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Abstract—A tag-collision problem in Radio Frequency Identi-
fication (RFID) system is the event that a reader cannot identify
a tag if many tags respond to a reader at the same time. Although
binary Electronic Product Code (EPC) is the most natural for a
computer, most people are accustomed to the decimal system. In
RFID applications, we need to convert binary EPC to decimal
numbers. Since converting binary-coded decimal (BCD) data
into the decimal numbers is much less complex than converting
binary data into decimal numbers. This motivates us to represent
EPC by BCD. However, using BCD-based EPC delivers two
problems: (i) Is the existing query tree algorithm suitable for
identifying BCD-based EPC? (ii) How do we design a new query
tree algorithm to enhance the tag-identification efficiency? In this
work, we solved the problems.

Index Terms—RFID, EPC, tag collision, query tree.

I. INTRODUCTION

ATag-collision problem in Radio Frequency Identification
(RFID) system is the identification problem when mul-

tiple tags respond to a reader simultaneously and the reader
cannot differentiate these tags correctly. Tag collisions will
degrade identification efficiency, and this unreliable identifi-
cation will compromise the usefulness of RFID system. Up
to date, several technologies on tag collision were proposed.
There are two major types of anti-collision algorithms- one
is ALOHA-based algorithm and the other is tree-based algo-
rithm. ALOHA-based algorithm [1] reduces the tag collision,
but has the starvation problem (a tag cannot be identified for
a long time). Tree-based algorithm can solve this starvation
problem. The well-known tree-based algorithms are binary
tree (BT) and query tree (QT). QT algorithm does not need the
additional memory and thus is referred to as the memory-less
protocol.

In QT, a reader sends a prefix of EPC to query tags, and
the tags matching the prefix respond. We extend the prefixes
until only one tag responds. Some elegant QTs are briefly
described in the following. Chiang et al. [2] proposed a prefix-
randomized QT. A reader first scans the neighboring tags to
determine which M -ary tree is suitably used for querying
tags. After finishing queries by M -ary tree, a reader then uses
binary QT (BQT) for inquiries. In adaptive query splitting
algorithm [3], the authors used extra candidate queue to store
the prefix bits of responded tags to speed up the identification
process. A hybrid QT [4] used 4-ary QT and the slotted back-
off mechanism to avoid collision. Choi et al. [5] used RN16 (a
16-bit random number) as tag’s temporary ID. However, the
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short length of RN16 is not enough in real environments. Yang
and He [6] further modified Choi et al.’s RN16-based QT to
solve the problem of using short RN16. In an enhanced QT [7],
the length of prefix code is adjusted dynamically according
to the length of tag’s ID. Cho et al. [8] proposed new QT
to identify tags with consecutive serial number. In [9], two
M -ary trees were combined as the unified QT to improve the
identification efficiency. The authors adopted Manchester code
in QT to find the location of different bit in responded strings,
and thus the reader can skip the unnecessary queries [10].

All the above QTs were designed for tags with binary EPC.
As we know, a 96-bit EPC code is a group of 96 bits, and
has 296 combinations of 1’s and 0’s to represent the tag’s
ID. A binary system is most natural for computer, and it is
readily represented in today’s system. However, most people
are accustomed to the decimal system. A so-called binary-
coded decimal (BCD) coding expresses each decimal digit
(0 through 9) to a four-bit BCD code. A number with m
decimal digits require 4m bit in BCD. For example, for 96 bits,
we have 1024 combinations when using BCD representation.
For RFID application, we need to convert 96-bit EPC to
decimal numbers in back-end database to show the company
ID, the product ID, and the serial number in decimal numbers.
BCD numbers are decimal numbers and not binary numbers,
although they use bits in their representation. Thus, converting
BCD data into the decimal numbers is much less complex than
converting binary data into decimal numbers. The problem
of conversion will be more important in a large database
management system. By the above observation, we can use
BCD to represent EPC to speed up the conversion. In this
work, we design new QT to identify tags with BCD-based
EPC.

II. MOTIVATION

Most people are accustomed to the decimal system. There-
fore, when applying RFID, we need to convert EPC to user-
friendly decimal numbers. BCD coding is a way to express
each decimal digit to a four-bit BCD code (one of ten
values, 0-9) individually, while a straight binary code takes the
complete decimal number and express it in binary. Obviously,
converting BCD data into the decimal numbers in computers is
much less complex than converting binary data into decimal
numbers. This motivates us to represent EPC by BCD in a
tag to speed up the EPC to decimal conversion in back-end
database. The ease of EPC conversion is especially important
in a large database management system. Although BCD-based
EPC determines from the count 0-1024 − 1, which is lesser
than 296 − 1 (96-bit EPC), the possible values of 1024 are
large enough for most applications. However, using BCD to
represent EPC in RFID system will deliver the following
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Fig. 1. The concept of Approach 1: (a) skip two bits by adding (q000) and
(q001) in a queue (b) l = 0 (c) l = 1.

two problems: (1) Is the existing QT suitable for identifying
BCD-based EPC? (2) How do we design new QT to enhance
the tag-identification efficiency? Obviously, BCD-based EPC
has some binary combinations, which do not occur in binary
EPC. Therefore, BQT is not suitable for identifying tags with
BCD-based EPC. In this work, we propose two approaches to
resolve the identification of tags with random and consecutive
serial numbers, respectively.

III. THE PROPOSED QTAS

A. Approach 1

In BQT algorithm, the reader asks the tags whether any of
their IDs contains a prefix same to the query strings q. If two or
more tags answer (i.e. a collision is detected), the reader then
appends bit 0 and 1 to generate the longer prefixes (q0) and
(q1) in a queue. We repeat the query procedure until all tags
are uniquely identified. Consider the identification of tags with
BCD-based EPC by BQT. Suppose that a collision is detected
and that a querying bit string q has the length 4l + 1, l ≥ 0,
and its last bit is 1. In this situation, we can skip two bits and
add (q000) and (q001) instead of (q0) and (q1) in a queue to
reduce the interrogation cycles. As shown in Fig. 1(a), since
BCD is composed of four-bit code groups (0-9(10)), we can
skip 10-15(10). Figs. 1(b) and (c) show two cases for l = 0
and l = 1.

B. Approach 2

Since EPC is represented by BCD, we can apply 10-
ary query tree (10-QT) to achieve the optimum perfor-
mance. In 10-QT algorithm, we query a four-bit string
q (0-9(10)) each time. When tags collide, we need to
add (q0000), (q0001), (q0010), (q0011), (q0100), (q0101),
(q0110), (q0111), (q1000), and (q1001) in a queue. As we
know, using the large M -ary tree implies the longer prefix. At
this time, tags may have the same prefix with the small proba-
bility and thus reduce collisions, but increases the unnecessary
inquiries. The invalid inquiries can be significantly reduced
when tags IDs are consecutive. Consider a possible application
scenario of RFID in [8]. A publisher, after printing, tens or
hundreds of books with the same title are usually packaged in
a box for delivery and distribution. These books in a box will
have a common prefix (the same company ID and product ID),
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Fig. 2. Identification of tags with random serial number using: (a) BQT (b)
Approach 1.
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Fig. 3. Identification of tags with consecutive serial number using: (a)
Approach 1 (b) Approach 2.

and their serial numbers are consecutive. Approach 2 works
well for identifying tags with consecutive serial numbers.

C. Examples

Two simple examples are conducted to briefly show how
Approach 1 and Approach 2 enhance the identification. Two
scenarios, tags with random and consecutive serial numbers,
are shown in Example 1 and Example 2.
Example 1. Suppose that sixteen tags have tags ID in decimal
format: 08, 09, 13, 19, 21, 28, 29, 33, 48, 53, 64, 73,
78, 88, 89 and 93, which are represented by two BCD
codes. Fig. 2 shows identification of these tags by BQT and
Approach 1. There are 51 total interrogation cycles for BOT,
which includes 25 collision cycles, 10 idle cycles and 16
successful cycles. Approach 1 save 8 collisions and 8 idle
cycles, and only need 35 interrogation cycles. For example,
for identifying 88, 89, and 93, the query strings: (10), (11),
(100), (101), (100010), (100011), (1000100), and (1000101),
can be skipped in Approach 1. For this case, Approach 2
needs 61 interrogation cycles (6 collisions, 39 idle cycles, 16
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successful cycles), which is even less ineffective than BQT.
Example 2. Suppose that sixteen tags have consecutive tags
IDs in decimal format (80-95(10)), which are represented
by two BCD codes. As shown in Fig. 3, Approach 1 and
Approach 2 have 37 interrogation cycles (18 collisions, 3 idle
cycles, 16 successful cycles), and 31 interrogation cycles (3
collisions, 12 idle cycles, 16 successful cycles), respectively.
Since Approach 2 uses 10-QT, it reduces the number of
collisions from 18(Approach 1) to 3. On the other hand, BQT
has 49 interrogation cycles (24 collisions, 9 idle cycles, 16
successful cycles).

All detail communication procedures between
reader and tags in examples can be found in
the supplementary manuscript on the website
(http://cis.csie.ndhu.edu.tw/cnyang/bcd.pdf).

IV. PERFORMANCE EVALUATION

A. Experimental Results

Two experiments demonstrate that our approaches works
well in both scenarios that tags’ serial numbers are random
and consecutive, respectively. The number of tags is n, from
100 to 10,000. For each n, we repeat the same experiment ten
times to calculate the average number of collision cycles NC ,
the average number of idle cycles NI . The average number of
total interrogation cycles is NT = n+NC+NI . In we consider
the RFID warehouse distribution [9]. It is reasonable to assume
that the EPC data of most items from the same warehouse will
be very similar since the items are manufactured by the same
company, and are stacked together in a large warehouse. As we
know, EPC embraces four sections: header (H: 8 bits), GMN
(G: 28 bits), object class (O: 24 bits), and serial number (S: 36
bits). Here, we test tags with the identical lf=60 bits (H+G+O)
cascaded with the random (Experiment A) and consecutive
(Experiment B) serial number ls=36 bits (S).
Experiment A. Three algorithms are tested: BQT, Approach
1, and Approach 2. In this experiment, all tags have the
identical lf=60 bits and the random serial number ls=36 bits
in BCD format. Approach 1 can skip some queries by adding
(q000) and (q001) in a queue, such that it can reduce the total
interrogation cycles when compared with BQT. For example,
for n=100, BQT has NT =475 while Approach 1 saves 26 cycle
and has NT =449. On the other hand, Approach 2 using 10-
QT has the less collisions NC=60 when compared to NC=237
(BQT) and NC=224 (Approach 1). However, Approach 2 has
the large idle cycles NI=438. Finally, it has NT =598.
Experiment B. Redo Experiment A, but use tags with iden-
tical lf=60 bits and consecutive serial number ls=36 bits. We
generate the consecutive serial number by using (seed + 1)
∼ (seed+ n), where seed is randomly chosen from [0, 999].
Approach 2 can significantly reduce the idle cycles for the
consecutive serial number, and still has the less collisions. For
n=100, Approach 2 has NC=35, while BQT and Approach
1 have NC=215 and 189, respectively. Although using 10-
QT may increase the idle cycles, Approach 2 still has the
less idle cycles NI=215 due to the consecutive serial number.
Finally, Approach 2 has NT =350, but BQT and Approach 1
have NT =431 and 379.
The average interrogation cycles using BQT, Approach 1

Fig. 4. Average number of interrogation cycles using BQT, Approach 1 and
Approach 2 for random and consecutive serial numbers.

and Approach 2 are shown in Fig. 4. The simulation results
confirm that Approach 1 and Approach 2 outperform BQT for
tags with random and consecutive numbers, respectively.

B. Performance Analysis for Approach 1 and Approach 2

In this section we analyze the number of total interrogation
cycles for our approaches. Suppose that the number of total
interrogation cycles of BQT, Approach 1, and Approach 2 are
N

(B)
T , N (1)

T , and N
(2)
T , respectively, and n tags are represented

by m BCD codes, where m = log10 n.
Lemma 1. The difference N

(B)
T − N

(1)
T are 0.22n + 5.78

and 0.44n+5.56 for tags with random and consecutive serial
number, respectively.
Proof. Suppose that q is a query bit string with the length
4l+1 and its last bit is 1. Here, we consider two cases: (i) the
fixed prefix lf=60 bits and the random serial number ls=36
bits (ii) the fixed prefix lf=60 bits and the consecutive serial
number ls=36 bits. As shown in Fig. 5(a), the prefix lf has 15
BCD codes (B1−B15) and the first bit in Bi has the value of
bi=0 and 1 with the probability 0.8 and 0.2, respectively. When
bi=1, we can save 4 cycles with half probability (note: we can
save 4 cycles for collision but cannot save any cycles when
it idles). Therefore, the average reduced number of cycles for
the fixed prefix lf is

0.5×
15∑
i=0

(
0.2i × 0.8(15−i) ×

(
15

i

)
× 4i

)
= 6. (1)

Case (i): The random ls=36 bits is shown in Fig. 5(b).
There are 10l possible combinations for ql, 0 ≤ l ≤ (m− 1),
which collide with half probability. Thus, the average reduced
number of interrogation cycles using Approach 1 is

0.5×
m−1∑
i=0

(
4× 10i

)
= 0.22n− 0.22. (2)

From (1) and (2), we have N
(B)
T −N

(1)
T = 0.22n+ 5.78.

Case (ii): The consecutive ls=36 bits is shown in Fig. 5(c).
The string ql, (9 −m) ≤ l ≤ 8, will always collide, because
the serial number is consecutive. Thus, we have

N
(B)
T −N

(1)
T = 6 +

m∑
i=0

(
4× 10i

)
= 0.44n+ 5.56. (3)
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Lemma 2. The values of N (B)
T −N

(2)
T and N

(1)
T −N

(2)
T are

n1.2−0.11n+2 log10 n−48.78 and n1.2−0.55n+2 log10 n−
54.34 for tags with consecutive serial number.
Proof. For the fixed prefix lf=60 bits, we have 60 collisions
and 60 idle cycles for BQT, and 15 collisions and (10− 1)×
15=135 idle cycles for Approach 2. As shown in Fig. 5(c),
for the previous (9 − m) × 4 zero bits in the consecutive
serial number ls=36 bits, we have (9−m)× 4 collisions and
(9−m)× 4 idle cycles for BQT, and (9−m) collisions and
(10− 1)× (9−m)= idle cycles for Approach 2. The numbers
of collisions caused by other m consecutive BCD codes for
BQT and Approach 2 are (1+2+22+ ...+24m−1) = n1.2−1
and (1+10+102+ ...+10m−1) = (n−1)/9. From the above,
we can determine and N

(B)
T and N

(2)
T as follows.

N
(B)
T = 60 + 60 + (9 −m)× 4 + (9 −m)

×4 + n1.2 − 1 = n1.2 − 8 log10 n+ 191. (4)

N
(2)
T = 15 + 9× 15 + (9−m)× 1 + (9−m)

×9(n− 1)/9 = 0.11n− 10log10n+ 239.78. (5)

By (3), (4), and (5), we have

N
(B)
T −N

(2)
T = n1.2 − 0.11n+ 2 logn10 −48.78,

N
(1)
T −N

(2)
T = n1.2 − 0.55n+ 2 logn10 −54.34. (6)

From Lemma 2, we have N
(B)
T − N

(2)
T > 0 for n ≥ 26

and N
(1)
T − N

(2)
T > 0 for n ≥ 35, and thus N

(2)
T < N

(B)
T ,

N
(2)
T < N

(1)
T for the large n.

V. CONCLUSION

It seems that no one studies the identification of tags
with BCD-based EPC. BCD-based EPC can speed up the
conversion of EPC to decimal numbers in back-end database,
and this ease of EPC conversion is especially important in
a large database management system. In this work, we take
the lead in studying new QT to efficiently identify tags with
BCD-based EPC. Two approaches are proposed to resolve
the identification of tags with random and consecutive serial
numbers, respectively. Theoretical analyses and experimental

TABLE I
NC , NI AND NT FOR TAGS WITH RANDOM SERIAL NUMBER

n
BQT Approach 1 Approach 2

NC NI NT NC NI NT NC NI NT

100 237 138 475 224 125 449 60 438 598
200 426 227 853 405 206 811 109 78 1097
300 598 299 1197 565 266 1131 151 1058 1509
400 778 379 1557 737 338 1475 192 1331 1923
500 960 461 1921 909 410 1819 235 1612 2347
600 1138 539 2277 1077 478 2155 280 1919 2799
700 1327 628 2655 1254 555 2509 328 2253 3281
800 1513 714 3027 1431 632 2863 378 2610 3788
900 1707 808 3415 1613 714 3227 427 2945 4272

1000 1889 890 3779 1781 782 3563 476 3286 4762
5000 9076 4077 18153 8585 3586 17171 2225 15024 22249

10000 18320 8321 36641 17283 7294 34587 4643 31788 46431

TABLE II
NC , NI AND NT FOR TAGS WITH CONSECUTIVE SERIAL NUMBER

n
BQT Approach 1 Approach 2

NC NI NT NC NI NT NC NI NT

100 215 116 431 189 90 379 35 215 350
200 336 137 673 289 90 579 46 213 459
300 458 159 917 387 88 755 57 211 568
400 582 183 1165 490 91 981 68 215 683
500 703 204 1407 589 90 1179 79 212 791
600 825 226 1651 688 89 1377 90 214 904
700 948 249 1897 788 89 1577 102 215 1017
800 1069 270 2139 887 88 1775 113 214 1127
900 1191 292 2383 988 89 1977 124 213 1237

1000 1314 315 2519 1088 89 2177 135 213 1348
5000 6199 1200 12399 5084 85 10169 579 208 5787
10000 12314 2315 24629 10088 89 20177 1135 214 11349

results reveal that our approaches have better performance than
BQT.
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