

Universidade Federal de Pernambuco

Centro de Informática

Pós-Graduação em Ciência da Computação

Regression Test Selection to Reduce Escaped Defects

Juliana Nereida Dantas Mafra

Recife, Novembro de 2008

Universidade Federal de Pernambuco
Centro de Informática

Juliana Nereida Dantas Mafra

Regression Test Selection to Reduce Escaped Defects

Trabalho apresentado ao Curso de Mestrado em
Ciência da Computação como requisito parcial à
avaliação na disciplina de Qualidade, Processos
e Gestão de Software ministrada pelo Prof.º
Alexandre Marcos Lins de Vasconcelos.

 Orientador: Prof.º Augusto Sampaio
 Co-orientador: Juliano Iyoda

Recife, Novembro de 2008

iii

Abstract

Software development encompasses an extreme competitive market. Given that the system
quality is an important factor to guarantee the company position in the market, great effort
has been dedicated to ensure the product quality and customer satisfaction. Due to the
enormous possibility of injecting human failures and its associated costs, a really careful and
well planned testing process is definitely necessary. The main role of software testing is to
find defects in the product so that the development team can fix them on time, before the
product reaches the customer. In this context, the concept of escaped defects emerges. An
escaped defect is a defect that was not found by the test team in a specific step of the process.
As the companies need to keep their deadlines, when a new build (version) of the product is
released it becomes impracticable the re-execution of all test cases in order to reduce the
escaped defects. Because of that, there are teams responsible for selecting manually a subset
of all test cases to guarantee the software correctness and reduce the escaped defects. This
work focuses on the definition of five criteria (metrics) that permit a more systematic test
case selection from a suite in order to increase the probability of finding bugs and, hopefully,
reduce the number of defects to escape. This work is done as part of the research project
collaboration between CIn-UFPE and Motorola, in the context of Brazil Test Center (BTC).

Keywords: Software Testing, Regression Test Selection, Escaped Defects

iv

Resumo

O desenvolvimento de software engloba um mercado de extrema competitividade. Tendo em
vista que os sistemas que apresentam melhor qualidade garantem seu espaço no mercado, as
empresas que os desenvolvem têm investido bastante esforço para assegurar a qualidade do
produto e a satisfação do cliente. Devido à grande possibilidade de injeção de falhas humanas
e dos custos associados a estas falhas, um processo de testes bastante cuidadoso e bem
planejado se faz necessário. O principal objetivo dos testes de software é encontrar defeitos
no produto final, para que a equipe de desenvolvimento os corrija a tempo, antes que o
produto chegue ao cliente. Dentro deste contexto, surge o conceito de escaped defects
(defeitos escapados), que nada mais são do que defeitos que não foram encontrados pelo time
de teste, em uma etapa específica do processo. Devido à necessidade das empresas
cumprirem seus prazos, quando uma nova build (versão) é liberada, torna-se inviável a re-
execução de todos os testes para diminuir a quantidade de defeitos escapados. Por isso,
geralmente existem equipes responsáveis por selecionar manualmente um grupo mínimo de
casos de teste que sejam capazes de garantir o correto funcionamento do software. Este
trabalho dá enfoque na definição de cinco critérios (métricas) que permitam uma seleção
mais sistemática dos casos de teste de uma suíte, de modo que esta seleção aumente as
chances de se encontrar defeitos e, possivelmente, reduza a quantidade de defeitos que
escapem. Este trabalho é parte do projeto de pesquisa do CIn-UFPE em cooperação com a
Motorola no contexto do Brazil Test Center (BTC).

Palavras Chaves: Teste de Software, Seleção de testes de regressão, escaped defects.

v

Contents

1 Introduction .. 1

1.1 Objectives .. 2

1.2 Document Structure ... 3

2. Software Testing ... 4

2.1 RUP Test Discipline .. 5

2.2 Escaped Defects ... 9

2.3 Regression Test Selection .. 10

3. Debugging and Testing ... 12

4. Test Selection Strategy .. 16

4.1 Test Case History .. 16

4.1.1 Example .. 17

4.2 Changed and New Components .. 18

4.2.1 Example .. 18

4.3 Recent Failures .. 19

4.3.1 Example .. 20

4.4 Escaped Defects ... 21

4.4.1 Example .. 22

4.5 Spatial Locality .. 23

4.5.1 Example .. 25

5. Conclusion ... 28

5.1 Related Work ... 28

5.2 Future Works ... 29

References ... 30

vi

List of Figures

Figure 1 - The Rational Unified Process ... 1

Figure 2 – Test discipline workflow ... 6

Figure 3 – Test discipline activities... 7

vii

List of Tables

Table 1 - Agree on the Mission Template ... 8

Table 2 - Activities that compose each workflow detail ... 8

Table 3 - Generic structure of Test Case History metric... 16

Table 4 - Generic structure of Changed and New Components metric 18

Table 5 - Generic structure of Recent Failures metric .. 19

Table 6 - Example for the Recent Failures metric .. 20

Table 7 - Generic structure of Escaped Defects metric ... 21

Table 8 - Example for the Escaped Defects metric ... 22

Table 9 - Generic structure of Spatial Locality metric .. 23

Table 10 - Distances ... 26

Table 11 - Averages of every c’’ _ C’’ and the associated test cases 26

Table 12 - Example for the Spatial Locality metric .. 27

1

1 Introduction

Software development encompasses an extreme competitive market. Given that the

system quality is an important fact to guarantee the company position in the market, great

effort has been dedicated to ensure the product quality and customer satisfaction.

To ensure product quality, software engineering processes like RUP (Rational Unified

Process) [1] are often used during the product development, also aiming at higher

productivity. Figure 1 shows an overview of the RUP. It has two dimensions: the horizontal

axis represents time and shows the lifecycle aspects of the process, and the vertical axis

represents disciplines, which group activities logically according to their nature.

Figure 1 - The Rational Unified Process

The horizontal axis represents the dynamic aspect of the process, i.e. how activities

are distributed over time. It is expressed in terms of Phases and Milestones. The vertical axis

represents the structural aspects of the process: how it is described in terms of disciplines,

workflows, activities, artefacts and roles. Figure 1 also shows how the emphasis on one

activity can vary over time.

Nowadays, a discipline that has shown great importance is the Test discipline, which this

work focuses on. Due to the enormous possibility of injecting human failures in the products

and its associated costs, a really careful and well planned testing process is definitely

necessary.

2

The main role of software testing [4], [5] is to find defects in the product, so that the

development team can fix them on time before the product reaches the customer. This might

be done by verifying whether all requirements are implemented according to their

specification, and also by producing test cases that present high probability of revealing a

fault that was not identified yet, with a minimum amount of time and effort.

Knowing that problems exposed to customers are quite costly, it is necessary to

develop preventive solutions by creating effective tests that aim to find as many errors as

possible. In this context, the concept of escaped defects [3] emerges. An escaped defect is a

defect that was not found by the test team, in a specific step of the process.

A research and development project that emerged from a partnership between CIn-

UFPE and Motorola, located in Recife, as part of the Brazil Test Center (BTC) project, is

responsible for conducting tests of the Motorola cell phones with focus on the software

testing execution activities.

In this particular context, defects that are classified as escaped defects are the ones

which were not found by the BTC, appearing in a later phase, say, at system testing or even

in the user hands. The problem characterized as escaped defects [3] may be addressed by

using the idea of Regression Test Selection [6] [7], but, all of the researches existent in the

literature assume availability of the source code. As this is not the case for the BTC, we have

to look at black-box bug prediction techniques to define our own strategy for regression test

selection.

1.1 Objectives

Due to the needs of big companies, like Motorola, to meet their deadlines, when a new build

of a product is released, it becomes impractical the re-execution of all test cases. Because of

that, there are teams responsible for selecting manually a group of test cases that could be

able to guarantee the software correct operation.

Within the presented context and based on the Motorola needs of identifying errors

more efficiently, this work aims to propose a solution that allows a more systematic test cases

selection from a suite, so that this selection might allow the reduction of possible defects to

escape.

Particularly, this work is focused on the definition of criteria (metrics) responsible for

promoting a test case selection that will be used to the regression tests, when a new build

3

(version) is already available. Based on a particular intention for each criterion, each of them

provides a different relevance order among the tests existent in the suite. The team manager

can then compare the results of each criterion and select the test cases based on the needs of

each particular build, giving more emphasis to the criteria that seem to be the most important.

1.2 Document Structure

This work is organized as follows:

• Chapter 2 presents a detailed description of software testing, focusing on the RUP

test discipline, and also explaining the concepts of escaped defects and regression test

selection, used in this work;

• Chapter 3 explains the concepts of debugging and testing, and shows how strategies

for debugging can be used in software testing;

• Chapter 4 describes the regression test selection strategy proposed; it describes each

of the defined criteria in detail, also presenting a formal specification for them;

• Chapter 5 shows the conclusion of this research, also presenting the related and

future works.

4

2. Software Testing

Software testing is “any activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required results” [8]. In a simple way,

one of the main purposes of software testing is to execute a developed system in order to find

bugs. This contrasts with the other purpose of testing: to ensure that the system does what it is

suppose to do.

Software testing is therefore important to analyse whether the implementation meets the

system requirements, to reduce the costs associated to maintenance and rework, to verify the

correct integration among all software components, and especially, to ensure the client

satisfaction.

The idea of finding bugs has the intent of reporting them back to the development team,

so they can fix them. In this way, the final product shall have as few bugs as possible,

guaranteeing its quality and reliability. It is impossible to find all bugs existent in a program

with testing, so it is important to know that software will always have bugs. Then, the

objective is to provide systems in which the remaining bugs are neither critical nor essential

and which do not compromise the system integrity.

There are two main testing approaches: white box and black box. The former is

characterized by knowing the internal functionalities of the software components; so it is

necessary to have programming skills to understand all possible logical paths. On the other

hand, differently from the white box approach, the latter approach regards software as a black

box, where its internal structure is not considered. Given the input data, its aim is to verify

whether the given outputs are as expected.

The moments in the software life cycle in which tests are performed can be defined by

four test phases: Unit testing, Integration testing, System testing and, finally, Acceptance

testing [9]. Unit testing is the act of testing isolated components, ensuring their individual

correctness in order to make much easier the Integration testing, which is responsible to test

the integration among the unit parts. System testing verifies the whole system functionality,

and in general, black box tests are executed with this intention. Finally, the system is tested

by the user in order to approve it (Acceptance testing).

When changes are made to the software, a new build is released, and regression tests must

be performed. They are responsible to verify whether previously-working functionality did

not regress and to verify whether the changes are working as expected.

5

2.1 RUP Test Discipline

As shown in Figure 1 of Chapter 1 the RUP Test discipline already begins in the

Inception phase, during project planning. Here, the initial planning of the tests is done based

on the project plan and also on the elicited requirements, which are one of the first inputs for

identifying which tests to perform. In the next phase – Elaboration – the focus is on the

design and execution of integration tests based on the Analysis & Design artefacts. In the

Construction phase, the purpose is to design and execute system tests. Finally, in the

Transition phase, the responsibility is to get the customer’s approval, guaranteeing the

software correctness and the expected functionality.

As the RUP has the principle of iterative development, the RUP test discipline follows

this idea too. This is important because the development team can have an early concrete

feedback about crucial testing information and the whole test planning can evolve over time,

until getting a good maturity level. As said before, the purpose of Testing is to ensure

software quality, and according to [10], this is achieved through a number of core practices:

• Finding and documenting defects in software quality.

• Generally advising about perceived software quality.

• Proving the validity of the assumptions made in design and

requirement specifications through concrete demonstration.

• Validating the software product functions as designed.

• Validating that the requirements have been implemented appropriately.

Figure 2 [13] shows the default workflow of the RUP test discipline during a typical RUP

iteration. “This workflow may require variations based on the specific needs of each iteration

and project” [12].

6

Figure 2 – Test discipline workflow

The Test discipline workflow starts with the Define Evaluation Mission workflow

detail, followed by two tasks concurrently: Verify Test Approach (for each existing

technique) and Validate Build Stability (for each test cycle). From the first one, it is possible

to go back to itself, with a different technique. The latter allows achieving the next two

workflow details concurrently: Test and Evaluate and Achieve Acceptable Mission. From

both of them, the next step is the Improve Test Assets.

According to [12], the roles that can be assigned in software testing are: Test

Manager, Test Analyst, Test Designer, and Tester. The possible activities associated to each

of them can be seen in Figure 3 [12].

7

Figure 3 – Test discipline activities

Each of these activities has a template that defines its structure, and can be composed

by: purpose, steps, input artefacts, output artefacts, frequency, role, tool mentors, and

additional information. An example is shown in Table 1 [11], describing the activity Agree

on the Mission.

All of these activities can also be divided into groups that compose every workflow

detail of Figure 2. Table 2 shows the association between the activity groups and the

workflow details. Note that the same activity can be associated to more than one workflow

detail.

8

Table 1 - Agree on the Mission Template

Purpose
• To negotiate the most effective use of testing resources for each iteration.
• To agree on an appropriate and achievable set of objectives and deliverables for

the iteration.
Steps

• Understand iteration objectives
• Investigate options for the scope of the assessment effort
• Present options to stakeholders
• Formulate mission statement
• Identify test deliverables
• Gain stakeholder agreement
• Evaluate and verify your results

Input Artifacts:
• Iteration Plan
• Quality Assurance Plan
• Risk List
• Work Order
• Issues List
• Vision
• Software Development Plan
• Test Automation Architecture
• Change Request
• Test Plan

Output Artifacts:
• Test Plan

Frequency: This activity is typically conducted multiple times per iteration.
Role: Test Manager
Tool Mentors:

• Performing Test Activities Using Rational Test Manager
More Information:

• Test Plan

Table 2 - Activities that compose each workflow detail

Workflow Details Activities

Define Evaluation Mission

Identify Test Motivators, Identify Targets of Test,

Identify Test Ideas, Define Assessment and

Traceability Needs, Define Test Approach, Agree On

Mission

Verify Test Approach

Define Test Environment Configurations, Identify

Testability Mechanisms, Define Testability Elements,

Define Test Details, Implement Test, Implement Test

Suite, Obtain Testability Commitment

Validate Build Stability Define Test Details, Execute Test Suite, Implement

9

Test, Analyze Test Failure, Determine Test Results,

Assess and Advocate Quality

Test and Evaluate

Identify Test Ideas, Define Test Details, Define

Testability Elements, Implement Test, Implement

Test Suite, Structure the Test Implementation,

Execute Test Suite, Analyse Test Failure, Determine

Test Results, Assess and Improve Test Effort

Achieve Acceptable Mission

Identify Test Ideas, Implement Test, Implement Test

Suite, Analyse Test Failure, Determine Test Results,

Assess and Improve Test Effort, Assess and Advocate

Quality

Improve Test Assets

Develop Test Guidelines, Define Testability Elements,

Structure the Test Implementation, Identify Test

Ideas, Define Test Details, Define Assessment and

Traceability Needs, Implement Test Suite, Implement

Test

2.2 Escaped Defects

Escaped defects can be defined as software defects that should be found by a test team in

a specific step of the process, and for some reason they have escaped. The escaped defects

analysis is the process of investigating these escapes, in order to discover why they have

escaped, prevent future escapes and then, making preventive plans to avoid these future

similar escapes [3]. This is important to improve software quality, get better customer

appreciation and also to reduce costs, since whenever critical faults are exposed to the

customers, there are great costs to make software correction and maintenance.

The escape analysis process requires a lot of effort to get the best return. So, if the

development and test teams could both be involved, the process would produce better results.

According to [3], the objectives of escape analysis are to:

• Separate escapes into useful categories for further, more in-depth

analysis.

• Run statistics on the categorized data.

• Identify and implement overall process changes needed based on the

statistics.

• Identify and implement low-level (department-level) changes needed

10

based on in-depth analysis of specific escapes.

• Use metrics to demonstrate effectiveness of process changes.

There is also another preventive direction that can be followed with the intention of

reducing the escaped defects. This perspective considers the test cases investigation,

examining all existent test cases in a test suite and analysing, based on defined criteria, which

of them are more likely to allow as few escaped defects as possible, in the context of a

particular test suite execution.

Getting into this perspective, there are some possible ways to pursue: for example, add more

test cases to the group executed in the previous build, but this is not the focus of this work;

and select the most appropriate test cases from a suite (to be explained in next section).

2.3 Regression Test Selection

Regression testing is the activity of testing a new version of a system in order to validate

this version, detecting whether bugs have been introduced due to the changes made in the

software, and thus, guaranteeing the correctness of the modifications. Since the re-execution

of all test cases in a suite is very expensive, researchers have proposed techniques for

reducing this expense, like regression test selection [2], [6], [7] [14] [15], [16] and test suite

minimization [17], [18] [19], [20], [21] techniques.

Often there is a confusion between these two techniques, and in fact, they are related but

distinct. So, it is important to understand their differences. The test suite minimization

technique considers only the program and a test suite, and is responsible to reduce the size of

a test suite while still guaranteeing the same coverage of the system functionalities.

Regression test selection “reduces the cost of regression testing by selecting an appropriate

subset of the existing test suite, based on information about the program, modified version,

and test suite” [22].

Although these techniques are distinct they can be applied together, if the objective is to

attend both of their purposes, which is to select the minimal subset from a test suite to

validate a new build.

Both of these techniques can be unsafe. For instance, regression test selection, which is

the focus of this work, can have substantial cost, and worse, can disregard test cases that

could find bugs or consider tests that do not reveal faults at all, reducing fault detection

11

effectiveness. “This trade-off between the time required to select and run test cases and the

fault detection ability of the test cases that are run is central to regression test selection.” [23]

Note that we can apply different approaches to this problem based on the needs of the

system. We can easily find researches that propose methods for regression test selection, but

almost all of them follow the white box strategy. Looking for solving the Motorola company

needs of reducing the escaped defects (in a black box context) and making test case selection

more efficient, this work is inspired by the regression test selection idea, but considers a

black box approach used in the debugging field. We propose metrics that will be capable of

selecting a subset of test cases from a suite to validate a new version of the system. The

solution proposed is taken from research on debugging, in particular the fault prediction

analysis. This is explained in details in Chapter 4.

12

3. Debugging and Testing

Debugging is the process of locating and reducing the number of bugs in a computer

program code or the engineering of a hardware device, thus correcting its wrong behaviour.

Or, in few words, it is the process of “diagnosing the precise nature of a known error and then

correcting it” [29]. The most difficulty in debugging is when the system is integrated, and

various parts of the system are dependent on each other, as changes made in one can interfere

in another, introducing bugs to it.

Associating the activity of debugging with the RUP disciplines, it can be said that

debugging acts essentially in three disciplines, with different analysis to the location of the

failure for each one [30]. The first is the implementation discipline, where developers

introduce some errors that must be found quickly during implementation or during the unit

tests.

The next is during the test discipline, when the integration and system tests are performed

and some incorrect behaviour may happen. Here there is a careful task to execute, before

tracking the problem, which is to make sure that the problem is with the system and not due

to a bad test case specification or badly chosen data, for example.

The last phase is the deployment, when the software product is tested to be validated and

finally available for the end users. Some specific undesirable behaviours of the software can

appear in this phase, such as inappropriate performance or unsatisfactory recovery from a

failure [30]. Thus, the portion of the code that contains the problem needs to be found and

fixed before it reaches the customer.

So, as can be seen, the concept of debugging is, in some way, close to testing. Software

testing aims to validate the software. There are teams responsible to find the system bugs and

report to the development team, so they can solve these problems. On the other hand,

debugging is essentially performed by the developers, where programmers often make use of

debugging tools to help in program inspection in order to find out what has caused the

problem and how it might be solved.

Zeller [34] proposes the basic steps in debugging, whose initial letters form the word

TRAFFIC:

• Track the problem. The first step in debugging is to track the problem, i.e., to track

and manage problem reports, that are archived in a problem database – a document

containing all problems found, and information such as the situation that it has occurred

13

(in order to understand how to reproduce it), its severity level, and all known

information that might

contribute to find the problem.

• Reproduce the failure. This step is responsible for creating instructions to reproduce

the problem. We have to specify a test case to be performed in order to cause the

program to fail as specified in the bug report. There are two reasons for that [34]. The

first is that you keep the problem under control, since you can observe it whenever

wanted. The second is that after fixing the bug, its correctness can be verified.

• Automate and simplify. The objective here is to simplify the test case specified,

firstly trying to automate it, if necessary. Then, it is important to try to simplify the test

case inputs to acquire a smallest test case.

• Find infection origins. This step is the process of trying to discover the possible

causes of the problem. The source code of the program is needed to determine its

origins, and therefore, requires a good knowledge of the system. There is a great

difficulty in this step, since the location of the bug is not always the same as its

symptom.

• Focus on likely origins. The motivation here is to keep focus on the most likely

origins of the problem. Some rules that help following the problem cause are: focus on

infections, focus on causes, focus on anomalies, focus on code smells, and focus on

dependences. For more information about each of them, see [34].

• Isolate the infection chain. The challenge here is to isolate the origin of the infection.

Then, continue isolating origins transitively until you have an infection chain from the

incorrect program code to its incorrect program behavior [34].

• Correct the defect. This step is where the debugging phase itself is left and

programming and testing is returned, in order to apply the fix to correct the defect. The

testing is really important, as there is the need to make sure that the system is

performing the correct behavior and has not inserted new bugs.

After fixing the bug, an important task that might be done is to learn anything you can

from that bug. For example, in [33] there are some suggestions, where a first attempt may be

to see whether the same programming error occurs in other parts of the system, and whether

new faults might be introduced after fixing the bug. Then, you can ask yourself if that error

could be prevented. In this case, how you could have done differently to prevent it. Finally,

you can analyze whether the bug could be detected sooner and how to improve the test cases.

14

In this direction, there are some researches on debugging that provide studies about

how to predict faults [24], [25], [26], [27]. The basic idea of this approach is to find locations

where to focus the testing effort. Based on the idea summarized by Ko et al. [28], which

considers cognitive breakdown as the causes for faults introduced by programmers, Kim at al.

[25] assume that faults do not occur individually, but rather in bursts of other related faults.

Thus, they suggest that bug occurrences have four different kinds of locality:

• Changed-component locality: If a component was changed recently, it has a great

probability of introducing faults soon. This happens because any code modification is

considered a risk to introduce new faults, as we explained previously.

• New-component locality: If a component has been added recently, it has a great

probability of introducing faults soon. A component added has the same principle as

the changed component, since it is also a code modification.

• Temporal locality: If a component introduced a fault recently, it has a great

probability of introducing faults soon. An explanation for this assumption is that

programmers make their changes without knowing the correct or complete

specification of the system, thus injecting multiple faults [25].

• Spatial locality: If a component introduced a fault recently, other components that are

close to that have a great probability of introducing faults soon. The explanation for

that is the same as for the temporal locality, since changes introduced due to incorrect

system knowledge, can be propagated over the rest of the system.

There are a lot of ways to calculate closeness. For example, components that belong to

the same file or directory are considered close components, in the sense of physical locality.

On the other hand, using logical coupling [31], [32], “two components are close to each other

(logically coupled) when they are frequently changed together” [25]. Logical coupling is the

method used in one of the criteria defined for the selective regression test described in

Chapter 4.

Based on that observations about bug localities, Kim at al. [25] developed an

algorithm, experimented on seven open source projects, that is 73%-95% precise at predicting

future faults at the file level. At the function/method level it can cover about 46%-72% of

future faults. Observing these statistics, this accuracy seems to be really good, especially if

compared with other experiments published. Thus, the concept of bugs localities suggested is

well indicated in order to predict faults, and consequently, trying to prevent them.

15

Taking a deep look at the fault prediction approaches was possible to create a bridge

between debugging and testing, where fault prevention solutions shall be an important

practice to be used in software testing, and thus, obtaining great results. To the best of our

knowledge, there is no previous work in the literature addressing this use of debugging

concepts to improve the test process. So, this work might provide an original contribution to

that.

16

4. Test Selection Strategy

Looking for attending the Motorola needs of reducing escaped defects, a strategy for test

case selection was developed based on researches about debugging, since, as already

explained, no work found in literature about regression test selection supports the black box

technique. Thus, based mostly on interviews with two members of the Motorola Execution

Team and on the idea of preventing bugs, five criteria (metrics) for selective regression test

were proposed with the intention of increasing coverage and, consequently, reducing the

escaped defects.

The idea is to produce the relevance calculation of all test cases, based on each metric,

which is explained in details below. We also present their formal specification. It is important

to understand that every metric is treated independently of the others, where each of them

takes into account its own criterion. Thus, the test case selection is done by using all metrics

together. The most important criterion depends on the current needs of the execution team.

Each section below presents one of the five criteria.

4.1 Test Case History

This metric considers the history (the number and status of the past executions) of all test

cases existent in the test suite. Table 3 shows a generic template for this metric, containing its

inputs, the solution proposed to get a selective regression test based on this criterion, and the

outputs. We use the same template for the other four criteria defined in this section.

Table 3 - Generic structure of Test Case History metric

The inputs
• For each test case, there is a history of its past executions (passed, failed, blocked,

etc).
The solution

• For each test case from the suite, calculate:

The outputs:
• Test cases relevance order, based on the calculation result of each test case.

17

The solution for this metric is to calculate the number of times in which the given test

case has been executed and found an error, relative to the number of times it was performed.

The purpose is to treat the test cases with higher relevance as good test cases to find errors,

since they have a history tending to that. We only consider tests which have run more than N

times, where N is given by the user. Tests that have not been executed at least N times are

assigned to 50% chances of been selected.

4.1.1 Example

Suppose the test case “3” has a history as shown bellow. For the Motorola Regression

Test Team, the possible statuses of the test cases when they are performed are: failed,

blocked, passed and indeterminate. I will represent the status failed as “x” and passed as

“ok”. We assume N=5.

The calculation result for the Test 3 using equation above is:

This indicates that the Test 3 has a relevance of 62, 5% for the first criterion. This is

the percentage of failed status in the whole test case history. Remember that every test case

from the suite contains a history, and therefore, has their specific relevance percentage like

the exemplified Test 3. Thus, with the result of all test cases calculation, it is possible to

select the most essential test cases for this criterion.

18

4.2 Changed and New Components

This metric follows the principle of Changed-component locality and New component

locality presented in Chapter 3. Interviewing two members of the Motorola Execution Teams,

it was possible to notice that these approaches are also used intuitively by them. Table 4

presents the generic structure for this metric.

Table 4 - Generic structure of Changed and New Components metric

The inputs
• For each test case:
- C: the set of components visited by the test case.
- M: the set of changed and new components for the current build.

The solution
• For each test case from the suite, calculate:

The outputs:
• Test cases relevance order, based on the calculation result of each test case.

This solution considers the percentage of changed and new components for the current

build that a given test case covers. In this way, it is possible to know which test cases are

more relevant for this criterion, namely, the ones that present the higher percentages.

4.2.1 Example

We show below the sets “C” and “M”. “C” is the set of components the test 3 visits.

“M” is the set of modified and new components of the current build. Note that the

components “C1”, “C3” and “C4” are the intersection between “C” and “M”.

19

The calculation result for the Test 3 using the equation presented is:

This shows that the test case “3” visits 42,86% of the changed and new components

for the current build. Again, this is an example for just one test case. This calculation has to

be done for all test cases from the suite. Finally, with the result of all calculations, the more

relevant test cases can be selected.

4.3 Recent Failures

Again, this metric was defined based on the interviews with the Motorola Execution

Team members, which naturally follow the idea of preventing future faults by paying

attention to the more recent failures that appeared at the system under test. If you can

remember, this approach has the same intention of the temporal locality presented in Chapter

3, which considers any component with recent failures as suspects to fail again.

Now, it is important to know the concept of a CR (Change Request): a documentation that

indirectly contains a report about a bug occurrence by requesting a system modification to

correct it. Table 5 shows the structure for this criterion.

Table 5 - Generic structure of Recent Failures metric

The inputs
• The components that failed in the previous build.
• For each of these components, the percentage of CRs opened in build (already

normalized).

20

• For each of these components, the set of associated test cases.
The solution

• For each test case from the suite:
- Calculate the sum of all percentages associated to that test case.
The outputs:

• Test cases relevance order, based on the calculation result of each test case.

This solution is very simple: it just adds the percentage associated to each test case

from the suite. Note that if some test case does not visit any recently failed component it will

receive 0% of relevance for this metric.

4.3.1 Example

Suppose that, in the previous build, the system under test presented failures at the

components shown in the Table 6 (first column). The second column contains the percentage

of CRs opened in the previous build for each of those components. We assume they are

already normalized, since a CR can be associated to more than one component. Finally, in the

third column there are the test cases that, in some way, visit the associated component. Note

that the second and third column do not have any relation between them; they are associated

just with the components of the first column.

Table 6 - Example for the Recent Failures metric

Choosing the test case T1 (highlighted with circle) as an example, its calculation

result is:

21

So, the calculation proposed in this metric is just to sum all the percentages associated

to each of the test cases. In this way, every of them will going to have their percentage of

relevance to the context of this metric.

4.4 Escaped Defects

This is a more specific attempt of reducing the escaped defects. The idea is to try to

prevent that the same components which presented escaped defects, present it again. Based

on the strategy defined for the previous metric, this one is very similar to that, and there are

two differences due to its context: here we consider components that presented escaped

defects at a specific period of time, while the other criteria considered just the previous build.

The test cases to be considered are just the ones that were not performed (the test cases that

were performed are not important for this metric and can be considered as they received 0%

of relevance).

The justification for these differences is, firstly, that the Motorola Execution Team makes

a survey of escaped defects and creates a graph containing the percentage of CRs that

escaped from the BTC per components in a certain period of time. This graph provides the

inputs for this metric.

The second difference is that we consider only test cases that were not performed due to

the fact that we are not interested in test cases that were executed in the specific period of

time but did not found the defects that escaped. All that matters here is to try to avoid the

escapes. The idea is to include some test cases from the suite that were not executed and

which can possibly find some of those defects. Table 7 shows the structure for this metric.

Table 7 - Generic structure of Escaped Defects metric

The inputs
• The components that presented escaped defects at a specific period of time.

• For each of these components, the percentage of CRs (also already normalized) that

escaped BTC (Brazil Test Center).

• For each of these components, the set of associated test cases, that was not performed

at that specific time.

The solution
• For each test case that was not performed at the specific time:

22

 - Calculate the sum of all percentages associated to that test case.
The outputs:

• Test cases relevance order, based on the calculation result of each test case.

As you can see, the solution for this metric is the same as the previous one. The only

difference is that the test cases to be considered are not the whole test suite, but just the ones

that were not performed in the specified time. The remaining test cases are not important for

this metric, thus, can be considered as test cases with 0% of relevance.

4.4.1 Example

Suppose that the system under test presented, at a specific time, escaped defects at the

components shown in the Table 8 (first column). The second column contains the percentage

of CRs opened – also already normalized - at a specific time for each of those components.

Finally, the third column shows the test cases that were not executed in that specific time and,

in some way, visit the associated component. Once more, the second and third columns do

not have any relation between them; they are associated just with the components of the first

column.

Table 8 - Example for the Escaped Defects metric

Again, choosing the test case T1 (highlighted with circle) as an example, the

calculation result for it is:

23

So, the calculation proposed in the solution for this metric is just to sum all them

percentages associated to each of the test cases. Just like the Recent Failures metric does.

4.5 Spatial Locality

This metric is based on the Spatial locality suggested by Kim et al. [25] (see Chapter 3).

Recall that components very close to components that failed recently are considered suspects

to fail too. So, once the set of components that failed recently is known, the task here is to

analyze the remaining components in order to discover which of them are the suspects of

introducing errors.

In order to calculate the distance between two components, the notion of logical coupling

is used (also explained in Chapter 3). The distance formula we present here is a little bit

different from the one presented by Kim et al. [25] (we do not use infinite values as opposed

to Kim et al. See more details below). By using the equation, we calculate the distance

between every component that failed recently and every remaining component.

After calculating those distances, the purpose is to analyze the components closer to the

recently failed components. The relevant test cases are those associated to the suspect

components. The structure of this metric is shown in Table 9, which explains the solution in

detail.

Table 9 - Generic structure of Spatial Locality metric

The inputs

• V1, V2 … Vn: History of versions, where each version is the set of new and changed

components of that version.

• C’: the set of components that failed in the previous build.

• C’’: the remaining components.

• Every set of test cases associated to each C’’.

The solution

• Calculate the distance between every C’ and C’’ using equation:

24

• Calculate the average distance related to every C’’.

• Calculate the percentage related to every C’’ by assigning the value “2 - average” and

then, normalizing to 100%.

• For each test case from the suite:

 - Calculate the sum of the percentages associated to that test case.

The outputs:

• Test cases relevance order, based on the calculation result of each test case.

As said before, the solution consists, firstly, of calculating the distances between

every component c’ _ C’ that failed in the previous build and every remaining component c’’

_ C’’. The distances are calculated using the equation shown in the solution of Table 9, which

considers the number of times two components have been changed together. The closer they

are the smaller the distance between them. Due to this fact, the distance is the inverse of

count.

Kim at al. [25] considers that the distance between two components that have count

equals to zero is infinite. We are assigning 2 instead of infinite, because as we need to

calculate the average distance, it would be impracticable to use infinite. Since the greater

result possible is 1 (whenever count is 1), using 2 for very distant components seems to be a

good compromise.

After calculating all distances, the next step is to investigate the components of C’’

that are very close to the components of C’ by calculating their average distance. Remember

that we are considering just the distances of every C’’ and not the distances of the

components in C’, because this metric considers only the components that are close to the

components that failed recently, treating them as suspects too. Note that the components of

C’ are already covered in the Recent Failures metric (section 0).

Now, with the average distances in hands, the next step is similar to the two previous

metrics. We have to normalize these averages to 100%, and then, we build a table like Table

6 and Table 8. The procedure to generate this final step is the same from the previous metric.

The example shall clarify this metric.

25

4.5.1 Example

Suppose that the system under test has a version history (V1, V2 … V5) like this

one shown below.

Then, suppose that C’ and C’’ are:

Now, we calculate the distance between every c’ _ C’ and c’’ _ C’’ by using the

equation presented in the field solution (Table 9). As an example, let’s calculate the distance

between C1 and C5. Firstly, we have to count the number of times in which these

components have been changed together (see the count in the equation shown in Table 9).

Looking to the versions (V1 … V5) we can see that they appear together four times, that is:

So, the distance is:

 Continuing the calculation of the distances between every C’ and C’’, the Table

10 is produced. The distance between C1 and C5 is highlighted with circle.

26

Table 10 - Distances

Having all distances calculated for every c’’ _ C’’, it is time to calculate their

respective averages. For example, the average distance for C5 will be:

After calculating the averages for every c’’ _ C’’, we can build the Table 11

below.

Table 11 - Averages of every c’’ _ C’’ and the associated test cases

After that, we have to calculate the relevance of every test case, normalized to 100%. Note

that the smaller the average distance a certain component has, the closer it is to a recently

27

failed component. For that reason their associated test cases should have greater relevance.

We illustrate below how the percentages related to the average distance of the component C5

is calculated.

 By calculating the percentage of every c’’ _ C’’ as shown above, we can build

the Table 12.

Table 12 - Example for the Spatial Locality metric

 Thus, the relevance calculation for every test case might be done just like Recent

Failures and Escaped Defects metrics, presented in sections 0 and 4.4, respectively. Again,

choosing the test case T1 (highlighted with circle) as an example, its calculation result is:

28

5. Conclusion

This work has proposed a method to regression test case selection in order to reduce

escaped defects. Tending to that, five metrics were defined to be used on the test case

selection, separately. They were based mostly on interviews with the Motorola Execution

Team and researches on debugging, more specifically on faults prediction. In this way,

preventing bugs shall be an interesting idea to reduce defects to escape.

The major contribution of this work is the use of debugging techniques to increase the

reliability of software testing, in this case, regression test selection. The five metrics were

also implemented in the Python language in order to exemplify these metrics and take a deep

look on how they work. Analysing carefully each of them, and prioritizing the most relevant

ones for the particular situation, appropriated test case selection shall me possible.

5.1 Related Work

Once we have made use of predicting fault techniques to regression test case

selection, there are two kinds of related work. In [36], for example, the authors have proposed

three regression test selection methods with the purpose of reducing the number of selected

test cases. In addition, they have also suggested two regression test coverage metrics to

address the coverage identification problem, based on McCabe [37]. To study the veracity of

their proposed methods they have empirically compared the three methods with other three

reduction and precision-oriented methods.

In [25], Kim at. Al. developed an algorithm based on the concept of bug occurrence

locality, like was already explained in section 3. Following the idea of [38] they used the

notion of a cache from operating systems to predict faults by caching locations with great

probabilities of having faults. They have experimented their algorithm on seven open source

projects and the cache selected 10% of the source code files where these files account for

73%-95% of faults.

29

5.2 Future Works

The future works that can be highlighted for this work are:

• To do more experiments in order to validate the metrics defined. Mostly, it is

important to do a case study within Motorola, using real examples to experiment.

• Introduce the new metrics defined to the Motorola Execution Team, thus they can use

them and report any problem or suggestion of improvement if necessary.

• Mechanise everything, which seems to be a big challenge, once the job of join all the

inputs to be used for the metrics is really hard. This fact is due to these inputs being

very disperse in the Motorola documents.

30

References

[1] P. Kruchten, “The Rational Unified Process”, Addison-Wesley, 1998.

[2] D. Binkley, “Semantics guided regression test cost reduction” IEEE Transactions on

Software Engineering, 23(8): 498-516, August 1997.

[3] M. A. Vandermark, "Defect Escape Analysis: Test Process Improvement" STAREAST

2003: Proceedings of the Software Testing Analysis and Review Conference, May 2003.

[4] R. Patton, “Software Testing” (2nd Edition), 2005.

[5] J. Pan, “Software Testing”, Carnegie Mellon University, 1999.

[6] G. Rothermel, M. J. Harrold, "Analyzing Regression Test Selection Techniques" IEEE

Transactions on Software Engineering, vol. 22, no. 8, pp. 529-551, August 1996.

[7] H. Agrawal, J. Horgan, E. Krauser, S. London, "Incremental Regression Testing" In

Proceedings of the Conference on Software Maintenance, pages 348-357, September

1993.

[8] W. Hetzel, “The Complete Guide to Software Testing”, 2nd ed. Publication info:

Wellesley, Mass.: QED Information Sciences, 1988.

[9] Qualiti, Programa de Qualificação Tecnológica - “Introdução a Testes de Software” (In

Portuguese).

[10] P. Szymkowiak, P. Kruchten, Testing: “The RUP Philosophy”, Copyright Rational

Software, 2003.

[11] “Rational Unified Process: Overview”, Copyright Rational Software Corporation, 1987

– 2001.

[12] “Cycoda: The Test discipline”, Copyright 2004 - 2007 Cycoda Limited, available at:

http://www.cycoda.com/swDev/RUP/Test/test.html.

[13] IBM Software Group, P17 System Testing, “Module 6: Testing Iteratively”, September

2007.

[14] Y. F. Chen, D. S. Rosenblum, K. P. Vo, “TestTube: A system for selective regression

testing” In Proceedings of the 16th International Conference on Software Engineering,

pages 211-222, May 1994.

[15] H. K. N. Leung, L. J. White, “A study of integration testing and software regression at

the integration level.” In Proceedings of the Conference on Software Maintenance, pages

290-300, November 1990.

31

[16] G. Rothermel, M. J. Harrold, “A safe, efficient regression test selection technique.”

ACM Transactions on Software Engineering and Methodology, 6(2):173-210, April

1997.

[17] J. von Ronne, "Test Suite Minimization: an Empirical Investigation" PhD thesis. Oregon

State University, 1999.

[18] T. Y. Chen, M. F. Lau, “Dividing strategies for the optimization of a test suite.”

Information Processing Letters, 60(3):135-141, March 1996.

[19] M. J. Harrold, R. Gupta, M. L. So_a, “A methodology for controlling the size of a test

suite.” ACM Transactions on Software Engineering and Methodology, 2(3):270-285,

July 1993.

[20] G. Rothermel, M. J. Harrold, J. Ostrin, C. Hong, “An empirical study of the effects of

minimization on the fault detection capabilities of test suites.” In Proceedings of the

International Conference on Software Maintenance, pages 34- 43, November 1998.

[21] W. E. Wong, J. R. Horgan, S. London, A. P. Mathur, “Effect of test set minimization on

fault detection effectiveness.” Software - Practice and Experience, 28(4):347-369, April

1998.

[22] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, “Prioritizing test cases for regression

test.” IEEE Transactions on Software Engineering, vol. 27, no. 10, pp. 929-948, October

2001.

[23] T. L. Graves, M. J. Harrold, J. Kim, A. Porter, G. Rothermel, “An empirical study of

regression test selection techniques” ACM Transactions on Software Engineering and

Methodology, vol. 10, no. 2, pp. 184-208, April 2001.

[24] A. Schröter, T. Zimmermann, R. Premraj, A. Zeller, “Where Do Bugs Come From? A

Challenge for Empirical Software Engineering”, ACM SIGSOFT Software Engineering

Notes, vol. 31, pp. 1-2, November 2006.

[25] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., A. Zeller, “Predicting Faults from Cached

History”, Proceedings of the 29th International Conference on Software Engineering

(ICSE 2007), pp. 489–498, May 2007.

[26] T. L. Graves, A. F. Karr, J. S. Marron, H. Siy, "Predicting Fault Incidence Using

Software Change History," IEEE Transactions on Software Engineering, vol. 26, pp.

653-661, 2000.

[27] A. E. Hassan and R. C. Holt, "The Top Ten List: Dynamic Fault Prediction,"

Proceedings of International Conference on Software Maintenance (ICSM 2005),

Budapest, Hungary, 2005, pp. 263-272.

32

[28] A. J. Ko, B. A. Myers, "A Framework and Methodology for Studying the Causes of

Software Errors in Programming Systems," Journal of Visual Languages and Computing,

vol. 16, pp. 41-84, 2005.

[29] G. J. Myers, “Software Reliability: Principles and Practices”, John Wiley & Sons, Inc.,

New York, 1976.

[30] B. Hailpern, P. Santhanam, “Software debugging, testing, and verification”, IBM

Systems Journal, vol. 41, no. 1, pp. 4-12, 2002.

[31] J. Bevan and E. J. Whitehead, Jr., "Identification of Software Instabilities", Proceedings

of 2003 Working Conference on Reverse Engineering (WCRE 2003), Victoria, Canada,

2003.

[32] H. Gall, M. Jazayeri, and J. Krajewski, "CVS Release History Data for Detecting

Logical Couplings," Proceedings of Sixth International Workshop on Principles of

Software Evolution (IWPSE' 03), Helsinki, Finland, pp. 13-23, 2003.

[33] I. L. Taylor, “Debugging”, Copyright 2003 by Ian Lance Taylor, available at:

http://www.airs.com/ian/essays/debug/debug.html#AEN110, last access in May/2008.

[34] A. Zeller, “Why program fail – A Guide to Systematic Debugging”, Morgan Kaufmann

Publishers Inc. San Francisco, CA, USA, 2005.

[35] J. Woodcock, J. Davies, “Using Z – Specification, Refinement, and proof”.

[36] R. Bahsoon, N. Mansour, "Methods and Metrics for Selective Regression Testing,",

ACS/IEEE International Conference on Computer Systems and Applications

(AICCSA'01), pp. 463-465, 2001.

[37] T. McCabe, “A complexity measure”, IEE Trans. On Software Engineering, pp. 308-

319, December 1976.

[38] A. E. Hassan, R. C. Holt, “The top ten list: dynamic fault prediction”, Proceedings of

International Conference on Software Maintenance (ICMS 2005), Budapest, Hungary,

pp. 263-272, 2005.

	1 Introduction
	1.1 Objectives
	1.2 Document Structure

	2. Software Testing
	2.1 RUP Test Discipline
	2.2 Escaped Defects
	2.3 Regression Test Selection

	3. Debugging and Testing
	4. Test Selection Strategy
	4.1 Test Case History
	4.1.1 Example

	4.2 Changed and New Components
	4.2.1 Example

	4.3 Recent Failures
	4.3.1 Example

	4.4 Escaped Defects
	4.4.1 Example

	4.5 Spatial Locality
	4.5.1 Example

	5. Conclusion
	5.1 Related Work
	5.2 Future Works

	References

