
LocalysIt: A Strategy for Local Analysis of

Networks of CSP Processes — Extended version.

Technical Report

Pedro Antonino Augusto Sampaio

April, 2013

Abstract

Based on a characterisation of process networks in the CSP process algebra, we
formalise a strategy of local deadlock analysis using the traces and the stable
failures models of CSP. The strategy proposes simple steps for analysing acyclic
networks together with a behavioural pattern approach for the verification of
cyclic networks. A distinguishing feature of our approach is its mechanisation
in terms of a set of refinement assertions, which can be checked by CSP tools
like FDR. Moreover, a case study is introduced to demonstrate the effectiveness
of our strategy, including a performance comparison using FDR to analyse the
original model and another comparison with the Deadlock Checker. We also
point out that our strategy can be used in a compositional way, which also ap-
plies similar strategies for local analysis, implemented as a systematic approach
to system design that is deadlock free by construction.

Local Analysis, Deadlock Freedom, CSP, FDR, Behavioural pat-
tern

Contents

1 Motivation 2

2 Communicating Sequential Processes (CSP) 4

3 Network model 6
3.1 Deadlock analysis in networks . 7

3.1.1 Behavioural patterns to avoid deadlock 9
Resource allocation pattern 9

3.1.2 Routing rule . 11
3.1.3 Client-server . 11

4 ComposIt strategy 14
4.1 Mechanisation of the strategy . 16

4.1.1 Resource allocation adherence 16
4.1.2 Routing adherence . 17

4.2 Client-Server adherence . 18

5 Case study 23
5.1 Performance analysis . 25

6 Related work 27

7 Conclusion and future work 29

A Cheetah template 32

B Python scripts 36

C Example of generated file 40

D Case study example for 3 philosophers and 3 forks 45

1

Chapter 1

Motivation

For concurrent system deadlock freedom is a hard property to guarantee. For
those systems two main techniques are employed for that purpose: model check-
ing and proof based approaches using a semantic model. Although those tech-
niques are complete in the sense that for a given deadlock free system, a proof
or a verification can be achieve, they have considerable drawbacks.

The verification using model checking alone generally verifies the state space
of the network as a whole. This state space exploration generally grows expo-
nentially with the number of processes of the system. For instance, if a network
has components with 10 states each, the composition of this behaviour which
is the behaviour of the network can go up to 10N , where N is the number of
processes of the network. It is easy to predict that to large networks with a
substantial number of processes (N), this verification can became intractable.

In the case of proving using the semantics the problem is a different one. In
order to be able to perform such a proof, one has to have a deep understanding
of the notation semantics and a deep knowledge of the proof system to be used.
In addition, one must also have the insight leading to the proof itself in order to
carry it using those models. Therefore, to use this approach one has to acquire
a great body of knowledge before performing the proof.

In order to illustrate this problems consider the case of the dining philoso-
phers. The philosophers having 7 states (thinking, picked fork one, picked fork
two, eating, released fork one, released fork two, stand up) and the forks pro-
cesses with 3 states (acquired by philosopher one, acquired by philosopher two,
released). This system can go up to 3NForks × 7NPhilosophers , showing that for large
systems with a large N , this system will have an intractable number of states. In
the case of the proof based approach, if the notation used is CSP, one would have
to learn the stable failure semantic model, what is a deadlock in this model and
would have to find a proof demonstrating that a deadlock state is not reached,
a significant complex task that cannot be fully automatized.

One alternative to this approaches is to create a hybrid technique, consisting
of proving, using semantic models and a proof system, that for a particular
class of well defined systems, a property can be verified by only checking a
small portion of the system. This principle of guaranteeing a property by only
verifying a small subset of the system is called local analysis and is the core
principle of our strategy, which provides:

2

• A network model based on [1], but with notion of structure that is com-
pletely decoupled from the behaviour of network.

• A strategy of decomposition and verification also based on [1], but im-
proved with a systematization. In addition, we defined a pattern based
approach, where we defined formally a pattern similar to the ones de-
scribed in [6, 4].

• An encoding of the verification part of the strategy using refinement asser-
tions, which is a major contribution of this work. This enables the user to
automatically verify the conditions imposed by the strategy to guarantee
deadlock freedom in tools like FDR [15] and PAT [17].

A case study is introduced as a proof of concept of our strategy, as well as a
performance comparison between our strategy, the FDR [15] deadlock freedom
assertion, and a tool developed with a specific purpose of deadlock verification
called Deadlock checker [16].

3

Chapter 2

Communicating Sequential
Processes (CSP)

Communicating Sequential Processes (CSP) [9, 6, 7] is a notation used to model
concurrent systems where processes interact through communications. In this
notation sequential processes can be defined as a succession of events, which
can in turn be combined using high level parallel operators to create complex
concurrent processes.

The CSP notation has a rich high level set of operators for modelling con-
current systems. For the sake of brevity only the operators used in the work
are presented; for a full account of CSP operators one should consult [7]. The
basic operator used to build sequential processes is the prefix(→). It constructs
a process from an event and another process. Process a → Q is a process
that performs the event a and then behaves like process Q . In order to con-
struct concurrent systems the parallel operators must be used. The alphabetized
parallel(AP‖AQ) operator is used to combine process where they synchronize in
events in the set AP ∩ AQ . For instance considering process P {a,b}‖{b,c} Q ,
it can only perform one of the events in {a, b} ∩ {b, c} after trace s; if P and
Q are able to communicate this same event after s, in this example, event b.
Also for the parallel operator the process P is only able to perform events in
AP and Q can only perform events in AQ . The hiding operator(\) is used to
abstract the behaviour of a process. Process P \ {a, b} makes events a and b
internal events, so the traces of process P will no longer contain events a and
b. Some other operators used in the semantic models and for the tool used are
introduced as they are presented in the text.

In order to reason about the notation, CSP embodies a collection of mathe-
matical models. The classical ones are: traces, stable failures, and the failures-
divergences model. In the first model, processes are described as a set of se-
quences of finite events it can perform. traces(P) gives this set. In the stable
failures model, a process is represented by its traces as previously described and
by its stable failures. Stable failures are pairs (s,X) where s is a finite trace and
X is a set of events that the process can refuse to do after performing the trace
s. At the state where the process can refuse events in X , the process must not
be able to perform an internal action, otherwise this state would be unstable
and will not be taken into account in this model. The function refusals(P , s)

4

gives the set of X ’s that a process P can refuse after s and failures(P) gives
the set of stable failures of process P . Only these two models are used in this
work.

5

Chapter 3

Network model

Systems can be seen as a set of components that interact to provide a set of
functionalities. In this sense, we can model a system using the CSP notation as
a network of processes, where processes represent the components of the system.
This network model, similar to the one presented in [1], provides an abstract
and structured body of concepts to reason about deadlocks in networks in a
simpler manner.

The most fundamental concept is the one of atomic tuples, which are the
building blocks of networks. Atomic tuples are structures that represents the
atomic components of a system. Those are triples that contain an identifier for
the component, the process describing the behaviour of this component and an
alphabet that defines the events that this component can perform.

Definition 1 (Atomic tuple). Let CSP Processes be the set of CSP processes,
Σ the set of CSP events and id an identifier of the process. A basic process P
is a triple such that:

P ∈ Atomics

where: Atomics =̂ N× PΣ× CSP Processes

The representation of a system is then given by a set of those atomic tuples.
As previously mentioned, this representation of a system is called a network and
is the main object of study in this work. We use the word system and network
interchangeably in the rest of this work.

Definition 2 (Network). Let Atomics be the set of basic processes as previously
described. Then a network is a set as follows:

V ⊂ Atomics

where V is finite.

To reason about deadlock we must give a proper definition of the behaviour
of such a structure. The behaviour of the system is given as a composition
of the behaviour of each component. In fact, components interact through
alphabets intersection, i.e. if an atomic tuple has alphabet A1 and another
tuple has alphabet A2, then they interact in the events A1∩A2. This behaviour
is achieved in the CSP notation by using the alphabetised parallel operator,

6

where processes and alphabets are extracted from atomic tuples. To generalise
our notation, we use an indexed notation for the alphabetized parallel operator.
It behaves like the binary one, where processes interact in alphabet intersection.
The notation A(pid) and P(pid), extract the alphabet and the behaviour of an
the atomic process identified by pid from the network V .

Definition 3 (Behaviour of a network). B(V) =‖
pid∈domV

[A(pid)]P(pid)

3.1 Deadlock analysis in networks

Our model is structured differently from the one in [1]. While in [1], they use
the structure provided by the indexed alphabetised operator to deal with the set
of processes, i.e. they create a intrinsic bond between behaviour and structure,
in the present work we have a clear distinct structure called a network with a
model which embodies a function giving the behaviour of such a structure. Even
though the structural difference, the semantic of the behaviour of a network
remains the same. Thus we are able to reuse some of the results obtained in [1],
provided some assumptions are satisfied. The first of them is busyness. A busy
network is a network whose atomic components are deadlock free. The second
assumption is atomic non-termination, i.e. no atomic component can terminate.
The last assumption concerns interactions. A network is triple-disjoint if at
most two processes share an event, i.e. if for any three different atomic tuples
their alphabet intersection is the empty set. A network satisfying these three
assumptions is called a live network.

For a live network, a deadlock state can only arise from an improper interac-
tion between processes, since no process can individually deadlock or terminate.
This particular misinteraction is captured by the concept of ungranted request.
An ungranted request is an attempt of one component, say pid1, to communi-
cate with another one, say pid2, but pid2 cannot offer the events expected by
pid1. In addition, the process pid1 must not be able to perform internal actions,
i.e. events that do not involve another process to synchronize. This definition
is formally given in the stable failures model of CSP as follows.

Definition 4 (Ungranted requests). Let V be a network and pid1 and pid2 two
processes identifiers of V tuples. There is an ungranted request after a given
trace s of the network from pid1 to pid2 if the following predicate holds.
ungranted request(s, pid1, pid2,V) =
∃X1 : refusals(P(pid1), s � A(pid1)),X2 : refusals(P(pid2), s � A(pid2)) •
request(A(pid1),A(pid2),X1) ∧
ungrantedness(A(pid1),X1,X2) ∧
in vocabulary(A(pid1),A(pid2),X1,X2,Voc(V))
where:

• request(A1,A2,X) = (A1 \X) ∩A2 6= ∅

• ungrantedness(A,X1,X2) = (A \X1) ⊆ X2

• in vocabulary(A1,A2,X1,X2,Voc) = (A1 \X1) ∪ (A2 \X2) ⊆ Voc

For instance, let P(pid1) = a → b → P(pid1) and P(pid2) = c → a →
P(pid2), and s be the empty trace (〈〉). In this case, process pid1 has an un-
granted request to pid2, because it can only perform event a, which is in the
vocabulary of the network, but process pid2 does not offer this event after s.

7

Ungranted requests are the building blocks of deadlock in live networks.
They are elements of a more complex structure that causes deadlocks. A cycle of
ungrated requests is a necessary condition to a deadlocked state. In a deadlocked
state a proper cycle of ungranted requests must arise among other conditions.
A proper cycle is a sequence of different processes identifiers, C , where each
element at the position i , i.e. element C (i), has an ungranted request to the
element at the position i ⊕1, i.e. element C (i ⊕1), where ⊕ is addition modulo
length of the cycle.

A proper cycle can in turn be divided into two categories: conflicts and
long cycles. A conflict is a proper cycle of ungranted requests which has length
2, that is, it can arise from an improper communication of a pair of processes
in a network. A network is then conflict-free if every pair of processes is free
of conflicts. A long cycle is a proper cycle which has length greater than 2.
This kind of cycle involves more than a pair of processes; for a long cycle of
length 3 there is a need for verifying every combination of 3 or more processes
in the network. Therefore, the task of verifying the presence of a long cycle of
ungranted requests in a cycle is as difficult as the quest for a deadlocked state
itself. After these definitions two fundamental theorems extracted from [1] are
introduced.

Theorem 1 (In [1], Theorem 2, p. 223). Let V be a live network. If V is free
of strong conflict, then any deadlocked state has a cycle of ungranted requests.
If V is conflict-free then a deadlock state has a long cycle.

A notion of decomposition enables the strategy to analyse smaller parts of
the network independently and then conclude whether or not the network is
deadlock free. In order to introduce a strategy for decomposition, one must
first introduce the concept of communication graph. A communication graph
is a representation of the topology of the network where nodes depict atomic
components of the network and edges the alphabet intersection between compo-
nents. A disconnecting edge is an edge that if removed increases the number of
partition of the graph, i.e., an edge that is not part of a cycle in the communi-
cation graph. The partitions left after the removal of every disconnecting edge
are called essential components. In [1] an important result allows one to con-
clude deadlock freedom from analysing only disconnecting edges and essential
components.

Theorem 2 (In [1], Theorem 4, p. 226). Let V be a network with essential
components V1, . . . ,Vk where the pair of processes joined by each disconnecting
edge are conflict-free. Then if each Vi of the network is deadlock free, then so
is V.

With these two results it is already possible to fully verify a tree network
in a local way, by checking only pairs of processes. Due to the fact that only
proper cycles of length two can arise in tree networks one needs to prove that
connected pairs of processes are conflict-free. This result can greatly tackle
the performance for conflict-free tree networks, but cyclic networks cannot be
verified locally by these methods. Moreover, if one tries to verify the freedom of
cycles of ungranted requests, based on Theorem 1, this might be as complex as
exploring the whole state space. Therefore, for networks with cycles a complete
and local method for checking deadlock freedom is not available. The solution

8

for this problem presented next is based on behavioural patterns of the processes
composing the network. Although this method is not complete, it covers a broad
spectrum of systems and is locally verifiable.

3.1.1 Behavioural patterns to avoid deadlock

The approach for avoiding deadlock presented here is based on the rules de-
scribed in [5, 6, 4]. These rule impede deadlock by preventing a cycle of un-
granted requests to arise. In fact, the main goal of those rules is to provide an
order on processes; if processes respect a behavioural pattern then no cycle of
ungranted requests can arise.

Resource allocation pattern

This pattern can be used in a vast spectrum of systems. It can be applied to
systems that in order to perform an action have to acquire some shared resources
such as a lock. For instance, monitors can be modelled using this pattern and
monitor-like features are available in most programming languages [8]. In this
pattern the processes of a network are divided into User and Resource processes
and a linear order is assumed on resource processes, called RA order. Acquire
and Release are functions such that the event used by the user process pidU

to acquire the resource pidR, is given by Acquire(pidU , pidR), in the same way
the release event Release(pidU , pidR) is obtained. Two restrictions on processes
must be satisfied in order to classify a process as a resource allocation process.

The first restriction is on the behaviour of a resource process. If the resource
is not acquired then it must be available to all users that are able to acquire the
given resource. Once acquired, it can only be released by the user process that
acquired it. Hence, the behavior of a resource must be equivalent to the one of
the process Resource described as follows.

• Resource(pidR, resource users) =

2 resource users • Acquire(pidU , pidR)→ Release(pidU , pidR)→
Resource(pidR, resource users)

where resource users is the set of users that can acquire the given resource,
and the operator 2 is the indexed external choice. This operator is indexed
over a set, where the elements of this set are used to offer a set of deterministic
behaviours.

The second restriction is imposed on the behaviour of the users. A user
process must only be able to acquire a resource that is higher in the RA order
(>RA) than the last resource acquired. Therefore, the behaviour of a user
process considering only events of acquisition and release of resource must be a
refinement of this process.

• User(pidU , >RA, acquired resources, user resources) =

(2 pidR : higher(max (acquired resources, >RA), >RA, user resources) •
Acquire(pidU , pidR)→
User(pidU , >RA, acquired resources ∪ {pidR}, user resources))
2

(2 pidR : acquired resources • Release(pidU , pidR)→
User(pidU , >RA, acquired resources \ {pidR}, user resources))

9

where acquired resources is the set of resources already acquired by the user
process in question, user resources is the set of resources that can be acquired
by the user, max is a function that gives the maximal element of a set given
an order as argument, higher is a function that given a set, an element and
an order, filters elements of the set which are lower than the element given
according to the given order.

An atomic component is defined as a resource allocation process, if its be-
haviour respects the respective conditions.

Definition 5 (Resource allocation tuple). Let T be an atomic tuple, such that
T = (pid ,P ,A), T is a resource allocation tuple if the following predicate holds:

RA tuple(T) = pid ∈ Resources ⇒ Resource(pid , resource users) ≡T P ∨
pid ∈ Users ⇒ User(pid , >RA, acquired resources, user resources)

vT P � AcquireReleaseEvents(pid)

where: AcquireReleaseEvents(pid) is the set of every event of acquisition and
release of resources by process pid .

A network complies to the resource allocation pattern if: every atomic pro-
cess is a resource allocation tuple, all processes are either a resource or a user
process, there is no communication between two resource processes or two user
processes and user and resource processes can only communicate in events for
acquisition and release.

Theorem 3 (Resource allocation network is deadlock free). Let V be a live
and conflict-free network. If all the following conditions holds:

• ∀T : V • RA tuple(T)

• Resources ∩Users = ∅ ∧ Resources ∪Users = dom V

• Acquire ∩ Release = ∅

• ∀ pid1, pid2 : Resources • A(pid1) ∩A(pid2) = ∅

• ∀ pid1, pid2 : Users • A(pid1) ∩A(pid2) = ∅

• ∀ pid1 : Users, pid2 : Resources • A(pid1) ∩A(pid2) ⊆ Acquire ∪ Release

then V is deadlock free.

Proof sketch. First of all, an ungranted request can only happen from a
user to a resource and vice versa, since there is no interaction between two users
or two resources. Secondly, an ungranted request from a user to a resource
can only happen if the resource is acquired by some other user. Thirdly, an
ungranted request from a resource to a user can only happen if the user has al-
ready acquired that resource. These conditions are guaranteed by the conditions
imposed by the pattern.

Then, assuming that there is a cycle of ungranted requests, there must be
a maximal resource in the cycle, say C (imax). Thus the C (imax ⊕ 1) must be
a user process that has acquired this resource. Moreover, C (imax ⊕ 2) is also a
resource process lower in the >RA than C (imax). Since C (imax ⊕ 1) is making
an ungranted request to C (imax ⊕ 2), by the definition of the cycle, it is trying
to acquire this resource. Thus, the user process C (imax ⊕ 1) has the maximal
resource C (imax) and is trying to acquire C (imax ⊕ 2), which is a contradiction
concerning the pattern conditions.

10

3.1.2 Routing rule

This pattern can be applied to networks that route messages. It has a wide
applicability in network protocols. This pattern assumes an order on tuples
identifiers of the network and imposes a single restriction on processes based
on this given order. If a node communicate with a predecessor, it can only
communicate with predecessors. That is, let us call RtOrder(>Rt) the pattern
given order, if pid1 has a request to pid2 with pid1 > pid2, then pid1 must
have requests only to pidn with pid1 > pidn . An atomic process is a routing
component if it respects this condition. In the trace model it is expressed as
follows.

Definition 6 (Routing tuple). Let pid be an identifier of a tuple in the network
V . Then pid1 is a routing tuple if the following predicate holds.

Rt tuple(pid ,V) = ∀ s : traces(P(pid)) • requests(s, pid ,V)apredecessors(pid ,V) 6=
∅ ⇒ requests(s, pid ,V) = predecessors(pid ,V)
where: requests(s, pid ,V) = {pid2 | pid2 ∈ dom V ∧ pid2 6= pid ∧ initials(P(pid), s)∩
A(pid2) 6= ∅} and predecessors(pid ,V) = {pid2 | pid2 ∈ dom V ∧ pid2 6= pid ∧
pid2 < pid}

initials(P , s) is a CSP semantic function that given a process P and a trace
s, it gives the events of P that can occur immediately after the trace s.

A network is compliant with the routing pattern if every atomic tuple is a
routing tuple. In addition, a network that is conform to this pattern is also
deadlock free.

Theorem 4 (Routing network is deadlock free). Let V be a live and conflict-
free network.
If ∀ pid : dom V • Rt tuple(pid ,V) then V is deadlock free.

Proof sketch. Let V be a live conflict-free routing network. In a cycle of
ungranted requests, there must be a greatest pid, according to Rtorder among
the tuples participating, say pidM ax . This means that if pidM ax , say C (iMax) in
the cycle, must have an ungranted request to C (iMax 	 1), because C (iMax) >
C (iMax 	 1) and also C (iMax 	 1) must have a request to C (iMax) by the
definition of cycle of ungranted request. This contradicts the assumption of
conflict-freedom, proving our result.

3.1.3 Client-server

This pattern can be applied for networks involving tuples that behave as a client-
like process, i.e. engaging the communication with a server, or as aserver-like
process, i.e. available for engaging with clients. The pattern assumes also an
order on tuples identifiers, the CSorder(<CS). This pattern impose a restrict
more elaborated that the one presented in the routing rule. An atomic process
compliant to this pattern must be present two disjoint behaviour, it can be
acting as a engaged server, where it can only communicate with a single client,
or as an not engaged server, i.e. acting as either an unengaged server, or as a
client engadged or not. These two behaviours are recognized by a set of events,
i.e. this pattern considers two disjoint sets of events, where SE set is the set
of events that can only be performed when the atomic process is in a server

11

engaged state (SE state), and the NSE set that is a set of events that can be
performed in a not engaged server state (NSE state).

Definition 7 (Disjoint behaviour restriction). Let pid be a tuple identifier in a
network V . The behaviours given by SE set and NSE set are disjoints if the
following predicate holds.
CS Disjoint(pid ,NSE set ,SE set) = NSE set∩SE set = ∅ ∧ (∀ s : traces(P(pid)) •
initials(P(pid), s) ⊂ SE set ∨ initials(P(pid), s) ⊂ NSE set)

Besides this, different restrictions must be applied to the atomic process
when they are in either one of the states. If an atomic tuple is in a SE state,
then is must be able to communicate with a single predecessor, this means that
a process pid1 can only be a server to another process, pid2, in the network if
pid1 >CS pid2. This restriction is given as follows.

Definition 8 (SE restriction). Let V be a network and pid an identifier of an
atomic tuple belonging to this network.
CS SE (pid ,V) = ∀ s : traces(P(pid)) • initials(P(pid), s) ⊆ SE set(pid) ⇒
#requests(s, pid ,V) = 1 ∧ requests(s, pid ,V) ⊆ predecessors(pid ,V)
where: requests(s, pid ,V) = {pid2 | pid2 ∈ dom V ∧ pid2 6= pid ∧ initials(P(pid), s)∩
A(pid2) 6= ∅} and predecessors(pid ,V) = {pid2 | pid2 ∈ dom V ∧ pid2 6= pid ∧
pid >CS pid2}

The other condition applies on processes in a NSE states. This condition is
the same as the one presented for the routing tuples; if a process in a NSE state
can communicate with a predecessor then it must be able to communicate with
every predecessor according to the CSorder .

Definition 9 (NSE restriction). Let V be a network and pid an identifier of
an atomic tuple belonging to this network.
CS NSE (pid ,V) = ∀ s : traces(P(pid)) • initials(P(pid), s) ⊆ NSE set(pid) ∧
requests(s, pid ,V)apredecessors(pid ,V) 6= ∅ ⇒ requests(s, pid ,V) = predecessors(pid ,V)
where: requests(s, pid ,V) = {pid2 | pid2 ∈ dom V ∧ pid2 6= pid ∧ initials(P(pid), s)∩
A(pid2) 6= ∅} and predecessors(pid ,V) = {pid2 | pid2 ∈ dom V ∧ pid2 6= pid ∧
pid >CS pid2}

The last restriction imposed by this pattern is on SE states. If a process
in a SE state has an ungranted request to another process, this other process
must be also in a SE state

Definition 10 (SE ungranted restriction). Let V be a network and pid an
identifier of an atomic tuple belonging to this network.
CS SE ungranted(pid ,V) = ∀ s : traces(P(pid)) • initials(P(pid), s) ⊆ SE set(pid) ∧
∃ pid2 : dom V • ungranted request(s, pid1, pid2,V) ∧ pid 6= pid2 ⇒ initials(P(pid2), s) ⊆
SE set(pid2)

Therefore, a tuple that conforms to this pattern must respect all this condi-
tions.

Definition 11 (CS tuple). Let V be a network and pid an identifier of an
atomic tuple belonging to this network, NSE set and SE set two sets of events
partitioning the behaviour of the process pid .

12

CS tuple(pid ,V) = CS Disjoint(pid ,NSE set ,SE set) ∧ CS SE (pid ,V) ∧
CS NSE (pid ,V) ∧ CS SE ungranted(pid ,V)land(NSE set∪SE set = A(pid))

A network conforms to this pattern must have all atomic tuples conform the
CS tuple condition. In this case a network, which is conflict-free and live, is
deadlock free.

Theorem 5 (CS network is deadlock free). Let V be a live conflict free network.
If ∀ pid : dom V • CS tuple(pid ,V) then V is deadlock free.

Proof sketch. Let V be a live conflict-free routing network. A cycle
of ungranted request is composed either of processes in a NSE state or in a
SE state, because of the SEungrantedrestriction. In the case of a NSE state,
we fall into the same case as the routing pattern, since in this state it must
respect the same conditions as the routing pattern, due to the NSE restriction.
In a cycle composed of processes in a NSE − state, the cycle must have a
maximal element, say C (imax), to which process C (imax	1) is making a request,
due to the definition of the cycle of ungranted requests. By the SErestriction,
C (imax 	 1) must have a request to a predecessor, but we established that
C (imax) is the maximal element of the cycle, a contradiction that proves our
theorem.

13

Chapter 4

ComposIt strategy

For concurrent system deadlock freedom is a hard property to guarantee. For
those systems two main techniques are employed for that purpose: model check-
ing and proof based approaches using a semantic model. Although those tech-
niques are complete in the sense that for a given deadlock free system, a proof
or a verification can be achieve, they have considerable drawbacks.

The verification using model checking alone generally verifies the state space
of the network as a whole. This state space exploration generally grows expo-
nentially with the number of processes of the system. For instance, if a network
has components with 10 states each, the composition of this behaviour which
is the behaviour of the network can go up to 10N , where N is the number of
processes of the network. It is easy to predict that to large networks with a
substantial number of processes (N), this verification can became intractable.

In the case of proving using the semantics the problem is a different one. In
order to be able to perform such a proof, one has to have a deep understanding
of the notation semantics and a deep knowledge of the proof system to be used.
In addition, one must also have the insight leading to the proof itself in order to
carry it using those models. Therefore, to use this approach one has to acquire
a great body of knowledge before performing the proof.

In order to illustrate this problems consider the case of the dining philoso-
phers. The philosophers having 7 states (thinking, picked fork one, picked fork
two, eating, released fork one, released fork two, stand up) and the forks pro-
cesses with 3 states (acquired by philosopher one, acquired by philosopher two,
released). This system can go up to 3NForks × 7NPhilosophers , showing that for large
systems with a large N , this system will have an intractable number of states. In
the case of the proof based approach, if the notation used is CSP, one would have
to learn the stable failure semantic model, what is a deadlock in this model and
would have to find a proof demonstrating that a deadlock state is not reached, a
significant complex task that cannot be fully automatized. Network decomposi-
tion and behavioural patterns are concepts used in our strategy that are proved
to be correct using the proof based method; and the conditions to decompose
a system and to verify if a system is compliant to a pattern can be encoded in
terms of refinement assertion to be checked by a model checker. Our strategy
avoids the state explosion problem by only performing local verifications, i.e. it
verifies only small parts of the system, instead of the entire system, to assure
deadlock freedom. The problems following from the use of the proof based ap-

14

proach are also tackled, as the user of our strategy must only be familiar with
the notions and conditions proposed in the strategy.

The strategy is composed of three steps. If one of the steps is not valid, the
network must be redesigned until the steps are all validated. The steps are the
following.

• Verify if the network is live.

• Verify if the network is conflict-free.

• Verify adherence of essential components (those not formed of a single
atomic tuple) to a behavioural pattern.

As the strategy deals only with live networks, the first step must verify if the
network is live. The verifications to assure that a network is live are all local.
Deadlock freedom and non-termination must be checked for individual atomic
processes, and triple disjointness for alphabets of each triple of atomic compo-
nents. If a network is not live, then either some redesign must be performed in
order to make the network live or this strategy is not applicable.

In the second step, the network must be verified for conflict freedom. This
verification is performed by verifying if each pair of communicating processes
is conflict free. This verification is also local, since only pairs of processes in
parallel must be checked. If a pair of processes is not conflict free then a redesign
of the network must be worked out.

The last step is applied only for essential components that are cyclic, i.e.
the ones that have more than a single atomic process. In order to perform
this step one needs to build the communication graph and identify the essential
components. After identifying the essential components, a pattern compliance
verification must be carried out. This step is vacuously valid if a network is a
tree. In this case, all atomic tuples are essential components, therefore, there
are only single atomic components. If a network is not a tree then there must
be at least one essential component that is cyclic, i.e. composed of at least two
atomic components. In this case the only applicable local technique to assure
deadlock freedom is to make this component compliant to a behaviour pattern
and, in the context of this paper, to the resource allocation pattern. If it is not,
the essential component should be redesigned to became compliant.

The correctness of our approach is a direct consequence of the three presented
steps. If all verifications are valid, the network is live, conflict free and the cyclic
essential components are compliant to a pattern. This means that all essential
components are deadlock free and all disconnecting edges are conflict-free. In
this case, by Theorem 2, we can guarantee that our strategy assures deadlock
freedom.

An important consideration to be made is that our strategy considers net-
works as white box structures, where one can perform more fine-grained verifica-
tions in single atomic components or pairs of components instead of the network
as a whole. On the other hand, atomic processes are treated as black boxes, no
fine-grained verification can be done on smaller parts of processes. Therefore,
one must be careful while using the strategy not to define very complex atomic
components, because, in this case, even though local analysis is performed the
state explosion problem can still occur for atomic components.

15

4.1 Mechanisation of the strategy

One of the contributions of this work is the mechanisation of the verification of
the side conditions associated with the three steps of the strategy. Conditions
such as conflict-freedom and the compliance of a process to the resource alloca-
tion pattern are encoded as refinement assertions in CSPM [15]. This has also
been done for the other patterns, as can be found in [?]. Therefore, one can use
the strategy together with tool support provided by a refinement checker, such
as FDR [15].

The first important condition in our strategy is the verification of conflict-
freedom for a pair of processes. A pair of process, which is atomic deadlock free
and non terminating is conflict free if the alphabetised parallel composition is
deadlock free. This deadlock verification captures conflict-freedom because if a
conflict arises then a deadlock state is reached. The deadlock occurs because
of the mutual dependence caused by the cycle of ungranted requests. This
property can be translated to the following FDR refinement assertion. Let
(pid1,P(pid1),A(pid1)) and (pid2,P(pid2),A(pid2)) be a pair of atomic tuples.

assert P(pid1) [A(pid1)||A(pid2)] P(pid2) :[deadlock free [F]]

4.1.1 Resource allocation adherence

Before presenting the second group of assertions that verifies the compliance
of a process to the resource allocation pattern, we present the two auxiliary
processes, part of the assertions, that represent the expected behaviour for user
and resource processes. The first process is the description of the behaviour
expected by a resource process in CSPM ; this behaviour was presented in the
pattern description as the Resource process. The second process describes the
behaviour expected by a user process in CSPM . In the pattern description this
specification was given by process UserCondition.

Resource(pidR,resource_users) = [] pidU :resource_users @

Acquire(pidU,pidR) -> Release(pidU,pidR) ->

Resource(pidR,resource_users)

UserCondition(pidU,resources_acquired, order) =

let

user_resources = ResourcesU(pidU)

within

([] pidR :

higher(max(resources_acquired,order),order,user_resources)@

Acquire(pidU,pidR) ->

UserCondition(pidU,resources_acquired^<pidR>,order))

[]

([] pidR : set(resources_acquired) @

Release(pidU,pidR) ->

UserCondition(pidU,removeR(pidR,resources_acquired), order))

The following pair of refinement assertions are used to verify if a resource is
trace equivalent to the Resource process and the third assertion is used to verify

16

whether a user process refines the UserCondition process. Those conditions
are the behavioural restrictions imposed by the resource allocation pattern on
atomic tuples.

assert P(pidR) [T= Resource(pidR,UsersThatCanAquire)

assert Resource(pidR,UsersThatCanAquire) [T= P(pidR)

assert UserCondition(pidU,resources_acquired, order) [T= P(pid)

4.1.2 Routing adherence

The second group of assertion is to verify the compliance of a tuple with the
routing pattern. First of all, lets introduce the technique used for pattern com-
pliance. We introduce a controller process between two versions of the process
we shall check, the middle process. Let us call one version left and the other
right. The left version behaves without restrictions and is used only as manner
to obtain the current state of the process. The middle process, the introduced
process, will synchronize on any action of the left process. It will then check the
state of the process on the left and impose the pattern restriction on the right
version. If a restriction is not satisfied, the middle process deadlocks and the
whole combination deadlocks as well, as both left and right can only perform
event in synchronization with the middle process.

This technique is used because we must, for a given state of a process, both
enquire about the process’ state and impose a restriction on the same state, but,
because as we enquire a process synchronizing in an event, after an enquiry the
process state changes, thus the restriction must be imposed in a state that is
previous to the current one for the process. Hence, the solution is to have two
versions in the same state, left and right versions, so as to be able to enquiry
the state of the left version and apply the restriction in the right version. In
addition, if the restriction passes on the right side, we must guarantee that both
left and right processes are in the same state. If right and left side are not in the
same state, then they are useless. We achieve this by using the middle process
to enquire the left version’s state, impose restriction on the right version and to
maintain the state consistency between the left and right version.

For the Routing pattern, the restriction imposed on patterns is that if it
communicates with a predecessor, it must be able to communicate with all pre-
decessors. The process introduced next performs exactly this check. It will syn-
chronize on the alphabet of the process pid , given by the local variable, alpha’,
and if the event performed by the left version, am in the process body, is a pre-
decessor communication, then the middle process will offer a non-deterministic
choice of predecessor communication to the right process. If the right process
cannot perform communications with every predecessor, than there will be a
deadlocked state, for the combination, left-midle-right process. If an event of
communication with a successor is performed than no restriction is imposed on
the right version.

MiddleProcess(pid) =

let

alpha’ = A(pid)

AInf = inter(alpha’,Union({A(pred)| pred<-predecessors(pid)}))

17

within

[] am : alpha’ @ am ->

(if member(am,AInf) then

|~| bm : AInf @ modify(bm) ->

(if bm == am then

MiddleProcess(type,pid)

else

DF)

else

(modify(am) -> MiddleProcess(type,pid)

[]

DF))

where: DF is the deadlock free process. and modify is a function that takes an
event and returns a fresh event. This function is needed to make the synchro-
nization of the middle and right processes independent, by taking new fresh
events, of the synchronization of the middle and left processes.

The following process is the combination left-middle-right used in te assertion
for the pattern adherence. As explained, it is an parallel composition of the
left process with the middle process synchronizing in the alphabet of the left
process, the resulting process is put in parallel with the right version with a
rename construct to make the alphabet of the left and right versions disjoints,
and synchronizing in the renamed alphabet.

Routing_tuple(pid) =

let

P = P(pid)

alpha’ = A(pid)

alphaModified = {modify(a) | a <- A(pid)}

within

(P [|alpha’|] MiddleProcess(pid))

[|alphaModified|]

P [[a <- modify(a) | a <-alpha’]]

The assertion for the verification of the pattern adherence to the routing
pattern uses the FDR built-in deadlock assertion. As mentioned, if the process
is not deadlock free, then there is a state that does not respect the patterns
restriction.

assert Routing_tuple(pid) :[deadlock free [F]]

4.2 Client-Server adherence

The client-server pattern adherence is verified using the same strategy as the
one presented in the routing pattern, i.e. there is a middle process, which
regulates communication, receiving messages from a left version, of the process
being tested, for trace control and imposing the pattern’s restrictions to the
right process.

The verification of pattern conformance is split into four assertions, the
first one concerns the SErestriction already described. In this assertion, as

18

mentioned, we use the middle process strategy. The left process is used to
keep track of the possible communications made by the process in order to say
whether it is in a SE state, if it is in a SE state the middle process will impose
the SE restriction on the right version of the process.

MiddleSE(pid,SE_set,predecessors,successors) =

let

AInf = Union({ inter(A(n),A(pid)) | n <- predecessors})

ASup = Union({ inter(A(n),A(pid)) | n <- successors})

within

[] a : A(pid) @ a ->

(if member(a,inter(AInf,SE_set)) then

([] b : AInf @ modify(b) ->

(if b == a then

MiddleSE(pid,SE_set,predecessors,successors)

else

DF))

[]

([] c : ASup @ modify(c) -> STOP)

else

modify(a) ->

MiddleSE(pid,SE_set,predecessors,successors))

The MiddleSE process enquire the right process by synchronizing on the
alphabet of the process, A(pid). If the event is from the SE set and from a
predecessor, then the middle process offer all events to the right version, but
with different after synchronization behaviours. If the right process synchronize
in a event from a predecessor that is the same as the one performed by the left
version, then the middle process guaranteed that both left and right versions are
in the same state, hence, it continues proceeding to the next state. If the right
version communicates with a predecessor but do not perform the same event, a
valid behaviour according to the restriction then the middle process will behave
like DF a deadlock free process that do not communicate with other processes.
If the right version is able to communicate with a successor, violating the re-
striction, the it will synchronize with the successor events offered by the middle
process and then middle process will deadlock causing the entire combination,
left-middle-right to deadlock.

The combination left-middle-right is given by the following process, where it
takes a pid and extract the behaviour of the process, and compose two version of
the process’ behaviour and the middle process. As mentioned before, we have a
bijection from the alphabet of the process being tested for a new fresh alphabet,
so as to have disjoint alphabets making middle communicate with the left and
right version in distinct events.

CheckSE(pid,predecessors,successors) =

let

alphaModified = {modify(a) | a <- A(pid)}

within

(P(pid) [|A(pid)|]

MiddleSE(A(pid),SE_set(pid),predecessors,successors)) [|alphaModified|]

(P(pid) [[a <- modify(a) | a <- A(pid)]])

19

where: modify(e) is a bijection between events of a process’ alphabet and a
fresh alphabet.

The assertion to verify this restriction is given next, as mentioned, it checks
if the combination left-middle-right deadlocks, because it will only deadlocks if
a state that violates the restriction is reached.

assert CheckSE(pid,predecessors,successors) :[deadlock free [F]]

The next restriction addressed is the NSErestriction, we use the same middle
process as well. In this restriction we have the left process used to verify if the
current state of the process being tested is a NSE state, if that is the case a
restriction is applied by the middle process on the left process.

MiddleNSE(pid,NSE_set,predecessors,successors) =

let

alphaInf = Union({ inter(A(n),A(pid)) | n <- predecessors})

alphaSup = Union({ inter(A(n),A(pid)) | n <- successors})

within

[] a : A(pid) @ a -> (if member(a,inter(alphaInf,NSE_set)) then

(|~| b : predecessors @

([] e : inter(A(pid),A(b)) @ modify(e) ->

(if e == a then

MiddleNSE(A(pid),NSE_set,predecessors,successors)

else

DF)))

[]

([] c : alphaSup @ modify(c) -> STOP)

else

modify(a) -> MiddleNSE(A(pid),NSE_set,predecessors,successors)

[]

DF

)

In the same way, as for the previously introduced middle process, MiddleNSE
synchronizes with the left version of the process being tested, if the synchronized
event is a NSEevent , then the process is in a NSEstate, and the middle process
will impose a condition on the right version of the process. The middle process
will offer, for each predecessor of the process being tested, a non-deterministic
choice of the whole set of events, that is, if the right version can perform at
least one event of communication with every predecessor then no deadlock arise,
otherwise,the case that violates the condition, a deadlock state is reached. If
the right process also can communicate with a superior, then it also violates the
restriction and a deadlock state is reached. Not that if the initial communication
is not a NSEevent , then no restriction is imposed.

The combination left-middle-right is given by the following process. In this
case, we also have a bijection from the alphabet of the process being tested to
a fresh alphabet, in order to enable a disjoint synchronization between the left
and right version of process in question.

CheckNSE(pid,predecessors,successors) =

20

let

alphaModified = {modify(a) | a <- A(pid)}

within

(P(pid) [|A(pid)|] MiddleNSE(A(pid),NSE_set(pid),predecessors,successors))

[|alphaModified|] P(pid) [[a <- modify(a) | a <- A(pid)]]

The assertion for NSErestriction conformance is given also as a deadlock
verification, since it will only deadlock if a state that not respect the restriction
is reached.

assert CheckNSE(pid,predecessors,successors) :[deadlock free[F]]

The next assertion implements the SEungrantedrestriction, which is encoded
also using the middle process strategy. In this restriction, we use the left and
right version with the same purpose as the other previous assertions.

MiddleSEUng(pid1,pid2,SE_set_pid1,NSE_set_pid2) =

let

alphaComm = inter(A(pid1),A(pid2))

alphaCommModif = { modify(e) | e <- alphaComm }

within

[] a: alphaComm @ a ->

([] b : alphaComm @ modify(b) -> (

if a == b then

MiddleSEUng(A(pid1),A(pid2),SE_set_pid1,NSE_set_pid2)

else

if member(a,SE_set_pid1) and member(b,NSE_set_pid2) then

STOP

else

DF

))

The MiddleSEUng process verifies if the left and right processes are in a
SE state, if that is the case then it verifies if it can also perform an event that is a
NSEevent for the peer process, which pid is passed as parameter (pid2), if it can
perform such an event, then the process might have an ungranted request to the
its peer. Note that this restriction implemented is slightly more restrictive than
the SEungrantedrestriction discussed in the previous chapter. It was implement
this way, because cheaper in terms of performance. The assertion that captures
the exact restriction should take two behaviour as parameter and check N 2

number of states, in our case, only N number of states are checked. This
restriction implemented implies the SEungrantedrestriction, because a process
that satisfies this restriction cannot have an ungranted request from a SEs tate
to another process in a NSEs tate, since it is not able of performing its own
SEevents and NSEevents of a peer process in the same state.

The combination left-middle-right is given by the following process.

CheckSEUng(pid1,pid2) =

let

alphaComm = inter(A(pid1),A(pid2))

alphaCommModif = { modify(e) | e <- alphaComm }

21

within

(P(pid1) [|alphaComm|]

MiddleUngBToB(A(pid1),A(pid2),SE_set(pid1),NSE_set(pid2))

[|alphaCommModif|] P(pid1) [[a <- modify(a) | a <- alphaComm]]

As usual in our strategy a deadlock state is reached if the restriction is not
satisfied. Therefore, the assertion for NSEungrantedrestriction verification is
given as follows.

assert CheckSEUng(pid1,pid2) :[deadlock free [F]]

The disjoint restriction is not implemented yet, but is just a matter of effort
that has not been put yet. We can easily implement using the middle process
strategy.

At this point, one might have noticed that none of the conditions involving
set operations are presented. Although FDR is a very efficient model checker,
it is not designed for performing exhaustive set operations. The conditions
involving set operations can also be mechanised, for instance, using a constraint
solver. This ia simple task and out of the scope of this paper.

22

Chapter 5

Case study

As a proof of concept of our strategy, a case of study was conducted, the dining
philosophers. The LocalysIt strategy was used to analyse a network of philoso-
phers and forks. In the case study, we present a simple version with three
forks and three philosophers, but the analysis was conducted with up to 20000
philosophers and forks. First of all, the processes representing philosophers
and forks are introduced in the CSP notation. Concerning the philosopher be-
haviours, Phil live is an asymmetric version of the philosopher and Phil dead
a symmetric one. For the sake of brevity only single examples of assertions are
introduced, for a full account the reader should refer to D.

Phil_live(y) =

if y != MAX-1 then

think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_live(y)

else

think.y -> pickup.y!next(y) -> pickup.y.y ->

putdown.y.y ->putdown.y!next(y) -> eat.y -> Phil_live(y)

Phil_dead(y) = think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_dead(y)

Fork(forkid) =

let

x = (forkid-MAX)

within

pickup!prev(x)!x -> putdown!prev(x)!x -> Fork(forkid)

[] pickup!x!x -> putdown!x!x -> Fork(forkid)

The network of forks and philosophers is given as follows. The first two sets
are the networks of asymmetric and symmetric philosophers, respectively. The
third set is the network of forks and the following two networks are the dining
philosophers asymmetric and symmetric.

Phils_set_live = {(pid,Phil_live(pid), alpha_phil(pid))|pid<-Users}

23

Figure 5.1: Communication graph of dinning philosophers with 3 philosophers
and 3 forks.

Phils_set_dead = {(pid,Phil_dead(pid), alpha_phil(pid))|pid<-Users}

Forks_set = { (pid,Fork(pid), alpha_fork(pid)) | pid<-Resources}

Network_alive = union(Forks_set,Phils_set_live)

Network_dead = union(Forks_set,Phils_set_dead)

After defining our working model, the structure of networks that we want
to check, we are ready to apply the strategy. The first step is the verification
that our network is live. In order to be live a network must be busy, atomic
non-terminating and triple-disjoint. For busyness and atomic non-termination,
FDR implements a deadlock freedom verification that checks both conditions.
Since only behavioural conditions are mechanised, triple disjointness is not au-
tomatically verified. Hence, for this condition we just assume that our design is
triple disjoint as it indeed is. Therefore, for each fork and philosopher we check
if it is deadlock free using the following assertions.

assert Fork(3) :[deadlock free [F]]

assert Phil_live(0) :[deadlock free [F]]

assert Phil_dead(0) :[deadlock free [F]]

After this step our network is indeed live and we go to the next step, which
consists of verifying that every pair of communicating processes of our network
is conflict-free. For this purpose, we use the assertion defined in the previous
section. Therefore, for each pair of philosopher and fork that communicate, we
check the following.

Pair(pidU,pidR) =

Fork(pidR) [alpha_fork(pidR)||alpha_phil(pidU)] Phil_live(pidU)

assert Pair(0,3) :[deadlock free [F]]

This assertion also holds, since every pair of processes is conflict free for
both the asymmetric and the symmetric cases, then we are able to pass to the
last step. In the last step, we need to build the communication graph in order
to find the essential components of our network. Since the dining network is a
ring, it is a single essential component composed of six atomic components; the
communication graph is depicted in Figure 5.1. This means that the resource
allocation pattern must be applied for the network as a whole, due to its cyclic
topology. Therefore, we need to verify that both philosopher and fork processes
are complying with the pattern. We, as users of the strategy, are entitled to give

24

the order and the sets of resources and users in order to be able to verify if our
network conforms to the resource allocation pattern. As a matter of simplicity
and efficiency, we chose the order to be the order given by the operator greater
than (>) on resource identifiers. Because of this, we do not pass an order as
an argument and use the CSP built in operator in the UserProcess. The set
of resources is given by the forks processes and the set of users is given by the
set of philosophers. As forks are resource processes, fork processes must be
trace equivalent to the Resource process. For philosophers, they must obey the
restriction imposed by the process UserCondition, that is, their projection on
events of acquisition and release must be a refinement of the UserCondition
process. These conditions are given by the following assertions.

assert Fork(3) [T= Resource(3)

assert Resource(3) [T= Fork(3)

assert UserCondition(0,<>, <>) [T= Projection_phil_live(0)

Projection_phil_live(0) =

Phil_live(0) \ diff(Events,union(AcquireU(0),ReleaseU(0)))

In this last step, the last assertion above holds only for the asymmetric din-
ning which is represented by the Network alive. The Philosopher with pid = 2
in the symmetric case is not compliant with the pattern. This happens because,
according to its behaviour, it picks first the Fork number 5 and then the fork
number 3, which violates the condition imposed by the UserCondition process.
Therefore, this symmetric network must be redesigned conform to the pattern.

5.1 Performance analysis

As one of the main advantages of using the strategy is to locally verify net-
works, some performance gain is expected. In order to assess the performance
gains, a set of scripts were created to generate instances with a parametrized
number of processes of the dinning philosopher model and the set of assertions
implementing the strategy. The experiment scripts can be found in [14] or the
appendices.

For the experiment, we used a Python [19] based template language, called
Cheetah [18]. A parametrized instance of the dinning philosopher was created
using a Cheetah template, that can be found in Appendix A. In addition, a
set of Python scripts were created to: generate an instance of the problem with
a given number of philosopher using the Cheetah template; execute FDR in a
batch mode, passing the generated instances as parameters; and generate a set
of log files, they can be found in Appendix B. The Config .py is a property file
to configure environment variables such as FDR home, and the folder in which
the files of the experiment are. The TemplateCSP .py is a file that is responsible
for charging the phil div .template, so as to be used by the Generate.py . The
Generate.py script is responsible for generating the files to be run by FDR. It
will create a Gerados folder where the generated files are copied. The Execute.py
is resposible for taking the generated files and running in FDR. As mentioned all
these scripts can be found in the Appendix B. Also an example of a generated
file is provided in Appendix C.

25

of processes Deadlock checker AnalysIt FDR
10 0.03 0.25 0.087
20 0.05 0.54 412
100 0.26 2.46 *
200 1 5.07 *
1000 7 25.8 *
2000 22 59.4 *
10000 56 330 *
20000 ** 672 *

∗ Exceed the execution limit of 1 hour
∗∗ Tool does not support the # of processes

Table 5.1: Performance comparison measured in seconds.

The experiment was conducted using a 2.2 GHz Intel Core i7, with 8 GB
1333 MHz DDR3 of RAM and a SATA disk in an OS X 13.8.3 operating system.
Where we run the experiment 2 times and took the average of both times.

In our experiment, three approaches were compared. The first one, was
to use a tool that was specifically designed to verify deadlock freedom, the
Deadlock Checker [16]. The second approach was to use our strategy with the
conditions being verified by FDR [15]. The last approach was to use FDR’s
built-in assertion for deadlock verification of the entire model. In Table 1, there
is a synthesis of the results obtained.

The results demonstrate how the time for deadlock verification can grow
exponentially with the linear increase of number of processes. FDR’s asser-
tion is a global method for the verification of deadlock freedom and due to the
exponential explosion of the number of states to check it exceed the limit of 1
hour of execution, established for the experiment, with 100 processes in parallel.
The Deadlock checker is the most efficient method but it only allows to check
a network with up to 10000 processes. Finally, our strategy has a comparable
efficiency, and it grows linearly with the increase of the number of processes. A
consideration about performance is that the verifications of our strategy were
segmented into a set of files that could be verified in parallel, since we have
realised that FDR presents a better performance when a large number of asser-
tions to be checked are split in several files. This means that the result presented
in Table 1, for our strategy, could be reduced to the time presented divided by
the number of files to be checked if a number of processor cores equivalent to
the number of files were available.

26

Chapter 6

Related work

Roscoe and Brookes developed a structured model for analysing deadlock in
networks [1]. They created the model based on networks of processes and a body
of concepts that helped to analyse networks in a more elegant and abstract way.
Roscoe and Dathi also contributed by developing a proof method for deadlock
freedom [2]. They have built a method to prove deadlock freedom based on
variants, similar to the ones used to prove loop termination. In their work, they
also start to analyse some of the patterns that arise in deadlock free systems. We
based the approach on these ideas, and developed a systematic and mechanised
strategy for local analysis. Although their results enable one to verify locally a
class of networks, there is no framework available to use their results such as the
one presented here. Also, their definition of the network structure and behaviour
were intrinsically linked. In this work we provide a structure decoupled from its
behaviour. This separation of concerns allow us to enhance this structure in the
future without losing the results already obtained for the behavioural analysis
of networks.

A more recent work of Roscoe et all [11] presenting some compression tech-
niques used for FDR are used to check the same example for up to 10100 pro-
cesses. Compression techniques are an important complementary step for fur-
ther improving our strategy.

Following these initial works, Martin formally defined some design rules to
avoid deadlock freedom [4]. He also developed an algorithm and a tool with the
specific purpose of deadlock verification, the Deadlock checker [16]. This tool is
very efficient, as already mentioned, but it has a different analysis perspective
when contrasted with LocalysIt. The Deadlock checker reduces the problem of
deadlock checking to the quest of cycles of ungrated requests, in live networks,
whereas LocalysIt verifies whether a system complies with a pattern, an entire
local method. This reflects in the counter example generated in the case of
a system that cannot be guaranteed to be deadlock free for those techniques.
In the Deadlock checker an atypical behaviour of the system is presented, i.e.
a possible cycle of ungrated requests is presented and the user is responsible
for analysing the global network looking for the possible causes. In localysIt,
the conditions will fail to atomic processes which do not comply to a pattern.
Hence, the user only needs to deal with the complexity of analysing a single
process at a time.

In a recent work Ramos developed a strategy to compose systems guaran-

27

teeing deadlock freedom for each composition [12]. The main drawback with
his method is the lack of compositional support to cyclic networks. With the
rules presented one is able to, in a compositional way, connect components in
order to build a tree topology component. He presented a rule to deal with
cyclic components but it is not compositional, in the sense that the verification
of its proviso is not local, i.e. it must be performed in the system as a whole.
Our strategy complements and can be easily combined with this compositional
approach. This would result in a sound and constructive approach to (local)
deadlock analysis. Exploring this combination is actually a major topic for
future work.

28

Chapter 7

Conclusion and future work

Our verification strategy focuses on a local analysis of deadlock freedom of de-
sign models of concurrent systems which obey certain architectural patterns.
Although this method is not complete, it already covers a vast spectrum of sys-
tems, those are acyclic systems conflict free and cyclic systems, that can be de-
signed in terms of one of the formalised patterns. The strategy seems promising
in terms of performance, applicability and complexity mastering, nevertheless
some improvements are apparent.

The first improvement is the mechanisation of the conditions involving set
operations using a proper tool. A major improvement to be considered is the use
of compression techniques to enhance performance of local checks. The LocalysIt
strategy can benefit from the compressing techniques already implemented in
FDR [11, 15].

An interesting aspect to consider are the systems with asynchronous mid-
dlewares. There has been some studies in buffer tolerance aspects that could
be unified in our strategy to enable the verification of buffered systems by veri-
fying their bufferless analogues [13]. This could be very useful in modeling and
verifying services and distributed programs.

A particular interesting connection to be established as future work, as al-
ready mentioned, is the integration of the LocalysIt strategy and the one pre-
sented by Ramos in [12]. A distinguishing feature of our strategy is precisely
the possibility of combining it with other systematic approaches to analysis.

Finally, we plan to develop further case studies and carry out performance
analysis based on other patterns than the one explored in this paper.

29

Bibliography

[1] Brookes, S.D., Roscoe, A.W.: Deadlock analysis in networks of communi-
cating processes. Distributed Computing. 4, 209–230 (1991)

[2] Roscoe, A.W., Dathi, N.: The pursuit of deadlock freedom. Information and
Computation. December 3, 289–327 (1987)

[3] Mota, A., Sampaio, A.: Model-checking CSP-Z: Strategy, tool support and
industrial application. Science of Computer Programming. 40, 59–96 (2000)

[4] Martin, J.M.R., Welch, P.H.: A Design Strategy for Deadlock-free concur-
rent systems. Transputer Communications. 3(3), 1–18 (1997)

[5] Dijkstra, E.W.: A Class of Simple Communication Patterns. Selected Writ-
ings on Computing : A Personal Perspective. Springer-Verlag (1982)

[6] Roscoe, A. W.: The theory and practice of concurrency. Prentice Hall (1998)

[7] Roscoe, A. W.: Understanding concurrent systems. Springer-Verlag (2010)

[8] Buschmann, F., Henney, K., Schmidt, D. C.: Pattern-Oriented Software
Architecture, Volume 4: A Pattern Language for Distributed Computing.
Wiley (2007)

[9] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)

[10] Brookes, S.D., Roscoe, A. W.: An improved failures model for communi-
cating processes. In: Proceedings of the Pittsburgh seminar on concurrency,
197, 281–305. Springer LNCS (1985)

[11] Roscoe, A. W., Jackson, D.M., Gardiner, P.H.B., Goldsmith, M.H., Hu-
lance J.R., Scattergood, J.B.: Hierarchical compression for model-checking
CSP or How to check 1020 dining philosophers for deadlock. In: Proceedings
of the First International Workshop on Tools and Algorithms for Construc-
tion and Analysis of Systems, 135–152. Springer-Verlag (1995)

[12] Ramos, R., Sampaio, A., Mota, A.: Systematic development of trustworthy
component systems. In: 2nd World Congress on Formal Methods, 5850, 140–
156. LNCS Springer (2009).

[13] Roscoe, A. W.: The pursuit of buffer tolerance. Unpublished draft.
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/

106.pdf (2005)

30

[14] LocalysIt case study files, http://www.cin.ufpe.br/~prga2/tech/

experiment.zip

[15] FDR User manual, version 2.94, University of Oxford, http://www.

cs.ox.ac.uk/projects/concurrency-tools/fdr-2.94-html-manual/

index.html

[16] Deadlock Checker web repository, http://wotug.org/parallel/theory/
formal/csp/Deadlock/

[17] PAT Toolkit web repository, http://www.comp.nus.edu.sg/~pat/

[18] Cheetah template language web repository, http://www.

cheetahtemplate.org/

[19] Python language web repository, http://www.python.org/

31

Appendix A

Cheetah template

phil div.template: Cheetah template used to generate dinning

MAX = $max

MIN = $min

N = $n

channel pickup, putdown :union({MIN..MAX-1},{prev(MIN),next(MAX-1)})

.union({MIN..MAX-1},{prev(MIN),next(MAX-1)})

channel eat, think :union({MIN..MAX-1},{prev(MIN),next(MAX-1)})

alpha_phil(id) = {putdown.id.id,putdown.id.next(id),

pickup.id.id, pickup.id.next(id),think.id,eat.id}

alpha_fork(id) = {putdown.id.id, putdown.prev(id).id, pickup.id.id, pickup.prev(id).id}

prev(x) = if x - 1 == -1 then

N-1

else

x-1

next(x) = (x+1) % N

acquiring_release_evenst_set =

union(set(resources_order),{release_correspondent_element(e) |

e<-set(resources_order)})

print acquiring_release_evenst_set

release_correspondent_element(pickup.x.y) = putdown.x.y

acquiring_correspondent_element(putdown.x.y) = pickup.x.y

projection(P,s) = P \ diff(Events,s)

32

resources_order = <pickup.prev(y).y, pickup.y.y | y<-<MIN..MAX>>

print resources_order

filterSet(alpha,order) = <x | x<-order , member(x,alpha)>

hasElement(e,<>) = false

hasElement(e,<a>^order) = if e == a then

true

else

hasElement(e,order)

findElement(e,<>) = <>

findElement(e,<a>^order) = if a == e then

order

else

findElement(e,order)

ConditionUser(alpha) =

let

user_resources_order = filterSet(alpha,resources_order)

Cond(res,<a>^uro,sr) = a -> Cond(res,uro,union(sr,{release_correspondent_element(a)}))

[]

([] b : sr @ b -> Cond(res,<a>^uro,diff(sr,{b})))

Cond(res,<>,sr) = if sr != {} then

([] b : sr @ b -> Cond(res,<>,diff(sr,{b})))

else

Cond(res,res,{})

within

Cond(user_resources_order,user_resources_order,{})

ConditionResource(alpha) =

let

fork_resources_set = set(filterSet(alpha,resources_order))

Cond(res,uro,sr) = ([] a:uro @ a -> Cond(res,{},{release_correspondent_element(a)}))

[]

([] b : sr @ b -> Cond(res,res,{}))

within

Cond(fork_resources_set,fork_resources_set,{})

alphas = {alpha_phil(a), alpha_fork(a) | a <- {0..N-1}}

triple_disjoint(alpha) = card(alpha) == card({e | e <-alpha, element_count(e) <= 2})

element_count(e) = card({s| s<-alphas, member(e,s)})

Test(cond) = if cond then

SKIP

33

else

STOP

Fork(x) = pickup!prev(x)!x ->

putdown!prev(x)!x -> Fork(x) []

pickup!x!x -> putdown!x!x -> Fork(x)

Phil_live(y) = if y != N-1 then

think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_live(y)

else

think.y -> pickup.y!next(y) -> pickup.y.y ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_live(y)

Phil_dead(y) = think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_dead(y)

vocab = Union({inter(a,b) | a <-alphas, b <-alphas, a != b})

print vocab

print acquiring_release_evenst_set

#if $min == 0

#end if

#for $i in range($min,$max)

assert ConditionUser(alpha_phil($i))

[T=

projection(Phil_live($i),inter(acquiring_release_evenst_set,alpha_phil($i))) #end for

#for $i in range($min,$max)

assert ConditionResource(alpha_fork($i))

[T= projection(Fork($i),inter(acquiring_release_evenst_set,alpha_fork($i)))

#end for

#for $i in range($min,$max)

assert Fork($i) :[deadlock free[F]]

assert Fork($i) :[divergence free[FD]]

#end for

#for $i in range($min,$max)

assert Phil_live($i) :[deadlock free[F]]

34

assert Phil_live($i) :[divergence free[FD]]

#end for#for $i in range($min,$max)

assert projection(Phil_live($i),inter(alpha_phil($i),alpha_fork($i)))

[T= projection(Fork($i),inter(alpha_phil($i),alpha_fork($i)))

assert projection(Fork($i),inter(alpha_phil($i),alpha_fork($i)))

[T= projection(Phil_live($i),inter(alpha_phil($i),alpha_fork($i)))

assert projection(Phil_live($i),inter(alpha_phil($i),alpha_fork(next($i))))

[T= projection(Fork(next($i)),inter(alpha_phil($i),alpha_fork(next($i))))

assert projection(Fork(next($i)),inter(alpha_phil($i),alpha_fork(next($i))))

[T= projection(Phil_live($i),inter(alpha_phil($i),alpha_fork(next($i))))

#end for

Forks = || a:{MIN..MAX-1} @ [alpha_fork(a)] Fork(a)

Phils = || a:{MIN..MAX-1} @ [alpha_phil(a)] Phil_live(a)

College =

Forks [Union({alpha_fork(a) | a <- {MIN..MAX-1}})

|| Union({alpha_phil(a) | a <- {MIN..MAX-1}})] Phils

35

Appendix B

Python scripts

Generate.py: Python script to generation of the dinning philosopher
configuration

import os

import Config

’’’

Created on Jan 19, 2012

@author: prgantonino

’’’

import TemplateCSP

import sys

from TemplateCSP import Templates

from Cheetah.Template import Template

import math

def gerarArquivo(n):

path = Config.PATH+"gerador/Gerados/MAX_"+str(n)+"/"

if not(os.path.exists(path)):

os.makedirs(path)

templates = Templates(Config.PATH+"Templates/")

name = "phils.csp"

templateFile = templates.getPhil()

generateFile = open(path + name, "w")

template = Template(templateFile)

template.max = n

generateFile.write(str(template))

os.chmod(path + name, 0777)

def gerarArquivoSegmentado(n):

path = Config.PATH+"gerador/Gerados/MAX_SEG_"+str(n)+"/"

if not(os.path.exists(path)):

os.makedirs(path)

ppf = Config.PROC_PER_FILE

36

top = int(math.ceil(n/ppf))

for i in range(0,top):

templates = Templates(Config.PATH+"Templates/")

name = "phils_div"+str(i)+".csp"

templateFile = templates.getPhilDiv()

generateFile = open(path + name, "w")

template = Template(templateFile)

if (ppf*top) > n:

max = n

else:

max = (i+1)*ppf

template.n = n

template.max = max

template.min = i*ppf

generateFile.write(str(template))

os.chmod(path + name, 0777)

if __name__ == ’__main__’:

max = int(sys.argv[1])

gerarArquivoSegmentado(max)

Execute.py: Python script to run the .csp files generated in FDR

’’’

Created on Jan 30, 2012

@author: prgantonino

’’’

import os

import sys

import Config

import math

import datetime

def executeAndGenerateResults(n):

path = Config.PATH + "gerador/Gerados/Max_" + str(n) + "/"

log_path = path + "LOG/"

if not(os.path.exists(log_path)):

os.makedirs(log_path)

os.environ["FDRHOME"] = Config.FDRHOME

os.system(

"(time " + Config.FDRHOME + "bin/fdr2 batch " + path + "phils.csp)

>> " + log_path + "phils.log 2>&1")

print "Executing n="+str(n)

def checkForError(n):

37

path = Config.PATH + "gerador/Gerados/Max_" + str(n) + "/"

log_path = path + "LOG/phils.log"

error = False

try:

with open(log_path, "r") as file:

line = file.readline()

while(line != "" and not error):

if(line.startswith("false") or line.startswith("xfalse")

or line.startswith(

"The CSP compiler detected a script error or interrupt")):

error = True

print "Error script problem or assertion violated"

line = file.readline()

file.close()

except:

print "Exception"

return 1

return error

def executeAndGenerateResultsSeg(n):

path = Config.PATH + "gerador/Gerados/MAX_SEG_" + str(n) + "/"

log_path = path + "LOG/"

if not(os.path.exists(log_path)):

os.makedirs(log_path)

os.environ["FDRHOME"] = Config.FDRHOME

ppf = Config.PROC_PER_FILE

top = int(math.ceil(n/ppf))

for i in range(0,top):

os.system(

"(time " + Config.FDRHOME + "bin/fdr2 batch " + path + "phils_div"+str(i)+".csp)

>> " + log_path + "phils_div"+str(i)+".log 2>&1")

print "Executing n="+str(n)

def checkForErrorSeg(n):

path = Config.PATH + "gerador/Gerados/MAX_SEG_" + str(n) + "/"

ppf = Config.PROC_PER_FILE

top = int(math.ceil(n/ppf))

for i in range(0,top):

error = False

log_path = path + "LOG/phils_div"+str(i)+".log"

try:

with open(log_path, "r") as file:

line = file.readline()

while(line != "" and not error):

if(line.startswith("false") or line.startswith("xfalse") or

line.startswith(

"The CSP compiler detected a script error or interrupt")):

error = True

print "Error script problem or assertion violated"

line = file.readline()

38

file.close()

except:

print "Exception"

return 1

return error

if __name__ == ’__main__’:

max = int(sys.argv[1])

executeAndGenerateResultsSeg(max)

Config.py: Configuration file for genertion

import os

FDRHOME = "/Users/prgantonino/Pedro/Mestrado/fdr-2.94-academic-osx/"

PATH = "/Users/prgantonino/Dropbox/Mestrado/WorkspaceMestrado/Ferramenta3.0/"

PROC_PER_FILE = 5if __name__ == ’__main__’:

print str(os.path.exists(PATH + "auxiliar.csp") and os.path.exists(FDRHOME + "bin/"))

TemplateCSP.py: Script to load Cheetah template

’’’

Created on Jan 19, 2012

@author: prgantonino

’’’

class Templates:

def __init__(self, templatesPath):

self.path = templatesPath

def getTemplate(self, name):

with open(self.path + name, "r") as f:

dining = f.read()

if(len(dining) > 0):

return dining

def getPhil(self):

return self.getTemplate("phil.template")

def getPhilDiv(self):

return self.getTemplate("phil_div.template")

39

Appendix C

Example of generated file

Example of generated file with 5 philosophers and 5 forks

MAX = 5

MIN = 0

N = 10

channel pickup, putdown :union({MIN..MAX-1},{prev(MIN),next(MAX-1)})

.union({MIN..MAX-1},{prev(MIN),next(MAX-1)})

channel eat, think :union({MIN..MAX-1},{prev(MIN),next(MAX-1)})

alpha_phil(id) = {putdown.id.id,putdown.id.next(id),

pickup.id.id, pickup.id.next(id),think.id,eat.id}

alpha_fork(id) = {putdown.id.id, putdown.prev(id).id, pickup.id.id, pickup.prev(id).id}

prev(x) = if x - 1 == -1 then

N-1

else

x-1

next(x) = (x+1) % N

acquiring_release_evenst_set =

union(set(resources_order),{release_correspondent_element(e) |

e<-set(resources_order)})

print acquiring_release_evenst_set

release_correspondent_element(pickup.x.y) = putdown.x.y

acquiring_correspondent_element(putdown.x.y) = pickup.x.y

projection(P,s) = P \ diff(Events,s)

resources_order = <pickup.prev(y).y, pickup.y.y | y<-<MIN..MAX>>

40

print resources_order

filterSet(alpha,order) = <x | x<-order , member(x,alpha)>

hasElement(e,<>) = false

hasElement(e,<a>^order) = if e == a then

true

else

hasElement(e,order)

findElement(e,<>) = <>

findElement(e,<a>^order) = if a == e then

order

else

findElement(e,order)

ConditionUser(alpha) =

let

user_resources_order = filterSet(alpha,resources_order)

Cond(res,<a>^uro,sr) = a -> Cond(res,uro,union(sr,{release_correspondent_element(a)}))

[]

([] b : sr @ b -> Cond(res,<a>^uro,diff(sr,{b})))

Cond(res,<>,sr) = if sr != {} then

([] b : sr @ b -> Cond(res,<>,diff(sr,{b})))

else

Cond(res,res,{})

within

Cond(user_resources_order,user_resources_order,{})

ConditionResource(alpha) =

let

fork_resources_set = set(filterSet(alpha,resources_order))

Cond(res,uro,sr) = ([] a:uro @ a -> Cond(res,{},{release_correspondent_element(a)}))

[]

([] b : sr @ b -> Cond(res,res,{}))

within

Cond(fork_resources_set,fork_resources_set,{})

alphas = {alpha_phil(a), alpha_fork(a) | a <- {0..N-1}}

triple_disjoint(alpha) = card(alpha) == card({e | e <-alpha, element_count(e) <= 2})

element_count(e) = card({s| s<-alphas, member(e,s)})

Test(cond) = if cond then

SKIP

else

STOP

41

Fork(x) = pickup!prev(x)!x -> putdown!prev(x)!x -> Fork(x)

[] pickup!x!x -> putdown!x!x -> Fork(x)

Phil_live(y) = if y != N-1 then

think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_live(y)

else

think.y -> pickup.y!next(y) -> pickup.y.y ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_live(y)

Phil_dead(y) = think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_dead(y)

vocab = Union({inter(a,b) | a <-alphas, b <-alphas, a != b})

print vocab

print acquiring_release_evenst_set

assert ConditionUser(alpha_phil(0))

[T= projection(Phil_live(0),inter(acquiring_release_evenst_set,alpha_phil(0)))

assert ConditionUser(alpha_phil(1))

[T= projection(Phil_live(1),inter(acquiring_release_evenst_set,alpha_phil(1)))

assert ConditionUser(alpha_phil(2))

[T= projection(Phil_live(2),inter(acquiring_release_evenst_set,alpha_phil(2)))

assert ConditionUser(alpha_phil(3))

[T= projection(Phil_live(3),inter(acquiring_release_evenst_set,alpha_phil(3)))

assert ConditionUser(alpha_phil(4))

[T= projection(Phil_live(4),inter(acquiring_release_evenst_set,alpha_phil(4)))

assert ConditionResource(alpha_fork(0))

[T= projection(Fork(0),inter(acquiring_release_evenst_set,alpha_fork(0)))

assert ConditionResource(alpha_fork(1))

[T= projection(Fork(1),inter(acquiring_release_evenst_set,alpha_fork(1)))

assert ConditionResource(alpha_fork(2))

[T= projection(Fork(2),inter(acquiring_release_evenst_set,alpha_fork(2)))

assert ConditionResource(alpha_fork(3))

[T= projection(Fork(3),inter(acquiring_release_evenst_set,alpha_fork(3)))

assert ConditionResource(alpha_fork(4))

[T= projection(Fork(4),inter(acquiring_release_evenst_set,alpha_fork(4)))

assert Fork(0) :[deadlock free[F]]

assert Fork(0) :[divergence free[FD]]

assert Fork(1) :[deadlock free[F]]

assert Fork(1) :[divergence free[FD]]

42

assert Fork(2) :[deadlock free[F]]

assert Fork(2) :[divergence free[FD]]

assert Fork(3) :[deadlock free[F]]

assert Fork(3) :[divergence free[FD]]

assert Fork(4) :[deadlock free[F]]

assert Fork(4) :[divergence free[FD]]assert Phil_live(0) :[deadlock free[F]]

assert Phil_live(0) :[divergence free[FD]]

assert Phil_live(1) :[deadlock free[F]]

assert Phil_live(1) :[divergence free[FD]]

assert Phil_live(2) :[deadlock free[F]]

assert Phil_live(2) :[divergence free[FD]]

assert Phil_live(3) :[deadlock free[F]]

assert Phil_live(3) :[divergence free[FD]]

assert Phil_live(4) :[deadlock free[F]]

assert Phil_live(4) :[divergence free[FD]]

assert projection(Phil_live(0),inter(alpha_phil(0),alpha_fork(0)))

[T= projection(Fork(0),inter(alpha_phil(0),alpha_fork(0)))

assert projection(Fork(0),inter(alpha_phil(0),alpha_fork(0)))

[T= projection(Phil_live(0),inter(alpha_phil(0),alpha_fork(0)))

assert projection(Phil_live(0),inter(alpha_phil(0),alpha_fork(next(0))))

[T= projection(Fork(next(0)),inter(alpha_phil(0),alpha_fork(next(0))))

assert projection(Fork(next(0)),inter(alpha_phil(0),alpha_fork(next(0))))

[T= projection(Phil_live(0),inter(alpha_phil(0),alpha_fork(next(0))))

assert projection(Phil_live(1),inter(alpha_phil(1),alpha_fork(1)))

[T= projection(Fork(1),inter(alpha_phil(1),alpha_fork(1)))

assert projection(Fork(1),inter(alpha_phil(1),alpha_fork(1)))

[T= projection(Phil_live(1),inter(alpha_phil(1),alpha_fork(1)))

assert projection(Phil_live(1),inter(alpha_phil(1),alpha_fork(next(1))))

[T= projection(Fork(next(1)),inter(alpha_phil(1),alpha_fork(next(1))))

assert projection(Fork(next(1)),inter(alpha_phil(1),alpha_fork(next(1))))

[T= projection(Phil_live(1),inter(alpha_phil(1),alpha_fork(next(1))))

assert projection(Phil_live(2),inter(alpha_phil(2),alpha_fork(2)))

[T= projection(Fork(2),inter(alpha_phil(2),alpha_fork(2)))

43

assert projection(Fork(2),inter(alpha_phil(2),alpha_fork(2)))

[T= projection(Phil_live(2),inter(alpha_phil(2),alpha_fork(2)))

assert projection(Phil_live(2),inter(alpha_phil(2),alpha_fork(next(2))))

[T= projection(Fork(next(2)),inter(alpha_phil(2),alpha_fork(next(2))))

assert projection(Fork(next(2)),inter(alpha_phil(2),alpha_fork(next(2))))

[T= projection(Phil_live(2),inter(alpha_phil(2),alpha_fork(next(2))))

assert projection(Phil_live(3),inter(alpha_phil(3),alpha_fork(3)))

[T= projection(Fork(3),inter(alpha_phil(3),alpha_fork(3)))

assert projection(Fork(3),inter(alpha_phil(3),alpha_fork(3)))

[T= projection(Phil_live(3),inter(alpha_phil(3),alpha_fork(3)))

assert projection(Phil_live(3),inter(alpha_phil(3),alpha_fork(next(3))))

[T= projection(Fork(next(3)),inter(alpha_phil(3),alpha_fork(next(3))))

assert projection(Fork(next(3)),inter(alpha_phil(3),alpha_fork(next(3))))

[T= projection(Phil_live(3),inter(alpha_phil(3),alpha_fork(next(3))))

assert projection(Phil_live(4),inter(alpha_phil(4),alpha_fork(4)))

[T= projection(Fork(4),inter(alpha_phil(4),alpha_fork(4)))

assert projection(Fork(4),inter(alpha_phil(4),alpha_fork(4)))

[T= projection(Phil_live(4),inter(alpha_phil(4),alpha_fork(4)))

assert projection(Phil_live(4),inter(alpha_phil(4),alpha_fork(next(4))))

[T= projection(Fork(next(4)),inter(alpha_phil(4),alpha_fork(next(4))))

assert projection(Fork(next(4)),inter(alpha_phil(4),alpha_fork(next(4))))

[T= projection(Phil_live(4),inter(alpha_phil(4),alpha_fork(next(4))))

Forks = || a:{MIN..MAX-1} @ [alpha_fork(a)] Fork(a)

Phils = || a:{MIN..MAX-1} @ [alpha_phil(a)] Phil_live(a)

College = Forks [Union({alpha_fork(a) | a <- {MIN..MAX-1}})

|| Union({alpha_phil(a) | a <- {MIN..MAX-1}})] Phils

44

Appendix D

Case study example for 3
philosophers and 3 forks

--Resource sharing

MAX = 3

channel pickup, putdown :{0..MAX-1}.{0..MAX-1}

channel eat, think :{0..MAX-1}

alpha_phil(id) =

{putdown.id.id,putdown.id.next(id),pickup.id.id,

pickup.id.next(id),think.id,eat.id}

alpha_fork(forkid) =

let

id = forkid-MAX

within

{putdown.id.id, putdown.prev(id).id, pickup.id.id, pickup.prev(id).id}

Acquire(pidU,pidR) = pickup.pidU.(pidR-MAX)

Release(pidU,pidR) = putdown.pidU.(pidR-MAX)

Resources = {MAX..MAX+MAX-1}

Users = {0..MAX-1}

prev(x) = (x-1) % MAX

next(x) = (x+1) % MAX

print prev(1)

Fork(forkid) =

let

x = (forkid-MAX)

within

45

pickup!prev(x)!x -> putdown!prev(x)!x -> Fork(forkid)

[] pickup!x!x -> putdown!x!x -> Fork(forkid)

Phil_live(y) = if y != MAX-1 then

think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_live(y)

else

think.y -> pickup.y!next(y) -> pickup.y.y ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_live(y)

Phil_dead(y) = think.y -> pickup.y.y -> pickup.y!next(y) ->

putdown.y.y -> putdown.y!next(y) -> eat.y -> Phil_dead(y)

Phils_set_live = { (pid,Phil_live(pid), alpha_phil(pid)) | pid<-Users}

Phils_set_dead = { (pid,Phil_dead(pid), alpha_phil(pid)) | pid<-Users}

Forks_set = { (pid,Fork(pid), alpha_fork(pid)) | pid<-Resources}

Network_alive = union(Forks_set,Phils_set_live)

Network_dead = union(Forks_set,Phils_set_dead)

ResourcesU(pid) = {pid+MAX,next(pid)+MAX}

UsersR(pid) = {pid-MAX, prev(pid-MAX)}

Resource(pidR) =

let

resource_users = UsersR(pidR)

within

[] pidU :resource_users @

Acquire(pidU,pidR) -> Release(pidU,pidR) -> Resource(pidR)

UserCondition(pidU,resources_acquired, order) =

let

user_resources = ResourcesU(pidU)

within

([] pidR : higher(max(resources_acquired,order),order,user_resources) @

Acquire(pidU,pidR) ->

UserCondition(pidU,resources_acquired^<pidR>, order))

[]

([] pidR : set(resources_acquired) @

Release(pidU,pidR) ->

UserCondition(pidU,removeR(pidR,resources_acquired), order))

max(resource_acquired^<a>, order) = a

max(<>, order) = -1

print higher(-1, <>, ResourcesU(2))

higher(element, order, user_resources) =

46

{ pidR| pidR<- user_resources , pidR > element}

removeR(r,<>) = <>

removeR(r,ra^<a>) =

if a == r then

ra

else

removeR(r,ra)^<a>

print UserThatCanAquire(4,Network_alive)

higherAlreadyAquired(pidR,resources_acquired) =

{pid | pid<-resources_acquired, pidR < pid}

print higherAlreadyAquired(4,{5,6})

Pair_live(pidU,pidR) =

Fork(pidR) [alpha_fork(pidR)||alpha_phil(pidU)] Phil_live(pidU)

Pair_dead(pidU,pidR) =

Fork(pidR) [alpha_fork(pidR)||alpha_phil(pidU)] Phil_dead(pidU)

assert Fork(3) :[deadlock free [F]]

assert Fork(4) :[deadlock free [F]]

assert Fork(5) :[deadlock free [F]]

assert Phil_live(0) :[deadlock free [F]]

assert Phil_live(1) :[deadlock free [F]]

assert Phil_live(2) :[deadlock free [F]]

assert Phil_dead(0) :[deadlock free [F]]

assert Phil_dead(1) :[deadlock free [F]]

assert Phil_dead(2) :[deadlock free [F]]

assert Pair_live(0,3) :[deadlock free]

assert Pair_live(0,4) :[deadlock free]

assert Pair_live(1,4) :[deadlock free]

assert Pair_live(1,5) :[deadlock free]

assert Pair_live(2,5) :[deadlock free]

assert Pair_live(2,3) :[deadlock free]

assert Pair_dead(0,3) :[deadlock free]

assert Pair_dead(0,4) :[deadlock free]

assert Pair_dead(1,4) :[deadlock free]

assert Pair_dead(1,5) :[deadlock free]

assert Pair_dead(2,5) :[deadlock free]

assert Pair_dead(2,3) :[deadlock free]

assert Fork(3) [T= Resource(3)

assert Resource(3) [T= Fork(3)

47

assert Fork(4) [T= Resource(4)

assert Resource(4) [T= Fork(4)

assert Fork(5) [T= Resource(5)

assert Resource(5) [T= Fork(5)

AcquireU(pidU) = {Acquire(pidU,pidR) | pidR<-ResourcesU(pidU)}

ReleaseU(pidU) = {Release(pidU,pidR) | pidR<-ResourcesU(pidU)}

assert UserCondition(0,<>, <>) [T= Projection_phil_live(0)

assert UserCondition(1,<>, <>) [T= Projection_phil_live(1)

assert UserCondition(2,<>, <>) [T= Projection_phil_live(2)

Projection_phil_live(pid) =

(Phil_live(pid) \ diff(Events,union(AcquireU(pid),ReleaseU(pid))))

Projection_phil_dead(pid) =

(Phil_dead(pid) \ diff(Events,union(AcquireU(pid),ReleaseU(pid))))

assert UserCondition(0,<>, <>) [T= Projection_phil_dead(0)

assert UserCondition(1,<>, <>) [T= Projection_phil_dead(1)

assert UserCondition(2,<>, <>) [T= Projection_phil_dead(2)

Behaviour(N) = || (pid,P,A) : N @ [A] P

assert Behaviour(Network_alive) :[deadlock free [F]]

assert Behaviour(Network_dead) :[deadlock free [F]]

48

