
1192 IEEE COMMUNICATIONS LETTERS, VOL. 16, NO. 8, AUGUST 2012

An Adaptive Combination Query Tree Protocol for
Tag Identification in RFID Systems

Yi Jiang and Ruonan Zhang

Abstract—A reader must be able to identify tags as quickly
as possible, so tag anti-collision is a significant issue for the
RFID system. In this paper, we propose a novel tag anti-collision
protocol (ACQT), which is suitable for a large mobile tags
environment. Based on a 3-ary tree, it has the optimal capacity
to identify for tree-based protocols. Using a combination query
tree, it can solve the problem of not being able to generate a
3-ary tree when the length of a tag’s ID is not a multiple of 3.
The joining and leaving strategies can efficiently be applied for
tag mobility. The simulation results show that the protocol we
present can achieve better performance than previous protocols
by decreasing identification delay, collision cycles and idle cycles.

Index Terms—3-ary tree, adaptive query tree, tag identifica-
tion, RFID.

I. INTRODUCTION

THE RFID system is a contactless automatic identification
system attracting more attention recently. A reader rec-

ognizes objects through wireless communications with tags,
which are attached to objects and have a unique ID [1]. When
a reader sends a query, it has multiple tags to respond to in
its communication range, and a collision has occurred. The
reader must be able to identify tags as quickly as possible.
Considered to be the limit of tags, the collision issue needs
urgently to be solved.

To settle the collision issue successfully, several tag anti-
collision protocols have been proposed, which can be grouped
into 2 types: deterministic methods or probabilistic methods.
The deterministic methods are based on a tree-based protocol,
and the probabilistic methods are based on the ALOHA
protocol whose performance is degraded with a large number
of tags, so we mainly studied the tree based protocols. The
QT protocol [2], based on a binary tree, has a memoryless
character, which does not use the history of the prior queries.
The HQT protocol [3] is based on a 4-ary tree which has
better performance than QT, but it is not an optimal choice
when compared to a q-ary tree. The literature [4] is the best
tree-based protocol, but not all of the lengths of a tag’s ID
can be multiples of 3.

In this paper, we propose a novel tag anti-collision protocol
ACQT (the Adaptive Combination Query Tree), which is

Manuscript received February 18, 2012. The associate editor coordinating
the review of this letter and approving it for publication was C. Mitchell.

The authors are with the School of Electronics and Information, Northwest-
ern Polytechnical University, Xi’an, Shanxi province, 710072 China (e-mail:
peipeiv88nwpu@hotmail.com).

This work was supported by the Nature Science Foundation of Shanxi
Province of China (2012JQ8005), the Basic Research Foundation of NWPU
(JC20100214), and the E-star Foundation of the School of Electronics and
Information in NWPU.

Digital Object Identifier 10.1109/LCOMM.2012.060112.120345

suitable for large mobile tags with a 3-ary tree. It has the best
capacity to identify tags. To deal with binary tag IDs, we use
a conversion scheme to convert binary to 3-ary. We consider
the anti-collision protocol from two aspects: If the length of
a tag’s ID is the multiple of 3, we use a query tree based 3-
ary tree, if not, we use a combination query tree. To account
for the mobility of tags, we propose the joining and leaving
strategy to reduce the idle and collision cycles. The simulation
results show that the protocol we present outperforms previous
protocols by decreasing identification delay, collision cycles
and idle cycles.

The remainder of the paper is organized as follows. We
describe our proposed protocol in Section II. Section III ana-
lyzes the performance of our protocol. Finally, our concluding
remarks are stated in section IV.

II. THE PROPOSED ACQT PROTOCOL

In a previous paper [5], the authors showed that a 3-ary tree
is optimal and that in a q-ary tree, if q is greater than 3, the
performance is decreased as q is increased. Thus, if the length
of tag’s ID is a multiple of 3, we can choose a 3-ary tree to
deal with collisions; however, if it is not a multiple of 3, we
select a combination of a binary tree and a 3-ary tree.

A. The Conversion of Binary to 3-ary

In this section, we give the formula for the conversion of
binary to 3-ary. It is an extension of the protocol [4] which
is based only on the specific bits. Our formula is suitable
for converting any number of bits, except for those that are
indivisible by 3.

We define L, l is the length of tag’s ID with binary and
ternary expression respectively, and L is the multiple of 3.
Thus l/2 = L/3. We must find a way to convert L bits
(EPC)2 to l bits (EPC)3. The (EPC)2 is denoted by
x = {x1, x2, ...xi, ..., xL}, xi ∈ {0, 1}, and the (EPC)3
is denoted by y = {y1, y2, ...yj ..., yl}, yj ∈ {0, 1, 2}. The
relationship of (EPC)2 and (EPC)3 is described by (1):

xi × 22 + xi+1 × 21 + xi+3 × 20 = yj × 31 + yj+1 × 30 (1)

i = {1, 4, 9...3k+ 1}, k ∈ {1, 2, ...L/3− 1}and

j = {1, 3, 5...2t+ 1}, t ∈ {1, 2, ...l/2− 1}

From the above discussion, a conversion table can be
created as shown in Table I.

1089-7798/12$31.00 c© 2012 IEEE

JIANG and ZHANG: AN ADAPTIVE COMBINATION QUERY TREE PROTOCOL FOR TAG IDENTIFICATION IN RFID SYSTEMS 1193

TABLE I
THE CONVERSION OF BINARY TO 3-ARY

binary
3-ary

000
20121110020100

111110101100011010001
21

TABLE II
THE IDENTIFICATION PROCEDURE OF 6 TAGS WITH 6BITS

step
1

13
12
11
10
9

8
7
6
5
4
3
2

Reader query Tag respond Q yQ1 yQ2 yQ3
Collision:1-6
Collision:1-3
Collision:4-5

idetify:6
idetify:1

Collision:2-3
idle

idetify:4
idetify:5

idle
idetify:2

idle
idetify:3012

011
010
12
11
10
02
01
00
2
1
0

0,1,2

012
011,012

010,011,012

12,010,011,012

11,12,010,011,012
10,11,12,010,011,012

02,10,11,12,010,011,012
01,02,10,11,12

00,01,02,10,11,12
2,00,01,02,10,11,12

1,2,00,01,02

2,00

2,00,10

2,00,10,11,010

2,00,10,11
2,00,10,11

2,00
2,00

0

0,1,01
0,1,01
0,1,01

0,1,01
0,1,01
0,1,01

0,1
0,1
0,1

0,1,01
0,1,01

02
02

02
02,12

02,12,011

2

02,12
2,00,10,11,010

2,00,10,11,010,012 02,12,011

B. The Query Tree based 3-ary Tree

Based on the idea of the QT [2] and using the formula
we presented in section A, we propose an identification
process applying to 3-ary query trees. It will provide available
information for the study of the adaptive protocol in the next
section by recording the corresponding content in different
variables.

A reader has a queue Q, which maintains queries for the
current identification process. At the beginning of the process,
the reader sends queries from Q to ask tags in order to
recognize them by their responds, which includes three cases
on communication between tags and reader.

1) Identify: Exactly one tag responds to the reader. If there
are enough identification query, it can recognize all tags. The
reader notes the query to a queue yQ1.

2) Collision: Number of tags that respond to the reader is
more than one. The reader is unable to recognize any tags. The
reader notes the query to a queue yQ2, then adds {0, 1, 2} to
the queries respectively, which can compose the new queries
to execute next identification process, and bring them to the
queue Q.

3) Idle: No tag responds. It is a waste that should be
reduced. The reader notes the query to a queue yQ3.

The reader deletes a query from Q if it receives the result
as identify or idle. If it receives the result as a collision, it
will add three new queries to Q, then delete the old one and
transmit them. The tag identification process continues until
Q is empty.

For example, we assume that there are six tags which have a
tag ID with a length of 6bits, which are (000000), (001010),
(001110), (011000), (100111), and (110111).The conversion
of binary to 3-ary is executed. There are six tags with ternary,
which are (0000), (0102), (0120), (1000), (1121), (2021).
Table II lists the details of this identification procedure. Fig.1
is its corresponding ternary tree.

0201

Collision
node

identify
node idle node

12

0 1

011

00 10 11

010 012

2

Fig. 1. The 3-ary tree to the identification procedure of six tags with six
bits.

TABLE III
THE IDENTIFICATION PROCEDURE OF 6TAGS WITH 5BITS

step

1

14
13
12
11
10
9
8
7
6
5
4
3
2

Reader query Tag respond Q yQ1 yQ2 yQ3

Collision:1-6

Collision:1-3
Collision:4-5

idetify:1
Collision:2-3

idle
idetify:4
idetify:5

idle

idle
Collision:2-3

idetify:3
idetify:40111

0110
011
010
12
11
10
02
01
00
2
1
0

0,1,2

0111

0110,0111
011

010,011

12,010,011
11,12,010,011

10,11,12,010,011
02,10,11,12,010,011

01,02,10,11,12

00,01,02,10,11,12

2,00,01,02,10,11,12
1,2,00,01,02

2,00

2,00,10

2,00,10,11,0110,0111

2,00,10,11,0110
2,00,10,11
2,00,10,11

2,00,10,11
2,00,10,11

2,00
2,00

0

0,1,01
0,1,01
0,1,01
0,1,01
0,1,01
0,1,01

0,1
0,1
0,1

0,1,01,011

0,1,01,011
0,1,01,011

02
02

02
02,12

02,12,010
02,12,010
02,12,010

02,12,010

idetify:6 2

C. The Combination Query Tree (CQT)

If L is not a multiple of 3, we select a combination query
tree with binary tree and 3-ary tree. In such a circumstance,
it can be divided into two parts to study.

• If the remainder after L is divided by 3 is 1 bit (binary),
it can be ignored, and the method of query tree based on
3-ary tree can be used to identify all tags. After the above
procedure, the one remainder tag to the same prefix, we
can identify directly. Then, the two remainder tags to the
same prefix, we can judge them by its last bit as 0 or 1.

• If the remainder after L is divided by 3 is 2 bits (binary),
it can be dealt with by binary tree, after using the method
of query tree based on 3-ary tree to identify all of the
tags. If the parts of a multiple of 3 belonging to tags are
different, the tags can be recognized without the other
process, if not, the remainder bits corresponding to the
tree has two branches to deal with.

In a second case, there are six tags which have tag ID
lengths of 5bits, which are (00000), (00110), (00111), (01100),
(10011), and (11001). In the first 3bits, we apply the method
of 3-ary tree, and the remaining 2bits can use the method of
binary tree.

The conversion of binary to 3-ary is executed. There are
six tags with ternary and binary, which are (00 00), (01 10),
(01 11), (10 00), (11 11), (20 01). Table III lists the details
of this identification procedure. Fig.2 is its corresponding
combination tree.

1194 IEEE COMMUNICATIONS LETTERS, VOL. 16, NO. 8, AUGUST 2012

Collision
node

identify
node

idle node

12

10

01

011

02

010

00 10 11

2

0110 0111

Fig. 2. The combination tree to the identification procedure of six tags with
five bits.

D. The Adaptive Combination Query Tree (ACQT)

To consider the mobility of tags, we classify tags into
staying tags, arriving tags, and leaving tags. All query pro-
cedures which are used to identify tags can be divided into
identification cycles, collision cycles, and idle cycles.

1) Joining strategy: In the next process, there are some
tags arriving. The collision cycles can be judged only once,
because a collision has happened with staying tags, so it does
not need to be judged again. Then, the idle cycles and the
identification cycles are used for recognizing new tags, except
for the identification cycles at the end of the tree, which have
been used by staying tags. It does not need to judge from
the root node of the tree as does the HQT [3]. The cases are
categorized as follows:

• Identify: the query corresponding to the two kinds of
cycles which sends to tags can obtain a readable response.

• Collision: the query corresponding to the two kinds of
cycles which sends to tags can obtain more than one
response. We use CQT to deal with it.

2) Leaving strategy: In the next process, there are some
tags leaving, it makes abnormal queries as follows:

• A collision query has three child nodes belonging to a
3-ary tree, in which it has an identification node and
two idle nodes. So, we can judge their father node
as an identification node, and delete the three queries
corresponding to the three child nodes.

• A collision query has three child nodes belonging to a
3-ary tree, in which it has three idle nodes. So we can
judge their father node as also being an idle node and
delete the three queries corresponding to the three child
nodes.

• A collision query has two child nodes belonging to a
binary tree, in which it has an identification node and
an idle node. So, we can judge their father node as
being an identification node, and delete the two queries
corresponding to the two child nodes.

• A collision query has two child nodes belonging to a
binary tree, in which it has two idle nodes. So we can
judge their father node as also being an idle node and
delete the two queries corresponding to the two child
nodes. Based on father’s brother node, we can judge
whether to delete the father or not.

Collision
node

identify
node

idle node

(a)

(d)

(c)

(b)

delete node

01 12

1

02

0

01 12

1

00 02

0

12

1

02

010

01 12

1

02

010 011

0

00 10 11

2 2

00 01 10 11

011

10 11

2 20

00 10 11

Fig. 3. The tree corresponding to the four cases.

The tree corresponding to the four cases is depicted in Fig.3
If the tags have the same prefix, each tag can choose to

delay a given time slot based on their next bits. This idea
is already introduced in the HQT [3], but HQT only records
the values of a busy duration and a busy starting time for a
channel. If a cycle does not respond in this process, it will not
be observed, so the scheme cannot detect all idle cycles. We
extend this scheme by recording the values every time the tag
responses are received. Based on the number of time slots,
we can discard the idle cycles and the corresponding sub-
trees, which will decrease the times of the inquire process. To
distinguish between a 3-ary tree and a binary tree, our method
uses different time slots. Using the scheme we presented, the
unnecessary idle cycles can be reduced.

III. SIMULATION AND ANALYSIS

We evaluated the performance of the adaptive combination
query tree protocol as compared to the QT protocol and the
HQT protocol. The simulation consists of one reader and n
tags to recognize, whose area is 10m × 10m. The reader is
located in the center of the simulation area and its reading
range is 3m, n varies from 25 to 200. Each tag has a unique
ID length of 128 bits. Both the query and tag’s response
are transmitted at the same transmission rate: 128Kbps. Tag
mobility follows the random walk model [6] with a maximum
speed of 2m/process. We assume that the back off time slot
is 20µs. We compare three performance metrics in 2 different
scenarios: average identification delay, number of collision
cycles, and number of idle cycles. The tag’s ID is randomly
selected.

A. All Tags in the Scenario without Mobility

We assume that the number of tags is fixed, and there is no
arriving or leaving tags within this query process. The reader
should identify all tags starting with the initial query string
and expanding the query string step by step. As shown in
Fig.4, each result is the average from 20 simulations. The
three performance metrics of ACQT are lower with increasing
number of tags. In Fig.4 (a) and (b), the identification delay
and the collision cycles are lowest for the ACQT, HQT is in
the middle, and QT is highest. This is because the literature

JIANG and ZHANG: AN ADAPTIVE COMBINATION QUERY TREE PROTOCOL FOR TAG IDENTIFICATION IN RFID SYSTEMS 1195

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Tags

Id
en

tif
ic

at
io

n
D

el
ay

 (
se

c)
QT
HQT
ACQT

(a) Identification Delay

50 100 150 200
0

50

100

150

200

250

300

350

Number of Tags

N
um

be
r

of
 C

ol
lis

io
n

C
yc

le
s

QT
HQT
ACQT

(b) Number of Collision Cycles

50 100 150 200
0

50

100

150

200

250

300

350

400

Number of Tags

N
um

be
r

of
 Id

le
 C

yc
le

s

QT
HQT
ACQT

(c) Number of Idle Cycles

Fig. 4. The performances of three different protocols in the scenario without
mobility.

[5] showed that the 3-ary tree is optimal, and in a q-ary tree,
if q is greater than 3, the performance is decreased as q is
increased. Another reason is our protocol is a combination
query tree with binary tree and 3-ary tree which can improve
performances further. From Fig.4 (c), we can see that the idle
cycles of our protocol is lower than HQT which is based on
a 4-ary query tree, due to using the combination model and
back off time scheme, which can decrease the idle cycles by
deciding the time slot of a tag’s response. QT is the lowest
because every bit can be decided to dividing tag, so the idle
nodes are so small.

B. All Tags in the Scenario with 30% Tags Mobility

In this scenario, there are some moving tags, in which the
number of tags moving in is equal to the number of tags
moving out. Each result is the average of the simulations for
20 times. Fig.5 shows the results of each protocol with 30%
tags mobility, in which the QT protocol was not affected since
it does not use query string obtained by prior query processes.
The performance of ACQT is better than other protocols,
because it has joining and leaving strategies. The leaving
strategy can reduce the unnecessary idle nodes. If there are
some tags leaving, it will cause some nodes to be deleted. The
joining strategy can reduce the unnecessary collision nodes.
If there are some tags arriving, the prior idle nodes can be
used to deal with the collision, and prior collision cycles are
only used one time. The HQT which has a 4-ary query tree is
in the middle. The ACQT has a combination query tree with
binary tree and 3-ary tree, so the identification, collision and
idle measurement results are better.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Tags

Id
en

tif
ic

at
io

n
D

el
ay

 (
se

c)

QT
HQT
ACQT

(a) Identification Delay

50 100 150 200
0

50

100

150

200

250

300

350

400

Number of Tags

N
um

be
r

of
 C

ol
lis

io
n

C
yc

le
s

QT
HQT
ACQT

(b) Number of Collision Cycles

50 100 150 200
0

50

100

150

200

Number of Tags

N
um

be
r

of
 Id

le
 C

yc
le

s

QT
HQT
ACQT

(c) Number of Idle Cycles

Fig. 5. The performances of three different protocols in the scenario with
30% tags mobility.

IV. CONCLUSION

We describe a novel tag anti-collision protocol ACQT,
which is suitable for large scale tags RFID systems. From
the conversion scheme, we can use a 3-ary tree instead of
a binary tree. Using the method of combination query tree,
it can solve the problem of the length of the tag’s ID to
build a 3-ary tree. The joining and leaving strategies are
presented to adapt to the mobility of tags. It can reduce the
idle and collision cycles. The simulation results show that
our protocol can achieve better performance than previous
protocols. They include shorter identification delays and fewer
collision and idle cycles. Based on the comprehensive analysis
and comparison, our protocol is an optimal one.

REFERENCES

[1] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in
Contactless Smart Cards and Identification, 2nd edition. Wiley, 2003.

[2] C. Law, K. Lee, and K. Y. Siu, “Efficient memoryless protocol for
tag identification,” in Proc. 2000 Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, pp. 75–84.

[3] J. Ryu, H. Lee, Y. Seok, et al., “A hybrid query tree protocol for tag
collision arbitration in RFID systems,” in Proc. 2007 IEEE International
Conference on Communications, pp. 5981–5986.

[4] C.-N. Yang, Y.-C. Kun, J.-Y. He, and C.-C. Wu, “A practical implemen-
tation of ternary query tree for RFID tag anti-collision,” in Proc. 2010
IEEE International Conference on Information Theory and Information
Security, pp. 283–286.

[5] P. Mathys and P. Flajolet, “Q-ary collision resolution algorithms in
random-access systems with free or blocked channel access,” IEEE Trans.
Inf. Theory, vol. 31, no. 2, pp. 217–243, Mar. 1985.

[6] R. A. Guerin, “Channel occupancy time distribution in a cellular radio
system,” IEEE Trans. Veh. Technol., vol. VT-35, no. 3. pp. 89–99, Aug.
1987.

