J

i 4— i+4+1

Bllaste] + Bllastc] | 0°10F-1 ¢ X0 (]BOO TR OSO 00
End of if 2
End of for b{010000({0000600 m = 9
1 0% F ¢ 0" /* build 7 and F */ UL LRI L fmin = 4
Forie0...L-1Do -
i A& 0°7"110° # 0° Then ©]0000101000010 A = 011000
IfF & 057110 = o Then £1000001}000000 I = 000100
I « 1] ot~itgi-? *1000000]000000 F = 010000
F « F | oF 1! ;
ElseF o F & 1b-igpi-t 1. dfabdeeef 2. accc ldfab deeef
F « F | gb-i-l1gf last +— 4 last 4
¥nd of if Readinge B 001000 Readingb B 010000
End of if : D 001000 D 010000
s Elfl.d of for Readingc B 001000 Readinga B 100000
9”20;“;8_0 S 001000 S 000000
Whi!eposgn—éminDo D]J)[g%;ggg D]; 318888
Jl)é;fg[ztn~—1l,lait<—emm D 001000 D 100000
pos+Lmin :
¥ D & 10°7" # 0 Then last « j _ Readinge B 001000 The l:,slt l;ﬂi-ot;D is set and 7 > 0, so
While D # 0% axp j > 0 Do D?: ggiggg We Set Last <
Df « D|F ; ; . ' . ;
D « D|(4& ((~(Df 1)) A D) | | D 011000 Rendne 00000
D+ (D <<1) & Bltpost5]) | (D & Sftpos+s]) ‘ Df 110000
J & g=1 . ‘ Readinga B 100000 D 1006000
D&10 # 0" Then /* prefix recognized */ : 5 000000 D 000000
If j > 0 Then last « j Df 011000 o
Else check a possible occurrence starting at pos D 011000 There are no more active states in D,
End of if D 100000 so we shift by last = 2. :

fg;d :f zv)j)}s}lielas " The last bit of D is set and j = 0, so we

. ' ' check forward the pattern in the text
End of while window "acccdfa...". At the sixth
character the automaton runs out of ac-
tive states without finding the pattern.
So we shift the window by last = 4.

- Fig. 4.10. The extension of BNDM to handle patterns with optional and repeat-
able characters. It assumes fmin > 1.

96 Extended string matching ; 4.7 Other algorithms and references 97

3. acccdf eef S - The easiest way to do the truncation is to take the longest possible pattern
last < 4 Reading a ‘g (1) g 8 8 8 8 k prefix whose £min is as chosen, although it is possible to take a pattern factor
Reading e 000010 Df 010000 : that has a lower probability of matching. This optimization is pursued in

000010 D 010000 ‘ [Na,v()lb]. Note that the verification is more complex in this case because

888(1)88 The last bit fDD ,1 0 2.0 00 di=0 we have to verify in front of and behind the window in the text.
. € 1as 10 O IS active an 7 =4,

010010 . so we perform a forward check on the
000010 text window "abdeeef". We find an .
0060100 occurrence, so we report the seventh 4.7 Other algorithms and references

text position as the beginning of an . .]
010000 occuf;enie_ }rhen we shi%t thle fvindii The problem of string matching with “don’t cares” is a simplification of

8(1)8(1)33 by last = 4. what we have presented under the name “classes of characters.” In this
) siti hose value is the whole class
011100 This puts the window outside the text, problem there are patter.n and text p931t10ns w 20 e val \
010000 . so we are finished. ¥, An algorithm with time complexity O(nlog”n) exists for this problem
[FP74]. It is based on convolutions.
The same paper [FP74] presents an O(n log? m log log m log |2} time al-

4.6 Multipattern searching gorithm for patterns with wild cards. For the same problem, an O(n +

Consider now the problem of searching a number of extended strings simul- my/nlogni/loglogn) time algorithm is presented in [Abr87]. The work
taneously. Since the only techniques that deal well with extended strings are [Pin85] obtains the same complexity as ¥ P_74] for classes of characters w.here
based on bit-parallelism, we need a multipattern search algorithm based on complements of single characters are p'ermxtted. The .work [Abr87] c'onmders
bit-parallelism. Unfortunately, as seen in Chapter 3, most of the techniques general classes of characters and obtains s‘ubquad.ratlc search algorithms.
for multipattern search do not use bit-parallelism. All these algorithms are theoretically mterest'mg but are hardly u'saple
The only approach useful for us is the one considered in Sections 3.2.1 in practice. A good survey on the'open theoretical problems and existing
and 3.4.1, which packs a number of automata into a single computer word results in nonstandard stringology is [MP94}. _ ' _
and performs Shift-And- or BNDM-like searching. If we are searching a Extensions to patterns with gaps are of great 11113erest in computational
number of extended strings of the same kind, we can use the same technique: biology. For example, one may per.mit gaps .Of negative lengths, where some
We pack the bits of many automata in a single computer word and simulate parts of the pattern appear superimposed in the text. These patterns are
the corresponding type of search on the whole word, thus updating the states considered in [MM89, KM95, Mye96], V\{he‘re they also are searched approx-
of the automata represented in there. As for simple strings, we need to take imately. They are covered in more detail in Chapter 6.
care of the limits between different patterns and of the initial self-loops of
the automata. :
This multipattern search capability is extremely limited, as we will be
able to represent just a few extended patterns in a single computer word.
When trying to extend BNDM in Section 3.4.1 we assumed that all the
strings had the same length and otherwise truncated them to the shortest
one. Here we do analogously: The ¢min values of the patterns may be
different, and we truncate them to obtain patterns with the same fmin
value. .
The truncation in Section 3.4.1 requires checking forward in the window
for the presence of the complete pattern. This does not involve extra com-
plications here, because we need to perform a forward verification with the
whole patterns that seem to occur in the window.

&

Reading d

Reading b

vofuey toSuy Hw

S

5

Regular expression matching

5.1 Basic concepts

We present in this chapter algorithms to search for regular expressions in
texts or biological sequences. Regular expressions are often used in text
retrieval or computational biology applications to represent search patterns
that are more complex than a string, a set of strings, or an extended string.
We begin with a formal definition of a regular expression and the language
(set of strings) it represents. o

Definition A reqular expression RE is a string on the set of symbols
YU{e |, ,%,()}, which is recursively defined as the empty character
¢; a character « € E; and (REy), (RE: - RE), (RE; | REs), and
(RE %), where RE) and REy are regular expressions.

For instance, in this chapter we consider the regular expression (((A-T) | (G
A))-(((A-G) I ((A-A)-A))*)). When there is no ambiguity, we simplify our
expressions by writing RF; RE, instead of (RE; - REy). This way, we obtain
a more readable expression, in our case (AT|GA) ((AG|AAA)*). It is usual to
use also the precedence order “x”, “”, “|” to remove more parentheses, but
we do not do this here. The symbols “.”, |, “«” are called operators. It is
customary to add an extra postfix operator “+” to mean RE+ = RF-RFEx.
We define now the language represented by a regular expression.

Definition The language represented by a reqular expression RE is a set
of strings over X, which is defined recursively on the structure of RE as
follows:

o If RE is ¢, then L(RE) = {c}, the empty string.
e If RE is a € %, then L(RE) = {a}, a single string of one character.
e If RE is of the form (RE;), then L{RE) = L(RE).

160 Regular expression matching : 5.1 Basic concepts 101

o If RE is of the form (RE: - REy), then L(RE) = L(RE)) - L(RE,), a list of active states and updating the list each time a new text character
where Wy - Wy is the set of strings w such that w = wiwsy, with wy € Wy - is read. The search is normally worst-case time O(mn), but it requires little

and wo € Wy. The operator “.7 represents the classical concatenation of memory.

sirings. Another approach is to convert the NFA into a Deterministic Finite Au-

e If RE’ i of the form (RE\ | REy), then L(RE) = L(RE;) U L(RE,), the tomaton (DFA), which permits O(n) search time by performing one direct
union Of the two languages. We call the symbol “|” the union operator. transition per text character. On the other hand, the construction of such
o If RE is (RE*), then L(RE) = L(RE)* = Uiso L(REY), where LO = an automaton is worst-case time and space O(2™).
{e} and L' = L - L™ for any L. That is, the result is the set of strings
Jormed by a concatenation of zero or more strings represented by RE;.
We call “«” the star operator.

Yet a third strategy is to filter the text using multiple pattern matching
or related tools, so as to find anchors around which there might be an
occurrence, and then locally verify a possible occurrence using one of the

i previous strategies. Figure 5.2 illustrates this scheme.
For instance, L((ATIGA) ((AG|AAAY*)) = { AT, GA, ATAG, GAAG, ATA-

AL, GAAAA, ATAGAG, ATAGAARA, ATAAAAG, ATAAAAAS, GAAGAG, GAAGAAA,

...}. Not , i cefiniti :
}. Note that, acc?rdlng to the definition of the star operator, &* denotes Regular expression Anchors Real occurzences
the set of all the strings over the alphabet . ' &)

The size of a regular expression RE is the number of characters of ¥ inside -+ o
it. For instance, the size of (AT{GA) ((AG|AAA)*) is 9. The complexities of
the algorithms that we present below are based on this measure.

The problem of searching for a regular expression RE in a text T is to
find all the factors of T' that belong to the language L(RE). We present in
this chapter the main strategies for performing this search.

Extraction Multi pattern matching Verification

Fig. 5.2. The filtering approach to search for regular expressions in a text.

These strategies can be combined. Moreover, the use of bit-parallelism
can accelerate some parts of the search process.

Thowmpson’s NFA construction

ﬂ : , » An important point is that most of the automaton constructions use a
- Parsin Search with the NFA tree representation of the regular expression RE in order to perform the
@ : @ neA o @T”m] calculafions. The leaves of t}%e tree are labeled with the characters of & in

% &> : RE and also with the symbols ¢, if any. The infernal nodes are labeled with
the operators. The nodes that are labeled “|” or “” have two children that
represent the subexpressions RE and RF; (Section 5.1). Nodes labeled “x”
have a unique child representing RE;. The tree representation is usually not
unique, since some operators are commutative and/or associative. A tree
representation of our example (AT|GA) ((AG]|AAA)*) is shown in Figure 5.3.

Gilushkov’s NFA construction

Fig. 5.1. The classical approaches to searching for regular expressions in a text.

Figure 5.1 summarizes the classical approaches. The regular expression is We explain in Section 5.8 how to parse a regular expression in order
first parsed into an expression tree, which is transformed into a Nondeter- to obtain a tree representation. We consider below that the parse tree is
ministic Finite Automaton (N FA) in several possible ways. In this chapter : readily available and identify our regular expressions with any of their tree
we first present two NFA constructions, which are the most interesting in representations. ~
practice. The first one is the Thompson construction [Tho68], and the sec- When working on the tree representations in our algorithms, we assume
ond is the Glushkov construction [Glu61]. : that the symbol [-] (v;,v,) means a concatenation tree with root “” and

1t is possible to search directly with the NFA, and there are various ways children v; and v,. Similarly, [| | (v;,v,) is the tree rooted with “[”. The
to do that, but the process is quite slow. The algorithm consists in keeping symbol (v«) means a “«” node with a unique child v,.

Regular expression matching

Fig. 5.3. Tree representation of the regular expression (AT{GA) ((AGIAAA)*).

5.2 Building an NFA

There exist various ways to build an NFA from a regular expression [Glu61,
Tho68, CP92, BS86, BK93, HSW97], among which two are most important
because they are practical and often used.

The Thompson construction [Tho68] is simple and leads to an NFA that is
linear in the number of states (at most 2m) and of transitions (at most 4m).
However, this automaton has e-transitions, that is, “empty” transitions,
that can be passed through without reading a character of the text or,
alternatively, by reading the empty string e.

The Glushkov construction [Glu61, BS86], on the other hand, leads to an
NFA with exactly m + 1 states but a number of transitions that is Q(m?)
in the worst case. Nevertheless, this construction produces no e-transitions.
The original construction is O(m?) time, but it has been shown [BK93] that

this can be reduced to O(m?).

5.2.1 Thompson automaton

The construction of Thompson {Tho68] is an automaton representation of
what is recognized by the regular expression. The automaton is a direct
transcription of the tree representation of the regular expresswn It uses
e-transitions to simplify this transcription.

The idea is to go up the tree representation Trg of the regular expression
RE and to compute for each tree node v an automaton Th(v) that recog-
nizes the language RE, represented by the subtree rooted at v. A specific
automaton construction is associated to each type of node and leaf of the
* tree. These are

5.2 Building an NFA 103

(i) Construction for the empty word. The automaton consists of just two
nodes joined together by an e-transition.

(ii) For a single character v the construction is similar, except that the tran-

sition is labeled with the character rather than with the empty string.

= @_a..@

(i) Construction for a concatenation node. The two Thompson automata of

the two children v; and v, are merged together, the final state of the first
automaton becoming the initial state of the second.

(iv) The construction for a union node requires e-transitions. The idea is to

transcript the fact that we enter either automaton Th{v;) or Th{v,) of the
two children. We then add two new states, an initial one I with two -
transitions to the two initial states of Th(v;) and Th(v,), and a final node
F that can be reached from the two final states of Th(v;) and Th(v,).
A path from T to F has to go through one of the two automata, so the
language recognized is RE,, | RE,, .

(v) The construction for a star node uses the same idea. First, the language
RE,,, where v, is the only child node of v, now can be repeated as many
times as desired. Hence we create a backward e-transition from the final
state of the automaton T'h(v,) to the initial. But the star also means that
the automaton Th(v,) can beignored, and hence we create two new nodes,
an initial I and a final F, joined together by an e-transition. With two
other e-transitions we join I to the initial state of Th(v.), and the final
state of Th(v.) to F. The resulting automaton recognizes the language
(RE,,)". |

Regular expression matching 5.2 Building an NFA 105

Another interesting property is that all the arrows that are not labeled
by € go from states numbered i to states numbered i + 1. This is always
true provided we process the characters of the regular expression from left
to right, as in the parser presented at the end of this chapter.

"""""" Sl - Complexity The time complexity of the whole algorithm is also linear,
since we can create each construction in constant time for each node of the

. L, . tree representation.
The whole Thompson algorithm consists in performing a bottom-up traver- g P

sal of the tree representation and keeping the automaton built for the root

as the Thompson automaton of the whole expression. The recursive pseudo- Example of a Thompson automaton construction We build the au-
code of a the algorithm is given in Figure 5.4. ' tomaton of (ATIGA) ((AG|AAA)*) from its tree representation (Figure 5.3).
The construction is shown in Figure 5.5, except for the basic step of con-
catenating characters.

Thompson_recur(v) v
Ifv={[|](w,v)0R v=]](v,v) Then

1

2 Th(vi) < Thompson_recur(v;) 5.2.2 Glushkov automaton
3. Th{v.) + Thompson_recur{v,)
4.
5

Else If v = [+] (v.) Then Th(v.) + Thompson_recur(v.) The construction of Glushkov [Glu61] has been by popularized Berry and
End/(":“felrfd of the recursive part, we build the automaton for th t node * Sethi in [BSSG].
't, we build the autom
If v = (¢) Then Return Coll)lstruction (i) aton for the current node */ We mark the positions of the characters of ¥ in RF, counting only
gv = (a)(, o E)E Then Return construction (4) characters. For instance, (AT|GA) ((AG|AAA)*) is marked (A1T|G3A4)~
v = vy, vr) Then Return construction (%) on Th(v;) and Th{(v,) Y ; i i
. Ifv= E]] (v1,v:) Then Return construction (iv) on Th(v;) and Th{v,) (A5G| ﬁASAQ?*)' A marked expression from a r?gular ex'pre‘ssmn RE 18
0. Ifv=[x|(v.) Then Return construction (v)on Th(v,) denoted lﬂi’_ and its language, where each character includes its index, is de-
h (RE) noted L(RE). In our example, L({A4172|G344)((AsGslA7A3A9)*)) = {4s-
oOmMpson
11, vrp + Parse(RES$,1) /* parse the regular expression (Section 5.8) */ Ty, GsAs, ATaA5Gs, G3_A4AsG6’ ATy A7 43 Ay, G3A4A.7.AgA?’ AI_T‘?AE’—
12. Th(vae) + Thompson_recur(vgg) /* build the automaton on the tree */ : gsAs Gg,...}. Let POS(RE) ={l... m} be the set of positions in RE and
2 the marked character alphabet. ,
Fig. 5.4. The Thompson algorithm. The automaton is built recursively on the tree) The G%ushkmﬂltomaton 8 bm%t first on' the marked expression RE and
representation of the expression. it recognizes L(RE). We then derive from it the Glushkov automaton that
recognizes L(RE) by erasing the position indices of all the characters (see
below).
~ : The set of positions is taken as a reference, becoming the set of states
Properties of the Thompson automaton The construction for each : of the resulting automaton in addition to an initial state 0. So we build
node of the tree representation adds at most two states and four transitions ’ m + 1 states labeled from 0 to m. Each state j represents the fact that we
to the current automaton. Hence, at the end of the construction, the total have read in the text a string that ends at NFA position j. Now if we read
number of states and transitions is bounded by 2m and 4m, respectively. We ; a new character «, we need to know which positions we can reach from j
can calculate tighter bounds, but the important point is that the number of - by a. Glushkov computes from a position (state) j all the other accessible
states and transitions is linear in m. Moreover, each NFA node has at most positions. » v
two incoming and two outgoing edges, and the whole NFA has one initial We need four new definitions to explain in depth the algorithm. We denote

~and one final state. below by ay the indexed character of RE that is at position y.

Regular expression matching

>@-0-"@ >0-=-0--@® OO0
(a) Th(AT) (b) Th{GA) (c) Th(ATIGA)
=>@A,Q é@L,OL,O

(d) Th{Aq) (¢) Th(AAA)

=>@:
OO0

(F) Th{AGIAAA)

Fig. 5.5. Thompson automaton construcmon for the regular ' expression
(AAAT) ((AGIAAA)). ;

Definition First(RE) = {z € Pos(RE), 3u € ¥", a,u € L(RE)}.

The set First(RE) represents the set of initial positions of L{RE), that
is, the set of positions at which the reading can start. In our example,
FiTSt((A1T2|G3A4)((A5G6|A7A3Ag)*)) = {1,3}.‘

Deﬁnltmn Last(RE) = {z € Pos(RE), u e ¥, uo, € L(RE)}.

The set Last(RE) represents the set of final positions of L(RE), that is,
the set of positions at which a string read can be recognized. In our example,
- Last((A1T2|G3 Ag){((45GelArAg Ag)*)) = {2, 4,6, 9}.

5.2 Building an NFA 107

Definition Follow(RE,z) = {y € Pos(RE), Ju,v € &', uazayv €
L(RE)}.

The set Follow(RE,) represents all the positions in Pos(RE) accessible

from z. For instance, in our example, if we consider position 6, the set of
accessible positions is Follow((A1T3|G3A4)((AsGe| A7 AgAg)*),6) = {7,5}.

We need an extra function Emptyrgp that indicates whether the empty

word ¢ is in L(RE).

Definition We define recursively the function Emptyrg, whose value is
{e} if £ belongs to L(RE) and § otherwise.

Empty. = {¢}

Emptyacx =

Emptyge,ire, = Emptyrs, U Emptyrg,
Emptyge,.rE, = Emptyre, N Emptyre,
Emptyre- = {e}

The deterministic Glushkov automaton GL that recognizes the language

L(RE) is built in the following way.

GL=(S,%,1,F%)

where:

(i) S is the set of states, S = {0,1,...,m}, that is, the set of positions
Pos(RE) and the initial state is I = 0.

(ii) F is the set of final states, F = Last(RE) U (Emptygg - {0}). In-
formally, a state (position) i is final if it is in Last(RE). The ini-
tial state 0 is also final if the empty word e belongs to L(RE), in
which case Emptyrr = {¢} and hence Emptygr - {0} = {0} If not,
Emptyrg - {0} = 0.

(iii) & is the transition function of the automaton, defined by

Vz € Pos(RE), Yy € Follow(RE,z), 0(z,0qy) =y (5.1)

Informally, there is a transition from state z to y by oy if y follows
z. The transitions from the initial state are defined by

Vy € First(RE), 6(0,0) =y (5.2)

The Glushkov automaton of our marked regular expression (A;75]|G3A4)
((A5Gg|A7AgAg)x) is given in Figure 5.6. :

108 Regular expression matching
As
Gy A; T - -
Ay KA5 Gy A-,.W A ?
@WQ@\—/—ECL%D O ©)
s N M~

Ay

4y

Fig. 5.6. Marked Glushkov automaton built on the marked regulaf expression (4
To|G3 A ((As Gl ArAg Ag)*). The state 0 is initial. Double—circle_d states are final.

To obtain the Glushkov automaton of the original RE, we simply erase
the position indices in the marked automaton. At this step, the automa-
ton usually becomes nondeterministic. The new automaton recognizes the
language L(RE). The Glushkov automaton of our example (AT{GA) ((AG]
AAA)*) is shown in Figure 5.7.

A

F"d—_——;\v . ‘f‘ ”A;T Ty ﬁ
NOE @_T@ @_,;L,@L,@_L,

A

Fig. 5.7. Glushkov automaton built on the regular expression (AT{GA) ((AG|
AAA)#). The state O is initial. Double-circled states are final. The automaton
is derived from the marked automaton by simply erasing the position indices.

The algorithm of Glushkov is based on the tree representation Trz of the
regular expression (see Figure 5.3). Each node v of this tree represents a
subexpression RE, of RE. We associate the following variables to v:

o First(v): list of positions that represent the set Ez’rst(REv).

e Last(v): list of positions that represent the set Last(RE,).

o Empty,: set to {¢} if L(RE,) contains the empty string ¢, and to @ oth-
erwise. :

These variables are computed for each node in postfix order, that is, they
are first computed for every child of v and only afterward for v. We denote
the two children of v as v; and v, if v is “|” or " and we denote its unique
child as v, if v represents “x”. : o

The set Follow(z) is a global variable. For each node v we update
Follow(z) according to the positions in the subexpression RE,.

The recursive algorithm Glushkov.variables(vgg, Ipos) is given in Fig-
ure 5.8. It computes the values of First(v), Last(v), Follow(x), and Empty,

5.2 Building an NFA 109

Glushkov_variables(vrr, Ipos) ‘
/* postfix computation, we compute recursively the children first */
Ifv={|](w,v:) OR v =[] (vi,vr) Then
Ipos < Glushkov_variables(v;,lpos)
lpos + Glushkov_variables(v,, lpos)
Else If v = [*] (2.) Then Ipos + Glushkov_variables(v., lpos)
End of if
/* end of the recursive part, we compute the values for the current node */

GO 00

6. If v = () Then

7. First(v) « 8, Last(v) « 8, Empty, + {c}

8. Else If v = () , & € £ Then

9. lpos + lpos + 1

10. First(v) « {ipos}, Last(v) < {Ipos}, Empty, + 8, Follow(lpos) + @
11. Else Ifv={|] (v, v) Then

12. First(v) «+ First{v) U First(v.)

13: Last(v) + Last(v) U Last(v.)

14. Empty, + Empty,, U Emply,,

15. Else If v =[-](v,v,) Then

16. First(v) ¢ First(vi) U (Emptyy, - First(v,)),

17. Last(v) < (Emptys, - Last(v;)) U Last(v,),

18. Empty, < Emptys, N Empty.,

19. For z € Last(v;) Do Follow(z) « Follow(z) U First(v,)
20. Else If v =[] (v.) Then

21. First(v) < First(v.), Last(v) « Last(v.), Empty, < {e}
22. For = € Last(v.) Do Follow(z) + Follow(x) U First(v,)

23. End of if
24. Return Ipos

Fig. 5.8. Recursive part of the Glushkov algorithm. This function computes the
values of First(v), Last{v), Follow(z), and Empty, for each node v of the tree

representation of the regular expression RE.

for each node v of the tree representation of the regular expression RE. We
visit the nodes in postfix order. The values of the node vgg are computed
from the values obtained for its children. The position of each character is
computed on the fly (line 9).

The whole Glushkov algorithm consists in transforming RE into a tree
vgrE, calculating the variables on it with Glushkov_variables (vre,0) and
then building the Glushkov automaton from the variables of the root vgrg
of the tree, following its definition. Pseudo-code for the whole algorithm is
given in Figure 5.9.

Properties of the Glushkov automaton Two properties of this automa-
ton are of interest to us. The first one is that the NFA is e-free. The second

Regular expression matching

Glushkov(RE)
/* parse the regular expression (Section 5.8) */

1. vrg < Parse(RES,1)

/* build the variables on the tree */
m <+ Glushkov_variables(vrz,0)
A /@ * building the automaton */
For : € 0...m Do create state i
For » € First(vre) Do A «+ AU{(0,04,2)}
Foric0...m Do

For z € Follow(i) Do A + AU {(i, s, z)}
End of for
For z € Last(vrg) U {Empiyyy,, - {0}) Do mark = as terminal

N

O XN oW

Fig. 5.9. The whole Glushkov algorithm. The automaton is nondeterministic in
the general case and its transition function is denoted A. The initial state is 0.

one is that all the arrows leading to a given state y are labeled by the same
character, namely, oy, This is easily seen in formulas (5.1) and (5.2).

Complexity The worst-case complexity of the whole algorithm is domi-
nated by the function Glushkov_variables. In this function, all the unions
of sets, except for the star, are disjoint and can be implemented in O(1) time.
The For loop of line 19 is worst-case O(m). The poor worst-case complex-
ity is due to line 22, that is, the computation of the star. Since Follow(z)
and First(v.) could intersect, the union is worst-case time O(m). As this is
inside a For loop that can perform O(m) iterations, the whole loop is worst-
case time O(m?). The total complexity of the algorithm is thus worst-case
O(m?), because O(m) stars may exist.

Two variations of this algorithm have been proposed to reduce the worst-
case complexity to O(m?) [BK93, CP92]. Both reduce the complexity of the
For loop of the star but use different properties. The first one [BK93] uses
the fact that

k Follow(REx,x) = [Follow(RE*;x) \ Fz’rst(ﬁﬁ) | U First(RE¥)

while the second [CP92] uses the fact that
Follow(RE*,z) = Follow(—]ﬁ?—;,x) U [First(REx) \ Follow(RE*,x)]

For our purposes, the O(m?) time algorithm is good enough, since usu-
ally the regular expression is small in comparison to the text size. More-
over, by using bit-parallelism to operate the sets of states, one can obtain
O(m?*[m/w]) time, which is in practice O(m?) for small regular expressions.

- 5.3 Classical approaches to reqular ezpression searching 111

. 5.3 Classical approaches to regular expression searching

We cover in this section the classical ways to search for a regular expression
in a text. We first consider the two extremes: pure NFA and pure DFA sim-
ulation. We then introduce & third, intermediate approach, which permits
trading space for time.

5.3.1 Thompson’s NFA stmulation

Together with its NFA definition, Thompson proposed in [Tho68] an O(mn)
search algorithm based on the direct simulation of his NFA. The resulting
algorithm, which we call NFAThompson, is not competitive nowadays,
but it is the basis of more competitive algorithms seen later in this chapter.

Thompson stores explicitly the set of currently active states. For each
new text character read and for each currently active state, he looks at the
new states that the current state activates by this character and adds each
of them to a new set of active states. From those new active states he follows
all the e-transitions until all the reachable states are obtained.

Since each state has O(1) outgoing transitions under Thompson’s con-
struction and there can be O(m) active states, producing the new set of
active states takes O(m) time under a suitable representation of the set of
states, for example, a bit vector. The propagation by e-transitions also takes
O(m) time if care is taken to not propagate from a state that was already
active. On the other hand, the extra space required is just O(m).

Note that it is possible to use bit-parallelism to store the bit vectors. A
smarter use of bit-parallelism is considered in Section 5.4.

5.3.2 Using a deterministic automaion

One of the early achievements in string matching was the O(n) time algo-
rithm to search for a regular expression in a text. As explained, the technique
consists of converting the regular expression into a DFA and then searching
the text using the DFA. The simplest solution is to build first an NFA with
a technique like those shown in the previous sections (e.g., Thompson or
Glushkov) and then convert the NFA into a DFA.

This algorithm, which we call DFAClassical, can be found in any classi-
cal book of compilers, such as [ASU86]. The main idea is as follows. When
we {raverse the text using a nondeterministic automaton, a number of tran-
sitions can be followed and a set of states become active. However, a DFA
has exactly one active state at a time. So the corresponding deterministic

112 Regular expression matching

automaton is defined over the set of states of the nondeterministic automa-
ton. The key idea is that the unique current state of the DFA is the set of
current states of the NFA.

To formalize the Concepts, we first need a definition.

Definition The e-closure of a state s in an NFA, E(s), is the set of states
of the NFA that can be reached from s by e-transitions.

Note that in e-free automata like Glushkov’s, E(s) = {s} for all states s,
but this is not true in Thompson’s construction.

We can give now a formal definition of the conversion of the NFA into a
DFA. Let the NFA be (Q, X, I, F, A) according to Section 1.3.3. Then the
DFA is defined as

(®(Q), =, B(I), F, §)

where -

F'o= {f € p(Q), fﬂF # 0}

and

8(S, o) U BE(s)

s, 3s€S, (s,0,8')EA

that is, for every possible active state s of § we follow all the possible
transitions to states s' by the character o and then follow all the possible
e-transitions from s’

Since the DFA is built on the set of states of the NFA, its worst-case size
is O(2™) states, which is exponential. This makes the approach suitable for
small regular expressions only. In practice, however, most of those states are
not reachable from the initial state and therefore do not need to be built.

We now give an algorithm that obtains the DFA from the NFA by building
only the reachable states. The algorithm uses sets of NFA states as identifiers
for the DFA states. A simple way to represent these sets is to use a boolean
array. Note that a bit-parallel representation is also possible, and it permits
not only more compact storage but also faster handling of the set union
and other required set operations. We give specific bit-parallel algorithms
in Section 5.4. For now, we use just an abstra,ct representation of the sets
of states. ~

Figure 5.10 gives pseudo-code to compute the e-closure E(s) for every
state s of the NFA. The result is a set of states for each state s. The
algorithm starts with E(s) = {s} and then repeatedly traverses the whole

‘automaton looking for e-transitions. For each of these, it adds the e-closure

5.8 Classical approaches to regular expression searching 113

of the target state to that of the source state. The process is repeated until

no new information is gathered.

EpsClosure(N = (@, X,1,F,A))
For s € Q Do E(s) + {s}
changed < TRUE
While changed = TRUE Do
changed < FALSE
For (s,¢;5') € A Do
If B(s') € E(s) Then
E(s) + E(s)UE(s)
changed < TRUE
End of if
End of for
End of while

D 00 N O T W

o

Fig. 5.10. Computation of the e-closure E(s).

The cost of this algorithm is O(|A|m?), since each complete traversal costs

O(]A}m) and it adds 1 to the distance up to which the chains of e-transitions
are considered. Since the maximum distance in the NFA is O(m), it follows
that O(m) traversals suffice. Under the Thompson construction we know
that |A| < 4m, so the algorithm is O(m?) time. Under Glushkov we simply
do not need to run the algorithm, as we know that E(s) = {s} for every
5 € Q.

Figure 5.11 shows pseudo-code for the algonthm that builds the DFA. The
algorithm builds the initial state I; and then invokes a recursive procedure
BuildState, which finds all the target states from a given source state and
reinvokes itself on all the target states that do not exist yet. The set of final
states, F, is built together with the set of all states, Qg.

It is clear that this algorithm produces only the states that are reachable
from the initial state, that is, the states that could be reached when reading
the text. Its worst-case time complexity is O(1Qql|E}| A} max, | E(s)|), which
is O(|Qq|m?) on Thompson’s NFA since |A| = O(m) as well as on Glushkov’s
since |F(s)| = 1 always.

Example of DFA construction Let us consider our running example
(AT|GA) ((AG}AAR) %), Its Thompson NFA is given in Figure 5.5. Table 5.1
gives the corresponding E(s) function built by EpsClosure.

For the Glushkov NFA of Figure 5.7, we have that E(s) = {s}. Figure 5.12
shows the resulting DFAs from both Thompson’s and Glushkov’s NFAs.
Note that, despite the different labeling, both DFAs are the same. Moreover,

Regular expression matching 5.8 Classical approaches to regular expression searching 115

BuildState(S) From Thompson’s NFA /\
If SNF # 0 Then Fy <—qu{5} ‘
A 8,9,12,

For o € ¥ Do
T « §
For s € § Do
¥or (s,0,8') € ADo T « TUE(s)
End of for
&S, 0) « T
7T ¢ Q,; Then
Qu « Qau{T}
10. BuildState(T)

11. End of if A
12. FEnd of for ’ From Glushkov’s NFA

BuildDFA(N = (Q,X%, 1, F, A)) /\
13. EpsClosure(N) 4’»® ‘—_b‘
4. Iy < B(I) [* initial DFA state */ :

15. Fd + § /* final DFA states */

16. Qg + {Is4} /* all the DFA states */ A .
17. BuildState(l,)
. Return (Qq, %, I, Fy,8) @ ‘ :

Fig. 5.12. The DFAs resulting from Thompson’s and Glushkov’s NFAs.

RPN O W N

w

. Classical computation of the DFA from the NFA.

{0,1,4} E©) 197 » Searching with the DFA The point of building the DFA is to guarantee
{1} E(10) | {10} a linear search time of O(n). This is achievable because we need to cross
2 E(11) 1 18,9,11,12,16,17} exactly one transition per text character read. However, we need to modify

{3,7,8,9,12,17} | E(12) | {12} | :) ; P :

4} E(13) | {13} the automaton in order to use it for text searching. The modification consists

{5 E(14) | {14} = : of adding a self-loop to the initial state of the NFA, which can be crossed

{6,7,8,9,12,17} || E(15) | {8,9,12,15,16,17} by any character, that is, doing

[7.8,9,12,17} | E(16) | {8,9.12,16,17} :

{8,9,12} BT | {17} A+ AU Upesllho 1)

L]

before converting it into a DFA. If the original automaton recognizes the

language L(RE), then after this modification the automaton recognizes

: o Y*L{RE). Figure 5.13 shows the resulting DFA after adding the self—loop

they are minimal, that is, no DFA with fewer states recognizes the same : to the Glushkov NFA of Figure 5.7.

language. The complete search algorithm is depicted in Figure 5.14. The total com-
This is not guaranteed in general. Different DFAs may exist to recognize : plexity is O(m?2™+n) in the worst case. The extra space needed to represent

the same language. Moreover, our construction does not guarantee that the the DFA is O(m2™) bits.

result has the minimum size. To ensure this we have to minimize the DFA ‘

after we build it. Minimization of DFAs is a standard technique that can be ‘

found in a classical book such as [ASU86]. We content ourselves with the : o 5.8.3 A hybrid approach

simple construction, which in most cases produces a DFA of reasonable size. In [Mye92] an approach is proposed which is intermediate between a nonde-

‘ terministic and a deterministic simulation. The idea is based on Thompson’s

Table 5.1. The e-closure E(s) for the final NFA of Figure §.5.

Regular expression matching

Fig.'5.13. DFA obtained after adding an initial self-loop to the Glushkov automaton
of Figure 5.7. It is equivalent to the regular expression (A1C|G|T)* (AT|GA) ((AG]
AAAY %),

DFAClassical(N = (Q, X, I, F,A), T = tita ... t,)
Preprocessing
ForocLDoA + AU ({,0,1)
(Qa, T, Iy, Fy,8) + BuildDFA(N)
Searching
s +— I
Forposel...n Do
If s € Fy Then report an occurrence ending at pos — 1
8 4 3(3,1pos)
End of for

B R A

Fig. 5.14. Classical search algorithm using a DFA.

coustruction (Section 5.2.1) and consists in splitting the NFA into modules
of O(k) nodes each, making them deterministic, and keeping an NFA of the
O(m/k) modules. We call this algorithm DFAModules.

More specifically, the parse tree of the regular expression is partitioned
into modules as follows. First, parse subtrees with k edges are chosen. These
subtrees form modules, which are from then on considered as leaves of the
parse tree. It is shown that those modules contain between k/2 and % leaves.
Once the module subtrees have been replaced by leaves, new subtrees are
chosen as modules and so on until the root of the whole expression is reached.

The status of each module is represented by a hit mask of length k + 1,
which is a map of active and inactive NFA states. A transition table is
precomputed so that, given a bit mask of active states plus a text character
o, the table delivers the bit mask of active states after processing o. This

5.4 Bit-parallel algorithms 117

is in fact a DFA built on the module with the sets of states represented as
bit vectors. '

For the lowest level modules it is clear that this DFA can be built. The
problem with the higher level modules is that some of their leaves are other
submodules. When the bit corresponding to the edge entering the submod-
ule is activated we have to set the initial state of the submodule. And when
the final state of the submodule is activated we have to activate the edge
leaving the submodule in the higher level module.

Since the construction of modules takes whole subexpressions and Thomp-
son’s construction guarantees that there exist just one initial and one final
state, the transitions among each module and its parent can be carried out
in constant time.

Therefore, to simulate one step of the computation on a higher level mod-
ule, it is necessary to use the precomputed table to determine which sub-
modules have been reached, and activate their initial state if they have been.
Then, we recursively simulate the step on each submodule, and for those that
reached their final state we activate the corresponding bit in the higher level
module. A final access to the precomputed table yields the final result.

The main problem remaining is the order in which the submodules have
to be processed to account for the dependencies between them. Except for
the “x” operator, which introduces a back edge, the NFA can be processed in
topological order (i.e., source nodes before target nodes), and a single pass
over the NFA is enough. One of the central points of [Mye92] is to show
that two passes in topological order, permitting the source of a back edge to
influence its target, are enough to account for all the dependencies. Hence,
we need ounly a constant number of passes over the NFA| working O(1) per
module.

Since time is proportional to the number of modules, O(m/k) time suf-
fices to process each text character. Each determinized module needs 0(2%)
space to perform all its internal transitions in constant time. Hence we
need O(m2*/k) space and O(mn/k) time. Given O(s) space, the algorithm
obtains O(mn/ log s) search time. k

‘5.4 Bit-parallel algorithms

As explained in the previous section, a possible way to store the states of
the DFA (i.e., the sets of states of the NFA) is to use a bit mask of O(m)
bits where the i-th bit is 1 whenever the i-th NFA state belongs to the DFA
state. We present in this gection two bit-parallel implementations that are

118 Regular expression matching

hybrids between an NFA and a DFA simulation. As we will see later, they
have advantages and disadvantages compared to the classical approaches.

Assume that the NFA (Q = {s;...s)9|-1}, %, 1 = s, F, A) is represented
as follows: Qp = {0...1Q| — 1}, I, = 0191721, F, = |;,ep 019119107 (ie.,
the bitwise OR of the final states positions), and the set of transitions A is
represented by means of two tables B, and E, ,where

Bn[/éaa] = I(S;’,O',Sj)€A 0!Q1-1-71¢7

represents the states reachable from state ¢ by character o without consid-
ering e-transitions, and

Enli] = |s;en(sy 097107

represents E(1), the e-closure of state s; (Section 5.3.2).

It is not complicated to produce this representation when applying Thomp-
son’s or Glushkov’s constructions. Indeed, it is convenient, as we are simply
using bit-parallelism to represent sets of states as bit masks of length [Q].
Of course E, is not relevant under Glushkov’s construction, since its NFA
is e-free.

5.4.1 Bit-parallel Thompson

A competitive algorithm [WM92b], which we call BPThompson, is derived
from Thompson’s NFA simulation (Section 5.3.1) by a clever use of bit-
parallelism. A very important property (Section 5.2.1) is that, except for the
e-transitions, all the arrows go from states numbered ¢ to states numbered
i+ 1.

If we pack the set of states in the bits of a computer word, so that the
i-th state is mapped to the i-th bit, then all except the e-transitions can be
simulated using a table B similar to that of the Shift-And algorithm (Sec-
tion 2.2.2). The mechanism to simulate e-transitions uses a precomputed
table Ey. E; is built such that, for each possible bit mask of active states, it
yields the new set of active states that can be reached from the original ones
by e-transitions. This includes the original states and also the initial state
0 and its e-closure, so as to simulate, without any extra work, the self-loop
at the initial state. Formally,

E4D] = |; i=0 o D&OL=i~110i£0% En[d] (5.3)

~where L = |Q| < 2m is the number of states in Thompson’s NFA.

5.4 Bit-parallel algorithms 119

The mechanism is not completely an NFA simulation, since it precomputes

a DFA on the e-transitions. The simulation of all the other transitions can
be seen as the true bit-parallel simulation of an NFA.

Figure 5.15 shows the code to build the tables B and E4. The idea for
B is to ignore the originating states of B, that is, we store in Blo] all the
states that can be reached by the character o, from any state:

Blo] = lico..m Bnli,o] (5.4)

The idea for Ej is to iteratively add a new highest bit to the masks and
use the results already computed for smaller masks. The overall process
takes time O(2% + m|3)).

BuildEps(N = (Qn, E,In’ Fn, B‘rH En))

1.

B 0o 10

=l e I

For o0 € X Do
Blo] + 0F
Fori€0...L—1Do Bls] « Blo]| Bnli,o]
End of for : »
/¥ B is already built, now build Eq */
E3l0] « EL[0] /* the initial state and its closure */
Foric0...L—-1Do
"~ Forj€0...2" —1 Do /* recall that B,[i] includes i */
Ea[2' +j] « Enli] | Ealj]
End of for
End of for
Return (B, Ey)

Fig. 5.15. Bit-parallel construction of E; and B from Thompson’s NFA. We use a
nuineric notation for the arguments of Ey.

Figure 5.16 shows the search algorithm. FEach transition is simulated
in two steps: First we use a Shift-And-like mechanism for the normal
transitions using B, and second we use Ey to simulate all the e-transitions.

Reducing space A table of size 2 may be too large depending on the
machine and the pattern. However, a horizontal partitioning scheme can
be used to fit the available memory. We split Ey; into two tables, £} and
Eg, each of them defined over half of the bits. This exploits the following
property, which comes directly from equation (5.3):

Ey[D1Ds] = Ed[Dl()]DZI]]Ed{OiD”Dz]

Regular expression matching

BPThompson(N = (., %, I, Fi,, Bn, B,), T = tata.. . t,)
1 Preprocessing

2 (B, Eq) ¢ BuildEps(N)

3 Searching

4. D « Ej[l.] /* the initial state */

5. Forpos€l...n Do ,

6 IfD & F, # 0* Then report an occurrence ending at pos — 1
7 D + E4 [(D << 1) & Bltpos}]

8 End of for

Fig. 5.16. Thompson’s bit-parallel search algorithm.

that is, we can decompose the argument of Fy in two parts. Hence E‘}l and Eg
are defined as follows, over masks of length |L/2| and [L/2], respectively:

Eé[D] = Ed[OfL/QTD] , Eg[D] — Ed[DOLL/%]
and hence it holds
Ed[dmdo] = Eé[dLL/QJ_l..F.dQ} | Efl[dmd[L/ﬂ]

For instance, in Figure 5.5 we would have E,[3] = 100001001110001000 and
E,[11] = 111001101100000000, so E;[000001000] = 100001001110001000
and E2[000000100] = 111001101100000000. Thus, £,{000000100000001000]
= 111001101110001000. '

The net result is that, instead of having a table of size O(2F), we have
two much smaller tables, of size O(22/2). The cost is that we have to pay
two accesses to memory in order to perform each transition.

The scheme can be generalized as follows. Assume that we have O(s) space
available for the tables. We split our table F; into k& tables E& e E(’g, each
one addressing |L/k] or [L/k] bits of the argument mask. The total space
required is O(k2E/%). If this space is s, then we have that k = L/ log, s.
Therefore, the scheme permits a search time of O(mn/logs) using O(s)
space. This trade-off cannot be achieved with the classical DFA algorithm.
Note that the complexity has to be multiplied by m/w for long patterns.

Depending on the architecture, even when a large table fits in memory,
the cache optimization mechanism can make it advisable to use two smaller
tables, which have more locality of reference.

Example of BPThompson We search for the pattern (ATIGA) ((AG|AAA)
*) in the text AAAGATAAGATAGAAAA, marking the final positions of occur-
- rences. The states have been numbered according to Figure 5.5. As it is not

5.4 Bit-parallel algorithms 121

practical to show the whole table Ey of 2! = 262,144 entries, we show the
table E,. Remember that the E; rows are obtained by OR-ing the E, rows
corresponding to the bits set in the argument of E;. We only show the £y,
entries where E(s) # {s}; otherwise E,[s] contains E(0) U {s}.

For each character read we show two steps in the update of I, namely,

before and after the e-closure.

TableFy

000000000000010011
100001001110011011
100001001111010011
1000010601110010011
000001001100010011
110001101100010011
111001001100010011
110001001100010011

et
Amm o~ wo

001110010001000100
000000000000000000
000000100000100000
000000000000001000
000000000000000000

¥ =3 Q10O P

TableB
1000000000006000000

n =
D= 0060000000000010011
1. Reading &

01110010001000100

0
000000000000000100
000000000000010111

2. Reading A

fA] 001110010001000100

= 000060006000600000100
= 000000000000010111

3. Reading A

[o] 0011100100010001600

000000000000000100
000000000000010111

4. Reading G

[6] 000000100008100000

000000000000100000

B
D=
D= 000000000000110011

5. Reading &

B[A] 001110010001000100

D= 000000006000100010C0
D= 100001001111010111

D & F, # 0%, so we mark an occurrence.

6. Reading T

[T} 0000060000000061000
= 000000000000001000
= 100001001110011011

D & F, # 0%, s0 we mark an occurrence.

7. Reading A

B{A] 001110010001000100
D= 0000100i0000000100
D= 000010010000010111

8. Reading A

Bja] 001110010001000100
D= 000100000000000100
D= 000100000000010111

9. Reading G

[6] 000000100000100000
000000000000100000
000000000000110011

B
D
D

10. Reading A

B[a] 601110010001000100
D= 000000000001000100
D= 100001001111010111

D & F, # 0% so we mark an occurrence.

fhaaiy

11. Reading T

[t} 000000000000001000
000000000000001000
100001001110011011

D & F, # 0%, so we mark an occurrence.

B
D
D

12. Reading &

BA] 001110010001000100
D= 0000100100000006160
D= 00001001000001011%1

122 Regular ezpression matching

13. Reading G 16. Reading &

{6] 000000100000100000 (] 001110010001000100
0000001000060100000 = 001106000000000010C
110001101100110011 = 1111010011060010111

D& Fn # 0F sowe mark an occurrence. D& Fy # 0%, so we mark an occurrence.

14. Reading A " 17. Reading &

{A] 001110010001000100 Bla] 001110010001000100
= 000010010001000100 D 001010010000000100
= 100011011111010111 D 111011011100010111

D & F, # 0¥, so we mark an occurrence. D & F, # 0F, so we mark an occurrence.

B
D
D

15. Reading A

Bja] 001110010001000100
D= 000110010000000100
D= 000110010000010111%

5.4.2 Bit-parallel Glushkov

Another bit-parallel algorithm [NR99a, Nav0lb, NROla] uses Glushkov’s
NFA, which has exactly m + 1 states. We call it BPGlushkov.

The reason to choose Glushkov over Thompson is that we need to build
and store a table whose size is 2/?!, and Thompson’s automaton has more
states than Glushkov’s. The price is that now the transitions of the au-
tomaton cannot be decomposed into forward ones plus e-transitions. In
Glushkov’s construction there are no e-transitions, but the transitions by
characters do not follow a simple forward pattern.

However, there is another property enforced by Glushkov’s construction
that can be successfully exploited (Section 5.2.2): All the arrows arriving
at a given state are labeled by the same character. So we can compute the
transitions by using two tables: Blo| (formula (5.4)) tells which states can
be reached by character o, and

TulDl = (i), Dom-iroigom+1, oex Baliy 0]

tells which states can be reached from D by any character.

Thus 6(D,0) = Ty[D] & B[o]. We use this property to build and store
only Ty and B instead of a complete transition table. Figure 5.17 shows
the necessary preprocessing. The ideas are similar to those used to build
E; and B in Section 5.4.1. This time the cost is O(2™ + m|X]|) by using
an intermediate table Afi] = |sex Bli, 0], which is essentially a bit-parallel

5.4 Bit-parallel algorithms 123

representation of the Follow set (Section 5.2.2). Figure 5.18 shows the
search algorithm, which is similar to BPThompson.

BuildTran (N = (Qu, £, I, Fa, Bn))
Fori€0...m Do Alf] « 0™
For o € ¥ Do Blg] « ™"
Foricl...m, 0 € ¥ Do

Ali] « A} | Bali, o]
Blo] « Blo]| Buli, 0]
End of for

/* B and A are built, now build Ty */

7. Ty[0] « o™H)
8. Foric0...m Do

A i al o

9. Forj€0...2" —1Do
10. Tal2' +j] « Afi] | Taj]
11. End of for

12. End of for
13. Return (B, Ty)

Fig. 5.17. Bit-parallel construction of B and 7, from Glushkov’s NFA. We use a
numeric notation for the argument of 7.

BPGlushkov(N = (Qn, 2, In, Fr, Br), T = tita.. . tn)

1 Preprocessing

2 For o € £ Do Bp[0,0] ¢ B.f[0,0]} 0™1 /* initial self-loop */

3 (B,T;) + BuildTran(N)

4 Searching

5. D + 0™1 /* the initial state */

6. Forpos€l...n Do

7 IfD & F, # 0™ Then report an occurrence ending at pos — 1
8 D + T4[D} & Bltpos)

9 End of for

Fig. 5.18. Glushkov’s bit-parallel search algorithm.

Compared to BP Thompson, BPGlushkov has the advantage of need-
ing O(2™) space instead of up to O(2?™), Just as for Ey, it is possible to
split Ty horizontally to obtain O(mn/logs) time with O(s) space. There-
fore, BPGlushkov should be always preferred over BP Thompson.

Example of BPGlushkov We search for the pattern (ATIGA) ((AG|AAA)*)
in the text AAAGATAAGATAGAAAA, marking the final position of occurrences.
We use Glushkov’s simulation, where the states have been numbered ac-

124

currence.

([0TA]G0000000T11
0{C[0000000001
0/6[0000001001
0|T|]00060000001
1{T[0000000100
2[A10010100000

B, = 3]/410008010000
4{A4]0010100000
51610001000000
6 A]0010100000
7|A[0100000000
8{A[1000000000

(8]A]00101060000
A11110110011

B — C|{00006000001

a G|0001001001
T|0000000101
F, = 1001010100
D = 0000000001
1. Reading A
TylDj= 0000001011
Blal= 1110110011
D= 0000000011
2. Reading A
To[Dj= 06000001111
BlA]= 1110110011
= 0000000011
3. Reading A
TalD]= 00000071111
Bfal= 1110110011
D= 0000000011
4. Reading G
TyiDj= 60006001111
BGl= 0001001001
D= 0000001001
5. Reading A
TqlD]= 00000711011
Blaj= 1110110011
D= 00060010011
D& F, # 0™, 50 we mark an oc:

6.

10.

11.

- 12

Regulor expression matching

cording to Figure 5.7. Since it is not practical to show the whole table T,
of 2'0 = 1024 entries, we show only the tables B,, B, and the rows of T}
that are needed in the search. Remember that the T rows are obtained by
OR-ing the By, rows corresponding to the bits set in the argument of T} over *
every character. In B, we only show the entries leading to a nonzero result. -

Reading T
T4[D]= 06010101111
BT/= 0000000101

D= 0000000101

D& F, # 0™ so we mark an oc-

currence.

Reading A
TJD]= 0010101011
BjAl= 1110110011

D= 0010100011

Reading A
TalDl= 0101001111
BlAl= 1110110011

D= 0100000011

Reading G
Te[D]= 10060001111
BlG]= 0001001001

D= 0000001001

Reading A
TylDl= 0000011011
BlA]= 1110110011

D= 0000010011

D& F, # 0™ 50 we mark an oc-

currence.

Reading T C
TyD]= 0010101111
Blt]= 0000000101

D= 0000000161

D & F, # 0™, so we mark an oc-

currence.

Reading A&

Td[DJ: 0010101011
BlAl= 1110110011

D= 06010100011

5.5 Filtration approaches 125
13. Reading G ‘ 16. Reading A
TglD]= 06101001111 TulDl= 1101001111
Blg]= 0001001001 BjA]= 1110110011
D= 0001001001 D= 1100000011
D & F, # 0™! so we mark an oc- D& F, # 0™, so we mark an oc-
currence. currence.

14. Reading A

TAD]= 0010111011

BlA]= 1110110011

D= 0010110011

D& F, # 0™ so0 we mark an oc-

currence.
15. Reading &

TaD]= 0111101111

Blg]= 1110110011

= 0110100011

17.

Reading A
T.Dl= 1010101111
BiAl= 1110110011
D= 1010100011

D& F, # 0™, so we mark an oc-
currence.

5.5 Filtration approaches

All the approaches seen so far needed to examine every text character. It
is natural to ask whether any. of the approaches seen in previous chapters
for simple, multiple, or extended string matching can be applied to regular
expression searching. Our goal in this section is to avoid reading every text

character.

The algorithms that use filtration are generally newer than those of the
previous sections, and they achieve in general much faster searching when
the regular expression permits it. As we will see shortly, not every regular
expression is amenable to filtration, so there are cases where we have to
resort to the prévious techniques.

For technical reasons, it will be more interesting to reverse our example
pattern in this section. Its Glushkov automaton is shown in Figure 5.19.

Fig. 5.19. Glushkov automaton built on the regular expression ((GAIAAA)x)

(TA}AG).

126 Regular expression matching

Given a regular expression, we compute the length #min of its shortest
occurrence. Any method based on skipping text characters must examine
at least one out of every ¢min characters to avoid missing an occurrence.
Hence, in general we will use a window of length fmin.

Figure 5.20 gives the recursive algorithm to compute fmin in O(m) time
using the parse tree of the regular expression. A shortest path algorithm
from the initial to a final NFA state is also possible,

Lmin(v)
. If v=1|] (v,v,) Then Return min(Lmin(y), Lmin(v,))

If v =|-{(v,v.) Then Return Lmin(v) + Lmin(v.)

If v=|%|(v.) Then Return 0

Ifv={(a), o € & Then Return 1

If v = (¢) Then Return 0

Fig. 5.20. Computation of £min.

5.5.1 Multistring matching approach

This method [Wat96], which we call MultiStringRE, consists of generating
the prefixes of length £min for all the strings matching the regular expression
Pref(RE). In the regular expression RE = ((GA[AAA)*) (TA|AG) we have
fmin(RE) = 2, and the set of length-2 prefixes of strings matching the
pattern is Pref(RE) = { GA, AA, TA, AG}. A more complex example would
be RE = (ATIGA) (AG|AAA) ((AGIAAA)+), where fmin{RE) = 6 and the set
of prefixes is Pref(RE) = { ATAGAG, ATAGAA, ATAAAA, GAAGAG, GAAGAA,
GAAAAA }. »

" Figure 5.21 gives pseudo-code that generates the set of prefixes from a
regular expression. A very convenient way of representing Pref is as a trie,
because it is easier to generate and to use later for searching. For simplicity
we assume that the NFA is e-free. The time is worst-case O(|A[fmin),

For reasons that will become clear soon, we also store at each trie leaf z
the DFA state Active(z) that is reached by reading each trie path. In this
case we represent the DFA state as the set of NFA states. It is also possible
to write a version of Compute Pref that works on the DFA, and in this
case any other representation for DFA states can be used as well.

Once the set of prefixes is computed, the algorithm uses a multipattern
search for the set Pref(RE) (Chapter 3). In particular, [Wat96] focuses on
- Commentz-Walter-like algorithms. Since every occurrence of the regular

5.5 Filtration approaches 127

Pref(s, A, fmin, Trie)

If £min = 0 Then /* trie leaf */
Active(Trie) + Active(Trie) U{s}
Return Trie

End of if

For (s,0,8') € A Do
If 6(Trie,o) = 6 Then

Create new state Next = §(Trie,q)
Active(Next) + @

. End of if

0. Pref(s’, A, fmin ~1, Next)

1. End of for

il e N S

Compute Pref(N = (Q, %, I, F, A), émin)
12. Trie «+ 8

13. Pref(I, A, ¢min, Trie)

14. Return (T'rie, Active)

Fig. 5.21. Computation of Pref. It receives an ¢-free NFA and fmin and returns
Pref in trie form and Active at the leaves. ,

expression must start with the occurrence of a string in Pref(RE), it is
enough to check for the occurrences of RE that start at the initial positions
of Pref(RE) in the text. To check for an occurrence starting at a given
position we can use any of the methods seen earlier in this chapter, except
that we do not add the initial self-loop. This forces the occurrence to start
at the position specified. Since the length of a string matching a regular
expression is in general unbounded, we have to run the automaton until it
reaches a final state, it runs out of active states, or we reach the end of the
text, ;

To avoid re-reading the first fmin characters of the window at verification
time, we initialize the automaton with the states in Active(z) and start
reading the characters after the window. In particular, if we use a bit-
parallel representation of the DFA, then Active can be stored as a bit mask
and used directly to initialize the automaton.

The effectiveness of this method depends basically on two values: ¢min
(the search is faster for larger £fmin) and the size of Pref(RE) (the search is
faster for less prefixes). Note that the size of Pref{ RE) can be exponential in
m, for example, searching for (a|b) (alb) ... (alb). It is possible to artifi-
cially reduce #min to avoid an excessively large trie. We see in Section 5.5.3
a method that avoids this problem. ‘

128 Regular expression matching

MulbtiStringRE(N = (@, %, I, F, A), fmin)
1. Preprocessing
/* Construction of Pref*/
2. {Pref, Active) <+ Compute Pref(N, fmin)
/* Counstruction of the DFA (Figure 5.17) without initial self-loop */
Produce bit-parallel version N' = (@0, 5,15, Fo, Br) of N
(B,Ts) + BuildTran(N')
Searching
/¥ Multipattern search of Pref. Check each occurrence with the DFA */
For (pos,t) € output of multipattern search of Pref Do
D + Active(?), j + pos+1
Whilej<n anp D& F, = 0™ anp D # 0™ Do
D « T4D] & Bft;]
Eund of while
IfD&F, # 0™ Then
Report an occurrence beginning at pos + 1 — fmin
End of if
End of for

Fig. 5.22. MultiStringRE search algorithm. It receives an NFA and the minimum
length of a string accepted by it and reports the initial positions of occurrences.
We assume that the verification is done with the bit-parallel Glushkov simulation
of Section 5.4.2. Consequently, we assume a bit map representation of Active.

Example of MultiStringRE search We search for the pattern ((GA{AAA
Y#) (TA}AG) in the text AAAAGATAGAATAGAAA the reverse of the example text
used earlier in this chapter, and mark the initial positions of occurrences.

We use as our verification engine the bit-parallel Glushkov simulation of

Section 5.4.2, where the states have been numbered according to Fxgure 5.19.
As before, we only show the nonzero By, entries.

The example may look clumsy because our search pattern and text permit
little filtering. However, the example shews all the cases that may ocecur.

3

01000010060
0000000010
00010000600

00000001090

gTI01TI100
0000000000
1000000010

01000010600
0000000010
0001000000

0006001006090

0000100000

0100001000
0000000010
0001000600

00100000600

PO CTOUR|WN N NEHO OO

(IR R IR SN R e BT

1000000000

0001000000

prefix

Active

oA
A4
TA
AG

000600600100
00000100060
0010000006
1000000000

10100600000

5.5 Filtration approaches 129

1. AAGATAGAATAGAAA

D= 0000010000
Reading 8 00001600090
Reading A 01000010600
ReadingG 100000060600 -

D &F, # 0™ so we report an oc-
currence beginning at 1.

A AGATAGAATAGAAA

D= 00600010000
Reading A 00001000060
Reading G 000000060160
ReadingA 0000000100
Reading T 0001000000
ReadingA 0010000000

D &F, # 0™%!, so we report an oc-
currence beginning at 2.

. AA GATAGAATAGAAA

D= 00060010000
ReadingG 0000000000

D = 0™"?, s0 we discard position 3.

. AAA ATAGAATAGARA

D= 1000000000

D &F, # 0™ g0 we report an oc-
currence beginning at 4.

. BAAA TAGAATAGAAA

D= 0000000100
Reading T 0001000000
Reading4 0010000000

D &F, # 0™%, so we report an oc-
currence begmmng at 5.

. ARAAGA GAATAGAAA

(we skipped position 6).

D= 0010000000

D &F, # 0™ 50 we report an oc-
currence beginning at 7.

. AABAGAT AATAGAAA

D= 1000000000

D &F, # 0™} so we report an oc-
currence beginning at 8.

8.

10.

11.

12.

13.

14.

ARRAGATA ATAGAAA

D= 0000000100
Reading A 0100001600
Reading T 0000000000

D = 0™}, s0 we discard position 9.

ARAAGATAG TAGAAA

D= 0000010000
Roading T 0000000000

D = 0™, so we discard position 10.

AAARGATAGAA GAAA

D= 0010000000

D &F, # 0™, so we report an oc-
currence beginning at 12.

AAAAGATAGAAT AbA

D= 1000000000

D &F, # 0™, so we report an oc-
currence beginning at 13. -

ARAAGATAGAATA AA

D= 0000000100
ReadingA 0100001060
Reading 4 0000010000

The text finishes without an occur-
rence, so we discard text position 14.

AARAGATAGAATAG A

D= 0000010600
Reading A 000010600060

The text finishes without an occur-
rence, so we discard text position 15.

AMAAGATAGAATAGA

D= 0000010000

The text finishes without an occur-
rence, so we discard text position 16.

130 Regular expression matching

5.5.2 Gnu’s heuristic based on necessary factors

A heuristic used in Gnu Grep consists of selecting a necessary set of factors.
We call it MultiFactRE. In the simplest case, we may find that a given
string must appear in every occurrence of the regular expression. For exam-
ple, if we look for (AGIGA)ATA((TT)*), then the string ATA is a necessary
factor. ’

The idea in general is to find a set of necessary factors and perform a
multipattern search for all of them. There are many ways to choose a suitable
set, and Grep’s documentation is insufficient to determine its technique.
Note that Pref is just a particular case of this approach. The advantage
of Pref is that we know where the match should start, while the general
method may need a verification in both directions starting from the factor
found.

The selection of the best set of necessary factors has two parts. The first
part is an algorithm that detects the correct candidate sets. The second part
is a function that evaluates the cost to search using a candidate set and the
number of potential matches it produces. A good measure for evaluating
a set is its overall probability of occurrence, but finer considerations may
include knowledge of the search algorithm used.

Figure 5.23 gives an algorithm that finds sets of necessary factors and
selects the best one, assuming that a function best to compare sets has
been defined. The code works recursively on the parse tree of the regular
expression and returns {all, pref, suff, fact), where all is the set of all the
strings matching the expression, pref is the best set of prefixes, suff is the
best set of suffixes, and fact is the best set of factors. Our answer is the fourth
element of the tuple returned. If this is 8, then no finite set of necessary
factors exists.

The easiest cases are single characters and . For a “4” operator, the
strings inside can be repeated an unbounded number of times, so we cannot
guarantee a finite set for all. So we return {¢} for pref, suff and fact, and 6 for
all. For a “|” operator, we need to make the union of the two children for each

of the four values. Note that we have to keep any 6 present at the children.
Finally, the most interesting operator is “”. To obtain all{RE{REs) we
concatenate any string of all(RE,) to any string of all(RE3). To obtain the
best pref(RE{RFE2) we choose the best among pref(RE;) and pref(REs),
with the understanding that this last set has to be preceded by all(RE1).
The case of suff is symmetrical. Finally, for fact{(RE4RE>) we can choose
between fact(RE)), fact(REs), and suff{ RF1) concatenated to pref(RE,).

5.5 Filtration approaches 131

BestFactor{v)

1. o=[]] (w0 OR’():EI(’U[,UT) Then

2. (ally, pref;, suffy, foct)) + BestFactor{v:)

3. (all,, pref,, suff,, fact,) BestFactor(v,)

4. End of if

5. Ifv={|] (v1,v) Then

8. Return (all; Uall,, pref, U pref,, suffi U suff., fact, U fact,)
7. Else v =/|-|(vw,v) Then

8. Return (all; - all., best(pref,,alli - pref.),

best(suff,, suff; - all.), best(fact;, fact,, suff; - pref,.)
9. Else If v = (v.) Then Return (6,6,6,6)
10. Else If v = % , a € & Then Return ({a},{a}, {a}, {a})
11. Else If v = (¢) Then Return ({c}, {¢}, {e}, {e})
12. End of if

Fig. 5.23. Computation of the hest set of necessary factors. We assume that 6 acts
as L%, sothat UA = Aug=60-A=A-0= 6 for any A. Also, best always
considers 8 the worst option. :

This method gives better results than MultiStringRE because it has the
potential of choosing the best set. In the example ((GA|AAA)*) (TAIAG),
instead of choosing a set of four strings as MultiStringRE does, it can
choose {TA,AG}, which is smaller.

5.5.3 An approach based on BNDM

Our final technique able to skip characters [NR99a, Nav01b] is an extension
of BNDM (Sections 2.4.2, 4.3.2, and 4.2.2) to regular expressions. We call
it RegularBNDM. It has the benefit of using the same space as a forward
search.

The idea is based on the bit-parallel DFA simulation of Glushkov’s con-
struction (Section 5.4.2). We modify the DFA by reversing the arrows and
making all states initial, so that the resulfing automaton recognizes every
reverse prefix of RE and is alive as long as we have read a reverse factor of
RE. Note that this automaton does not have an initial self-loop. Figure 5.24
shows the result on ((GA]AAR)*) (TAIAG).

We slide a window of length £min along the text. The window is read
backwards with the automaton. Each time we recognize a prefix we store in
a variable last the window position where this happened. When the window
is shifted, it is aligned so as to start at position last. The backward traversal
inside the window may finish because the DFA runs out of active states, in

Regular expression matching

Fig. 5.24. Automaton to recognize all the reverse prefixes of the regular expression
((GATAAAY*) (TAIAG).

which case we shift the window and restart the process, or because we reach
the beginning of the window. :

In the latter case, as for extended patterns (Chapter 4), we cannot guar-

antee an occurrence of the regular expression, just a factor of it. So, if the

final state of the automaton has been reached at the beginning of the win-
dow, we start a forward verification using the normal DFA without an initial
self-loop.

The above scheme can be improved. If we are at window position 7 <
fmin, it is not relevant whether an automaton state at a distance greater

than j from the initial state 0 is still active, because that state can never
activate state 0 within the window. So we keep masks Reach; for j €
0...¢min, which contain the states that can influence the final result from
window position 7. By removing active states that are not in Reach;, we
are able to shift the window sooner. :

Figure 5.24 makes it clear that the Glushkov property of all the arrows
arriving at a given state being labeled by the same character does not hold
when we reverse the arrows. Therefore, the BPGlushkov simulation cannot
be applied directly. However, we can obtain a similar result by noticing that
a dual property holds after we reverse the arrows: All the arrows leaving a
given state are labeled by the same character.

Therefore we can use again tables Ty and B as before, but this time
we have to mask with B before using Ty, That is, we keep the active states
whose arrows leave by the current character and then take all the transitions
leaving them. Formally, (D, o) = Ty[D & B[o] |, where B corresponds to
the forward transitions.

Figure 5.25 shows the preprocessing algorithm, which yields a forward
automaton (B, Tf;), a backward automaton T'bg, and the table Reach. Table

" Tfq is obtained by making the input NFA deterministic without adding a

5.5 Filtration approaches 133

Compute Reach (Ty, I, fmin)

1. Reacho + I /* the initial state */

2. For j € 1...fmin Do :

3. Reach; « Reach;_1 | Ta[Reach;—1]
4. Return Reach

Reverse_Arrows (N = (@, 5, I, Fn, Bfn))

5. Foricl...m, d €L Do

6. Bb,[i,o} « o™

7. Forj€0...m Do o

8. If Bfalj, 0] & 010" # 0™ Then
9. Bb,Ji,o] - Bbyli,o} | 07710
10. End of if '

11. Find of for

12. End of for
13. Return Bb,

BNDM_Preproc (N = (Qn,Z, In, Fn, By), fmin) _ o
/* (B, Tfs) (no initial self-loop) is used for verification * /
14, (B,Tfs) « BuildTran(N)
/* Reach tells reachable states */
15. Reach < Compute Reach(Tfy, Iy, {min)
/* Thy is a DFA for recognizing reverse prefixes */
16. BB, + Reverse Arrows(N)
17. (Bb,Thy) + BuildTran(Nb = (Qn,T,1™"",0™1, Bby))
18. Return (B,Tf4, Thq, Reach) S

Fig. 5.25. Preprocessing for the BNDM-based algorithm.

self-loop at the initial state. Reach is obtained by starting at the initial state
of (B, Tf4) and performing up to £min transitions by any character. Finally,
Tb, is obtained by reversing all the arrows of the NFA and then making it
deterministic. The overall process takes time O(2™ + m?|%]). Figure 5.26
shows the search algorithm. '

An extra space improvement is possible: Since we are interested only in
the states that can be reached in at most ¢min steps from state 0, it is
not necessary to use the whole automaton with the reverse arrows; only the
states belonging to Reachpnmn are relevant. By discarding the othexjs we can
save space. » »

Since at window position j we remove the states that cannot reach state 0,
we keep a given state active only if it can become a prefix of length ¢min of
an occurrence. Hence, the algorithm is just another mechanism to search for
Pref (Section 5.5.1). However, it uses the same automaton with the arrows
reversed to represent the state of the search instead of the full trie as in the
MultiStringRE algorithm.

134

Regular expression matching

RegularBNDM(N = (Q, 5,1, F A), fmin)

1. Preprocessing

2. (B,de,de,Reach) + BNDM. Preproc(N, fmin)

3. Searching)

4. pos +— 0

5. Whi!e pos < n—Lmin Do

6. J 4 fmin, last < fmin

7. D Reachyp,

8. While D £ 0™+ sAnp j>0Do

9. D — de[D & B[tpos-frj]] & Reachjq

10.]+~ i-1

11 D& 0™ # 07 Then /* i

‘ prefix recognized *
g If j > 0 Then last + j guized ™/
. Else /* check a possible occurrence starting at
> 1*

if D« 0™1, 5 < pos+1 B atpost1y/

5. While j < n AND D&F, = 0™+ anp D # g™+ p

< o

1? D « de[D] & Blt;]

17. End of while

ig D& F, # 0™ Then

. Report an occurrence beginni t

20. End of if sung atpos+1
21. End of if
22. End of if
23. End of while
24, Pos <« pos + last
25. End of while

Fig. 5.26. Extension of BNDM for regular expressions.

In [Nav01b] it is shown that this scheme can be im

, roved by findi
“necessary factors” P y finding good

‘ (}f the regular expression, Just as in MultiFactRE. In
fjh'lS- case the result is g subgraph of the NFA, so that any path from the
initial to a final state needs to traverse the subgraph.

Example of RegularBNDM search We search for the pattern ((GA{AAA
)*) (TAIAG) in the text AAAAGATAGAATAGAAA, marking the initial positions
of occurrences. The states have been numbered according to Figure 5.19
We show the nonzero entries of Bb, with the rows of table Thy ‘that 'an;
needed in the search. We omit the details of the forward verification.
Again, the code is slower than a simple forward scan, but this is because
our particular pattern is difficult to search for in this manner.

5.5 Filtration approaches 135

0000100101
0100000010
00001060101
000600061000
0000010000
0000100101
00010000080
0000100101
01000600000

W

o

3

il
0| 00| ~1| & e | 0ol 03|
@ o= 1| 13| 2| 2| | 2| 2

1. AAGATAGAATAGAAA

D= 1111011111
Reading &
D & BlA} = 0110011100
Tbg = 0101101111
& Reach; = 0101001011
last= 1 (D& I, # 0™
Reading A
D & Bla)l = 0100001000

Tby = 0000100101
& Reachy = 0000000001

D& I, # 0™ 50 we start a verifi-
cation at position 1. After 5 steps we
find the pattern and report it. Then
we shift the window by last = 1.

2. 4 AGATAGAATAGAAA

As for Step 1, D & I, # 0™ s0
we start a verification at position 2.
After 7 steps we find the pattern and
report it. Then we shift the window by
last = 1.

3. 4A GATAGAATAGAAR

As for Step 1, D & I, # 0™, s0
we start a verification at position 3.
After 3 steps the automaton runs out
of active states, so we discard position
3 and shift by last = 1.

4. AMA ATAGAATAGAAA

= 1111011111

Reading G
D & B[G] = 1000000010
Thy = 0100100101
& Reachi = 01006000001

1 (D&, # 0™

A[01101111060
B = C|0000000000
- 611000000010
T|00010600000
Reacho = 0000000001
Reachi = 0101001011
Reachy = 1111011111
{min =. 2

D= 0100000001
Reading A

D& Bjaj= 0100000000

Thy= 00060100101

& Reacho= 00000060001

D &I, # 0™, so we start a verifi-
cation at position 4. After 2 steps we
find the pattern and report it. Then
we shift the window by last = 1.

5. “ARAA TAGAATAGAAA

D= 111101111¢

Reading 4
D & B{A] = 0110011100
Tbg= 0101101111
& Reachy = 0101001011
last= 1 (D& I, # 0™
Reading G ‘
- D& Bl6 = 0000000010
: Tby = 00600100101
& Reachy = 0000000001

D & I, # 0™, so we start a verifi-
cation at position 5. After 4 steps we
find the pattern and report it. Then
we shift the window by last = 1.

6. AAAAG AGAATAGAAA

D= 1111011111
Reading T
D & BT = 0601000000

Thy = 0000100101

& Reach; = 0000000001
last= 1 (D& I, # 0™

Reading 4

D & B[A} = 0000000000
Tby = 060006000000

& Reachg = 0000000000

D &I, = 0™ so we shift by

last = 1. ’

136 Regular expression matching 5.6 Experimental map 137

7. AMAAGA [TA] GAATAGAAR 13. AABAGATAGAAT AsA : 5.6 Experimental map

D= 1111011111 Asfor Step 4, D & I, # 0™, so Determining the best search algorithm for a regular expression is more diffi-

Reading A we start a verification at position 13, cult than for simple patterns, because the structure of the regular expression

D& BA]= 0110011100 After 2 ste find i
ps we find the pattern and 1 ~ompl | the effici
Thg= 0101101111 report it. Then we shift the window by piays @ Comprex To'e I the eLiciency.
& Reachy = 0101001011 last = 1. ’ An obvious disadvantage of the bit-parallel versions compared to DFA-

= 1
Reafiairslfg_'f 1L D&L # ") Classical is that the bit-parallel algorithms build all the 2/¢! possible combi-
D&B[T|= 0001000000 . AAKAGATAGAATA AR nations, while DFAClassical builds only the reachable states. Thus DFA-
& R ng = 8 8 g 8 (1) 8 8 (1} g } As for Step 5, D & o # o7 Classical may produce a much smaller automaton.
eachy = As for Step 5, n ™ so) . . .
D& L, % 0" 50 we start & vesif we start a verification at position 14, On the other hand, there are important advantages to the bit-parallel
cation at osition 7. After 2 s te;;; . After 4 steps the text finishes without versions. One is that they are simpler to code. Another is that they are
find the pattern and report it. Then rweiCI:) f;:tfzglf lﬁi pe atltem’yso we shift the - more flexible. For example, we will see in Chapter 6 that this scheme can
we shift the window by last = 1. ' be extended to permit differences between the pattern and its occurrences,
. AAAAGATAGAATAG A which is hard to do with DFAClassical. Finally, bit-parallel'versions are
; : amenable to horizontal partitioning, which permits reducing the space as
n As for Step 1, D & I, # 0™* s0 much as necessary. '
As for Step 4, D &, I # 07_ .+1v so we start a ve;iﬁcation at position 15. ; " ‘y . . S
we start a verification at position 8. After 3 steps the text finishes without Among bit-parallel versions, BPGlushkov is preferable to BPThomp-
f‘ef;git%:tfff;fel‘:’afggéii Pat,te;n afgd recognizing the pattern, so we-shift the son because it needs less space and has more locality of reference as it
- > ST € Winaow . %] —_ :
last = 1. Y window by last = 1. addresses a smaller table.
Finally, NFAModules obtains the same space-dependent complexity as
BPGlushkov, O(mn/log s), but it is more complicated to implement and
o Asfor Step 1, D & I, # 0™ so : slower in practice. However, when the regular expression needs more than,
As for Step 5, D & I, # 077", 50 we we start a verification at ‘position 16. say, four or more computer words, it becomes attractive in comparison to
start a verification at position 9. After After 2 steps the text finishes without bit llel aleorith M NFAModul also b tended t
4 steps the automaton runs out of ac- recognizing the pattern, so we shift the | it-parallel algorithms. Moreover, odules can also be extended to
;wi staltes and we shift the window by ‘window by last = 1. : : handle classes of characters and approximate searching (Chapter 6).
as = Filtration approaches, depending on the regular expression structure, can
be better or worse than the previous approaches. It is difficult to define a
parameter that always works well at predicting the behavior of filtration,

Asfor Step I, D & I, # 0™% so but a good approximation is
we start a verification at position 10.

. AAAAGAT AATAGAAA

 AARAGATA ATAGALL . AAAAGATAGAATAGA

. AAARGATAG [A8] TAGAAR

After 3 steps the automaton runs out : ‘ ' . | Pref]
of active states, so we shift by last = 1. Prob-verif = E;“!Z%
. AABAGATAGA [AT] acana which is an approximation of the probability of matching a string in Pref,
. defined in Section 5.5.1. Each time an element in Pref matches, we have to
As for Step 6, D & I, = 0™"! so we o s o1 :
shift by last = 1. perform a verification whose cost is difficult to bound, but on average it can
be approximated by
. ABAAGATAGAA [TA] GAAA :
. . | Prefyl
; Cost-verif = Z 7
As for Step 7, D & I, # 0"t so ~ ‘ £>0 2

we start a verification at position 12.
After 2 steps we find the pattern and
report it. Then we shift the window by
last = 1.

where Pref, is the set of all prefixes of length £ of possible occurrences of

138 Regular expression matching

the regular expression. Those sets can be obtained with the same algorithm
that computes Pref (Section 5.5.1).
A general rule of thumb is that filtration should be used only when

Cost-filter = Prob-verif x Cost-verif <1

The value Pref used works well with MultiStringRE and,RegularBN DM
based approaches, but for MultiFactRE it must be changed to the set of
strings chosen there.

With respect to the different filtration approaches, MultiStringRE and
RegularBNDM are similar in terms of text characters considered, espe-
cially if Multiple BNDM or SBDM is used for MultiStringRE (Sec-
tion 3.4). RegularBNDM uses a compact representation of the set Pref by
cleverly using the automaton itself instead of a fully developed trie of all al-
ternatives. But, when the regular expression is too large RegularBNDM
takes too much time and it is a good idea to resort to MultiStringRE.
Another advantage of MultiStringRE is that it does not need to re-read
the window.

Finally, MultiFactRE-like filtration can be seen as an improvement over
the previous approaches. In particular, Gnu Grep (Section 7.1.1) works
better than the plain MultiStringRE approach, and Nrgrep (Section 7.1.3)
contains an implementation of RegularBNDM that also finds the best
necessary factor of the regular expression.

Even for small patterns it sometimes happens that Gnu Grep is faster than
Nrgrep, but RegularBINDM can be extended to approximate searching,
while search algorithms based on classical multipattern matching normally
cannot.

Table 5.2 summarizes our recommendations.

Low Cost-filter High Cost-filter
{(below 1.0) (above 1.0)

Small size RegularBNDM / DFAClassical /
{(m < 4w) MultiFactRE BPGlusbkov

Large size MultiFactRE NFAModules
(m > 4w)

Table 5.2. The algorithms we recommend to search for a regular expression
according to some parameters of the pattern.

5.7 Other algorithms and references 139

5.7 Other algorithms and references

NFA construction A theoretic lower bound to the number of transitions
needed to build an e-free NFA is O(mlogm) [HSW97]. Reaching the lower
bound is still an open issue. An O(m?) time algorithm producing an NFA
with O(mlog? m) transitions was proposed in [HSW97]. It was improved to
O(mlog?m) time in [HM98]. Unfortunately, this algorithm is too compli-
cated for our purposes.

Set of regular expressions A natural extension of the regular expression
search problem is that of searching for a set of regular expressions RE;,
RE,, ... , RE,. In principle, this can be converted into the basic single-
pattern problem by searching for RF; | REs | ... | RE,. However, many
of the algorithms presented do not work well with very large expressions.

One algorithm that is able to deal with large expressions is NFAMod-
ules, but its cost grows linearly with the size of the pattern, in our case,
with 7. Much better algorithms are MultiStringRE and MultiFactRE,
provided the expressions can be searched for efficiently by filtration algo-
rithms.

5.8 Building a parse tree

We show in this section how to parse a regular expression to obtain its parse
tree, which in general is not unique. In the tree, each leaf is labeled by a
character of XU {e} and each internal node by an operator in the set {|,-, *}.

The general approach is to consider a regular expression as a string gen-
erated by a grammar, and then use the classical Unix tools Lez and Yacc
or Gnu Flex and Bison to generate from the grammar the automaton that
recognizes the regular expression and transforms it into a tree. The theory
behind these tools can be found in books on compilers, such as [ASU86].

This general approach is valuable for large grammars, for instance, for
parsers of programming languages, and for very simple grammars that need
just lexical analyzers like Lez or Flez. The grammar for regular expressions is
too complex to be addressed by a lexical analyzer and too simple to deserve
a full bottom-up parser. The best approach is to build a simple parser by
hand, and this is what we do in Figure 5.27. It assumes that the regular
expression is well written and that it terminates with a special character ’$’.
It also assumes that the concatenation operator “” is implicit. Of course,
this simple parser has to be modified to handle various types of errors when
used in a real application, but this pseudo-code should be a useful starting
point, and enough for simple applications.

140 Regular expression matching

Parse(p = p1p2...Pm; last)

1 v 6

2 While piost # $ Do

3 If prast € X OR pros: = € Then /¥ normal character */

4. vy 4 Create a node with Prest

5. If v # 6 Then v «+ D (v, vr)

6 Else v + v,

7 last < last + 1

8. Else If piot = '|' Then /* union operator */
9. (vr,last) + Parse(p,last + 1)

10. veil] (v, u)

11, Else If pigst = '+ Then /* star operator */
12. R [ﬂ (v)

13. last + last + 1

14. Else If piost = ‘(' Then /* open parenthesis */

15. (vr, last) « Parse(p, last + 1)

16. last <+ last + 1

17. If v # 6 Then v « [-](v,vr)

18. Else v + vy

19. Else If piust = ') Then /* close parenthesis */
20. Return (v,last) =

21. End of if

22. End of while
23. Return (v,last)

Fig. 5.27. A basic recursive parser for a well-written regular expression. # is the

empty tree.

Instead of explaining in depth how this parser works, we show its behavior
on our regular expression (AT|GA) ((AGTAAA)*).

Parsing example We parse the regular expression (AT{GA) ((AGIAAA)x)
using Parse({ (AT|GA) ((AG|AAA) %) $,1). We number the recursive calls using

Parse!, Parse?,

same way.

1. Parse’((AT{GA) ((AGIAAR)*) , 1)
last! =1, v* =8,

we read | (| ATIGA) ((AGIAAR)©)$.

Line 15. We call:

and so on. The corresponding variables are marked the

2. Parse®((ATIGA) ((AGIA&AY*) |, 2)
last® =2, vt = 6,

we read ([A| TIGA) ((AGIAAR)*)S.
Line 4. v « ®

Line 6, v? « vZ.

Line 7. last® = 3. .

We return to the while loop of Parse?,
line 2.

5.8 Building o parse tree 141

. As Piast? # $7

we read (A[T] 168) ((AGIAAR)®)S.
Line 4. v2 « ®

Line 5. v? «
A ¥

Line 7. last® = 4.

. We enter line 8,

we read (AT [17 GA) ((AGIAAA)Y*)S.
Line 9. We call:

. Parse®((ATIGA) ((AGIARAY*) , 5)

last® =5, v =9,

we read (ATI[G] A) ((AGIAAR)#)S.
Line 4. v2 «+ ® '

Line 6. v° « vS.

Line 7. last® = 6.

We return to the while loop of Parse®,
line 2.

. As Dlastd :7é $1

we read (AT1G[A]) ((AGIAAR)I©)S.
Line 4. v} « ®

r
Line 5. v® «
© O

Line 7. last® = 7.

. We enter line 19,

we read (ATI1GA[) | ((AG1AAR)%)S.

Line 20. We quit the function Parse®.
We return (v°,7). ‘
Coming back to Parse® line 9,

vf(—& ,last? < 7.
G A

Line 10. v? <

o © ®

. We enter line 19,
we read again (ATIGA|) | ((AG1848)%)$.

Line 20. We quit the function Parse?.
We return (0%, 7).
Coming back to Parse’ line 15,

10.

11,

12.

13.

Uy

last' « 7.

Line 16. last® + 8.

Line 18. v! ¢ u].

We return to the while loop of Parse!,
line 2.

As Prast! # $7
we read (AT|GA) (AGIAAA) %) $.
Line 15. We call:

Parse’((AT]GA) ((AGIABR)*) , 9)

last? =9, 07 = 6.

As Piast? #: $,
we read (AT{GA)(AGIAAAY%)$.
Line 15. We call:)

Parse®((ATIGA) ((AGIAAAY*) , 10)
last® =10, v® = 8,

we read (ATIGA) (([A]G1a8AI*)$.
Line 4. v « &

Line 6. v° « v3.

Line 7. last® = 11.

We return to the while loop of Parse®,
line 2.

As plasﬁ“?é $7 .
we read (ATIGA) ((A |G| [ABR)®) 8.
Line 4. v + @

R‘
Line 5. v® «
@ ©

Line 7. last® = 12.

We enter line 8, ,
we read (ATIGA) (CAG [|] AALD#)$.
Line 9. We call:

142

14.

15.

16.

17.

Regular expression matching

Parse®((ATIGA) ((AG]AAR)*) | 13)
last? =13, v =8,

we read (ATIGA) ((AG| [4]A8)®)$.

Line 4. v% +— @

Line 6. v* + o2

Line 7. last* = 14.

We return to the while loop of Parse?,
line 2.

18. We enter line 19,
we read again (ATIGA) ((AG14A4)]| ©)8.

Line 20. We quit the function Parse®.
We return (v®, 16).
Coming back to Parse? line 15,

AS Drgstt # $,
we read (AT|GA) ((AGIA A)#)$.
Line 4. v} ®

’
Line 5. v* «
@ @

Line 7. last* = 15.
We return to the while loop of Parse?,
line 2.

last? + 16

Line 16. last® + 17.

Line 18. v? « 2.

We return to the while loop of Parse?,
line 2.

As Piasts # $, 19. As Dirast2 7é 8;
we read (AT|GA) ((AGIAA[A])*)S. we read (AT|GA) (CAGIAAR) [*])8.

Line 4. v? + ® ; O
O
(1
Line 5. v* + OO
Line12. v « (- ()
& @
Line 7. last* = 16. @& © O ®
@& ®

‘We enter line 19,
we read (ATIGA) ((AGIAAA *)$.

Line 20. We quit the function Parse®.
We return (v*,16).
Coming back to Parse® line 9,

()
v e ()
® ®

Line 13. last® « 18.

(&), last? « 16.

Line 10. v® «

5.8 Building o porse tree 143

20. We enter line 19, Line 17. ¢! «

we read (AT1GA) ((AGIAAR)*)]$.
Line 20. We quit the function Parse”.
We return (v?, 18).

Coming back to Parse’ line 15,

We return to the while loop of Parse’,

line 2.

la:'Stl 18 1 21. As Plastt = $, :

Line 16. last” + 19. We stop the function and return
(v',19).

6

Approximate matching

6.1 Basic concepts

Approximate string matching, also called “string matching allowing errors,”
is the problem of finding a pattern p in a text 7" when a limited number & of
differences is permitted between the pattern and its occurrences in the text.

From the many existing models defining a “difference,” we focus on the
most popular one, called Levenshtein distance or edit distance {Lev65]. Other
more complex models exist, especially in computational biology, but the
edit distance model has received the most attention and the most effective
algorithms have been developed for it. Some of these algorithms can be
extended to more complex models.

Under edit distance, one difference equals one edit operation: a character
insertion, deletion, or substitution. That is, the edit distance between two
strings z and y, ed(x,y), is the minimum number of edit operations required
to convert x into y, or vice versa. For example, ed(annual,annealing) =
4. The approximate string matching problem becomes that of finding all
occurrences in T of every p’ that satisfies ed(p,p’) < k. To ensure a linear
size output it is customary to report only the starting or ending positions
of the occurrences. .

Note that the problem only makes sense for 0 < & < m, because otherwise
every text substring of length m can be converted into p by substituting the
m characters. The case k = 0 corresponds to exact string matching. We
call @ = k/m the “error level.” It gives a measure of the “fraction” of the
pattern that can be altered.

We concentrate on algorithms that are the fastest in the cases that are
likely to be of use in some foreseeable application, particularly text retrieval
and computational biology. In particular, @ < 1/2 in most cases of interest.

We present four approaches. The first approach, which is also the oldest

145

146 Approzimate matching

and most flexible, adapts a dynamic programming algorithm that computes
edit distance. The second uses an automaton-based formulation of the prob-
lem and deals with the ways to simulate the automaton. The third, one of -

the most successful approaches, is based on the bit-parallel simulation of
other approaches. Finally, the fourth approach uses a simple necessary con-
dition to filter out large text areas and another algorithm to search the areas
that cannot be discarded. Filtration is the most successful approach for low
error levels.

6.2 Dynamic programming algorithms

The oldest solution to the problem relies on dynamic programming. Discov-
ered and rediscovered many times since the 1960s, the final search algorithm
is attributed to Sellers [Sel80]. Although the algorithm is not very efficient,
taking O(mn) time, it is among the most adaptable to more complex dis-
tance functions.

We first show how to compute the edit distance between two strings.
Later, we extend the algorithm to search for a pattern in a text allowing
errors. We then show how this algorithm can be made faster on average.
Finally, we discuss alternative algorithms based on dynamic programming.

6.2.1 Computing edit distance

We peed to compute ed(z,y). A matrix My |40, |y is filled, where M, ;
represents the minimum number of edit operations needed to match zy_; to
Y1..4, that is, M; ; = ed(21..4,y1..;)- This is computed as follows:

9,

Mo,o — ‘ 0 ‘
M;; + wmin(Mi-1 -1+ 6(zs,y5), Mi—1,j + L, My j—1+ 1)

where §(a,b) = 0 if a = b and 1 otherwise, and M is assumed to take the
value co when accessed outside its bounds. At the end, My 1 = ed(x,y).

The rationale of the formula is as follows. My is the edit distance be-
tween two empty strings. For two strings of length ¢ and j, we assume
inductively that all the edit distances between shorter strings have already
been computed, and try to convert z;.; into y1. ;. :

Consider the last characters z; and y;. If they are equal, we do not need
to consider them, just convert z1. ;1 into yi.. ;-1 at a cost M;_1,;-;. On
the other hand, if they are not equal, we must deal with them. Following
the three allowed operations, we can substitute x; by y; and convert zy ;-1
‘into y1..j—1 at a cost M;_1 1+ 1, delete z; and convert z1,_ ;-1 into y1..; at

6.2 Dynamic progremming olgorithms 147

a cost M;_y j+1, or insert y; at the end of z1..; and convert zy_; into y1.. 51
at a cost M; ;1 + 1. Note that the insertions in one string are equivalent to
deletions in the other.

Therefore, the algorithm is O(|z|ly]) time in the worst and average cases.
An alternative formulation that yields faster coding is as follows:

Mi’o £ Z', Moyj R] (61)
M 15 ife; =y;,
Mij { 1+ min{M;_1 -1, M1, M; ;1) otherwise
) 7 3 z IVEi 37

which is equivalent to the previous one because neighboring cells in M differ
at most by 1. Therefore, when &(z;,%;) = 0, we have that M;.y ;-1 cannot

be larger than M;_; +1or M; ;1 + 1
From the matrix it is possible to determine an optimal path, that is, a
minimum cost sequence of matrix cells that goes from cell My to Mz
Multiple paths may exist. Each path is related to an alignment, which ‘is
a mapping between the characters of z and y that shows how characters
should be matched, substituted, and deleted to make z and y equal. A
complete reference on alignments is [Gus97]. S ’
Figure 6.1 illustrates the algorithm to compute ed{annual, annealing).

a nneal ing

0 1 2 3 456 7289
all 61 2 3 4 5 6 7 8 ;
n|2 1 01 23 45 67 ammealins
n|3 2101 2 3 456 \\\\\\
ul4 3 2 11 2 3 45 6
al5 4 3 2 21 2 3 45 annual
16 5 4 3 3 2 12 3 4

Fig. 6.1. Example of the dynamic programming algorithm to compute the edit
distance between "annual® and "amnnealing". The path in bold yields the 01.11y
optimal alignment. On the right we show the alignment, where the dashed line
means a substitution.

6.2.2 Text searching
Searching a pattern p in a text 7' is basically similar to computing edit
distance, with = p and y = T. The only difference is that we must allow
an occurrence to begin at any text position. This is achieved by setting
My; =0forall y € 0...m. That is, the empty pattern occurs with zero
errors at any text position because it matches with a text substring of length
Zero.

148 Approzimate matching

The resulting algorithm needs O(mn) time. If we use a matrix M, it also
needs O(mn) space. However, we can work with just O(m) space. The
key observation is that to compute M, ; we only need the values of M, .
Therefore, instead of building the whole matrix M, we process T character
by character and maintain a column C of M, which is updated after reading
each new text position j to keep the invariant C; = M; ;.

The algorithm initializes its column Cj_,, with the values C; «+ ¢ and
processes the text character by character. At each new text character tj, its
column vector is updated to C_,.. The update formula is

/ Ci-1 ,
Ci - { 1+min(Ci~1,C’L1, @)

7

itpi=t;,
otherwise

and the text positions where Cy, < k are reported as ending positions of
occurrences. Observe that since C' = M. «,j—1 18 the old column and C! = M, g
is the new one, C;_; corresponds to My -1, C_ to M;_1; and C; to
M; ;1 in formula (6.1). ‘
Figure 6.2 applies this algorithm to search for the pattern "annual® in

the text "annealing" with at most & = 2 errors. In this case there are three
occurrences.

QU W N = OOl
R N~ O = OB
O k= O e OB
CO DD e =t B s OO
BN = DN - OO
DD GO DD ket D
D3 GO Lo DD DI = O ke
SO O BD e O
ok O R B = O0R

Fig. 6.2. Example of the dynamic programming algorithm to search for "annual®
in the text "annealing" with two errors. Each column of this matrix is a value

of the column C at some point in time. Bold entries indicate ending positions of
occurrences in the text.

6.2.3 Improving the average case

A simple twist to the dynamic programming algorithm [Ukk85], which re-
tains all its flexibility, takes O(kn) time on average [CL92, BYN99]. We call
it DP. The idea is that, since a pattern does not normally match in the
text, the values at each column read from top to bottom quickly reach k + 1
(i.e., mismatch), and that if a cell has a value larger than k + 1, the result
of the search does not depend on its exact value. A cell is called active if

6.2 Dynamic programming algorithms 149

its value is at most £. The algorithm keeps count of the last active cell and
avoids working on subsequent cells.

The last active cell must be recomputed for each new column. When
moving from one text position to the next, the last active cell can be incre-
mented by at most one since neighbors in M differ by at most one, so we
check in constant time whether we have activated the next cell. However, it
is also possible that the formerly last active cell becomes inactive now. In
this case we have to search upwards in the column for the new last active
cell. Although we can work O(m) at a given column, we cannot work more
than O(n) overall, because there are at most n increments of this value in
the whole process, and hence there are no more than n decrements. So, the
last active cell is maintained at O(1) worst-case amortized cost per column.

Figure 6.3 shows pseudo-code for this algorithm. Its basic idea of avoiding
to compute some inactive cells has been used extensively in other algorithms.
In particular, the bit-parallel algorithms that we cover later profit from this
technique to reduce their average search time. ’

DP (p=pip2...pm, T =titz...tn, k)

1 Preprocessing

2. Fori€0..mDo C; «¢

3. lact + k + 1 /* last active cell */

4. Searching

5. Forposel...n Do

6. pC +0,nC +0

7. Foriel.. .lact Do

8. If pi = tpos Then nC + pC

9. Else

10. If pC < nC Then nC + pC
11 If C; < nC Then nC + C;
12. nC «nC+1

13. End of if

14. pC «.C;, C; + nC

15. End of for

16. While Clat > &k Do lact < lact — 1
17. If lact = m Then report an occurrence at pos
18. Else lact « lact + 1

19. End of for

Fig. 6.3. An O(kn) expected time dynamic programming algorithm. Note that it
works with just one column vector.

150 Approzimate matching

6.2.4 Other algorithms based on dynamic programming

There are many other algorithms based on this scheme. From the practical
point of view, the most interesting is “column partitioning” [CL92], which
obtains O(kn/+/|X]) expected time [NavOla]. This is the fastest algorithm
based on dynamic programming. But it is hard to extend to more complex
distance functions, and in this case newer bit-parallel algorithms are faster.

From the theoretical point of view, some of the most important algorithms
are based on dynamic programming. If we are restricted to polynomial space
in m and k, then the best existing algorithms use this technique and achieve
O(kn) worst-case search time with O(m) extra space. The most competitive
in practice are [GP90, CL94], which are still slower than algorithms that do
not offer such a worst-case guarantee. When k is much smaller than m, an

O(n(1+&*/m)) time algorithm [CH98] becomes of interest. The worst-case-

lower bound for the problem when only polynomial space in m and &k can
be used is an open issue.- ‘

6.3 Algorithms based on automata

An alternative and very useful way to consider the approximate search prob-
lem is to model the search with a nondeterministic finite automaton (NFA).
This automaton, in its deterministic form, was proposed first in [Ukk85],
and later explicitly presented in [BY91, WM92b, BYN99].

Consider the NFA for & = 2 errors under edit distance shown in Fig-
ure 6.4. Every row denotes the number of errors seen. Every column rep-
resents matching a pattern prefix. Horizontal arrows represent matching a
character (i.e., if the pattern and text characters match, we advance in the
pattern and in the text). All the others increment the number of errors by
moving to the next row: Vertical arrows insert a character in the pattern
(we advance in the text but not in the pattern), solid diagonal arrows substi-
tute a character (we advance in the text and pattern), and dashed diagonal
arrows delete a character of the pattern (they are e-transitions, since we
advance in the pattern without advancing in the text). The initial self-loop
allows an occurrence to start anywhere in the text. The automaton signals
(the end of) an occurrence whenever a rightmost state is active.

It is not hard to see that once a state in the automaton is active, all
the states in the same column and higher numbered rows are active too.
Moreover, at a given text position, if we collect the smallest active rows
at each NFA column, we obtain the current vertical vector of the dynamic
programming matrix. For example, after reading the text "anneal", the

6.8 Algorithms based on automata 151

seventh column in Figure 6.2 shows that C = [0,1,1,2,3,2,1}. Compare it
with the least active row per NFA column in Figure 6.4.

O a n u u a i
= _—-_. {_ > > O no ervors
N T AR X \\ b)) ~ b R b \\\ b
z z z z \\ z z o
£ € € AN € €,
A LN noyg vy a
= —_— — feror -
‘N E ‘Nz AN z CONE
z z N z A z %
AN 3 g AN 3
a n oy n W\Y v a =’
gg W Re=N N A\ 2 emors

Fig. 6:.4. An NFA for approximate string matching of the pattern "annual" with
two errors. The shaded states are those active after reading the text “anneal™.

The original proposal of [Ukk85] was to make this automaton deterministic
using the classical algorithm to convert an NFA into a DFA. This way, O(n)
worst-case search time is obtained, which is optimal. The main problem
then becomes the construction and storage requirements of the DFA. An
upper bound to the number of states of the DFA is O(min(3™,m(2m|Z])*))
[Ukk85]). In practice, this automaton cannot be used for m > 20, and
nowadays it is not the best choice even for small m: Bit-parallel algorithms
are simpler and faster thanks to their higher locality of reference.

An alternative way to look at the DFA is to consider that each DFA state
is a possible column of the dynamic programming matrix, so the prepro-
cessing precomputes the transitions among columns for each possible input
character.

Later developments [WMMO96] based on the Four-Russians approach tack-
led the space and preprocessing cost problem by cutting columns into “re-
gions” and building a DFA of regions. Figure 6.5 shows a schematic view of
the automaton.

Given O(s) space, the algorithm obtains O(kn/logs) expected time and
O(mn/ logs) worst-case time. Although it is the fastest choice in practice
for long patterns and high error level (@ > 0.7), we do not include the
details of this algorithm because it is complicated and because it is not the
fastest in the most interesting cases: 0.7 is too high an error level for most
applications. :

Approzimate matching ’ 6.4 Bit-parallel algorithms 153

text position j from the current R; values is

¥ ¥t Ry + ((Ro<<1)]|0™ ') & Bltj]

R, « ((Ri<<1)&Bl]) | Rica | (Rim1 <<1) | (R <<1)
i . where B is the table from the Shift-And algorithm. We start the search
with R; = 0™7%1%, which is equivalent to C; = ¢ in the DP algorithm. As
. expected, Ry undergoes a simple Shift-And process, while the other rows
Fig. 6.5. On the left is the full DFA, where each column is a state. On the right receive ones (i.e., active states) from previous rows as well. The formula
is the Four-Russians version, where each region of a column is a state. The arrows for B! expresses horizontal, vertical, diagonal, and dashed diagonal arrows,

show dependencies between consecutive regions. .) Rk . .
respectively. Figure 6.6 gives pseudo-code for this algorithm.

6.4 Bit-parallel algorithms

Bit-parallelism has been heavily used for approximate searching, and many BPR (p=pipz. . pm; T=hte.. tn, k)

) .) 1. Preprocessing

of the best results are obtained using this approach. The results are most 2. For ¢ € & Do Blc] + 0™ o
useful for short patterns, and in many cases these are the patterns of in- j ; F}?}‘ j€1...m Do Blp;] « Blp;} | 0™ 10"
terest. In cases when the representation does not fit in a single computer . ear;‘o.:jn ig €0...k Do R; + 0™ 1¢
word, standard techniques permit the simulation of a virtual computer word 6. Forpos€1...n Do
formed from a number of physical words: Then, the techniques developed in 7 oldR <~ Ro 1 :

. . . 8. newR «— ((oldR << 1) | 0™7*1) & Bltpos]
Section 6.2.3 for the algorithm DP can be applied, so that only the computer 9. Ro +— newR
words holding “active” data are updated. ; o 10. Foric1l...k Do

Bit-parallel algorithms simulate “classical” algorithms. In approximate g Zle du}}%R:—R(,i(R}dé i<: Tlu)s 1ﬁCRB[tpos]) | oldR | ((oldR | newR) << 1)
searching we find some that parallelize the work of the NFA and others that 13. End of for
parallelize the work of the dynamic programming matrix. : ; ig B dlft'flz,U)R & 10™7' # 0™ Then report an occurrence at pos
. ia Of 1oy

6.4.1 Parallelizing the NFA fr‘llgst(jbi Ié{scs)vglv;lsiu }t)it-pa,rallel simulation of the NFA. The length of the pattern

If we consider the first row of Figure 6.4; we are left with an NFA for o

exact string matching, the same one that is simulated using the Shift-And The cost of this simulation is O(k[m/w]n) in the worst and average cases,

approach (Section 2.2.2). Different techniques have been proposed to extend which is O(kn) for patterns typical in text searching (i.e., m < w). Notice

this idea to the more general automaton. ' ‘ S that for short patterns this is competitive with the best worst-case algo-
‘ S ‘ rithms. As we see next, one can do much better, but this algorithm has

maximum flexibility when it comes to adapting it to more complex cases

6.4.1.1 Row-wise bit-parallelism such as wild cards or regular expression searching allowing errors.

The simplest technique [WM92b], which we call BPR, packs each row 7 of : : ;
the NFA in a different machine word R;, with each state represented by a Example of BPR We search for the string "annual” in the text "annea~
bif. For each new text character, all the transitions of the automaton are - ling" allowing k& = 2 errors. Note that, at any point, the bit representations
simulated using bit operations among the &£+ 1 bit masks. Notice that all of Ry, Ry, and Ry resemble the active states in the NFA of Figure 6.4,
k + 1 bit masks have the same structure, that is, the same bit is aligned to provided we read the states right to left and discard the first column of the
the same text position. The update formula to obtain the new R) values at NFA, which is never represented because it is known to be active all the

154 Approgimate matching 6.4 Bit-parallel algorithms 155

time. In particular, compare the bit map after reading the text "anneal!
with the active states of Figure 6.4. It is also interesting to compare the bit.

maps to the column values of Figure 6.2 to check that C; is the least active{
row at NFA column 1. k

time dependencies. That is, the current values of two rows or two columns
depend on each other and hence cannot be computed in parallel.

In [BYN9Y9] the bit-parallel formula for a diagonal-wise parallelization
was found. We call BPD the resulting algorithm. They pack the states of
FTO00T _ . the automaton along diagonals instead of rows or columus, running in the
100000 : 6. Readingl 100000 direction of the diagonal arrows. There are m — k + 1 complete diagonals,
000110) , z‘; : ?ggggg . which are numbered left to right from 0 to m — k. Let D; be the row
001000 Ry= 110111 . number of the first active state in diagonal ¢. All the subsequent states in

000000 _ . . .
The last bit of R; is set again, so we the diagonal are active because of the e-transitions. The new D] values after

Ry=000000 mark an occurrence. Note that the . . ‘s .

R =000001 position matches even in Ry, i.e., with - reading fext position j are

000111 Ry= 100111 :
000110 The last bit of R; is set, so we mark

an occurrence. Note that this occur- ' ; = i > D; ; =
ggg?%? rence is just a consequence of having g(é,c) min({k+1} U {r, r > D; AND piy14r=c })

001111 S;zﬁzh;‘gsxggﬁs’f S;feesgofso‘zz g:té’ﬁ:; which expresses the fact that from all active states at diagonal i, namely,
000110 of pattern letters are involved. ‘ r € {D;, D;+1, ..., k}, those that can follow a horizontal arrow (i.e.,
000100 Dit+i+r = ¢) move to diagonal i 4+ 1. We take the minimum over those r.
8(1)1 % i i . i 0001190 Another way to understand g is to note that an active state that crosses a
383 8 (1”1) horizontal edge has to propagate all the way down along the diagonal.

600000 000111 This process is simulated in [BYN99] by representing the D; values in
38(1)(1)8(1) . 600000 unary and using arithmetic operations on the bits to produce the desired
011111 ' 000000 ‘ propagation effect (in Section 4.4 a similar flooding problem is solved in de-~
010001 8 gg(l)(l} i tail). The update formula can be understood either numerically (operating
000001 on the D;) or logically (simulating the arrows of the automaton). A com-
010011 : puter word D holds m — k blocks, one per diagonal excluding Dy because
i 11 1. 111 it is known to be always active. From left to right, Dy to D,,_; are repre-
g‘chcii::;gt of Rs is set, so we mark an sented. Inside each block there are k + 2 bits. The rightmost bit is always
zero to avoid propagation of arithmetic operations to adjacent blocks, and
the other k + 1 bits are used to represent D; in unary: The leftmost D; bits
of block 4 are 1 and the others are 0. The typical B table is used, except
that its bits are reversed. A table BB is computed from B in order to align

the corresponding horizontal arrows to the arrangement made in D.
Figure 6.7 shows the algorithm. The representation does not include the
states to the right of the last full diagonal. As a result, some occurrences
are lost. However, those occurrences are uninteresting in most applications

since they are trivial extensions of occurrences already found, in the sense

R,=000011 k =1 errors. Dg «— min (D;+1, Diq+1, g(’i—l,tj)) (6.2)
1. Readinga 010001 . Readingi 000000 ; vs'fhere the first term represents the substituti.ons, the .secox‘lc.I term the inser-
000001 Ro= 000000 tions, and the last term the matches. Deletions are implicit since only the
000011 Ri= 000001 : lowest-row active state of each diagonal is represented. The main problem

is how to compute the function g, defined as

6.4.1.2 Diagonal-wise bit-parallelism

In light of the row-wise parallelization presented above, the classical dynamic
programming algorithm can be thought of as a column-wise parallelization
of the automaton where, as explained, each NFA column corresponds to
a cell in C' that stores the smallest active row at that column. Neither
algorithm is able to increase the parallelism even if all the NFA states fit
* in a computer word, because the e-transitions of the automaton cause zero-

156

that no new pattern characters match the text (such as the one found after.
processing "anneali® in the example of BPR). To ensure that those occur:
rences are consistently discarded, line 14 removes all the active states in the
last diagonal after an occurrence is reported. Hence the algorithm reports
any occurrence that ends with a text character matching the pattern. ‘

Line 11 updates D according to formula (6.2), by AND-ing four expressions,
an operation that corresponds to minimization in unary. The first expression
represents D; + 1, the second Dy + 1, the third g(i — 1,¢p4), and the last
cleans up separators. About the third expression, note that z holds the
states of the previous diagonal that arrive by horizontal transitions, and we
make the last zero flood the block to the right. |

Approximate matching

B
1
2
3
4.
5.
6
7
8
9
1
1

PD (p=pips...pm, T =tila.. . tn, k)

-

12,
13.
14,
15.
16.

Preprocessing
For c € ¥ Do Ble| « 1™ .
For j € 1...m Do Blp;] + Blp;] & 1™ 70177}
Force X Do
BBIc] + 0 se41(Bd], 0) 0 s (Ble], 1)
End of for
Searching
D 4~ (01F+1ym—k
Forpos€l...n Do
T (D >><k + 2)) i BB[tpos]
D+ ((D << 1) | (0FFi1)m—k)
& (D << (k+3)) | (0F+ipym—F-1g1k+1y
& (({(z+ @O 1)™ k) A z) >> 1) & (0181)ym—k
If D & om—F-DEFDg1gh = g(m=k(+2) Then
Report an occurrence at pos
D«D | 0(m~k—-1)(k+2)01k+1
End of if
End of for

0 sp+1{Bc,m —k — 1);

Fig. 6.7. Diagonal-wise bit-parallel simulation of the NFA. It requires that (m —
k)(k + 2) <w. The function s¢(D, j) extracts the j-th to the (j + £ ~ 1)-th bits of
D, that is, s¢(D, j) = (D >> j) & 0m~RE+D-£1¢ On the bottom we show how
the unary D; values are arranged in the mask D.

Dy D, Dy Dy
D= 0__ 10 el 1 ...
k+/ bits “elbin

A —

k-2 bits

: - [
k+1 bits k+J bits
o -)

k+2 birs”

k42 bits k+2 bits

im~k} (k+2) bits

6.4 Bit-parallel algorithms 157

The resulting algorithm is O(n) worst-case time and very fast in practice
if all the bits of the automaton fit in a computer word, while the row-wise
simulation remains O(kn). In general, it is O([k{m — k)/w]n) worst-case
time. It can be made O([k? /w)n) on average by updating only the computer
words holding active states, using an adaptation of the technique for active
cells presented for DP. The scheme can handle classes of characters, wild
cards, and different integral costs in the edit operations [BYN99], but it is

less flexible than row-wise simulation.

Example of BPD We search for the string "annual® in the text "annea-
ling" allowing k = 2 errors. This time the bit representation for D is harder
to relate visually to the NFA of Figure 6.4. The rule is to read full NFA
diagonals, excluding the first, and to map them to blocks. Each diagonal
must be read from top to bottom and its active states mapped to the zeros
of its block, read from right to left. ’ : ‘

a|101110
11011111
B = n|[111001
wil10111l
* 111111
D=01110111 01110111 4. Reading e
Table BB BB[e] 01110111 01110111
Ve - - ~ D= 001100010001 0111
al010100110111 0110}
1{0011 011101110111 5. Reading a
n{0111 011001000001 ‘
u}{01100101 00110111 ’ . BB} 0101 0011011101190
* {0111 01110111 0111 D= 00000011 00110001
' The highest bit of Dy—x = Da (third
bit read right to left in D) is zero, so
1. Reading a we mark an occurrence and clean the
last diagonal:
BBla) 0101 001101110110
2. Readingn 6. Reading 1
BBn|] 011101100100 0001 BB{1}] 0011 011101110111
D= 000100000111 0111 D= 00010111 00110011

The highest bit of Dy is zero again, so
we mark an occurrence and clean the
last diagonal:

3. Readingn

BB[n] 0111 011001000001
D= 00010001 00000111

D=0001011100110111

158 Approzimate matching

7. Reading i ‘8. Reading n

BBli] 0111 011101110111 BBn] 01110110 01000001

D= 001101110111 0111

D= 000101110111 0111

Unlike the classical algorithm, we do
not mark an occurrence here, because it

does not involve any new matching pat- . BBlg] 011101110111 0111

9. Reading g

tern character. This is a consequence =
of having cleaned the last diagonal in- D= 001101110111 0111
the previous step.

6.4.2 Parallelizing the DP matriz

A better way to parallelize the computation [Mye99] is to represent the dif-
ferences between consecutive rows or columns of the dynamic programming
matrix instead of the absolute values. Let us call

Dhij = M;—Mij1 € {~1,0,+1}
Mvj; = M;j—-M;_; € {-1,0,+1}
My = M;j—M; ;-1 € {0,1}

the horizontal, vertical, and diagonal differences among consecutive cells.
Their range of values comes from the properties of the dynamic programming
matrix.

We present a version [HyyO01] that differs slightly from that of [Mye99]:
Although both perform the same number of operations per text character,
the one we present is easier to understand.

Let us introduce the following boolean variables. The first four refer to
horizontal/vertical positive/negative differences and the last to the diagonal
difference being zero:

VEBj = Mvjy=+1 VN = Loy =—1
HPyj = Mhij=+1 =

Note that Ai)i,j = VPiJ — VNZ"J', Ahi,j = HPZ',J' - HNZ',]', and Mi’j =
1—-D0;,;. 1t is clear that these values completely define M, ; =35~ _, . Aw
The key idea is to notice some dependencies among the above values:

VR

o If HN;j, then A, j = —1. Therefore, the only possibility is that Av; j_1 =
+1 and hence Ad;; = 0, otherwise the A ranges of values would be vio-
lated. The last two conditions are equivalent to VP, ;_; AND DO0; ;. On
the other hand, if these two conditions hold, HN; ; holds.

6.4 Bit-parallel algorithms 159

e By symmetric arguments it can be seen that VN ; is logically equivalent
to HPi_l,j AND DOZ-,]-.

e If HP;; holds, then VP, ;_; cannot hold without violating the ranges of
the A values. So the choices for Av; ;1 are ~1 and 0. In the first case
we have VN, j_1, whereas in the second we have that neither V5 ; 4 nor
D0; ; hold. Moreover, this is a logical equivalence: If VIN; ;_1, then HPF; ;
has to hold; and if both VP, ;_; and D0;; are false, then HF;; has to
hold as well.

e Symmetrically, we can see that VP, ; is logically equivalent to HN; 1 ;
OR (NOT HP;_1; AND NOT D0, ;).

o Finally, D0;; can be true for three possible reasons, which correspond
to formula (6.1). First, it may bappen that F; = T;. Second, it may
be the case that M;; = 1+ M; ;1 = M;_ 1, which means HF; ; AND
V N; ;1. Third, it may occur that M;; =1+ M;_y; = M;_1 1, which
means VP, ; AND HN;_ ;. From these conditions we use only (P; = T})
OR VN;j_1 OR HN;_y ;. Note again that if any of these three conditions
hold, then D0; ; holds, so we have a logical equivalence.

Hence we have proved the following equivalences:

HN;; = VP -1 AND DO,

VNi,j = HPZ'-~1,j AND DOZ',J'

HP;; = VN;;_1 OrRNOT (VP ;1 OR DO0y;)
VP,; = HN;_i; OR NOT (HF,_;; OrR DO)
D()i,j = (H = T]) OR VNi,j_l OR HNi_l,j .

The algorithm traverses the text and, at each text position j, keeps track
of the five values above for every ¢. Since each value needs only one bit, we
keep bit masks HN, VN, HP, VP, and D0 and update them for every new
text character T read. Hence, for example, the i-th bit of the bit mask HN
will correspond to the value HN; ;. The index j — 1 refers to the previous
value of the bit mask (before processing T;), whereas j refers to the new
value, after processing Tj. :

Under this light, it is clear that we can first compute D0, then HN and
HP, and finally VN and VP. However, there is a circular dependency
regarding DO, ;; it depends on HN;_; ;, which in turn depends on D0;_ ;.
That is, current D0;; values depend on other current D0y ; values. This
corresponds, again, to the zero-time dependency problem and complicates
computing D0 in one shot. However, a solution exists.

160 Approzimate matching

Let us expand the formula for DO, ;:

DOi,j = (Pz = Tj) OR VNiyj._l OR (VPz‘—l,j—l AND DOi—l,j) ,

which has the form D; = X; or (Y- AND D;.;). Unrolling the first

values we get

D = X,

Dy Xy OR (Y7 AND X4)
Dy = X30R (Y2 AND Xg) OR (Y2 AND Y; AND Xl)
D; = OR'!_;(X, AND Y, AND Y;,{ AND ... AND Y;_;) .

Let s be such that Y, ...Y;_1 = 1 and Y,_; = 0. It should be clear that

D; will be activated if X, = 1 for some s < r < 4. In other words, D;

will be activated if there is a bit set in X in the area covered by the last
contiguous block of bits set in Y. If we compute (Y + (X & Y)), the result
is that every X, = 1 that is aligned to a Y, = 1 will propagate a change
until one position after the end of the block. This covers all the positions ¢
that should be set in D because of X, being aligned to a block of I’'s in Y.
If we compute (Y + (X & Y)) AY, the bits that changed will be on. Note
that, since there may be several X, bits under the same block of Y, all but
the first such r positions will remain unchanged and hence not marked by
the XOR operation. To fix this and to account for the case X; = 1, we ORr
the final result with X. An example is as follows:

Y = 00011111000011
X = 00001010000101

X&Y = 00001010000001
(Y+(X&Y)) = 00101001000100
(Y+(X&Y) AY = 00110110000111

DO = (Y+(X&Y) AY)|X 00111110000111

-Once the solution to D0 is obtained, the rest flows easily. Figure 6.8 gives
pseudo-code. The value err stores Cp, = My, ; explicitly and is updated
using HP,, j and HN,, ;. Note that the shifts correctly introduce zeros.

We call this algorithm BPM. It uses the bits of the computer word better
than the previous bit-parallel algorithms, with a worst case of O([m/w]n)
and an average case of O([k/w]|n), achieved by updating only the computer
words having “active” cells, as for DP. The update formula is a little more
complex than that of BPD and the algorithm is a bit slower, but it adapts
better to longer patterns because fewer computer words are needed. On the

6.4 Bit-parallel algorithms 161

BPM (p:plp2--~ng T =f1ts...1n, k-)

1 Preprocessing

2. Tor ¢ € £ Do B¢ «+ 0™ o
3. For j € 1...m Do Blp;] «+ Blp;] | 0777107
4. VP« 1™, VN + 0™

5. err < m

8. Searching

7. Forpos€1l...n Do

8. X 4~ Bltpos] | VN

9. , DO+ (VP +(X &VP)) A vP)| X
10. HN + VP & D0

1. ' HP + VN | ~ (VP | D0)

12. X+ HP<<1

13. VN« X & Do

4. VP« (HN << 1) | ~ (X | D0)

15, I HP & 107! # 0™ Thenerr < err+1
16. Else I HN & 10" # 0™ Thenerr <—err —1
17. If err < k Then report an occurrence at pos
18. End of for

Fig. 6.8. Bit-parallel simulation of the dynamic programming matrix. It requires
m< w. o

other hand, BPM is even less flexible than BPD when it comes to searching
for complex patterns or different distance functions.

Note that the algorithm can be adapted to compute edit distance simply
by adding | 0™~11” at the end of line 12 in Figure 6.8, since this time there
is a horizontal increment at row zero (not represented in the bit masks).

Example of BPM We search for the string "annual® in the text "anne-
aling" allowing k = 2 errors. The easiest way to understand what is going
on is to relate the bit masks to the A values and these in turn to those of
the dynamic programming matrix of Figure 6.2.

Tt is interesting to verify that err correctly maintains the value of the last
cell of the current column of the DP matrix. '

a[010001 1. Readinga 010001

17100000 Do= 111111
B={{n|000110 HN= 111111

w|001000 HP= 0000090

* 000000 VN= 000000
VN = 000000 VP= 111110
VP = 111111 err = 5
err = 6

4
}
|

Approzimate matching

Readingn 000110 6. Readingl 100000
D= 1111160 D= 110000
HN= 11111¢ HN= 100000
HP= 000001 HP= 011001
VN= 000010 VN= 110000
VP= 111101 VP= 001101
err = 4 : err = 1

Readingn 000110 We mark an occurrence since err < 2.

DO= 111110 ’
HN= 111100 ; 7. Readingi 000000
000010 110000
000100 ; 0006000
111001 1106010
3 100000
001011
000000 2
0060100 We mark an occurrence since err < 2.
0060000

060110 '
000100 ' 8. Readingn 000110

110011 DO0= 100110
3 HN= 000010
. - HP= 110000
010001 VN= 100000
110111 VP= 011101
110011 err = 3
001100 ’
010000 9. Readingg 000000
100110 D= 100000
2 . HN= 0600000
HP= 100010
VN= 000000
VP= 011011
err = 4

We mark an occurrence since err < 2.

6.5 Algorithms for fast filtering the text

The idea behind filtration algorithms is that it may be easier to tell that a
text position does not match than to tell that it does. So these algorithms
filter the text, discarding areas that cannot match. They are unable on their
own to tell that there is a match, so every filtration algorithm needs to be
coupled with a nonfiltration algorithm to check the nondiscarded text areas
for potential occurrences. v : ‘
Filtering algorithms only improve the average-case performance; and their
major attraction is the potential for algorithms that do not inspect every text
character. The performance of filtration algorithms is related to the amount
of text that they are able to discard, and it is very sensitive to the error
level. Most filters work very well on low error levels and poorly otherwise,

6.5 Algorithms for fast filtering the text 163

so when evaluating filtration algorithms it is important to consider not only
their time efficiency but also their tolerance to errors.

There are many filtration algorithms, among which we have selected the
two that are the best in most cases. The first, PEX, is the best when the
alphabet size is not too small, for example, on English text. The second
one, ABNDM, is the best on DNA and other small-alphabet texts.

6.5.1 Partitioning into k + 1 pieces

The idea behind this algorithm, which we call PEX, is that if a pattern is
cut into k+ 1 pieces, then at least one of the pieces must appear unchanged
in an approximate occurrence. This is evident, since k errors cannot alter
k + 1 pieces, at least under the edit distance model. Indeed, a more general
lemma turns out to be useful [Mye94, BYN99]:

Lemma 1 Let Occ match p with k errors, p=p'...p" be a concatenation
of subpatterns, and a; ...a; be nonnegative integers such that A =3%1_, a;.
Then, for some i € 1...j, Occ includes a substring that matches p* with
laik/A] errors.

To see this, note that if each p* matches only with 14 |a;k/A] errors, then
the whole p cannot match with less than k+1 errors. If weset A =7 =k+1
and a; = 1, then the simpler case shows up.

The proposal in [WM92b, BYN99, NBY99] is to split the pattern into
k 4+ 1 approximately equal length pieces, search the pieces in the text with
a multipattern search algorithm, and then check the neighborhood of their
occurrences. Some care has to be exercised to report the occurrences in
order and to avoid reporting the same occurrences more than once.

The “neighborhood” must be large enough to hold any occurrence. Oc-
currences are of length at most m + k under edit distance. If pattern piece
Diy..i, matches at text position t;. ;. (;,—), then the occurrence can start at
most i; — 1+ k positions before ¢; since the insertions can all occur at the
beginning of the occurrence, and it can finish at most m — 42 + k positions
after ¢;, (;,—,) since the insertions can all occur at the end of the occurrence.
Hence we need to check the text area T;_(;,_1)_g.. j+(m—i;)+k» Which is of
length m + 2k. Note that if two pieces happen to be equal, each occurrence
must trigger two verifications with different areas.

Two choices need to be made to obtain a concrete algorithm. The most
important one is which multipattern search algorithm to use (Chapter 3).
Multiple Shift-And is used in [WM92b], while [BYN99, NBY99] use Set
Horspool.

164 . Approzimate matching

The second choice is the verification algorithm. Although many authors
care little about this choice and resort to plain dynamic programming, a
faster technique such as BPM reduces the cost per verification from O(m?)
to O(m? [w). ‘

It is shown in [BYN99] that the cost of the multipattern search dominates
for < 1/(3log|y;ym). Above that error level, the cost of verifying candi-
date text positions starts to dominate and the filter efficiency deteriorates
abruptly. In the area where the filter behaves well, its search cost is about
O(kn logs, (m)/m).

Hierarchical verification To reduce unnecessary verification costs, “hier-
archical verification” is introduced in [NBY99]. The idea is that, since the
verification cost is quadratic in the pattern length, we pay too much verify-
ing the whole pattern each time a small piece matches. We could reject the
occurrence with a cheaper test for a shorter pattern piece.

Assume that the pattern is partitioned into 7 = k+1 = 2" pieces. Instead
of splitting it into k& + 1 pieces in one shot, we do it hierarchically. The
pattern is first split in half, each half to be searched with |k/2] errors due
to Lemma 1. The halves are then recursively split in two, until the number
of errors allowed becomes zero. :

Figure 6.9 illustrates the resulting tree. The leaves of this tree are the
pieces actually searched. When a leaf occurs in the text, instead of checking
the whole pattern as in the basic technique, the parent of the leaf is checked
(with k& = 1 errors in the example) in' a small area around the piece that
matched. The extension of this area is computed as before, according to
the piece length and the error level permitted. If that parent node is not
found, then the verification stops and the multipattern scanning resumes.
Otherwise the verification continues with the grandparent of the leaf and so
on, until the root (i.e., the whole pattern) is found.

aaabbbcceddd

- - k=3 errors
aaabbb | cccddd
e —— k=1 error
aa/a bbb cc/c ddd
| N A |

f L 1 k=0 errors

Fig. 6.9. The hierarchical verification method for a pattern split into four parts.
The boxes (leaves) are the elements that are really searched, and the root represents
the whole pattern. At least one pattern at each level must appear in any occurrence
of the complete pattern. I the bold box is found, all the bold lines may be verified.

6.5 Algorithms for fast filtering the text 165

This technique is correct because Lemma 1 applies to each level of the
tree: The grandparent cannot appear if none of its children appear, even if
a grandchild appeared.

Let us go back to Figure 6.9. If one searches for the pattern "aaabbbcc-
cddd" with three errors in the text "xxxbbbxxxxxx", and splits the pattern
into four pieces to be searched for without errors, then the piece "bbb" will
be found in the text. In the original approach, one would verify the complete
pattern with & = 3 errors in the text area, while with hierarchical verifica-
tion one checks only its parent "aaabbb” with one error and immediately
determines that there cannot be a complete occurrence. This latter check is
nmruch cheaper.

The analysis in [NBY99] shows that with hierarchical verification the area
of applicability of the algorithm grows to a < 1/ logz m.

When k + 1 is not a power of 2, it is advisable to keep the binary tree as
balanced as possible. For example, if £ + 1 = 3, then we split the pattern
into three pieces (leaves) of length |m/3|. In the binary tree, the left child
of the root has length 2|{m /3] and is searched with {2k/3| = 1 errors, while
the second child is the leftmost leaf with length |m/3] to be searched with
|k/3| = 0 errors. The node that is searched with one error is then split into
its two leaves. Pseudo-code for the algorithm that builds this tree is shown
in Figure 6.10 together with the resulting tree for the pattern "annual" with
k = 2. Pseudo-code for the PEX algorithm is shown in Figure 6.11.

Example of PEX We search for the string "annual” in the text "any_an-
nealing" allowing & = 2 errors. The corresponding partition is given in
Figure 6.10. As can be seen, the same occurrences can be found many
times.

1. Found [an] y.annealing

Search for "annu" with k=1 Search for "annual" with £ =2

inside nnealing inside an g

failed (so abort verification) found (report positions 9,10,11)
2. Found any. nealing 3. Found any_anne ing

Search for "annu" with k=1 Search for "annual® with k = 2

wside | say ting e an .

found (so go upper in the tree) found (report positions 9,10,11)

Approzimate matching

Create’I‘ree (p =pipis1...p;, k, myParent, idz, plen)

Create new node

from(node) + 4

to(node) « j

left + [(k+1)/2]

parent(node) « myParent

err(node) + k

If k = 0 Then lea fig, + node

Else
CreateTree(p;.. itieft-plen—1, [(left-k)/(k+1)], node, idz, plen)
CreateTree(piticsrpien..iy L{(k+1—left) k)/(k+1}],

node, idx + left, plen)

e R S R o ol e

End of if

annual (k=2)

PR
- N
- N

annu (k=1)

PRGN ~
-

~.

‘an k=0} nu (k=0) ._iL(kzO)

Fig. 6.10. Recursive algorithm to build the hierarchical verification tree on p;.. ;
with & errors. The other variables are myParent (parent of the node to be bmlt)
idz (next leaf index to assign), and plen (length of the pieces). At the bottom is
an example for the pattern "annual” with k£ = 2.

6.5.2 Approximate BNDM

Just as BDM/BNDM is better than Boyer-Moore algorithms for small
alphabet sizes, an extension of BNDM proposed in [NROO] works better
than PEX on DNA. We call it ABNDM.

The modification is to build an NFA to search the reversed pattern al-
lowing errors, modify it to match any pattern suffix, and apply essentially
BNDM (Section 2.4.2) using this automaton. Figure 6.12 shows the result-
ing automaton,

This automaton recognizes any reverse prefix of p allowing k errors. The
text window will be abandoned when no pattern factor matches with %
errors what was read. At that point, the window is shifted to the next
pattern prefix found with & errors (position last).

The occurrences must start exactly at the initial window position. This
makes it easier to report initial rather than final positions of the pattern
occurrences, although with some care we can report the sorted final positions
‘without repetitions.

6.5 Algorithms for fast filtering the text 167

PEX (p=pip2...Pm, T =tito.. by, k)

1 Preprocessing
2. CreateTree(p, k, 6, 0, |m/(k+1)])
3. Preprocess multipattern search for
{pfrom(node) «++ Bto(node)» node = leafs, i € {0 e k}}
4. Searching
5 For (pos, i) € output of multipattern search Do
6. node < leaf;
7. n + from(node)
8. node + parent(node)
9. cand <~ TRUE
10. While cand = TRUE AND mnode # 6 Do
11. p1 < pos — (in — from(node)) — err(node)
12. p2 pos + (to(node) —in+ 1) + err(node)
13. Verify text area Tp, .. p, for pattern piece pf1om(node) .to(node)
allowmg err{node) errors
14. If pattern piece was not found Then cand + FALSE
15. Else node + parent{node)
16. End of while
17. If cand = TRUE Then
“18. Report the positions where the whole p was found
- 18. End of if
20. End of for

Fig. 6.11. Filtration algorithm based on partitioning into exact searches. It as-
sumes that the multipattern search algorithm delivers its results in the form
(text_position, piece that_matched).

The window length is m —k, not m, to ensure that if there is an occurrence
starting at the window position then a factor of the pattern occurs in any
suffix of the window.

Reaching the beginning of the wmdow does not guarantee an occurrence,
however. Since the occurrences are of varying length, we only know that a
factor of the pattern has occurred with at most &k errors. In particular, if
no pattern prefiz has been read with & errors or less, no match can start at
the initial window position. On the other hand, if we found such a pattern
prefix, we would have to check the area by computing the edit distance from
the beginning of the window, reading at most m + & text characters.

This verification can be done with the algorithm to compute edit distance
given in Section 6.2.1. Another choice is to use BPR, where we remove the
initial self-loop in Figure 6.4. The formula is the same except for Ry, where
it becomes

Ry + (Ro<<1)& Blt]

The other bit-parallel algorithms are more complicated to adapt.

Approzimate maiching

0 errors

1 efros

2 errors

Fig. 6.12. The NFA to search for any reverse prefix of "annual" allowing two errors.
We show the active states after reading the text window "any.".

As with the original NFA of Figure 6.4, there are many ways to simulate
the automaton of Figure 6.12. Given that this algorithm works well for
small k values, using row-wise parallelization is a good choice. In particular,
specializing the code for constant & values is a good idea. The only change
is that we have to initialize the automaton with all the states active and
remove the self-loop.

Other schemes, such as BPD and BPM, are more complicated to use.
BPD needs more bits than for searching, because the whole automaton
needs to be represented, not just the full diagonals. In principle (m + &k +
2)(k + 2) bits are necessary. BPM was not designed to tell whether the au-
tomaton has any active state (there is, however, recent work on this [HNO1]).
This is the first example where the flexibility of BPR pays off.

Figure 6.13 shows the algorithm. We initialize it after reading the first
character of the window.

The algorithm works well for small alphabets and short patterns; it needs
m < w because of bit-parallelism. With longer patterns it is possible to
use more computer words, but the results quickly deteriorate because the
trick of only updating the computer words holding active states does not
work well. The reason is that, since we initialize the NFA with all the
states activated, the active states tend to be distributed uniformly over the
whole pattern. On the other hand, making the automaton deterministic
as with BDM generates an exponential number of states, just as the DFA
construction reviewed in Section 6.3.

6.5 Algorithms for fast filtering the text 169

ABNDM (pzplpz‘..pm, T =tita...tn, k)

1. Preprocessing
2. For ¢ € & Do Bc] + 0™ ‘ ‘
3. For j € 1...m Do Blp;] + Blp;} | ¢/ 110"~
4. Searching
5. pos < 0
6. While pos < n— (m —k) Do
7. jem-k—1last +m—k-1
8. Ry + B[tpos—i-m-—k}
9. newR « 1™
10. Foriel...k Do R < newR
1. While newR # 0™ AND j# 0 Do
12. oldR + Ro
13. newR + (oldR << 1) & Bltpos+;]
14. Rp + newR
15. Foritel...k Do
16. newR + ((R; << 1) & Bltpos+;])
| oldR | ((oldR | newR) << 1)
17. oldR < R;, R; + newR .
18. End of for :
19. jej—1
20. If newR & 10™™* # 0™ Then /* prefix recognized */
21. If j > 0 Then last + j .
22. Else check a possible occurrence starting at pos + 1
23. ' End of if
24. End of while
25. pos + pos + last
26. . End of while

Fig. 6.13. The éxtension of BNDM to approximate searching. It assumes m—k& >
1.

Example of ABNDM We search for the string "annual® in the text
“any annealing" allowing k = 1 errors. We have reduced the error level
because k = 2 is too high to be illustrative.

a|100010 Reading . 000000

1/000001 Ro= 000000

B=¢|n|011000 Ri= 100110
u|000100 The last bit of R is set, so last + 3.

* 1000000

Readingy 0000060

Roy= 000000

. Ri= 600000
1. nnealing The automaton runs out of active
Readinga 100010 gtates, 50 we shift the window by last =

Ry= 100010
Ry= 111111

last «— 4.

170 Approzimate matching

. Readingn 011000

2. 1i g
anYa ng Ro= 000000
Readinge 0060000 Ri= 001000

Hy= 000000 .
Ri= 111111 Readmgn 011000

= ~FRo= 000000
last 4. Ri= 010000

Readingn 011000 . Readinga 100010
Ro= 000000 Ro= 000000
Ri= 011000 : Ri= 100000

Readi 0110600
2 Eog: 000000 ~ compute edit distance between the pat-

- tern and prefixes of the text "anneali”.
Ri= 010000 Since we find a match (k < 1) against
Readinga 100010 the prefix "anneal", we report the text
Ry= 000000 position 5.
Ri= 100000 We shift the window by last = 3.

The last bit of R; is set, so last + 1.
. any.ann -ealin
Reading . 000000 . Y . -g
Ro= 000000 Readingn 011000

) Ri= 111111

last < 4.

The automaton rumns out of active
states, so we shift by last = 1.

Readingi 000000
. any. [annea| ling Rog= 000000
Readinga 100010 Hi= 111000
Ro= 100010 The last bit of R; is set, so last « 3.
Ri= 111111
last < 4. Readingl 0600000
Ro= 000000
Readinge 000000 Ba= 000000
Ro= 000000 The automaton runs out of active
Ri= 100110 states, so we shift by last = 3.
The last bit of Ry is set, so last < 3. '

Since the window falls out of the text,
we stop.

6.5.3 Other fillration algorithms

There are many proposals for filtration. In particular, we have left out
some algorithms that are slightly faster than PEX and ABNDM for a few
(m,k,|Z|) combinations [TU93, JTU96, BYN99, CL94, ST95]. In general,
however, the differences in performance do not justify the programming
effort.

There exist filiration algorithms that are optimal on average. It was
proved in [CM94] that a lower bound for the expected time of approximate
searching is O((k +logjyy m)n/m). In the same paper, a filtration algorithm

The last bit of R; isset and j = 0, so we -

6.6 Multipattern approximaote searching 171

with that complexity is obtained. The complexity is valid for o < 1—e¢/ \/li—] ,
a limit shown impossible to improve [BYN99] since at that point there are
t00 many real occurrences in the text. Although it is optimal in theory,
the algorithm is not fast in practice. Whether a practical algorithm with
optimal complexity exists is still an open issue.

On the other hand, most filters achieve O(klogysi(m)n/m) time for a =
O(1/ logjpym). The central issue is that, in order to break this barrier, it
seems necessary to reduce the problem to pieces that are searched with fewer
errors instead of with zero errors. This is precisely what is done in [CM94],
as well as in other filters [BYN99] that reach the limit o < 1 —e/+/[Z[. This
last technique does not skip text characters, but it is a reasonable alternative
in practice for medium error levels.

6.6 Multipattern approximate searching

A natural extension to the approximate search problem is that of searching
multiple patterns simultaneously. Not many algorithms have been proposed
for this, and all of them are filters that lose efficiency for high enough error
levels.

6.6.1 A hashing based algorithm for one error

A good solution for k¥ = 1 proposed in [MM96], which we call MultiHash,
is based on the observation that if p matches p’ with one error, then there
are m — 1 characters that match. The idea is to obtain m strings from p,
which we call “signatures,” by removing one character at a time, that is,

{p2ps...Pm, P1P3.. Pm, P1P2P4- - Pm; ---5 PIP2...Pm-1}. We define the
j-th signature of a string z of length m as

S;I;’j =122+ Xj-1Tj41 .- - Tm

For example, for the pattern p ="annual" the signatures are S,; =
"nnual", Spo = Sp3 = “"anual", Sy4 = “"annal", §,5 = “annul", and
Sp,6 = "annua”.

If we search for r patterns, then we obtain m signatures from each, for a
total of rm signatures. All the patterns have to be the same length. If this
is not the case, they are truncated to the length of the shortest pattern.

Those rm signatures are stored in a hash table, which will be used for
exact searching. To search the text, all m-length windows ¢;¢;11 ... tixtm—1
are considered. :

172 Approzimate matching

For each such window, all m signatures are obtained: #;10%i43 ... %ipm—1,
tiv1tirs . tivm—1y -«-y bitifize ... tirm—2. We abreviate the notation and

call 8 = S4. tipm-1,j- Bach such signature is searched for in the hash table
and, if it is found, an occurrence is reported. :
We now show that the method is correct. I p and a text occurrence
p' match with one substitution error, so that pips...pj—10Dj41.: . Pm =
Pyph - P ybpl .y .. P, then p' and p are equal after removing @ and b
and hence the occurrence will be found because the j-th signatures of p
and the text window are the same. If they match with an insertion in p/,
PIP2 -+ - Pj=1PPj+1- - Pm = P10y - P _1P5bP 4y - .p,,_y, then since the text
windows are of length m there will be a window = = piph...p}_Pip).q ...

P, _1¢, and the signatures Sg m = Sp j+1 match. Finally, p-and p’ may match
f

after a deletion in p', pip2...Pj—1PPj41 .- -Pm = p’lp'2 p;-lpgﬂ...pm
pm +1- In this case the text window of interest is z = plpz p;-wlpgp;-_ﬂ .
Pl since Sz i = Spm : :

The way to compute the hash function is important. A formula like

h{zy...&m-1) = Z z; @' mod s

for relative primes (d,), as used in [KR87], is known to distribute the strings
fairly uniformly in a table H[0...s — 1]. Moreover, it permits computing
the hash value of each signature of the new window in O(1) time using
those of the previous window. Say that the new window is #;41t;42 . . - tipm.
Then, its j-th signature is Sjy1; = tigativa ... tigj—1tirit1 - - - titm, which
is obtained from the (j + 1)-th signature of the previous region S, j41 =
Litivt - tigj—1tivjt1 .. . ti+m—1 by the formula 5; j11ti4m = tiSi—{—l,j- Hence,
R(Siv15) = ((h(Sij41) = ti)/d+ tiemd™ ?) mod s, which can be computed
in constant time. ‘

Since the hash values can be computed in constant time and we have to
perform m searches per text window, the search time is O{mn), independent
of the number of patterns. We are not accounting for the collision problem
in the hashing scheme. On average, the search time remains constant if the
size of the hash table is proportional to the number of signatures inserted.
Hence the method takes on average O(mn) time and O(rm) space.

The scheme works well in practice even for thousands of patterns. In
this respect the method is-unbeatable. On the other hand, it is costly to
extend to more than one error. For k errors we should consider the O(m*)
alternatives of removing & characters from every pattern and every text
window, for a total average cost of O(m®n) time and O(m*r) space.

6.6 Multipattern approzimate searching 173

Figure 6.14 shows the algorithm. At any point in the execution it holds
h; = h{Spos,j). The time of the preprocessing and the initial filling of h can
be reduced by noticing that S, ;41 = (Sz; + (75 - xj+1)dj) mod s. Hence
the algorithm takes time O(rm + mn) plus collisions.

MultiHash (P = {p*, p?, ..., p"}, T =titz.. . to, k=1)

1. Preprocessing

2. H + empty hash table

3. Foriel...r Do

4, For j € 1...m Do insert (S, ;,4) in H[h(S,: ;)]
5. Searching

6. Forjel...m—1Do hj + h{Si;)

7. Forposel..n—m+1Do

8. oldhy + h

9. Forjel...m Do

10. For (:L t) € H[h;] Do

11. If & = S,05,; Then report pattern p* at pos
12. End of for

13. hi < {((hj+1 —tpos)/d+tpos+mdm %} mod s
14. End of for

15. hm < oldhy

16. End of for

Fig. 6.14. Hashing-based scheme to search for multiple patterns with one error. We
assume that H is a hash table where we insert pairs of the form {(key,value) and
then retrieve the set of pairs associated with a given cell. We also assume that ¢,41
can be accessed, although its value is irrelevant.

6.6.2 Partitioning into k + 1 pieces

The algorithm PEX described in Section 6.5.1 is easily extended to multiple
patterns [BYN97]. We call it MultiPEX. Given r patterns, we split each
pattern into &k + 1 pieces. Then we proceed exactly as before: We perform a
multipattern exact search for all those r(k+ 1) pieces (Chapter 3), and each
time a piece is found we check the corresponding pattern in the candidate
text area. If a piece belongs to more than one pattern, then all the owners
have to be checked. Hierarchical verification can be used as well. -

The algorithm performs well under a wide range of cases. It is shown in
[BYNY7] that it can be applied whenever basic PEX can be applied, that
is, @ < 1/ logysy m. The code is basically the same as that of Figure 6.11.

Approzimate maiching

6.6.3 Superimposed automaia

A third idea, which we call MualtiBP, is based on the NFA of Figure 6.4.
Given r patterns of the same length to be searched for with & errors, we build
the NFA for each of them and then we superimpose their automata [BYN97].
Superimposition means that the j-th horizontal arrow can be crossed with
the j-th character of any pattern. Figure 6.15 shows an example with the
patterns "annual" and "binary".

nO eIrors

> @ 2 esrors

Fig. 6.15. An NFA for approximate string matching of the patterns "annuzal® and
"binary" with two errors. The shaded states are those that are active after reading
the text "binual".

In particular we are interested in a bit-parallel simulation of the superim-
posed NFA. Let B;[c] be the bit-parallel table for the i-th pattern. Then we
build a new table B, where

Bl = Bild | Bafe] | ... | Brld

and apply any of the algorithms suitable for single patterns, such as BPR,
BPD, BPM, or ABNDM.

The result is equivalent to searching for a single pattern with classes of
characters: We convert the search for {p', p?, ..., p"} into the search for

. |
{p1,p%,- .01} {p3, 05, 05} . {PEopE, D)

So it is not really necessary to use NFAs: Any bit-parallel algorithm can
be used, in particular BPM.

Of course this is only a filter: If we search for "annual" and "binary",
then "binual" will be found with zero errors. Each time our relaxed search
mechanism reports a match we have to check the area for all the patterns
involved. ’

6.7 Searching for extended strings and regular expressions 175

A new hierarchical verification mechanism is advisable here. If we have
superimposed the patterns {p', p?, p®, p*} and found a possible occurrence,
then we can check for {p', p?} and {p*, p'} instead of checking for all four
patterns. In many cases we will avoid performing r checks just by testing
two superimposed sets. If, say, the superimposed set {p*, p?} matches, then
we have to check for p! and p? separately.

Compared to PEX (Section 6.5.1), this hierarchical verification mecha-
nism is top-down rather than bottom-up. If we find the superimposition
of {pt,...,p"}, then we recursively check the relevant text area for the two
superimposed sets {p',...,pl"/4} and {p'*U"/2 .. p"}. Of course all the
2r —1 possible superimpositions are precomputed. The process finishes when
we do not find the pattern set in the area or when a set of just one pattern
is found. ;

As we superimpose more patterns, it becomes easier to cross the horizon-
tal arrows. Indeed, the probability of crossing raises from 1/|X| to about
r/|X]. Therefore, it is not advisable to superimpose too many patterns.
The optimal number of patterns to superimpose is shown in [BYN97] to be
r' = |B](1 — «)?. If there are more patterns, one should split them into
groups of 7’ patterns and search each group separately.

Figure 6.16 shows the preprocessing and Figure 6.17 gives search pseudo-
code for this algorithm. The code is independent of how we simulate the
bit-parallel search. Our recommendation is to use BPD if the patterns fit
in a computer word, and BPM otherwise. We assume that all the prepro-
cessing information is stored in an object B and that “joining” two such
objects produces a new one that reflects their superimposition. For exam-
ple, “joining” tables By and By into table B (in line 10 of CreateSuperp)
is translated, for BPR, ABNDM, and BPM, into

For c € ¥ Do Bc] + Bilc] | B[]
BPD also needs to reflect these changes in table BB.

6.7 Searching for extended strings and regular expressions

Sometimes one would like to search for complex patterns allowing errors.
There are three classes of algorithms addressing this issue: One extends
clagsical dynamic programming for simple strings to regular expressions, a
second is based on a Four-Russians approach, and the third uses bit-parallel-
ism. We explain- all three approaches but concentrate on bit-parallelism
because it is simpler and yields the best results in most cases.

Since classes of characters are trivially solved by either approach, we focus

176 Approzimate matching

CreateSuperp (p, ..., ')
Create new node
Ifi = j Then
B(node) « preprocess single pattern p’
idz(node) + ¢
left(node) + 8
right(node) « 6
Else
left(node) + CreateSuperp(p pt+ad/zly
9. right(node) CreateSupezrp(pl“"HH”’)/2J .p)
10. B(node) + join B(left(node)) and B(right(node))
11. End of if
- 12. Return node

NSO Wb

Fig. 6.16. Preprocessing for hlerarchlcal verzﬁcatlon of the superimposed search for
multiple patterns.

" Verify (node, from, to)

1. B ¢ B(node)

2. For pos € occurrences reported with B in Tfrom...c0 Do
3. If left(node) = § Then report p'@®("°4) at pos
4, Else

5. Verify (left(node), pos — m — k + 1, pos)

6. Verify(right(node), pos — m — k + 1, pos)
7. End of if

8. End of for

MultiBP (P = {p', p*, ..., "}, T:tltz...tn, k)

9. Preprocessing :

10. tree + CreateSuperp(p’...p")

11. Searching

12. Verify(tree, 1,n)

Fig. 6.17. Superimposition scheme to search for multiple patterns with errors.

on more complex extensions such as gaps, optional, and repeatable charac-
ters, and regular expressions.

6.7.1 A dynamic programming based approach

This is the oldest solution to the problem [MMB89], and a beautiful yet com-
plicated one. To understand it we need to come back to the basic dynamic
programming algorithm (Section 6.2).

Consider the graph of Figure 6.18. Each node corresponds to a cell of

~

6.7 Searching for extended strings-and regulor expressions 177

the dynamic programming matrix of Figure 6.1. The arrows between nodes
represent the cost of insertion in the pattern (horizontal), deletion in the
pattern (vertical), or matching/substitution (diagonal) among neighboring
cells. The cost of the diagonal arrows is 0 or 1, depending on whether the
corresponding characters are equal (match) or different (substitution).

Flg 6.18. Convextmg the edit distance problem into a shortest path problem Bold
arrows show the Optlmum path of cost 4.

The edit distance problem can be converted into the problem of finding
a shortest path from the upper left to the lower right node. If we are
interested in approximate searching rather than in computing edit distance,
then we assign zero cost to the horizontal arrows of the first row and consider
minimum distances to every node of the last row.

Since the graph is acyclic; the optimum path can be computed in O(mn)
time. This is just another view of the classical dynamic programming algo-
rithm, but this view is more flexible and can be extended to more complex
patterns. In -the simplest case, the pattern is represented by the vertical
columns of nodes of the graph.. ;

Figure 6.19 shows a graph over the text "baa", where each “vertical” row
of nodes has been replaced by the NFA of the regular expression "(alb)a*"
(Thompson’s construction; see Section 5.2.1). It can be seen that in this case
the distance is zero- (i.e., the regular expression matches the text exactly),
and that the best path is achieved thanks to an-e-transition.

Approzimate maotching

Thompson’s construction R A simplification
€

Fig. 6.19. The graph for the regular expression " (a{b)a%" on the text "baa". Bold
arrows show an optimal path, of cost zero.

The idea of the shortest path can still be applied quite easily if the graph
is acyclic, that is, if the regular expression does not contain the “+” or
the “+” operator. On acyclic regular expressions we can find a topological
order to evaluate the graph so as to find the shortest paths in overall time
O{mmn). This requires Thompson’s guarantee that there are O(m) edges on
an automaton of m nodes.

Cycles in the NFA pose a problem because no suitable order can be found.
The problem appears when we combine cycles with deletion (vertical) ar-
rows, because a deletion can propagate through a cycle and influence the
departing node. One of the most important results of [MM89] is that those
“back edges” coming from the “+” or “4" operators can be ignored in a first
pass, and then a second pass consideritig the deletion arrows is enough to
obtain the correct result. For more details we refer the reader to [MM89).

6.7.2 A Four-Russians approach

We have already seen Four-Russians approaches that deal with regular ex-
pression searching without errors (Section 5.3.3) [Mye92] and with simple
string matching allowing errors (Section 6.3) [WMM96]. Both methods ob-
tain O(mn/ log s) worst-case time provided O(s) space is available, and the
second method obtains O(kn/log s) average time with the technique of Sec-
tion 6.2.3. '

Both methods are based on similar ideas: An NFA of O(m) states is split
into 7 “regions” of m/r states each. For simple patterns [WMMO96] a region
is a contiguous pattern substring, while for regular expressions [Mye92] it is

6.7 Searching for extended strings and regular expressions 179

some subset of the NFA states. Each region can be represented using O(m/r)
bits: For approximate searching of simple patterns we need 2m/r bits since
each cell differs from the previous one by —1, 0, or +1, and hence two bits
are enough to represent its value; for exact regular expression searching one
bit per state (active or inactive) is enough.

A deterministic automaton, that is, a table storing all the outputs, is

precomputed for each region, requiring 2°™/") space per region. A non-

deterministic automaton of regions simulates the original NFA arrows that
connect different regions. Those arrows are simulated one by one. Either for
simple patterns (where there are three arrows leading to each state; recall
Figure 6.5) or for regular expressions (where regions are properly chosen
and Thompson’s construction guarantees O(m) edges), there are O(r) edges
across modules. They have to be updated one by one, so the time is O(rn).
If we have s = O(r)290™/") gpace, then we have O(mn/log s) time.

These ideas can be extended to the more general case of approximate
searching for regular expressions [WMM95]. The idea is identical to that
of exact searching, except that the states of the NFA are not just active or
inactive, but store the minimum error level necessary to make each state
active. Since we search with k errors, the value k + 1 is used to denote any
value larger than k. So for each state we need to store a number in the
range 0...% + 1, and therefore a deterministic automaton on m/r states
needs O((k + 2)™/") space. Hence, given O(s) space, the algorithm obtains
O(mn/ logy, s) time.

When faced with approximate searching, a new problem appears that does
not exist with exact searching, namely, the problem of dependencies derived
from e-transitions in the regular expression. Just as in Section 6.7.1, a two-
sweep algorithm guarantees that all the arrows are considered correctly.

A related work [Mye96] considers “spacers,” which are what we have called
“gaps” on PROSITE expressions {Section 4.3), except that a spacer can have
a negative length. This means that a piece of the regular expression may
overlap approximately with the next one in the occurrence. The idea is
to search for one of the regular expressions and use its adjacent spacers
to define the areas where its neighbor expressions should be searched for.
The occurrence is extended until the complete pattern is found. The paper
shows an optimal search order that considers the length of the spacers and
the probability of matching the regular expressions.

The same work shows that if regular expressions are restricted to “network
expressions,” that is, no “¥” or “+” is permitted, then it is possible to
define the regions in increasing distance from the initial state and to apply

180

Approzimate matching

a technique similar to that of bectxon 6.2.3 to obtain an O(kn/log, +23
average time algorithm. :

Note that positive-length gaps can be handled by copverting them into
regular expressions, but the resulting DFAs are unnecessarily large. -

S N

In general, the Four-Russians approach gives the best results for large
regular expressions, but they are difficult to implement. ‘A simpler approach

that works well on reasonable-sized patterns is presented next.

6.7.3 A bit-parallél dpprbach

Extendmg the bit-parallel algorithms we have seen in order to handle errors
is quite straightforward [WM92b, Nav01b]. '

If we want to permit wild cards, then only BPR and BPD are able to

handle them efficiently. And only BPR is flexible enough to handle all the
extensions we are interested in. This is the algorithm we consider now. -

Let us go back to Figure 6.4. Each row of the NFA is a replica of the
nondeterministic automaton that searches for a single pattern. The replicas
are linked‘together using the rule: “Vertical” arrows link the same states
from row ¢ to row % + 1; while “dxagonal’ arrows, either dashed or not, link
each state s at row 4 to the states, in row ¢ + 1, that can be reached from s
in one transition (the “next” states).

This idea can be generalized to more complex automata [WM92b]. In
particular, if we replace each row by the specialized bit-parallel automata
developed in Chapters 4 and 5, the result is an NFA that is able to search
for the corresponding extended pattern or regular expression with k errors.
Moreover, this automaton can be searched ina “forward” manner as in Sec-
tion 6.4.1 [WM92b] or in a “backward” manner as in Section 6.5.2 [Nav01b].
The only change with respect to the algorithms presented in this chapter is
the bit-parallel simulation of the automata; the general mechanism is the
same. Figure 6.20 shows an example for a regular expression.

To implement the “diagonal™ transitions, we compute a table Ty, which
for each state set D gives the bit mask of all the states reachable from D in
one step. We have already built this table for regular expression searching
(Section 5.4.2). For simple patterns it is simply Ty[D] = (D << 1).

- Assume that 1 represents active and 0 inactive. Let f(c, D) be the pattern-
type-dependent update function used to search without errors without the
- self-loop, and fo(c, D) with the self-loop. -

6.8 Experimental map 181

0 errors

Fig. 6.20. Glushkov’s NFAs for the regular expression "abcd(dle) (elf)de"
searched with two insertions, deletions, or substitutions. To simplify the figure,
the dashed lines represent deletions and substitutions (i.e., they move by E u{el),
while the vertical lines represent insertions (i.e., they move by X).

For example, for simple patterns, f corresponds to Shift-And (Sec-
tion 2.2.2) and we have

fle,D) = (D<<1)& Bl
fole, D) = ((D<<1)|0™7'1) & B

Note that it holds Ty[D] = |cex f(c, D).
Now, to update the rows after reading text character t,,s, we use

R6 - fo(tpos Ro)
Fori€l...kDo R} < [(tpos, Ri) | Rioy | TulRio1 | R}_y]

The formula can be plugged into the BPR and ABNDM algorithms.

It is also possible to deal with very limited cases of multipattern extended
searches allowing errors by combining BPR or ABNDM with the multi-
pattern technique explained in Section 4.6.

6.8 Experimental map

We now present a map- of the most efficient approximate string matching
algorithms, for single and multiple strings, leaving aside extended patterns
and regular expressions.

There exist about 40 algorithms for approximate string searching. The
best choices, however, are just a handful of them in most cases. We are

182 Approzimate matching

leaving aside algorithms that happen to be the best by a slight margin in a
few cases in order to present a reasonably simple recommendation.

To give an idea of the areas where each algorithm dominates, Figure 6.21
shows the cases of English text and DNA. Since every filtration algorithm
needs a nonfiltration algorithm for verification, we have presented the non-
filtration algorithms and superimposed in gray the area where the filters
dominate. Therefore, in the grayed area the best choice is to use the cor-
responding filter with the dominating nonfilter as its verification engine. In
the nongrayed area it is better to use directly the dominating nonfiltering
algorithm.

BABNDM

m

10 30 50 70 100

Fig. 6.21. The areas where each single pattern matching algorithm is best. Areas
for filtering algorithms are gray. English text is on top and DNA on the bottom.
The figures correspond to a word size of w = 32 bits. For w = 64 bits, the areas of
ABNDM and BPD would grow on the m-axis.

Figure 6.22 shows the case of multipattern searching. On English text,
MultiPEX is the best algorithm for a < 0.3, MultiBP for 0.3 < o <
0.4; and for higher error levels no algorithm is known that improves over
sequentially searching all r patterns. MultiHash is better for £ = 1 and
a large number of patterns. For longer computer word sizes the area of
MultiBP would grow to the right along the m-axis.

6.9 Other algorithms and references 183

On DNA there are few choices: For k£ = 1 MultiHash is in general the
best option, while for £ > 1 and low « value MultiPEX is of some interest.
MultiBP, on the other hand, is in general not applicable because |3| = 4
and hence superimposing as few as 4 patterns means matching almost every
text position.

NONE USEFUL NONE USEFUL
04 04
o & MultiBP

MultiBP

0.3
0.3
MultPEX MultiPEX
- MultiHash (k=1) °

m r

30 50-100

Fig. 6.22. The areas where each multipattern algorithm is best on English text, as
a function of @, m, and r. In the left plot (varying m), we have assumed an r less
than 50, while in the right plot we have assumed a pattern less than w characters.

6.9 Other algorithms and references

If one is interested in more complex distance functions, then the dynamic
programming approach is the most flexible. For example, if the operations
have different costs, we add the cost instead of adding 1 when computing
Mz‘,j, tha,t iS,

Mo,o +~ 0
Mi; + min(M;yjo1 + 8(ms,y5), Mio1j + 0(zi,€), M; j—1 + 6(g,y5))

where §(z,¢) and 6(g,y) are the cost of inserting and deleting characters.

For distances that do not allow some operations, we just take them out
of the minimization formula or, equivalently, we assign oo to their § cost.
For transpositions (i.e., permitting ab — ba in one operation), we introduce
a fourth rule that says that M;; can be M;_ o 2+ 1 if 2,12 = y;9;-1
[LW75]. ‘

The automata approach can handle different integer costs for the opera-
tions, and some simplifications of the edit distance can be modeled by chang-
ing or removing arrows. For instance, if insertions cost 2 instead of 1, we
make the vertical arrows go from rows 4 to rows ¢ + 2 in Figure 6.4. Trans-
positions are more complex but can be modeled as well [Mel96, Nav01b].

184 Approzimate matching

All this can be expressed in BPR and ABNDM. Some restricted cases of

different integral costs can be expressed in BPD. There is also some very
recent work on extending BPM to accommodate different costs for the edit
operations [BHO1], to include transpositions [Hyy01], and to integrate it into
ABNDM [HNO1].

The PEX filter can be adapted, with some care, to other distance func-
tions. The main issue is to determine how many pieces an edit operation can
destroy and how many edit operations can be made before surpassing the

error threshold. For example, a transposition can destroy two pieces in one

operation, so we would need to split the pattern into 2k 4 1 pieces to ensure
that one is unaltered. A more clever solution [Nav0la) is to leave a hole of
one character between consecutive pairs of pieces, so that one transposition
cannot alter both.

Readers seeking a deeper coverage of approximate search issues for single
patterns are referred to a recent survey [Nav0la]. For those interested in the
distances and patterns used in biological applications, see [SK83, KM95].

There are models of approximate searching that deviate significantly from
those we have covered. For example, there are totally different distance func-
tions, such as Hamming distance (short survey in [Nav98]), reversals [KS95]
(which allow reversing substrings), block distance [Ukk92, LT97] (which al-
lows rearranging and permuting the substrings), swaps [KLPC99] (which
are transpositions between nonadjacent characters), and so on. Although
Hamming distance is a simplification of edit distance, specialized algorithms
exist for it that go beyond our algorithms for edit distance.

With regard to the objects searched, they need not be only sequences
of symbols. Extensions such as approximate searching in multidimensional
texts (short survey in [BYNOOD]) or in graphs [ALL97, Nav00] exist. Approx-
imate searching of context-free grammars also has been pursued [Mye95].
None of these areas is well developed and the algorithms rely on the classi-
cal ones.

Finally, there are nonstandard algorithms, such as approximate (not to
be confused with our exact algorithms for approximate searching), proba-
bilistic, and parallel algorithms [TU88, AGM™90, LV89]. A good survey on
the open theoretical problems in nonstandard stringology, including some
results on Hamming distance, is [MP94].

7

Conclusion

Before finishing, we would like to give some extra material that might be of
interest. o

First, we believe that it is extremely useful to know of freely available
tools for on-line text searching, so we cover the existing software of this
kind we are aware of.

Second, we give pointers to other books, journals, conferences, and on-
line resources one may want to read to enter deeper into the area of text
searching. This is also of interest to readers with a specific algorithmic
problem not addressed in this book and not solved by the available software.

Finally, we include a section with problems related to combinatorial pat-
tern matching. The section aims at briefing over the different extensions to
the basic text searching problem, explaining the main concepts and existing
results, and pointing to more comprehensive material covering them.

Up to date information and errata related to this book will be available
at http://www.dcc.uchile.cl/"gnavarro/FPMbook.

7.1 Available software

We present in this section a sample of freely available software for on-line
pattern matching.

7.1.1 Gnu Grep

What it is GNU (http://www.gnu.org) is an organization devoted to
the development of free software. One of its products, Grep, permits fast
searching of simple strings, multiple strings, and regular expressions in a set
of files. Approximate searching is not supported. Gnu Grep is twice as fast
as the classical Unix Grep.

186 Conelusion

Grep reports the lines in the file that contain matches. However, there
are many configuration options that permit reporting the lines that do not
match, the number of lines that match, whole files containing matches, and
so on. The software provides a very powerful syntax that includes operators
that go beyond regular expressions.

How it works Simple strings are searched with a Boyer-Moore-Gosper
search algorithm (similar to Horspool; see Section 2.3.2). Sets of patterns
are searched using a Commentz-Walter-like algorithm (Section 3.3.1).
Regular expressions are searched with a lazy deterministic automaton, that
is, a DFA (Section 5.3.2) whose states and transitions are built as they are
reached while scanning the text using forward scanning. To speed up the
search of complex patterns, Grep tries to extract their longest necessary
factors, which are used as a filter and searched as a set of strings. This
technique is explained in Section 5.5.2. It permits Grep to decline smoothly
in performance as the complexity of the search increases, obtaining in general
excellent performance.

Where to get it The current stable version of Gnu Grep is 2.4.2 (March
2000). Its source code distribution, in C language, can be obtained and used
for free from http://wwv.gnu.org/software/grep/grep.html, as well as
from ftp://ftp.gnu.org/pub/gnu/grep/.

7.1.2 Wu and Manber’s Agrep

What it is Agrep (for approximate Grep) was developed in 1992 by Sun
Wu and Udi Manber at the University of Arizona, as the first of a series of
tools for on-line and indexed searching that include Glimpse, WebGlimpse
(http://glimpse.cs.arizona.edu/), and Harvest (http://www.tardis.
ed.ac.uk/harvest/).

Agrep is an on-line pattern matching software capable of exact and approx-
imate searching for simple strings, extended strings, and regular expressions,
as well as exact searching for multiple strings. Agrep has a syntax and a set
of options similar to Grep, albeit less powerful. Extended strings include
wild cards and classes of characters. Other extensions are treated as regular
expressions. The real novelty of Agrep with respect to Grep is its approxi-
mate searching ability. Also, it has more flexible reporting: Instead of just
lines, a “record” delimiter can be defined to report matchmg records {e.g.,
whole e-mails in an e-mail archive).

7.1 Availeble software 187

How it works The algorithmic principles of Agrep have been described in
[WM92b], and the software itself in [WM92a]. It does not use a uniform
algorithm but a set of heuristics to deal with the different search problems.
As a result, Agrep normally chooses the best algorithm, but it experiences
sharp changes in its efficiency as a result of slight changes in the complexity
of the search patterns. Moreover, there are many restrictions to the length
of the patterns and to the combination of options permitted. Despite these
shortcomings, Agrep is very fast in some very commonly used cases.

Siraple strings are searched with a variant of the Horspool algorithm
(Section 2.3.2) when their length does not exceed 400. Longer strings use
a similar technique, but pairs of characters, instead of single characters,
are used for building the shift table. Sets of strings are searched with the
Wu-Manber algorithm described in Section 3.3.3.

For the rest of the patterns, Agrep relies on bit-parallelism, more specifi-
cally on extensions of Shift-And (Section 2.2.2). Classes of characters and
wild cards are handled with the techniques described in Chapter 4 to extend
Shift- And. Similarly, regular expressions are handled with the bit-parallel
algorithm BPThompson (Section 5.4.1). :

Finally, approximate searching is handled in two ways. For simple strings
searched with low error levels, Agrep uses PEX (Section 6.5.1). The other
cases are handled using the bit-parallel algorithm BPR (Section 6.4.1.1)
and its extension to regular expressions (Section 6.7.3).

Where to get it Commercial use requires paying a fee, but Agrep can be
used for free for academic purposes and by U.S. government organizations.
The code is available in source form (C language).

Older versions of Agrep can be obtained from ftp://ftp.cs.arizona.
edu. The latest version is 3.0, from 1994, and it can be obtained by down-
loading Glimpse {any version after 1994) from http://webglimpse.net/
download.html. Look for a top-level subdirectory called "agrep/".

A Windows version of Agrep can be obtained from http://wuw.tgries.
de/agrep.

7.1.3 Navarro’s Nrgrep

What it is Nrgrep (for nondeterministic reverse Grep) is an on-line pattern
matching software developed in 2000 by Gonzalo Navarro at the University
of Chile. Functionality is similar to that of Agrep. Multiple string matching,
however, is not supported by Nrgrep.

188 Conclusion

How it works Nrygrep is based entirely on the BNDM algorithm and its ex-
tensions, presented in [NR0O, NR9%a, NRO1a]. A description of the software

is given in [Nav01b]. The fact that it is built on a single technique means "

that its efficiency degrades smoothly with the complexity of the search prob-

lem, unlike Agrep. The software demonstrates the flexibility of the BNDM
approach, and it is very fast when searching complex patterns and regular -

expressions, exactly or allowing errors.
Single strings are searched with the basic BNDM algorithm of Sec-

tion 2.4.2. The software supports extended strings, in particular, classes
of characters and optional and repeatable characters, extending BNDM
as shown in Chapter 4. Regular expressions are searched usmg Reguiar— :

BNDM (Section 5.5.3).

Approximate searching is handled, as in Agrep, in two possible Wa,ysk.‘
First, PEX can be used as in Section 6.5.1, and the pieces searched using -
Multiple BNDM (Section 3.4.1). Second, ABNDM can be used (Sec-
tion 6.5.2). This permits skipping characters and using the technique not :
only for simple strings but also for extended strings and regular expressions

(Section 6.7.3). ,
A fact that contributes to the smoothness of the efficiency of Nrgrep as a

function of the pattern complexity is that it automatically selects the best -

factor of the pattern for the purpose of filtering the search, and also detects

the correct type of pattern regardless of its syntax, in order to apply the
simplest possible search algorithm. Finally, if the search cost with BNDM
is predicted to be too high, it switches to forward scanning (Shift-And).

Where to get it Nrgrep source code, in C language, can be freely down-
loaded from http://www.dcc.uchile.cl/"gnavarro/pubcode. The code
is version 1.1 (2001).

7.1.4 Mehlday and Myers’ Anrep

What it ts Anrep was built by Gerhard Mehldau and Gene Myers at the
University of Arizona in 1993. It is an interactive application for DNA
and protein searching, finding exact and approximate matches of patterns
ranging from simple strings to network expressions and spacers (Sections 6.7
and 4.3). This includes most patterns of interest in biosequence comparisons.
The user specifies such patterns with a declarative, free-format, and strongly
typed language called A.

7.1 Available software 189

How it works Anrep is described in [MM91] and its algorithmic principles
can be found in {Mye96]. The language is very powerful, as is needed in
biological applications, so simple algorithms cannot be used. Anrep is based
on the algorithm mentioned in Section 6.7.2 for approximate searching with
arbitrary costs of network expressions with spacers. This combines dynamic
programming for matching network expressions allowing errors and an op-
timnized backtracking procedure to determine which occurrences are at the
correct distances from the others.

There is little point in comparing Anrep with the previous programs.
Anrep is much slower because it can search for much more complex patterns.

Where to get it The C language source code of Anrep can be freely ob-
tained at http://www.cs . arizona.edu/people/gene/CODE/anrep.tar.Z.

7.1.5 Other resources for computational biology

Apart from Anrep, there are lots of resources available for computational
biology applications. We do not cover them all in detail because they focus
less on string matching than on statistical problems related to determin-
ing relevant subsequences, and use very specific knowledge from computa-
tional biology. The algorithms are generally complex variants of approxi-
mate searching, with complicated cost functions, gap penalties, and so on.
The searching is done with a combination of dynamic programming and fil-
tering approaches (Chapter 6), plus heuristics for handling the gaps. We
brielfly review two of the best known systems of this type.

BLAST is an acronym for Basic Local Alignment Search Tool. 1t was cre-
ated in 1990 by Altschul et al. Tt consists of a set of similarity search pro-
grams for exploring sequence databases for protein or DNA queries. Its main
aims are high speed with minimal sacrifice of sensitivity to detect interest-
ing occurrences and a well-defined statistical interpretation of the matches
reported. BLAST uses a heuristic algorithm that seeks local as opposed
to global alignments and is therefore able to detect relationships among se-
quences that share ounly isolated regions of similarity. Its algorithmic princi-
ples are presented in [AGM™90]. Software executables for different architec-
tures can be freely obtained from http://www.ncbi.nlm.nih.gov/BLAST/,
where it is also possible to test the system on-line. Its current version is 2.0
(1997).

190 Conclusion

FASTA was created by Pearson and Lipman in 1988. FASTA is another

system for searching sequence homology in biosequence databanks, finding

optimal local alignment scores. It includes several programs that provide dif-
ferent speed/accuracy trade-offs. FASTA has similar aims as BLAST, their
main differences being in the way they assign significance to the matches
[Pea91]. The algorithmic principles behind FASTA are presented in [SW81,

PL88]. The system sources can be freely obtained from ftp://ftp.virginia

.edu/pub/fasta/. Its current version is 3.2 (1998).

7.2 Other books
7.2.1 Books on string matching

We present here all the books we are aware of that attempt to cover a
reasonably wide area of string matching.

Handbook of algorithms and data structures by G. Gonnet and R.
Baeza-Yates, Addison-Wesley, second edition, 1991

This book deals with algorithms in general, but it includes a chapter
devoted to exact string matching. The book is organized as a set of recipes.
For each algorithm it gives a short explanation of the main idea and then
the code and analytical results.

The book is a good reference for somebody in a hurry to find an algorithm
to solve a string matching problem, since one can look at the analysis and
copy the code. But it probably is not enough for learning why and how
an algorithm works. The other problem is that it lacks developments since
1992, as well as approximate search algorithms.

Indeed, there are many books on algorithms that devote one chapter
to string matching, for example, [Knu73, AHU83, Meh84, Baa88, Sed88,
Mang89, CLR90], but in general they cover only KMP and BM. We chose
this book because, among those dealing with general algorithms, it has
the best coverage. Some books on compilers or formal languages, such as
[ASU86, HU79], explain the classical DFA approach to regular expression
searching.

Text algorithms by M. Crochemore and W. Rytter, Oxford University
Press, 1994

This book is a good survey of the main techniques used in text searching
algorithms. The focus of the book is definitely theoretical; for example, it

7.2 Other books 191

does not present any bit-parallel algorithms, and it presents many algorithms
that we have omitted in this book because they are inefficient in practice.
The book is mainly devoted to exact searching.

This book is a good choice for those interested in the theoretical and com-
binatorial aspects underlying string matching algorithms, but it is definitely
not recommended if one needs a practical string matching algorithm and
does not want to enter so deep into the field.

String searching algorithms by G. Stephen, World Scientific Press, 1994

This is a fairly comnplete book on exact and approximate string match-
ing. For exact string matching, it covers more than the usual algorithms,
paying special attention to the Boyer-Moore family. Yet it lacks coverage
of the BDM family and of bit-parallel algorithms. Multiple and extended
string matching are not covered. The coverage of approximate string match-
ing algorithms is quite good, with a long chapter devoted to the different
string similarity measures and another chapter with a very complete sur-
vey (for 1994) of approximate string matching algorithms. This particular
area, however, has evolved a lot since then, so the fastest algorithms today
are missing. The book also covers some data structures for indexed text
searching, such as suffix frees. ‘

String pattern matching strategies by J. Aoce (Editor), IEEE Computer
Science Press, 1994 '

This book covers the most basic string searching algorithms for single,
multiple, ‘approximate, and multidimensional string matching. It lacks cov-
erage of the newer algorithms, which are the fastest.

Pattern matching algorithms by A. Apostolico and Z. Galil {Editors),
Oxford University Press, 1997

This book is a collection of chapters written by several researchers. The
chapters are well chosen to cover a wide range of issues from on-line exact and
approximate pattern matching, to parallel and indexed searching of strings,
trees, and matrices. It is highly theoretical, and the same recommendations
as for Text algorithms apply.

192 Conclusion

Modern information retrieval by R. Baeza-Yates and B. Ribeirc-Neto,

Addison-Wesley, 1999

This book is mainly on information retrieval, but it is one of the few
that pays attention to the algorithmic problems involved, and even includes
a chapter devoted to on-line string matching. The chapter is intended to
give a reader interested in information retrieval some insight into the string
matching problems that lie behind, but it is not enough to solve a string
matching problem.

7.2.2 Books on computational biology

A book that lies at the intersection of string matching and computational
biology is the following.

Algorithms on strings, trees and sequences: Computer science and
computational biology by D. Gusfield, Cambridge University Press, 1997

This book is a survey of the main algorithmic techniques used in compu-
tational biology when using data structures like sequences and trees, which
actually represent a large part of the field. It gives a complete general view
of these techniques, including a large section on indexing, and in particular
on the suffix tree and the algorithms built on it.

There are many other books on computational biology that are less related
to string matching, so we have chosen three that we consider representative.

Computational molecular biology: An algorithmic approach by
P. A. Pevzner, MIT Press, 2000

This recent book presents the main topics in computational molecular bi-
ology that involve algorithmic developments. This includes computational
gene hunting, restriction mapping, map assembly, sequencing, DNA arrays,
sequence comparison, multiple alignment, finding signals in DNA, gene re-
strictions, genome rearrangements, and computational proteomics.

Introduction to computational biology by M. S. Waterman, Chapman
& Hall, 1995

"This book presents well-established topics in computational biology on

7.3 Other resources 193

which much research has been performed. Many of those results are now
considered as “classical.”

Time warps, string edits, and macromolecules: The theory and
practice of sequence comparison by D. Sankoff and J. B. Kruskal,
Addison-Wesley, 1983

This was one of the first books published in computational biology. It is
a collection of texts on different topics, most of them presenting a precise
problem in computational biology and the algorithms to solve it. The algo-
rithmic solutions presented are generally too old now to be of real interest,
but the problems they solve are still of interest and their presentation is
usually clear.

7.3 Other resources
7.3.1 Journals

Articles on pattern matching tend to appear sparsely in different journals.
The most commonly chosen are; for tutorials: 4CM Computing Surveys; for
algorithms: Algorithmica, Journal of the ACM, Journal of Algorithms, Com-
munications of the ACM (but not recently), Information and Computation,
Information and Control, Information Processing Letters, Information Sci-
ence, Journal of Computer Systems Science, Nordic Journal of Computing,
Random Structures and Algorithms, SIAM Journal on Computing, Theo-
retical Computer Science, and the new Journal of Discrete Algorithms; for
implementations: Software Practice € Fxperience, IEEE Trans. on Software
Engineering, Information Processing and Management, and ACM Journal
of Experimental Algorithmics. In this list we have not considered articles
on combinatorial pattern matching, which is a wide area with deep theo-
retical roots. Indeed, string matching is one of the simplest branches of
combinatorial pattern matching.

We also mention a few of the many journals on computational biology:
Bioinformatics (and its former version, CABIOS), Nucleic Acids Research,
Journal of Computational Biology, Genome Research, and Journal of Molec-
ular Biology.

7.3.2 Conferences

There are a few counferences devoted to the field. Among the best are
Combinatorial Pattern Matching (CPM), Computing and Combinatorics

194 Conclusion

(COCOON), ACM Computational Molecular Biology (RECOMB), String
Processing and Information Retrieval (SPIRE), and Intelligent Systems for
Molecular Biology (ISMB).

Other conferences that publish articles on pattern matching are Data
Compression Conference (DCC), European Symposium on Algorithms (ESA),
IEEE Foundations on Computer Science (FOCS), Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), Automata, Lan-
guages and Programming (ICALP), IFIP World Computer Congress, Algo-
rithms and Computation (ISAAC), Mathematical Foundations of Computer
Science (MFCS), Discrete Algorithms (SODA), Theoretical Aspects of Com-
puter Science (STACS), ACM Theory of Computing (STOC), Scandinavian
Workshop on Algorithmic Theory (SWAT), Workshop on Algorithm Engi-
neering (WAE), and Workshop on Algorithms and Data Structures (WADS).

7.3.3 On-line resources

Definitely one of the best Web pages on string matching is Pattern Matching
Pointers, an invaluable directory for searching people, references, books,
software, journals, news groups, and discussion boards related to pattern
matching in general. The page is maintained by Stefano Lonardi at http:
//www.cs.purdue.edu/homes/stelo/pattern.html.

Other pages are Patlern Maiching and Data Mining Research, main-
tained by Mika Klemettinen at http://www.cs.helsinki.fi/research/
pmdm, and The Bioinformatics Resources at http://hgmp .mrc.ac.uk/CCP11.
Some discussion boards on the subject are available at http://www.purdue.
cs.edu/homes/stelo/pmdb. Related news groups are comp.theory, comp.
theory.info-retrieval, comp.text, and comp.infosystems. Finally, rel-
evant. mailing lists are theoryuet, dbworld and dmanet.

Beware that on-line references may change over time.

7.4 Related topics

We consider finally some topics related to the focus of our book. Any of
the related topics cited below could be the subject of an entire volume. We
give the main current references for each subject. This list is obviously not
exhaustive.

7.4 Related topics 185

7.4.1 Indexing
Our book is devoted to on-line searching in text and sequences, which means
that we do not build any structure on the text. For a single search this is an
optimal strategy, but for many search operations on the same text we can
save time by first building a structure on the text, called an indez, to speed
up queries later.

Typical reasons for preferring on-line searching are (1) size of the text,
that is, if the text is too small, an index is mot worth maintaining; (2)
volatility of the text with respect to the query frequency, that is, there is a
cost to build and maintain the index, which to be amortized requires that
changes to the text be much less frequent than queries made on it; (3) space
unavailability, that is, an index needs extra space on top of the text, which
may be too costly or not available. Even when indexes are used, on-line
searching is of interest because many indexing techniques use some form of
on-line searching inside. ‘

7.4.1.1 General indezxes

Indexes permit exact searching of a string of length m in a text of length
n in O(m) or O(mlogn) time, after a construction that usually takes O(n)
but sometimes O(nlogn) time, and O(n) extra space, with a constant factor
that may range from 2 to 30 times the text size. There exist many indexing
structures depending on the type of search and the memory available. The
most usual ones build on the concept of a suffiz trie [AG85], which is a
trie data structure (Chapter 3) built over all the suffixes of the text. Every
text factor is found by descending in this trie following the characters of the
pattern.

The most efficient data structures are compacted versions of the suffix
trie: the compact suffix tree [AG85, Gus97]; the suffix automaton or DAWG
(an automaton that recognizes all text suffixes [CR94]); the compact suffix
automaton or CDAWG [CV97a, CV97h, IHST01]; and the suffix array, an
array storing all text suffixes in lexicographical order [MM93, GBYS92].

These structures can also be used for searching extended strings, regular
expressions, and for approximate searching [MBY91, BYG96, NBYO00]. The
search time is either O(mn*) with 0 < A < 1 or exponential in m (or k
for approximate searching with k errors), sometimes multiplied by an extra
O(logn) factor, depending on the data structure.

7.4.1.2 Indezes for natural language

When it comes to natural language texts, a very popular index is the inverted
file or inverted index, which is normally just able to retrieve complete words

196 Conclusion

and phrases of the text, not any factor. Inverted indexes consist in general of
the set of different words of the text (the vocabulary) and for each such word
the list of positions where it appears in the text. This structure is also useful
for information retrieval, which involves pattern matching but also concepts
such as computing the relevance of a document with respect to a query. Some
books dealing extensively with inverted indexes are [WMB99, BYRN99].

There are many variants on this structure, but if we consider the problem
of finding words, the most important issue is the addressing granularity of
the index. The indexes with the finest granularity store the exact positions
of each word, and they need about 30% extra space over the text size. Others
divide the text collection into documents and point just to the documents
where each word appears, needing about 15% extra space. An interesting
implementation capable of producing an index as small as 2%—4% over the
text size is Glimpse [MW94] (http://glimpse.cs.arizona.edu/), which
divides the text into equal size blocks and points to blocks instead of exact
positions. This is called “block addressing.” The search on these indexes
has to be complemented with sequential searching. An analysis in [BYN0Oa]
shows that the index size can be made sublinear with respect to the text
size while keeping the search time sublinear as well. Glimpse also introduces
techniques for searching extended strings, regular expressions, and approx-
imate searching at the intraword level by scanning the vocabulary of the
text, which is of sublinear size.

7.4.2 Searching compressed text

The problem of searching compressed text is that of finding the occurrences
of a pattern in a compressed text without decompressing it. The subject
has been an active area of research since 1992, motivated by the fact that
CPU speed increases much faster than the speed of I/O devices and by the
discovery that in some cases it is possible to search the compressed text
faster than the uncompressed one.

7.4.2.1 Compression algorz't‘hms

Compression is a large and active area in computer science and of course
we do not attempt to cover it here. Text compression is a subfield that
deals with the best algorithms to compress text files. A good book on text
compression is [BCW90]. More focused than text compression is the field of
compressed text databases, which aims at text compression techniques that
permit efficient searching of the compressed text. We briefly cover this area.

Compression formats for text databases must permit efficient decompres-

7.4 Related topics 197

sion and random access to the text. Some of the most popular text compres-
sion formats for compressed text databases are Huffman [Huf51] (where each
text symbol is replaced by a variable length code, trying to assign shorter
codes to more frequent symbols), Ziv-Lempel (where the coder replaces text
strings by pointers to previous occurrences already found in the text, with-
out restriction in the LZ77 variant [ZL77] and only permitting a previous
repetition plus an extra letter in the LZ78 variant [ZL78]), and Byte-Pair
encoding or BPE [Gag94] (where pairs of characters are joined under a new
unused code iteratively until no unused codes remain). An important feature
of a compression method is the compression ratio achieved, which we define
as the ratio of the compressed file size to the uncompressed file size. For
example, on DNA, Huffman obtains about 25% compression, Ziv-Lempel
25%-30%, and BPE 30%, while on typical natural language text Huffman
obtains about 60%, Ziv-Lempel 30%-40%, and BPE 70%.

7.4.2.2 On-line pattern matching in compressed text

The compressed matching problem was first defined in the work of Amir and
Benson [AB92a] as the task of performing string matching in a compressed
text without decompressing it. Given a text T' = £ ...1,, a corresponding
compressed string Z = 2y ... 2, and a pattern P = pj . .. p;p, the compressed
matching problem consists in finding all occurrences of P in 7', using only
P and Z. A naive algorithm, which first decompresses the string Z and
then performs standard string matching, takes time O(m + u). An optimal
algorithm takes worst-case time O(m + n).

The most practical methods for on-line pattern matching are based on
the BPE algorithm and its variants [Man97, SMT100, TSM*01]. They are
able to search the compressed text faster than the original text. This may
be a reason by itself to compress the text. Given the characteristics of the
format, however, the compression ratio obtained is poor.

A large line of research is based on Ziv-Lempel compression, which obtains
much better compression ratios. The first algorithm for exact searching was
[ABF96]. They search LZ78 compressed text in O(m? + n) time and space.
One of the few techniques for the LZ77 format is [FT98], a randomized
algorithm to determine in O(m + nlog?(u/n)) time whether a pattern is
present or not in the text.

Later practical improvements appeared in [NR99b, KTSA99, NT00]. Rou-
ghly speaking, it is possible to search the compressed text in about half the
time necessary for decompressing and then searching it.

Some extensions of the search problem have been pursued for the Ziv-
Lempel format. An extension of [ABF96] to multipattern searching was

198 Conclusion

presented in [KTS198], where they achieved O(m? + n) time and space,
where m is the total length of all the patterns. Approximate string match-
ing on compressed text was an open problem advocated in [AB92b], and
the first theoretical [KNU00, MKT+00] and practical [NKT'01] algorithms
for handling it have appeared only recently. All are for the LZ78 format.
Regular expression searching over LZ78 was considered in [Nav0lc].

A useful search-oriented abstraction of the compression formats used for
pattern matching, called “collage systems,” was proposed in [KTSA99]. Al-
gorithms designed for collage systems can be implemented for many differ-
ent formats. In the same paper they design a KMP algorithm on collage
systems. Later papers of the same group (referenced in the previous para-
graphs) develop this concept.

Finally, it is interesting to mention that there are very efficient algo-
rithms able to find complete words and phrases in natural language texts.
In [MNZBY00], & word-oriented Huffman coding where the symbols are the
text words and separators, not the characters, is used as the basis for very
fast algorithms that are able of exact and approximate searching for simple
and extended strings. The compression ratio is very good, about 25%-30%
on English texts of at least 10 megabytes, and the search on compressed
text is as fast as on uncompressed text for simple searching, while it is up to
eight times faster when searching for complex patterns and for approximate
searching.

7.4.2.3 Indezed pattern matching in compressed text

Building compressed indexes over compressed text is a natural goal on large
text databases. Compressed data structures for text searching have been
sought for some time [KU96, Kar99, KS98, GVO00], but they always used
the text in uncompressed form as an integral part of the data structure.

Recently, some very promising structures have appeared which compress
the text together with the structure. These data structures are compressed
versions of the suffix array [Sad99, Sad00, FM00, FM01], and in some cases
they are able to represent index and text in less space than that of the
original uncompressed text.

For inverted indexes for word retrieval in natural language text, the text
and the index are compressed separately in general. Index compression takes
advantage of the fact that the list of occurrences of each word is increasing.
Differences are encoded with a coding method that favors small numbers.
The larger the addressing granularity, the more effective the compression
of the lists of occurrences. A system combining block addressing with in-
dex compression on word-based Huffman text compression is described in

7.4 Related topics 199

[NMN*+00]. With respect to file-addressing indexes, the book [WMB99] de-
scribes extensively the M@ system, a compressed inverted index over com-
pressed text (freely available at ftp://munnari.oz.au/pub/mg).

7.4.3 Repeats and repetitions

Much research has been untertaken to study and search for repetitions in
texts or sequences, since many of them have a biological role. There exist
many definitions of a repeat or a repetition. Moreover, it is not clear how
to define and take into account the approximate repetitions that are needed
in computational biology. Here is a shorf summary.

7.4.3.1 Ezact repetitions

The first notion of a repetition is simply a factor u that is contiguously
repeated more than twice, that is, v*v, where k > 2 and v is a prefix of w.
Clearly, a text may contain a quadratic number of repetitions, for example,
T = a". A first form of repetition that has been extensively studied is
the square u?. Many algorithms exist for finding all the square locations
(see [CR94] or [KK99] for a survey). If we consider complete repetitions,
the notion of a maximal repetition (sometimes called a run or a mazimal
periodicity) represents them all it in a compact way. A repetition is maximal
if it cannot be extended in the.text to the left or to the right without
breaking it. There are at most O{n) factors of the text that can be maximal
repetitions, and they can be found in O(n) time [KK99)].

A second notion is used when considering noncontiguous repetitions. A
repeat is a factor of the text that occurs at least twice. A mazimal repeat is
a repeat that cannot be extended to the left or to the right without breaking
it. There exist at most a linear number of maximal repeats, and they can
be enumerated in O(n) time [{Gus97]. However, these definitions do not take
into account the relative positions of the repeats. A pair u is an occurrence
of uvu in the text, and a mazimal pair cannot be extended, similarly to
a maximal repeat or a maximal repetition. The most interesting pairs are
usually those such that the two occurrences of u are not too close or not too
far away, that is, [v| is bounded between §; < |v| < §o. An O(nlogn + nocc)
time algorithm has been proposed to enumerate such a pair (maximal or
not) in a text, where noce is the number of resulting occurrences [BLPS99].
If the upper bound &, is removed, the time reduces to O(n-+nocc) [BLPS99].

7.4.8.2 Approximate repetitions

Approximate repetitions are required, for instance, in computational biology,
when a sequence rarely matches exactly, and also in rusicology, where the

200 Conclusion

problem is to retrieve repeating themes. The concepts are however more
fuzzy since the notions used for exact repetitions can be extended in varicus
ways, depending on the approximate relation we want between the repeated
parts.

The approximate concept of repetition is usually called fandem repeat.
Originally, this expression was used for two continuous repetitions uw, where
v matches approximately . The algorithmic problem is to find all these fac-
tors in a text. An algorithm taking O(n? logn) time and O(n?) space exists
[Sch98]. If the maximal number of errors is bounded by %, then all the
nonoverlapping tandem repeats can be found in O(knlogklog(n/k)) time
[KM93]. These algorithms are mainly of theoretical interest, since @(n?) is
generally too large to be of real use on genomic sequences. Moreover, search-
ing for only two repetitions is a strong limitation, for the computational
biologist usually looks for more than two continuous parts. One algorithm
for this problem permits finding small satellites [SM98], with a more flexible
notion of repetitions (some parts can be missing), but with a strong length
limitation (less than 40 bases). The idea is to filter the text, and, with
an efficient verification algorithm [FLSS92), this idea leads in [Ben98] to a
very fast algorithm/software, called Tandem repeats finder [Ben99]. The ex-
ecutable files are available on-line for many operating systems (the software
is source protected) at http://c3.biomath.mssm.edu/trf . html.

The approximate concept of a pair is usually called a nontandem repeat.
When we are interested in nonoverlapping ones, the same algorithm as for
tandem repeats can be used [Sch98], but the real problem becomes managing
the huge number of cccurrences.

Approximate repetitions in computational biology is a recent and moving
topic that evolves rapidly. One of the sofware products most used currently
is RepeatMasker (part of the Phrap package, http://www.phrap.org/),
which masks some repetitive regions of DNA sequences.

7.4.4 Pattern matching in two and more dimensions

Pattern matching in two-dimensional texts, for instance, in images, is a
direct extension of string matching. Many of the most efficient algorithms
are extensions of those we presented for one-dimensional text. However,
many problems are specific to this field. Books partially covering this issue
are [Aoe94, AG97].

In this area we speak of a text of O(n?) size (i.e., n x n cells), where a
pattern of O(m?) size (m x m cells) is sought. This is done for simplicity.

7.4 Related topics 201

Many algorithms can handle general rectangular and even nonrectangular
texts and patterns.

7.4.4.1 Two-dimensional pattern matching

Two-dimensional exact string matching was first considered by Bird and
Baker [Bir77, Bak78], who obtained O(n?) worst-case time. Good average-
case results are presented by Zhu and Takaoka [ZT89] and Baeza-Yates and
Régnier [BYR93]. Karkkiinen and Ukkonen [KU94] achieved O(n®log, m
/m?) average-case time, which is optimal.

Two-dimensional approximate string matching usually considers only sub-
stitutions for rectangular patterns, which is much simpler than the general
case with insertions and deletions, because in this case rows and/or columns
of the pattern can match pieces of the text of different length.

If we consider matching the pattern with at most k substitutions, one
of the best results for the worst case, due to Amir and Landau [AL91],
is O((k + logo)n?) time using O(n?) space. A similar algorithm is pre-
sented by Crochemore and Rytter [CR94]. Ranka and Heywood [RH91],
on the other hand, solve the problem in O((k + m)n?) time and O(kn)
space. Amir and Landau also present a different algorithm running in
O(n?lognloglognlogm) time. On average, the best algorithm is due to
Karkkainen and Ukkonen [KU94, Par96]. The expected time is O(n2k log, m
/m?) for k < m?/(4log, m), using O(m?) space (O(k) space on average).
This expected complexity is optimal. ,

The extension of the classic notion of edit distance is difficult. Krithivasan
and Sitalakshmi [KS87] defined the edit distance in two dimensions as the
sum of the edit distances of the corresponding row images. Let us call
it the KS model. Using this notion they obtain O(m?n?) search time.
Krithivasan [Kri87] presents for the same model an O(m(k + logm)n?)
time algorithm that uses O(mn) space. Amir and Landau [AL91] give
an O(k?n?) worst-case time algorithm using O(n?) space (note that k can
be larger than m, so this is not necessarily better than the previous algo-
rithms). Amir and Farach [AF91] also considered nonrectangular patterns,
achieving O(k(k + +/mTlog m+/klog k)n?) time. Finally, Navarro and Baeza-
Yates obtain O(n’klog, m /m?) average case time for the KS model, for
k< m{m+1)/(5log, m), using O(m?) space. '

For many two-dimensional matching problems, the KS distance does not
reflect well simple cases of approximate matching in different settings. New
distances and search algorithms have been introduced recently [BYNOOb].
In the new models the errors can occur along rows or columns.

202 Conclusion

7.4.4.2 Other multidimensional matching problems

Other problems related to comparing images are searching allowing rotations
[FNUO1} and scaling [ABL0O].

There are other approaches to matching images that are very different
from those cited above {(which belong to what is called combinatorial pat-
tern matching). Among them we can mention techniques used in pattern
matching related to artificial intelligence, for example, image processing and
neural networks, and techniques used in databases, for example, extracting
features of the image such as color histograms.

All the previous problems can be generalized to more than two dimensions,
and many algorithms running on two-dimensional texts can be extended to
run in more dimensions [AL91, KU94, GG97, FU98, BYNOOb].

7.4.5 Tree patiern matching

Tree pattern matching is another extension of pattern matching in text. The
problem arises in computational biology when we need to compare RNA
structures. It also arises when a program is represented during compilation
as an instruction tree in which we want to find special patterns, usually to
perform some optimizations. Hierarchically structured text databases also
require this form of matching.

For exact tree pattern matching there are two ordered trees called the text
and the pattern by extension of string pattern matching, and the problem is
to find all the occurrences of the pattern in the text, that is, all nodes of the
text rooting a subtree that matches the pattern. We denote by n and m the
sizes (in number of nodes) of the text and the pattern. The naive algorithm,
which consists of verifying each text node, runs in O(mn) worst-case time.

Several algorithms exist that improve the worst-case bound, but they are
mainly theoretical. An O(nm®7®logm) time algorithm has been proposed
in [Kos89], using a connection between this problem and that of search-
ing strings with “don’t care” symbols. This in turn has been improved
in [DGM94] to O(nm®®logm), using the periodicities of the paths of the
pattern tree. A major improvement over this has been obtained in several
articles by the same authors, leading to an O(nlog®n) time algorithm in
[CHI99]. A survey on this topic can be found in [ZS97].

The approximate tree pattern matching problem arises in computational
biology when comparing and aligning trees. It implies a notion of distance
on trees [ZSW94, S797]. Many algorithms exist, but this topic is still in
development since the notion has to fit exacly the biological properties of

7.4 Related topics 203

the objects that the trees represent, which are generally secondary structures
[ZWM99].

A related notion dealing with trees and matching is the maximum subtree
agreement problem. Given two rooted trees whose leaves are taken from the
same set of items, which for instance represent two phylogenetic trees, the
problem is to find the largest subset so that the portions of the two trees
restricted to these items are isomorphic. When the two trees are binary,
which is usually the case in practice, an O(nlogn) time algorithm exists
[CFCH*01].

Finally, structured text databases introduce a concept of tree pattern
matching similar to the “extended strings” considered in this book. In this
case the pattern is a tree, but each pattern edge can match an arbitrary
path in the text tree. It is also possible to force the occurrence to honor the
intersibling ordering given in the pattern. Depending on these options, the
search complexity goes from polynomial time to NP-complete [Kil92, KM92].

7.4.6 Sequence comparison

Sequence comparison is about determining similarities and correspondences
between two or more strings. It is related to approximate searching (Chap-
ter 6) and has many applications in computational biology, speech recogni-
tion, computer science, coding theory, chromatography, and so on. These
applications look for similarities between sequences of symbols. The general
goal is to perform basic operations over the strings until they become equal.
Those bagic operations bave an associated cost, and we seek the minimum-
cost sequence of operations that achieves the goal. The reason for preferring
the minimum cost is different in each application, but the general idea is
that the sequences differ by a series of alterations on one or both of them,
and the cheapest series are those of maximum likelihood.

A concept. of “distance” between two strings can be defined according to
the minimum cost of making them equal. The basic operations considered
depend on the application, but the most typical are supressing characters,
inserting characters, substituting characters by others, swapping adjacent or
nonadjacent characters, reversing substrings, moving substrings to another
place of the string, compressing a run of equal characters, expanding a single
character to a run of them, and so on. Each operation has a rationale in the
model where it is used. The application also gives a rationale for assigning
costs to the different operations, for example, the most likely operations
cost less. A simple case is to assign a cost that is the logarithm of the
probability of this operation occurring in the process that made the strings

Conclusion

differ. Hence the sum of the costs corresponds to the logarithm of the
product of the probabilities of the operations, which is a good model if they
are independent.

Two of the most popular similarity measures are the Levenshtein dis-
tance and the “indel” distance. The first one permits character insertions,
deletions, and substitutions, all at cost 1. The second one permits only
insertions and deletions and is related to the longest common subsequence
(LCS) between the two strings. The popularity of these models lies in their
simplicity, in the efficiency of the algorithms that handle them, and in the
simplicity of their mathematical properties. We devoted Chapter 6 almost
entirely to the Levenshtein distance.

In many applications it is also interesting to know how the two sequences
differ. In general we speak about aligning the two sequences (recall Sec-
tion 6.2.1). There are several ways to express an alignment. One is to put
the strings one on top of the other and space their characters so that similar
characters are in the same column. The amount of spacing needed gives
an idea of how different the strings are. Another method is to draw a set
of traces, where lines connect the aligned characters in both strings (Fig-
ure 6.1). Yet a third way, less popular but very useful mathematically, is to
list the operations made on the strings.

In some cases it is useful to measure the degree of similarity rather than
of dissimilarity (i.e., a distance). One example is the LCS, a heavily studied
measure. Other examples are the shortest common supersequence (SCS),
longest common substring (LCG, different from the LCS because the com-
mon string has to be a contiguous substring of both sequences), and short-
est common superstring (SCG), as well as their versions on more than two
strings.

Most algorithms for sequence comparison rely on dynamic programming,
since it is useful to have all previous results precomputed in order to use
them. However, backtracking has also been used. The simplest distances
such as Levenshtein or indel, even with arbitrary costs for the operations,
can be computed in O(n?) time for two strings of length n. The same holds
for computing the LCS or SCS of two strings. For N strings the cost raises
to O(n™) and is NP-complete for arbitrary N. The cost for LCG and SCG is

O{n) for two strings. There exist complicated algorithms that improve over .

the quadratic complexity under diverse assumptions. On the other hand,

computing the distance when block moves are involved is NP-complete in -
some cases. This shows that the nature of the problem depends on the type.

of distance used.

- Another issue in sequence comparison is statistics. How significant is it

7.4 Related topics 205

that the LCS between two binary strings is 80% of their length? Does it
mean that they are close, or could it happen perfectly well to two random
sequences? There has been much research on the expected length of the
LCS between two random strings. It is known that it grows linearly with n,
but the exact constant is not yet known; only tight upper and lower bounds
exist.

We refer the reader to good books on the subject [SK83] or to the section
of books of computational biology (7.2.2).

7.4.7 Meaningful string occurrences

The problem of finding factors that are “unusual” in sequences is a topic
that has led to many studies. There are four main underlying points.

First, the sequences have to be considered under a specific probability
model, for instance, under a Markov model, to get a comparison point for
what should be considered normal.

Next, a formula to get the “normal” occurrence probability or other in-
teresting parameters, for instance, the expected distance between two oc-
currences, has to be obtained. The expected probability of the approximate
occurrences of a string has recently been obtained [RS97]. An algorithm to
compute the expected frequency of occurrence of a string, a set of strings,
or a regular expression under both the Bernoulli or Markov models exists
[NSFO1], but evaluating the formula is complicated and computationally
time-consuming (the same is true for [RS97]). A Maple package implement-
ing the evaluation, called Algolib, is available at http:/ /algo.inria.fr/
libraries/software.html.

Third, given a certain model and a way to compute the interesting pa-
rameters of a given factor in that model, one has to decide which factor of
the text should be considered as nnusual.

Finally, when the three previous problems have been solved for a certain
type of sequence, model, and pattern, the algorithmic problem is to find and
visualize the unusual factors in an efficient and usable way (for that there
could be O(n?) such factors).

A short survey on these questions can be found in [Pev00], but, to our
knowledge, there is no complete survey grouping these questions together. A
sofware product called Verbumculus [ABLX00] permits visualizing unusual
factors under a restricted definition of what a usual factor is. The binaries
are available at http://www.cs.purdue.edu/homes/stelo/Verbumculus.

Bibliography

[AB92a] A. Amir and G. Benson. Efficient two-dimensional compressed matching.
In Proceedings of the 2th Data Compression Conference, pages 279-288. IEEE
Computer Society Press, 1992.

[AB92b] A. Amir and G. Benson. Two-dimensional periodicity and its applica-
tions. In Proceedings of the Ird ACM-SIAM Annual Symposium on Discrete
Algorithms, pages 440-452. ACM Press, 1992.

[ABF96] A.Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matchmg
in Z-compressed files. Journal of Computer and Systems Sciences, 52(2):299-307,
1996.

[ABLOO] A. Amir, A. Butman, and M. Lewenstein. Real scaled matching. In Pro-
ceedings of the 11th ACM-SIAM Annual Symposium on Discrete Algorithms,
pages 815-816. ACM Press, 2000.

[ABLXO00] "A. Apostolico, M. E. Bock, S. Lonardi, and X. Xu. Efficient detection of
unusual words. Journal of Computational Biology, 7(1/2):71-94, 2000.

[Abr87] K. Abrahamson. Generalized string matching. SIAM Joumal on Comput-
ing, 16(6):1039-1051, 1987.

[ACT75] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18(6):333-340, 1975.

[ACRO1] C. Allauzen, M. Crochemore, and M. Raffinot. Efficient experimental string
matching by weak factor recognition. In Proceedings of the 12th Annual Sym-
posium on Combinatorial Pattern Matching, number 2089 in Lecture Notes in
Computer Science, pages 51-72. Springer-Verlag, 2001.

[AF91] A. Amir and M. Farach. Efficient 2-dimensional approximate matching of
non-rectangular figures. In Proceedings of the 2nd ACM-SIAM Annual Sympo-
stum on Discrete Algorithms, pages 212-223, 1991.

[AG85] A. Apostolico and Z. Galil, editors. Combmatomal Algomthms on Words,

-~ volume 12. Springer-Verlag, 1985.

[AGI7] A. Apostolico and Z. Galil, editors. Pattem Matching Algorzthms Oxford
University Press, 1997,

[AGM™90] S. F. Altschul W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A
basic local alignment search tool. Journal of Molecular Biology, 215:403-410,
1990.

[AHUS83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, 1983.

[AL91] A. Amir and G. M. Landau. Fast parallel and serial multidimensional ap-
proximate array matching. Theoretical Computer Science, 81(1):97-115, 1991.

[ALLO7] A. Amir, M. Lewenstein, and N. Lewenstein. Pattern matching in hyper-
text. In Proceedings of the 5th Workshop on Algorithms and Date Structures,
number 1272 in Lecture Notes in Computer Science, pages 160-173. Springer-
Verlag, 1997.

207

208 Bibliography

[Aoe94] J.-I Aoe, editor. String pattern matching strategies. IEEE Computer Society
Press, 1994.

[AR99] C. Allauzen and M. Raffinot. Factor oracle of a set of words. Technical
report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée, 1999.
[AR0O] C. Allauzen and M. Raffinot. Simple optimal string matching. Journal of

Algorithms, 36:102-116, 2000. '

[ASU86] A. V. Aho, R. Sethi, snd J. D. Ullman. Compilers — Principles, Techniques
and Tools. Addison-Wesley, 1986.

[Baag8] S. Baase. Computer Algorithms — Introduction to Design and Analysis.
Addison-Wesley, 1988.

[Bak78] T.P.Baker. A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM Journal on Computing, 7(4):533-541,
1978.

[BBE*87] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnel.
Complete inverted files for efficient text retrieval and analysis. Journal of the
ACM, 34(3):578-595, 1987.

[BBYDS96] V. Bruyere, R. A. Baeza-Yates, O. Delgrange, and R. Scheihing.
About the size of Boyer-Moore automata. In N. Ziviani, R. Baeza-Yates, and

K. Guimardes, editors, Proceedings of the 9rd South American Workshop on:

String Processing, pages 31-46, Recife, Brazil. Carleton University Press, 1996.
[BCW90] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, 1990.
[Ben98] G. Benson. An algorithm for finding tandem repeats of unspecified pattern

size. In Proceedings of the 2nd Annual International Conference on Computa-

tional Molecular Biology, pages 20-29. ACM Press, 1998.

[Ben99] G. Benson. Tandem repeats finder: a program to analyze DNA sequences.

Nucleic Acids Research, 27:573-580, 1999. :

[BHO1] A. Bergeron and 5. Hamel. Vector algorithms for approximate string match-
ing. International Journal of Foundations of Computer Science, 2001. To appear.

[Bir77] R. S. Bird. Two-dimensional pattern’ matching. Information Processing

Letters, 6(5):168-170, 1977. :

[BK93] A. Briiggemann-Klein. Regular expressions into finite automata. Theoretical
Computer Science, 120(2):197-213, 1993.

[BLPS99] G. S. Brodal, R. B. Lyngsg, C. N. S. Pedersen, and J. Stoye. Finding
maximal pairs with bounded gap. In Proceedings of the 10th Annual Symposium
on Combinatorial Pattern Matching, number 1645 in Lecture Notes in Computer
Science, pages 134-149. Springer-Verlag, 1999.

[BM77] R. S. Boyer and J. S, Moore. A fast string searching algorithm. Communi-
cations of the ACM, 20(10):762-772, 1977.

[Bre95] D. Breslauer. Dictionary matching on unbounded alphabets: uniform length
dictionaries. Journal of Algorithms, 18(2):278-295, 1995.

[BS&6] G. Berry and R. Sethi. From regular expression to deterministic automata. ;

Theoretical Computer Science, 48(1):117-126, 1986.

[BY91] R. Baeza-Yates. Some new results on approximate string matching. In ‘

Workshop on Data Structures, Dagstuhl, Germany, 1991 Abstract.

[BYCG94] R.A. Baeza-Yates, C. Choffrut, and G.H. Gonnet. On Boyer-Moore au-

tomata. Algorithmica, 12(4/5):268-292, 1994.

Bibliography 209

[BYG:8'93,] R. A. Baeza-Yates and G. H. Gonnet. Boyer-Moore antomata. Report
University of Waterloo, 1989, ’
[BYG89b] R. A. Baeza—Yates and G. H. Gonnet. A new approach to text searching.
In N. J . Belkin and C. J. van Rijsbergen, editors, Proceedings of the 12th In-
ternational Conference on Research and Development in Information Retrievel,
pages 168-175. ACM Press, 1989.

[BYG96] R. A. Baeza-Yates and G. H. Gonnet. Fast text searching for regular

;};gressxons or automaton searching on tries. Journel of the ACM, 43(6):915-
, 1996.

[BYGR90] R. A.‘B.aeza-Yates, G. H. Gonnet, and M. Régnier. Analysis of Boyer-
Moore type string searching algorithms. In Proceedings of the 1st ACM-SIAM
Annual Symposium on Discrete Algorithms, pages 328-343. ACM Press, 1990.

[BYN97] R. Aj Baeza-Yates and G. Navarro. Multiple approximate string matching.
In Pr?ceedmgs of the 5th Workshop on Algorithms and Data Structures, number
1272 in Lecture Notes in Computer Science, pages 174-184. Springer-Verlag,
1997. Extended version to appear in Random Structures and Algorithms (Wiley).

[BYN99] R. A. Baeza-Yates and G. Navarro. Faster approximate string matching.
Algorithmica, 23(2):127-158, 1999.

[BYNOOa] R. Baeza-Yates and G. Navarro. Block-addressing indices for approxi-
mate text retrieval. Journal of the American Society for Information Sci
51(1):69-82, 2000. f f .

[BYNSOb] R. Baeza-Yates and G. Navarro. New models and algorithms for mul-
tidimensional approximate pattern matching. Journal of Discrete Algoritl
1(1):21-49, 2000. f Diserete Algorithms,

[BYR92] R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-
Moore-Horspool algorithm. Theoretical Computer Science, 92(1):19-31, 1992.

[BYE%] R. A. Baeza-Yates and M. Régnier. Fast two-dimensional pattern mastch-
ing. Information Processing Letters, 45(1):51-57, 1993.

[BYRN99] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999. :

[CCG*93] M. Cr(?chemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandf)wskl, and W. Rytter. Fast practical multi-pattern matching. Rapport
93;3, Institut Gaspard Monge, Université de Marne-la~Vallée, 1993.

[CCGT94] M. Cro.chemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Pl'andgvvskl, and W. Rytter. Speeding up two string matching algorithms.
Algorithmica, 12(4/5):247-267, 1994,

[CCGT99] M. Crochemore, A. Czumaj, L. Gasieniec, T. Lecroq, W. Plandowski,
and W. Rytter. Fast practical multi-pattern matching. Information Processing
Letters, 71(3/4):107-113, 1999.

[CFCH*01] R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup.
An O{nlogn) algorithm for the maximum agreement subtree problem for binary

trees. STAM Journal on Computing, 30(5):1385-1404, 2001.

[CGRI2] M. Crochemore, L. Gasieniec, and W. Rytter. Turbo-BM. Rapport LITP.
92.61, Universités Paris 6 et 7, France, 1992.

[CH97] M. Crochemore and C. Hancart. Automata for matching patterns. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume

210 Bibliography

2: Linear Modeling: Background and Application, chapter 9, pages 399-462.
Springer-Verlag, 1997.

[CH98] R. Cole and R. Hartharan. Approximate string matching: A simpler faster
algorithm. In Proceedings of the 9th ACM-SIAM Annual Symposium on Discrete
Algorithms, pages 463-472. ACM Press, 1998.

[CHI99] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset
matching in deterministic O(nlog® n)-time. In Proceedings of the 10th ACM-
SIAM Annual Symposium on Discrete Algorithms, pages 245-254. ACM Press,
1999.

[Cho90] C. Chofirut. An optimal algorithm for building the Boyer-Moore automaton.
Bulletin of the Buropean Association of Theoretical Computer Science, 40:217—
225, 1990.

[CL92] W.1. Changand J. Lampe. Theoretical and empirical comparisons of approx-
imate string matching algorithms. In Proceedings of the 3rd Annual Symposium
on Combinatorial Pattern Matching, number 664 in Lecture Notes in Computer
Science, pages 175-184. Springer-Verlag, 1992.

[CL94] W.I. Chang and E. L. Lawler. Sublinear approximate string matching and
biological applications. Algorithmica, 12(4/5):327-344, 1994.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

[CM94] W.I. Chang and T. Marr. Approximate string matching with local simi-
larity. In Proceedings of the 5th Annual Symposium on Combinatorial Pattern
Matching, number 807 in Lecture Notes in Computer Science, pages 259-273.
Springer-Verlag, 1994.

{Col94] R. Cole. Tight bounds on the complexity of the Boyer-Moore string matching
algorithm. SIAM Journal on Computing, 23(5):1075-1091, 1994.

[CP91] M. Crochemore and D. Perrin. Two-way string-matching. Journal of the »

ACM, 38(3):651-675, 1991.

[CP92] C.-H. Changand R. Paige. From regular expression to DFA’s using NFA’s. In =

Proceedings of the 3rd Annual Symposium on Combinatorial Pattern Matching,

number 664 in Lecture Notes in Computer Science, pages 90-110. Springer-

Verlag, 1992.

[CR94] M. Crochemore and W. Rytter. Texzt Algorithms. Oxford University Press,

1994.
[CRY5] M. Crochemore and W. Rytter. Squares, cubes and time-space efficient
string-searching. Algorithmica, 13(5):405-425, 1995."

[Cro92] M. Crochemore. String-matching on ordered alphabets. Theoretical Com- =

puter Science, 92(1):33-47, 1992.

[CV97a] M. Crochemore and R. Vérin. Direct construction of compact directed
acyclic word graphs. In Proceedings of the 8th Annual Symposium on Combi-
natoriel Pattern Matching, number 1264 in Lecture Notes in Computer Science,
pages 116-129. Springer-Verlag, 1997.

[CV9Tb] M. Crochemore and R. Vérin. On compact directed acyclic word graphs.
In Structures in Logic and Computer Science, number 1261 in Lecture Notes in
Computer Science, pages 192-211. Springer-Verlag, 1997.

[CWT79] B. Commentz-Walter. A string matching algorithm fast on the average. In

Bibliography 211

Proceedings of the 6th International Colloguium on Automate, Languages and
Programming, number 71 in Lecture Notes in Computer Science, pages 118-132.
Springer-Verlag, 1979.

[DGM94] M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching. Journal
of the ACM, 41(2):205-213, 1994

[FLSS92] V. A. Fischetti, G. M. Landau, J. P. Schmidt, and P. H. Sellers. Identifying
periodic occurrences of a template with applications to protein struture. In
Proceedings of the 9rd Annual Symposium on Combinatorial Pattern Matching,
number 664 in Lecture Notes in Computer Science, pages 111-120. Springer-
Verlag, 1992.

[FMOO] P. Ferragina and G. Manzini. Opportunistic data structures with applica-
tions. In Proceedings of the 41st IEEE Annuel Symposivm on Foundations of
Computer Science, pages 390-398. IEEE Computer Society Press, 2000.

[FMO1] P. Ferragina and G. Manzini. An experimental study of an opportunistic
index.. In Proceedings of the 12th ACM-SIAM Annuel Symposium on Discrete
Algorithms, pages 269-278. ACM Press, 2001.

[FNUO1] K. Fredriksson, G. Navarro, and E. Ukkonen. Faster than FFT: Rotation
Invariant Combinatorial Temnplote Maiching, volume II. Transworld Research
Network, 2001. To appear.

{FP74] M. J. Fischer and M. Paterson. String matching and other products. In
R. M. Karp, editor, Proceedings SIAM-AMS Complezity of Computation, pages
113-125. AMS, 1974.

[FT98] M. Farach and M. Thorup. Siring matching in Lempel-Ziv compressed
strings. Algorithmica, 20(4):388-404, 1998.

[FU98] K. Fredriksson and E. Ukkonen. Rotation invariant filters for mult1d1men—
sional string matching and orientation search. In Proceedings of the 9th Annual
Symposium on Combinatorial Pattern Matching, number 1448 in Lecture Notes
in Computer Science, pages 118-125. Springer-Verlag, 1998.

[Gag94] P. Gage. A new algorithm for data compression. The C Users Journal,
12(2), 1994.

[Gal79] . Z. Galil. On improving the worst case running time of the Boyer-Moore
string searching algorithm. Communications of the ACM, 22(9):505-508, 1979.

[GBY90] G. H. Gonuet and R. A. Baeza-Yates. An analysis of the Karp-Rabin string
matching algorithm. Information Processing Letters, 34(5):271-274, 1990.

[GBYS92] G. Gonnet, R. Baeza-Yates, and T. Snider. Information Retrieval: Data
Structures and Algorithms, chapter 3: New indices for text: Pat trees and Pat
arrays, pages 66-82. Prentice-Hall, 1992.

[GGY7] R. Giancarlo and R. Grossi. Multi-dimensional pattern matching with di-
mensional wildcards: Data structures and optimal on-line search algorithms.
Journal of Algorithms, 24(2):223-265, 1997.

[Glu61] V-M. Gluskov. The abstract theory of automata. Russian Maethematical
Surveys, 16:1-53, 1961.

[GPI0] Z. Galil and K. Park. An improved algorithm for approximate string match-
ing. STAM Journal on Computing, 19(6):989-999, 1990.

[GS81] Z. Galil and J. Seiferas. Linear-time string matching using only a fixed
number of local storage locations. Theoretical Computer Science, 13(3):331-336,

212 Bibliography

1981.

[Gus97] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[GV00] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In Proceedings of the 32th
ACM Symposium on the Theory of Computing, pages 397-406. ACM Press, 2000.

[Han93] C. Hancart. On Simon’s string searching algorithm. Information Processing
Letters, 47(2):95-99, 1993.

[HB¥B99] K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The PROSITE
database, its status in 1999. Nucleic Acids Research, 27:215-219, 1999,

[HM98] C. Hagenah and A. Muscholl. Computing epsilon-free NFA from regular ex-
pressions in O(nlog?(n)) time. In Proceedings of the 23th Symposium on Math-
ematical Foundations of Computer Science, number 1450 in Lecture Notes in
Computer Science. Springer-Verlag, 1998,

[HNO1] H. Hyyrd and G. Navarro. Faster bit-parallel approximate strmg matching.
Technical Report TR/DCC-2002-1, University of Chile, Santiago, Chile, 2002.

[Hor80] R. N. Horspool. Practical fast searching in strings. Seftware Practice and
Ezperience, 10(6):501-506, 1980.

[HSW97] J. Hromkovic, S. Seibert, and T. Wilke. Translating regular expressions
into small epsilon-free nondeterministic finite automata. In Proceedings of the
14th Annual Symposium on Theoretical Aspects of Computer Science, number
1200 in Lecture Notes in Computer Science, pages 55-66. Springer-Verlag, 1997.

[HU79] J. E. Hoperoft and J. D. Ullman. Introduction to Automats, Languages and
Computaetions. Addison-Wesley, 1979.

[Huf51] D. A. Huffman. A method for the construction of minimum redundancy
codes. Proceedings of the Institute of Electrical and Radio Engineers, 40:1098-
1101, 1951.

[Hyy01] H. Hyyrd. Explaining and extending the bit-parallel algorithm of Myers.
Technical Report A-2001-10, University of Tampere, Finland, 2001.

[THS*01] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri,
and G. Pavesi. On-line construction of compact directed acyclic word graphs. In
Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching,
number 2089 in Lecture Notes in Computer Science, pages 169-180. Springer-
Verlag, 2001.

[JTU96] P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string
matching algorithms. Software Practice and Ezperience, 26(12):1439-1458, 1996.

[K&r99] J. Kérkkéinen. Repetition-Based Text Indexing. PhD thesis, Department of
Computer Science, University of Helsinki, December 1999.

[Kil92] P. Kilpeldinen. Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki, Finland, 1992.

[KK99] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in
linear time. In Proceedings of the 40th IEEE Annual Symposium on Foundations
of Computer Science. IEEE Computer Society Press, 1999.

[KLPC99] D. K. Kim, J. S. Lee, K. Park, and Y. Cho. Efficient algorithms for
approximate string matching with swaps. Journal of Complexity, 15:128-147,
1999.

Bibliography 213

[KM92] P. Kilpeldinen and H. Mannila. Grammatical tree matching. In Proceedings
of the 8rd Annual Symposium on Combinatorial Pattern Matching, number 644
in Lecture Notes in Computer Science, pages 162-174. Springer-Verlag, 1992.

[KM93] S. K. Kannan and E. W. Myers. An algorithm for locating non-overlapping
regions of maximum alignment score. In Proceedings of the Jth Annual Sym-
posium on Combinatorial Pattern Matching, number 684 in Lecture Notes in
Computer Science, pages 74-86. Springer-Verlag, 1993.

[KM95] J. R. Knight and E. W. Myers. Approximate regular expression pattern
matching with concave gap penalties. Algorithmice, 14(1):85-121, 1995.

[KMP77] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in
strings. STAM Journal on Computing, 6(1):323-350, 1977.

[Knu73] D. E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison-Wesley, 1973.

[KNU00] J. Karkkainen, G. Navarro, and E. Ukkonen. Approximate string matching
over Ziv-Lempel compressed text. In Proceedings of the 11th Annual Symposium
on Combinatorial Pattern Matching, number 1848 in Lecture Notes in Computer
Science, pages 195-209. Springer-Verlag, 2000.

[Kos89] S. R. Kosaraju. Efficient tree pattern matching. In Proceedings of the 30th
IEEE Annual Symposium on Foundations of Computer Science, pages 178-183.
TEEE Computer Society Press, 1989.

[KR87] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249-260, 1987.

[KR95} G. Kucherov and M. Rusinowitch. Matching a set of strings with variable
length don’t cares. In Proceedings of the 6th Annual Symposium on Combinato-
rial Pattern Matching, number 937 in Lecture Notes in Computer Science, pages
230-247. Springer-Verlag, 1995.

[Kri87] K. Krithivasan. Efficient two-dimensional parallel and serial approximate
pattern matching. Technical Report CAR-TR-259, University of Maryland, 1987.

[KS87] K. Krithivasan and R. Sitalakshmi. Efficient two-dimensional pattern match-
ing in the presence of errors. Information Science, 43:169-184, 1987.

{KS95] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for
sorting by reversals, with application to genome rearrangement. Algorithmica,
13(1/2):180-210, 1995.

[KS98] J. Kérkkainen and E. Sutinen. Lempel-Ziv index for ¢g-grams. Algorithmica,
21(1):137-154, 1998. ’

[KTST98] T.Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple
pattern matching in LZW compressed text. In Proceedings of the 8th Data
Compression Conference, pages 103-112. IEEE Computer Society Press, 1998.

IKTSA99] T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-And approach
to pattern matching in LZW compressed text. In Proceedings of the 10th Annual
Symposium on Combinatoriel Pattern Matching, number 1645 in Lecture Notes
in Computer Science, pages 1-13. Springer-Verlag, 1999.

[KU94] J. Kérkkéinen and E. Ukkonen. Two and higher dimensional pattern match-
ing in optimal expected time. In Proceedings of the 5th ACM-SIAM Annual
Symposiuvm on Discrete Algorithms, pages 715-723. ACM Press, 1994.

[KU96] J. Kérkkdinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index

214 Bibliography

structures for string matching. In N. Ziviani, R. Baeza-Yates, and K. Guimaraes,
editors, Proceedings of the 3rd South American Workshop on String Proceswng,
pages 141-153, Recife, Brazil. Carleton University Press, 1996.

{Lev65] V. L. Levenshtein. Binary codes capable of correcting spurious insertions
and deletions of ones. Problems of Information Transmission, 1:8-17, 1965.
[LT97] D. P. Lopresti and A. Tomkins. Block edit models for approximate string

matching. Theoretical Computer Science, 181(1):159-179, 1997.

[LV89] G. M. Landau and U. Vishkin.. Fast parallel and serial approximate string
matching. Journal of Algorithms, 10(2):157-169, 1989.

ILW75] R. Lowrance and R. A. Wagner. An extension of the string-to-string correc-
tion problem. Journol of the ACM, 22(2):177-183, 1975.

[Man89] U. Manber. Introduction to Algorithms. Addison- -Wesley, 1989.

[Man97] U. Manber. A text compression scheme that allows fast searching directly in
the compressed file. ACM Transactions on Informatzon Systems, 15(2):124-136,
1997.

[MBY91] U. Manber and R. A. Baeza-Yates. An algorithm for string matching with
a sequence of don’t cares. Information Processing Letters, 37(3):133-136, 1991.

[McC76] E. M. McCreight. A space-economical suffix tree construction algom’chm
Journal of Algorithms, 23(2):262-272, 1976.

[Meh84] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.
Springer-Verlag, 1984.

[Mel96] B. Melichar. String matching with & differences by finite automata. In Pro-
ceedings of the 13th International Conference on Pattern Recognition, volume 1T,
pages 256260, Vienna, Austria. IEEE Computer Society Press, 1996.

IMKT*00} T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa.
Bit-parallel approach to approximate string matching in compressed texts. In
Proceedings of the 8th String Processing and Information Retrieval, pages 221-

- 228. IEEE Computer Society Press, 2000.

[IMM89] E. W. Myers and W. Miller. Approximate matching of regular expressions.
Bulletin of Mathematical Biology, 51:7-37, 1989.

[MM91] G. Mehldau and E. W. Myers. A system for pattern matching applications
on biosequences. Computer Applications in Biosciences, 9(3):299-314, 1991.
[MM93] U. Manber and E. W. Myers. Suffix arrays: a new method for on-line s’mng

searches. SIAM Journal on Computing, 22(5):935-948, 1993.

[MM96] R. Muth and U. Manber. Approximate multiple string search. In Proceed-
ings of the Tth Annual Symposium on Combinatorial Pattern Matching, number
1075 in Lecture Notes in Computer Science, pages 75-86. Springer-Verlag, 1996.

[MNZBY00] E.Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible
word searching on compressed text. ACM Transactions on Information Systems,
18(2):113-139, 2000. ;

[MP70] J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm.
Report 40, University of California, Berkeley, 1970.

[MP94] S. Muthukrishnan and K. Palem. Non-standard stringology: Algorithms
and complexity. - In Proceedings of the 26th ACM Symposium on the Theory of

 Computing, pages 770-779. ACM Press, 1994.
[MRS96] H. M. Mahmoud, M. Régnier, and R. T. Smythe. Analysis of Boyer-Moore-

Bibliography 215

Horspool string-matching heuristic. Report 9634, The George Washington Uni-
versity, 1996. :

[MW94] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file
systerns. In Proceedings of the USENIX Winter 1994 Technical Conference,
pages 23-32, San Francisco, CA. USENIX Association, 1994.

[Mye92] E. W. Myers. A four russians algorithm for regular expression pattern
matching. Journal of the ACM, 39(2):430-448, 1992.

[Mye94] E. W. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12(4/5):345-374, 1994.

[Mye95] E. W. Myers. Approximately matching context-free languages. Information
Processing Letters, 54(2):85-92, 1995,

[Mye96] E. W. Myers. Approximate matching of network expression with spacers.
Journal of Computational Biology, 3(1):33-51, 1996. =

[Mye99] E. W. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. Journal of the ACM, 46(3):395-415, 1999.

[Nav98] G. Navarro. Approzimate Text Searching. PhD thesis, Depdrtment of Com-
puter Science, University of Chile, 1998.

[Nav00] G. Navarro. Improved approximate pattern matching on hypertext. Theo-
retical Computer Science, 237:455-463, 2000.

[Nav0la] G. Navarro. A guided tour to approximate string matching. ACM Com-
puting Surveys, 33(1):31-88, 2001.

[Nav01b] G. Navarro. Nr-grep: a fast and flexible pattern matching tool. Software
Practice and Ezperience (SPE), 2001. To appear.

[Nav0lc] G. Navarro. Regular expression searching over Ziv-Lempel compressed
text. In Proceedings of the 12th Annuel Symposium on Combinatorial Pat-
tern Matching, number 2089 in Lecture Notes in Computer Science, pages 1-17.
Springer-Verlag, 2001.

[NBY99] G. Navarro and R. Baeza-Yates. Very fast and simple approximate string
matching. Information Processing Letters, 72:65-70, 1999.

INBY00] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approxi-
mate string matching. Journal of Discrete Algorithms, 1(1):205-239, 2000 Spe~
cial issue on Matching Patterns.

[NKT*01}] G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster
approximate string matching over compressed text. In Proceedings of the 11th
Data Compression Conference, pages 459-468. IEEE Computer Society Press,
2001. » »

INMN'00] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.
Adding compression to block addressing inverted indexes. Information Retrieval,
3(1):49-77, 2000.

[NR99a] G. Navarro and M. Raffinot. Fast regular expression search. In Proceedings
of the 3rd Workshop on Algorithm Engineering, number 1668 in Lecture Notes
in Computer Science, pages 199-213. Springer-Verlag, 1999,

[NR99b] G.Navarroand M. Raflinot. A general practical approach to pattern match-
ing over Ziv-Lempel compressed text. In Froceedings of the 10th Annual Sym-
posiwm on Combinatorial Pattern Matching, number 1645 in Lecture Notes in
Computer Science, pages 14-36. Springer-Verlag, 1999.

216 Bibliography

[NROO] G. Navarro and M. Raffinot. Fast and flexible string matching by combinipg
bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics
(JEA), 5(4), 2000. http://wuw.jea.acn.org. .

[NROla] G. Navarro and M. Raffinot. Compact DFA representathn for fas§ regglar
expression search. In Proceedings of the 5th Workshop on Algorithm Engineering,
number 2141 in Lecture Notes in Computer Science, pages 1-12, 2001.

[NRO1b] G.Navarro and M. Raffinot. Fast and simple character classes and bo‘unded
gaps pattern matching, with application to protein searching. In Proceedmgs of
the 5th Annual International Conference on Computational Molecular Biology,
pages 231-240. ACM Press, 2001. Lo .

[NSF01] P. Nicodeme, B. Salvy, and P. Flajolet. Motif statistics. Theoretical Com-
puter Science; 2001. To appear. ' _ .

[NT00] G. Navarro and J. Tarhio. Boyer-Moore string matching over Zlijemp.el
compressed text. In Proceedings of the 11th Annual Symposium on C(.)mbma-torw[
Pattem Matching, number 1848 in Lecture Notes in Computer Science, pages
166-180. Springer-Verlag, 2000. ' . |

[Par96] K. Park. Analysis of two-dimensional approximate pa,tten} matghmg algo-
rithms. In Proceedings of the 7th Annual Sympesium on Combinatorial Paitern
Matching, number 1075 in Lecture Notes in Computer Science, pages 335-347.
Springer-Verlag, 1996. ' . ' ‘

[Pea8l] W. R. Pearson. Searching protein sequence libraries: comparison of the
sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Ge-
nomics, 11:635-650, 1991, ' ' .

[Pev00] P. A. Pevzner. Computational Moleculor Biology: An Algorithmic Approach.
MIT Press, 2000. ‘

[Pin85] R. Y. Pinter. Efficient string matching with don’t care pattern. In A. Apos-

tolico and Z. Galil, editors, Combinatorial Algorithms on Words, pages 11-29. ’

Springer-Verlag, 1985. o
[PL88] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence

comparison. Proceedings of the Nationel Academy of Sciences of the U.S.A.,

85:2444-2448, 1988, ' ' N
[Raf97] M. Raffinot. On the multi backward dawg matching algorithim (MultiBDM).

In R. Baeza-Yates, editor, Proceedings of the 4th South American Workshop on

String Processing, pages 149-165, Valparaiso, Chile. Carleton University Press,

1997. . . '
{Rég89] M. Régnier. Knuth-Morris-Pratt algorithm: an analysis. In Proceedings of

the 1/th Symposiwm on Mathematical Foundations of Computer Science; number

379 in Lecture Notes in Computer Science, pages 431-444. Springer—Ver.lag, 1989.
[RH91] S. Ranka and T. Heywood. Two-dimensional pattern matching with & mis-

matches. Pattern Recognition, 24(1):31-40, 1991. o

[RS97] M. Régnier and W. Szpankowski. On the approximate pattern occurrence i

a text. In Proceedings Compression and Complexity of SEQUENCES’97. IEEE

Press, 1997. ,

[Ryt80] W. Rytter. A correct preprocessing algorithm for Boyer-Moore string search-

ing. SIAM Jouwrnal on Computing, 9(3):509~-512, 1980. .
[Sad99] K. Sadakane. A modified Burrows-Wheeler transformation for case-

Bibliography 217

insensitive search with application to suffix array compression. In Proceed-
ings of the 9th Data Compression Conference, page 548, 1999. Poster. http:
//www-imai.is.s.u~tokyo.ac. jp/"sada/papers/Sada99b.ps. gz.

[Sad00] K. Sadakane. Compressed text databases with efficient query algorithms
based on the compressed suffix array. In Proceedings of the 11st International
Symposium on Algorithms and Computaetion, number 1969 in Lecture Notes in
Computer Science, pages 410-421. Springer-Verlag, 2000.

[Sch98] J. P. Schmidt. All highest scoring paths in weighted grid graphs and their
application to finding all approximate repeats in strings. SIAM Jouwrnal on
Computing, 27(4):972-992, 1998.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, 1988.

[Sel80] P. H. Sellers. The theory and computation of evolutionary distances: Pattern
recognition. Journal of Algorithms, 1(4):359-373, 1980.

[Sim93] . Simon. String matching algorithms and automata. In R. Baeza-Yates and
N. Ziviani, editors, Proceedings of the 1st South American Workshop on String
Processing, pages 151157, Brazil. Universidade Federal de Minas Gerais, 1993, .

[SK83] D. Sankoff and J. B. Kruskal. Time Warps, String Edits, and Macro-
molecules: the Theory and Practice of Sequence Comparison. Addison-Wesley,
1983.

[SM98] M.-F. Sagot and E. W, Myers. Identifying satellites and periodic repetitions
in biological sequences. Journal of Computational Biology, 5:539--554, 1998.
[SMT*00] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa. A
Boyer-Moore type algorithm for compressed pattern matching. In Proceedings of
the 11th Annual Symposium on Combinatorial Pattern Matching, number 1848

in Lecture Notes in Computer Science, pages 181-194. Springer-Verlag, 2000.

[Sri86] M. A. Sridhar. Efficient algorithms for multiple pattern matching. Technical
Report 661, University of Wisconsin-Madison, 1986.

[ST95] E. Sutinen and J. Tarhio. On using g-gram locations in approximate string
matching. In Proceedings 3rd Annual European Symposium, number 979 in Lec-
ture Notes in Computer Science, pages 327-340. Springer- Verlag, 1995.

[Sun90] D. M. Sunday. A very fast substring search algorithm. Communications of
the ACM, 33(8):132-142, 1990. ‘

[SV96] S.C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching
of patterns using a labeling paradigm. In Proceedings of the 37th IEEE Annual
Sympasium on Foundations of Computer Science. IEEE Computer Society Press,
1996.

[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular
sequences. Journal of Molecular Biology, 147:195-197, 1981.

[8Z97] D. Shasha and K. Zhang. Approximate tree pattern matching. In Pattern
Matching Algorithms, pages 341-371. Oxford University Press, 1997.

[Tho68] K. Thompson. Regular expression search algorithm. Communications of
the ACM, 11:419-422, 1968.

[TSM*01] M. Takeda, Y. Shibata, T. Matsumoto, T. Kida, A. Shinohara, S. Fuka-
machi, T. Shinohara, and S. Arikawa. Speeding up pattern matching by text
compression: The dawn of a new era. Journal of the Information Processing
Society of Japan (IPSJ), 42(3), 2001. To appear.

218 Bibliography

[TU8S] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for construct-
ing shortest common superstrings. Theoreticol Computer Science, 57(1):131-145,
1988.

[TU93] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching.
SIAM Journal on Computing, 22(2):243-260, 1993.

[Ukk85] E. Ukkonen. Finding approximate patterns in strings. Jowrnal of Algo-
rithms, 6(1-3):132-137, 1985. . "

[Ukk92] E. Ukkonen. Approximate string matching with g¢-grams and maximal
matches. Theorelical Compuler Science, 92(1):191-212, 1992.

[Wat96] B. W. Watson. A new regular grammar pattern matching algorithm. In
Proceedings of the Jth Annual European Symposium, number 1136 in Lecture
Notes in Computer Science, pages 364-377. Springer-Verlag, 1996.

[WM92a] S. Wu and U. Manber. Agrep — a fast approximate pattern-matching
tool. In Proceedings USENIX Winter 1992 Technical Conference, pages 153~
162. USENIX Association, 1992.

[WM92b] S. Wu and U. Manber. Fast text searching allowing errors. Communica-
tions of the ACM, 35(10):83-91, 1992.

[WM94] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Report
TR-~94-17, Department of Computer Science, University of Arizona, Tucson, AZ,
1994. :

[WMB99] 1. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Van Nostrand
Reinhold, 2nd edition, 1999. :

[WMM95] S. Wu, U. Manber, and E. W. Myers. A subquadratic algorithm for
approximate regular expression matching. Journal of Algorithms, 19(3):346-360,
1995. .

[WMM96] S. Wu, U. Manber, and E. W. Myers. A subquadratic algorithm for
approximate limited expression matching. Algorithmica, 15(1):50-67, 1996.
[Yao79] A. C. Yao. The complexity of pattern matching for a random string. STAM

Journal on Computing, 8(3):368-387, 1979. , ,

[ZL77] J. Ziv and A. Lempel. A universal algorithin for sequential data compression.
IEFEE Transactions on Information Theory, 23:337-343, 1977.

[Z1.78] J. Ziv and A. Lempel. Compression of individual sequences via variable
length coding. IEEE Transactions on Information Theory, 24:530-536, 1978.

(2897} K. Zhang and D. Shasha. Tree pattern matching. In A. Apostolico and
7. Galil, editors, Pattern Matching Algorithms, chapter 11, pages 341-371. Ox-
ford University Press, 1997,

[ZSW94] K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree matching in
the presence of variable length don’t cares. Journal of Algorithms, 16(1):33-66,
1994.

[2T89] R. F. Zhu and T. Takaoks. A technique for two-dimensional pattern match-
ing. Communications of the ACM, 32(9):1110-1120, 1989. ;

[ZWM99] K. Zhang, L. Wang, and B. Ma. Computing similarity between RNA
structures. In Proceedings of the 10th Annual Sympesium on Combinatorial
Pattern Matching, number 1645 in Lecture Notes in Computer Science, pages

281--293. Springer-Verlag, 1999.

Index
l Sysmbols J Boyer-Moore algorithm................. 22, 54
-€closure 112,113 complexity. ... 24
example............ ... L 113 PTeprocessing ..., 24
related references........................39
BPD algorithm .. 156, 168, 174, 175, 180, 182,
ABNIJ:;E/I ?ég;)rithm ... 163, 166, 168, 170, 174, exiﬁfple
: 154 S R examplen 157
example 7 168 BPGlushkov algorithm.......... 122, 123, 1;7
a,('vchc """"""""" P bit-parallel :123
ﬁgvagced Aho-Corasick algorithm 54, 74 le:iﬁ}gﬁ}rlthm-..}_ﬁo, 164, 168, 174, 175, 184
Aho-Gorasick algoritpg -0 2o B4 74 Xample ... 161
advanced ’ JOY 524 BPR algorithm .. 158, 167, 168, 174, 175, 180,
;(zmplelxity 50 e\:;i?ple 153
AMPIC. oo 52, 53 Thomncn 1o hi 118 116 Taa o
Dreprocessing, 50 8P Thompson algorithum... 118, 119, 123, 137
approximate extended soarching., 175 exgm;.)le 120
:ﬁgoro)ﬂ;nate matching.............. L 145 Bé?dﬁlggpls.g?gs&é """""""""""" 112
MAON, 1 | HA_Oracle. Mittinle mroo i 5
¢ o 21, 150, 151, 174 Bufld_.Oracle_MultipIe procedure, ;0
BuildDFA algorithm 113
o ' . BuildEps procedure.............. ... 11
Backward Dawg Matching algorithm BuildState procedure llg
........ seeeeeeeeeo see BDM algorithm BuildTran procedure..................... 123
Backv;rard Nondeterministic Dawg Matching o
~ algorithm........... see BNDM algorithm
Backward Oracle Matching algorithm .
BD:\&. ‘I. e, sec BOM algorithm a;snsi;l :f d;?racters 77,78
11 ;L(%Oll;hm T 28, 80, 166 inthé 1:;@631‘11.......‘...........1 78
related references. ..o ... 4G Wb p ey Ty 80
BestFactor procedure 130 Commeln b Walter algotithm ... 58, 75
Bison software, 139 COMPIEXIEY .o+ 56
Bit-paga,llelisrle, 45, 62, 63, 78, 117, 119, 122, Compuge.pref procedure 126
13%’ 150, 152, 154, 158, 180 Compute Reach procedure................ 133
block distance............................. 184 ~ Constant space algorithms.................. 40
BNDll\éIGalgorithm ..29, 63, 78, 80, 82, 84, 131, (&igzi)é’cs-fres gramm? 184
_ SRR . uperp procedure «................. 75
example.. e 32, 33 CreateTree algorithm 1256
multiple................ see multiple BNDM
BNDM.Preproc procedure 133
B»(gigli;%?'whm 35, 36,80 deletion.......................... . 145, 155
; I8 37 DFA..... 111-113, 117, 118, 126, 15 179,
. muétxé)lle....‘.i see SBOM algorithm searching...... o e ’.).101’ e SZ
ounded length gaps................. .. 77,81 DFAClassical algorithm.............. 11{;,' 137

220 Index

DFAModules algorithm 115 single string searching.................... 40
diagonal ...l 150, 153, 154, 180 hierarchical verification 164, 164, 175
diagonal-wise bit-parallelism.............. 154 Horspool algorithm................. 25, 54, 80
differences R P 145 example 26
DP algorithm 149, 152, 157 maultiple......... see Set Horspool algorithm
dynamic multiple string matching.......... 74

dynamic programming algorithms ... 146, 147,
148, 150, 176

edit distance ...l 145, 146, 177
EpsClosure algorithm 113
example ..o 113
experimental map
approximate searching.................. 181
multiple string ... 74
regular expressionoo.viiiiiiin.. 137
single stringooii i, 38
experiments...............u0 38, 74,137, 181
extended string matching e i
Extended-BNDM algorithm 90, 93, 96
example ... e 95
Extended-Shift-And algovithm 90, 91
example ... 91

factor oracle

multiple stringl ...69
Search. ..ot e 35, 70
single steing ..ol 84
factor searching
multiple string matching............. 42, 62
single string matching 16, 27, 34
filteringoooviiiii 162, 170
regular expressionol 125
Flex softwareoovvniiiiiiiiin., 139
Four-Russians approach.............. 151, 178
Gaps-BNDM algorithm 85
example ... ol 87
Gaps-Shift-And algorithm.................. 83
example ... i 83
Glushkov algorithm.................. 109, 122
bit~-parallelol 122
Glushkov automaton..1085, 111, 113, 115, 126,
180
example. ...t 108, 125
Glushkov construction.102, 105, 109, 122, 126
complexity. ... i 110
properties ...l i 109
Glushkov_variables procedure........ 108, 109
BraPh oo e 17
Hamming distance..................o..... 184
hash table.............. .ol 60, 171
hashing
. approximate searching 171

multiple string searching................. 59

IDSETIOM « v v e et e 145, 155

Knuth-Morris-Pratt algorithm.......... 16, 18
complexify ...t 19
PreProcessing ..o it ninraianianens 19
related references............. . oo 39

Levenshtein distancecooovvviieons 145

Lexsoftware ..o 139

Imin procedure.ooieiiiiiiiiiat, 126

module...........oooiiiii L, 115, 117

MultiBP algorithm 174, 175, 182

multidimensional text..................... 184

MultiFactRE algorithm e 130

MultiHash algorithm............ 171, 173, 182

MultiPEX algorithm................. 173, 182

multiple approximate searching 171

multiple BNDM 63, 138
example. ... il 63, 65

multipte Horspool algorithm

................ see Set Horspool algorithm

multiple pattern searching.................. 96

multiple Shift-And e 45, 62
example...... ..o i 46, 48

multiple string matching................... 41
regular expression see MultiStringRE

algorithm

MultiStringRE algorithm .. 126, 127, 131, 133,

138, 139
example e 127
network expressions.........ooiiiiiiioiinn 179

NFA102, 111-113, 116-118, 126, 139, 150, 152,
166, 174, 177, 178, 180

NFAModules algorithm 137, 139
optimal path.............. ..., 147, 177
optional characters..................... 71, 87
Oracle-on-line algorithm.................... 35
Oracle_add letter procedure................ 35
Parse algorithm............o...o 139
PAISIng ..ottt e 101, 139

example 140
partitioning ool 163, 173

Index 221

permutation oo i 184
PEX algorithm........ 163, 185, 170, 173, 184
example i i 165
positive-length gaps.............. ..ol 180
Pref procedure.......ccovviviiiiineninnnn 126
prefix searching
multiple string matching............. 42, 45
single string matching................ 16, 17
PROSITE ...ooeieeeeiaan, 77, 81, 97, 179
regular expression............... 101, 175, 179
filtering. ..ol 125
regular expression matching...............101
regular expression parsing 101, 189
regular expression search.................. 111
RegularBNDM algorithm 131, 133, 138
EXAMPIE oo e e 134
repeatable characters................... 77, 89
reversals e 184
Reverse_Arrows procedure........... R 133
row-wise bit-parallelism 152
SBDM algorithm 63, 68, 69
SBOM algorithm................... 63, 69, 74
complexity ... 72
example oo 72
Set Backward Dawg Matching algorithm
...................... see SBDM algorithm
Set Backward Oracle Matching algorithm
...................... see SBOM algorithm
Set Horspool algorithm 56, 163
complexity..oooiir i 56
eXampPle. .o s 57, 58
Set, of regular expressions 139
Shift-And algorithm....17, 19, 78, 80, 82, 118
multiple see multiple Shift-And
Shift-Or algorithm.............. 17, 19, 78, 80
complexity iiii e 20
example.... ... o i 21, 22
shortest pathcooiiiiii 177
SIGNAEUTES . ..o tii i 171
string matching...........ooooiiiaa 15

substitution. ...l 145, 155
suffix automaton
multiple string ... 68
single stringooiii i 28
suffix searching
multiple string matching............. 42, 54
single string matching................ 16, 22
Sunday algorithm.............. ...l 26
superimposed automata................... 174
supply function
Aho-Corasick algorithm.................. 50
factororacle.ot 34, 69
Thompson algorithm 102, 104
bit-paralleloo i, 118
complexity........ooiiiiiiiiiiiiiia, 105
example..... ... i, 105
SEATCH . cii i e 111
Thompson automaton. 102, 118
example i 105
properties ool 104
Thompson construction 102
‘Thompson.recur procedure................ 104
tree representation.............. 101, 108, 139
3 0 - T PN 44 50, 55, 69
Trie algorithm e e 44
unbounded alphabets 76
|v]
Verify proceduret 175
[w]
wildcards. ...l 89
Wu-Manber algorithm.................. 58, 74
example ... i 61
Yace software ... 139

