
A RUP Based Analysis and Design with Aspects

Leonardo Cole1∗, Augusto Sampaio1†

1Informatics Center
Federal University of Pernambuco

Caixa Postal 7851 - 50.732-970 Recife, PE

lcn@cin.ufpe.br ,acas@cin.ufpe.br

Abstract. Aspect-Oriented Programming (AOP) is a new programming
paradigm that comes to complement the Object-Oriented (OO) paradigm solv-
ing problems not adequately addressed by the later. Thus, it seems appropriate
to adapt the software processes and life cycles to make use of its advantages.
The Rational Unified Process (RUP) is one of the most widely used software
development processes, however it has not been originally designed to use AOP.
RUP must be adapted to incorporate AOP concepts. This work proposes ad-
justments to the most affected RUP discipline, Analysis and Design, in order to
incorporate new concepts and techniques of AOP.

1. Introduction

Object Oriented (OO) [Meyer, 1997, Booch, 1994] programming is a well established and
widely used paradigm. However, it still can not solve some problems [Ossher et al., 1996,
Ossher and Tarr, 1999] related to the implementation of some concerns that generally
spreads over many different modules of the system (code scattering); this code is not
related to the behavior implemented by the module (code tangling). Aspect Oriented Pro-
gramming (AOP) [Elrad et al., 2001] is a new programming paradigm intended to com-
plement OO, solving those problems.

AOP implements these crosscutting concerns as aspects. Each aspect defines some
pointcuts and advices. The pointcuts are expressed in some way to define singular points
on the system execution flow where an advice can execute; these points are called join-
points. The advices specify the code to execute and when it should happen. The possibil-
ities are before, after or instead of the specified joinpoint itself.

Rational Unified Process (RUP) [Jacobson et al., 1999] is one of the most widely
used software development process. It defines disciplines, activities, roles and artifacts
that control the software life cycle, as an attempt to contribute to the production of soft-
ware with quality, on budget and within schedule.

As a new and promising programming paradigm, it seems appropriate that soft-
ware processes and life cycles be adapted to make use of its advantages. This work
proposes adjustments to the RUP Analysis and Design discipline in order to incorporate
the new concepts and techniques of AOP.

∗Supported by CAPES.
†Partially supported by CNPq, process number ...



In particular, this work can be regarded as an extension of
[Piveta and Devegili, 2002], where Piveta and Devegili briefly suggest some new
roles and activities to the Analysis and Design discipline in the presence of AOP. We
developed his ideas to propose a more precise description of the necessary adaptations to
the RUP Analysis and Design (A&D) discipline. We give an overview of each workflow
detail, proposing changes to the related activities and even suggesting the creation of new
activities.

Several of the RUP workflows are affected by the use of AOP as suggested
in [Piveta and Devegili, 2002]. We focus on the A&D discipline. However, we first dis-
cuss some related work on the Requirements discipline which is the main input to the
A&D discipline. We also present some suggestions and guidelines to future work on the
Implementation discipline.

The reminder of this paper is organized as follows Section 2 gives an overview of
RUP singling out the A&D discipline. Section 3 introduces the Requirements discipline
making use of aspects; then we suggest the necessary adaptations to the A&D discipline
in Section 4. Section 5 discusses our conclusions, related and future work.

2. The Rational Unified Process

”The Rational Unified Process or RUP product is a software engineering process. It pro-
vides a disciplined approach to assigning tasks and responsibilities within a development
organization. Its goal is to ensure the production of high-quality software that meets the
needs of its end users within a predictable schedule and budget” [Jacobson et al., 1999].

RUP is an object-oriented and Web-enabled program development method-
ology. It is like an online mentor that provides guidelines, templates, and ex-
amples for all aspects and stages of program development. RUP and sim-
ilar products, such as Catalysis [D’Souza and Wills, 1998] and the OPEN Pro-
cess [Firesmith and Henderson-Sellers, 2001], are comprehensive software engineering
tools that combine the procedural aspects of development (such as defined stages, tech-
niques, and practices) with other components of development (such as documents, mod-
els, manuals, code, and so on) within a unifying framework.

RUP establishes four phases of development, each of which is organized into a
number of separate iterations that must satisfy defined criteria before the next phase is
undertaken: in the inception phase, developers define the scope of the project and its
business case; in the elaboration phase, developers analyze the project’s needs in greater
detail and define its architectural foundation; in the construction phase, developers create
the application design and source code; and in the transition phase, developers deliver
the system to users. RUP provides a prototype at the completion of each iteration. The
product supplies an HTML-based description of the unified process that an organization
can customize for its own use.

There are four primary modelling elements: roles, activities, artifacts and work-
flows. Roles represents behaviors and responsibilities of the participants of the develop-
ment team (i.e. system analyst, architect, designer). Activities are the work performed
by the roles (i.e. find use cases and actors, review the design and execute a performance



test). Artifacts are information produced or used by a process (i.e. software architecture
document, design model).

Workflows describe the sequence of activities that produce some value result and
show the interactions among roles. There are seven workflows considered in RUP: Re-
quirements, Analysis and Design, Implementation, Test, Configuration and Change Man-
agement, Project Management and Environment. Besides the last three, the artifacts pro-
duced in one workflow are the input to the next.

Requirements goals are to establish and maintain agreement with the customers
and other stakeholders on what the system should do, to provide system developers with
a better understanding of the system requirements, to define the boundaries of (delimit)
the system, to provide a basis for planning the technical contents of iterations and for
estimating cost and time to develop the system, and finally, to define a user-interface for
the system, focusing on the needs and goals of the users.

Analysis and Design purpose is to transform the requirements into a design of the
system-to-be, to evolve a robust architecture for the system and to adapt the design to
match the implementation environment, designing it for performance. This workflow can
be seen in Figure 1.

Figure 1: Analysis and Design workflow [Jacobson et al., 1999]

In the Inception Phase, Analysis and Design is concerned with establishing
whether the system as envisioned is feasible, and with assessing potential technologies
for the solution (in Perform Architectural Synthesis). If it is felt that little risk attaches to
the development (because, for example, the domain is well understood, the system is not



novel, and so on) then this workflow detail may be omitted.

The early Elaboration Phase focuses on creating an initial architecture for the sys-
tem (Define a Candidate Architecture) to provide a starting point for the main analysis
work. If the architecture already exists (either because it was produced in previous it-
erations, in previous projects, or is obtained from an application framework), the focus
of the work changes to refining the architecture (Refine the Architecture) and analyzing
behavior and creating an initial set of elements which provide the appropriate behavior
(Analyze Behavior).

After the initial elements are identified, they are further refined. Design Compo-
nents produce a set of components which provide the appropriate behavior to satisfy the
requirements on the system. If the system includes a database, then Design the Database
occurs in parallel. The result is an initial set of components which are further refined in
Implementation.

Implementation defines the organization of the code, in terms of implementation
subsystems organized in layers. It implements the design elements in terms of implemen-
tation elements (source files, binaries, executables, and others). Tests the developed com-
ponents as units to integrate the results produced by individual implementers (or teams),
into an executable system.

This work focuses on the Analysis and Design workflow. However, it is im-
portant to consider the Requirements and the Implementation workflows as they, re-
spectively, generate the input and use the output of the A&D workflow. The reminder
of the workflows are beyond the scope of our work, details can be found elsewhere
[Jacobson et al., 1999].

3. Requirements Assumptions

The phase where aspects should be introduced during the software development pro-
cess is still discussed. In [Rashid et al., 2003, Rashid et al., 2002] they argue that early
separation of crosscutting properties supports effective determination of their mapping
and influence on latter development stages. As Requirements generates the input for the
Analysis and Design workflow, we consider the work proposed by [Rashid et al., 2003,
Rashid et al., 2002] and [Sousa et al., 2003].

The work developed in [Rashid et al., 2002, Rashid et al., 2003] proposes a
generic model for Aspect Oriented Requirements Engineering (AORE), the resulting ac-
tivities can be seen in Figure 2.

[Sousa et al., 2003] suggests an adaptation to the NFR-Framework(Non Func-
tional Requirements-Framework) [Chung et al., 1999] in order to improve the mapping
of crosscutting non-functional requirements onto artifacts at later development stages and
to make better composition of those requirements with non-crosscutting ones.

They suggest it is more adequate to deal with NFRoperationalizationsin the
context of Aspect Oriented Requirements Engineering because they better reflect how
the crosscutting concern will be implemented and therefore improving the composition
and the mapping of crosscutting requirements onto artifacts at later development stages.
Nevertheless, those previous AORE models fail to address the issue of non-functional re-



Figure 2: AORE Generic Model [Rashid et al., 2003]

quirements, specially because they deal with abstract NFRs instead of NFRoperational-
izations. Their proposed model is shown in Figure 3.

Figure 3: Proposed Adaptation of NFR Framework [Sousa et al., 2003]

Altogether, this work assumes that the Requirements workflow is executed con-
sidering aspects as described in [Sousa et al., 2003] and thus we assume the existence
of an artifact containing the aspect information as an input for the Analysis and Design
workflow. For instance, this artifact should describe the mapping of the NFRoperational-
izationswith respect to artifacts to be generated at later stages. Figure 4 shows an example
of this information representation.



Figure 4: Mappings of NFR operationalizations [Sousa et al., 2003]

4. Analysis and Design Adaptations

This section represents the main contribution of this work. It is structured similar to
the way RUP explains its workflows details and activities. Only the activities affected
by AOP are presented and its description includes only the information relevant to AOP.
Some activities appear in more than one workflow, in these cases, we show only additional
information and differences to the latter workflow, otherwise, if it is the same, the activity
is omitted.

The A&D workflow is composed of six details: Perform Architectural Analysis,
Define a Candidate architecture, Refine the Architecture, Analyze Behavior, Design Com-
ponents and Design Database. Each detail is composed of some activities and describe
what to be done, who is responsible and what are the artifacts produced or updated.

4.1. Perform Architectural Analysis

The intent of this workflow detail is to construct and assess an Architectural Proof-of-
Concept to demonstrate that the system, as envisioned, is feasible. It is conducted during
the inception phase and is responsibility of the Architect.

Architectural Analysis

The purpose of this activity is to define a candidate architecture for the system
based on experience gained from similar systems or in similar problem domains and to
define the architectural patterns, key mechanisms, and modelling conventions for the sys-
tem.

• Survey Available Assets
In addition to regular assets consideration, this step should also look for aspectual
assets.

• Identify Key Abstractions
The abstractions selected in this phase should include the ones necessary to un-
cover aspects, guiding the architect on the construction of the Architectural Proof-
of-Concept without neglecting aspects.

• Develop Deployment Overview
The geographical study on this step should consider the possibility of modelling
distribution as an aspect.



Construct Architectural Proof-of-Concept

The purpose of this activity is to synthesize at least one solution (which may sim-
ply be conceptual) that meets the critical architectural requirements. It must incorporate
critical aspects as they also need validation.

Assess Viability of Architectural Proof-of-Concept

The purpose of this activity is to evaluate the synthesized Architectural Proof-of-
Concept to determine whether the critical architectural requirements are feasible and can
be met (by this or any other solution). It is important to consider the critical aspects that
influence the architecture.

4.2. Define Candidate Architecture

The purpose of this workflow detail is to create an initial sketch of the software architec-
ture. Although modelling crosscutting concerns as aspects usually simplifies the archi-
tecture in general, most of the architectural modelling decisions must be aware of aspects
because the architecture is directly affected by them. In addition, it is also important to
work on subsystem and component interfaces, preparing them to offer the necessary join-
points to the aspects. Thus, the architect should keep the aspects in mind even though he
is modelling a simple architecture.

The architecture is also influenced by the goals identified during the requirements
workflow that maps to an architecture decision (see Section 3).

Architectural Analysis

• Define the High-Level Organization of Subsystems
This step should relate aspects to the layering organization and consider adapta-
tions necessary to the patterns adopted.

• Identify Key Abstractions
The goals identified during requirements which maps to an architecture decision
should be considered in this activity. As the aspects are usually abstractions to the
concerns it implements, this step should include aspects on relationships diagrams
and descriptions. This step also define patterns used to refine the architecture.
There are several patterns suggested to make better use of aspects that should be
considered in this step. For instance, the PaDA [Soares and Borba, 2002] suggests
a pattern for distribution aspects taking advantages from the use of AOP.

• Identify Analysis Mechanisms
Decide which mechanisms maps to aspects and facilitate architecture comprehen-
sion. Almost all of the architectural mechanisms can be represented as aspects
and be abstracted from the architecture design.

Use Case Analysis

• Find Analysis Aspects
Considering the mapping suggested on the Requirement workflow(see Section 3),
identify the model elements which will be capable of realizing the goals described
on requirements.

• Distribute Behavior to Analysis Classes
Include aspects on the collaborations, showing aspects dependencies and respon-
sibilities.



• Describe Responsibilities
To describe the responsibilities of aspects identified.

• Describe Attributes and Associations
Define other classes and aspects on which the identified aspects depends. Define
the classes affected by aspects and possibly determine a set of joinpoints used by
the aspects.

• Qualify Analysis Mechanisms
The mechanisms mapped to aspects where treated on previous activities, that is,
this step considers only the mechanisms not modelled as aspects.

4.3. Refine Architecture

This workflow detail provides the natural transition from analysis activities to design ac-
tivities, identifying: appropriate design elements from analysis elements and appropriate
design mechanisms from related analysis mechanisms.It also describes the organization of
the system’s run-time and deployment architecture, organizes the implementation model
so as to make the transition between design and implementation seamless, maintains the
consistency and integrity of the architecture, ensuring that: new design elements identi-
fied for the current iteration are integrated with pre-existing design elements and maximal
re-use of available components and design elements is achieved as early as possible in the
design effort.

Identify Design Elements

• Identify Events and Signals
This step should consider identifying the set os joinpoints required by the aspects.

• Identify Classes, Active Classes and Subsystems
Refine the aspects identified during analysis and their relations to the new design
elements. This step identifies the active classes(threads), therefore, concurrency
should be considered during this activity. Concurrency is a common example of
crosscutting concern as its effects spreads over the processes and consequently
over different modules even though its behavior is modular. Hence, concurrency
control is a strong candidate to be implemented as an aspect.

• Identify Subsystem Interfaces
Subsystems affected by aspects should provide an interface with the necessary set
of joinpoints to be used by the affecting aspects.

Identify Design Mechanisms

The mechanisms mapped to aspects where treated on previous activities, that is,
this step considers only the mechanisms not implemented as aspects.

Incorporate Existing Design Elements

• Identify Reuse Opportunities
Look for similarities and probably unification of interfaces affected by aspects.
Another important consideration in this step is the identification of common aspect
features as an indicative of an abstract aspect.

Describe Distribution



As a refinement to the Deployment Model created during Architectural Analysis,
this activity is influenced by the use of AOP only if the distribution is modelled as aspects.
In this case, this activity should refine de Deployment Model to reflect the current design,
making it clear how the distribution aspects affect the deployment configuration.

Describe the Runtime Architecture

This activity is mainly focused on process and its organization, identifying them,
how they communicate, their life cycle and finally how they share resources. Thus, new
threads can be identified during this activity implying on changes to the concurrency
policy. If concurrency is modelled by aspects, the aspects should be modified to control
the new threads.

4.4. Analyze Behavior

The purpose of this workflow detail is to transform the behavioral descriptions provided
by the requirements into a set of elements upon which the design can be based. It occurs
in each iteration in which there are behavioral requirements to be analyzed and designed.

The activities concerning user interface are not affected by the use of AOP. The
other activities specified on this workflow detail are affected and were already defined
(see Section 4.3.

4.5. Design Components

The purpose of this workflow detail is to refine the design of the system. The activities
described by this workflow detail are not directly affected by the use of AOP. However,
there is a necessity for a new separate activity that we call Design Aspects.

Design Aspects

The purpose of this activity is to ensure that sufficient information is provided to
unambiguously implement the aspects, refining the already identified joinpoint dependen-
cies, and to identify the pointcuts and advices.

• Define Aspect Priorities and Precedence
This decisions should be based on the conflict identification and resolution from
Identify Design Mechanisms on the Refine Architecture workflow detail.

• Define Aspect Pointcuts
This step is responsible for grouping the joinpoints on which the aspect depends,
creating the necessary pointcuts and deciding the context that must be exposed to
the advices. The grouping occurs to join all the joinpoints that are affected the
same way and are able to expose the same context.

• Define Aspect Advices
Specify only the kinds of advice(i.e. before, after and around) and the context
exposure based on the identified pointcuts.

• Define Structure Influence
This step is responsible for specifying how the aspects change the hierarchy of
classes, identifying the new relationships. It is also responsible to determine
how the aspects introduce behavior to the classes, identifying which attributes
and methods must be introduced to which classes.



5. Discussion

We proposed adaptations to activities of the the Rational Unified Pro-
cess(RUP) [Jacobson et al., 1999] Analysis and Design discipline in order to incorporate
the new concepts and advantages of AOP.

In [Piveta and Devegili, 2002], Piveta and Devegili briefly suggests some changes
to the roles, activities and artifacts of the Analysis and Design discipline in the presence
of AOP. We developed his ideas and proposed a more precise description of the necessary
adaptations to the RUP Analysis and Design discipline. We gave an overview of each
workflow detail, proposing changes to the related activities and suggested the creation of
a new activity, Design Aspects.

This work is not complete in the sense it only deals with one discipline defined by
RUP. Although some disciplines are not affected by the use of AOP, there are disciplines,
other than Analysis and Design, which need to be adapted.

Hence, a continuation of this work would deal with the adaptation of the Imple-
mentation workflow as it is strongly affected by the use of AOP and it follows the Analy-
sis and Design workflow. One of the primary impacts is on the implementation language
which generally is an extension to a known language or a framework implemented in one.
Once the developer is used to the new language there are necessary adaptations to the
way classes are implemented, to incorporate aspect implementations. In a similar way,
the tests should be adapted to exploit the concerns implemented by aspects.

Besides [Piveta and Devegili, 2002], as far as we know, there are no other work
that approaches this subject in a similar way to ours. However, there are related problems
which were not discussed here and are treated elsewhere. The representation of cross-
cutting features is discussed in [Stein et al., b] and its representation in UML is treated
in [Stein et al., a]. The representation of aspects during the design phase as an extension
to UML allowing expression of aspects and its relationships to classes and other aspects
is proposed in [Suzuki and Yamamoto, 1999]. Finally, [Stein et al., 2002] discusses the
representation of joinpoints in UML.

RUP adaptations are necessarily common as it is a framework, an adaptable pro-
cess that should be tailored to specific companies and projects. Nevertheless, there are
general adaptations that maintain the general propose of the framework. [Kruchten, 2001]
suggests adaptations to RUP with the objective of using it to evolve a legacy project,
[Moraes, 2002] adapts RUP to incorporate concepts of the Architecture Based Develop-
ment Process which aims to the architecture as a bridge between the requirements and the
implementation. Thus, their adaptations are mainly on the Analysis and Design workflow.

There is also adjustments to use RUP in more specific domains, [Araújo, 2001,
Souza, 2002] focused on adaptations to the Analysis and Design workflow to develop
Web based applications allowing the software development process to increase product
quality at lower costs.

References

[Araújo, 2001] Aráujo, A. C. M. (2001). Framework de Análise e Projeto Baseado no RUP
para o Desenvolvimento de Aplicações Web.



[Booch, 1994] Booch, G. (1994).Object–Oriented Analysis and Design with Applications.
Benjamin/Cummings, second edition.

[Chung et al., 1999] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (1999).Non-
Functional Requirements in Software Engineering, volume 5 ofThe Kluwer Interna-
tional Series In Software Engineering. Kluwer Academic Publishers.

[D’Souza and Wills, 1998] D’Souza, D. F. and Wills, A. C. (1998).Objects, Components,
and Frameworks with UML : The Catalysis(SM) Approach. Addison-Wesley Pub Co.

[Elrad et al., 2001] Elrad, T., Filman, R. E., and Bader, A. (2001). Aspect–Oriented Pro-
gramming.Communications of the ACM, 44(10):29–32.

[Firesmith and Henderson-Sellers, 2001] Firesmith, D. and Henderson-Sellers, B. (2001).
The OPEN Process Framework. An Introduction. Addison-Wesley.

[Jacobson et al., 1999] Jacobson, I., Booch, G., and Rumbaugh, J. (1999).The Unified Soft-
ware Development Process. Addison–Wesley.

[Kruchten, 2001] Kruchten, P. (2001). Using the RUP to Evolve a Legacy System.

[Meyer, 1997] Meyer, B. (1997).Object–Oriented Software Construction. Prentice–Hall,
second edition.

[Moraes, 2002] Moraes, M. A. F. (2002). Um Framework de Análise e Projeto Baseado em
Arquitetura de Software.

[Ossher et al., 1996] Ossher, H., Kaplan, M., Katz, A., Harrison, W., and Kruskal, V. (1996).
Specifying suject–oriented composition.TAPOS, 2(3):179–202. Special Issue on Sub-
jectivity in OO Systems.

[Ossher and Tarr, 1999] Ossher, H. and Tarr, P. (1999). Using subject–oriented pro-
gramming to overcome common problems in object–oriented software develop-
ment/evolution. InInternational Conference on Software Engineering, ICSE’99, pages
698–688. ACM.

[Piveta and Devegili, 2002] Piveta, E. K. and Devegili, A. J. (2002). Aspects in the Rational
Unified Process Analysis and Design Workflow. InAspect Oriented Design Workshop,
AOSD 2002, Enschende, Netherlands.

[Rashid et al., 2003] Rashid, A., Moreira, A., and Araújo, J. (2003). Modularisation and
composition of aspectual requirements. In2nd International Conference on Aspect-
Oriented Software Development, pages 11–20. ACM.

[Rashid et al., 2002] Rashid, A., Sawyer, P., Moreira, A., and Araújo, J. (2002). Early as-
pects: A model for aspect-oriented requirements engineering. InIEEE Joint Interna-
tional Conference on Requirements Engineering, pages 199–202. IEEE, IEEE Com-
puter Society Press.

[Soares and Borba, 2002] Soares, S. and Borba, P. (2002). PaDA: A Pattern for Distribution
Aspects. InSecond Latin American Conference on Pattern Languages Programming
— SugarLoafPLoP, Itaipava, Rio de Janeiro, Brazil.

[Sousa et al., 2003] Sousa, G. M. C., Silva, I. G. L., and Castro, J. B. (2003). Adapting the
NFR Framework to Aspect-Oriented Requirements Engineering. InXVII Brazillian
Symposium on Software Engineering - SBES.



[Souza, 2002] Souza, R. A. C. (2002). Uma Extensão do Fluxo de Ańalise e Projeto do
RUP para o Desenvolvimento de Aplicações Web.

[Stein et al., a] Stein, D., Hanenberg, S., and Unland, R. Designing aspect-oriented cross-
cutting in UML.

[Stein et al., b] Stein, D., Hanenberg, S., and Unland, R. Position paper on aspect-oriented
modeling: Issues on representing crosscutting features.

[Stein et al., 2002] Stein, D., Hanenberg, S., and Unland, R. (2002). On representing join
points in the UML. In Kand́e, M., Aldawud, O., Booch, G., and Harrison, B., editors,
Workshop on Aspect-Oriented Modeling with UML.

[Suzuki and Yamamoto, 1999] Suzuki, J. and Yamamoto, Y. (1999). Extending UML with
aspects: Aspect support in the design phase. InECOOP Workshops, pages 299–300.


	Introduction
	The Rational Unified Process
	Requirements Assumptions
	Analysis and Design Adaptations
	Perform Architectural Analysis
	Define Candidate Architecture
	Refine Architecture
	Analyze Behavior
	Design Components

	Discussion

