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a b s t r a c t 

Improvements on mobile devices allowed tracking applications to be executed on such platforms. How- 

ever, there still remain several challenges in the field of mobile tracking, such as the extraction of high- 

level semantic information from point clouds. This task is more challenging when using monocular vi- 

sual SLAM systems that output noisy sparse data. In this paper, we propose a primitive modeling method 

using both geometric and statistical analyses for sparse point clouds that can be executed on mobile 

devices. The main idea is to use the incremental mapping process of SLAM systems for analyzing the 

geometric relationship between the point cloud and the estimated shapes over time and selecting only 

reliably-modeled shapes. Besides that, a statistical evaluation that assesses if the modeling is random is 

incorporated to filter wrongly-detected primitives in unstable estimations. Our evaluation indicates that 

the proposed method was able to improve both precision and consistency of correct detection when 

compared with existing techniques. The mobile version execution is 8.5 to 9.9 times slower in compari- 

son with the desktop implementation. However, it uses up to 30.5% of CPU load, which allows it to run 

on a separate thread, in parallel with the visual SLAM technique. Additional evaluations show that CPU 

load, energy consumption and RAM memory usage were not a concern when running our method on 

mobile devices. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Several applications on computer vision and augmented reality

equire camera pose tracking. However, determining the device po-

ition in relation to the real environment can demand a lot of com-

utational power and memory depending on the approach and the

equired information. Along with all the improvement on process-

ng power and memory on mobile devices itself, several tracking

echniques that are capable to run on such devices were released

n the last couple of years. There are examples in the academy

nd in the industry. The most distinguished ones are ARCore 1 and

RKit, 2 by Google and Apple, respectively. 

Although several techniques have been released, there are

till many remaining research issues in the field of tracking.
∗ Corresponding author. 

E-mail address: rar3@cin.ufpe.br (R. Roberto). 
1 https://developers.google.com/ar/ . 
2 https://developer.apple.com/arkit/ . 
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ne is to extract and track high-level semantic information from

he environment. Different types of semantics can be collected,

rom geometric primitives of objects to the model of a piece

f furniture. This process is referred to as semantic modeling.

hape parameters of geometric primitives and the relationship

mong them are valuable knowledge to be estimated especially in

an-made environments such as a house and a factory. This data

an also be gathered in different ways: from the input image, the

cene map or a combination of both. 

There are several benefits of detecting primitives from the

cene map. For instance, objects are usually over-represented when

efined using a point cloud because it is not necessary to have

o many points to describe them. Therefore, an implicit represen-

ation can replace redundant points, which is particularly helpful

hen targeting devices with memory restrictions, such as robots

r unmanned aerial vehicles (UAV). Additionally, a tracking system

an use these primitives to denoise the reconstructed map or con-

train its optimization [1] , which can reduce tracking errors. Fur-

hermore, it can be used to provide haptic feedback on augmented

eality applications [2] . 

https://doi.org/10.1016/j.cag.2019.09.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.09.003&domain=pdf
mailto:rar3@cin.ufpe.br
https://developers.google.com/ar/
https://developer.apple.com/arkit/
https://doi.org/10.1016/j.cag.2019.09.003
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Mobile devices are reducing the gap to desktop computers in

terms of processing power and memory space [3] . This improve-

ment allowed the development of more complex algorithms for

mobile devices, including tracking techniques, which are one of the

foundations of augmented reality. This can be linked to the im-

provement and popularization of augmented reality solutions for

such devices. 

Some of these recent advancements in tracking techniques in-

volve removing the necessity of any external marker, improving

the execution time to achieve real-time performance and having

a more stable tracking that is not harmed by jitter or drift. For

instance, the improvement of the device’s sensors allowed the de-

velopment of visual-inertial trackers. However, there is not much

progress regarding the extraction of different kinds of semantics

from the 3D map of the scene. 

Considering all the benefits mentioned above, the main goal of

this study is to model and track primitives aiming to obtain se-

mantics from sparse point clouds. In order to do that, we present

Geometric and Statistical Incremental Semantic Tracking, or simply

GS-IST, which is a method for incrementally modeling and tracking

planes, spheres, and cylinders on sparse point clouds. In summary,

this method uses the generating process of point clouds on SLAM

effectively and relies on geometric and statistical analyses to filter

unreliable shapes. Additionally, this method was ported and evalu-

ated on mobile devices, showing that it was feasible to extract and

track basic primitives on such platforms. This paper is an extended

version of the work published in Roberto et al. 2018 [4] and its

main contributions are summarized as follows: 

• A technique that uses geometric and statistical evaluation to in-

crementally perform semantic modeling and tracking of primi-

tives on sparse point clouds ( Section 3 ); 
• Evaluations of the proposed method in comparison with ex-

isting techniques, showing that it improves semantic modeling

precision. This evaluation also includes a dataset with sparse

point clouds of primitives and a metric precision evaluation

that was not available in the preliminary work ( Section 4 ); 
• The port and evaluation of the proposed approach to mobile

devices and a guideline to evaluate computer vision techniques

on such platform, which is also an enhancement from our pre-

vious paper ( Section 5 ). 

2. Related works 

Automatic reconstruction of 3D object shapes is useful for sev-

eral applications, such as blueprint generation for architecture. Al-

though useful for 3D measurement and visualization, there are

some aspects to be improved. For instance, the scene is usually

represented by using a point cloud or a mesh computed from it.

The latter simply consists of connected neighbor points with little

information about the semantic structure. 

Several methods have been proposed in the literature to deter-

mine semantics in point clouds, and most of them are based on

dense clouds. One conventional approach is to use reverse engi-

neering techniques to estimate geometric primitives, such as re-

gion growing [5] . It can efficiently deal with large amounts of

data because it makes simple comparisons using the normals to

determine if a set of points belongs to the same group. How-

ever, this approach is not robust to noisy point clouds, leading

to wrong classifications. The robustness has been improved us-

ing both Hough Transform [6] and RANSAC [7] . Some methods

are able to detect only specific primitives, such as planes [8–

10] or cylinders [11,12] . Some detect a set of primitives, such as

planes, cylinders, cones and spheres [13] and others identify pre-

modeled complex shapes along with planes and cylinders in indus-

trial scenarios [14] . Another approach is based on machine learning
echniques, which combine local features and AdaBoost to detect

omplex objects [15] . Support Vector Machine (SVM) and RANSAC

re also used to extract semantics from a point cloud [16,17] . Re-

ent works used Convolutional Neural Network (CNN) to perform a

emantic classification using the keyframes of a dense monocular

LAM and then apply this result to the point cloud [18] . 

One advantage of having dense data extracted by laser or in-

rared sensors is that the acquired point cloud contains several in-

ormation that the algorithm can use for the detection. Moreover,

he data is relatively noiseless, which means that a large number

f points can stably fit primitive shapes. Therefore, it is more chal-

enging to extract primitive shapes in a noisy and sparse point

loud of a partially-observed object computed from image-based

pproaches with mobile devices. Some studies and systems have

ackled this issue by focusing on specific situations, like detecting

nly one shape class, such as ARKit and ARCore that detect only

lanes. Another example is [19] , which estimated planes based

n their reconstruction to create textured models. In this context,

ANSAC-based methods are very promising to work with sparse

oint clouds. This is because they estimate primitives by initially

icking a minimal group of points for each shape and detecting

he one that approximates the maximum number of points [20] .

esides, they can also work with data containing a large number

f outliers [21] . However, the performance of such approach for

parse point clouds was not sufficiently investigated yet. 

Another aspect of existing semantic methods is that they usu-

lly work in batch, which means that input data is analyzed all

ogether only once. This is consistent with the generation method.

sually, the dense sensors generate the entire point cloud at once.

owever, the performance of visual SLAM systems regarding both

he accuracy of the reconstruction and the computational cost for

eal-time applications improved drastically in recent years [22,23] .

everal of these SLAM methods generate the 3D map incremen-

ally, which can provide valuable information for a semantic ap-

roach in addition to the point cloud itself. 

Until 2015, tracking techniques on mobile devices had a sub-

tantial improvement on both number of publications but, most

mportantly, on tracking capabilities [24] . However, none of these

echniques were able to retrieve any type of semantics from the

cene. 

There are examples of geometric techniques for object recogni-

ion too. One is [25] , which created a distributed approach that

ses a cache of frames scheme to improve the method perfor-

ance. Their method is able to identify from faces to traffic signs.

ecent developments of machine learning techniques allowed the

xtraction of semantics from images using neural networks. The ar-

hitectures of these CNN are designed to deal with the constraints

f mobile devices [26] . For instance, Tobas et al. 2016 [27] use

eep learning to perform domain-specific object recognition. They

chieved high classification accuracy and near real-time execution

ime running on an iPad. However, no work was found that is able

o use machine learning to extract primitive parameters on mobile

evices. One challenge is that running neural networks to address

his level of semantics often requires a lot of processing power and

owerful GPUs that are not available on mobile devices at this mo-

ent [28] . 

Although most of the studies for mobile devices find semantics

rom images, it is also possible to retrieve these information from

oint clouds. This is more complex to achieve on such devices due

o the overload of data to process, especially when dealing with

ense point sets. However, some systems that are able to extract

nformation from dense point clouds have been developed recently.

hese techniques usually generate the point cloud using a Google

ango device, such as [29] that apply an iterative RANSAC approach

o segment planes and model walls of indoor structures. Using a

ango as well, Sankar et al. 2017 [30] also detect planes and model
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Fig. 1. Flow of the GS-IST approach. The boxes have the steps of our method and bellow them are the outputs of each step. 

i  

m  

v  

3

 

s  

c  

l  

c  

f  

s  

o

3

 

g  

H  

s  

t  

p  

c  

p  

a

 

g  

b  

p  

p  

A  

t  

e  

h  

a

3

 

m  

e  

r  

w  

T  

o  

t

 

d  

n  

s  

s

3

 

i  

1  

t  

d  

t  

t  

i  

b  

s  

i  

i  
ndoor environments. Nevertheless, they also detect planes to seg-

ent more complex objects and based on their set of points and

isual appearance the authors are able to match the object with a

D model available in the library. 

Extracting semantic information using sparse point clouds

hould be simpler when concerning the amount of data to pro-

ess. However, this is the same reason why this task is more chal-

enging. Nevertheless, both Google’s ARCore and Apple’s ARKit in-

orporate semantic modeling as part of their scene understanding

eature. They both extract planes based on the scene 3D recon-

truction in order to have a more stable positioning of the virtual

bjects. 

. Geometric and statistical incremental semantic tracking 

Previous evaluations indicate that Efficient RANSAC achieves

ood results when detecting primitives in a sparse point cloud [31] .

owever, it still requires improvements in consistency and preci-

ion for use in various applications. Therefore, it is possible to use

he primitive estimation from Efficient RANSAC and the generating

rocess of point cloud from visual SLAM systems to perform an in-

remental semantic modeling. This approach can improve both the

recision and stability of the primitive detection. Moreover, it also

llows the tracking of these primitives through the scene. 

Fig. 1 shows the GS-IST execution flow. In summary, first it

ets the sparse point clouds that are incrementally generated

y a visual SLAM system and runs Efficient RANSAC to detect

rimitives. Then, it uses the history information of the estimated

rimitives and their parameters to match the shapes over time.

lso, it estimates the reliability of the detected primitive using

he geometry of the shape. When this estimation is not reliable

nough, it performs a statistical evaluation using the detection
istory to eliminate random detected shapes. The remaining steps

re detailed in the following subsections. 

.1. Efficient RANSAC 

When a visual SLAM system reaches a keyframe, it updates the

ap adding new points to it. Then, GS-IST detects the shapes for

very new map. We modified the Efficient RANSAC configuration to

educe the number of types of primitives detected. Instead of five,

e track three classes of shapes: planes, spheres and cylinders.

hey were selected because they can be used to model most of the

bjects. In fact, when modeling industrial scenarios, almost 80% of

he scene can be represented only by planes and cylinders [16] . 

In Fig. 1 , every primitive detected using Efficient RANSAC has a

ifferent color. The points in red are unassigned points that were

ot fit to any shape. All these primitives are passed to the sub-

equent modules, which will identify and eliminate the unreliable

hapes and track the remaining ones. 

.2. Shape fusion 

In keypoint-based visual SLAM systems, most of the character-

stics are clustered at highly textured areas. For example, spheres

 and 2 in Fig. 1 are the same primitive that Efficient RANSAC de-

ected as two because they have distinct clusters of features. In or-

er to improve the results, we fuse different shapes that belong to

he same primitive. This fusion not only provides a more represen-

ative primitive but also increases the overall information regard-

ng the shape. Since a primitive with a small number of points can

e unreliable, it is better to discard it. However, if more than one

hape with similar parameters is detected, even if they are small,

t is safe to assume that they correspond to the same element

n the scene. The reason is that it is unlikely that two primitives
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Fig. 2. Difference between the input points and their correspondent projected 

points on a shape estimated correctly (left) and incorrectly (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Fusion of parameters for different classes of shapes. 
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are wrongly detected with the same parameters. Therefore, this

parameters-based fusion of primitives helps in the history evalu-

ation. This process uses the similarity of the shape parameters to

decide whether to fuse two shapes or not: 

• Plane: the planes are parallel given an angle threshold αt and

the distance between them is smaller than the distance thresh-

old d t ; 
• Sphere: the distance between their centers is lower than d t and

the difference between their radii is smaller than the radius

threshold r t ; 
• Cylinder: the angle between the axis direction of both cylinders

is smaller than αt , the distance between them is smaller than

d t and the difference between their radii is smaller than r t . 

While d t and r t are controlled for each case such that they are

2% of the largest size of the point cloud bounding box, αt is always

set to 5 ◦. 

Additionally, our method considers the proximity between the

primitives to restrict or widen the similarity thresholds. The prin-

ciple is that two distant shapes have a smaller chance to be the

same than closer ones. Experimentally, the thresholds are widened

by 25% when evaluating the fusion of primitives that have an inter-

section. Otherwise, it is restricted by 25%. This means that distant

shapes have to be more alike to be merged. On the other hand,

closer primitives are more likely to be the same and the threshold

can be less restricted. 

3.2.1. Parameter computation 

Similar shapes are fused according to the aforementioned cri-

teria. GS-IST sets the parameters of the resulting fused shape as

a weighted average between the parameters of both primitives.

The weight is based on the geometric analysis of the points in

the detected shape. The main idea is to use the average Euclidean

distance between each input point that was used to estimate the

primitive and the resulting shape. Even for noisy data, this distance

will be smaller on correct estimations than on wrong ones. For in-

stance, consider a globe being tracked that was correctly modeled

as a sphere or incorrectly detected as a plane. The average dis-

tance of the 3D points in the globe to their projection in the sphere

will be smaller when compared to the distance of the same input

points to their projection in the wrong plane. Fig. 2 illustrates this

idea. 

Thus, the parameters P f of the fused shape will be: 

P f = 

n ∑ 

i =1 

w i P i , (1)

where n is the number of similar shapes to be fused and P i are

their parameters. The weight w i is: 

w i = 

m ∑ m 

j=1 d j 
, (2)
here d j is the Euclidean distance of the input points to their

rojection in the estimated shape and m is the number of points

n the estimated primitive. The weights are normalized and
 n 
i =1 w i = 1 . 

Using Eq. (1) , every fused shape will influence the resulting

rimitive. However, it will be more similar to the one with the

maller error. This average can be applied to every parameter ex-

ept the plane and the cylinder position. The point that represents

he plane position is projected in all others and then the weighted

verage is computed, as illustrated in Fig. 3 . This will also work in

ase of parallel planes. As for the cylinder position, this parameter

ill be the axes lines intersection. In case of concurrent or parallel

xes lines, we fuse the cylinders in pairs when there are three or

ore. We select the closest points of the axes lines and the result-

ng cylinder position will be the weighted average of these points. 

.2.2. Inclusion criteria 

In case a shape is not fused with any other, GS-IST performs

n initial reliability evaluation to decide whether to keep this de-

ected primitive or not. We consider four geometric characteristics

o make this assessment, as described below: 

• Number of Points: shapes with more points are usually more

reliable because the estimation is based on a large amount of

data. The number of points in good primitives is larger than 2%

of the whole point cloud; 
• Dispersion: it measures how spread are the points in the prim-

itive when dividing the number of points by the volume it oc-

cupies. Since the keypoints are clustered around highly textured

areas, small regions tend to concentrate most of the shape

points. The dispersion of reliable shapes is smaller than 20% of

the dispersion of the whole point cloud; 
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• Distance: it is the same Euclidean distance mentioned previ-

ously. Reliable shapes have an average distance smaller than 5%

of the largest size of the entire point cloud bounding box; 
• Radius: noisy planes can be estimated as spheres and cylinders

with a large radius. Therefore, good spheres and cylinders have

a radius smaller than the largest size of the entire point cloud

bounding box. It should be noted that this criterion is not ap-

plied to planes. 

The system only keeps shapes that pass in all of these crite-

ia. These values were determined experimentally and they are

ased on the dimension of the input point cloud because it puts

ll thresholds in proportion to the scene scale. 

.3. Shape matching 

Due to several factors, such as inconsistency or the shape

olume, a primitive on a given keyframe can match with sev-

ral others on the previous one, including shapes of a different

ype. Therefore, it is necessary to detect the shape on the pre-

ious keyframe that is the most likely to be the correspondent

n the current one. To match the primitives between consecu-

ive keyframes, GS-IST uses the intersection of the 3D bounding

ox and the distance between the center of mass. For instance, in

ig. 1 , a cylinder in the current keyframe (in blue) intersects with

wo primitives in previous keyframes: another cylinder (in green)

nd a plane (in red). Thus, we compute a score s for each primi-

ive that a given shape on the current detection intersects on the

revious estimation. This score is proportional to the intersection

olume and inversely proportional to the distance to the center of

ass: 

 = 

∑ k 
i =1 | ψ i | p i ∑ k 
i =1 | ψ i | d i 

| ψ s | ∑ k 
i =1 | ψ i | 

, (3) 

here k is the number of shapes with intersection on previous

eyframes, | ψ i | is the number of points of that shape, p i and d i 
re the intersection ratio and distance between centers of mass,

espectively, and | ψ s | is the number of points in the primitive on

he current keyframe. The shape with the maximum score is se-

ected as correspondence. 

.4. Shape update and recovery 

The shape detected on the current frame inherits the history

ata of the one it matched on the previous detection. These data

ontain the primitive class that was detected on every keyframe,

s well as the average distance to the original point cloud at that

etection. With that information, GS-IST can verify if the current

stimation is following the historical data. 

The system checks the class that this primitive was detected

ver time. If the current shape has the same type of the primitive

hat appears in more than half of the detection, including the cur-

ent one, its parameter is updated. This new parameter will be the

eighted average of each detection over time. With this update,

very previous detection will influence the final shape, which re-

ults in primitives that are more stable over time rather than using

ust the parameters from the last detection. 

The process to update the new parameter P u is similar to the

ne explained in Section 3.2 : 

 u = 

n −1 ∑ 

i =1 

w i P u −1 + w n P f , (4)

here n is the number of shapes detected in the past, including

he current one, and w i are their respective weights, which are

ormalized. P u −1 and P f are, respectively, the parameters in the

revious detection and the current parameter after fusion. 
On the other hand, if the current shape has a type that is dif-

erent from the one that appears most of the time, it is changed to

hat class of primitive. As for the parameters, it will be the same

s the previous P u from that type. This is illustrated in Fig. 1 , in

hich a sphere was detected as a cylinder and, by looking at the

istory data, GS-IST was able to replace it by the correct primitive.

In this step, GS-IST also evaluates shapes that were not detected

n the current keyframe, but appeared previously. It recovers these

hapes with the same parameters from the last appearance. The

istory data will be updated using the average distance of the re-

overed shape, but it will not have a primitive class associated at

his particular moment. This shape will eventually disappear when

ot detected anymore because there will be no class of primitives

hat appears in more than 50% of the time. 

.5. Reliability computation 

At this point, GS-IST has a set of detected shapes and it is

ecessary to determine which of them are reliable. This reliability

omputation is based on a geometric and statistical evaluation. 

.5.1. Geometric analysis 

Each shape has a history information since its first appearance,

hich is a list of each primitive it matched in the past keyframes.

owever, a given shape may have different classes over time due

o imprecision or inconsistency. Therefore, to perform the geomet-

ic analysis, the weight w c is computed for each class of primitive

hat appears in the history data: 

 c = 

1 ∑ h 
i =1 a i 

, (5) 

here h is the number of times that each class of primitive ap-

ears in the history data and a i is the average distance of the

oints in that shape to the original point cloud. Fig. 1 exemplifies

his with a sphere that was detected as a cylinder in the fourth

eyframe. The average distance of the points is much larger when

ompared to the three previous detections. 

The weights are normalized and the one with the maximum

alue is the dominant class. GS-IST judges as reliable shapes whose

ominant primitives have a weight higher than 0.75. On the other

and, it considers unreliable those in which all weights are smaller

han 0.5. When the weight of the dominant shape is between these

wo values, its classification will be determined by the statistical

nalysis. If this evaluation shows that the detection class through

istory is random, the primitive will be unreliable. Otherwise, it

ill be set as reliable. 

.5.2. Statistical analysis 

GS-IST performs a runs test for randomness to determine if the

stimation history is random [32] . Basically, this non-parametric

est uses the expected value and standard deviation to estimate

he minimum number of runs that a sample can have to be consid-

red random. A run means a sequence of consecutive estimates of

ne particular class of primitive. However, the system looks at the

istory of classification as binary data because the convergence is

aster. Therefore, a + sign is assigned to the first primitive detected.

hen, the sign is repeated if the shape class is the same as the pre-

ious one. Otherwise, it is inverted. For a 5% level of significance,

he sample is random if the number of runs is greater than: 

(R ) = μ − 1 . 65 σ, (6)

here the expected value μ and the standard deviation σ for the

otal number of samples n are: 

= 

2 n − 1 

, (7) 

3 
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Fig. 4. Comparison of precision, recall and F 0.5 -Score between Efficient RANSAC [20] and GS-IST. 

Table 1 

History of the estimated shape of a primitive. For each sample that represents a 

keyframe K i , it was classified as plane (P), sphere (S) or cylinder (C). 

K 1 K 2 K 3 K 4 K 5 K 6 K 7 K 8 

Primitive S S S S C P S S 

Label + + + + – + – –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Precision over time of Efficient RANSAC [20] and GS-IST on Case 1 . 
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16 n − 29 

90 

. (8)

Table 1 shows the example of a history information with a se-

quence of four spheres, followed by one cylinder, one plane and

then by two other spheres. There are R = 4 runs and n = 8 sam-

ples. In this case, the maximum number of runs for a nonrandom

sample is N(R ) = 3 . 269 , which indicates a random detection. 

4. GS-IST evaluation 

GS-IST was implemented in C ++ using OpenCV 

3 and Efficient

RANSAC 

4 as libraries. This evaluation compared GS-IST with Ef-

ficient RANSAC regarding precision, recall and F 0.5 -Score. To per-

form a fair comparison, we disabled in Efficient RANSAC the primi-

tives we are not targeting in our method (toruses and cones). Since

there was no dataset with the generating process of point clouds,

we created one with five different scenarios using ATAM [23] 5 in

order to evaluate semantic modeling and tracking. This dataset

has the RGB images, a text file containing the camera parame-

ters and the rotation and translation for each frame, the list of

keyframes and the point cloud generated on each keyframe. It has

five scenes targeting distinct types of primitives and different num-

bers of keyframes, as illustrated with some screenshots in Fig. 8 . It

is worth to mention that Efficient RANSAC does not track the prim-

itives, only detecting the shapes at each keyframe because it is a

batch-based approach. 

It is possible to see in Fig. 4 that GS-IST obtained 100% preci-

sion in all cases while Efficient RANSAC never achieves more than
3 Available at http://opencv.org/ . 
4 Available at http://cg.cs.uni-bonn.de/aigaion2root/attachments/Software%20v1.1. 

zip . 
5 Available at https://github.com/rarrafael/vSLAM-dataset . 

m  

a  

b  

t  

v  
2%. It was noticed that there are more wrong estimations in the

nitial keyframes, as seen in the chart on Fig. 5 . GS-IST uses the

recision of Case 1 over time to illustrate this behavior, which is

xpected since the point cloud has few points in the initial recon-

tructions. The geometric and statistical analyses are able to iden-

ify these early incorrect detections. For instance, in the first three

eyframes of Case 2 , the bottle in the right side is assigned as

 sphere, then as a cylinder and later as a sphere again because

f the small number of noisy points. For the Efficient RANSAC,

he bottle is incorrectly estimated as a sphere twice in three con-

ecutive detections. Using the proposed tracker, the bottle is as-

igned to the same primitives in the first three keyframes but, each

ne has a weight based on the geometric analysis. After normal-

zation, the weights of detection history are 0.186 (sphere in the

rst keyframe), 0.537 (cylinder in the second keyframe) and 0.277

sphere in the third keyframe). Thus, for GS-IST, the bottle will be

ssigned as a cylinder because its weight is higher than the 0.463

f the sphere. 

Regarding the recall, Fig. 4 displays that GS-IST is worse than

fficient RANSAC in three of the five cases. This happens because

fficient RANSAC outputs twice more shapes on average than GS-

ST, even though some of them are incorrect. Thus, the proposed

ethod compromises recall in order to be entirely sure that the

ost reliable shapes are selected. Using the same bottle as an ex-

mple, in the third keyframe the cylinder weight is 0.537, which is

elow the reliability threshold of 0.75. However, since it is above

he 0.5 unreliability mark, it is performed a statistical analysis to

erify the randomness of this detection. According to Eq. (6) , this

http://opencv.org/
http://cg.cs.uni-bonn.de/aigaion2root/attachments/Software%20v1.1.zip
https://github.com/rarrafael/vSLAM-dataset
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Table 2 

The influence of modifications in GS-IST on the final precision and recall in Case 1 . 

Condition changed Precision (%) Recall (%) 

Remove geometrical analysis −1.409 + 1.846 

Remove statistical analysis −1.409 + 3.139 

Double elimination thresholds −0.704 + 2.602 

Fig. 6. Average distance in millimeters of each input point to its projection on the 

estimated primitive over time for Case 1 . 
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Fig. 7. Radii in millimeters estimated over time of the wipe container (40 mm) and 

the globe (50 mm) in Case 1 . 

Table 3 

Percentage of points that were labeled to each primitive. 

Plane Cylinder Sphere Unreliable Unassigned 

41.32% 27.56% 1.97% 22.85% 6.30% 
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stimation history is random and the shape is assigned as unreli-

ble. 

Concerning F 0.5 -Score, Fig. 4 shows that GS-IST presents a bet-

er result in all cases. The most significant improvement is in Case

 , which is very challenging because the reconstruction is very

oisy. This evaluation indicates that the restriction imposed im-

roved the precision, but with the cost of having fewer shapes de-

ected. Therefore, it is possible to adjust the parameters to have

ore primitives and decrease the precision. These changes will de-

end on the target application. Table 2 provides some examples of

ossible modifications to make and the outcome for Case 1 . 

The first and third rows of Fig. 8 present one keyframe from

ach test case and the estimated shapes using GS-IST 6 . They are

epresented by the projection of the input points used to compute

he primitive. The second and fourth rows display one view of the

nput point cloud in red and some of the estimated shapes in blue.

rom the last row, it is possible to see how challenging is Case 4 .

lthough the books are aligned in real life, the points from the left

ne are not aligned with the other two. 

.1. Metric evaluation 

Case 1 has a chessboard pattern, which means that the recon-

truction can be calibrated to the metric scale. This allowed an ac-

uracy evaluation of object pose and parameters for this case in

articular since there is no such pattern in the other cases. Con-

idering the absence of ground truth for pose estimation, it was

easured the average distance of each input point to its projection

n the estimated primitive to assess how close they were. Fig. 6

ompares this distance over time between Efficient RANSAC and

S-IST. The leap in the distance is expected due to the error accu-

ulation of the SLAM method. However, the use of history infor-

ation when fusing primitives improves the overall result. The av-

rage distance was 2.925 ± 0.370 mm for GS-IST while for Efficient

ANSAC it was 3.247 ± 0.611 mm. It is worth to mention that this

ccuracy depends on the quality of the map. In this case, the error

ccumulation of the SLAM method was not precisely measured but

t was around 15 mm, which is compatible with the error of other

ystems [33] . 

Concerning the parameter accuracy, it was used the radius

f the globe and the wipe container, which are 50 and 40 mm,
6 A video with this result is also available at https://goo.gl/5RGrYm . 

m  

p  

w

espectively. The average radius of the sphere detected with the

lobe points was 43.147 ± 0.318 mm, resulting in an error of

.853 mm. As for the cylinder estimated based on the wipe con-

ainer, the 33.723 ± 1.001 mm radius is 6.277 mm smaller than

he real object. Fig. 7 shows that in the first detection the cylin-

er radius is 31.051 mm and it gradually increases closer to the

ctual measurement over time, ending with 35.952 mm. These are

he largest and smallest error in comparison with the ground truth

or both the cylinder and the sphere. This can be credited to pa-

ameter update over time and the increase in the number of points

hat, even with the error accumulation, adds more data for the

hape extractor. The sphere radius, on the other hand, decreases

round 1 mm from the first to the last keyframe, going to the op-

osite direction of the actual radius. This can also be credited to

rror accumulation. 

.2. Runtime evaluation 

Concerning the computational cost, Efficient RANSAC takes on

verage 25.474 ± 10.380 ms to estimate the primitives in a com-

uter with a Core i7-6820 (2.70 GHz) and 16GB of RAM. The other

teps combined run in 14.995 ± 3.019 ms on average. The bottle-

eck is the shape fusion step, which takes 9.982 ± 2.957 ms of that

ime. It is worth mentioning that the execution time is related to

he number of input points. Therefore, the measurements, which

re the averages of all five test cases, were normalized to a group

f thousand points. 

.3. Segmentation evaluation 

It was also evaluated how GS-IST segments the point cloud,

hich is a natural outcome of semantic modeling. Several objects

ave the form of the basic primitives tracked with this method.

ooking at an average from all five test cases, 70.85% of the points

an be assigned to a plane, sphere or cylinder. Even though the

ataset deals with scenes designed with this type of primitives,

he number is similar to the study that claims that 78% of all ele-

ents in an industrial scenario can be modeled using these three

hapes [16] . Moreover, Table 3 shows that only 6.30% of the re-

aining points were not labeled as any primitive. The other 22.85%

oints come from primitives that were discarded because they

ere unreliable. 

https://goo.gl/5RGrYm
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Fig. 8. The first and third rows show the result of GS-IST on each test case. Blue labels represent planes, green ones are for spheres and red for cylinders. The second and 

fourth rows show one particular view of the input point cloud (in red) and some of the estimated primitives (in blue). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Memory (in KB) required to describe a scene using the point cloud and the 

data structure of the detected primitives for Case 1 . 
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7 Available at https://www.boost.org . 
4.4. Point cloud representation evaluation 

Finally, the scene representation using the point cloud was

compared to the modeled primitives. The scene is usually overrep-

resented when it is described using the points because there are

many redundant points. The memory necessary to represent the

reconstruction of each test case using the point cloud was mea-

sured and, later, it was compared with the description of the same

map using the data structure of the primitives modeled with GS-

IST. Fig. 9 shows this difference in KB between them, ordered by

the number of points from the reconstructed map. The most signif-

icant difference is in the last keyframe of Case 1 , which has 16,302

points. Using the point cloud requires 8.69 times more memory

than describing the same map using the six detected primitives

plus the 3,915 unreliable and unassigned points. 
Moreover, describing a scene using points commonly results in

ver and underrepresentation at the same time. For instance, con-

idering only the cylinder detected in the last keyframe of Case 1 ,

t can be noticed that there are more points than necessary to de-

cribe the textured front side, but none to represent the back side.

hus, it is possible to use much less information to define this

hape while filling the missing parts. Using this cylinder as an ex-

mple, it is necessary 24 times more memory to describe it using

he points than using the data structure of the detected primitive. 

. Mobile implementation 

In order to evaluate how GS-IST would perform running on mo-

ile devices, the technique was ported to the Android platform. It

as also necessary to compile the libraries used in the project to

ndroid: OpenCV and Boost 7 . Efficient RANSAC was treated as a li-

rary as well, but the compilation process was a little bit different

ue to the fact that it was added to the project in order to facili-

ate modifications in the source code. 

.1. Evaluation 

The two most critical aspects of mobile devices are the energy

onsumption and the temperature. Although the number of cores

nd CPU clock have increased lately, the processors’ architecture

ompromise on speed to be more efficient on these two facets [34] .

ost of the studies aiming mobile devices focus their evaluation

nly on execution time along with any qualitative assessment that

https://www.boost.org
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Fig. 10. Results of GS-IST running on a Samsung Galaxy S8 and an ASUS ZenFone 3. 

Blue labels represent planes, green ones are for spheres and red for cylinders. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 11. GS-IST execution time in milliseconds divided by stages on desktop and 

two different mobile devices. 
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s adequate for the proposed method. Using the 10 mobile stud-

es cited in Section 2 and the 25 relevant studies listed in Roberto

t al. 2016 [24] as a sample, 62.9% measured execution time and

5.7% evaluated only this criteria. Energy consumption was eval-

ated in 17.1%, RAM memory usage in 8.6% and 28.6% performed

ualitative assessments alone. Only Li et al. 2016 [35] evaluate ex-

cution time, energy consumption and memory usage. However,

hey did not detail the methodology used to perform these mea-

urements. These three criteria were used to evaluate GS-IST along

ith CPU load, which is a good indicator of the potential of parallel

xecution of a certain application. 

This evaluation was executed in devices with different capa-

ilities and from distinct manufacturers, being important to as-

ess how GS-IST performs in dissimilar conditions. The chosen de-

ices were Samsung Galaxy S8 and ASUS ZenFone 3. They were

elected using ARCore as a reference. Galaxy S8 is in the list of

he supported devices 8 while ZenFone 3 was selected to stress

S-IST since it has a configuration inferior to those in that list.

ll the tests were executed with the device fully charged, on air-

lane mode, with all other applications closed and connected to

he computer via the USB cable. The only exception was the en-

rgy measurement in which the device was disconnected from the

omputer. 

Regarding the dataset, it was used the same five scenes gener-

ted in the previous section. The images and pose files were stored

n the device and loaded on every frame. The same happened for

he map files, which were loaded on every keyframe. Since the

odes are identical, precision and recall are equal to the ones pre-

ented in the last section. Fig. 10 shows a few keyframes of GS-IST

unning on both phones 9 . 

.1.1. Execution time 

The execution time is proportional to the number of points

rocessed and all time measurements, which are the averages

f all five test cases, were normalized to a group of thousand

oints. Fig. 11 shows that the average execution time of GS-IST

n ZenFone 3 is 9.9 times slower in comparison with the desktop

mplementation and 8.5 times slower on the Galaxy S8. For this

est, the same desktop computer with Core i7-6820 (2.70 GHz)

rocessor and 16GB of RAM was used. The shape fusion was slower

han the average on mobile devices. The desktop implementation

s 16.5 (ZenFone 3) and 15.0 (Galaxy S8) times faster. 
8 Available at https://developers.google.com/ar/discover/supported-devices . 
9 A video with this result is also available at https://goo.gl/A6T51d . 

1  
The CPU load is an important measure because it indicates how

uch room the GS-IST leaves to perform other processing, such as

he SLAM technique. For that evaluation, it was used Qualcomm’s

repn Profiler 10 . This application, available in the Play Store, sam-

les the desired information in a constant time interval. In this

est, both the CPU load and the normalized CPU load were sam-

led every 100 milliseconds. The operating system imposes a limit

n how much processing an application can use. The CPU load rep-

esents how much of that limit is being used by the application

hile the normalized CPU load indicates how much processing is

eing used in relation to the total processing power of the device. 

It is possible to observe in Fig. 12 that GS-IST presents some

xecution peaks. These apexes coincide with the keyframes, which

re moments in which the technique extracts the primitives. The

aximum normalized load for ZenFone 3 was 90% of CPU, simi-

ar to the 89% value for Galaxy S8. The average normalized load

as also similar for both devices, in which the Samsung device

as 30.545% ± 25.119% of normalized CPU load while the ASUS

obile phone presented 27.128% ± 16.353%. This happens because

or most of the time the execution is in between keyframes, a mo-

ent in which the device is not processing much data. The me-

ian of the normalized CPU load is a numerical indication for that

nd it was 19% and 21% for Galaxy S8 and ZenFone 3, respectively.

owever, there was a difference in the average CPU load, which

as 39.283% ± 27.131% for the Samsung phone and 46.483% ±
5.040% for the ASUS device. Smaller differences between the CPU

oad and the normalized CPU load suggest that the device is al-

owed to use the full potential of the processor. In that case, this

alue was 8.738% for Galaxy S8, but it was 19.355% for ZenFone 3. 

.1.2. Energy consumption 

The most precise method to evaluate energy consumption is by

sing external instruments that can directly measure the current

rained by the device. However, this equipment requires opening

he device to be attached to the physical battery, which is difficult

or most smartphones nowadays since their batteries are not easily

ccessible. An alternative is to use profiler tools that use the bat-

ery API to assess the voltage and the state of charge at certain

ntervals. This procedure is much more accessible, but is not as

ccurate as using these external instruments. The latter approach

as selected for this evaluation and Trepn Profiler was also used

or this task. Qualcomm’s tool has an accuracy of 99%, which is

eported to be one of the highest for such profilers [36] . 

As expected, Fig. 13 shows that energy consumption on both

obile devices follows the same pattern of the CPU load since

ore energy is required in those most computational-intense mo-

ents. The average consumption on ZenFone 3 was 1.776 ±
.162 W every 100 ms. Since the battery capacity of this device
10 Available at https://developer.qualcomm.com/software/trepn- power- profiler . 

https://developers.google.com/ar/discover/supported-devices
https://goo.gl/A6T51d
https://developer.qualcomm.com/software/trepn-power-profiler
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Fig. 12. CPU load and normalized CPU load over time of all five test cases on a ZenFone 3 (top) and Galaxy S8 (bottom). 

Fig. 13. Energy consumption (in W) over time of all five test cases on ZenFone 3 (top) and Galaxy S8 (bottom). 
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is 30 0 0 mAh with 3.85 V, this means that this device could run

GS-IST for 5 hours and 12 minutes before draining all the bat-

tery when it is fully charged considering an energy efficiency

of 80% [37] . The Galaxy S8 battery has the same characteristics

(30 0 0 mAh and 3.85 V), which determines that its average 2.271

± 1.998 W consumption would drain a fully charged battery in 4

hours and 04 minutes. 

5.1.3. Memory usage 

Concerning the memory usage, two measurements can be done.

One is the storage space the sample APK requires when installed

and the other is the RAM memory it uses when running. The for-

mer value can easily be found in the device settings. In ZenFone

3, GS-IST used 45.14 MB of the storage space while in Galaxy S8 it

occupied 47.38 MB. 

To evaluate the latter it was used the Android Profiler avail-

able on Android Studio, which builds a chart with the RAM mem-

ory usage as the application is executed. Similar to the previ-

ous evaluation, Fig. 14 shows that the RAM memory has some

peaks when extracting the primitives. For ZenFone 3, the mo-

ment with most memory usage is in the 28th keyframe of Case

1 with 195.39 MB, which represents 6.4% of the device total mem-

ory. When not processing the keyframes, the sample app consumes

between 26.14 MB and 38.19 MB. 

As seen in Fig. 14 , the memory usage for the Galaxy S8 is

similar, although with higher absolute values. The memory peak
as 322.97 MB in the 25th keyframe of Case 1 , which constitutes

o 7.9% of the phone RAM memory. The memory consumption

hen not extracting primitives was above 119.07 MB and below

51.16 MB. 

.2. Discussion 

From Fig. 11 it is possible to see that GS-IST does not run in

eal-time on any of the devices it was tested. This is especially true

hen the number of points increases. However, this approach uses

ess than a third of the CPU power regardless of the device. There

re SLAM systems for mobile devices that run in real-time, such

s ARCore and ARKit. This means that GS-IST and a SLAM tech-

ique can run in different threads in a way that they can interact

ith each other without compromising their performance. Since

his mobile version is running on Android devices, it is possible

o use ARCore as a SLAM method and extract the primitives from

he point cloud the SDK generates. Nevertheless, it is necessary to

erform an evaluation to see if the ARCore map is too sparse. Ad-

itionally, there is room for optimization in the implementation. 

Moreover, Fig. 12 shows that Android 7.0 on ZenFone 3 imposed

 more strict limit on how much processing GS-IST could use. In

act, that limit increased over time. For instance, GS-IST could use

0% of the CPU at the beginning of the execution and that ceiling

ecreased to approximately 75% in the 9th keyframe of Case 1 and

o 50% from Case 2 and beyond. On the other hand, Android 8.0
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Fig. 14. Memory usage over time of GS-IST running on ZenFone 3 (left) and Galaxy S8 (right). Each test case has a different time scale. 

Table 4 

Time that different applications take to fully drain a battery fully charged on Zen- 

Fone 3 and Galaxy S8 devices. 

Application ZenFone 3 Galaxy S8 

1080p video 8h07min 6h31min 

Google Maps 6h32min 4h29min 

GS-IST 5h12min 4h04min 

Fifa Soccer 5h09min 4h47min 

Measure (ARCore) Not supported device 3h01min 
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n Galaxy S8 allowed GS-IST to use around 90% of the CPU from

eginning to end. 

This difference in the CPU usage impacts energy consumption

ecause they are directly related, as seen in Figs. 12 and 13 . Thus,

he ZenFone 3 saves battery when the operating system limits the

rocessing capabilities at the coast of taking more time to extract

he primitives. The energy saved when reducing the CPU load is

arger than the energy necessary to execute the method slower for

ore time. The 4 hours GS-IST needs to drain the battery in the

orst case is sufficient to use this technique without having extra

oncerns about the battery. Moreover, considering the habits and

he average time users spend on mobile devices [38] , it is unlikely

hat a person would use a specific app for such a long period. In

rder to put this in perspective, Table 4 compares the time other

ommon applications take to fully discharge the battery, such as

atching a 1080p video, navigating with Google Maps using 4G

etwork and playing FIFA Soccer using WiFi connection. There is

lso a comparison with Google’s Measure app, which is essentially

RCore with a very simple rendering. Besides the video activity,

S-IST has an energy consumption similar to the other applica-

ions. 
The evaluation showed a noticeable difference in RAM memory

sage between both devices. The ASUS phone used approximately

00 MB less memory than the Samsung one. It is possible to see in

ig. 14 that graphics uses much more memory in Galaxy S8 than

n ZenFone 3. The graphics are responsible for more than 70% of

hat difference. It was not found any precise information explain-

ng this increase in the graphics memory consumption. However,

ased on observation using other devices, one possibility is that

he ASUS device delegates the rendering activity to the GPU, there-

ore, graphics-related structures use the GPU memory. 

The memory usage of GS-IST was not a concern since, in the

orst case, it used less than 8% of the total RAM memory of the

evice. This is due to the fact that modern smartphones have a

air amount of RAM memory. For them, replacing the represen-

ation from point clouds to primitives does not have any impact

n the execution time. However, this change in representation can

e important in some situations. Complex algorithms can use a

ot of memory and perform several computations for each element

n the scene, which can overload the powerful devices even for a

parse map. Tracking optimization methods have that characteris-

ic. In fact, some developers reported that version 1.2.1 of ARCore

an run out of memory when it has to perform bundle adjust-

ent with a map whose size is that of a large room. Rendering

lgorithms are another case in which having a large number of

lements can cause the usage of most of the device’s resources.

herefore, a more efficient representation can be very helpful in

imilar circumstances. 

. Conclusion 

This work presents a new technique that detects and tracks ge-

metric primitives, called GS-IST. This method uses the generating

rocess of sparse point clouds of visual SLAM systems and applies
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geometrical and statistical analyses to incrementally estimate and

track planes, spheres and cylinders. The evaluation indicated that

GS-IST improved precision in all test cases, outperforming existing

methods in this criteria. The developed approach focuses on preci-

sion and for that, it compromises recall to assure we have the cor-

rect shapes. However, we can modify the parameters to increase

recall when necessary. Additionally, this technique was ported to

the Android platform and evaluated to assess how it performed

running on mobile devices. The evaluation showed that the mo-

bile version is slower when compared with the desktop implemen-

tation, but it can be executed on a separate thread of the SLAM

technique because the CPU load is not so high. Finally, the energy

consumption and memory usage were not a concern. 

As future studies, we are working on the integration of GS-IST

with Google’s ARCore and Apple’s ARKit, which will allow the cre-

ation of new test cases in order to perform evaluation on more

complex environments. This integration allows us to use the gener-

ated 3D map to compare GS-IST and ARCore plane detection. Fur-

ther activities include performing a more extensive evaluation of

the accuracy of object tracking and its parameters. In order to ac-

complish that, it is necessary to have a dataset with ground truth

pose and measurements. This can be achieved with the creation

of other scenes that would include a chessboard pattern or other

means to recover the scale. Another idea for future work is to use

the semantic knowledge of the scene to improve the tracking re-

sults of the visual SLAM system. There are some ways to achieve

this goal. One is to constrain the map 3D points during the bundle

adjustment to move only over the surface of the shape it belongs.

A different strategy is to optimize the map using the primitive pa-

rameters instead of the points. 
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