
Software Engineering and Ontological Engineering:

Contributions, Perspectives, Challenges and

Lessons Learned ∗

Marcelo José Siqueira Coutinho de Almeida

Universidade Federal de Pernambuco - UFPE
Centro de Informática - CIn

Recife, PE, Brazil
mjsca@cin.ufpe.br

November 27, 2008

Abstract

The growing value associated to semantics in software engineering
and the necessity to adopt systematic development approaches in ontol-
ogy engineering has provoked a convergence between these two areas.
In this paper we review the main benefits envisioned from the existing
collaborations between software engineering and ontology engineering.
Also we enlighten the possible new scenarios to future collaborations
what will enable the developing of more sophisticated forms to create,
use and manage ontologies.

Keywords: Ontologies, Ontology Engineering, Software Engineering.

1 Introduction

Unlike of some decades ago, nowadays there is a certain consensus about the
importance of ontologies in the most different areas of computer science such
as Knowledge Engineering, Artificial Intelligence, Software Engineering and
Business Management, covering different types of application, like knowledge
management, natural language processing, electronic commerce, intelligent

∗Article presented in Software Quality course in Informatics Center (CIn) of Federal
University of Pernambuco in november/2008.

1



integration of information, information retrieval, design and integration of
databases, bio-informatics, education, and, mainly, semantic web [14]. One
of consequences of this fact is that larger and increasingly complex ontologies
are being developed regarding the demands of these domains.

Therefore it is important that systematic, efficient and, mainly, more
productive forms of development can be established. This must be resulted
of a discipline that shifts the efforts from an ad-hoc, immature and amateur
approaches to a formal and systematic approaches, consisting of basic prin-
ciples that can be shared throughout all developers community and guide
them throughout the creation and maintaining ontologies effectively and
efficiently.

According to Gómez-Pérez and colleagues, Ontology Engineering (OE)
refers to the set of activities regarding to process, life cicle, methods, method-
ologies, tools and languages that support the ontology development [29].
Conform Devedzic [14], OE can be described as being a set of activities
conduced during the conceptualization, design and implantation of ontolo-
gies. To Mizoguchi, OE covers a range of topics like philosophy, meta-
physic, formalism of knowledge representation, development methodology,
common sense knowledge, knowledge reuse and sharing, knowledge man-
agement, business process modeling, domain knowledge systematization, re-
trieval, standardization and evaluation of information from Internet [47].

Behind these efforts to conceptualize OE, it is the need to attend the
growing demands of market, taking out the excessive conceptualization dis-
cussions and looking for principles like productivity, time and quality. Such
initiatives are similar to those taken some decades ago when the software
industry felt the necessity to use rigid forms of software development, giving
birth to the Software Engineering area [51].

Despite of ontologies are a kind of software like for example a set of
conceptual models, it is not suitable to use the methodologies of software
engineering to develop them. Ontologies are models of a domain, but they
don’t generate executable software, what imposes restrictions in its devel-
opment model.

In this work we present a review about the actual state of existing on-
tology engineering methodologies, highlighting the limitations found during
this research in order to turn possible the proposals of a new, actual, better
founded and sophisticated methodology. Also it is our aim to make some
comparisons with the software engineering in order to envision the similari-
ties, differences and experiences from that area, possibly to apply them on
ontology engineering.

The remainder sections of this work are organized in the following: in

2



Section 2 we present the motivation to develop this work. In Section 3 we
describes the main methodologies of ontology engineering. In Section 4 we
make considerations about some negative points in each methodology pre-
viously presented. After, in Section 5 we overview the state of art regarding
to ontology engineering. In next Section, we approach the similarities, dif-
ferences, perspectives and challenges of software engineering and ontology
engineering. Finally, in Section 7 we conclude the paper and discuss some
ongoing and future works.

2 Motivation

Although ontologies are not a new subject in areas like Artificial Intelligence
and Knowledge Management, they came back to computer area mainstream
discussions in last years after the so mentioned paper of Tim Bernes-Lee
[7]. This is probably the start point for what is today known as semantic
web. After that moment ontologies passed away from a theoric approach of
philosophers and AI scientists to be the silver bullet of a new myriad of web
applications.

Even before that, Thomas R. Gruber [30] calls the attention of AI com-
munity about the needs of ontologists adopt an engineering perspective of
ontology development. Among the reasons presented, knowledge reusability
is outlined as one important issue in order to provide a systematic approach
of ontology development. With the acceptance by the market and further
raising of semantic web, it is natural that the quantity of ontologies being
developed grows each time more.

In other hand side, in according to Gómez-Pérez and colleagues [29],
the development of area depends basically of comprehensive methodologies
in order to shift the ontology development approaches from an ad-hoc to
a professional way. Issues as standardized phases, identification of roles,
adoption of tools, etc. are posed as crucial to maturing of area and produce
knowledge based high quality products. Simperl and Tempiche [57] identi-
fied the fact of developers community uses almost no methodology in their
projects. This shows the lack of commitment in order to obtain products
professionally like already occurs in software engineering for years.

Despite of all attention regarding to ontologies in nowadays and the
recent advancements of area, neither methodology was developed to accom-
plish these advancements and to propose modern forms to approach ontology
development. In this sense, we can observe that important themes must be
discussed in ontology methodology area. Herein we outline some themes

3



that we consider as being the ones that deserves urgent attention.
Firstly, we detach the importance of reusability to increase all the pro-

cess. We consider that the way how reusability is being treated is not sat-
isfactory to attend the current objectives of community and market. Since
the work of Gruber reusability almost ever is being used in an (full) on-
tological level, leaving away the (partial) modular level. Some works like
[60] proposes and discusses the needs to adopt modules in ontology develop-
ment and others like [18] outlines the advantages from a software engineering
perspective.

A second important theme is quality. According to ISO 9000, [72]
quality refers to the degree to which a set of inherent characteristic fulfills
requirements. In this sense, Deming affirms that productivity is augmented
by means of quality [40].

Further, quality affects such the process as its final product. If ontol-
ogists aim to develop high level quality ontologies it is necessary to create
forms to measure them. Roger Pressman considers the quality of devel-
opment process is a major issue to observe the quality of product being
developed [51]. Since that ontologies have its own peculiarities it is nec-
essary that be developed specific forms to evaluate and enforce quality in
development processes.

The third important theme is market. Ontologies are being adopted in
software products in many forms [32]. Besides this fact, the emerging seman-
tic web will demand ontologies. Recent approaches of distributed computing
like semantic web services are an example of how ontology based products
can contribute to create complex and larger software architectures in order
to provide more useful services. In this sense, we argue the necessity of
existence of an ontology market similar to the component market of today
which products like Enterprise Java Beans (EJB), Distributed Communica-
tion (DCOM) etc. This will enable a faster, cheaper and better ontology
development process.

The last theme is standardization. While software engineering commu-
nity has looking for to standardize their methodologies, approaches, prod-
ucts, etc. through different efforts. Today, the most important organization
for software advancement and maturing is the Object Management Group
(OMG). We believe that similar behavior must be adopted by ontology com-
munity. In this way, concepts, models, approaches, methodologies and tools
could be developed under a consensus, reducing efforts and conflicts. In the
other hand, software engineering is receiving contributions from the ontolo-
gies, improving all the software life cycle.

4



3 Ontology Engineering Methodologies

In the late 90’s, efforts to promote integration and reuse of massive knowl-
edge base written in the formal knowledge and representation of different
languages, used in expert systems and intelligent agents, brought back the
field of ontologies for the agenda of the research in artificial intelligence.
From this fact, innovative tools and techniques were developed to tackle
these tasks since then, and the field matured over the years [23].

One of the subareas of ontologies that evolved was the ontology engi-
neering. In the beginning, the development of ontologies was similar to
software engineering in its early days because each team adopted its own set
of principles, criteria and phases of the project [29]. The process of building
ontologies is leaving out these ad hoc efforts to become a strict discipline of
engineering. This change is still ongoing, and the methodologies of OE are
an active area of today’s research [23].

Making an analogy with the software engineering, we can say that the
ontology engineering is still moving towards its development, especially re-
garding the methodological aspects. One of the biggest challenges remains
to be finding productive ways to develop ontologies. The reuse of ontologies
modules, similar to what is made for years in object oriented programming,
is not yet covered by existing methodologies. This facility would allow devel-
opers to the same convenience of software developers in to provide resources
to compose modules of ontologies, making the process fast, efficient and
economical.

In next sections, we will summarize the main methodologies of ontology
development in order to better understand the actual ontology engineering
scenario.

3.1 Cyc

Probably the first known initiative to develop systematic ways to create
ontologies came as part of the Cyc project (reduction of enCYClopaedia)
[29]. It started around the middle of 1980’s at MCC (Micro Electronics
and Computer Technology Corporation) and the goal was to create a broad
knowledge base with general information of common sense. Its core consisted
of more than one million of sentences entered manually in order to represent
what people considers as consensual knowledge about the world.

As shown in figure 1, the development of Cyc ontology was conducted
according to three separate phases:

• Manual extraction of knowledge: In this phase the extraction is

5



done manually because of the natural language processing and machine
learning systems don’t manipulate well the common sense in order to
pursue this new kind of knowledge;

• Extraction of knowledge supported by computers: this phase
can be realized when tools for natural language processing and machine
learning can use common sense knowledge already stored at the Cyc
base of knowledge to search for new knowledge;

• Extraction of knowledge managed by computers: this phase is
realized largely by specific tools.

Besides the process, this proposal introduced the concept of micro theory
to support the elicitation of information in specific fields such as chemistry
and astronomy. These micro theories adapt some hypothesis and make the
simplifications in order to facilitate the collection and modeling in some
areas.

Furthermore, the aim of Cyc methodology is to support the development
of an ontology with the same name, not attending any other projects. Its
implementation through three stages emphasizes the simplicity of its design,
but on the other hand it leaves gaps and the teams have to create their own
solutions.

3.2 Uschold and King Methodology

The work of Uschold and King came from their experience in the develop-
ment of ontologies in the project of the Office of Enterprise Ontology Appli-
cations of Artificial Intelligence at the University of Edinburgh, Germany,
in partnership with several companies, among them IBM and Unilever [68].

The method proposed by them is composed by guidelines through sce-
narios of motivation. This technique is widely used today in software de-
velopment and it is based on use cases. The steps of this method basically
consist of (i) identification of purpose, (ii) building, (iii) evaluation, and (iv)
documentation. It can be briefly described as follows [29]:

• Identification of Purpose and scope: The goal here is to clarify
the motives for the construction of ontology and how it will be used
(sharing, reuse or to serve as a basis of knowledge);

• Building: This phase is divided into three sub-steps:

6



Figure 1: Processes proposed by the Cyc methodology

• Capture: textually capture concepts and relationships existing in the
domain;

• Encoding: codify the concepts and relationships obtained during the
capture using any formal language;

• Integration: check the possibility to reuse existing ontologies. This
step can be done in parallel to the two previous;

• Evaluation: verify if the requirements are being met, if the questions
of competence are being answered, etc.

• Documentation: description of the process through of records. There
is no rigor regarding to the form of the document, and users can create
their own conventions.

3.3 Gruninger and Fox Methodology

This proposal was developed from the experience of Gruninger and Fox
on a project called TOVE (Toronto Virtual Enterprise) developed at the
University of Toronto, Canada [31]. This methodology has been used to
develop ontologies for the corporate area.

7



Figure 2: Processes proposed by the Uschold and King.

The inspiration of this methodology was the development of knowledge-
based systems using first order logic. It is composed of a sequence of steps
which has as their starting point the description of scenarios of motivation.
Figure 3 describes the processes of this methodology and then after its given
a brief summary of each of them.

• Description of motivating scenarios: the motivating scenarios
must be related to the applications that will use the ontology and
describe a set of requirements that the ontology should satisfy after
being formally implemented.

• Establishment of informal question of jurisdiction: these issues
are written in natural language to be answered by the ontology once
it is expressed in a formal language in order to validate it.

• Specification of terminology using first order logic: the ontolo-
gist can extract the knowledge to be included in the formal definition
of concepts, relationships and axioms from the responses obtained in
the previous step.

• Writing of competence questions using formal terminology:
translation of competence questions in a formal way to an informal
using first order logic.

• Formal Specification of axioms: creation of the rules described in
the first order logic to define the semantics of the terms of ontology
and relationships;

• Verification of completeness: statement of necessary conditions
such that the answers to the questions of competence formally de-
scribed are considered valid.

8



Figure 3: Processes proposed by the Gruninger and Fox.

3.4 Methontology

This methodology is certainly the most comprehensive one for development
of ontologies, because it can be used to build ontologies ”from scratch” such
as from others existing ones. It also supports the reengineering of ontologies.
It was developed in the Polytechnic University of Madrid in the laboratory
of Artificial Intelligence and its main inspiration came from the main activ-
ities identified by the standardized process of software development of the
IEEE [36] and the methods of knowledge engineering [27] [71]. Such as it
is depicted in figure 4 the development processof Methontology is composed
by the following steps:

• Plan: in this phase it is described the planning of tasks to be per-
formed;

• Specification: it is defined the scope and goals of ontology. Questions
like ”why this ontology is being built?” and ”who are its users?” are
answered;

• Conceptualization: the terms of ontology are described. Techniques
normally employed in the requirements elicitation of software engineer-
ing can be used;

• Formalization: the conceptual model obtained in previous phase is
formalized through a language for formal description of ontologies;

• Integration: it is realized the integration of ontologies being built
with the existing ones;

• Implementation: the ontology is implemented in any language, as
OIL (Ontology Inference Language) [5], DAML + OIL (DARPA Agent

9



Figure 4: The Ontology Development Process of Methontology.

Markup Language) [33] and OWL (Web Ontology Language) [8], to
allow their processing;

• Evaluation: the developed ontology is evaluated in order to ensure
quality and adherence to standards;

• Documentation: it is recorded relevant information to the ontology
to facilitate, mainly, its maintenance and development;

• Maintenance: it is made adjustments in the ontology so that it can
reflect the changes contained in knowledge that it represents.

4 Identified Problems in Current Methodologies

Despite of all existing methodologies, the ontology development activities
still suffers of various problems, what prevents the area to get a better
status and finally reach the market. In next subsections we will summarize
some problems that we consider as being particularly important and deserve
special and urgent attention by the ontology development community.

10



4.1 Absence of Mechanisms to Reuse Modules

Although of already existing research efforts to introduce modularization on
ontology development process, neither one of the existing methodologies hold
it. We believe that this new promising approach (i.e. the use of modules)
just will succeed if it will make part of a methodology. In other words, it
won’t be possible successfully to use a sophisticated concept like a module
without use a systematic set of guidance as occurs in Software Engineering
Component Based Development (SECBD) [13].

4.2 Absence of Mechanisms to Develop Distributed Ontolo-
gies

Distributed software development teams are very common in nowadays. It
is very probable that the same approach can be used in ontology develop-
ment, creating a distributed authoring environment which people localized
in different regions worldwide can share their efforts to create new ontolo-
gies. In the same way, the networked communication infrastructures like the
Internet can turn possible the existence of modules distributed over this in-
frastructure similar to what happens in database distributed environments.
One foreseen benefit is the possibility to compose and decompose pieces of
ontologies or full ontologies from different sources in order to obtain larger
ontologies.

4.3 Absence of Mechanisms to Trace Competence Questions

One important issue when we are developing a ontology is: what are the
classes, relations, etc. able to answer a specific competence question? Dy-
namic use of ontologies can include or remove determined questions along
the time. Furthermore, some classes, relations, etc. cannot make sense
to be there and must be removed. Similarly, in UML (Unified Modeling
Language) [52] it is possible to trace a single use-case through all the devel-
opment phases, since the requisites until the source code.

4.4 Absence of a Graphical Language to Better Communi-
cate with the User

It is very important that the representation of ontologies be made by means
of graphical notations, like UML. The model created with this language
could generate an ontology. However a graphical language is not sufficient
to introduce all the necessary information to describe a specific domain.

11



The language could include constraints of diverse kinds, similar to OCL
(Object Constraint Language) [49]. The main vantage of this language is
the simplification of communication between client/domain specialist and
ontology engineers. Without knowing the details of ontology development
and representation, users will can to analyze and confirm if what is on the
picture is right or wrong.

4.5 Absence of Mechanisms to Evaluate Inconsistence Among
Modules

We believe that the inclusion of modules won’t be a soft process, what will
demand additional work. Probably modules coming from different ontolo-
gies will conflict one with others and questions like these will rise: How
they collide? How much conflict? Where is the conflict? Is the conflict
acceptable?

4.6 Absence of Generalization

Some methodologies were developed in order to solve a specific problem, like
Cyc and TOVE. In order to satisfy all existing (or not) domain problems it
is necessary that the methodologies can be general as possible at same time
it must allow to handle all specific details by means of adequate resources
like graphics and appointments.

4.7 Absence of a Role-Based Development Model

Ontology is a complex artifact. Further its development process must be
conducted by teams composed by experts. Some of them are specialized in
analysis, some in tools, and others in tests. A methodology must encom-
pass the possibility to gather various persons and each one concentrate in
particular tasks. In modern methodologies of software engineering like XP
(eXtreme Programming) [6] defines specific roles in each team.

4.8 Absence of Standardization

To be an universally accepted and adopted, it is fundamental that the
methodology be supported and used by a significative quantity of users.
Besides it has good technical qualities, it should be standardized like RUP,
XP and others approaches of software development.

12



Figure 5: Taxonomy of observed problems in OE methodologies.

4.9 Taxonomy of Problems in Ontology Engineering Method-
ologies

According to what was discussed in last section, it was organized the taxon-
omy depicted in figure 5 to better understanding the problem organization
and further proposal of solutions.

This taxonomy is initially divided in two parts: Philosophical and
Pragmatical.

The first encompass the absence of reuse (monolithic approaches), ab-
sence of generalization and absence of standardization.

The pragmatical level contains the following: Development and Re-
source.

Development level consists of the absence of mechanisms to trace com-
petence questions,absence of a role-based development model and absence
of documentation forms. Resource level consists of absence of distributiv-
ity,absence of a graphical language and absence of a suitable tool support.

13



5 State of Art in Ontology Engineering

5.1 Patterns in Ontology Development

Patterns are a successful strategy in software engineering to promote the
reuse of knowledge and expertise about the software development [24]. Cur-
rently there are patterns for all life cycle activities, since from the analysis
phase until to test phase. Probably the major success regarding to patterns
usage in software engineering is that one obtained by means of ”Gang of
Four” (GoF) catalogue [24]. This catalogue was the very first initiative in
computing to reuse experiences in a patterned way. It contains 23 patterns
which each one is depicted in a well organized template in order to easy the
learning. The main advantages are the time and effort reduction and the
increased quality [9].

Although patterns were not adopted largely by ontology community yet,
some recent initiatives have been given rise inspired by this experience.
The reasons to invest efforts in promote the pattern based development
are straightforward: firstly, patterns simplify the work of domain expert
and knowledge engineers. Secondly, patterns help to integrate ontologies
[74]. Thirdly, manual ontology development is a tedious and complex task.
Therefore, it is need to create automatic or semi-automatic ways to develop
ontologies [9].

One interesting work is being realized by the Semantic Web Best Prac-
tices and Deployment Working Group (SWBP) of W3C, including a task
force on Ontology Engineering Patterns [64]. These efforts have produced
some design patterns in language level (for example, Web Ontology Lan-
guage - OWL) regarding to whole-part, time and semantic integration is-
sues.

The work of [9] focuses in proposing a classification scheme for ontology
patterns. The scheme divides ontology patterns in five levels:

• Application Patterns: aim to describe generic ways to use the im-
plemented ontologies in terms of purpose, context, interfaces etc. this
idea of abstracting the best ways to apply and use an ontology, or
several ontologies, within some context or application is an important
issue.

• Architecture Patterns: aim to describe a generic way to design
the overall structure of an ontology, in order to fulfill the goal of the
ontology in question. Important issues here are whether to divide the

14



ontology into components or modules, or to divide into layers or use
other construction principles.

• Design Patterns: aims to describe a generic recurring construct in
ontologies. Similar to Software Engineering Design Patterns (SEDP)
[?], the main idea is to be specific enough, allowing them to be used
automatically or semi-automatically, and at the same time generic
enough to be useful in several ontologies of a certain domain [74].

• Semantic Patterns: aims to describe a certain concept, relation or
axiom in a language independent way.

• Syntactic Patterns: aim to describe representation symbols in a
language dependent way in order to create a certain concept, relation
or axiom [64].

Specifically to Design Pattern Level, [74] has proposed conceptual pat-
terns based in experiences in ontology engineering experiences in Laboratory
for Applied Ontology1 (LOA). These patterns emerged out from different do-
mains, different tasks and while working with experts from different areas.
These approach bases on a set of typical competence questions like these
following:

• Who does what, when and where?

• Which objects take part in a certain event?

• What are the parts of something?

• What is an object made of?

• What is the place of something?

• What is the time frame of something?

• What technique, method or practice is being used?

• Which tasks should be executed in order to achieve a certain goal?

• Does this behavior conform to a certain rule?

• What is the function of that artifact?
1http://www.loa-cnr.it

15



Figure 6: Participation Pattern.

• How is that object built?

Each question is called Generic Use Case (GUC). It provides the generic
vision of a recurrent question in various different domain problems. Each
GUC (or even a set of GUC) must be encoded throughout a formal pat-
tern called Conceptual Ontology Design Pattern (CODeP). A CODEP is a
template to represent, and possibly solve, a modeling problem and describes
a ”best practice” of modeling [74]. Some examples of CODePs are: par-
ticipation pattern, role-task, information-realization, description-situation,
design-object, attribute parametrization etc.

A very simple example is the Participation Pattern. As depicted in figure
6 it assumes a relation participant-in of various objects in a determined event
during a time interval. Some objects participates constantly and others
participates during a certain part of time. Also, Objects are localized in a
determined Space Region.

5.2 Modular Ontologies

Despite the fact that one of the major goals of the ontologies is the reuse of
knowledge, the resources currently available in existing methodologies have
little or nothing to offer in that sense, almost always confined to the exten-
sion or import of whole ontologies. Thus, despite the fact that definitions
like that presented in [30] suggest that the creation of ontologies in itself
encourage the reuse of knowledge, this fact is not evidenced in practice.

Thus, concepts such as modularization, composition and component are

16



not taken into account, despite having significantly facilitated the collabora-
tive development and reuse within the scope of SE, and therefore could, in
principle, be applied successfully in OE. The fact is that there is still a theo-
retical basis mature enough behind the concept of modules, which precludes
their methodologies, tools and languages of developing ontologies evolve in
that direction, reversing a tradition exists in information technology to apply
the ”divide and conquer” principle.

The next section will discuss some pertinent issues related to creating
plenty of ontologies based on modules. This discussion aims to highlight the
difficulties in the approach based on modules and therefore draw attention
to the importance of a methodology based on modules that guide developers
in conducting their work.

5.2.1 Module Definition and Description

Modularization is a technique already widely used successfully in SE. De-
pending on the maturity of the objects as a guideline for development in
the past decade, the concept of module has been widely used as a form of
decomposition of the areas being examined, as the basic unit of design, and
as abstract data type implementation. More recently the concept of com-
ponent has attracted the attention of the community as the great promise
for the development of software in the same way that traditional engineer-
ing (automotive industry, the electric-electronics industry, etc.) create their
artifacts.

In order to develop an engineering Modular Ontologies (or based on
modules) with resources and know-how mature, we need some way of a
consensus in the community of developers about what is a module in the
context of ontologies. An intuitive understanding of the concept of module
in the context of ontologies is that this is a part of a whole that makes any
sense. Moreover, in some way, it can be separated from the whole, without
having necessarily to keep the same functionality [62]. Therefore, part of an
ontology should continue being an ontology, i.e., should consist of a coherent
set of classes, relationships, axioms and bodies, and a way to reuse these
elements into a different environment, probably different from that for what
was projected.

A very interesting definition is given by Doran: ”A ontology module is
a reusable component of a larger or more complex ontology, which is self-
contained but at the same time, bears a clear relationship to other modules
of the ontology” [15]. As a result, there is a module that can be used as
designed or can be extended with new concepts and relationships.

17



Figure 7: Module Composition.

A module is self-contained if all the concepts in the module are defined
in terms of other concepts contained in the module itself, rather than refer
any concept outside. In [26] it stated that ”the module to an entity is the
minimum subset of the ontology axioms that captures its meaning precise
enough and therefore the minimum set of axioms that are required to under-
stand, process,evolve and reuse the entity. ”To be able to reuse a module,
there must be a way to describe its functionality. That definition, however,
still needs to be deeper as the fact that module is a ”sense” or not is very
subjective, leaving room for different interpretations. From the viewpoint of
an application, for example, a module must be able to respond to any query
sent to the ontology as a whole.

5.2.2 Composition and Decomposition

Module is the basis for two major operations for the emergence of an engi-
neering modular ontologies: composition and decomposition.

In composition, as shown in Figure 7, modules are developed indepen-
dently and are linked together to form a new ontology and thus provide
a new feature. This modular architecture should describe any facility to
import the modules.

A module should describe only a portion of a field so that it can be
reused in other areas. For example, a module describing an organ of the
human body should be used in an ontology of congenital diseases and in an
ontology about animals in general.

In decomposition, as shown in Figure 8, modules are built from the divi-

18



Figure 8: Module Decomposition.

sion of an existing ontology. Thus, according to criteria established by the
designer of the new ontology, the ontology is broken into parts semantically
well-defined. The problem with this approach is to define what will be the
criterion of division, because according to this is that you can identify which
classes, relationships, instances and axioms are held in each module. Cur-
rently, it is planned that this division can be done manually (by a specialist),
or (semi-)automatically (by ontologies management systems).

The understanding of what the modularization means exactly, and what
are the advantages and disadvantages, dependent on goals that are allocated.

5.2.3 Objectives of Modularization

According to [62], the main objectives in the adoption of modules for con-
struction of ontologies can be described as follows:

1. Scalability: This goal is well connected to the issue of performance
during the processing of an ontology. It is known who think their
performance has deteriorated as increasing the size and complexity of
the ontology being processed. Thus, if the processing occurs in only
a part of ontology (module), the resulting performance will be much
more acceptable. The challenge in this case lies in the fact that we
need to properly define the size of each module that can answer the

19



query in question. This goal is associated with the process of compo-
sition and decomposition. In the case of the composition, it turns now
possible to leave the modules separately rather than integrate them
and form an ontology in an only file. This would involve the adoption
of mechanisms for distributed reasoning, since the modules are possi-
bly distributed in a network of modules of ontologies. In the case of
decomposition, the concept of module appears as a natural approach,
depending on the need to find more efficient ways of information re-
trieval. Furthermore, the issue of scalability can be divided into two
topics:

• Scalability for information retrieval: in this case the mod-
ules serve as a prerequisite to define the areas where to make the
searches to a given query, restricting the processor to focus only
on certain classes, relationships, axioms and instances.

• Scalability for development and maintenance: in this case
the modules helped to understand the impact of an upgrade on-
tology. Thus, concentrate updates within a module would be an
interesting way to avoid it or to propagate throughout much of
ontology.

2. Complexity Management: this goal is very similar to the previous
one, there is a tendency to create an inverse relationship between the
project’s ontology and its complexity. Therefore, it is expected that
smaller and more specific modules can be properly manage them, and
subsequently compare them to form well designed ontologies.

3. Understandability: understanding the contents of an ontology de-
pends much of its size and complexity. Thus, the modularization will
provide a more rational during the learning, as being it a human agent
or an intelligent mobile agent.

4. Customization: the development of ontologies may be the result of
efforts made by several people, possibly located in different localities,
or the availability of modules in repositories scattered over networks
of information, such as the semantic web. This scenario describes the
need to describe the individual responsibility for creating the various
modules being used in the creation of new ontologies.

5. Reuse: this goal is related to the need for approaches that promote
the rapid development of new ontologies from existing modules and

20



has direct implication in large adoption of this technology.

5.2.4 Research Challenges in Modular Ontologies

In this subsection we present a few issues that are seen as fundamental
to the creation of a modular OE and therefore need special attention in
the application of effort, investment and research. Clarifying these issues
will be of great importance to the development of methodologies, tools and
languages based on the concept of the module.

Criteria for Modularity: It is important that the definition of the
modules follow certain criteria. However, the way it should be done is an
issue that remains open and that it needs further studies so that they can be
clearly defined. The criteria may vary according to how occurs its creation,
use or maintainability. If the existence of the composition forms a highest-
level ontology which they will form or join, there is a concern about what
should be contained in the module because they already exist, except in
cases where there is a need to re-allocate or redistribute the content of the
modules within the collection. Moreover, in the case of decomposition, the
ontology already exists and the modules will be made in accordance with the
established criteria. Set a criterion remains as a challenge for researchers.
Two ways can be considered:

• Manual decomposition: simplest solution, but the quality of the
result depends entirely on the knowledge and expertise of designers of
ontology. It is recommended that the development of a mechanism for
monitoring the reliability and trust services offered by the modules,
which could allow a reorganization (or resizing) of the modules when
necessary;

• Decomposition automatic or semi-automatic: This approach re-
quires knowledge of the requirements of the application. This knowl-
edge can be obtained by analyzing the queries that are sent to the
ontology and the storage of ways (paths) that they will go in ontology
during the implementation of these. The decomposition of an ontology
can also be based on performance criteria. In that case the criteria for
the application, such as semantic aspects, are not necessarily consid-
ered.

Properties of Modules and Modularization: A property very im-
portant in the context of ontologies modular and that represents an impor-
tant field for search concerns to correctness. The problem can be depicted

21



in two ways: correctness of the modules individually and correctness of
ontology formed by all the integrated modules. Regarding correctness of
modules, one should answer questions like: (i) what ensures that a module
is an ontology? e (ii) What ensures a module that makes sense semantically?

Regarding to correctness it should be considered the issue of the com-
position and decomposition:

• Composition: The correctness has to do with the fact that the compo-
sition of the modules resulted in something semantically correct. Two
issues must be considered: (i) if the composition goal is to produce
a fully integrated ontology, to be verified observing correctness if no
information was lost after the composition of the modules, and (ii) if
the goal of the piece is the specification of connections (links) found
between the modules, will be the correctness defined as the fact that
all the relevant routes have been implemented and no connection is
implemented duplicated or can be inferred from others.

• Decomposition: Just as in composition, correctness verified to be ob-
served if no information was lost in the process. It should be noted
that the result of a consultation with a module must be equal to the
same being done to the original ontology, or if the result of the com-
position of the modules obtained through the decomposition leads to
the same original ontology.

References between composition and Modules: Even if a module
is considered a sub-ontology independent, it is unlikely that a he, alone, is
capable of fully responding to queries. In this case it is necessary that there
is a management service ontologies that identifies the modules required to
meet a particular query, to see that each one individually, integrate and
synchronize the individual responses in order to compose a global response .
According to the type of module, you need to establish a mechanism linking
the different modules:

• Closed Modules: modules are not related to each other directly. The?
links that unite are stored as metadata outside in a central repository
or distributed.

• Open Modules: modules are connected directly to? one or more other
via links, which represent the paths for additional information.

Conflicts and Overlapping Modules: During the process of compo-
sition of an ontology is natural to appear various types of heterogeneities

22



Figure 9: Different modules containing the same concepts.

caused by the different perceptions that the developers may have about the
world. These heterogeneities ranges from the formalism used in the construc-
tion of the module (RDF, OWL, etc.) to its semantic content (for example,
a module could describe a mesh of roads and another, a public transport
system). Despite the fact that the modules can come from various sources
(authors, locations, etc.), it is natural to believe that many modules provide
conceptual intersections or overlapping, inclusive with the possibility of dual
concepts (Figure 9).

Several types of conflicts can arise from the union of several modules. For
example, we could have the concepts developer, author and creator, each one
in a different module, representing someone who has a particular product.
Other types of conflicts come from the fact that different modules can be
concepts with different structures:

• Structural Conflicts occur when we have the same ideas, but with
different internal structure. For example, a module could have the
concept restaurant with an attribute evaluation, which values the field
would be ”bad”, ”reasonable”, ”good” and ”excellent” to indicate its
quality. Another module would also have a concept called Restaurant,
and this would have an attribute indication, the field would be the
values ”yes”, ”no” and ”with restrictions”.

23



Figure 10: Conflicts in an ontology from the composition of several modules.

• Semantic conflicts occur when we have different classification schemes,
based on understandings and / or different goals. For example, a
module would have the concept Class with a connection to the concept
pupil, where it would have the attribute ratings. Another module
could have the concept with the Class attribute ratings.

Many studies have been developed in order to enable the accommoda-
tion of concepts from different sources into a single ontology [16] [12] [17]
[18]. This process known as alignment is to eliminate the various conflicts
arising in the composition of modules. The idea is that differences, whether
structural or semantic, are parts of the natural process of building ontologies.
Therefore, a methodology for construction of modular ontologies should con-
sider steps and mechanisms for implementation and documentation which
they consider as key alignment.

5.3 Agile Methods

In software engineering, agile methods are a response to traditional method-
ologies in order to turn the software development a flexible, simpler, cheaper,
less error prone, better understood and with quickest deliveries [6] [53]. In
a similar way, some works are being proposed in order to bring the agile

24



Figure 11: Main ideas of Agile Methodologies.

principles to the ontology development. In next subsections we will describe
the following approaches RapidOWL and OntoAgile:

5.3.1 RapidOWL

RapidOWL is a lightweight methodology for collaborative Knowledge Engi-
neering. It is based mainly on two precedents approaches: XP.K (eXtreme
Programming of Knowledge-based systems) [39], and the Wiki idea, which
established collaborative ideas to text editing [41].

RapidOWL methodology is grounded over a well defined structure al-
ready adopted by other agile methodologies. This structure is composed by
the following: paradigms, process, people, models and tools.

Each one describes a particular aspect of development. How it can be
seen in figure 11, paradigms influence the process, they lay the foundation
for the models and they have to be internalized by people. Tools also are
an important part of the approach since they implement the collaboration
processes among the people involved.

Following one of principles of the agile philosophy which developers must
delivers functionalities as fast as possible, according to the authors, one of
the major advantages of this methodology is the fast delivery of RDF chunks

25



(Resource Description Framework) [54] statements. These chunks are pro-
duced by developers from the User Stories. In each iteration, initially it is
created a user story which describes a determined aspect of domain being
studied. Further, developers analyze each story and formalize using the RDF
language. RapidOWL has the same set of values of eXtreme Programming
(XP), namely Communication, Feedback, Simplicity and Courage [6]. In
same way, it does not have any development cycle with well defined phases
and milestones among them. Instead values are proposed in order to guide
the development process throughout Principles and Practices as can be seen
in figure 12. The motivation behind this is the simplicity and flexibility
during the development. Also, besides that, neither every XP practice must
combine with RapidOWL (and vice-versa) because of specific characteristics
of knowledge engineering.

Figure 12: The building blocks of RapidOWL.

Despite of its promises, we identified some problems with this method-
ology. Firstly, just as others agile methodologies, RapidOWL scope is very
limited and does not consider important activities of ontology engineering
like reengineering and modular development. The first one is a necessary
approach when developers have an ontology and need to enhance or adapt
it to attend a new demand. The former approach is a tendency in ontol-
ogy engineering since that each time more ontology engineering inspires on
software engineering. One strength point in every agile methodology is com-
munication. However, the informality or the lack of standards in RapidOWL
during the activities can harm the communication among the participants
and then harm the development process. Regarding to Knowledge Repre-
sentation, RapidOWL focuses on implementation level [48] which limits the
portability of the ontology produced. Also this fact prevents the usage of

26



ontological modules from existing ontologies and reuse of full top ontologies.
RDF is a datamodel for objects (”resources”) and relations between

them, provides a simple semantics for this datamodel, and these datamodels
can be represented in an XML syntax [66]. However, this is not enough to
semantically describes objects in ontologies. In order to attend this, OWL
adds more vocabulary for describing properties and classes: among others,
relations between classes (e.g. disjointness), cardinality (e.g. ”exactly one”),
equality, richer typing of properties, characteristics of properties (e.g. sym-
metry), and enumerated classes. Therefore we consider that is not a good
design decision adopt RDF as being the knowledge representation language.

5.3.2 OntoAgile

This methodology is influenced by two major agile methodologies: XP [6]
and Scrum [53]. The main idea of OntoAgile is to use only necessary docu-
mentation for development and concentrate the efforts on the client through-
out short interactions in order to deliver products as fast as possible. Basi-
cally the OntoAgile process is composed of three interactive and incremental
phases: (i) Planning Meeting, (ii) Construction and (iii) Delivery Meeting.
At each iteraction one small part of ontology is produced.

In Planning Meeting, participants (customer, leader and others mem-
bers of development team) develop user stories in order to identify what
knowledge must be specified. The user stories will be form the Product
Backlog, a repository of functional requirements, or in others words ”what
will be built” [72]. These stories will be organized in priority order and they
will be the starting point of process.

Construction is divided in six subphases: (i) Concepts Acquisition
(identify the main concepts), (ii) Existing Ontologies (look for the concepts
in existing ontologies in order to discover their contexts), (iii) Relationship
(connects the concepts discovered in 1 and 2), (iv) Codification (implements
the ontology using a tool like Protégé or directly with a language like OWL),
(v) Integration (puts together results from each iteration (called Sprint) with
the ontology), and (vi) Consistency Checking (verifies concepts, relations
and restrictions by means of a reasoner to check or SPARQL).

In the Delivery Meeting phase, stories are used to deliver that part
of ontology being produced in current iteration. The same people that
was present in first phase must be present in order to participate of this
validation. The main problem observed in OntoAgile regards to the fact
that it works just with small-size ontologies.

27



Figure 13: OntoAgile process.

6 Ontology Engineering and Software Engineering

Until this moment we have described some subjects of ontology engineering
that are in state of art yet. We believe that the continuous development of
these subjects has a great importance to the advancement of area. In next
subsections we will compare each aspect regarded to that (and some others)
in order to provoke discussions and enlighten the next steps of ontology
engineering.

Despite the broadness of these subjects, because of space limitations,
here we concentrate our efforts on those points that we consider more im-
portant to promote a agenda of investments and leverage the ontological
engineering practices in next years.

6.1 Similarities and Differences

6.1.1 Preliminary Analysis

Since that OE and SE works with the conception of the same object (soft-
ware) it is obvious to say that both of areas has many similarities.

28



The first difference concerns to the result being produced by each one.
In one hand side, OE and SE deals with the development of systematic, well
organized and tooled approaches to develop software. However, in other
hand side, the nature of the software being produced is quite different and,
further, the approaches must be slightly different. Despite of ontologies are
software like any other in their essence, ontologies are not applications or, in
others words, running software. Also, in same sense, software are not simply
data like strings, structures or literals representing attributes or even data
schemas of a data base. Ontologies are situated in middle of both of them
(application and data).

One important difference between OE and SE regards to its origins.
While SE was developed having as inspiration the traditional engineering,
OE was developed as being an evolution of Knowledge Engineering.

6.1.2 Theoretical Analysis

How it was already discussed, SE has served as an inspiration for the devel-
opment of OE. In this sense, we believe that it is important to compare the
current development state of OE with the current state of SE in order to
learn lessons from that. Here, in this work we propose an analytical com-
parison considering just those aspects approached just before. Others like
Standardization and Documentation will be discussed more in future works.
Theses comparisons summarizes many topics discussed in early sections.

Modularization has been discussed and studied for many years in SE
and today it can be considered as a mature approach in order to accelerate
the process. Although some initial efforts [4] [18] [11] [15] [26], modules are
still in state of art but without perspectives to be adopted largely in short
term. Current methodologies and tools don’t accomplish modules and even
still not exist a consensus about what exactly it is an ontology module [12].

Documentation is one of the deliverables of a software engineering de-
velopment methodology. It guides the whole development, throughout the
software life cycle, and aids to record the requirements, decision takings,
problems found, limitations, roles, etc. Further, it plays a major impor-
tance to preserve the historic of an organization regarding to its projects.
Traditional SE methodologies like RUP and Larman [52] make intensive use
of documentation2. However, the large majority of OE methodologies does
not present these same worries. For example, the methodology of Gruninger
and Fox, TOVE and Cyc don’t provide forms to document the development

2Agile methodologies like XP, Scrum and Crystal Clear considers that documentation
harms the process flexibility and agility.

29



process else than the own ontology. Methontology describes one specific ac-
tivity aimed to document the process but it does not accomplish the whole
life cycle and neither define systematic ways to do it (for example, what are
the documents? what are their formats? when to fulfill each one of these
documents?).

Standardization regards to acceptance and consolidation of technolo-
gies, tools, approaches, languages, etc. by a considerable amount of devel-
opers or organizations. In SE exists many standardization efforts like the
Object Management Group3 (OMG), the Java Community Process4 (JCP),
and the SWEBOK5 (Software Engineering Body of Knowledge). All these
initiatives aims to promote the development, divulgement and maturing of
their respective subjects, as well as to integrate the efforts under the same
philosophy.

Under the economical perspective, Quality Assurance is one of the
most important activities in SE because it promotes the necessary means
to optimize the development processes and further to leverage the quality
of products being developed. If in one hand side, SE has very matured
standards and organizations aimed to promote the quality assurance like
CMMI, ISO/IEC 15504, MPS-BR, etc., in other hand side OE has nothing
similar until this moment.

The large adoption of tools is a clear signal that one determined area
is getting into maturity. Since its beginning, SE community has called at-
tention to this fact and in late 80’s the ”Computer Aided” tools generation
experienced a exponential growth with the Computer Aided Software En-
gineering (CASE), Computer Aided Design (CAD) and Computer Aided
Manufacturing (CAM) tools. More specifically to SE, exists a vast quantity
of tools to aid the developers in whole life cycle like requirement editors
(planning), domain modeling (analysis), coding (implementation), test and
refactoring, etc. Despite the actual existence of a considerable quantity
of tools like Protégé6 (ontology modeler), Racer7, Pellet8 (OWL reasoner),
SPARQL9 (query language), and others, all of them with very good qual-
ity and acceptance by the ontology community, there is not environments
dedicated to the whole ontology life cycle.

3http://www.omg.org.
4http://www.jcp.org.
5http://www.swebok.org.
6http://protege.stanford.edu
7http://www.sts.tu-harburg.de/ r.f.moeller/racer/.
8http://clarkparsia.com/pellet/
9http://www.w3.org/TR/rdf-sparql-query/.

30



Patterns are being adopted largely in SE, mainly the Design and Archi-
tectural Patterns. In OE, patterns are still in their very early steps. Some
proposals were made [9] [74], but they still demands more efforts to consol-
idate them. In order to this happen, we believe that one task to be done is
the support by means of tools.

The following table summarizes these topics:

Property SE OE
Modularization Mature State of art
Documentation Mature Ad-hoc
Standardization Well developed Inexistent
Tools Mature In evolution
Patterns Mature State of art
Quality Assurance mature inexistent
Methodology large acceptance low acceptance and

very good approaches limited approaches
Heavy-weight RUP, Larman, Cyc, TOVE,
methodologies Methontology
Light-weight XP, Scrum, Crystal RapidOWL, OntoAgile,
methodologies XP.K

Table: summary of comparisons among SE and OE.

6.2 Mutual Contributions

OE and SE communities share a number of common topics. While SE has
striving efforts towards a higher level of abstraction, giving more attention
each time more to modeling in software development activities,the OE (and
previously the Knowledge Engineering) has dedicated efforts to develop sys-
tematic and well disciplined processes like that ones existing in SE. How it
was possible to see in previous sessions these two areas can benefit them-
selves in many ways, exchanging experiences and techniques.

Happel and Seerdorf [32] enumerates the problems existing in all phases
of software life cycle and describes how the application of ontologies can
solve each one. According to them, ontologies can improve, among others, (i)
the communication abilities in requirement specification because of knowl-
edge representation formalisms, (ii) the possibility to create richer models
in analysis and design phases because of higher level abstractions, and (iii)
the annotation of API elements with unambiguous concepts.

Ruiz and Hilera [55] surveys the using of ontologies in SE and proposes a
very useful taxonomy to assist researches to identify, understand and choose

31



ontologies in software development projects, to identify what proposals of
new methodologies or previous adaptations exist for the construction of
ontology-driven software, and what types of software artifacts can be formed
by or include ontologies.

Others works like presents ontologies developed aiming to software main-
tenance [1], software measurement [3], development environments [65] and
quality assurance [2] [3] [42] [58].

In previous sections of this work, we have examined distinct types of
inspirations from SE to OE. Approaches like that ones based on concepts
like patterns, components, and agile methodologies can contribute positively
to OE evolution in a near future. We believe that others approaches not
cited here because it was not possible to find works related to like RAD
(Rapid Application Development), distributed development, quality models
etc. also can leverage the OE.

6.3 Perspectives

Analyzing these two areas since their beginnings it is possible to observe
that they are converging in certain aspects. Today we have still a separat-
ing each area. However, we believe that these mutual contributions tend to
grow each time more and such as semantic and ontologies will be make part
of software development projects as the development of ontologies will be
conducted like the software processes of today, in others words well docu-
mented, systematically and observing quality issues.

This scenario allow us to design perspectives around a Semantic Soft-
ware Engineering, which the software development will be based on on-
tologies, and an Ontology Engineering based on methodologies more matures
and better suited to market demands.

6.4 Challenges

Although the all increasingly growing efforts about OE there is much to do
yet. We believe that the maturity of OE will come just when its community
adopt methodologies, techniques and tools to develop its products similar to
what happens in SE today. The nowadays demands for ontologies in seman-
tic web as well as in traditional areas like database management systems,
distributed computing, artificial intelligence etc. are the main motivations
for the progress of OE.

As it was discussed, the use of modules in ontology development can
leverage all the ontology process development. Many works call attention

32



to this, but no existing methodology deals with that yet.

7 Final Remarks and Future Works

The usage of methodologies in development of ontologies is a crucial issue
for the area evolution and maturing. The growing adoption of ontologies
in semantic web and in traditional computing areas applications demands
systematic ways to develop ontologies and the necessity to improve its qual-
ity. In this paper we have presented a discussion about the convergence
between software engineering and ontology engineering, mainly under the
ontology development perspective. Thus, OE will benefit greatly from SE
experiences since that there is many overlapping areas. Our strategy to de-
velop the research that originated this work was to analyze how it was the
SE progress along the time and outline the approaches being adopted that
contributed to that and the main weaknesses that harmed the efforts being
applied. This taxonomy will help us to design solutions to that problems.

In next steps, in order to achieve the aimed flexibility and productivity,
we will concentrate our efforts to modular ontologies.

References

[1] Anquetil, N., Oliveira, K., Software Maintenance Ontology, In: Ontolo-
gies for Software Engineering and Software Technology, Springer, pp.
154-173, 2006.

[2] Abran et al., Engineering the Ontology for the SWEBOK: Issues and
Techniques, in: Ontologies for Software Engineering and Software Tech-
nology, Springer, 2006.

[3] Bertoa M. F., Vallecillo, A., and Garcia, F., An Ontology for Software
Measurement, in: Ontologies for Software Engineering and Software
Technology, Springer, 2006.

[4] Bao, J. and Honavar, V. G, Divide and Conquer Semantic Web with
Modular Ontologies - A Brief Review of Modular Ontology Language
Formalisms. In: Proc. of the ISWC 2006 Workshop on Modular On-
tologies. (2006)

[5] Bechhofer S., Harmelen F., Hendler J., Horrocks I., McGuinness D.L.,
Patel-Scheineider P.F., Stein l. A., OWL Web Ontology Language Ref-

33



erence. Avaliable in http://www.w3.org/TR/owl-ref/. Last access em
02 de Setembro de 2007.

[6] Beck, K. Extreme Programming Explained: Embrace Change.Addison
Wesley, 2000.

[7] Berners-Lee, T., Hendler, J.,Lassila, O., The Semantic Web, in: Scien-
tific American, pp. 24-30, May, 2001.

[8] Buchoffer, S. et al, Avaliable in http://www.ontoknowledge.org/
oil/downl/oil-whitepaper.pdf, Last access in 12 october of 2007.

[9] Blomqvist, E., State of the Art: Patterns in Ontology Engineering,
Research Report 04:8. School of Engineering, Jnkping University, De-
cember, 2004.

[10] Breitman, K., Web Semântica: A Internet do Futuro, Rio de Janeiro,
Editora LTC, 2005.

[11] D’Aquin, M., Sabou M., and Motta E., Modularization: a Key for the
Dynamic Selection of Relevant Knowledge Components. In: Proc. of
the ISWC 2006 Workshop on Modular Ontologies. (2006)

[12] Camila Bezerra, Fred Freitas, Jérôme Euzenat, Antoine Zimmermann,
ModOnto: A tool for modularizing ontologies, Second Workshop on
Ontologies and Their Applications, Brazilian Symposium of Artificial
Intelligence, Salvador, BA, Brazil, 2008.

[13] Crnkovick, I., Component-Based Software Engineering, 10th Interna-
tional Symposium, CBSE 2007, Heinz Schmidt, Ivica Crnkovic, George
Heineman, Judith Stafford, Springer, LNCS Series, Vol. 4608, ISBN:
978-3-540-73550-2, 2007

[14] Devedzic, V., Understanding Ontological Engineering. Communications
of the ACM, Vol. 45, pp 136-144, Abril, 2002.

[15] Doran, P., Ontology Reuse via Ontology Modularization. In Proceed-
ings of KnowledgeWeb PhD Symposium 2006 (KWEPSY2006) Budva,
Montenegro, 2006.

[16] Euzenat, J. et al, State of the Art on Ontology
Alignement. Avaliable in http://www.aifb.uni- karl-
sruhe.de/WBS/meh/publications/euzenat04state.pdf. Last access
em 12 de Outubro de 2007.

34



[17] Euzenat, J., and Shvaiko, P., Ontology Matching, Springer-Verlag, 2007.

[18] Euzenat, J., Zimmermann, A. and Freitas, F., Alignment-based mod-
ules for encapsulating ontologies, to appear in Bernardo Cuenca-Grau,
Vasant Honavar, Anne Schlicht, Frank Wolter (Eds.): 2nd Interna-
tional Workshop on Modular Ontologies, WoMO 2007, Whistler, British
Columbia Canada, October 28, 2007.

[19] Fernandez-Lopez M., Pazos A., Pazos J., Building a Chemical Ontol-
ogy Using Methontology and the Ontology Design Environment, IEEE
Inteligent Systems and their applications 4(1):37-46.

[20] Fernandez-Lopez M., Gomez-Perez A., Juristo N., METHONTOL-
OGY: From Ontological Art Towards Ontological Engineering, Spring
Symposium on Ontological Engineering of AAAI, Stanford University,
California, pp 25-34.

[21] Freitas, F.; Stuckenschmidt, Heiner; Volz, Raphael (Eds.). Workshop
on Ontologies and their Applications - WONTO’2004 - Proceedings,
2004, LivroRapido, Brazil.

[22] Freitas, F., Stuckenschmidt, H., Noy, N., Ontology Issues and Appli-
cations: Guest Editors Introduction. 2005. Journal of the Brazilian
Computer Society, Special Issue on Ontologias Issues and Applications,
November 2005, Sociedade Brasileira de Computacao, Brazil.

[23] Freitas, F., and Euzenat, J., EXMO: Project Report, 2007.

[24] Gamma, E., Vlissides, J., Helm, R., Johson, R., Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[25] Ghidini, C. and Serafini, L., Mapping properties of heterogeneous on-
tologies. In: Proc. of the ISWC 2006 Workshop on Modular Ontologies.
(2006)

[26] Grau, B. C., A Logical Framework for Modularity of Ontologies, Avali-
able in http://www.ijcai.org/papers07/Papers/IJCAI07-046.pdf. Last
access in 06 de Junho de 2007.

[27] Goméz-Pérez, A., Juristo, N., Montes, C., Pazos, J., Ingenieria Del
Conocomiento: Diseno y Construccion de Sistemas Expertos. Ceura,
Madrid, Spain.

35



[28] Goméz-Pérez A, Knowledge Sharing and Reuse. In Liebowitz J (ed)
Handbook of Expert Systems. CRC, Chapter 10, Boca Raton, Florida.

[29] Gomez-Pérez, A., Fernandez-Lopez, M., Corcho, O., Ontological En-
ginering: with Examples from the areas of Knowledge Management,
e-Commerce and the Semantic Web, Springer-Verlag, 2004.

[30] Gruber, T., Toward Principles for the Design of Ontologies used for
Knowledge Sharing. International Workshop on Formal Ontology in
Conceptual Analysis and Knowledge Representation. Kluwer Academic
Publishers, Deventer, The Netherlands. 1993.

[31] Gruninger, M.,Fox M., Methodology for the Design and Evaluation of
Ontologies. In Skuce D (ed) IJCAI95 Workshop on Basic Ontological
Issues in Knowledge Sharing, pp 6.1-6.10.

[32] Happel, H., Seedorf, S., Applications of Ontologies in Software Engi-
neering.

[33] Harmelen, F., Reference description of the DAML+OIL
(March 2001) ontology markup language, Avaliable in
http://www.daml.org/2001/03/reference. Last access in 31 de maio de
2007.

[34] Stuckenschmidt, H., Modularization of Ontolo-
gies. WonderWeb Deliverable D21, Avaliable in
http://wonderweb.semanticweb.org/deliverables/ D21.shtml, éltimo
access em 06 de Junho de 2007.

[35] IEEE Standard Glossary of Software Engineering Terminology, IEEE
Computer Society. New York. IEEE Std 610.121990.

[36] IEEE Standard for Developing Software Life Cycle Processes. IEEE
Computer Society. New York. IEEE Std 1074-1995.

[37] Jannink, J., Srinivasan, P., Verheijen, D., Wiederhold, G., Encapsu-
lation and Composition of Ontologies, Proc. AAAI Workshop on In-
formation Integration, AAAI Summer Conference, July 1998. Madison
WI, USA.

[38] Jannink, J., Mitra, P., Neuhold, E., Srinivasan, P., Studer, R., Wieder-
hold, G., An Algebra for Semantic Interoperation of Semistructured
Data, in 1999 IEEE Knowledge and Data Engineering Exchange Work-
shop (KDEX’99), Nov. 1999. Chicago, USA.

36



[39] H. Knublauch. An Agile Development Methodology for Knowledge-
Based Systems. PhD thesis, University of Ulm, 2002.

[40] Kosciansky, A., Santos, M., Qualidade de Software, 2nd. edition, Edi-
tora Novatec.

[41] B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Shar-
ing on the Internet. Addison-Wesley Professional,2001.

[42] Liao, L., Qu, Y., Hareton, K., A Software Process Ontology and Its
Application, ISWC 2005, Workshop on Semantic Web Enabled Software
Engineering, 2005.

[43] Loebe, F.,Requirements for Logical Modules. In: Proc. of the ISWC
2006 Workshop on Modular Ontologies. (2006)

[44] Luttich, K., Masolo, C. and Borgo, S., Development of Modular On-
tologies, in Casl. In: Proc. of the ISWC 2006 Workshop on Modular
Ontologies. (2006)

[45] Manola, F., Miller, E., RDF Primer, 2004. Avaliable in
http://www.w3.org/TR/rdf-primer/. Last access in 24 of august of
2007.

[46] Melnik, S., Garcia-Molina, H., and Rahm, E.. Similarity flooding:
A versatile graph matching algorithm and its application to schema
matching. 2002. In 18th International Conference on Data Engineering
(ICDE-2002), IEEE Computing Society, San Jose, California.

[47] Mizoguchi, R., A Step towards Ontological Engineering, Procedings of
the 12th National Conference on AI of JSAI, June, 1998, 24-31.

[48] Newell, A., The Knowledge Level, Artificial Intelligence Magazine,
18(1), pp 87-127, 1982.

[49] , OMG, Object Constraint Language, available in
http://www.omg.org/spec/OCL/2.0, Last access in november 27,
2008.

[50] Pan, J , Serafini, L and Zhao, Y., Semantic Import: An Approach
for Partial Ontology Reuse. In: Proc. of the ISWC 2006 Workshop on
Modular Ontologies. (2006)

[51] Pressman, R., Engenharia de Software. Preentice-Hall, 2004.

37



[52] Larman, C., Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development, Prentice-
Hall, 3rd Edition, 2004.

[53] Mountain Goat, Uma Introdução ao SCRUM, Available
in http://www.mountaingoatsoftware.com/system/hidden-
asset/file/52/PortugueseScrum.pdf, last access in november 27,
2008.

[54] , Klyne, G., Carrol, J., Resource Description Format: Concepts and Ab-
stract Syntax, availabe in http://www.w3.org/TR/rdf-concepts/, last
access in november 27, 2008.

[55] Ruiz F., Hilera J., Using Ontologies in Software Engineering and Tech-
nology. In: Ontologies for Software Engineering and Software Technol-
ogy. Springer. pp. 49-102. (2006)

[56] Schlicht, A., Stuckenschmidt, H., Towards Structural Criteria for On-
tology Modularization. In: Proc. of the ISWC 2006 Workshop on Mod-
ular Ontologies. (2006)

[57] Simperl, E. P. B., Tempich C., Ontology Engineering: a Reality Check.
In: 5th International Conference on Ontologies, Databases, and Appli-
cations of Semantics, ODBASE (2006).

[58] Soydan, G. H., Kokar, M. M., An OWL Ontology for Representing the
CMMI-SW Model, International Workshop on Semantic Web Enabled
Software Engineering (SWESE 2006), USA.

[59] Stuckenschmidt, H., Implementing Modular Ontologies with Distributed
Description Logics. In: Proc. of the ISWC 2006 Workshop on Modular
Ontologies. (2006)

[60] Stuckenschimidt, H., Klein, M., Modularization of Ontolo-
gies, In: Wonderweb: Ontology Infrastructure for the Se-
mantic Web, IST Project 2001-33052, 2003. Avaliable in
http://wonderweb.semanticweb.org/deliverables/documents /D21.pdf.
Last Access in 5 de julho de 2007.

[61] Schilicht, A., Improving the Usability of Large Ontologies by Modu-
larization, In Proceedings of Knowledge Web PhD Symposium 2007,
Austria.

38



[62] S. Spaccapietra, A. Rector, A. Napoli, G. Stamou, G. Stoilos, H.Wolger,
J. Pan, M. D’Aquin, and V. Tzouvaras, Report on modularization
of ontologies, Technical report, Knowledge Web Deliverable D.2.1.3.1,
(2005).

[63] Stuckenschimidt, H. Structure-based Partitioning of Large Concept Hi-
erarchies. In Proceedings of the 3rd International Semantic Web Con-
ference, Hiroshima, Japan (2004).

[64] Noy, N., Representing Classes As Prop-
erty Values on the Semantic Web. W3C Note,
http://www.w3.org/2001/sw/BestPractices/OEP/ClassesAsValues-
20050405/ (2005).

[65] Oliveira, K., Villela, K., Rocha, A., Travassos, G., Use of Ontologies
in Software Development Environments, In: Ontologies for Software
Engineering and Software Technology, Springer, pp. 154-173, 2006.

[66] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.,
Cowan, J., Extensible Markup Language (XML) 1.1, (Second Edition),
W3C Recommendation, 16 August 2006, edited in place 29 September
2006, available in http://www.w3.org/TR/2006/REC-xml11-20060816,
last access in november 27, 2008.

[67] Volz, R., Oberle, D., Maedche, A. Towards a modularized Semantic
Web In Proceedings of the ECAI-02 Workshop on Ontology and Seman-
tic Interoperability Lyon, July 22, 2002, volume 64 of CEUR Workshop
Proceedings. 2002.

[68] Uschold M, King M, Towards a Methodology for Building Ontologies.
In: Skuce D (eds) IJCAI 95 Workshop on Basic Ontological Issues in
Knowledge Sharing. Montreal, Canada, pp 6.1-6.10.

[69] Wache D et al., State of the Art on the Scal-
ability of Ontology-Based Technology, Avaliable in
http://knowledgewe.semanticweb.org/semanticportal/sewview/frame.jsp.
Last access in 11 of October of 2007.

[70] Wang et al., Evaluating Formalisms for Modular Ontologies in Dis-
tributed Information Systems, In Massimo Marchiori and Jeff Z. Pan,
Proceedings of The First International Conference on Web Reasoning
and Rule Systems (RR2007), pp. 178-182. Springer, Innsbruck, Austria,
June 2007.

39



[71] Waterman DA, A Guide to Expert Systems, Addison-Wesley, Boston,
Massachussets, 1986.

[72] Wikipedia, ISO 9000, available in http://en.wikipedia.org/wiki/ISO-
9000, last access in 27 of november, 2008.

[73] Wiederhold, Gio, An Algebra for Ontology Composition. Proceedings of
1994 Monterey Workshop on Formal Methods, Sept 1994, U.S. Naval
Postgraduate School, pp 56-61. Monterey CA, USA.

[74] Gangemi, A., Ontology Design Patterns for Semantic Web Content. In
Motta E. and Gil Y., Proceedings of the Fourth International Semantic
Web Conference, 2005

[75] Auer, S. and Herre, H., Rapidowl - an agile knowledge engineering
methodology. In Irina Virbitskaite and Andrei Voronkov, editors, Er-
shov Memorial Conference, volume 4378 of Lecture Notes in Computer
Science,pp 424430. Springer, 2006

[76] Herre, Rapidowl - An Agile Knowledge Engineering Methodology. In
Irina Virbitskaite and Andrei Voronkov, editors, Ershov Memorial Con-
ference, volume 4378 of Lecture Notes in Computer Science, pp 424-430,
2006.

40


