25/03/12 nasm x86 Assembly

nasm x86 Assembly Quick Reference ("' Cheat
Sheet'")

Instructions Stack Frame
Mnemonic | Purpose Examples (example without ebp or local
variables)
mov Move data between registers, load immediate ||mov C P
dest,src ||data nto registers, move data between eax,4 ; ontents omesp
registers and memory. Load caller's variables [espt12]
;z::sz;t Argument 2 [esp+8]
mov Argument 1 [espt4]
ebx,eax ; ||| Caller Return [esp]
Copy eax ||| Address
nto ebx
Flg‘;] ebx my sub: # Returns first argument
_ Col;y mov eax,[esp+4]
ebx to ret
:;e;rlgg (example when using ebp and
123 two local variables)
Contents (off ebp |[off es
call func ||Push the address of the next mstruction and ||call P P
start executing func. For local functions, you ||print it caﬂ§r's [ebp+16]|([espt24]
don't have to say anything special. For variables
functions defined in C/C++, say "extern func" Argument ||[ebp+12]||[esp+20]
first. 2
ret Pop the return program counter, and jump ||ret Argument||[ebp+8] ||[esp+16]
there. Ends a subroutine. 1
add dest=dest+src add Caller [ebp+4] |[[esp+12]
dest,src eax,ebx ; Return
Add ebx Address
to eax
Saved [ebp] [espt8]
mulsrc ||Multiply eax and src as unsigned integers, and ||mul ebx ; ebp
put the result in eax. High 32 bits of product |[Multiply
go into edx. eax by ebx Local [ebp-4] || [esp+4]
variable 1
mul dest=dest*src mul ecx,3
dest.src Local [ebp-8] ||[esp]
’ variable 2
idiv bot ||Divide eax by bot. Treats edx as high bits mov
| .
above eax, so set them to zero first! eax,73; my sub2: # Re frst
top = eax+(edx<<32) top areument
eax = lop/bot frov guusllrlleb # Prologue
edx = top%bot ecx,10; P p &

www.cs.uaf.edu/2010/fall/cs301/support/x86/index.html

13

25/03/12

nasm x86 Assembly

bot mov ebp, esp
mov edx,0 ||| mov eax, [ebp+8]
idiv ecx mov esp, ebp # Epilogue
jmp label ||Goto the instruction label.. Skips anything |[jmp pop ebp
else in the way. post_mem ||| et
post mem:
cmp a,b ||Compare two values. Sets flags that are used ||[cmp
by the conditional jumps (below). eax,10
jl label Goto label if previous comparison came out ||jl
as less-than. Other conditionals available are: ||loop _start
jle (<=), je (=), jge (>=), jg (>), jne (I=), ||; Jump if
and many others. Declare your label witha |[eax<10
semicolon beforehand, just like in C/C++:
"label".
pushsrc ||Insert a value onto the stack. Useful for push ebp
passing arguments, saving registers, etc.
pop dest ||Remove topmost value from the stack. pop ebp
Equivalent to "mov dest,[esp] add esp,4"
Constants, Registers, Memory Registers

"12" means decimal 12; "0xF0" is hex. "some function" is the address
of'the first nstruction of a label

Memory access (use register as pointer): "[esp]". Same as C "*esp".
Memory access with offset (use register + offset as pointer): "[esp+4]".
Same as C "*(esp+4)".

Memory access with scaled index (register + another register * scale): "
[eax + 4*ebx]". Same as C "*(eaxt+ebx*4)".

Subroutines are basically just labels. Here's how you declare labels for
the linker:

e 'extern some_function;" declares some function as being outside
the current file. You'll get a "symbol undefined" compile error if
you call or jump to a label you never declare. In C++, be sure to
declare the corresponding function as being 'extern "C"!

e '"globalmy function;" exposes the label my function so it can be
called from outside. (In MASM, it's "PUBLIC my function").
Again, your C++ prototype better be 'extern "C"!

Differences with C:

e "010" means decimal ten in NASM, but *octal* eight in C/C++!
Write octal by ending with letter 'o', like "100".
¢ InNASM, you can write binary constants by ending with the

www.cs.uaf.edu/2010/fall/cs301/support/x86/index.html

esp is the stack pointer
ebp is the stack frame pointer
Return value in eax
Arguments are on the stack
Free for use (no save needed):
eax, ecx, edx
Must be saved:
ebp, esp, esi, edi
ebx must be saved in a shared
library, but is otherwise free for
use.
8 bit: ah (high 8 bits) and al (low
8 bits)
16 bit: ax
32 bit: eax
64 bit: rax

2/3

25/03/12 nasm x86 Assembly
letter 'b', like "mov eax,00101111b;".
o "[+(7<<13)/15"is evaluated at compile time, and it's a constant.
"3+eax" can't be evaluated m NASM--it's not a constant.

Pretty much this same syntax is used by NASM (portable x86 assembler for Windows/Linux/whatever),
YASM (adds 64-bit support to NASM), MASM (the Microsoft/Macro Assembler), and the official Intel
documentation below. See the NASM documentation or MASM documentation for details on constants,
labels and macros. Paul Carter has a good x86 assembly tutorial using the Intel syntax. The other, nastier
syntax out there is the AT&T/GNU syntax, which I can't recommend. The machine code in all cases is
identical

The Intel Software Developer's Manuals are incredibly long, boring, and complete--they give all the nitty-
gritty details. Volume 1 lists the processor registers in Section 3.4.1. Volume 2 lists all the x86 instructions in
Section 3.2. Volume 3 gives the performance monitoring registers in Section. For Linux, the System V ABI
gives the calling convention on page 39. Also see the Intel hall of fame for historical nfo. Sandpile.org has a
good opcode table.

Ralph Brown's Interrupt List is the aging but definitive reference for all PC software interrupt functions. See
just the BIOS interrupts for interrupt-time code.

O. Lawlor, ffosl@uaf.edu
Up to: Class Site, CS, UAF

www.cs.uaf.edu/2010/fall/cs301/support/x86/index.html 3/3

