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How to write a simple operating system

(C) 2011 Mike Saunders and MikeOS Developers

This document shows you how to write and build your first operating system in x86 assembly
language. It explains what you need, the fundamentals of the PC boot process and assembly
language, and how to take it further. The resulting OS will be very small (fitting into a bootloader) and
have very few features, but it's a starting point for you to explore further.

After you have read the guide, see the MikeOS project for a bigger x86 assembly language OS that
you can explore to expand your skills.

Requirements

Prior programming experience is essential. If you've done some coding in a high-level language like
PHP or Java, that's good, but ideally you'll have some knowledge of a lower-level language like C,
especially on the subject of memory and pointers.

For this guide we're using Linux. OS development is certainly possible on Windows, but it's so much

easier on Linux as you can get a complete development toolchain in a few mouse-clicks/commands.

Linux is also really good for making floppy disk and CD-ROM images - you don't need to install loads
of fiddly programs.

Installing Linux is very easy thesedays; grab Ubuntu and install it in VMware or VirtualBox if you don't
want to dual-boot. When you're in Ubuntu, get all the tools you need to follow this guide by entering
this in a terminal window:

sudo apt-get install build-essential gemu nasm

This gets you the development toolchain (compiler etc.), QEMU PC emulator and the NASM
assembler, which converts assembly language into raw machine code executable files.

PC primer

If you're writing an OS for x86 PCs (the best choice, due to the huge amount of documentation
available), you'll need to understand the basics of how a PC starts up. Fortunately, you don't need to
dwell on complicated subjects such as graphics drivers and network protocols, as you'll be focusing
on the essential parts first.

When a PC is powered-up, it starts executing the BIOS (Basic Input/Output System), which is
essentially a mini-OS built into the system. It performs a few hardware tests (eg memory checks) and
typically spurts out a graphic (eg Dell logo) or diagnostic text to the screen. Then, when it's done, it
starts to load your operating system from any media it can find. Many PCs jump to the hard drive and

start executing code they find in the Master Boot Record (MBR), a 512-byte section at the start of
the hard drive; some try to find executable code on a floppy disk (boot sector) or CD-ROM.

This all depends on the boot order - you can normally specify it in the BIOS options screen. The BIOS
loads 512 bytes from the chosen media into its memory, and begins executing it. This is the
bootloader, the small program that then loads the main OS kernel or a larger boot program (eg
GRUB/LILO for Linux systems). This 512 byte bootloader has two special numbers at the end to tell
the OS that it's a boot sector - we'll cover that later.

Note that PCs have an interesting feature for booting. Historically, most PCs had a floppy drive, so
the BIOS was configured to boot from that device. Today, however, many PCs don't have a floppy
drive - only a CD-ROM - so a hack was developed to cater for this. When you're booting from a CD-
ROM, it can emulate a floppy disk; the BIOS reads the CD-ROM drive, loads in a chunk of data,

and executes it as if it was a floppy disk. This is incredibly useful for us OS developers, as we can
make flnnnv dick vercinna nf niir OS  hiit still hant it on C.N-nnlv machines (Flnnnv dicks are reallv
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easy to work with, whereas CD-ROM filesystems are much more complicated.)
So, to recap, the boot process is:

1. Power on: the PC starts up and begins executing the BIOS code.

2. The BIOS looks for various media such as a floppy disk or hard drive.

3. The BIOS loads a 512 byte boot sector from the specified media and begins executing it.
4. Those 512 bytes then go on to load the OS itself, or a more complex bootloader.

For MikeOS, we have the 512-byte bootloader, which we write to a floppy disk image file (a virtual
floppy). We can then inject that floppy image into a CD, for PCs that only have CD-ROM drives.
Either way, the BIOS loads it as if it was on a floppy, and starts executing it. We have control of the
system!

Assembly language primer

Most modern operating systems are written in C/C++. That's very useful when portability and code-
maintainability are crucial, but it adds an extra layer of complexity to the proceedings. For your very
first OS, you're better off sticking with assembly language, as used in MikeOS. It's more verbose and
non-portable, but you don't have to worry about compilers and linkers. Besides, you need a bit of
assembly to kick-start any OS.

Assembly language (or colloquially "asm") is a textual way of representing the instructions that a
CPU executes. For instance, an instruction to move some memory in the CPU may be 11001001
01101110 - but that's hardly memorable! So assembly provides mnemonics to substitute for these
instructions, such as mov ax, 30. They correlate directly with machine-code CPU instructions, but
without the meaningless binary numbers.

Like most programming languages, assembly is a list of instructions followed in order. You can jump
around between various places and set up subroutines/functions, but it's much more minimal than C#
and friends. You can't just print "Hello world" to the screen - the CPU has no concept of what a screen
is! Instead, you work with memory, manipulating chunks of RAM, performing arithmetic on them and
putting the results in the right place. Sounds scary? It's a bit alien at first, but it's not hard to grasp.

At the assembly language level, there is no such thing as variables in the high-level language sense.
What you do have, however, is a set of registers, which are on-CPU memory stores. You can put
numbers into these registers and perform calculations on them. In 16-bit mode, these registers can
hold numbers between 0 and 65535. Here's a list of the fundamental registers on a typical x86 CPU:

General-purpose registers for storing numbers that you're using. For instance,
AX, BX,CX, | youmay use AX to store the character that has been pressed on the keyboard,
DX while using CX to act as a counter in a loop. (Note: these 16-bit registers can be
split into 8-bit registers such as AH/AL, BH/BL efc.)

Source and destination data index registers. These point to places in memory for

S, D retrieving and storing data.

SP The Stack Pointer (explained in a moment).

The Instruction/Code Pointer. This contains the location in memory of the

IP (sometimes || instruction being executed. When an instruction has finished, it is incremented
CP) and moves on to the next instruction. You can change the contents of this register
to move around in your code.

So you can use these registers to store numbers as you work - a bit like variables, but they're much
more fixed in size and purpose. There are a few others, notably segment registers. Due to
limitations in old PCs, memory was handled in 64K chunks called segments. This is a really messy
subject, but thankfully you don't have to worry about it - for the time being, your OS will be less than a
kilobyte anyway! In MikeOS, we limit ourselves to a single 64K segment so that we don't have to
mess around with segment registers.

The stack is an area of your main RAM used for storing temporary information. It's called a stack
because numbers are stacked one-on-top of another. Imagine a Pringles tube: if you put in a playing
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card, an iPod Shuffle and a beermat, you'll pull them out in the reverse order (beermat, then iPod,
and finally playing card). It's the same with numbers: if you push the numbers 5, 7 and 15 onto the
stack, you will pop them out as 15 first, then 7, and lastly 5. In assembly, you can push registers onto
the stack and pop them out later - it's useful when you want to store temporarily the value of a register
while you use that register for something else.

PC memory can be viewed as a linear line of pigeon-holes ranging from byte 0 to whatever you
have installed (millions of bytes on modern machines). At byte number 53,634,246 in your RAM, for
instance, you may have your web browser code to view this document. But whereas we humans
countin powers of 10 (10, 100, 1000 etc. - decimal), computers are better off with powers of two
(because they're based on binary). So we use hexadecimal, which is base 16, as a way of
representing numbers. See this chart to understand:

Decimal @@@ 10{ 11121314 ||15] 16|17 | 1819 20
Hexadecimal @@@A B [|[C ||D |[E ||[F [|10{[11] 1213} 14

As you can see, whereas our normal decimal system uses 0 - 9, hexadecimal uses O - F in counting.
It's a bit weird at first, but you'll get the hang of it. In assembly programming, we identify hexadecimal
(hex) numbers by tagging a 'h' onto the end - so 0Ah is hex for the number 10. (You can also denote
hexadecimal in assembly by prefixing the number with 0x - for instance, 0x0A.)

Let's finish off with a few common assembly instructions. These move memory around, compare
them and perform calculations. They're the building blocks of your OS - there are hundreds of
instructions, but you don't have to memorise them all, because the most important handful are used
90% of the time.

Copies memory from one location or register to another. For instance, mov ax,
30 places the number 30 into the AX register. Using square brackets, you can get
mov the number at the memory location pointed to by the register. For instance, if BX
contains 80, then mov ax, [bx] means "get the number in memory location 80,
and putitinto AX". You can move numbers between registers too: mov bx, cx.

Adds a number to a register. add ax, FFh adds FF in hexadecimal (255 in our
add / sub normal decimal) to the AX register. You can use sub in the same way: sub dx,
50.

Compares a register with a number. cmp cx, 12 compares the CX register with
the number 12. It then updates a special register on the CPU called FLAGS - a
special register that contains information about the last operation. In this case, if
the number 12 is bigger than the value in CX, it generates a negative result, and
notes that negative in the FLAGS register. We can use this in the following
instructions...

cmp

Jump to a different part of the code. jmp label jumps (GOTOs) to the part of our
source code where we have label: written. But there's more - you can jump
conditionally, based on the CPU flags set in the previous command. For instance,
jmp/jg/jl... if a cmp instruction determined that a register held a smaller value than the one
with which it was compared, you can act on that with jl label (jump if less-than to
label). Similarly, jge label jumps to 'label' in the code if the value in the cmp was
greater-than or equal to its compared number.

Interrupt the program and jump to a specified place in memory. Operating
systems set up interrupts which are analogous to subroutines in high-level
languages. For instance, in MS-DOS, the 21h interrupt provides DOS services
int (eg as opening a file). Typically, you put a value in the AX register, then call an
interrupt and wait for a result (passed back in a register too). When you're writing
an OS from scratch, you can call the BIOS with int 10h, int 13h, int 14h or int
16h to perform tasks like printing strings, reading sectors from a floppy disk etc.

Let's look at some of these instructions in a little more detail. Consider the following code snippet:

mov bx, 1000h
mov ax, [bx]
cmp ax, 50
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Jge lapel

label:
mov ax, 10

In the first instruction, we move the number 1000h into the BX register. Then, in the second
instruction, we store in AX whatever is in the memory location pointed to by BX. This is what the [bx]
means: if we just did mov ax, bx it'd simply copy the number 1000h into the AX register. But by
using square brackets, we're saying: don't just copy the contents of BX into AX, but copy the contents
of the memory address to which BX points. Given that BX contains 1000h, this instruction says: find
whatever is at memory location 1000h, and put it into AX.

So, if the byte of memory at location 1000h contains 37, then that number 37 will be put into the AX
register via our second instruction. Next up, we use cmp to compare the number in AX with the
number 50 (the decimal number 50 - we didn't suffix it with 'h'). The following jge instruction acts on
the emp comparison, which has set the FLAGS register as described earlier. The jge label says: if
the result from the previous comparison is greater than or equal, jump to the part of the code denoted
by label:. So if the number in AX is greater than or equal to 50, execution jumps to label.. If not,
execution continues at the '..." stage.

One last thing: you can insert data into a program with the db (define byte) directive. For instance,
this defines a series of bytes with the number zero at the end, representing a string:

mylabel: db 'Message here', 0

In our assembly code, we know that a string of characters, terminated by a zero, can be found at the
mylabel: position. We could also set up single byte to use somewhat like a variable:

foo: db 0

Now foo: points at a single byte in the code, which in the case of MikeOS will be writable as the OS
is copied completely to RAM. So you could have this instruction:

mov byte al, [foo]

This moves the byte pointed to by foo into the AL register.

That's the essentials of x86 PC assembly language, and enough to get you started. When writing an
0S8, though, you'll need to learn much more as you progress, so see the Resources section for links
to more in-depth assembly tutorials.

Your first OS

Now you're ready to write your first operating system kernel! Of course, this is going to be extremely
bare-bones, just a 512-byte boot sector as described earlier, but it's a starting point for you to
expand further. Paste the following code into a file called myfirst.asm and save it into your home
directory - this is the source code to your first OS.

BITS 16

start:
mov ax, 07COh ; Set up 4K stack space after this bootloader
add ax, 288 ; (4096 + 512) / 16 bytes per paragraph

mov ss, ax
mov sp, 4096

mov ax, 07COh ; Set data segment to where we're loaded

mov ds, ax

mov si, text string ; Put string position into SI
call print string ; Call our string-printing routine
jmp $ ; Jump here - infinite loop!
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text string db 'This is my cool new OS!', 0
print string: ; Routine: output string in SI to screen
mov ah, OEh ; int 10h 'print char' function
.repeat:
lodsb ; Get character from string
cmp al, O
je .done ; If char is zero, end of string
int 10h ; Otherwise, print it

Jjmp .repeat

.done:
ret
times 510-($-$3) db O ; Pad remainder of boot sector with Os
dw OxAA55 ; The standard PC boot signature

Let's step through this. The BITS 16 line isn't an x86 CPU instruction; it just tells the NASM
assembler that we're working in 16-bit mode. NASM can then translate the following instructions into
raw x86 binary. Then we have the start: label, which isn't strictly needed as execution begins right at
the start of the file anyway, but it's a good marker. From here onwards, note that the semicolon (;)
character is used to denote non-executable text comments - we can put anything there.

The following six lines of code aren't really of interest to us - they simply set up the segment registers
so that the stack pointer (SP) knows where our handy stack of temporary data is, and where the data
segment (DS) is located. As mentioned, segments are a hideously messy way of handling memory
from the old 16-bit days, but we just set up the segment registers and forget about them. (The
references to 07CO0h are the equivalent segment location at which the BIOS loads our code, so we
start from there.)

The next part is where the fun happens. The mov si, text_string line says: copy the location of the
text string below into the Slregister. Simple enough! Then we use call, which is like a GOSUB in
BASIC or a function callin C. It means: jump to the specified section of code, but prepare to come
back here when we're done.

How does the code know how to do that? Well, when we use a call instruction, the CPU increments
the position of the IP (Instruction Pointer) register and pushes it onto the stack. You may recall from
the previous explanation of the stack that it's a last-in first-out memory storage mechanism. All that
business with the stack pointer (SP) and stack segment (SS) at the start cleared a space for the
stack, so that we can drop temporary numbers there without overwriting our code.

So, the call print_string says: jump to the print_string routine, but push the location of the next
instruction onto the stack, so we can pop it off later and resume execution here. Execution has
jumped over to print_string: - this routine uses the BIOS to output text to the screen. First we put
OEh into the AH register (the upper byte of AX). Then we have a lodsb (load string byte) instruction,
which retrieves a byte of data from the location pointed to by Si, and stores it in AL (the lower byte of
AX). Next we use cmp to check if that byte is zero - if so, it's the end of the string and we quit printing
(jump to the .done label).

Iif it's not zero, we call int 10h (interrupt our code and go to the BIOS), which reads the value in the
AH register (OEh) we set up before. Ah, says the BIOS - OEh in the AH register means "print the
character in the AL register to the screen!”. So the BIOS prints the first character in our string, and
returns from the int call. We then jump to the .repeat label, which starts the process again - lodsb to
load the next byte from Sl (it increments Sl each time), see if it's zero and decide what to do. The ret
at the end of our string-printing routine means: "we've finished here - return back to the place where
we were called by popping the code location from the stack back into the IP register”.

So there we have a demonstration of a loop, in a standalone routine. You can see that the
text_string label is alongside a stream of characters, which we insert into our OS using db. The text
is in apostrophes so that NASM knows it's not code, and at the end we have a zero to tell our
print_string routine that we're at the end.

Let's recap: we start off by setting up the segment registers so that our OS knows where the stack
pointer and executable code resides. Then we point the Sl register at a string in our OS binary, and

call our strina-orintina routine. This routine scans throuah the characters pointed to bv Sland
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dlsplays them unt|l it fnds a zero, at wh|ch point it returns back |nto the code that called it. Then the

jmp $ line says: keep jumping to the same line. (The '$' in NASM denotes the current point of code.)
This sets up an infinite loop, so that the message is displayed and our OS doesn't try to execute the
following string!

The final two lines are interesting. For a PC to recognise a valid floppy disk boot sector, it has to be
exactly 512 bytes in size and end with the numbers AAh and 55h (the boot signature). So the first of
these lines says: pad out our resulting binary file to be 510 bytes in size. Then the second line uses
dw (define a word - two bytes) containing the aforementioned boot signature. Voila: a 512 byte boot
file with the correct numbers at the end for the BIOS to recognise.

Let's build our new OS. In a terminal window, in your home directory, enter:

nasm -f bin -o myfirst.bin myfirst.asm

Here we assemble the code from our text file into a raw binary file of machine-code instructions. With
the -f bin flag, we tell NASM that we want a plain binary file (not a complicated Linux executable - we
want it as plain as possible!). The -o myfirst.bin part tells NASM to generate the resulting binaryin a
file called myfirst.bin.

Now we need a virtual floppy disk image to which we can write our bootloader-sized kernel. Copy
mikeos.flp from the disk_images/ directory of the MikeOS bundle into your home directory, and
rename it myfirst.flp. Then enter:

dd status=noxfer conv=notrunc if=myfirst.bin of=myfirst.flp

This uses the 'dd’ utility to directly copy our kernel to the first sector of the floppy disk image. When
it's done, we can boot our new OS using the QEMU PC emulator as follows:

gemu -fda myfirst.flp

And there you are! Your OS will boot up in a virtual PC. If you want to use it on a real PC, you can
write the floppy disk image to a real floppy and boot from it, or generate a CD-ROM ISO image. For
the latter, make a new directory called cdiso and move the myfirst.flp file into it. Then, in your home
directory, enter:

mkisofs -o myfirst.iso -b myfirst.flp cdiso/

This generates a CD-ROM ISO image called myfirst.iso with bootable floppy disk emulation, using
the virtual floppy disk image from before. Now you can burn that ISO to a CD-R and boot your PC
from it! (Note that you need to burn it as a direct ISO image and not just copy it onto a disc.)

Next you'll want to improve your OS - explore the MikeOS source code to get some inspiration.
Remember that bootloaders are limited to 512 bytes, so if you want to do a lot more, you'll need to
make your bootloader load a separate file from the disk and begin executing it, in the same fashion
as MikeOS.

Going further

So, you've now got a very simple bootloader-based operating system running. What next? Here are
some ideas:

¢ Add more routines -- You already have print_string in your kernel. You could add routines to
get strings, move the cursor etc. Search the internet for BIOS calls which you can use to achieve
these.

¢ Load files -- The bootloader is limited to 512 bytes, so you don't have much room. You could
make the bootloader load subsequent sectors on the disk into RAM, and jump to that point to
continue execution. Or you could read up on FAT12, the filesystem used on floppy drives, and
implement that. (See source/bootload/bootload.asm in the MikeOS .zip for an implementation.)

¢ Join another project -- This tutorial was written by Mike Saunders, the lead developer of
MikeOS. It's a simple 16-bit x86 assembly language operating system, and once you're fully
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See the System Developer Handbook link on the front page for more info, and join the mailing
list!
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