SOFTWARE—PRACTICE AND EXPERIENCE. VOL. 21(3), 299-329 (MARCH 1991)

Performance of Lazy Combinator Graph
Reduction

PIETER H. HARTEL*

Computer Systems Department, University of Amsterdam, Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands

SUMMARY

The performance of program-derived combinator graph reduction is known to be superior to that of
graph reduction based on a fixed set of standard combinator. The major advantage of program-derived
combinator reduction is that it uses less transient store than standard combinator reduction. We show
on what activities a combinator reduction algorithm spends its execution time. Based on this analysis we
show that it dependsto a large extent on the application how much faster a program will run if program-
derived combinator are used instead of standard combinator. The analysis is based on experimental
evidence obtained from a small bench-mark of medium-size functional programs. Performance gains of
uptol1l” arereported for target architectures on which each memory reference consumes one unit of
time. The results are valid for implementations of combinator graph reduction that use binary graphs.
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INTRODUCTION

Combinator graph reduction is a common implementation method for lazy functiona
programming languages. The performance of functional programs has improved over
the years because many researchers have proposed improvements to the basic
technique. In this paper we will review the problems with the basic technique and
evaluate its performance. We will compare this to the performance of an improved
version. The field, however, is large and we will be restrictive to be able to present
concrete results. Only some commonly accepted improvements to the basic technique
are therefore considered.

The first implementation of a functional programming language that was based
on combinator graph reduction uses a fixed set of ‘standard combinator’. The
method was invented by Turner. * We will useit in a slightly modified form, as the
basic technique and a yardstick to measure progress.

In most current implementations of functional programming languages, an optimal
set of ‘program-derived combinator’ is created specifically for each application. This
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is the first improvement to the basic technique that we wish to consider. It was
independently proposed by Johnsson * and Hughes. °In his Ph.D. thesis, Hughes
presents a theoretical analysis of the efficiencies of both his own program-derived
‘super combinator’ method and Turner’ s standard combinator method. This analysis
shows that the size of the combinator code produced by Turner’s method is larger
than super combinator code, at worst by a factor O(log n ), where n is the size of
the original code. * Hughes does not present details on his implementation of super
combinator, which is unfortunate because complexity analysis at the combinator
level is not enough to make statements about execution times. A super combinator
may be arbitrarily complex, whereas most standard combinator are simple. In this
paper we present experimental complexity measures based on decomposing any
combinator into its elementary building blocks. Johnsson’s program-derived combi-
nator are different from super combinator because the former are not fully lazy.
This means that under certain circumstances cal culations have to be performed more
than once. In a recent paper, ° Augustsson and Johnsson have come back on this
point of view and state that for a serious compiler full laziness is essential. In this
paper we use the original non-fully-lazy program-derived combinator because they
are the simplest to implement. To guarantee full laziness without a substantial 10ss
in performance requires avoiding redundant full laziness. As yet thisistoo much an
issue of debate to be considered a commonly accepted improvement. Turner’'s
method isfully lazy.

The performance advantage of program-derived combinator over standard combi-
nator is largely due to the difference in ‘grain size' of the execution steps. In
essence a single program-derived combinator performs the work of several standard
combinator. To store the intermediate results requires heap cells. These are time
consuming to allocate and reclaim. Standard combinator reduction produces more
intermediate results than program-derived combinator reduction and is therefore
generally slower.

The second improvement to the basic technique that we study is a reduction of
the interpretative overhead incurred by naive graph reduction. Often the compiler
can work out that if it were to generate code that builds the suspension of afunction
application at run time, the next thing after building the suspension would be to
request its canonical form. So rather than generate code to build the suspension the
compiler will output code to evaluate the expression directly. Johnsson calls this
“short-circuit’ evaluation of graph reduction. The analysisinvolved is a very simple
form of strictness analysis: it does not carry across function boundaries and is
restricted to flat domains. Short-circuit analysis is reported to be effective in spite
of itslimitations.

In this paper we study the implementation of a lazy functional language through
combinator graph reduction. The next section gives an overview of the two graph
reduction methods that are the subject of the study. The third section presents a
model of timing aspects in combinator graph reduction machines. In the fourth
section we classify the various activities that a combinator graph reducer can be
engaged in. Based on this classification we count the accesses to the store spent in
most of these activities when running a benchmark of six medium-size application
programs. The results obtained with Turner’s standard combinator are compared
to measurements obtained from an implementation of Johnsson’s G-machine (last
section).
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AN OVERVIEW OF GRAPH REDUCTION WITH STANDARD
COMBINATORS AND THE G-MACHINE

The variables that occur in functional programs are bound variables. Consider for
example the function from defined in Figure 1. It computes the potentially infinite
list of integers starting at the value specified by the parameter n. The colon (:) is
the infix list construction operator.

A bound variable always represents the same value. Therefore, occurrences of
such variables can be removed from the program text by a compilation process
(bracket abstraction). The idea is to mark the place where a bound variable is
removed, by a special function that will put the value of the variable in the right
place during execution. The major difference between Turner’'s and Johnsson's
methods is the way in which the abstraction removes bound variables from the
source text. We will show how both methods compile and execute the function from.

Turner’s method

Different abstraction rules are used, depending on the places where the bound
variables occur. Associated with each abstraction rule is a combinator that has the
inverse effect of the abstraction during execution. To remove the bound variable n
from the function from, the three combinator Sp, B and | are needed. Their abstrac-
tion and reduction rules are shown in Figures 2(a) and 2(b) respectively. The symbols
F.and G,represent arbitrary expressions that depend on x. The expression H does
not depend on x. Abstraction is indicated by square brackets. Abstraction rule (iii)
for example is to be interpreted as follows: to abstract the variable x out of the
function application (H G,), replace the application by an occurrence of the combinator
B, and continue to abstract x out of G,

Figure 3 shows the abstractions necessary to remove the bound variable n from
the function from. The final version of from in the last line no longer contains bound
variables. What remains is an expression with the combinator Sp, B and I. The

def from=n: (from(plus 1 n))

Figure 1. The function that produces a list of integers starting at n

[x1F,:G, = Sp([x] F)([x] G) Spfgx — (fx):(gx)
[x] x = 1 Ix - x

[x] R G, = B H([x] G,) Bfgx - f(gx)

[x] H x = H

(@) Abstraction rules (b) Reduction rules

Figure 2. Abstraction and reduction with the standard combinator Sp, B and |

from = [n}] ( n) : from ( (plus 1) a))
@@= Sp ([ n) ({n] from( (plus 1) n))

Gi)=> Sp (I ) ({n]  from( (plus 1) n))

@)= Sp (1 ) (B from([n] (plus1) n))

(iv)l> Sp (I ) (B from( (plus 1) ))

Figure 3. Abstraction of the function from to standard combinator
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expression contains a circular reference to from, which can now be considered as a
constant.

We can now apply the compiled version of from to an expression, e.g. from (plus
32). We show how that works by drawing the graphs that represent the state of the
computation during the reduction process. In these drawings, interior nodes of the
graph are marked with a letter and a sequence number. Application nodes have the
letter a, and the letter c is used for constructor nodes. The leaf nodes represent the
combinator (Sp, B, I), primitive functions (plus) and data (1, 2 and 3). Each drawing
shows the situation as it exists between two reduction steps. The node drawn in a
box is the root of the graph that represents the current reducible expression. This
node will be overwritten by the root of the graph that represents the result of the
reduction. These root nodes should actually have been drawn as one and the same
node. On paper this would make the drawings hopelessly tangled, but the reducer
may just destroy the old graph to make place for the new configuration. Figure 4(a)
shows the initial configuration of the graph. The root of the function from is marked
a-5. The circularity of the definition shows in the circular path a-5, a-4. a-2, a-5,
The node where the computation starts is a-8. Following the leftmost spine we find

o8
a-7 a-10
F N\ \
a-5 a-6 2 a-5 a-7
<~ O\ ¥\ ¥\
a-1 a4 plus 3 a4 a6 2
¥\ ¥/ O\ ¥\ ¥\
Sp 1 a-2 a-3 a-2 a-3 plus 3
¥ N\ I F N\
plus 1 plus 1
(a) Initial configuration of from (plus 3 2) (b) Configuration after the execution of the Sp combinator
c-8
a-10
\
5
a4
a-2 a-3
¥ N\
1
(c) Configuration after the execution of / (d) Configuration after the execution of plus

Figure 4. The first steps when reducing from (plus 3 2) on the standard combinator machine
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that the first reduction is an Sp reduction (rule (i)). It claims two cells a-9 and a-10
and overwrites a-8 with a constructor node c-8 shown in Figure 4(b). The
effect of the next reduction step I (rule (ii) is shown in Figure 4(c) ). The configurations
(b)-(d) illustrate the use that is made of sharing: node a-7 not only appears as the
head of the list, but is also used in the recursive call to from.

Johnsson’'s method

Compilation for the G-machine proceeds in a similar way to the method of the
previous section. For the function from we need a small subset of Johnsson’s abstrac-
tion rules, which is shown in Figure 5. The notation [x=2] indicates a (singleton) list
of associations of argument names and ordinal numbers. When such alist is applied
to a particular argument name the corresponding ordinal number is returned. For
example ([x=2] x) returns 2.

The compilation of the function from into G-machine code proceeds as shown in
Figure 6.

Graph reduction on the G-machine proceeds along similar lines to the standard
combinator machine. After the initial graph is loaded into the heap the machine
discovers that the first reducible expression is an application of from. This is achieved
by the UNWIND instruction, which represents the ‘need to print’. Figure 7(a) not
only shows the state of the graph at this point, but also the state of the stack that
is used to record pointers into the graph. The standard combinator machine has a
similar stack, but there is no need to expose it in an introductory presentation. In
the G-machine, however, the stack plays a more fundamental role in representing
the current state of the computation. Figure 7(b) shows the state of the G-machine
after the first four G-machine instructions have been obeyed that we compiled for
from, PUSH x pushes the contents of the stack at offset x onto the stack. The top of
the stack is at offset 0. PUSHNUMB n stacks a pointer to a heap cell that contains
the number n and PUSHFUN f has a similar effect on a function. The stack entries

(i) Flfx=e] = Ele) [x=2] 2; UPDATE 2; RETURN 1

(i) Efe;:e) rn = Clelrn; Cleg r (n+1); CONS

i) Cle, &) rn = Clg)rn; CleyJ r (n+1); MKAP

@iv) C(x] rn = PUSHFUN «x when x is a function
vy ClIx] rn = PUSHNUMB x when x is a number
(vi) Clx] rn = PUSH (n-rx) when x is an argument

Figure 5. Abstraction rules for the G-machine

Flfromn=n:from (plus1n) ] ()= E[n:from (plus1n)]{n=2]2; UPDATE 2; RETURN 1

E[n:from (plusln) 1In=2]2 (i))= C[n) [n=2]2; Clfrom (plusin))[n=2}3; CONS
Cin JIn=2]2 (vi)=> PUSH 0

C (from (plusln) J[n=2}3 (iii)= C [from] [n=2]3; C[plustn][n=2]4; MKAP
C [from jn=2]3 (iv)= PUSHFUN from

Clplus1n ](n=2]4 (*)= PUSHFUN plus; PUSHNUMB 1; MKAP; PUSH 3; MKAP

from = PUSH 0; PUSHFUN from; PUSHFUN plus PUSHNUMB 1; MKAP;
PUSH 3; MKAP, MKAP; CONS; UPDATE 2; RETURN 1

Figure 6. Compilation of the function from to G-machine code
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——> a3 L > a3
F A\ /4
l from a-2 UNWIND from
stack growth a1 2 PUSH O a2
¥ N ¥ N\
plus 3 PUSHFUN from |——s=fir om a1l 2
¥ N\
PUSHFUN plusf——splus  plus 3
PUSHNUMB 1 |[——= 1

(@) Initia configuration of from (plus 3 2) (b) Configuration after UNWIND, PUSH O,
PUSHFUN from, PUSHFUN plus, PUSHNUMB1

CONS

MKAP

PUSH 3

plus 3
(c) Configuration after the firs MKAP and PUSH 3 (d) Configuration after second and third MKAP and CONS

Figure 7. The first steps when reducing from (plus 3 2) on the G-machine

contain pointers into the graph, but each stack entry also shows the G-machine
instruction that caused the pointer to be pushed onto the stack.

The G-machine instructions MKAP and CONS combine the top two elements of
the stack into a new node as shown in Figures 7(c) and 7(d).

The reduction sequences of Figures 4 and 7 show some differences that influence
performance aspects. The differences originate largely from the way instances are
made of functions. The primitive functions in both methods operate in a similar
way. Comparison of the reduction sequences in Figures 4 and 7 shows that the
standard combinator machine requires fewer combinator steps to achieve the same
result as the G-machine executes instructions, but claims more cells. The from
example does not alow the G-machine compiler to short-circuit naive graph
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reduction by using the B-compilation scheme. Johnsson has found that this improves
the performance by a factor of 10 for some typical programs. In the remainder of
the paper we will explore this matter in detail.

METHODOLOGY

We will present a model of a combinator graph reduction machine that is based on
the assumption that there is a high correlation between the number of accesses to
the store and execution time. The model captures the essential timing differencesin
Turner’s and Johnsson's implementation methods. To a large extent it is independent
of any particular architecture. From the model, performance parameters can be
derived, which if multiplied by appropriate scale factors, add up to total execution
time.

A model of combinator graph reduction

All combinator-based implementations of functional languages include a compiler
to trandlate a program into a set of combinator. These may be regarded as an
abstract machine code. Execution proceeds either by direct interpretation of the
abstract machine code, or via further compilation of the abstract machine code into
the native machine code of a target computer. A consequence of the difference in
the abstract machine codes that are being used is that we cannot compare the
performance of one implementation with that of another by comparing the number
of executed combinator. However both improvements to the standard technique
that we mentioned in the introduction reduce the number of heap cells required to
execute a program. Therefore, measures based on store usage patterns may give
reasonable performance estimates. In the three subsections below we discuss the
main constituents of a combinator reduction machine. We assume that communi-
cation between them takes place via high speed registers.

Reduction strategy and execution of combinator

The semantics of afunctional programming language determine a reduction strat-
egy. Thisis an algorithm that decides, given the current state of the computation,
which combinator must be executed next. A combinator can be executed only if it
is supplied with enough arguments (it has a fixed arity). If there are no more
combinator left to execute, the application program terminates. In this paper we
restrict our attention to normal order reduction, which isthe strategy used by Turner
and Johnsson. Many combinators will cause other combinator to be activated
recursively. To implement a reduction strategy, a record of the current state of the
computation must be maintained. In most implementations of lazy graph reduction,
there are two data structures present to support this. a graph that represents
applications of combinator to arguments and a stack with pointers to the arguments
of the active combinator. These arguments are subgraphs. The stack is commonly
called the left ancestors stack, because it stores the ancestors of the currently active
combinator. Some implementations use more than one stack for efficiency reasons,
but that makes no difference to our performance evaluation.
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We assume that communication between reductions is mediated by the graph, the
stack and a few high-speed registers. All information that is needed by later
reductions must be stored in the graph or on the stack by the current reduction.
Some optimizations, in particular caches and pipelines, are excluded from the model.
Each graph or stack access is assumed to consume the same amount of time. Caches,
pipelines etc. may be used both with standard and program derived combinator
reducers to improve the performance, but we will not be concerned with such
devices.

Primitive operations embedded in combinator

A combinator has two tasks. The first is to instantiate a function and to provide
access to the arguments of the function at the appropriate places in the function
body. The second is to calculate new values from the arguments to be used by other
combinator. The first task involves mainly references to the stack and the graph.
Counting store references is therefore a good basis for the study of performance
parameters associated with a reduction strategy.

The calculation of new values from current values by primitive operations cannot
always be related easily to a machine-independent measure. A primitive that creates
a data structure or accesses its components in essence creates a new vaue from
existing ones by rearrangement. In this case it is sufficient to count the accesses to
the store as a measure of the cost of the primitive. The remaining primitives are
those that create new values from existing ones other than by rearrangement.
Because non-rearranging primitives may spend an arbitrary amount of time in
performing the required calculation, without even accessing the store, we cannot
account for their cost just by counting accesses to the store. For instance the primitive
division operation, once its operands have been copied from the store into the
processors registers, needs a certain time to compute the quotient of the operands.
The result is then copied from the result register to the store. Most primitives are
sequential in the sense that little or nothing can be done before the operands are
available. Similarly the result cannot be stored until the primitive operation is
complete. Separating the retrieval and storage of operands from the actual operation
on registers alows us to account for operand fetch and retrieval even though the
actual non-rearranging primitive escapes from scrutiny.

The primitive operators, but also the reduction strategy, are usually implemented
in terms of lower-level machine instructions. Without making further assumptions
about particular target architectures we do not know which and how many low level
machine instructions are responsible for a division primitive, for instance. Some
machines provide an instruction for division, whereas others require a library function
for that purpose. We circumvent this problem by arranging experiments such that
once the operands of a primitive are loaded in registers, no further references to
any store are counted until the result becomes available. The cost of a primitive
operation itself is considered to depend on the target architecture only.

Storage management

The graph is stored in a heap, which is managed by a storage allocation and
garbage collection procedure. We restrict our attention to binary graphs. Storage
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alocation that supports variable-sized nodes is not required by a standard combinator
reducer or the basic G-machine. Johnsson has proposed the use of variable-sized
nodes as an optimization, but we do not consider it here. This restriction allows
both implementations to use the same storage allocator. In this paper we may
therefore ignore most of the performance issues in garbage collection. These have
been the subject of another study. °

Timing of the model components

Figure 8 gives a schematic view of the timing aspects of our model of combinator
graph reduction machines. The circles represent active components (i.e. implemen-
tations of the storage manager, reduction strategy etc.), and the boxes represent
storage areas. The lines connecting circles and boxes represent the possible access
paths. The combinator and the implementation of the reduction strategy (the
mutator) have access to all available storage areas. The storage manager communi-
cates via registers (e.g. the pointer to the top of the free list) with the mutator. The
primitive operations have access to the operand and result registers. Register access
is considered to be part of the instruction execution timing and as such not accounted
for as a separate factor. The access paths to the registers are therefore marked with
a zero. The execution time of an application program is equal to the time spent in
moving data along the access paths shown in the diagram plus the time PrimTime to
execute the application-specific primitives (see equation (1)). By application-specific
(non-rearranging) primitives we mean those additions, divisions etc. that are visible
in the text of the bench-mark program. The only non-rearranging primitives needed
in the implementation of the reduction strategy and the storage manager are simple
and fast operations such as addition of integers. We accept the error introduced by
not including their timing explicitly in the model. Execution time can be represented
by the following formula:

time = RedAccTime + Red InsTime + CollAccTime + CollinsTime

+ PrimTime + LoadTime )

To deal with the parameters we propose the use of the following procedures:

""1 Instruction store

{ CollinsTime [RedinsTime

Slomge 0 few 0 Reduc. uon 0 few

manager 1 regs. [ Combinators  }--- rexs. [

(access, +) 8. (access, +) 8s-
foo.]| large large ___ tractable
CollAccTime heap RedAccTime stack | . non-tractable
LoadTime

Figure 8. Model of a combinator graph reduction machine
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RedAccTime

The time spent in performing ‘tractable’ accesses is RedAccTime. Tractable accesses
are the references to the stack and the heap generated by the implementation of the
reduction strategy and the combinator and the references to the stack and the heap
caused by the operand fetches and stores generated by the primitives. The references
are called tractable because they can be traced directly from the reducer. Examples
of non-tractable references are those generated by the garbage collector or the
underlying operating system. In Figure 8 tractable accesses proceed aong the access
paths drawn as solid lines. Dotted lines correspond to non-tractable accesses. Let
Acc be the number of tractable accesses generated by a bench-mark program. Then
RedAccTime = TimePerAcc x Acc, where TimePerAcc represents the unit of time per
access. TimePerAcc IS a constant since we assume that each access takes the same
amount of time.

RedInsTime

The time spent in executing the instructions responsible for the tractable accesses
iSRed InsTime. Without a particular target architecture in mind we cannot know how
many instructions are necessary to perform for instance an elementary ‘unwind’ step
of the reduction algorithm. We will side-step the issue by assuming that for each
reference to the graph or the stack a certain number of instructions must be executed.
To indicate the magnitude of this parameter, we have measured the average number
of instructions per store reference, witnessed by a highly efficient implementation
of standard combinator. (Its‘nfib’ number, the number of function calls per second,
" exceeds 1000 on a VAX-11/750. ) We found InsPerAcc, the average number of
instructions per stack or graph reference, to vary (from bench-mark to bench-
mark) between 0-72 and 0-80. We may thus approximate RedinsTime= InsPerAcc x
RedAccTime = InsPerAcc x TimePerAcc x Ace, Where InsPerAcc is a constant factor
that depends on the target machine and on the instruction mix generated by the
reducer.

CollAccTime + CollinsTime

The sum of CollAccTime and CollinsTime represents the time spent in allocation
and reclamation of heap cells. The cost of alocating and reclaiming a cell can be
made a constant that is independent of reduction method or bench-mark. This can
be achieved for instance by using reference counting as the garbage collection
method. With other garbage collection methods the standard combinator implemen-
tation must be given alarger heap than the scalar G-machine. With reference count
garbage collection we found the average time per claimed and subsequently released
cell ( TimePerClaim ) to vary (from bench-mark to bench-mark) between 36-5 and
43-1 ps on a 10 MHz MC68010 processor. This variation is small enough to treat
TimePerClaim as a constant. ° Hence CollAccTime + CollinsTime = Time PerClaim x
Claims, where Claims is the number of cells claimed by an application program and
TimePerClaim iS a constant factor that depends on the target machine and the
instruction mix generated by the storage manager.
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PrimTime

This is the total time to perform the primitive operations, such as division or
reading from a file. The store references necessary to copy the operands and the
result from stack or heap to the operand registers are included in the tractable
references. Rather than make further assumptions about the timing requirements of
primitive operators we will organize our experiments such that when running a
bench-mark program on different graph reduction systems, the total time spent in
executing application specific non-rearranging primitives is the same. Hence the
value of PrimTime should not depend on the implementation method. In the section
‘Bench-mark performance’ we will see that this is not the case for al bench-mark
programs.

LoadTime

The time to load the application programs is small compared to the total execution
time. We will see later that LoadTime is about the same for both methods (*size of
the compiled code’ in Table IV ). We may thus safely ignore LoadTime.

Under the above considerations we arrive at an approximation for the execution
time as follows:

time ~(InsPerAcc + 1) x TimePerAcc x Acc

+ TimePerClaim x Claims + PrimTime (2)

Here TimePerClaim and InsPerAcc are constants determined by instruction mix and
target machine. TimePerAcc is the unit of time per store access.

Summarizing, we propose to count the number of claimed cells and all store
accesses that we can trace from the reducer to the stack and the heap, as indicated
by the solid linesin Figure 8.

IMPLEMENTATION OF LAZY COMBINATOR GRAPH REDUCTION

We give a sketch of the algorithm that performs lazy combinator graph reduction.
The store references that are generated by the algorithm will serve as the raw
material to base the cost measures on, hence the focus is on actions that involve
store references. For instance we will make no provisions to cope with erroneous
programs.

The first three steps provide the environment in which combinator can be
executed:

initialize:  initialize the heap and the stack by giving an initial value to the pointers
that manage the heap and the stack.

load: Load the compiled functional program and the data it requires from any
files into store. This includes building an application of the main function
to its argument(s). A pointer PC is made to point at the root of the
main application.

print: Evaluate the main application by calling unwind PC (see below). If the
result is a constructor, recursively invoke print on the components of the
constructor.
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The eight remaining steps are performed by or on behalf of the combinator and
generate the tractable accesses from the reducer to stack and heap.

unwind:

call:

access:

claim:

evaluate:

combine:

update:

return:

Unwind the leftmost spine, beginning at the node PC, until a combinator
or a data value is found. A data value causes a previously suspended
reduction to be resumed (see return below). When a combinator is found,
PC will point at the combinator. Pointers to the application nodes that
have been visited during the unwinding are pushed onto the left ancestors
stack.

Execution of the combinator at PC may now begin. This may include a
test to see whether enough arguments are present and some rearrange-
ments of the left ancestors stack.

During its invocation a combinator accesses its arguments via the left
ancestors stack.

Some combinator claim new cells from the storage manager and the
new cellswill befilled in.

A strict argument of a combinator is evaluated by recursively invoking
unwind with a pointer to the argument. The information necessary to
resume the current combinator invocation is pushed onto the stack.
The purpose of a combinator is to combine arguments and/or constants
into a new graphical structure that will replace the current structure in
the graph. The actions performed by a combinator that cannot be
covered by any of the other steps listed here fall in the category combine,
e.g. accessing the operand values by strict operators. We will assume
that pointers to the arguments and/or constants that are necessary to
make the appropriate combination are available in high speed registers.
The time necessary to transfer the pointers into the registers is accounted
for by unwind and access.

When an invocation of a combinator terminates, it will return a result
to its caller. The topmost application node of the current invocation
is overwritten with the root of the result. In some implementations
combinator exist that do not require any arguments. Such a combinator
is called a constant applicative form or CAF for short. To avoid recalcu-
lation of a CAF each time it is used, special arrangements may have to
be made to allow for CAFS to be replaced by their results.

Execution resumes with the suspension that is stored on top of the stack.
This may either cause reduction to resume combinator invocations that
were suspended earlier, or to enter unwind again or to stop the entire
reduction process.

The eleven steps above are performed in an order that is determined by the
combinator used and the functional program under execution. The functionality of
a program-derived combinator is conveniently described using Johnsson’s abstract
G-machine. Some of the elementary steps in the reduction algorithm are also G-
machine instructions (e.g. UPDATE, EVAL). Other activities require several G-machine
instructions (e.g. claim). The time spent in executing a G-machine instruction depends
to a large extent on the store references that it generates. The same holds for
standard combinator. Before we present the details of the counting procedures in
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the last section of the paper, we must have a closer ook at the primitive operators
and data types that are used in both methods.

Primitive operators

Standard combinator include several more mathematical functions (e.g. SIN, LOG)
than the G-machine. We have chosen to extend the G-machine with the mathematical
functions required by the bench-marks, because it is laborious to express them using
the available operators. The second category of primitive functions that are part of
the standard combinator abstract machine but not of the G-machine instruction
repertoire are: list append, equality test on lists and list projection. For both
implementations we will implement these functions as part of the application pro-
grams, using head, tail, etc. These two modifications ensure that the sets of primitive
operators in the two implementations are identical, because addition, multiplication
etc. and also the printing of the results are part of any reduction machine. Now all
primitive operators either manipulate scalar values or single constructor nodes; never
lists. We will call our version of the G-machine the scalar G-machine.

Pattern matching

The bench-mark of functional programs that we have available uses pattern
matching extensively. To run the bench-mark implies that efficient support for
pattern matching has to be present in our reduction machines. The bench-mark
programs use top-down left-to-right pattern matching, sometimes with repeated
variables.

Pattern matching in Turner’s method is supported for efficiency reasons by special
combinators. ° Similarly Augustsson ° has proposed specia abstract machine instruc-
tions to support efficient pattern matching in the G-machine. The only difference
between Turner’s and Augustsson’s methods is that the latter combines common
subpatterns of alternative clauses into one, whereas Turner does not. We have
decided not to combine common patterns. The primitives used in both methods are
then the same and pattern matching can be compiled into conditionals that perform
selection of clauses and let expressions to bind subpatterns to variables. Both features
can be compiled efficiently into scalar G-machine code. In the remainder of this
section we will show that as far as pattern matching is concerned, the two implemen-
tation methods will be a close match. We start with an example of the way pattern
matching operates with standard combinator and on the scalar G-machine. The
function fof Figure 9 has two aternatives. The first applies when the actual argument
is a list constructor, whose head is equal to 1. By default the second alternative
applies. Figure 9(b) shows that the two alternatives of Figure 9(a) compile into two
separate function definitions: fand f. The else-clauses of both generated conditionals
of f specify that evaluation is to be resumed at f,but with the same argument x.

In the scalar G-machine a modified version of Augustsson’s SPLIT instruction
provides access to the head and tail fields of alist constructor. The instruction SPLIT
issimilar to PUSH, but instead of pushing a pointer to an argument, SPLIT pushes
pointers on the stack, to the head and the tail of an argument that is a binary
constructor. Note that in the scalar G-machine no vector application or vector
constructor nodes exist. The JFUN instruction joins alternatives by jumping to the
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f(l:b)=b f x = if (pair X)
(let a=head x and b=tail x in
if(a=1) b (f,x) )
(f.x)
fx =100 fx=100

(a) pattern matching (b) Conditionals and a let -expression

Figure 9. Compilation of pattern matching into conditionals

code of the next aternative in a function definition, while maintaining the current
stack frame. The extensions to the G-machine must be matched by extensions to
Johnsson’s compilation schemes. Figure 10 presents the complete R-compilation
scheme as it is used by our compiler to support pattern matching. The extensions
to the E-, B- and C-schemes follow aong the same lines.

Rules 2-6 propagate the R-scheme down the branches of conditionals and into let
and letrec expressions. Rule 7 applies when the (lexically) last alternative of a
function may still fail. Rule 9 applies when none of the other clauses apply. Finaly
rules 1 and 8 are there in support of pattern matching. Rule 1 of the R-scheme
generates much better code for a let expression as introduced by the pattern-matching
compiler than a combination of rules 2 and 5 would. Rule 8 represents a restricted
optimization for tail calls that preserve the first k arguments of the current stack
frame. The forms of rules 1 and 8 exactly fit the code produced by the pattern-
matching compiler and should therefore be considered as a necessity to unify the
primitives of both methods. Figure 11 represents the standard combinator code and
the G-machine instructions for the function f.

1. R[if (pair x;) (let y=head x; and z=til x; in ¢) &jrn =

PUSH (n-rx;); EVAL; PAIR; JFALSE |L;; SPLIT (n-rx;);
RleJrn’; LABEL 1;;
Rlesrn
where r,n’ =(concatenate r [y =n+1,z = n+2] , n+2)
2.R[if ¢, e &5 Jrn = Blelrn; JFALSE |;
Rie)Jrn; LABEL 1;;
Resrn
3. R[and ¢, ¢ Jrn = RI[if ¢ e, falsejrn
4. Ror ¢, & Jrn = R{i{ ¢ true ¢]rn
5.R{let d ime Jrn=>Cltdr n Rie] U n'
where ,n’=Xr[d]rn
6. Riletrec d in e Jrn = Cletrec d ¢ n’; Rle] ¥ o’
where ,n’=Xr(d]rn
7. R [fail f Jrn = FAIL f
8. RI[g x;..% Jrn = POP (n-k-1); JFUN g
where k<n
9. R[e Jrn = Efelrn; UPDATE n; RETURN (n-1) otherwise
Xr [vi=e¢, and.. v, =e,lrn = (concatenater {v;=n+l.. v, =n+m], n+m)

Clet [v,=¢, and.. v =e,]rn = Cle;]rn;... Cle,]r (n+m-1)
Cletrec [v;=e¢, and.. v, =c,]lrn = ALLOC m; C[e;lrn; UPDATE m;... Cle,]1r n; UPDATE 1

Figure 10. R-compilation scheme for F [f x, x,= €] = R [e] [x=m+ ..x,=2] (m+ 1)
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f= TRY (Us (MATCH 1 1)) (K 100)

(@) Standard combinator code for f

f= PUSH 0; EVAL, PAIR JFALSE I;
SPLIT 0 ;PUSH 1; EVAL; GET; PUSHBASIC 1, EQ; JFALSE 1,
PUSH 0; EVAL; UPDATE 4; RETURN 3;
LABEL 1,, POP 2; JFUN f;
LABEL 1; JFUNT,;
f= PUSHNUMB 100 UPDATE 2; RETURN 1,

(b) Scalar G-machine codefor f

Figure 11. Compiled versions of the pattern matching function f

We will now trace the execution of both compiled versions of fwhen applied to
the tuple (2: 3). The relevant configurations of the graphs are represented for con-
venience as strings in Figures 12 and 13. In the actua graph reduction implementation
pointers to the tuple (2:3) are duplicated rather than the tuple itself as suggested by
the traces. The reducible standard combinator expressions are shown underlined in
Figure 12. The TRY combinator at step 1 takes three arguments and builds appli-
cations of the first two arguments to the third. TRY then starts evaluation of its new
first argument, such that the application of Us becomes the next redex (line 2). The
invocation of TRY is then suspended. The Us combinator ‘un-curries its second
argument after having verified that it is a constructor. Line 3 shows that the next
combinator to be executed is MATCH. This combinator compares its first and third
arguments, here to discover that they do not match. The application of FAIL, as
generated by MATCH, is interpreted in such away by the resumed TRY combinator
(line 4) that it rewrites the current expression to the application of K. The latter
simply discards the tuple and returns 100 as the net result. The indirection shown
are generated to allow for one application to be overwritten with another (existing)
application. In this case the print function of the reducer elides the indirection.

The reduction of fapplied to the same tuple (2:3) on the scalar G-machine is
somewhat easier to trace. Figure 13 shows successive states of the machine by listing
the next instruction to be executed and relevant contents of the pointer and value
stacks (s and v). The first two execution steps make sure that the argument of fis
aweak head normal form (line 2). The PAIR instruction decides whether we have a
constructor node and since this is the case it pushes TRUE onto the value stack (v).
The JFALSE instruction skips to the next instruction, because the top of the value
stack contains TRUE. The boolean is popped and we arrive at the SPLIT instruction
(line 5). It pushes the pointers to the head and tail fields of our tuple onto the

1. TRY (@Us (MATCH 1 1 ) ) (X 100 ) @2:3)
2. TRY (@Us (MATCH 1 1 Yy (2:3) (K 100 (2:3)
3. TRY (MATCH 1 I 2 3) ® 100 (2:3)
4. TRY (FAIL 3) K 100 (2:3)
5. 1 K 100 (2:3)
6. 1 a 100 )

Figure 12. Reduction of (f (2:3)) with standard combinator
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. instruction argument pointer stack value stack
1. PUSH 0 (2:3):@:5s) ()
2. EVAL (2:3):(2:3):@:9) )
3. PAR 2:3):2:3):@:9) v)
4. JFALSE N (2:3):@:9) (TRUE : v)
5. SPLIT 0 2:3):@:9) )
6. PUSH 1 (3:2:(2:3):@:59) ()
7. EVAL (2:3:2:2:3):@:9) )
8. GET (2:3:2:(2:3):@:9) )
9. PUSHBASIC 1 (3:2:2:3):@:59) @2:v)

10. EQ (3:2:(2:3):@:9) (1:2:v)

11. JFALSE L (3:2:2:3):@:s) (FALSE:v)

12. LABEL L (3:2:2:3):@:59) )

13. POP 2 (3:2:2:3):@:9) (]

14. JFUN f 2:3):@:9) »)

15. PUSHNUMB 100 (2:3):@:9) V)

16. UPDATE 2 (100:(2:3):@:9) W)

17. RETURN 1 ((2:3):100:5) )

—
oo

(100:s) ()
Figure 13. Reduction of (f (2:3)) on the scalar G-machine

pointer stack. The next sequence of instructions (6-10) evaluate and compare the
head of the tuple to 1 and push FALSE onto the value stack. The JFALSE instruction
at line 11 transfers control to label 1,. The top two elements of the pointer stack,
which were put there by SPLIT, are discarded by POP. The JFUN instruction at line
14 transfers control to the first instruction of the function f,. Thisis a PUSHNUMB
instruction that delivers a node with the return value 100. The UPDATE instruction
overwrites the application of the original f to the tuple. This is schematically shown
by replacing the stack element marked ‘@’ by 100. In the actual graph-reduction
machine, the appropriate node in the graph is overwritten. Finally RETURN discards
the current stack frame.

To conclude the discussion on pattern matching we show that our example function
fwith both standard and program-derived combinator uses the same primitive
functions. Us and PAIR, respectively, perform the first test, whereas MATCH and EQ
perform the second. On both implementations (pointers to) the components of the
tuple are accessed in one step (by Us and SPLIT). In the standard combinator
approach TRY switches from the first to the second clause by overwriting a node in
the graph with an indirection, whereas the scalar G-machine instruction JFUN must
access the code for the function f.

Some of the advantages of the scalar G-machine are that with standard combinator
the evaluator is called four times (once by TRY, Us and twice by MATCH) whereas
the scalar G-machine only calls EVAL twice. Standard combinator require four new
nodes in the graph (three by TRY and one by Us) whereas the scalar G-machine only
reguires one (by PUSHNUMB). After a short introduction into some implementation
details we will return to these issues and present several more performance par-
ameters.
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Primitive data types and the implementation of unwind

The unwind step in a combinator graph reducer is executed often, because it
provides the combinator access to their arguments. We will briefly review an efficient
implementation method for unwind. For this method a node in the graph must be
large enough to hold a tag and either two pointers or a scalar. There are two types
of nodes that require pointers: application nodes and constructor nodes. A scalar
can be a character, aboolean, NIL or afloating point number. Strings are represented
as lists of characters. We will assume that a representation of a floating point number
that takes as much space as two pointers is satisfactory. For the tag of a node enough
space is reserved to store an instruction that can be executed by the target machine.
On a machine such as the VAX, two bytes are sufficient to store the tag. The tag
of an application node is the opcode of a ‘jump to subroutine' instruction (jsb) and
that of a scalar or constructor node a ‘return from subroutine’ instruction (rsb).
Figure 14 shows the two unwind steps that are necessary to invoke an application
of the combinator PLUS to another application and a numeric argument 10. Initially
we assume that the program counter holds the address of the top left jsb instruction,
which is the same as saying that the reducer is given the address of the top left
application node to evaluate. Executing the jsb instruction causes the address of the
next word to be pushed onto the stack, which holds a pointer to the rsb instruction.
Execution then continues at the middle jsb instruction. After this instruction has
been executed, the program counter will point at the first instruction of the PLUS
combinator. The stack now holds pointers to the right fields of both application
nodes, which look like ordinary return addresses. However, these return addresses
will never by used by any rsb instruction. Instead, the PLUS combinator uses them
to access its arguments via two indirection, one in the stack and one in the heap.

In the target machine code for the combinator PLUS there must be two calls to
evaluate to make sure that both arguments are indeed numbers before we add them
up. Such calls can be implemented by a single jump to subroutine instruction, where
the pointer to the appropriate argument of the combinator is the subroutine. The
numeric argument will immediately return control. The other argument will be
unwound into recursively, until a some point in time it becomes a weak head normal
form. Control then returns to PLUS for the addition.

For correctly typed programs, there is no need to perform an argument sufficiency
check. Once a function application becomes needed, it must have all its arguments
present. If not thisis an error. That this must be the case in a system that implements
lazy evaluation can be shown as follows. No application will ever be evaluated unless

stack before PC before stack after (growth downwards)
14| [ isb — i
—
e —
[ isb PLUS: PC after

Figure 14. Two unwind steps that invoke (PLUS (. ..) 10)
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a primitive function demands its value. We assume here that the ‘need to print’ also
acts as a primitive function in the sense that it demands values. In the G-machine
no primitive function exists that will accept a partial application as one of its strict
arguments. In Turner’s combinator machine, since it is run-time typed, type testing
functions are provided that will accept partial applications on strict argument pos-
itions. For example an expression such as ‘if (function x) (x 1) x’ first reduces x to weak
head normal form and if x isindeed afunction, it is applied to 1 and reduced again.
Our bench-mark applications however, do not use type testing functions in this
way. As a consequence lazy evaluation of correctly typed programs never requires
argument sufficiency checks. For some implementation purposes it may be useful to
perform argument sufficiency checks after all. For instance to report the name of
the function in case it is applied to insufficient arguments. In the experiments
described here, we have run properly working programs only, so the argument
sufficiency test was not needed and indeed not implemented.

Standard combinator such as S, which return an application rather than a scalar
or a constructor node, also benefit from this method of implementing unwind. Such
combinator change the pointer field(s) of their root application node and then in
principle return. This causes the pointer to the root application node to be popped
off the stack, together with the return address that was put there by evaluate. Since
evaluate must insist on a data value rather than an application, al it can do is unwind
into the same application node again. evaluate and unwind will push the same pointers
back on the stack that were there before. Rather than return, a combinator that
yields an application should ‘jump’ directly to the address it just stored in the left
field of its top application node ( see Figure 15).

Short-circuiting the return / unwind combination not only saves store references, it
also avoids complication and time pendlties in the reducer. Without short-circuiting,
evaluate has to check whether the evaluation of an application node results in a data
object or an application again. Furthermore evaluation has to be retried until finally
a data object emerges. Both the repetition and the check can be avoided by the
short-circuit implementation. Note that short-circuiting can hardly be considered an
optimization, because it is both easier to implement and more intuitive: if we know
what to do next then why forget it and immediately discover it again? Another
advantage of the so-called ‘ threaded code’ implementation of unwind is that the only
store references made are to the graph and the stack, but not to the code. The idea
was first put forward by Augusteijn,” although he did not use a return from subroutine
instruction but a routine call to return the appropriate value explicitly to the caller.

Interaction with the storage manager

Although the cost of storage alocation and reclamation is not a major issue in
this paper, there is some interaction between the alocator and the reducer that

root application node stack (not altered)
sb i
{ | ﬁl ﬁl
new right  old right old left new left

Figure 15. Short-circuit implementation of return / unwind
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requires consideration. First we have decided to use boxed objects only (i. e. each
data object is stored in a cell al by itself) and scalar objects of enumeration types
are hyper-shared. This means that there is never more than one node around with,
for instance, the boolean value TRUE, the character ‘a’, a standard combinator S, a
program derived combinator etc. Such an organization is easy to implement cheaply
except for numerals.® The PUSHNUMB instruction of the scalar G-machine carries a
pointer to the node with the required number rather than the number itself. The
number is allocated in the graph during the initial loading of the program, in much
the same way as numbers are allocated during loading of a standard combinator
program. Similarly the PUSHFUN instruction carries a pointer to the code of the
appropriate function.

Communication between the reducer and the storage allocator takes place via
registers that contain pointers to the next free cell in the heap etc. Both a test to
check that enough free cells are available and the allocation of a cell can therefore
be implemented cheaply and we do not account for this cost here. The store accesses
required to fill the newly alocated cells with data are the responsibility of the reducer
and are accounted for.

MEASUREMENTS

To summarize our efforts so far, we have selected two implementation methods of
combinator graph reduction. Both were modified to make sure that application
programs use the same set of primitive data objects and operators. The performance
differences that will be experienced by an application program can thus be attributed
entirely to the two differences in the reduction methods:. fully lazy standard combina-
tor with naive graph reduction versus non-fully lazy program derived combinator
with short-circuiting graph reduction.

Our efforts to reconcile the primitives of both methods immediately pay off,
because the time spent in execution of a primitive does not depend on the particular
implementation method. We have been careful, though, not to include the time
spent to fetch the operands and to store the result in the time to perform, for
instance, a multiplication or a read from a file. The total time spent in executing
primitives provides us with a lower bound on the execution time of a particular
application; only a change in the application itself may change it. We would like to
see all housekeeping costs as low as possible. In the next three paragraphs we will
introduce the performance parameters associated with the housekeeping cost that
are common to both implementation methods, the standard combinator specific
parameters and those that apply only to the scalar G-machine.

Common performance measures

The eleven steps that we introduced before are responsible for the total execution
time of a functional program. The first three steps (initialize, load and print) all take
a certain amount of time, but we assume this to be negligible compared to the total
execution time. We will therefore concentrate on the eight remaining steps. The
eight steps require execution of instructions and accessing operands in store. Without
a particular target architecture in mind we cannot say much about how many
instructions are necessary to perform one of the eight steps. We will distinguish
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between accesses to the stack(s), atag of a cell in the graph or a (pointer) field in
acell. An access to a floating point number counts as two field accesses. Read and
write accesses are counted separately.

unwind:

call:

access:

claim:

evaluate:

combine:

update:

Unwinding a single application node as in Figure 14 causes one tag,
one field and one stack access.

When the (scalar) G-machine starts executing a program-derived com-
binator, it rearranges the current stack frame such that the stack
contains pointers to the arguments rather than to the application
nodes that point at the arguments. Each unwound application node
incurs the cost of two stack accesses (one to read and one to write
an entry) and one field access. With standard combinator there is no
need to rearrange the stack frame; the cost of the indirection are
attributed to the category access below. With program-derived combi-
nator it is necessary to know the number of arguments, because of
the stack rearrangement. As we argued before, sufficient arguments
will aways be present in lazily evaluated, correct programs. Similarly
al standard combinator (except the variable arity TRY combinator)

will assume that the required arguments are present.

Accessing a pointer to an argument on the (scalar) G-machine requires
one stack read. A standard combinator generates one stack and one
field access per argument. The cost of accessing the contents of an
argument depends on its type and is separately accounted for in the
category combine,

The cost of alocating a cell depends on the particular storage alocator
used and the size of the heap. The influence of the application
program on the relevant cost factors is minimal.’ This implies that
for al applications a suitable heap size can be found such that the
cost of allocating a cell is always the same. It is therefore enough to
record the total number of claimed cells only. Filling a new cell
requires one tag and two field accesses.

To start reducing an expression to weak head normal form requires
two stack accesses to push the current PC and the pointer to the
expression to be evaluated.

Under this heading we have collected all operations that would not
fit into any of the other categories. It therefore depends on the
particular abstract machine instruction how many store references fall
into this category (see Tables Il and I11).

An update on the (scalar) G-machine requires two argument pointer
accesses, two tag accesses and four field accesses, because the contents
of one node in the graph has to be transferred to another. Pointers
to both nodes reside in the stack. Standard combinator that produce
an application (such as K and TRY) use an indirection node to update
one application with another application. Standard combinator that
produce a data value or constructor (such as PLUS and Sp) store their
result directly into the appropriate application node and update the
tag of the application node. The cost of an update thus depends on
the particular standard combinator and is separately accounted for.
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return: The RETURN instruction of the scalar G-machine, or execution by a
standard combinator that returns a scalar or constructor, pops the PC
and the pointer to the evaluated expression from the stack. Standard
combinator that return an application short-circuit the return / unwind
by ajump (see Figure 15 ). This saves an unwind and a return, which
explains the origin of the negative numbers in Table (I).

Table | provides a summary of the numbers of read and write accesses generated
by the eight steps discussed above.

Performance measures for standard combinator

The common performance parameters will now be added to standard combinator
specific costs. The PLUS combinator, for instance, must access the contents of its
two arguments and update the tag and the fields of the result. In addition to the
two unwind, two evaluate and two access steps and the single return step, the PLUS
combinator generates 4+2 field accesses and 0+1 tag access as part of the update
and combine costs. Adding these all up we obtain a total of 4+6 stack, 8+2 field
and 2+1 tag accesses. Table Il summarizes the costs involved in each of the standard
combinator. The data under the heading combine & update cover the (read + write)
store accesses that a combinator generates when building the required graphical
structure. Pointers to existing structure are supposed to be available in high-speed
registers. The cost of setting these may be found in the columns access and unwind.
The column ‘other’ shows whether a combinator returns control to its caller or short-
circuits the next unwind. The associated costs can be found in Tablel. Some
combinator have more than one entry in the table, because they can follow an
execution path that depends on the arguments. For instance the equality test (=)
generates four more field accesses when the tags of its argument are equal.

Performance measures for scalar G-machine instructions

In the scalar G-machine the instructions UNWIND, EVAL, UPDATE and RETURN are
devoted to one or more steps in the reduction algorithm. The remaining instructions

Table I. Cost summary of the major eight steps of the reduction algorithm (read + write)

Standard combinator Program derived combinator

stack field tag stack field tag
unwind 0+1 1+0 1+0 0+1 1+0 1+0
call 1+1 1+0
access 1+0 1+0 1+0
claim 0+2 0+1 0+2 0+1
evaluate 0+2 0+2
combine see Table Il sce Table IlI
update see Table Il see Table Il
return 2+0 2+0

jump -(0+1) -(1+0) -(1+0) not applicable
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Table II. Cost summary of standard combinator (read + write)

Standard combinator unwind access claim evaluate combine & update other

stack  field tag

=,"= different tags 2 2 2 2+1  return
=,"= sametags 2 2 2 4+0 241  return
>=, >, <=, < 2 2 2 4+0 0+1  return
AND FALSE, OR TRUE 2 1 1 1+1  return
AND TRUE, OR FALSE 2 1 1 0+1 1+0  jump

B,C 3 3 1 0+2 jump

Bp, cp 3 3 1 0+2 0+1  return
B1,Cl 4 4 2 0+2 jump

CHAR, LIST, NUMBER, PAIR 1 1 1 1+1  return
CODE 1 1 1 1+2  0+1  return
COND 1 1 1 0+2 1+0  jump

DECODE 1 1 1 2+1  0+1  return
DIV, MOD, +, —, *,/ 2 2 2 4+2  0+1  return
FAIL applied to argument 1 0+1  return
HD, TL 1 1 1 1+2 jump

\ 1 1 2+0 0+1

K 2 1 1+0 0+2 jump

MATCH fails and different tags 3 3 2 2+1  return
MATCH fails and same tags 3 3 2 4+0  2+1  return
MATCH succeeds 3 3 2 4+2  2+0  jump

NEG, SIN 1 1 1 242 0+1  return
NOT 1 1 1 1+1  return
S 3 3 2 0+2 jump

Sp 3 3 2 0+2 O+1  return
St 4 4 3 0+2 jump

TRY with three arguments 3 3 3 1+0 0+2 jump

TRY with two and first fails 2 1 1 0+1  1+0  jump

TRY with two and first succeeds 2 1 1 0+2 140  jump

U 2 2 3 0+2 jump

Us on pair 2 2 1 1 0+2 1+0  jump

Us fails 2 2 1 1+1  return
Y 1 1 0+2 jump

perform store accesses that fall in the categories shown in the header of Tablelll.
The negative numbers in the entry for ALLOC originate from the assumption made
in Table| that a cell when claimed isimmediately initialized. Thisis not necessary
for the *holes’ claimed by ALLOC, hence the compensation of two field and a tag
write per hole. The cost assigning values to the fields of a hole is accounted for by
UPDATE.

The datain Tables I-l11 pertain to particular implementations of the standard
combinator and G-machines. Other implementations will give different numbers.
For instance, Turner’'s own implementation does not use threaded code to implement
unwind, which makes his unwind more time-consuming. On the other hand Turner
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Table I11. Cost summary of scalar G-machine instruction (read + write)

Scalar G-machine instruction access  claim combine other

value pointer field tag

>:, >, <:, <, = = 4+l

ALLOC of one cell 1 0+1 -(0+2) -(0+1)

CHAR, LIST, NULL, NUMBER, PAIR 1 0+1 1+0

CODE 1+2

DECODE 2+1

DIV , MOD, +, —, *, / 442

EVAL 1 evaluate
GET boolean 1 0+1 1+0

GET character 1 0+1 1+0

GET number 1 0+2 2+0

HD, TL 1 0+1 1+0

JFALSE 1+0

JUMP, JFUN, POP

MKAP, MKCONS 2 | 0+1

MKBOOL 1+0 0+1

MKCHAR 1+0 0+1 1+0

MKNUMB 1 2+0 0+1

NEG, SIN 242

NOT 1+1

PUSH, SLIDE 1 0+1

PUSH BASIC boolean or character 0+1

PUSH BASIC number 0+2

PUSHBOOL, PUSHCHAR, PUSHFUN 0+1

PUSHNIL, PUSHNUMB 0+1

RETURN return
SPLIT 1 0+2 2+0

UNWIND unwind + call
UPDATE 2 242 1+1

reduces fewer indirection (applications of the | combinator), for instance, when TRY
or MATCH return fail. This makes our implementation more expensive. The tables
provide the basis for a comparison between the methods and care has been taken
to make the implementations as similar as possible while exploiting to the full their
specific advantages.

Bench-mark performance

Our bench-mark applications are written in SASL, a run-time typed lazy functional
language. ** The bench-mark set contains six medium size programs, varying in size
from 170 to 2700 lines of program text (excluding comments, blank lines etc). Most
programs are run on small input data sets: em script runs a simple script through a
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Table V. Global characteristics of the bench-mark programs

em gcode lambda gsort sched wave
Defined functions 48 198 114 14 35 84
Executed function calls 139,913 64,769 8157 51,150 13,373 152,400
Sze of the compiled code
Standard (nodes) 4024 23,566 4777 2985 1598 1692
G-machine (instructions) 5040 22,826 6465 2514 1521 2309
Number of tractable accesses of the stack(s) and the graph
Standard (Acc) 16,792,387 18,703,812 1,729,067 16,994,803 7,608,393 9,466,054 v
G-machine (Acc,) 6,856,242 4,665,480 553,278 3,991,856 1,052,316 11,120,830 -
Number of claimed cells o)
Standard (Claims.) 733,742 966,963 77,128 1,131,047 477,243 424,623 2
G-machine (Claims,) 245,008 144,709 18,058 162,199 42,246 403,645 o
Ratio standard/G-machine of store accesses and cell claims -
Access ratio (Acc./ Acc,) 2-4 4.0 31 4.3 72 09
Claim ratio (Claims,/ Claims,) 30 6-7 4.3 70 113 11
Number of claimed cells per 100 tractable accesses of the store
Standard (Claims,x 100/ Acc,) 4.37 517 4-46 6-66 6-27 4-49
G-machine (Claims,x 100/ Acc,)) 3:57 310 326 4.06 4.01 363
Number of arithmetic operations per 100 tractable accesses of the store
Standard (Arith. ops,x 100/ Acc,) 0-13 0-05 017 014 001 1.02

G-machine (Arith. ops,x 100/Acc) 031 0-22 0-56 0-56 0-06 121
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functional implementation of the UNIX text editor; ™ gcode compiles the gsort
program into scalar G-machine code according to the compilation schemes as
described in Johnsson’s paper, lambda (S K K) evaluates to | on an implementation
of thel —K calculus; “ gsort (sin 1, .. .. sin 1024) sorts a list of 1024 rea numbers using
guick sort; sched 7 calculates an optimum schedule of seven parallel jobs with a
branch and bound algorithm; * wave 3 predicts the tides in a rectangular estuary of
the North Seaover aperiod of 3~ 20 minutes. “ Qsort, sched and wave are programs,
suitable for parallel job reduction,  but evaluated sequentially. Table IV provides
a further indication of the properties of the bench-mark programs. One remarkable
observation that can be made from the table is that both methods generate about
the same number of ‘codes’ (scalar G-machine instructions or application, constructor
or scalar nodes in case of standard combinator). Loaded in store a G-code program
would be smaller than a standard combinator program because a G-machine instruc-
tion generally requires less space than an application node. From the experimental
data we guess that the order of complexity for G-machine code is the same as for
standard combinator.

We ran the bench-mark programs on both reducers and counted the basic steps
of the reduction algorithm and the number of executed standard combinator or
scalar G-machine instructions. These counts were weighted and added using Tables
I, 11 'and Il to yield the total number of tractable accesses of the store made by the
implementation of the reduction strategy and the combinator. With our bench-
marks the standard combinator machine generates up to seven times more store
accesses. It al'so claims up to eleven times more cells than the scalar G-machine.

The performance of the wave program is sensitive to the fact that program derived
combinator (according to Johnsson) are not fully lazy. The wave program heavily
relies on operations on two-dimensional matrices, which can only be implemented
in SASL aslists of lists. Figure 16 shows the definition of the access function of an
array element (sub,) and that of a matrix element (sub,). The last line of the figure
shows a typical use of sub,; it selects the first, second, fourth and eighth elements
of the third row of a matrix. The G-machine implementation treats sub,as a
combinator. In the case of the example it is therefore instantiated four times, rather
than once as the standard combinator machine does. This implies that the redex
(sub, matrix 3) appears four times as well. It cannot be shared and therefore causes
a non-fully lazy implementation to do more work than a fully lazy one.

If we take the increase in the number of arithmetic operations performed as an
indication for the amount of recalculation we find that the wave program does 39
per cent more work on the scalar G-machine. On top of this there is additional
housekeeping for the reduction strategy etc. The lambda program also suffers from
this effect, but to a much lesser extent: it needs 4 per cent more arithmetic operations.
For the remaining programs full laziness is irrelevant.

sub; (head:tail) 1 = head
sub, (head:tail) index = sub, tail (index - 1)
sub, matrix row column = sub, (sub, matrix row) column

map (sub, matrix 3) (1,2.4,8)

Figure 16. Array and matrix operations used by wave
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An estimate of the maximum speed-up of the G-machine over standard
combinator

Now that we know the number of tractable accesses of the stack and the heap,
and the number of claimed cells for both implementation methods, we can use these
figures (as shown in Table IV ) with equation (2) to estimate an upper bound for the
ratio (3) below. This yields the maximum attainable performance increase of the
scalar G-machine over standard combinator:

(InsPerAcc, + 1) x TimePerAcc X Accg + TimePerClaimg X Claimsg + PrimTimeg
(InsPerAccy + 1) X TimePerAcc X Accg + TimePerClaimg x Claimsg + PrimTimeg

€)

Although (3) represents a good approximation to the performance gain that we are
interested in, it contains too many unknown parameters to use it directly. However,
by making some estimates we can determine an upper bound for (3). We need an
auxiliary result first: it can be proved by induction on nthat when all variables
involved are positive numbers we have

ratio =

X

X
i:

.- < max % 4
=1y

n

n
Vi
=1

Combining this inequality with (3) we obtain

(InsPerAcc, + 1) Acce TimePerClaimg y Claimss  PrimTimeg
(InsPerAccy + 1) Accg " TimePerClaimg — Claimsg " PrimTimeg

ratio < max [

Because of the way the experiments have been set up, PrimTime = PrimeTime,when
full laziness is not important. This is the case for the bench-mark programs em,
gcode, gsort and sched. Therefore, restricting our attention to these programs, we
may replace the PrimTime ratio by 1.

The remaining unknown parameters are InsPerAcc and TimePerClaim, whose values
depend on the particular target architecture and instruction mix generated by reducer
and garbage collector. As our purpose is to compare two implementation methods of
lazy graph reduction, we must keep the other parameters that influence performance
constant. Therefore we must use the same underlying target architecture, operating
system and garbage collector. By using the same garbage collector for both methods
we would expect TimePerClaim =TimePerClaim . This means that TimePerClaim is
expected to be insensitive to changes in the structure of the graphs that the garbage
collector operates on. This is confirmed by the result reported earlier that TimePer-
Claim does not vary by more than 20 per cent as a result of running different bench-
mark programs on the same reducer.

The ratio of the average number of instructions per access depends on the target
architecture and the instruction mix generated by the reducers. As we do not change
the target architecture, this ratio must be near 1, unless the instruction mixes are
rather different. This, however, isunlikely as the instruction mix in all cases mainly
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consists of ‘move’ instructions to manipulate graph or stack and ‘jump/return from
subroutine’ instructions for unwind and return. Most of the work inherent in such
instructions is in the data movement. If a ‘jump to subroutine’ instruction for instance
takes twice as long to execute as a ‘move’ instruction, it is because the former moves
twice as much data around. The instructions that do more than simple data movement
are those generated by the primitive operations, which are accounted for separately
by the terms PrimTime_and PrimTime,. AS aresult we may assume that (InsPerAcc,
+ 1) XInsPerAcc,+ 1). Again we take the fact that InsPerAcc does not vary by more
than 20 per cent when running different bench-marks on the same reducer as an
indication that this assumption is realistic.

Combining the above considerations with the fact that for al bench-mark programs
the claim ratio exceeds the access ratio, we arrive at the following upper bound of
the performance gain:

ratio £ Claim,
Claims, )

The accuracy of the upper bound (5) is determined by the weights of the ratios used
in (4). For instance from (4) we have (10 + 2)/(9 + 1) < 2, which is not very close
to the real value 1-2 of the ratio. The upper bound (5) we found for (3) corresponds
to the ratio with the largest weight, because the cost of allocation and reclamation
of cells, even on the G-machine often exceeds the cost of reduction. When comparing
the performance of reference counting, mark-scan and two-space copying garbage
collection,” we found the number of stack, heap and instruction store accesses per
claimed and subsequently recovered cell to range from 10 to 200. For reference
counting it is a@most a constant (100), whereas the cost of the other two methods is
proportional to the reciprocal of the heap size. The figure of 10 accesses per cell
applies when no garbage collection is performed. For the G-machine, the number
of claimed cells per 100 tractable accesses to the store lies between 3 and 4 (see
Table 1V ). Therefore the storage manager generates between 3~ 10 and 4 °~ 200
references for each 100 references generated by the reducer. Unless heap space is
abundant, the cost of storage management will dominate the cost of reduction.

Concluding, we may state that the maximum performance gain of the scalar G-
machine over the standard combinator machine is determined by the claim ratio,
which has values of up to 11 “. This is the first conclusion we may draw from our
experiments.

A profile of combinator graph reduction

Some more detailed results of the experiments are summarized in Tables V and
VI. Both present the number of accesses to store sorted by particular categories.
The percentages shown are averages taken over the entire bench-mark suite and all
percentages fall within the pleasingly narrow intervals as shown in the tables. The
percentage of accesses spent in each of the eight major basic steps of the reduction
algorithmsis presented in Table V. In the column marked return we report the sum
of the cost of returning from function calls and returning after redundant calls to
evaluate (i.e. calls to evaluate when the object to be evaluated is aready in weak
head normal form). The basic step that requires most accesses to the store is combine
on the G-machine and unwind on the standard combinator machine.
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Table V. Percentages of store accesses sorted by basic steps of the reduction algorithm

unwind call access claim evaluate combine update  return
Standard 32+ — 28+2 16+4  3£2 73 1141 3*1
G-machine 8+2 742 2242 112 7%l 274 11+5 71

Table V1. Percentages of store accesses sorted by store area

Value stack Pointer stack Graph field  Graph tag Tota

Standard — 36+4 46+3 18+1 Acc.= 100
reed + write — 22+14 25+21 12+6 59+41
G-machine 10£5 58+5 22+2 101 Acc,= 100
read + write 5+5 33+25 12+10 5+5 55+45

An optimization that Johnsson presents in his paper is how to avoid redundant
calls to evaluate. With standard combinator we found that in 25 to 50 per cent of
the cases, depending on the bench-mark, evaluate was indeed applied to aweak head
normal form. The G-machine figures range from 50 to 70 per cent. Avoiding
redundant calls to evaluate (and the associated return) may reduce accesses to the
store by at most 10 per cent. Combined with another optimization that Johnsson
proposes (compile time simulation of the contents of the pointer stack) we find that
the maximum improvement can be 16 per cent, if all calsto evaluate (and therefore
also to return) are avoided as well as all stack updates by the PUSH instructions. In
practice the benefit will be less.

An interesting peephol e optimization to G-machine code is described by Kieburtz
and Agapiev. “ When the result of areduction is a pair or a basic value held in the
value stack, a new heap cell is not allocated to hold it. Instead the result is used to
update the application node at the root of the redex directly. This requires additional
instructions in the abstract G-machine to replace instruction patterns such as
MKNUMB / UPDATE / RETURN. Other commonly occurring patterns, such as EVAL /
UPDATE / RETURN cannot be optimized out in this fashion, because the node to
update with may come from anywhere. The maximum gain from the peephole
optimization is therefore attained if all update activity can be avoided (16 per cent).
This is also the result that may be obtained if we can avoid redundant updates,
which is the aim of the spineless G-machine. © The designers of the spineless G-
machine report results for small programs only.

Table VI shows another way of sorting store accesses. The data show that the G-
machine spends about 10 per cent of its accesses on the value stack, where it stores
the operands that it performs most primitive operations on.

Apart from software-oriented efforts, there are projects involved in designing
specia hardware for the G-machine. Here the data of Table VI may provide useful
information because an option that a hardware designer has is to use caches to speed
up access to various regions of store. For instance keeping (the top of) the pointer
stack in a cache may save up to half the memory references generated by the G-
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machine " Recent work of Kieburtz * contains a detailed analysis of simulated G-
machine RISC performance that is similar to ours, but based on assumptions that
make the results less applicable to conventional architectures. The G-machine RISC
is inherently a tagged architecture with hardware support for stack operations. The
processor is not always required to wait for a write operation to the graph to
complete. This means that the weight of all categoriesin Table VI except the read
operations on the graph is lower in Kieburtz’ analysis than in ours.

In a project at our own institute a distributed G-machine is being designed that
exploits paralelism at the program-derived combinator and G-machine instruction
levels * For instance the distributed G-processor can perform an update in one read
and one write cycle instead of the eight cycles that a conventional architecture
requires (see Table | ). Thisimplementation of update may improve performance by
up to 16 per cent.

CONCLUSIONS

The performance of two implementations of lazy combinator graph reduction has
been compared. Johnsson’s implementation based on program-derived combinator
and short circuiting of graph reduction generally gives better results than Turner’'s
standard combinator implementation because both having program-derived combina-
tor and avoiding naive graph reduction reduce the number of cell claims.

For a bench-mark of medium-sized programs we found that Turner’s method
causes up to eleven times more cell claims than the G-machine and that Turner’s
reducer alone (i.e. exclusive of the storage manager) generates up to seven times
more references to the store. Unless heap space is abundant we found that allocation
and reclamation of heap cells requires at least as many references to the store as
reduction proper. Assuming that there is a high correlation between the number of
store accesses and execution time, we conclude that programs may run up to about
10 times faster on the G-machine. Our G-code compiler does not use any of the
optimizations that have been published since Johnsson’'s 1984 paper and it uses a
restricted form of Johnsson’s optimization of tail recursion.

One of our bench-mark programs causes the G-machine to access the store more
often than Turner’s machine because the G-machine compiler does not use fully lazy
lambda lifting. The performance of the other bench-mark programs is not affected
significantly by the loss of full laziness.

In both methods of combinator graph reduction a considerable fraction of the
number of store accesses is spent on function calls and parameter passing. Turner’'s
reducer spends over 60 per cent of its accesses to the store on function calls and
parameter access. The G-machine uses 30 per cent of its accesses to the store for
this purpose.

The maor difference between the current work and that reported by other
researchers is that we have used medium size as opposed to small programs. Our
bench-mark of functional programs could be used only because we have spent
considerable effort in reconciling the primitive operands and operations used in both
reduction methods. With real programs, pattern matching is an important part of
the set of primitives. Without a common set of primitives such as the one that we
have developed, there is no hope for sensible performance comparisons of any but
small programs.
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We use a model of reduction that captures al time-consuming aspects of an

implementation in such a way that time can be measured in memory accesses. Not
included in our measurement are the primitive operations, because the time spent
in, for instance, afloating point division is not easy to relate to a number of memory
accesses in a machine independent way. As a result our model gives an upper
bound on the performance gain that may be achieved with better implementation
techniques.
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