25/03/12

Linux Assembly Tutorial - Quickstart

Linux Assembly Tutorial

Quickstart

Written by: Derick Swanepoel (derick@maple.up.ac.za)

Version 1.0 - 2002-04-19, 01:50am

Download as zipfile

Jup Step-by-Step Guide

Contents

1. Intro

2. Comparison of a Linux assembly program and a DOS assembly program

3. More About Linux System Calls

4. Command Line Arguments and Writing to a File

5. Compiling and Linking

1. Intro

This Quickstart aims to show you the ropes on Linux assembly as quickly as possible. Basically, it just points out the differences between a
Linux and DOS assembly program with just enough explanation not to confuse you. For more detail and why things are the way they are, see

the Step-by-Step Guide.

2. Comparison of a Linux assembly program and a DOS assembly program

Linux

SECTION .DATA
hello: db
helloLen: equ $-hello
SECTION .TEXT

GLOBAL _START

_START:

'Hello world!'
eax, 4 ;
ebx,1 ;
ecx,hello ;
edx,hellolLen ;
80h ;

; Write
mov
mov
mov
mov
int

; Terminate program

mov eax, 1l ;
mov ebx, 0 ;
int 80h ;

Compiling: nasm -f elf hello.asm
Linking: 1d -s -o hello hello.o

'Hello world!"',10

to the screen
'write' system call
file descriptor 1 =
string to write
length of string to write
call the kernel

screen

'exit' system call
exit with error code 0
call the kernel

Lets compare each part in the two programs:

DOS

DOSSEG
.MODEL LARGE
.STACK 200h

.DATA
hello
helloLen db 14
.CODE
ASSUME CS:@CODE,

START:
mov ax,@data
mov ds,ax

; Write
mov ah,0%h

mov dx,offset hello
int 21h

; Terminate program
mov ah, 4Ch
mov ax, 0
int 21h
END START

Conmﬂmgitasm hello.asm
Linking: t 1ink hello.obi

'Hello world!'

db 'Hello world!',10,13,

’

’

DS:@DATA

to the screen

'print' DOS ser
string to write
call DOS servic

DOS serv
exit with error
call DOS servic

'exit!

o The first three lines of the DOS program doesn't exist in the Linux program. Linux is a 32-bit protected mode operating system, and in
32-bit assembly there are no memory models. Also, all segment registers and paging have already been set up to give you the same

www.cin.ufpe.br/~if817/arquivos/asmtut/quickstart.html

1/5

25/03/12 Linux Assembly Tutorial - Quickstart

32-bit 4Gb address space, so you can ignore all segment registers. It is also not necessary to specify the stack size.
e Some differences between the Linux NASM structure and DOS TASM/MASM structure:

o The data / code sections are defined by writing SECTTON .DATA instead ofjust . DATA

o Linux NASM allows us to declare constants with the £ou instruction, for example:
bufferlen: equ 400
So whenever it sees buf ferlen in your program, it will substitute the value '400'. That means you don't have to put square
brackets around bufferlen to get its actual value. (Note: this only works for constants. The values of all other variables are
still obtained using [varname])

o Another neat NASM feature is the '$' token: when NASM sees an '$' it substitutes it with the assembly position at the beginning
of'that line. So what does this mean? This gives us an easy way to define the length of a string we've just declared. After
declaring a variable containg a string

hello: db 'Hello world!',10
we can put on the next line
helloLen: equ $-hello

This will make helloLen equal to (position at beginning of line) - (position of he110). If you look at those two lines in the
program, you can see this will give us the length of 'He11lo worild!', 10, whichis 13 (12 characters plus the linefeed
character).

Ifthis doesn't make sense, don't worry, just know that this is an easy way to define the length of a string.

o Strings you want to print out in Linux don't need to be $-terminated like in DOS. Instead, you supply the length of the string as
one of the parameters. (This is much more flexible, because you can now print out only a part of the string, and your computer
won't blow up when you forget the $ like in DOS.)

o To print out a string with a newline at the end, you only need to need to add a linefeed character (10) to the end of the string in
Linux. In DOS, you need both a linefeed and a carriage return (13).

o The .copE section is called . TEXT in Linux

o Right at the beginning of the . TExT section, there must be a declaration specifying the entry point of the program: GLoBAL
_START

o There is no AssumME directive like in the DOS program, because we don't need to worry about segments.

o The program's entry point is called whatever you declared it to be at the beginning of the . TEXT section (in our case it's
_sTART). Also, the Linux program doesn't end with ENp _sTaRT like the DOS program.

o The first two lines after the sTART: label in the DOS program make sure that the DS register points to the data segment. Once again,
Linux doesn't need this because the segments are taken care of for us.

e In 16-bit DOS assembly, we use the normal 16-bit registers AX, BX, CX, DX etc. In 32-bit Linux assembly we use the 32-bit
extended registers EAX, EBX, ECX, EDX etc. (Note that there is no such thing as EAL. AX is the low 16 bits of EAX, while AH is
the high 8 bits of AX and AL is the low 8 bits of AX.)

® InDOS, when we want the memory address of a variable to be put in a register, we must use offset to point to the offset of the
variable in the correct segment (mov dx, offset hello). In Linux, we don't need offset because it's implied - we just write mov
ecx,hello

® InDOS, we call int 21h to use a DOS service like printing out a string. In Linux, you use system calls, which are accessed by calling
int 80h (the kernel interrupt). In DOS the function number (eg. 9 to print a string) always goes in AX; in Linux it always goes in
EAX. As in the example, if we want to print out a string we use the "write" syscall, which is function number 4. We put '4' in EAX, the
number of the file descriptor to write to in EBX (in this case 'l', the screen), the location of the string to print in ECX (mov
ecx,hello), and the length of the string in EDX (mov ecx, helloLen). Then we call the kernel interrupt (int 80h), and voila!

e To exit a Linux program, we use the exit syscall (function 1, so we write mov eax, 1). We want to exit with an exit code of 0 (no
error), so we put 0 in EBX. Then we call the kernel with int 80h again, and we're done.

In this case it looks like it's more work than in DOS, but when it comes to creating, reading and writing files, Linux syscalls are much easier
to use than their DOS counterparts.

3. More About Linux System Calls

There are six registers that are used for the arguments that a system call takes. The first argument goes in EBX, the second in ECX, then
EDX, ESI, EDI, and finalty EBP, if there are so many. If there are more than six arguments, EBX must contain the memory location where
the list of arguments is stored.

Allthe syscalls are listed in /usr/include/asm/unistd.h, together with their numbers. However, for your convenience you can simply
find them in this Linux System Call Table, together with some other useful information (eg. what arguments they take). The syscalls are fully
documented in section 2 of the manual pages, so you can just go man 2 write to find out what the write syscall does, what arguments it
takes, etc.

4. Command Line Arguments and Writing to a File

www.cin.ufpe.br/~if817/arquivos/asmtut/quickstart.html

2/5

25/03/12

Linux Assembly Tutorial - Quickstart

(we already have the filename in ebx)

(rw_rw rw)

there was an

oops,

so skip the writing. Otherwise call the filewrite "procedure"

Linux
section .data
hello db 'Hello, world!',10 ; Our dear string
hellolLen equ $ - hello ; Length of our dear string
section .text
global _start
_start:
pop ebx ; argc (argument count)
pop ebx ; argv[0] (argument 0, the program name)
pop ebx ; The first real arg, a filename
mov eax, 8 ; The syscall number for creat()
mov ecx,00644Q ; Read/write permissions in octal
int 80h ; Call the kernel
; Now we have a file descriptor in eax
test eax,eax ; Lets make sure the file descriptor is valid
Js skipWrite ; If the file descriptor has the sign flag
; (which means it's less than 0)
call fileWrite
skipWrite:
mov ebx,eax ; If there was an error, save the errno in ebx
mov eax, 1 ; Put the exit syscall number in eax
int 80h ; Bail out

; proc fileWrite
fileWrite:

mov

mov

mov
mov
int

mov
int
ret

; endp fileWrite

DOSSEG
.MODEL LARGE
.STACK 200h

.DATA
filename
filehandle
hello
helloLen

.CODE
ASSUME CS:@CODE,

START:
mov
mov

mov
int
mov
mov
add
mov
inc
mov
mov
mov

rep

mov

www.cin.ufpe.br/~if817/arquivos/asmtut/quickstart.html

- write a string

ebx,eax ;
eax, 4 ;
ecx,hello ;
edx,helloLen ;
80h

eax, 6 ;
80h

db 14 dup (0)
dw

db 'Hello World!',

db 12

DS:@DATA

AX, @DATA
ES, AX

ah, 62h
21h

ds, bx
bx,81lh

to a file

sys creat returned file descriptor into eax,

sys _write
ebx is already set up

We are putting the ADDRESS of hello in ecx

This is the VALUE of hellolLen because it's a constant

sys_close

DOS

10,13,'$"

; Point ES to the data segment for now

; Get the PSP

now move into ebx

(ebx already contains file descriptor)

; Starting at the first printable character

Get address of last character

; Copy the first argument into the data segment

bl, byte ptr [ds:80h] ;

cl, byte ptr [ds:80h] ; Also put it in CL

cl

[ds:bx], word ptr O ; Null terminate the argument
si,81lh

di, 0

movsb ; into the filename variable
AX, @DATA

(defined with equ

3/5

25/03/12 Linux Assembly Tutorial - Quickstart

mov DS, AX ; Point DS to the data segment, like normal
call fileCreate
call fileWrite
call fileClose
mov AX,4C00h
int 21h ; Bye-bye!
END START

proc fileCreate

mov ah, 3Ch ; Creat DOS service (yes, it is called 'creat')
mov cx,0 ; File attributes

mov dx,offset filename ; Put ADDRESS of filename in DX

int 21h

mov [filehandle], ax ; File handle is returned in AX, put in a variable
ret

endp fileCreate

proc fileClose

mov ah, 3Eh

mov bx, [filehandle]
int 21h

ret

endp fileClose

proc fileWrite

mov ah, 40h

mov bx, [filehandle]

mov dx, offset hello ; ADDRESS of string to be written

XOor cx, Cx ; If I don't do this, things blow up in my face
mov cl, [helloLen] ; VALUE of length of string to be written

int 21h

ret

endp fileWrite

As you can see, the Linux program is much simpler than the DOS one (40 lines in Linux, with liberal commenting, vs. 66 for DOS).
Everything makes sense in the Linux program, whereas a lot of the stuff in the DOS one still makes me go "Huh?" Lets check out the
differences:

1. Firstly, getting the command line arguments of the Linux program is way easier than the DOS one. All the arguments are sitting on the
stack when the program starts, so all we need to do is pop them off. The first value popped off is the number of arguments (called
arge in C/C++), the second is the name of the program, and finally we get the actual command line arguments. Coolest of all, when we
pop the command line argument off the stack, it actually puts the address of that string in EBX, so once again no segment/offset
missions.

This just took us an entire 3 instructions - compared to the 14 insane ones for the DOS program! No messing around with PSPs and
stuff - simple, isn't it?

2. NB: NASM doesn't have procedures like you may have used in TASM. That's because procedures don't really exist in assembly:
everything is a label. So if you want to write a "procedure" in NASM, you don't use proc and endp, but instead just put a label (eg.
filewrite:) at the beginning of the "procedure's" code. If you want to, you can put comments at the start and end of the code just to
make it look a bit more like a procedure (like I did in the example).

3. NB2: When you jump to a label with Jup or any of the jump instructions, you don't ReT from it. Never! If you're lucky it won't
explode on you, but it's definitely not right. The only time you ReT is when you've called the "procedure" with carz. Otherwise you're
just going to have to jump around like a kangaroo weaving a spaghetti code masterpiece. (Note that this is applicable to any assembly,
not just Linux or NASM).

4. Next we create the file: notice the file permissions in Linux (you can find out more about them by reading the creat syscall's manpage —
yes, it is spelled "creat"). Since we want to be smart with Linux, why not also include some error checking while we're at it? We can
easily check if the creat syscall failed by checking the value it returned: if it's less than O then something broke, so skip the writing part
and exit with the error code.

5. Now we write 'Hello world!" to the file using the file descriptor (called file handle in DOS) returned by the creat syscall. Then we close
it, and exit.

Not so hectic at all.

On the side: If you look at the DOS service functions (int 21h), you may notice that there are quite a few that have exactly the same names as their Unix/Linux
syscall counterparts — even though DOS is quite unlike Unixand very much incompatible with it. For example: DOS 3Ch = CREAT, Unix 08h = creat and DOS
43h = CHMOD, Unix 0Fh = chmod. Mmm... so where did these DOS functions get their names? From Unix of course! What is really amusing is that Microsoft
never bothered to spell "CREAT" right — they kept it exactly like Unix's "creat".

www.cin.ufpe.br/~if817/arquivos/asmtut/quickstart.html 4/5

25/03/12 Linux Assembly Tutorial - Quickstart

5. Compiling and Linking
To compile a program with NASM:

nasm -f elf program.asm
To link the object file produced by NASM nto an executable:
ld -s -o program program.o

The -£ e1£ option tells NASM to compile this in Limux ELF format. This option is necessary because NASM can compile many different
formats (even DOS .COM files if you're so inclined).

The -s option for Ld tells it to strip all symbol information (which you don't need) from the output file. -o program specifies the name of the
output executable file. If you leave it out it will always be a . out

Appendix A. References

Writing a useful program with NASM
The NASM documentation

Introduction to UNIX assembly programming

Linux Assembler Tutorial by Robin Miyagi
Section 2 of the manpages

www.cin.ufpe.br/~if817/arquivos/asmtut/quickstart.html 5/5

