
25/03/12 Linux Assembly Tutorial - Quickstart

1/5www.cin.ufpe.br/aif817/arquivos/asmtut/quickstart.html

Linu[Assembl\ Tutorial

Quickstart

Written by: Derick Swanepoel (derick@maple.up.ac.za)
Version 1.0 - 2002-04-19, 01:50am

Download as zipfile

JMP Step-by-Step Guide

Contents

1. Intro
2. Comparison of a Linux assembly program and a DOS assembly program
3. More About Linux System Calls
4. Command Line Arguments and Writing to a File

5. Compiling and Linking

1. Intro

This Quickstart aims to show you the ropes on Linux assembly as quickly as possible. Basically, it just points out the differences between a
Linux and DOS assembly program with just enough explanation not to confuse you. For more detail and why things are the way they are, see

the Step-by-Step Guide.

2. Comparison of a Linu[assembl\ program and a DOS assembl\ program

Linux DOS

SECTION .DATA
 KHOOR: GE 'HHOOR ZRUOG!',10
 KHOORLHQ: HTX $-KHOOR

SECTION .TEXT
 GLOBAL _START

_START:

 ; WULWH 'HHOOR ZRUOG!' WR WKH VFUHHQ
 PRY HD[,4 ; 'ZULWH' V\VWHP FDOO
 PRY HE[,1 ; ILOH GHVFULSWRU 1 = VFUHHQ
 PRY HF[,KHOOR ; VWULQJ WR ZULWH
 PRY HG[,KHOORLHQ ; OHQJWK RI VWULQJ WR ZULWH
 LQW 80K ; FDOO WKH NHUQHO

 ; THUPLQDWH SURJUDP
 PRY HD[,1 ; 'H[LW' V\VWHP FDOO
 PRY HE[,0 ; H[LW ZLWK HUURU FRGH 0
 LQW 80K ; FDOO WKH NHUQHO

DOSSEG
.MODEL LARGE
.STACK 200K

.DATA
 KHOOR GE 'HHOOR ZRUOG!',10,13,'$'
 KHOORLHQ GE 14

.CODE
 ASSUME CS:@CODE, DS:@DATA

START:
 PRY D[,@GDWD
 PRY GV,D[

 ; WULWH 'HHOOR ZRUOG!' WR WKH VFUHHQ
 PRY DK,09K ; 'SULQW' DOS VHUYLFH
 PRY G[,RIIVHW KHOOR ; VWULQJ WR ZULWH
 LQW 21K ; FDOO DOS VHUYLFH

 ; THUPLQDWH SURJUDP
 PRY DK,4CK ; 'H[LW' DOS VHUYLFH
 PRY D[,0 ; H[LW ZLWK HUURU FRGH 0
 LQW 21K ; FDOO DOS VHUYLFH
END START

Compiling: QDVP -I HOI KHOOR.DVP
Linking: OG -V -R KHOOR KHOOR.R

Compiling: WDVP KHOOR.DVP
Linking: WOLQN KHOOR.REM

Lets compare each part in the two programs:

The first three lines of the DOS program doesn't exist in the Linux program. Linux is a 32-bit protected mode operating system, and in
32-bit assembly there are no memory models. Also, all segment registers and paging have already been set up to give you the same

25/03/12 Linux Assembly Tutorial - Quickstart

2/5www.cin.ufpe.br/aif817/arquivos/asmtut/quickstart.html

32-bit 4Gb address space, so you can ignore all segment registers. It is also not necessary to specify the stack size.
Some differences between the Linux NASM structure and DOS TASM/MASM structure:

The data / code sections are defined by writing SECTION .DATA instead of just .DATA
Linux NASM allows us to declare constants with the EQU instruction, for example:
EXIIHUOHQ: HTX 400

So whenever it sees EXIIHUOHQ in your program, it will substitute the value '400'. That means you don't have to put square
brackets around EXIIHUOHQ to get its actual value. (Note: this only works for constants. The values of all other variables are
still obtained using [YDUQDPH]).

Another neat NASM feature is the '$' token: when NASM sees an '$' it substitutes it with the assembly position at the beginning
of that line. So what does this mean? This gives us an easy way to define the length of a string we've just declared. After
declaring a variable containg a string

 KHOOR: GE 'HHOOR ZRUOG!',10

we can put on the next line

 KHOORLHQ: HTX $-KHOOR

This will make KHOORLHQ equal to (position at beginning of line) - (position of KHOOR). If you look at those two lines in the
program, you can see this will give us the length of 'HHOOR ZRUOG!',10, which is 13 (12 characters plus the linefeed
character).

If this doesn't make sense, don't worry, just know that this is an easy way to define the length of a string.
Strings you want to print out in Linux don't need to be $-terminated like in DOS. Instead, you supply the length of the string as
one of the parameters. (This is much more flexible, because you can now print out only a part of the string, and your computer
won't blow up when you forget the $ like in DOS.)
To print out a string with a newline at the end, you only need to need to add a linefeed character (10) to the end of the string in
Linux. In DOS, you need both a linefeed and a carriage return (13).

The .CODE section is called .TEXT in Linux
Right at the beginning of the .TEXT section, there must be a declaration specifying the entry point of the program: GLOBAL
_START

There is no ASSUME directive like in the DOS program, because we don't need to worry about segments.
The program's entry point is called whatever you declared it to be at the beginning of the .TEXT section (in our case it's
_START). Also, the Linux program doesn't end with END _START like the DOS program.

The first two lines after the START: label in the DOS program make sure that the DS register points to the data segment. Once again,
Linux doesn't need this because the segments are taken care of for us.
In 16-bit DOS assembly, we use the normal 16-bit registers AX, BX, CX, DX etc. In 32-bit Linux assembly we use the 32-bit
extended registers EAX, EBX, ECX, EDX etc. (Note that there is no such thing as EAL. AX is the low 16 bits of EAX, while AH is
the high 8 bits of AX and AL is the low 8 bits of AX.)
In DOS, when we want the memory address of a variable to be put in a register, we must use RIIVHW to point to the offset of the
variable in the correct segment (PRY G[,RIIVHW KHOOR). In Linux, we don't need RIIVHW because it's implied - we just write PRY

HF[,KHOOR

In DOS, we call LQW 21K to use a DOS service like printing out a string. In Linux, you use system calls, which are accessed by calling
LQW 80K (the kernel interrupt). In DOS the function number (eg. 9 to print a string) always goes in AX; in Linux it always goes in
EAX. As in the example, if we want to print out a string we use the "write" syscall, which is function number 4. We put '4' in EAX, the
number of the file descriptor to write to in EBX (in this case '1', the screen), the location of the string to print in ECX (PRY
HF[,KHOOR), and the length of the string in EDX (PRY HF[,KHOORLHQ). Then we call the kernel interrupt (LQW 80K), and voila!
To exit a Linux program, we use the exit syscall (function 1, so we write PRY HD[,1). We want to exit with an exit code of 0 (no

error), so we put 0 in EBX. Then we call the kernel with LQW 80K again, and we're done.

In this case it looks like it's more work than in DOS, but when it comes to creating, reading and writing files, Linux syscalls are much easier
to use than their DOS counterparts.

3. More About Linu[S\stem Calls

There are six registers that are used for the arguments that a system call takes. The first argument goes in EBX, the second in ECX, then
EDX, ESI, EDI, and finally EBP, if there are so many. If there are more than six arguments, EBX must contain the memory location where
the list of arguments is stored.

All the syscalls are listed in /XVU/LQFOXGH/DVP/XQLVWG.K, together with their numbers. However, for your convenience you can simply
find them in this Linux System Call Table, together with some other useful information (eg. what arguments they take). The syscalls are fully
documented in section 2 of the manual pages, so you can just go PDQ 2 ZULWH to find out what the write syscall does, what arguments it
takes, etc.

4. Command Line Arguments and Writing to a File

25/03/12 Linux Assembly Tutorial - Quickstart

3/5www.cin.ufpe.br/aif817/arquivos/asmtut/quickstart.html

Linux

VHFWLRQ .GDWD
 KHOOR GE 'HHOOR, ZRUOG!',10 ; OXU GHDU VWULQJ
 KHOORLHQ HTX $ - KHOOR ; LHQJWK RI RXU GHDU VWULQJ

VHFWLRQ .WH[W
 JOREDO _VWDUW

_VWDUW:
 SRS HE[; DUJF (DUJXPHQW FRXQW)
 SRS HE[; DUJY[0] (DUJXPHQW 0, WKH SURJUDP QDPH)
 SRS HE[; TKH ILUVW UHDO DUJ, D ILOHQDPH

 PRY HD[,8 ; TKH V\VFDOO QXPEHU IRU FUHDW() (ZH DOUHDG\ KDYH WKH ILOHQDPH LQ HE[)
 PRY HF[,00644Q ; RHDG/ZULWH SHUPLVVLRQV LQ RFWDO (UZ_UZ_UZ_)
 LQW 80K ; CDOO WKH NHUQHO
 ; NRZ ZH KDYH D ILOH GHVFULSWRU LQ HD[

 WHVW HD[,HD[; LHWV PDNH VXUH WKH ILOH GHVFULSWRU LV YDOLG
 MV VNLSWULWH ; II WKH ILOH GHVFULSWRU KDV WKH VLJQ IODJ
 ; (ZKLFK PHDQV LW'V OHVV WKDQ 0) WKHUH ZDV DQ RRSV,
 ; VR VNLS WKH ZULWLQJ. OWKHUZLVH FDOO WKH ILOHZULWH "SURFHGXUH"
 FDOO ILOHWULWH

VNLSWULWH:
 PRY HE[,HD[; II WKHUH ZDV DQ HUURU, VDYH WKH HUUQR LQ HE[
 PRY HD[,1 ; PXW WKH H[LW V\VFDOO QXPEHU LQ HD[
 LQW 80K ; BDLO RXW

; SURF ILOHWULWH - ZULWH D VWULQJ WR D ILOH
ILOHWULWH:
 PRY HE[,HD[; V\V_FUHDW UHWXUQHG ILOH GHVFULSWRU LQWR HD[, QRZ PRYH LQWR HE[
 PRY HD[,4 ; V\V_ZULWH
 ; HE[LV DOUHDG\ VHW XS
 PRY HF[,KHOOR ; WH DUH SXWWLQJ WKH ADDRESS RI KHOOR LQ HF[
 PRY HG[,KHOORLHQ ; TKLV LV WKH VALUE RI KHOORLHQ EHFDXVH LW'V D FRQVWDQW (GHILQHG ZLWK HTX)
 LQW 80K

 PRY HD[,6 ; V\V_FORVH (HE[DOUHDG\ FRQWDLQV ILOH GHVFULSWRU)
 LQW 80K
 UHW
; HQGS ILOHWULWH

DOS

DOSSEG
.MODEL LARGE
.STACK 200K

.DATA
ILOHQDPH GE 14 GXS (0)
ILOHKDQGOH GZ
KHOOR GE 'HHOOR WRUOG!',10,13,'$'
KHOORLHQ GE 12

.CODE
ASSUME CS:@CODE, DS:@DATA

START:
 PRY AX,@DATA
 PRY ES,AX ; PRLQW ES WR WKH GDWD VHJPHQW IRU QRZ

 PRY DK,62K
 LQW 21K ; GHW WKH PSP
 PRY GV,E[
 PRY E[,81K ; SWDUWLQJ DW WKH ILUVW SULQWDEOH FKDUDFWHU
 DGG EO, E\WH SWU [GV:80K] ; GHW DGGUHVV RI ODVW FKDUDFWHU
 PRY FO, E\WH SWU [GV:80K] ; AOVR SXW LW LQ CL
 LQF FO
 PRY [GV:E[], ZRUG SWU 0 ; NXOO WHUPLQDWH WKH DUJXPHQW

 PRY VL,81K
 PRY GL,0 ; CRS\ WKH ILUVW DUJXPHQW LQWR WKH GDWD VHJPHQW
 UHS PRYVE ; LQWR WKH ILOHQDPH YDULDEOH

 PRY AX,@DATA

25/03/12 Linux Assembly Tutorial - Quickstart

4/5www.cin.ufpe.br/aif817/arquivos/asmtut/quickstart.html

 PRY DS,AX ; PRLQW DS WR WKH GDWD VHJPHQW, OLNH QRUPDO

 FDOO ILOHCUHDWH
 FDOO ILOHWULWH
 FDOO ILOHCORVH

 PRY AX,4C00K
 LQW 21K ; B\H-E\H!
END START

SURF ILOHCUHDWH
 PRY DK,3CK ; CUHDW DOS VHUYLFH (\HV, LW LV FDOOHG 'FUHDW')
 PRY F[,0 ; FLOH DWWULEXWHV
 PRY G[,RIIVHW ILOHQDPH ; PXW ADDRESS RI ILOHQDPH LQ DX
 LQW 21K

 PRY [ILOHKDQGOH],D[; FLOH KDQGOH LV UHWXUQHG LQ AX, SXW LQ D YDULDEOH
 UHW
HQGS ILOHCUHDWH

SURF ILOHCORVH
 PRY DK,3EK
 PRY E[,[ILOHKDQGOH]
 LQW 21K
 UHW
HQGS ILOHCORVH

SURF ILOHWULWH
 PRY DK, 40K
 PRY E[, [ILOHKDQGOH]
 PRY G[, RIIVHW KHOOR ; ADDRESS RI VWULQJ WR EH ZULWWHQ
 [RU F[, F[; II I GRQ'W GR WKLV, WKLQJV EORZ XS LQ P\ IDFH
 PRY FO, [KHOORLHQ] ; VALUE RI OHQJWK RI VWULQJ WR EH ZULWWHQ
 LQW 21K
 UHW
HQGS ILOHWULWH

As you can see, the Linux program is much simpler than the DOS one (40 lines in Linux, with liberal commenting, vs. 66 for DOS).
Everything makes sense in the Linux program, whereas a lot of the stuff in the DOS one still makes me go "Huh?" Lets check out the

differences:

1. Firstly, getting the command line arguments of the Linux program is wa\ easier than the DOS one. All the arguments are sitting on the

stack when the program starts, so all we need to do is SRS them off. The first value popped off is the number of arguments (called
argc in C/C++), the second is the name of the program, and finally we get the actual command line arguments. Coolest of all, when we

pop the command line argument off the stack, it actually puts the address of that string in EBX, so once again no segment/offset
missions.

This just took us an entire 3 instructions - compared to the 14 insane ones for the DOS program! No messing around with PSPs and

stuff - simple, isn't it?
2. NB: NASM doesn't have procedures like you may have used in TASM. That's because procedures don't really exist in assembly:

everything is a label. So if you want to write a "procedure" in NASM, you don't use SURF and HQGS, but instead just put a label (eg.
ILOHZULWH:) at the beginning of the "procedure's" code. If you want to, you can put comments at the start and end of the code just to

make it look a bit more like a procedure (like I did in the example).

3. NB2: When you jump to a label with JMP or any of the jump instructions, you don't RET from it. Never! If you're lucky it won't

explode on you, but it's definitely not right. The only time you RET is when you've called the "procedure" with CALL. Otherwise you're
just going to have to jump around like a kangaroo weaving a spaghetti code masterpiece. (Note that this is applicable to any assembly,

not just Linux or NASM).
4. Next we create the file: notice the file permissions in Linux (you can find out more about them by reading the creat syscall's manpage ±

yes, it is spelled "creat"). Since we want to be smart with Linux, why not also include some error checking while we're at it? We can

easily check if the creat syscall failed by checking the value it returned: if it's less than 0 then something broke, so skip the writing part
and exit with the error code.

5. Now we write 'Hello world!' to the file using the file descriptor (called file handle in DOS) returned by the creat syscall. Then we close
it, and exit.

Not so hectic at all.

On the side: If you look at the DOS service functions (int 21h), you may notice that there are quite a few that have exactly the same names as their Unix/Linux
syscall counterparts ± even though DOS is quite unlike Unix and very much incompatible with it. For example: DOS 3Ch = CREAT, Unix 08h = creat and DOS
43h = CHMOD, Unix 0Fh = chmod. Mmm... so where did these DOS functions get their names? From Unix of course! What is really amusing is that Microsoft
never bothered to spell "CREAT" right ± they kept it exactly like Unix's "creat".

25/03/12 Linux Assembly Tutorial - Quickstart

5/5www.cin.ufpe.br/aif817/arquivos/asmtut/quickstart.html

5. Compiling and Linking

To compile a program with NASM:

QDVP -I HOI pUogUam.DVP

To link the object file produced by NASM into an executable:

OG -V -R pUogUam pUogUam.R

The -I HOI option tells NASM to compile this in Linux ELF format. This option is necessary because NASM can compile many different
formats (even DOS .COM files if you're so inclined).

The -V option for Ld tells it to strip all symbol information (which you don't need) from the output file. -R pUogUam specifies the name of the

output executable file. If you leave it out it will always be D.RXW

Appendi[A. References

Writing a useful program with NASM

The NASM documentation
Introduction to UNIX assembly programming

Linux Assembler Tutorial by Robin Miyagi
Section 2 of the manpages

