

CEManTIKA: A Domain-Independent
Framework for Designing Context-Sensitive

Systems

by

Vaninha Vieira dos Santos

D.Sc. Thesis

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, OCTOBER / 2008

 UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

VANINHA VIEIRA DOS SANTOS

CEManTIKA: A DOMAIN-INDEPENDENT FRAMEWORK

FOR DESIGNING CONTEXT-SENSITIVE SYSTEMS

Thesis presented to the Graduate

Program in Computer Science of the

Universidade Federal de Pernambuco as

a partial fulfillment of the requirements

for the degree of Doctor of Science

(D.Sc.) in Computer Science.

 ADVISOR: ANA CAROLINA SALGADO

 CO-ADVISOR: PATRICIA AZEVEDO TEDESCO

RECIFE, OCTOBER / 2008

Vieira dos Santos, Vaninha
CEManTIKA: A Domain-Independent

Framework for Designing Context-Sensitive
Systems. / Vaninha Vieira dos Santos – Recife:
O autor, 2008.

viii, 101 p. : il., fig., tab.

Tese (doutorado) – Universidade Federal de

Pernambuco. CIN. Ciência da Computação,
2008.

Inclui bibliografia e apêndice.

1. Sistemas Sensíveis ao Contexto. 2.

Modelagem de Contexto. 3. Gerenciamento de
Contexto. 4. Metamodelagem. 5. Processo de
Software. I. Título.

 371.334 CDD (22.ed.) MEI2008-072

I dedicate this work to my mother, Florisa,

who was always there for me, in good times

and in bad times; and to my father, José

Milton (in memorian), who taught me that

nothing is impossible and that we should

never fear change.

“Não me entrego sem lutar

Tenho, ainda, coração

Tudo passa, tudo passará...

E nossa estória não estará pelo avesso

Assim, sem final feliz

Teremos coisas bonitas para contar...

E até lá, vamos viver!

Temos muito ainda por fazer

Não olhe para trás

Apenas começamos!

O mundo começa agora...

Apenas começamos!”

– Legião Urbana

 i

Acknowledgements

I ask you to forgive me, foreign readers, but I do not
feel comfortable to write this section in English, so I
will thank people in our usual communication
language. Since context is a fundamental feature to
support communication, I increase thankings with
some contextual knowledge about the person
participation in the whole doc thing to explain why
these amazing people should be thanked for.

Ainda me lembro, como se fosse hoje, como foi tomar a decisão de ingressar no
doutorado. O ano era 2003, tinha acabado de terminar o mestrado [Vieira,
2003], e ainda estava sob o efeito da adrelina pós defesa, do êxtase de ter
realmente conseguido, e da vaidade de receber elogios e incentivos diversos de
fontes heterogêneas dizendo que eu devia simplesmente “continuar”. E pareceu
realmente natural: porque não “continuar”? Afinal era só isso, não é mesmo?
Dar continuidade a algo? Não deveria ser tão difícil assim, vamos! E inebriada
com o espírito do “vamos lá” tomei a importante decisão. Já a decisão de trocar
o Rio por Recife, foi um pouco mais difícil. Mas também foi tomada com a
mesma confiança do “porque não?” Novo programa, novas orientadoras, novos
desafios. Ah, vai ser divertido!

Bem, divertido não foi, devo confessar, e as agruras vivivas nesse período
renderiam facilmente um livro (hey, porque não?). Mas não posso deixar de
reconhecer que muitas pessoas tornaram essa jornada menos difícil, mais
prazerosa de seguir, ou pelo menos mais enriquecedora com muita troca de
conhecimento. E é a essas pessoas que eu gostaria de agradecer aqui.

A começar, por uma mulher a quem aprendi a amar e a respeitar muito
nesse período de convivência: a minha orientadora e amiga Ana Carolina
Salgado. Ela foi o meu primeiro contato acadêmico com a UFPE, em 2000
(embora acho que ela mesma nem se lembre), quando fazia entrevista para o
mestrado. Quis o destino que voltássemos a nos encontrar para uma jornada
mais longa e mais intensa (e coloca intensa nisso, hein Carol? Como esquecer
aquela noite na emergência do Hospital Saint-Antoine, que mais nos dava a
sensação de estarmos na Restauração?). Carol, gostaria de te agradecer por
tudo, tudo mesmo. Você, desde o início, demonstrou confiança em mim e me

ii

deu carta branca para o que quer que eu quisesse fazer. Se não fiz mais,
certamente não foi por falta de apoio seu. Obrigada pelas oportunidades, pelo
carinho, pelos conselhos, pelos puxões de orelha (sempre bem vindos,
acredite!), pelos bons vinhos que serviam de inspiração (☺), e muitíssimo
obrigada pelo apoio inestimável dado em um momento realmente difícil da
minha vida, e por estar lá por mim. Sem palavras para agradecer, Carol: Muito
obrigada mesmo!

Outra pessoa absolutamente fundamental para este trabalho, a quem tenho
muito a agradecer, é a minha orientadora e amiga Patricia Tedesco. A primeira
lembrança que tenho de Paxi eram os comentários nas revisões de texto
(“pelamordedeus, minha filha, o que você quer dizer aqui?”). E que revisões!
Críticas e comentários sempre instrutivos, construtivos, visando tornar idéias e
texto melhores e mais claros. Além disso, a sua sala sempre estava aberta para
sessões de terapia ou para sessões de discussões filosóficas infinitas e
recursivas sobre: “o que é contexto?”, “o que é foco?”, “o que é situação?”.
Fora as reuniões de orientação inovadoras, usando a mesa do bar como bureau,
de onde saíram algumas idéias importantes para o trabalho. Paxi, sem palavras
para agradecer todo o enorme apoio recebido, os incentivos nos momentos
difíceis, as broncas e críticas nos momentos certos, e a confiança transmitida
todo o tempo de que tudo vai terminar bem.

Além das minhas orientadoras, muitas outras pessoas me apoiaram na
parte acadêmica do trabalho, a quem gostaria também de agradecer:

• A Patrick Brézillon, pour avoir accepté l’orientation de ce travail
pendant l’étage de doctorat au LIP6, pour l’échange de connaissances
sur le concepte de contexte, pour l’opportunité d’orienter des
étudiants du master 1, et pour tout l’aide et support que j’ai reçu
pendant mon séjour à Paris. Merci beaucoup !

• Aos professores Marcos Borges, Carlos Ferraz e Nelson Rosa, pelos
valorosos comentários e sugestões oferecidos na defesa do exame de
qualificação e proposta de tese, e por terem aceito participar
novamente na defesa da tese; e ao professor Géber Ramalho, por ter
aceito participar dessa banca;

• À professora Cláudia Werner, presença importante na minha
formação acadêmica, com quem aprendi os primeiros passos do que é
ser uma pesquisadora. Eterna fonte de inspiração e grande responsável
pelo meu ingresso no doutorado, com seus incentivos e carta de
recomendação. Obrigada por tudo, Cláudia, e por ter aceito fazer parte
dessa banca! Sua participação é realmente especial para mim!!;

• Aos professores do CIn, que ampliaram meu conhecimento com
valorosas interações, durante as disciplinas, em sessões informais de
“tira-dúvida” e nos vários SAAP. Em especial a: Fred, Robson,
Anjolina, Fernando, Valéria, Paulo Gonçalves, Augusto e Flávia;

• A Helô Petry, pelas interações sobre uso e representação de contexto e
pela colaboração do ICARE neste trabalho;

 Acknowledgements iii

• Aos alunos que tive a oportunidade de co-orientar em trabalhos de
conclusão de curso e iniciação científica: Diego Zarate, Jorge Ferraz,
Daphné Pertsekos, Aymen Lachiheb e Allan Souza;

• Aos amigos do doutorado, parceiros no sofrimento do dia a dia, pelas
discussões sobre tese, metodologia de pesquisa, e as especificidades
de contexto, ontologias e afins, em especial a Rosalie, Cadoca,
Damires, Joel, Berna, Juliana, Soninha e Sandra;

• Aos colegas do CIn, com quem pude travar ótimos debates e realizar
trabalhos interessantes: Paulo Maciel, Fábio Ávila, Patrícia Muniz,
André Felipe, Marcelo, Berthônio, Flávio, Nancy e Carla Taciana;

• Aos amigos da COPPE-UFRJ que, mesmo de longe, continuam sempre
perto, quando ajuda faz-se necessária, em especial a Jonice Oliveira
(Jow, sem noção todo o apoio que você me deu, sempre de forma
totalmente incondicional, muito obrigada!), e a Leonardo Murta,
pelas diversas sessões de tira-dúvida por email;

• Ao pessoal de apoio do CIn e da secretaria da pós-graduação, pelo
apoio (☺), em especial a: Lília, Help, Hilda (e seu precioso
combustível negro), Melo, e cia ltda... ;

• Às minhas professoras de francês, que tornaram possível a realização
do meu grande sonho de viver um tempo nas terras de Napoleão e na
cidade luz: Carmen Mendonça, Muriel e Carminha;

• Aos órgãos de fomento que me apoiaram em diferentes momentos
dessa jornada: CAPES, CNPq e UFBA;

• Ao Centro de Informática e à Universidade Federal de Pernambuco,
por toda a infraestrutura que viabiliza que tudo aconteça.

Obviamente, um doutorado não é realizado apenas nas dependências de
um ambiente acadêmico. Sem o apoio familiar e dos amigos, o horizonte fica
negro demais e torna-se praticamente impossível prosseguir. Assim, agradeço:

• A Kilza, pelo apoio constante, desde o primeiro instante em que vim
para o Recife, sempre presente, dando força, incentivo, motivação,
oferecendo alegria para celebrar as conquistas, e um ombro amigo,
quando as lágrimas eram inevitáveis;

• A minha mãe e ao meu pai (in memorian), pelo conjunto da obra, por
terem me feito quem eu sou, pelas orientações fundamentais que me
ensinaram a valorizar as pessoas acima de tudo, a não desejar o mal, e
a sempre lutar pelo que eu quisesse. Se hoje sou alguém de quem
vocês se orgulham, sem dúvida a base foram vocês que construíram;

• A minha grande, imensa, família, irmãs, irmãos, cunhadas, cunhados,
sobrinhas, sobrinhos, minhas queridas avós (in memorian), aos que
estiveram mais perto, aos que por causa da vida estão mais longe, mas
a vocês que fazem a palavra família ter um sentido todo especial para
mim; durante esse exílio acadêmico, sem dúvida é do aconchego do
dia a dia da minha família que sinto mais falta. Amo muito vocês! Em

iv

especial, gostaria de agradecer ao meu irmão Venceslau José,
financiador do meu primeiro pedido de bolsa de estudos, aos 5 anos;

• A minha querida família recifense, que me apoiou com carinho, afeto
e aconchego, e que levarei comigo para sempre: Tia Lyra, Diana,
Terson e Thaís;

• Aos amigos de perto e de longe, de quem sempre ouvi palavras de
incentivo e conforto durante diversos momentos dessa jornada, e em
especial a alguns amigos muito queridos: a Marco Sacilotti, ou Marco
Aurélio (pela amizade, carinho, inesquecíveis sessões de degustação
dos melhores vinhos e comida que já provei na vida, os muitos
ensinamentos, pour les bequilles, e por ter me adotado como “filha
postiça” durante meu séjour en France); a Kelli Faria (sem dúvida
devo muito a você, sua presença foi muito intensa durante o doutorado
e sua ajuda sempre muito valiosa, obrigada!); a Marine Varret (pour
ton support fondamental pendant mon séjour en France et pour ton
amitié); a Asif (pour ton support au CFB et les séances de thè au
caramel avec des discussions filosophiques sur le monde et les êtres
humains); e a Keila (minha amiga, irmã, parceira mais certa das horas
mais incertas e com quem sei que posso e sempre poderei contar).

Poderia passar dias agradecendo, acho incrível como as pessoas têm
importância na nossa vida, mesmo quando sua passagem é rápida. Em situações
intensas, como um doutorado, essas presenças ganham um peso gigante. Assim,
mesmo àqueles que por problemas de memória eu tenha esquecido de citar,
deixo eternizado o meu muito, muitíssimo, obrigado!

Não poderia deixar de agradecer nesse momento, também, às forças
espirituais superiores às quais sempre recorri nos momentos difíceis e, algumas
vezes, esqueci nos momentos alegres. Deus, Jeová, Jesus Cristo, Senhor do
Bonfim, Oxalá, Xangô, Yansã, Nossa Senhora, Anjo da Guarda, Alá, Buda, não
importa o nome clamado, o fato é que sem fé tudo fica mais difícil e obscuro.
Sempre que precisei e implorei por ajuda, e acreditei que ela viria, ela
realmente veio, de alguma forma. Então: MUITO OBRIGADO!

 v

Resumo

Em uma época em que os usuários precisam processar uma quantidade cada vez
maior de informação e executar tarefas cada vez mais complexas em um
intervalo menor de tempo, a introdução do conceito de contexto em sistemas
computacionais torna-se uma necessidade. Contexto é definido como “as
condições interelacionadas em que alguma coisa existe ou ocorre”. Contexto é o
que viabiliza a identificação do que é ou não relevante em uma dada situação.
Sistemas sensíveis ao contexto são aqueles que utilizam contexto para prover
informações ou serviços relevantes para a execução de uma tarefa. Projetar um
sistema sensível ao contexto não é trivial, uma vez que é necessário lidar com
questões relacionadas a que tipo de informação considerar como contexto, como
representar essas informações, como podem ser adquiridas e processadas e
como projetar o uso do contexto pelo sistema. Embora existam trabalhos que
tratem desafios específicos envolvidos no desenvolvimento de sistemas
sensíveis ao contexto, a maioria das soluções é proprietária ou restrita a um
determinado tipo de aplicação e não são facilmente replicáveis em diferentes
domínios de aplicação. Além disso, um outro problema é que projetistas de
“software” têm dificuldade em especificar o que exatamente considerar como
contexto e como projetar a sua representação, gerenciamento e uso. Esta tese
propõe um “framework” de apoio ao projeto de sistemas sensíveis ao contexto
em diferentes domínios, o qual é composto por quatro elementos principais: (i)
uma arquitetura genérica para sistemas sensíveis ao contexto, (ii) um
metamodelo de contexto independente de domínio, que guia a modelagem de
contexto em diferentes aplicações; (iii) um conjunto de perfis UML que
considera a estrutura do contexto e do comportamento sensível ao contexto; e
(iv) um processo que direciona a execução de atividades relacionadas à
especificação do contexto e ao projeto de sistemas sensíveis ao contexto. Para
investigar a viabilidade da proposta, desenvolvemos o projeto de duas
aplicações em diferentes domínios. Para uma destas aplicações, foi criado um
protótipo funcional, o qual foi avaliado por usuários finais.

Palavras-chave: Sistemas Sensíveis ao Contexto, Modelagem de Contexto,
Gerenciamento de Contexto, Metamodelagem, Processos de Software.

 vi

Abstract

In times when users need to process an ever increasing amount of information
to perform more complex tasks in less time, the introduction of the concept of
context in computer systems is becoming a necessity. Context is defined as “the
interrelated conditions in which something exists or occurs”. Context is what
underlies the ability to identify what is or is not relevant in a given situation.
Context-Sensitive Systems (CSS) are those that use context to provide
information and/or services relevant to a task execution. Designing a CSS is not
a trivial task, since it is necessary to deal with issues associated to: which kind
of information should be considered as context, how to represent this
information, how it can be acquired and processed and how to project the
context usage into the application. Although some works address specific
challenges involved in developing CSS, most solutions are proprietary or
restricted to specific application domains, and are not easily replicated to
different applications. Moreover, another problem is that software designers
lack an understanding about what exactly to consider as context, and how to
represent it and design their applications to support it. This thesis proposes a
framework to support the design of CSS in different domains. It is composed by
four main elements: (i) a generic context management architecture; (ii) a
domain-independent context metamodel, which guides context modeling in
different applications; (iii) a set of UML profiles to account for context
structure and context-sensitive behavior; and (iv) a context process with
guidelines that cover activities related to context specification and CSS design.
To investigate the feasibility of the proposal, we developed the design of two
applications in different application domains. For one of those applications a
functional prototype was implemented and evaluated by final users.

Keywords: Context-Sensitive Systems, Context Modeling, Context
Management, Metamodeling, Software Process.

 vii

Table of Contents

1 INTRODUCTION... 1
2 COMPUTATIONAL CONTEXT .. 7

2.1 CONTEXT AND CONTEXTUAL ELEMENTS ... 7
2.1.1 Definitions .. 8
2.1.2 Representational versus Interactional Views... 9
2.1.3 Context Classification in Three Types of Knowledge 10

2.2 CONTEXT-SENSITIVE SYSTEMS ... 12
2.2.1 Definitions .. 12
2.2.2 Different Views on Designing CSS.. 13
2.2.3 Usability Issues in CSS .. 15

2.3 RESEARCHES ON CONTEXT IN COMPUTER SCIENCE .. 17
2.3.1 Context in AI ... 17
2.3.2 Context-Aware Computing ... 17
2.3.3 Context Support on Social Interactions... 18
2.3.4 Context Role in Content and Information Manipulation............................... 18
2.3.5 Software Engineering for CSS .. 19

2.4 CONCLUDING REMARKS ... 19
3 CONTEXT MODELING AND SUPPORT ON CSS DESIGN 21

3.1 TECHNIQUES FOR REPRESENTING CONTEXTUAL INFORMATION 22
3.1.1 Key-value pairs ... 22
3.1.2 Markup schemas .. 23
3.1.3 Topic maps .. 23
3.1.4 Ontologies... 24
3.1.5 Graphical models .. 25
3.1.6 Discussion... 25

3.2 MODELING CONTEXT DYNAMICS WITH CONTEXTUAL GRAPHS 27
3.3 APPROACHES FOR SUPPORTING CONTEXT MODELING AND CSS DESIGN 30

3.3.1 Software Engineering Framework for CSS .. 30
3.3.2 The SeCoM-SCK-POCAp Approach .. 33
3.3.3 MDD-Based Approaches for CSS.. 36
3.3.4 Other Approaches .. 38

3.4 CONCLUDING REMARKS ... 40
4 A FRAMEWORK FOR DESIGNING CSS .. 42

4.1 OUR WORKING DEFINITION OF CONTEXT .. 43
4.2 CLASSIFICATION OF THE TASKS INVOLVED IN CSS DEVELOPMENT.......................... 44
4.3 DEALING WITH CONTEXT DYNAMICS .. 47

4.3.1 CK Construction .. 47
4.3.2 PC Building... 49
4.3.3 Behavior Triggering .. 49
4.3.4 Incremental Knowledge Acquisition ... 50

viii

4.4 CONTEXT ARCHITECTURE ... 50
4.4.1 Context Source... 51
4.4.2 Context Manager ... 52
4.4.3 Context Consumer .. 54

4.5 CONCLUDING REMARKS ... 55
5 A DOMAIN-INDEPENDENT CONTEXT METAMODEL .. 56

5.1 EXAMPLE SCENARIO .. 57
5.2 CONTEXT METAMODEL OVERVIEW ... 59

5.2.1 Objectives and Design Principles ... 60
5.2.2 Context Metamodel in the Four-Layer Architecture 60
5.2.3 Metamodel Organization .. 61

5.3 CONTEXT METAMODEL STRUCTURE CONCEPTS .. 62
5.3.1 ContextualEntity .. 62
5.3.2 ContextualElement ... 64
5.3.3 Focus .. 65
5.3.4 CE Relevance to a Focus .. 65
5.3.5 ContextSource and Acquisition association ... 66
5.3.6 Rule... 68

5.4 CONTEXT METAMODEL BEHAVIOR CONCEPTS .. 69
5.5 UML PROFILES FOR CONTEXT MODELING ... 70

5.5.1 Context Profile .. 70
5.5.2 CxG Profile ... 75
5.5.3 Using the CxG Profile to Model Behavior Variation 77

5.6 CONCLUDING REMARKS ... 78
6 A CSS DESIGN PROCESS ... 81

6.1 PROCESS OVERVIEW .. 82
6.2 CONTEXT SPECIFICATION ... 83

6.2.1 Identify Focus (S1)... 84
6.2.2 Identify Behavior Variations (S2) ... 85
6.2.3 Identify Contextual Entities and CEs (S3) ... 87
6.2.4 Verify CEs Relevance (S4) .. 88

6.3 CONTEXT MANAGEMENT DESIGN .. 90
6.3.1 Specify Context Acquisition (M1) .. 90
6.3.2 Design Acquisition Module (M2) .. 92
6.3.3 Design Processing Module (M3) ... 95
6.3.4 Design Dissemination Module (M4) .. 97

6.4 CONTEXT USAGE DESIGN ... 98
6.4.1 Design Context Behavior Model (U1).. 98
6.4.2 Design Context Adaptation (U2) ... 99
6.4.3 Design Context Presentation (U3) .. 100

6.5 CONCLUDING REMARKS ... 101
7 CASE STUDY ... 104

7.1 PRELIMINARY REQUIREMENTS AND CONCEPTUAL MODEL..................................... 105
7.2 APPLYING THE CONTEXT PROCESS TO ICARE.. 106

7.2.1 Context Specification ... 107
7.2.2 Context Management Design .. 112
7.2.3 Context Usage Design .. 118

7.3 ICARE PROTOTYPE ... 121
7.3.1 Implementation Issues .. 121
7.3.2 Evaluation of ICARE Prototype .. 122

7.4 CONCLUDING REMARKS ... 123
8 CONCLUSIONS.. 125

8.1 THESIS CONTRIBUTIONS ... 126
8.1.1 Conceptual Contributions... 126
8.1.2 The CEManTIKA Approach .. 127
8.1.3 Context Architecture .. 127

 ix

8.1.4 Context Metamodel ...128
8.1.5 Context Process ..129
8.1.6 Design of Context-Sensitive Systems..129
8.1.7 Other contributions ..130

8.2 FURTHER WORK ...130
8.3 CONCLUDING REMARKS ..132

REFERENCES ...134
A PRELIMINARY STUDY ..147

A.1 OBJECTIVES ..147
A.2 DESIGN AND EXECUTION ..148
A.3 PARTICIPANTS ...148
A.4 OBSERVED RESULTS ..149
A.5 DISCUSSION ..150
A.6 INTERVIEW GUIDE (IN PORTUGUESE) ..151

B METAMODELING AND UML PROFILES..153
B.1 UML PROFILES DEFINITION..153
B.2 ELEMENTS OF A UML PROFILE ...154

 x

List of Figures

FIGURE 1-1 THESIS ORGANIZATION ... 5
FIGURE 2-1 CONTEXT CLASSIFICATION ACCORDING TO THE FOCUS [BRÉZILLON AND POMEROL,

1999] .. 11
FIGURE 3-1 CONCEPTS IN A CONTEXTUAL GRAPH [BRÉZILLON, 2007A] 28
FIGURE 3-2 CONTEXTUAL GRAPH FOR A VIDEO PROBLEM SOLVING PROCESS FOR A DVD

PLAYER [BRÉZILLON, 2007B] .. 29
FIGURE 3-3 EXAMPLE OF A CML CONTEXT MODEL [HENRICKSEN AND INDULSKA, 2006]........ 31
FIGURE 3-4 LAYERED ARCHITECTURE OF THE SOFTWARE INFRASTRUCTURE [HENRICKSEN,

2003] .. 32
FIGURE 3-5 SECOM: OVERVIEW OF THE ASSOCIATION BETWEEN THE DEFINED ONTOLOGIES

[BULCÃO NETO ET AL., 2006].. 34
FIGURE 3-6 POCAP: ANALYSIS AND SPECIFICATION ACTIVITY [BULCÃO NETO ET AL., 2006].. 35
FIGURE 3-7 UML PROFILE FOR CONTEXT STRUCTURE MODELING [AYED ET AL., 2007] 36
FIGURE 3-8 MDD PHASES FOR THE DEVELOPMENT OF CSS [AYED ET AL., 2007] 37
FIGURE 3-9 DESCRIPTION OF THE CONTEXT ATTRIBUTE CLASS AND EXAMPLES OF INSTANCES OF

RELATED TO PERSON AND TIME [BUCUR ET AL., 2005] .. 38
FIGURE 3-10 CONTEXTUML METAMODEL [SHENG AND BENATALLAH, 2005] 39
FIGURE 3-11 FRAGMENT OF THE FOUNDATIONAL CONTEXT CONCEPTS [COSTA, 2007] 40
FIGURE 4-1 ILLUSTRATION OF OUR WORKING DEFINITION OF CONTEXT 44
FIGURE 4-2 CONCEPTUAL ELEMENTS IN A CSS ARCHITECTURE AND AN INTERACTION EXAMPLE

... 46
FIGURE 4-3 ILLUSTRATION OF ISSUES ASSOCIATED TO CONTEXT DYNAMICS 48
FIGURE 4-4 CONTEXT ARCHITECTURE OVERVIEW ... 51
FIGURE 5-1 UML USE CASES DIAGRAM FOR THE ACADEMIC MISSION SUPPORT SYSTEM 58
FIGURE 5-2 CONCEPTUAL CLASS MODEL FOR THE ACADEMIC MISSION SCENARIO 59
FIGURE 5-3 CONTEXT METAMODEL PACKAGES ORGANIZATION ... 61
FIGURE 5-4 CONTEXT METAMODEL STRUCTURE CONCEPTS ... 63
FIGURE 5-5 CONTEXT METAMODEL BEHAVIOR CONCEPTS .. 70
FIGURE 5-6 CONTEXT PROFILE STEREOTYPES AND TAG DEFINITIONS..................................... 71
FIGURE 5-7 ACADEMIC MISSION USE CASES DIAGRAM, ENRICHED WITH THE CONTEXT PROFILE

STEREOTYPES .. 72
FIGURE 5-8 EXCERPT OF THE ACADEMIC MISSION CONCEPTUAL CLASS DIAGRAM ENRICHED

WITH THE CONTEXT PROFILE STEREOTYPES ... 73
FIGURE 5-9 CXG PROFILE STEREOTYPES AND TAG DEFINITIONS.. 75
FIGURE 5-10 CONTEXTUAL GRAPH FOR THE FOCUS PROFESSORBOOKTRANSPORT 76
FIGURE 6-1 SPEM WORKFLOW DIAGRAM: CONTEXT PROCESS MAIN ACTIVITIES 83
FIGURE 6-2 SPEM WORKFLOW DIAGRAM: CONTEXT SPECIFICATION ACTIVITIES...................... 84
FIGURE 6-3 SPEM ACTIVITY DETAIL DIAGRAM: IDENTIFY FOCUS .. 85
FIGURE 6-4 SPEM ACTIVITY DETAIL DIAGRAM: IDENTIFY BEHAVIOR VARIATIONS 86
FIGURE 6-5 SPEM ACTIVITY DETAIL DIAGRAM: IDENTIFY CONTEXTUAL ENTITIES AND CES..... 88
FIGURE 6-6 SPEM ACTIVITY DETAIL DIAGRAM: VERIFY CES RELEVANCE 89
FIGURE 6-7 SPEM WORKFLOW DIAGRAM: CONTEXT MANAGEMENT DESIGN ACTIVITIES 91
FIGURE 6-8 SPEM ACTIVITY DETAIL DIAGRAM: SPECIFY CE ACQUISITION............................... 92

 xi

FIGURE 6-9 SPEM ACTIVITY DETAIL DIAGRAM: DESIGN ACQUISITION MODULE 93
FIGURE 6-10 SPEM ACTIVITY DETAIL DIAGRAM: DESIGN PROCESSING MODULE 96
FIGURE 6-11 SPEM ACTIVITY DETAIL DIAGRAM: DESIGN CONTEXT DISSEMINATION 97
FIGURE 6-12 SPEM WORKFLOW DIAGRAM: CONTEXT USAGE DESIGN ACTIVITIES 99
FIGURE 6-13 SPEM ACTIVITY DETAIL DIAGRAM: DESIGN CONTEXT BEHAVIOR MODEL100
FIGURE 6-14 SPEM ACTIVITY DETAIL DIAGRAM: DESIGN CSS ADAPTATION...........................101
FIGURE 6-15 SPEM ACTIVITY DETAIL DIAGRAM: DESIGN CONTEXT PRESENTATION102
FIGURE 7-1 ICARE’S USE CASES DIAGRAM..106
FIGURE 7-2 ICARE’S PRELIMINARY CONCEPTUAL CLASS DIAGRAM.....................................107
FIGURE 7-3 ICARE’S USE CASE DIAGRAM ENRICHED WITH CONTEXT PROFILE STEREOTYPES

...108
FIGURE 7-4 ICARE CONCEPTUAL CLASS DIAGRAM ENRICHED WITH CONTEXT PROFILE

STEREOTYPES AND NEW CE DEFINITIONS ...110
FIGURE 7-5 EVALUATION OF CES RELEVANCE ..112
FIGURE 7-6 RELEVANCE WEIGHT ASSIGNED TO THE CES ...113
FIGURE 7-7 UML CLASS DIAGRAM FOR CE ACQUISITION IN ICARE116
FIGURE 7-8 UML CLASS DIAGRAM FOR CE PROCESSING IN ICARE......................................117
FIGURE 7-9 CONTEXTUAL GRAPH FOR THE FOCUS SEARCH EXPERTS119
FIGURE 7-10 ICARE INTERFACE WITH THE PARAMETERS USED IN THE RECOMMENDATION.....122

 xii

List of Tables

TABLE 3-1 SUMMARY OF CONTEXT REPRESENTATION TECHNIQUES 26
TABLE 5-1 CONTEXT METAMODEL IN THE FOUR-LAYER METAMODELING ARCHITECTURE....... 60
TABLE 5-2 VALUES FOR THE ACQUISITIONTYPE ... 67
TABLE 5-3 VALUES FOR THE UPDATETYPE .. 68
TABLE 7-1 CONTEXT ACQUISITION PARAMETERS FOR ICARE ... 114

 xiii

Abbreviations

Term Description

4WH Who, Where, When, What,How

AI Artificial Intelligence

API Application Programming Interface

CE Contextual Element

CEKB Contextual Elements Knowledge Base

CEManTIKA Contextual Elements Modeling and Management through
Incremental Knowledge Acquisition

CK Contextual Knowledge

CML Context Modeling Language

CSAPI Context Source Application Programming Interface

CSCP Comprehensive Structured Context Profiles

CSCW Computer Supported Cooperative Work

CSS Context-Sensitive System

CxG Contextual Graph

CxM Context Management

EK External Knowledge

ERS Expert Recommender System

GPS Global Positioning System

HCI Human Computer Interaction

ICARE Intelligent Context Awareness for Recommending Experts

IP Internet Protocol

JEOPS Java Embedded Object Production System

KB Knowledge Base

MDD Model Driven Development

xiv

MOF Meta Object Facility

MSN Messenger live Windows

OCL Object Constraint Language

OMG Object Management Group

ORM Object-Role Modeling

OWL Web Ontology Language

PC Proceduralized Context

PCCB Proceduralized Context Cases Base

PIM Platform Independent Models

POCAp Process for Ontological Context-aware Applications

PSM Platform Specific Models

RDF Resources Description Framework

SCK Semantic Context Kernel

SeCoM Semantic Context Model

SPEM Software Process Engineering Metamodel

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

 1

C H A P T E R

1

Introduction

ith the advance of the internet and the easy access to an

increasing amount of information, people are effectively

becoming dependent on computing support for making simple personal

decisions or performing their daily tasks. For example, people are now relying

on Computers to help them choose a movie, buy concert tickets, identify the

best path to arrive to an unknown location, plan a trip, make new social

contacts or even find a soul mate.

In this information era, where people have to process more information

to perform tasks that should be executed in less time, a new challenge for

computer systems arises: How to lessen the need for users’ explicit interactions

to obtain what they need? How to provide users with the right information

necessary to accomplish their tasks? How to anticipate users’ needs by

suggesting options they did not even know they wanted until they saw it?

This new market demand and the dynamic and information-laden

environment impose that computer system developers look for solutions that

make applications more attractive to their users, more adaptable and more

proactive. These new requirements can be fulfilled by the provisioning of

information and services that could be interesting to users and that could assist

them in the task being performed.

W

2

Context appears as a fundamental key to enable systems to distil

available information into relevant information, to choose relevant actions from

a list of possibilities, or to determine the optimal method of information

delivery. According to the Merriam-Webster dictionary [Merriam-Webster,

2008], context is defined as “the interrelated conditions in which something

exists or occurs”. Context is what underlies the ability to identify what is or is

not relevant at a given moment.

Enabling computer systems to change their behavior according to the

analysis of contextual information is a challenge that attracts the attention of

researchers from several areas of Computer Science more and more. Computer

systems that use context to provide more relevant services or information are

called context-sensitive systems (CSS).

Differently from human-to-human interactions, where context is used in

a natural and easy way, in human-to-computer or computer-to-computer

interactions manipulating context is not trivial. Context is dynamic and the

information in the context should be interpreted in order to be used.

Interpretation always introduces a relevance problem, because different factors

should be considered, since what is the considered as relevant to a person for

performing a task, may not be considered with the same relevance by another

one.

For example, when planning a touristic trip to Europe, different people

may have distinct preferences about the places to visit and how long to stay at

each one. While a person may privilege visiting historical and cultural places,

another one may be interested in knowing the city gastronomy and making night

tours. The same person may have different preferences when travelling alone,

with a partner or with a group of friends. A CSS that supports users in planning

their trips must certainly consider these contextual differences and also

calibrate relevance issues accordingly.

Developing a CSS is a complex and expensive task. When designing a

CSS one needs to deal with issues associated to: which kind of information

consider as context, how to represent this information, how to acquire and

process it (considering that it may come from several and heterogenous sources)

 Introduction 3

and how to integrate the context usage in the system. Context is a concept thas

only recently started to be applied to computer systems. It is still immature and

thus there is no consensus about definitions, terminologies and related concepts.

In a preliminary experiment (described in Appendix A) we observed that

software developers have difficulties on including concept of context into their

applications. They lack an understanding about what exactly to consider as

context, how to represent this special type of knowledge and how to design

their applications to use it. There are difficulties in separating functionalities

related to the application business domain and those related to context

manipulation. These observations suggest a lack of software engineering

support (e.g. processes, methods, models, and architectural reuse) to aid CSS

designers when developing their applications.

Most context models are proprietary, and consider only the requirements

of the applications they are attached to, defining specific elements to be used in

that application (e.g. [Ferrara et al., 2006, Kramer et al., 2005]). There is an

open field for research on models that could abstract the specificities of context

being reused and instantiated on different applications. Context Metamodels

(e.g. [Vieira et al., 2008, Sheng and Benatallah, 2005, Fuchs et al., 2005])

provide a conceptual infrastructure to support the building of specific context

models by abstracting and formalizing the concepts related to context. A

metamodel can guide a CSS designer on elaborating their own context models.

Despite the many challenges involved in building CSS, context is

generally handled in a proprietary way, without taking into account

requirements such as modularity, reusability or interoperability [Riva, 2005].

Moreover, only a few approaches found in the literature (e.g. [Henricksen and

Indulska, 2006, Bulcão Neto, 2006]) offer an integrated support for CSS

designers that combine extensible architecture, context metamodel and software

process. Existing approaches do not consider how to integrate the context

model with the application conceptual model, allowing designers and

developers to distinguish contextual information from existing application

models.

4

This work investigates the specificities related to the concept of context

in computer systems from the Conceptual Modeling and Software Engineering

perspectives. The research carried out is targeted, especially, to designers of

CSS, particularly those responsible for knowledge engineering, requirement

analysis and architecture design.

The central questions of this thesis include: How to separate the

specification of the functionalities related to context manipulation from the

application’s business requirements? How to support the context model

engineering by reusing knowledge already modeled in the application domain?

And still, how to support designers on including the concept of context into

their application projects?

We explore the idea that it is possible to modularize the development of

CSS by separating the elements related to the application business domain from

the specificities associated to context manipulation. The modularization can aid

the maintenance and evolution of CSS, diminishing the complexity of building

CSS. In this light, we propose the specification of a framework, named

CEManTIKA (Contextual Elements Modeling and Management through

Incremental Knowledge Acquisition), to support context modeling and CSS

design, in a generic, domain-independent way. The CEManTIKA approach

involves the provisioning of a generic architecture, a metamodel and a software

process that defines activities and concepts related to context and context-

sensitive systems.

The main contributions of this research include the specification of: a

generic architecture describing the main architectural elements related to a

CSS; a domain-independent context metamodel that formalizes the concepts

related to context manipulation and guides context modeling in different

applications; a set of UML (Unified Modeling Language) Profiles [OMG,

2007a] to account for context structure and context-sensitive behavior; a

software process with guidelines that cover activities related to context

specification and CSS design. To investigate the feasibility of the proposal, we

developed the design of two applications in different domains. For one of those

applications a functional prototype was implemented and evaluated with final

users. This work also represents an advance in the state of the art related to the

 Introduction 5

understanding of the concept of context (and its associated concepts). The

originality of this work stands on the proposed way of thinking about context,

on the proposed context metamodel and on the software process for designing

CSS.

The organization of the thesis is illustrated in Figure 1-1. The contents of

the chapters are detailed in the following.

Contextualization
and Motivation

Concepts and
Related Work

Contributions

Case Study

Conclusions

Chapter 3
Context Modeling
and Building CSS

Chapter 3
Context Modeling
and Building CSS

Chapter 6
CSS Design

Process

Chapter 6
CSS Design

Process

Chapter 7
Case Study
Chapter 7

Case Study

Chapter 1
Introduction

Chapter 1
Introduction

Chapter 8
Conclusions

Chapter 8
Conclusions

Chapter 5
Context

Metamodel

Chapter 5
Context

Metamodel

Chapter 4
CEManTIKA

framework

Chapter 4
CEManTIKA

framework

Chapter 2
Computational

Context

Chapter 2
Computational

Context

Figure 1-1 Thesis Organization

Chapter 2 presents an overview about context and context-sensitive

systems, detailing different views from distinct areas of Computer Science;

Chapter 3 explores the topic of context modeling and reviews the state of

the art about proposals to support CSS building, discussing their particularities,

strengths and weaknesses and identifying improvements that could be done;

Chapter 4 presents an overview of the CEManTIKA approach. The main

ideas behind the framework proposal are discussed and a generic architecture

for designing CSS is described;

6

Chapter 5 presents the proposed Context Metamodel and the UML

profiles built to support modeling the structure and behavior of a CSS;

Chapter 6 presents our proposal for a Context Process that identifies

activities and offers guidelines to support context modeling and CSS design;

Chapter 7 discusses, in a case study, the instantiation of the CEManTIKA

framework, guided by the Context Process, in an Experts Recommender

System, named ICARE. The chapter also discusses how a functional prototype

of ICARE was implemented and the results of its evaluation by final users;

Finally, Chapter 8 summarizes the proposed work by discussing the

achieved contributions and indicating some directions in which the presented

research could be extended.

 7

C H A P T E R

2

Computational Context

ontext is being object of study of researchers from several areas

of Computer Science. Since it lacks a consensus about the

concepts related to context, the distinct areas have different views about

context, how to define it and how to consider it in computer systems. This

chapter presents an overview about the concept of context and how it is being

considered in computer systems

This chapter covers the following contents: Section 2.1 reviews definitions

and issues related to context and contextual elements; Section 2.2 presents the

definition of context-sensitive systems and discusses concerns related to the

development of CSS; Section 2.3 presents a review about researches that is

being developed on context in distinct areas of Computer Science. Finally,

Section 2.4 concludes the chapter with some final considerations.

2.1 Context and Contextual Elements

This section defines the concept of context, discusses some characteristics

related to this concept and points out a difference between context and

contextual elements.

C

8

2.1.1 Definitions

Bazire and Brézillon have catalogued more than 150 definitions about the term

context [Bazire and Brézillon, 2005], and have thus concluded that the

definition about what to consider as context varies strongly according to

different domains.

A widely referenced definition states that context is any information that

can be used to characterize the situation of an entity, where an entity is a

person, place, or object that is considered relevant to the interaction between a

user and an application [Dey, 2001]. Zimmermann and colleagues

[Zimmermann et al., 2007], in seeking for an operational definition of context,

extended Dey’s definition by separating the elements that characterize the

situation of an entity into 5 categories: individuality (properties and attributes

defining the entity itself), activity (all tasks the entity may be involved in),

location and time (spatio-temporal coordinates of the entity), and relations

(information about any possible relation the entity may establish with another

entity).

McCarthy’s observations [McCarthy, 1993] indicate that: (1) a context is

always relative to another context, (2) context has an infinite dimension; (3)

context cannot be described completely; and (4) when several contexts occur in

a discussion, there is a common context above all of them to which all terms

and predicates can be lifted.

Kokinov and colleagues [Kokinov, 1999] developed a dynamic theory of

context that defines context as the set of all entities that influence human (or

system) behavior on a particular occasion. This theory has four main principles:

(1) context is a state of the mind; (2) context has no clear cut boundaries; (3)

context consists of all associatively relevant elements; and (4) context is

dynamic.

Although there are several definitions of context, researchers agree that:

context exists only when related to another entity (e.g. task, agent or

interaction); context is a set of items (e.g. concepts, rules and propositions)

associated to an entity; and an item is considered as part of a context only if it

is useful to support the problem at hand. For example, the proposition “it is

 Computational Context 9

raining” is considered as part of the context in a traffic jam support system,

since rain has implications in visibility, speed and consequently in the traffic.

However, the same proposition is not contextual information in a museum guide

system.

In this thesis, we make a distinction between the conceps of context and

contextual element and the adopted definitions are described below:

A contextual element (CE) is any piece of data or information

that enables to characterize an entity in a domain.

The context of an interaction between an agent and an

application, in order to execute some task, is the set of

instantiated contextual elements that are necessary to support

the task at hand.

By this latter definition, we are particularly interested in context applied

to the interaction between an agent and an application. An agent can be a

human agent or a software agent. Moreover, the elements to compose the

context have a relevance relationship with the task that the agent is performing.

We can observe that a CE is stable and can be defined at design time, while a

context is dynamic, and must be constructed at runtime, when an interaction

occurs.

2.1.2 Representational versus Interactional Views

Dourish [Dourish, 2004] distinguish the problem of context from two points of

view: context as a representational problem and context as an interactional

problem. The former argues that when thinking about context usage in software

systems (which are representational, by nature) the central concern is to

identify how context can be encoded and represented. The latter, based on

Social Science investigations of everyday activity, argues that a central concern

with context is the question ‘‘how and why, in the course of their interactions,

do people achieve and maintain a mutual understanding of the context for their

actions?’’.

As discussed in [Chalmers, 2004], definitions of context in the

representational view emphasise objective functionalities that can be tracked

10

and recorded relatively easily, and avoid aspects of the user experience such as

subjectively perceived features and the way past experience of similar contexts

may influence current activity. The interactional view focuses on

intersubjective aspects of context, constructed in and through the dynamic of

each individual’s social interaction.

According to the representational view, Dey [Dey, 2000] identify some

inner characteristics of the contextual information that difficults its usage and

manipulatation: it can be acquired from non-traditional devices, different from

mouse and keyboard (e.g. environment sensors, presence identifiers, or voice

recogniser); it may have low granularity implying that it may be abstracted to

make sense to the application; it may be acquired from multiple distributed and

heterogeneous sources; it may change rapidly implying that these changes must

be detected in real time; and contextual history should also be considered.

In this work, we assume a hybrid representation, combining aspects of the

representational and the interactional views. The representational view is used

for the concept of contextual element. It means that any CE is a form of

information that can be known, encoded and represented, it is possible to define

in advance what will be considered as a CE, it is stable and we can indicate

relevance associations between a CE and other entities in the application (e.g.

agent, task). However, for the concept of context we agree with the

interactional view which indicates that what will be considered as relevant in

the context will be defined dynamically and will depend on a particular

interaction or task execution [Dourish, 2004].

2.1.3 Context Classification in Three Types of Knowledge

Brézillon and Pomerol [Brézillon and Pomerol, 1999] propose a model that

separates and classifies the context according to a focus of attention. They

argue that context cannot be considered in an isolated way, but always related

to a focus. That focus can represent a task, a step in a problem solving or in a

decision making. The focus determines what should be considered as relevant in

the context.

According to the focus, they classify the context into three distinct parts,

as shown in Figure 2-1: Contextual Knowledge (CK), External Knowledge (EK)

 Computational Context 11

and Proceduralized Context (PC). In [Pomerol and Brézillon, 2001] they justify

the use of the word “knowledge” in the description of parts of the context since

these parts are about the general background used by users to carry out their

tasks. Context is considered as a shared knowledge space that is explored and

exploited by participants in the interaction.

External Knowledge

Focus of Attention

Proceduralized
Context

Contextual
Knowledge

Figure 2-1 Context Classification According to the Focus [Brézillon and

Pomerol, 1999]

EK represents the part of the knowledge that has absolutely no relevance

to the current focus and that is not necessary to support the task. For example,

suppose that a user’s focus is to find experts to support her/him in a software

development task. So, the EK set may include elements such as the user’s

height?, his/her marital state, or the printer location, which are existing

knowledge related to users, experts and resources, but that are not really

relevant to support the task in the focus.

CK represents the knowledge that is relevant and has a strong relation to

the focus. In the previous example, the CK set will include information such as

the experts’ location, presence, availability, abilities, reputation, experience,

the devices being used, the software development application and language. CK

acts as a filter that defines, at a given time, what knowledge pieces must be

taken into account (explicit knowledge) from those that are not necessary

(implicit knowledge).

12

Finally, PC is the subset of the CK that is invoked, organized, structured

and situated according to the focus. It is the part of the context that will indeed

be used to support the focus. In the example of the software development task,

the PC set includes information such as the identification that a user named

Charles is present, available and is an expert in Java language, and that another

user called John is present, but busy, and has experience in UML. The CK is a

backstage knowledge whereas the PC is the knowledge immediately useful for

the task at hand [Pomerol and Brézillon, 2001].

2.2 Context-Sensitive Systems

This section presents definitions about context-sensitive systems, a

classification for those systems based on our observation about the works in the

area, and some challenges involved in the development of these applications.

2.2.1 Definitions

Providing applications with the ability to identify and understand the context of

an interaction between the application and its users can greatly improve the

communication between users and machines. The ideal application should be

able to provide information that is both accurate and relevant without requiring

the user to actively seek this information and determine its relevance.

Developers of computer systems are seeking ways to build applications

that are more adaptive, flexible and easy to use. The idea is to provide services

that transparently ease the interface between human and machines. To this end,

Context-Aware Computing [Schilit et al., 1994] studies how knowledge about

context may assist applications in adapting their behavior providing information

and services closer to users’ needs.

The term context-aware system is used to refer to systems that uses

context to provide relevant information and/or services to the user, where

relevancy depends on the user’s task [Dey, 2001]. Other terms are used as

synonyms to designate these systems: context-sensitive system [Sato, 2004,

Cheverst et al., 1999], context-oriented system [Desmet et al., 2007] and

context-based system [Kashyap and Sheth, 1996].

 Computational Context 13

In this work, we adopt the term context-sensitive system (CSS), since our

goal is to consider context usage by any kind of application. We believe that the

most popular term “context-aware system” has an embedded semantic

association with Ubiquitous Computing applications. In this work we assume

the following definition for CSS:

Context-sensitive systems (CSS) are those that manage

contextual elements related to an application domain and that

use these elements to support an agent executing some task.

This support can be achieved by improving the agent’s

cognition about the task or by providing adaptations that ease

the task performance.

Similarly to our definition of context, we consider the context usage in a

CSS as always associated to support an agent to execute some task. An agent

can be a human or a software agent. The basic element manipulated by a CSS

are contextual elements. Moreover, the provided support can be associated

either to provide adaptations in the system behavior or to improve the agent’s

cognition about relevant information related to the task.

2.2.2 Different Views on Designing CSS

By analysing different usages of context in computer systems, we consider

three main axes for dealing with the relativity of context: device-centered, task-

centered and human-centered views.

� Device-Centered View

This view considers context from a technology angle. It is motivated by recent

advances in devices and sensors technologies along with the requirements of

Ubiquitous Computing applications. Main concerns are related to the automatic

capture of different types of information mostly related to the physical

environment of users and devices (e.g. location, screen size, battery level, or

network signal).

Context is associated to indirect and non-traditional acquisition methods

(e.g. sensors), to replace conventional information capture methods (e.g. mouse

14

and keyboard). Most works concentrate on solving issues related to networking,

mobility and distributed applications, such as:

1) identification of acquisition modes and interpretation of environmental

information (e.g. location, presence or devices’ characteristics) (e.g.

[Chaari et al., 2007, Yang et al., 2006]);

2) investigation of modeling techniques to support context sharing and

interoperability [Gu et al., 2004, Chen and Finin, 2004]; and

3) development of service-based solutions [Raz et al., 2006, Gu et al.,

2005, Riva, 2005].

To automatically infer contextual information it may be necessary to

combine data from several sources. Therefore, techniques for data processing

[Nurmi and Floréen, 2004, Giunchiglia, 1993] and uncertainty treatment

[Ranganathan et al., 2004, Korpipää et al., 2003] are also investigated.

� Task-Centered View

The task-centered view is based on works developed by Cognitive Science (e.g.

[Kokinov, 1999]), Artificial Intelligence (AI) (e.g. [Brézillon, 2007b,

McCarthy, 1993]) or Computer Supported Cooperative Work (CSCW)

researchers (e.g. [Brézillon and Araújo, 2005]).

Context is considered as a way to extract relevant knowledge that could

support a task at hand. Main challenges are related to identifying the knowledge

related to a task development and how the context influences the steps to be

followed to accomplish the task. It can demand a great deal of knowledge about

the artifacts involved in the task, the different roles a person can perform while

executing it, and the reasoning that constrains each step execution.

Context acquisition is harder to perform, since the granularity of the

managed contextual information is higher. The automatic acquisition can

demand AI techniques, such as interaction analysis [Siebra, 2007] or data

mining [Vajirkar et al., 2003].

 Computational Context 15

� Human-Centered View

In this view researchers are interested in investigating how context affects

human interactions with an application [Brézillon, 2003a], how tacit knowledge

can be modeled [Gonzalez and Brézillon, 2008] or how context adaptation will

affect the human actor [Bellotti and Edwards, 2001]. Primarily, the problem is

associated to personalization and to providing support for decision making.

Researches are mainly related to the Human-Computer Interaction area (e.g.

[Kiniry, 2004, Bellotti and Edwards, 2001]), to CSCW applications (e.g. [Nunes

et al., 2007, Kirsch-Pinheiro et al., 2005, Ferscha et al., 2004]), and to

recommender systems (e.g. [Petry et al., 2008, Ning et al., 2007, van Setten et

al., 2004]).

Contextual information is mainly collected from user profiles, existing

databases, and interaction history. There are many human aspects that cannot be

modelled accurately, sensed or inferred by technological means (e.g. people’s

intentions, perceptions, interpretations or emotions). The use of AI techniques

are necessary, specially to analyze past interactions to identify preferences (e.g.

[Pan et al., 2007, Chedrawy and Abidi, 2006]).

2.2.3 Usability Issues in CSS

The development of a context-sensitive system entails more work in comparison

to systems that do not take context into account. Designing a system to react

according to the context is a challenging task, since misinterpretations may

entail undesired behaviors, which will make the system annoying and disturbing

instead of useful.

As pointed out by several researchers (e.g. [Dourish, 2004, Greenberg,

2001, Bellotti and Edwards, 2001]) CSS cannot be designed to act on behalf of

their users. Users must feel that they have control over the system by being able

to grant or to refuse systems’ actions in a nonobtrusive fashion. Also, they

should have the option to regulate system’s adaptations and reasoning rules

according to their needs. Users must be able to understand the system actions,

especially when they are automatically performed according to the context. In

this case, the application should provide explanations about the rationale used

16

to perform these actions and enable the user to contribute through feedbacks

[Bellotti and Edwards, 2001].

The adaptation to the context should occur in a peripheral, non-intrusive

fashion, in order to not disturb the users from their current task. In addition, a

CSS should be designed with the premise that there is a strong likelihood the

system will get things wrong [Greenberg, 2001, Bellotti and Edwards, 2001].

Consequently, they should be conservative in the actions they take, making

these actions visible, and leaving “risky” actions to user control. In fact, we see

the usage of context as more successful when used in discrete, non-intrusive

fashion.

A succesful example of this state of affairs is provided by Google1.

Despite their excelent approach for page ranking and clean and easy to use

interface, two other key factors can be considered for explaining Google

success: the first law on Google’s philosophy [Google, 2008] is to focus on the

user experience first and the revenue will follow; on the business side, Google

innovates with its AdSense program that enables targeted advertisements more

relevant and useful to users, based on the information displayed on any given

page. Its co-founder, Larry Page, said: "The perfect search engine would

understand exactly what you mean and give back exactly what you

want"[Google, 2008].

A counter-example is the Microsoft Office Clip Assistant, named Clippy.

Clippy is a little paperclip who politely offers tips for using Office. In [Swarts,

2003], the author analyzes why so many people hate using Clippy. One

identified reason is that people don't like being told what to do (especially when

they already know how to do it). Another problem is Clippy’s intrusiveness.

Users fell like being looked over their shoulders in addition to being disturbed

from their current task by annoying and irrelevant questions and suggestions. In

Office’s more recent versions, Clippy was replaced by another feature called

smart tags. It is a purple line that underlies a part of a text and has an

associated pop-up menu. This menu provides actions related to the underlined

text, which the user can activate or not. This feature is less intrusive and

enables the user to command the system actions.

1 http://www.google.com/corporate/

 Computational Context 17

2.3 Researches on Context in Computer Science

The researches involving context in Computer Science may be divided into two

main categories. On the one hand there are researchers interested in applying

this concept to their applications to improve the services and functionalities

offered by their approaches (e.g. [Park et al., 2007, Siebra, 2007]). On the other

hand, there are researchers interested in context as a concept, looking for ways

to treat it computationally, through formalizations, models, frameworks and

methodologies (e.g. [Vieira et al., 2008, Gonzalez and Brézillon, 2008,

Hirschfeld et al., 2008]). Results from the latter are applied in researches

conducted in the former. Our research is situated in this second group.

In the following sections, we make a review about researches on the

concept of context conducted by different areas of Computer Science.

2.3.1 Context in AI

Context started to appear in Computer Science associated to the area of

Artificial Intelligence (AI). AI researchers investigate the formalization of the

notion of context (e.g. [McCarthy, 1993]), the provisioning of foundational

grounds (e.g. [Akman, 2002]), the usage of appropriate modeling and reasoning

techniques (e.g. [Franklin, 2003, Bouquet et al., 2003, Giunchiglia, 1993]) and

the application of context in the development of smart applications (e.g. [Petry

et al., 2008, Park et al., 2007]).

2.3.2 Context-Aware Computing

The term Context-Aware Computing was first used in [Schilit et al., 1994] to

designate the systems that are capable to examine the computing environment

and react to changes in it. This view of context is mostly associated to

Ubiquitous Computing, the area envisioned in 1991 by Weiser [Weiser, 1991]

of computing “anytime, anywhere, from any device”. Advances in technology,

such as the broad usage of small devices, wireless communication, and more

sophisticated sensors open possibilities for context-aware systems.

18

2.3.3 Context Support on Social Interactions

In Human Computer Interaction (HCI) context appears strongly related to the

problem of personalization in topics such as human-centric computing

[Ranganathan and Lei, 2003, Brézillon, 2003a, Bellotti and Edwards, 2001],

embodied interactions [Dourish, 2004] and interface adaptation [de Bra et al.,

2004]. Some authors (e.g. [Zimmermann et al., 2005b]) differentiate

personalization from contextualization, arguing that the former adapts the

application according specifically to the user (e.g. needs, goals, knowledge and

interests), while contextualization complements personalization so that

environmental states and task modeling can also be taken into account.

In the CSCW area, context is strongly related to the concept of awareness

[Brézillon et al., 2004, Vieira et al., 2004, Gross and Specht, 2001, Rittenbruch,

1999]. It is also used to support the management of shared workspaces [Gutwin

et al., 2005] and to support the analysis of interactions [Siebra, 2007]. An

important aspect of context in CSCW is that not only the context of an

individual should be considered but also the context of a group, through the

idea of shared context [Brézillon and Araújo, 2005]. Borges et al. [Borges et

al., 2007]discuss the problems that arise from the loss of context when people

in the group disagree about the understanding of the shared context, which they

call context mismatch.

2.3.4 Context Role in Content and Information Manipulation

The Databases community investigates how techniques for information

representation and conceptual modeling can support context modeling

[Stefanidis et al., 2005, Christopoulou et al., 2004]. Context also appears as an

important tool to support content management [Belotti et al., 2004], solving

semantic conflicts in data integration systems [Belian, 2008], improving query

processing [Bunningen, 2004], reducing the search space and otimizing pattern

identification in data mining [Vajirkar et al., 2003], and also in issues related to

the storage, analysis and manipulation of contextual information [Harvel et al.,

2004].

Context also appears as an important tool to improve solutions in

knowledge management [Zacarias et al., 2005, Degler and Battle, 2000],

 Computational Context 19

decision support systems [Nguyen and Gonzalez, 2006, Bucur et al., 2005],

information filtering [Kirsch-Pinheiro et al., 2005], and digital television [Leite

et al., 2007].

2.3.5 Software Engineering for CSS

Since context entails new requirements in the development of computer

systems, researchers from Software Engineering perceived the need to provide

methodologies [Ayed et al., 2007, Desmet et al., 2007, Bulcão Neto, 2006] and

architectural support [Costa, 2007, Bardram, 2005, Constanza and Hirschfeld,

2005, Henricksen, 2003, Dey et al., 2001] to aid the development of CSS.

Context is also investigated as a tool to improve software engineering processes

[Santoro et al., 2005].

2.4 Concluding Remarks

In this chapter we reviewed the concepts of context, contextual element and

context-sensitive systems. We also discussed how context research is being

performed by distinct areas of Computer Science. This review supported a

better understanding of the concept of context, reinforcing its significance in

computer systems.

To illustrate the importance that is being given to context in Computer

Science, in 2006 a Brazilian committee composed by researchers from several

areas defined the five big challenges in Computer Science for the next 10 years

[SBC, 2006]. Context explicitly appears in three of these challenges as a basis

to support: information retrieval in large volumes of data by providing

information more appropriate to user’s preferences and needs; to consider

human aspects in the construction of flexible and adaptable interfaces and

contents, with the objective to enable the access to knowledge and digital media

to all citizens; and in challenges associated to the Ubiquitous Computing area to

enable computing any time, anywhere, from any device.

This work investigates the concept of context from the Conceptual

Modeling and Software Engineering perspective. Our interest is to investigate

techniques for representing contextual information and to provide support for

20

designing context-sensitive systems. However, the area of Artificial

Intelligence offers the motivations for using context (smart and adaptable

systems) and offers models and formalisms to support processing and reasoning

about context.

Next chapter discusses issues related to context modeling and presents

related approaches that aim to provide support on building CSS.

 21

C H A P T E R

3

Context Modeling and
Support on CSS Design

s previously discussed, developing CSS entails more work in

comparison to applications that do not consider the context: in the

former, one must care for context-related tasks, such as the acquisition,

processing, storage, manipulation and presentation of contextual information.

Context modeling is an important topic when developing CSS, since the context

model captures the structure and semantics of the contextual information and

identifies how this type of information can be manipulated.

Researches related to context modeling focus on: (1) identifying

representation techniques that better fit the characteristics of contextual

information (e.g. [Strang and Linnhoff-Popien, 2004]); (2) enumerating the

elements that should be considered as context in a domain or a set of

applications (e.g. [Souza et al., 2008, Cruz et al., 2007, Siebra, 2007, Rosa et

al., 2003]); and (3) guiding the context modeling by providing generic context

models (e.g. [Bulcão Neto and Pimentel, 2005]) and metamodels (e.g. [Vieira et

al., 2008, Sheng and Benatallah, 2005, Fuchs et al., 2005]).

Generic context models aim to describe the information that can be

considered as context in a generic way. They provide a classification for an

initial set of elements that compose the context in a domain. Applications can

reuse the modeled information extending it to support their particularities.

A

22

There are proposals of generic context models for different areas such as

pervasive systems [Chaari et al., 2007], groupware [Vieira et al., 2005c], data

integration [Souza et al., 2008], intelligent environments [Gu et al., 2005],

software reuse [Cruz et al., 2007].

To support the design and development of CSS, researchers investigate the

provisioning of architectural support, such as frameworks (e.g. [Bardram,

2005, Henricksen and Indulska, 2004, Klemke, 2000]), middlewares (e.g.

[Gehlen et al., 2007, Gu et al., 2005, Sacramento et al., 2004]) and toolkits (e.g.

[Zimmermann et al., 2005a, Dey et al., 2001]). However, few solutions on

Software Engineering for CSS have been reported (e.g. [Bulcão Neto et al.,

2006, Henricksen and Indulska, 2004]), and this is still an open area for

research.

This chapter discusses some issues related to modeling context and

reviews some approaches that offer support for designing CSS. It begins by

reviewing existing techniques used to represent contextual information (Section

3.1). Section 3.2 details one of these techniques, the Contextual Graphs, used in

this work to model the context dynamics. Section 3.3 discusses some

approaches related to this work, with emphasis on proposals that integrate

generic solutions on context modeling and on software engineering support.

Section 3.4 presents a discussion about the reviewed approaches and concludes

the chapter with some final considerations.

3.1 Techniques for Representing Contextual Information

An issue that was discussed by several authors (e.g. [Roque, 2005, Henricksen

et al., 2004, Strang and Linnhoff-Popien, 2004]) is what existing techniques for

knowledge and information representation best suits context requirements.

Some of these techniques are briefly described in the following.

3.1.1 Key-value pairs

The key-value pairs (e.g. [Zimmermann et al., 2005a, Dey et al., 2001]) is the

technique that uses the simplest data structure for representing context.

Contextual information is described through pairs composed by a key that

 Context Modeling and Support on CSS Design 23

identifies the information, and a value associated to this key. For example, the

pairs (date = after April 16; time = between 8 and 12 a.m.; location = room 35;

presence = person arrival) indicate a configuration of a context model where the

contextual information are date, time, location and presence.

Actions can be associated to these instances indicating what a system

should do when contextual information fits the parameters. For example, when

a person arrives in the room 35, between 8 and 12 a.m. after the day April 16,

the system should play a good morning message. Due to its simplicity, it is easy

and fast to build a context model using this technique. However, it does not

provide more sophisticated structures to organize the information. The

consequence is that models developed using this approach are hard to maintain

and the identification of contextual information should be done using exact

string matching algorithms. That makes this technique inefficient for more

complex problems.

3.1.2 Markup schemas

Markup schemas use the standard XML (eXtensible Markup Language) to

model contextual information (e.g. [Ryan, 1999]). XML has as main

characteristics the presence of hierarchies that contain markup tags with

attributes and contents. Since it is a standard, XML eases the information

sharing between heterogeneous systems. An example of markup schemas model

is the CSCP (Comprehensive Structured Context Profiles) [Held et al., 2002]

that represents context as session profiles. String exact matching is used to

retrieve an element, and the attribute names are interpreted according to their

position in the XML schema.

3.1.3 Topic maps

A Topic Map is a framework for information retrieval [Garshol, 2004]. It is a

subject-based classification technique that associates individuals, easing

navigation and visualization of contents. While the other techniques concentrate

in defining and formalizing the concepts in a domain, topic maps focuses on the

instances, how they are connected to each other and how to reach individuals by

semantic relationships between them.

24

Some works (e.g. [Goslar and Schill, 2004, Power, 2003, Degler and

Battle, 2003]) propose using topic maps for implementing context models. They

argue that topic maps apply well when one needs to integrate contextual

information that come from several heterogenous context sources. The

disadvantages on using topic maps also include immaturity on tools and

standards. In addition, topic maps lack formalisms for the information

representation, which difficults reasoning. This approach to focus on

individuals instead of concepts difficults information maintenance and may

impact on the application performance.

3.1.4 Ontologies

An ontology is a specification of a conceptualization [Gruber, 1993]. A domain

ontology establishes a common vocabulary for information sharing in a

knowledge domain [Guarino, 1998]. Ontologies combine expressivity (to ease

human reading) and formality (to ease machine processing) that enable

knowledge sharing between human and software agents. People should commit

to use a specific ontology for a domain of interest. The advent of standard

languages for representing ontologies, such as OWL (Web Ontology Language)

[Bechhofer et al., 2004], eases knowledge reuse between systems, and enables

the usage of existing inference engines.

In the last five years, a huge number of ontology-based context models

have being proposed for different areas. Examples include ontologies for

Ubiquitous and Pervasive Computing [Chaari et al., 2007, Yau et al., 2006,

Chen, 2004], Intelligent Systems [Gu et al., 2004, Preuveneers et al., 2004],

Collaborative Systems [Vieira et al., 2005c], Geographical Information Systems

[Souza et al., 2008], Knowledge and Content Management [Ferrara et al., 2006,

Zacarias et al., 2005, Gauvin et al., 2004] and Service-Oriented Systems [Costa,

2007, Bulcão Neto and Pimentel, 2005].

A drawback related to ontologies, reported in works, such as [Bulcão

Neto, 2006, Henricksen et al., 2004] and empirically verified in studies

developed in our group [Zarate, 2006, Vieira et al., 2006b], is that the tools and

standards for manipulating ontologies are still immature and hard to use.

Moreover, reasoning over ontologies impacts in the application performance.

 Context Modeling and Support on CSS Design 25

3.1.5 Graphical models

Graphical models are particularly useful for structuring the contextual

information, using graphical elements, such as diagrams. Examples include

UML (Unified Modeling Language), ORM (Object Role Modeling) and

contextual graphs. UML provides graphical elements to support designing the

structure of the context model (following an object-oriented approach) and also

the system behavior (e.g. [Simons and Wirtz, 2007, Sheng and Benatallah,

2005]). Henricksen extended ORM diagrams with elements to ease the

specification of context characteristics [Henricksen and Indulska, 2006],

creating the graphical notation that composes the CML (Context Modeling

Language). Contextual graphs are based on semantic networks [Brézillon,

2005] and support the representation of task models. They consider the relation

between procedures stablished by an organization for executing a given task,

and how contextual information influences the real execution of these tasks

(practices). Other methods for conceptual modeling, such as the Entity-

Relationship Models [Chen, 1976] can also be used for modeling contextual

information.

3.1.6 Discussion

During the development of this work we have analyzed and experimented some

of these techniques, with the motivation to identify advantages and

disadvantages. XML was used in a work that aimed to investigate issues

associated to context acquisition [Ferraz, 2006]. In special, we worked with

ontologies, using OWL [Bechhofer et al., 2004], to represent context in the

domain of groupware systems [Vieira et al., 2005b, Vieira et al., 2005c] and

investigated implementation and reasoning issues related to ontologies [Zarate,

2006, Vieira et al., 2006b].

Table 3-1 presents a summary of the advantagens and disadvantages of

each investigated technique, indicating its appropriateness. Key-value pairs and

markup-based languages are the easiest techniques, but they do not offer

support to visualize the modeled information and are hard to maintain and

evolve, especially in complex applications. Although topic maps provide the

flexibility to integrate and navigate through information coming from different

26

sources, it still lacks tools to support their creation and manipulation.

Ontologies are relevant to formalize the concepts to be considered in the

context, supporting interpretation and information sharing. This is by far the

most used approach to model contextual information, due to its support on

formalization and reasoning. However, ontologies only model the structure of a

context model and does not offer support on modeling CSS behavior.

Table 3-1 Summary of Context Representation Techniques

Technique Strong Points Weak Points Processing/Retrieval
Key-value pair Simple structure, easy to

implement and use
Do not consider
hierarchies. Not suitable
for complex systems.

Linear search using
exact string matching

Markup
Language

Consider hierarchies.
Standard – eases context
sharing.

Data incompleteness or
ambiguities are not
considered. Not suitable
for complex systems.

Query language,
based on XML

Topic Maps Easy navigating between
concepts and model
readability by humans.

Immature tools; lack
formalisms

Navigation through
semantic networks

Ontology Improve context
semantics definition.
Standards enable the use
of existing tools for
inferencing. Improve
model readability by
humans and machines.

Immature tools,
overhead in system
performance.

Inference engine,
query language based
on frames or OWL

Graphical
Models

Ease concepts design and
specification, and
defining context
requirements

Do not allow concepts
processing. Needs
additional data structure

Can be translated to
XML format and use
the XML processing
tools

Conceptual modeling, as defined in [Mylopoulos, 1992], is the activity of

formally describing some aspects of the physical and social world around us for

purposes of understanding and communication. Conceptual modeling is relevant

in a system’s design process since conceptual specifications are used to support

understanding, problem-solving, and communication among stakeholders about

a given subject domain.

Graphical models are useful to support context conceptual modeling since

it supports to visualize how pieces of contextual information relate to each

other and how context affects the CSS behavior. UML extensions are

particularly interesting to enable the reuse of existing application models and

 Context Modeling and Support on CSS Design 27

modeling tools. Contextual graphs are useful to describe the context dynamics

identifying how context affects the behavior of a CSS. The problem with these

approaches is that they provide only visual representations of the models, and

they should be translated into a more formal and expressive structure (e.g.

Ontologies or OO-models) to be instantiated and manipulated. Since each

approach has strong and weak points, a hybrid approach seems to be

appropriate.

Due to its relevance for this work, next section details the Contextual

Graphs technique. UML extensions are further explained in the Appendix B.

3.2 Modeling Context Dynamics with Contextual Graphs

A Contextual Graph (CxG)2 is a representation formalism proposed by

Brézillon and colleagues [Brézillon, 2007b, Brézillon, 2003b, Brézillon, 2003c,

Brézillon et al., 2002] to model contextual reasoning. It models the reasoning

involved in solving a problem, executing a task, or making a decision,

considering specific conditions in which these activities are accomplished.

Their motivation for this formalism is based on the observation that there is a

discrepancy between the way companies establish work procedures and the way

these procedures are effectively executed by operators in their daily routine (the

practices). When solving a problem, different operators develop their own

practice, tailoring an existing procedure in order to take into account their

current context, which is particular and specific [Brézillon, 2003c].

A CxG is an acyclic directed graph that represents the actions to

undertake according to the context, indicating a path from a problem to a

solution. Each contextual graph (and any sub-graphs in it) has exactly one root

(representing the initial state), one end node (representing the final state) and a

serial-parallel organization of nodes connected by oriented arcs. The branches

show different paths expressing different contextually-dependent ways to

achieve the final state. The path presents a time-directed representation,

indicating the sequence of actions to be performed in the problem solution.

2 http://www.cxg.fr

28

The main concepts of a contextual graph (illustrated in Figure 3-1), are

[Brézillon, 2003c]:

1) Contextual node: corresponds to a contextually-dependent decision. It

has one input and n outputs (branches). The node contains the

identification of the element to be analysed. Each output branch

corresponds to a possible instantiation value for that element. In Figure

3-1the contextual nodes correspond to the numbered circles;

Figure 3-1 Concepts in a Contextual Graph [Brézillon, 2007a]

2) Action: is the basic node in a contextual graph and represents an

executable method. Actions correspond to the squares in Figure 3-1;

3) Recombination node: is always associated to a contextual node, having

n inputs and one output. The input branches represent the convergence

of the different alternatives, identified in the contextual node, towards

a same action sequence to execute after the condition is verified. In

Figure 3-1 the recombination nodes correspond to the small circles;

4) Parallel action grouping: represents a set of m actions that can be

performed in parallel, or in any order, but all must be accomplished

before to continue to the next step. The ordering of the actions to

execute in a parallel action grouping depends on contextual elements

that do not appear in the contextual graph. This is a way to deal with

the incompleteness of local information;

5) Activity: is a complex action assembling different elements, such as

another contextual graph. A change in an activity appears in all

contextual graphs where the activity has been identified.

 Context Modeling and Support on CSS Design 29

The initial structure of a CxG (its skeleton) is defined by an established

procedure. An example is illustrated in Figure 3-2, describing the reasoning

involved in solving a video problem in a DVD player.

Figure 3-2 Contextual Graph for a Video Problem Solving Process
for a DVD player [Brézillon, 2007b]

The graph starts by the contextual node that verifies the element “Type of

video anomaly”. Four instantiations are defined for this element: “no image”,

“distorted image”, “black & white image”, and “trembling image”. Assuming

the first instantiaton (i.e. [Type of video anomaly = no image]), next step is

another contextual node, which verifies the element “Is the TV on”. The

possible instantiations for this element are: “yes” and “no”. Assuming the first

instance [Is the TV on = yes], the next step is another contextual node with the

element “Is an input selected”, with possible values: “yes” and “no”. Assuming

the second instance [Is an input selected = no], the next step is to perform in

sequence the actions “See TV manual” and “Change of AV”. The next step

indicates a sequence of three recombination nodes which, respectivelly,

30

finalizes the contextual nodes “Is an input selected”, “Is the TV on”, and “Type

of video anomaly”.

Contextual graphs appear as an interesting approach to model a CSS

behavior, since it describes the actions that should be performed by the

application and explicitly indicates how context affects these actions.

3.3 Approaches for Supporting Context Modeling and CSS
Design

This section reviews some approaches that aim to support the design of CSS.

Three aspects were investigated: the provided architectural elements, their

support on context modeling and their support on processes for CSS design. We

detail the approaches that offer integrated support for these three issues. Other

related approaches are discussed in Section 3.3.4.

3.3.1 Software Engineering Framework for CSS

A software engineering framework to support CSS building is presented in

[Henricksen and Indulska, 2006, Henricksen, 2003]. To support modeling

context, they propose a graphical modeling notation called Context Modeling

Language (CML), conceived as an extension to the Object-Role Modeling

(ORM) [Halpin, 2006]. Figure 3-3 illustrates the CML notation (box Key) and

its usage in an example. The elements inside the circles represent objects from

the modeled domain (e.g. Person, Activity, Device). Fact types enable to

identify associations between two objects (e.g. engaged in, located near, has

channel). The contextual information is represented in terms of fact types.

Additional notation was introduced to classify the fact types (sensed, static,

profiled or derived), to associate quality metadata (e.g. Certainty) and to

indicate inference rules for derived fact types (e.g. located near, engaged in).

 Context Modeling and Support on CSS Design 31

Figure 3-3 Example of a CML Context Model [Henricksen and Indulska,
2006]

They propose a programming toolkit based on the management of

situations (logical expressions associated to the context fact types) and

preferences (scoring expressions to classify the relevance of context fact types).

To support the usage of this programming toolkit and the management of CML

models they developed a softwate architecture organised into six loosely

coupled layers (Figure 3-4): context gathering layer, acquires context

information from sensors and processes it through interpretation and

aggregation; context reception layer, translates inputs from the context

gathering into the CML representation; context management layer, maintains a

set of CML context models and their instantiations; query layer provides an

interface to query the context management layer; adaptation layer manages

repositories of situation, preference and trigger definitions, and evaluates these

32

on behalf of applications’ needs; and application layer supports applications

through their programming toolkit model.

Figure 3-4 Layered Architecture of the Software Infrastructure
[Henricksen, 2003]

To guide the development of applications using their proposed tools

(CML model and architecture) they propose a software engineering

methodology [Henricksen and Indulska, 2006], which specifies five main

activities in the CSS development: Analysis and specification of the context fact

types; Design of the triggering mechanisms for the application; Implementation

of the application according to the programming toolkit; Customisation of the

abstract models (mapping of the CML model into relational models and

identification of samples for testing); and Testing (modules, overall system and

application acceptance with final users).

 Context Modeling and Support on CSS Design 33

This approach is very interesting since it combines the assistance of an

expressive context modeling notation with a modularized architecture and

provides a set of guidelines to support the developer to use these artifacts.

However, although authors argue in pro of using ORM as base notation, this is

a controversial advantage since this notation is not largely used by systems

developers. Besides, the proposed graphical notation does not have any tool to

support context modeling, which difficults its usage in practice. The adoption

of more widely used notations (e.g. UML) could improve the model sharing and

reuse.

The proposed methodology only indicates the high level activities to be

performed and provides a flow to indicate the sequence of execution. It does

not specify the details related to each activity, such as: which artifacts can be

used as input or guidance to support the activity execution, which work

products are produced at each activity; and which role, in the software

development team, should be assigned to perform each activity. Moreover, they

do not indicate how existing application models could be reused to construct

the context models.

3.3.2 The SeCoM-SCK-POCAp Approach

Bulcão Neto [Bulcão Neto, 2006] proposes a software engineering approach to

support the development of ontology-based context-sensitive systems. The

approach is composed by three elements: the Semantic Context Model (SeCoM),

a set of ontologies related to different dimensions of a contextual information

[Bulcão Neto and Pimentel, 2005]; the Semantic Context Kernel (SCK), an

infrastructure to manipulate ontologies; and the Process for Ontological

Context-aware Applications (POCAp), a structured set of activities for

developing ontology-based CSS.

SeCoM (Figure 3-5) is a generic context model composed by several

ontologies, each one responsible for providing semantic descriptions about a

dimension of the contextual information. These dimensions, related to an

interaction, are divided according to the 4WH questions: Who are the

interaction’s participants? (Actor ontology), Where does the interaction take

place? (Spatial ontology), When does the interaction take place? (Time

34

ontology), What does the interaction describe? (Activity ontology), and How is

context captured and accessed in the interaction? (Devices ontology). Some

support ontologies (Knowledge, Relationship, Role, Contact, Document and

Project) model aspects related to the actors. The SCK is an infrastructure

developed to process the SeCoM model. It extends the services of the Jena

framework [Jena, 2006] to support ontology management, querying, persistence

and inferencing.

Figure 3-5 SeCOM: Overview of the Association between the Defined
Ontologies [Bulcão Neto et al., 2006]

POCAp is a software process proposed as a structured set of activities for

developing ontology-based CSS [Bulcão Neto et al., 2006]. The process is

modeled using the Software Process Engineering Metamodel (SPEM) [OMG,

2008a]. It considers the CSS development according to the four main activities:

analysis and specification, design, development, and verification and

validation. For instance, Figure 3-6 illustrated the analysis and specification

activity.

The analysis and specification activity should be performed by an Analyst

who must execute four activities in the following sequence: (a1.1) requirements

analysis and specification; (a1.2) analysis and specification of context

information; (a1.3) analysis and specification of model reuse; and (a1.4)

analysis and specification of model extension. The SeCoM model is used as

input to support activities a1.3 and a1.4. The SCK is used to support the design

 Context Modeling and Support on CSS Design 35

activity, indicating the ontology manipulation services to compose the CSS

being developed.

Figure 3-6 POCAp: Analysis and Specification Activity [Bulcão Neto et al.,

2006]

This approach is centered on the modeling and manipulation of the

ontologies associated to a CSS, assuming that the CSS is ontology-based. The

POCAp process is an interesting proposal since it frames and organizes

different activities and issues related to the development of context-aware

applications. The SPEM notation provides elements to detail the activities,

specifying input and output work products as well as guidelines that can assist

each activity execution. Main drawbacks of the overall proposal includes: it is

limited to ontology-based CSS; it does not address the issues related to context

manipulation in a broad sense; the offered support is related to challenges

associated to ontologies creation and manipulation; and the context model do

not integrate information about the context dynamics and the CSS behavior.

36

3.3.3 MDD-Based Approaches for CSS

Model Driven Development (MDD) [OMG, 2003] is an approach that uses

machine-readable models at various levels of abstraction to build software. The

key idea is to automatically transform highly abstract models into more

concrete models from which an implementation can be generated in a

straightforward way.

A MDD-based approach for CSS was proposed in [Ayed et al., 2007].

Contextual information is modeled according to the UML Profile presented in

Figure 3-7. It describes the following stereotypes: (i) Context, indicates the

context type; (ii) CollectionProcess, represents the elements necessary to

acquire the context; (iii) ContextQuality indicates quality attributes to be

satisfied by the context; (iv) ContextState specifies conditions associated to the

context type, in the form <contextType; operator; contextValue>. To identify

composition of context states, they define two types of associations, the

stereotypes and (for binary conjunction) and or (for binary disjunction).

Figure 3-7 UML Profile for Context Structure Modeling [Ayed et al., 2007]

Based on the MDD specification, Ayed et al. [Ayed et al., 2007] propose a

set of steps for developing CSS, composed by six phases classified into four

layers (Figure 3-8). The first and second layers aim to describe the Platform

Independent Models (PIM) for the CSS. A PIM is independent of specific

 Context Modeling and Support on CSS Design 37

implementation platforms and contains a set of high level abstract models

which defines the CSS elements. These layers comprise the following phases:

(1) identification of the required context information; (2) definition of the

application variability; (3) identification of the context collection mechanisms,

and (4) identification of the adaptation mechanisms.

Figure 3-8 MDD Phases for the Development of CSS [Ayed et al., 2007]

The third layer intends to identify the CSS implementation platform and to

generate the Platform Specific Models (PSM). A PSM is a representation of the

same system defined in the PIMs containing all technical details that are needed

to realize the system on a concrete technology platform. The mapping between

PIM and PSM is realized using an automatic transformation. In this sense, the

PIMs defined in phases (1) to (4) are automatically transformed into PSMs in

the phase (5) definition of the target platform and model to model

transformations. Finally, the fourth layer defines the phase (6) code generation

which specifies model to code transformations in order to generate the CSS

code.

It is possible to observe, in the recent context community literature, an

increasingly number of proposals that use MDD and UML Profiles to assist the

development of CSS (e.g. [Simons and Wirtz, 2007, Farias et al., 2007, Seyler

et al., 2007, Sheng and Benatallah, 2005, Van den Bergh and Coninx, 2005]).

Advantages of the MDD approach is that code generations follow specifications

38

defined in conceptual models, which improves maintenance and quality of the

produced software. However, this is still an immature technology not easy to

implement in real and complex projects.

3.3.4 Other Approaches

Many approaches for context modeling have been proposed. In this section, we

discuss some other works that are related to the context modeling approach

proposed in this thesis.

Bucur et al. [Bucur et al., 2005] propose to use two different and

integrated ontologies: one that defines a domain ontology (similar to other

context ontologies) and another ontology that describes the context attributes

managed by the CSS. A context attribute designates the information defining

one element of context. They propose a generic representation for a context

attribute modeled as a class (Figure 3-9). Each context attribute has a name, an

indication of the number of entities it is related, the list of entities, at least one

value, where the value depends on the entities to which the attribute relates.

This approach is interesting in the sense that they separate the context

definition from the concepts defined in the application domain. However, they

describe only the structure of the context attribute and do not consider other

elements related to context, such as acquisition parameters.

Figure 3-9 Description of the Context Attribute Class and Examples of

instances of related to Person and Time [Bucur et al., 2005]

The ContextUML metamodel [Sheng and Benatallah, 2005] is a UML

profile developed to support the modeling of context-aware Web Services. As

illustrated in Figure 3-10 it separates the modeling activity into two categories:

 Context Modeling and Support on CSS Design 39

context modeling (definition of context types and context sources) and context-

awareness modeling (definition of context binding to objects and triggering of

actions). The disadvantage of this approach is that it is strongly related to the

Web Services category of CSS. The proposed UML extension is heavyweight

(i.e. it modifies the semantics of the UML), meaning that it cannot be used by

existing UML modeling tools.

Service

Operation

Message

Part

CAObject CAMechanism Context

ContextBinding ContextTriggering

ContextConstraint Action

ContextService ContextService
Community

AtomicContext CompositeContext

input output
0..10..1

1

1..*

part
0..*

*

*

*

member *

* 1..** 1..**1..*

* *

1..* 1..*

MechanismAssignment

SourceAssignment

Context ModelingContext Modeling

Context-Awareness ModelingContext-Awareness Modeling

ContextSource

Figure 3-10 ContextUML Metamodel [Sheng and Benatallah, 2005]

Costa et al. [Costa, 2007] propose a context model based on foundational

ontologies for conceptual modeling [Guizzardi, 2005]. Their context model is

based on three foundational concepts: Entity, Context, and Context Situation

(Figure 3-11). In addition, context is characterised as either intrinsic context (it

belongs to the essential nature of an entity) or relational context (it depends on

the relation between distinct entities). A formal relation (e.g. greater than,

subset of and nearness) can be defined between two pieces of context. A

Context Situation is composed of entities, contexts or other situations and

exhibits the time interval during which the situation holds.

Drawbacks of this approach is that the way context and entities are

modeled may lead to ambiguities and conflicts, since it is difficult to

understand the differences between the two concepts. For example, to indicate

that a class Container is a context and not an entity they modeled it twice as

40

ContainerEntity and ContainerContext [Costa, 2007]. It does not consider

reusing existing application models, compelling context models to be developed

from scratch as a new separate model. Also, they do not consider relevance

association between context and systems’ users or the task the user is involved.

As a consequence, all contexts have the same weight and relevance no matter

who the current user is or if a user is performing different roles.

Figure 3-11 Fragment of the Foundational Context Concepts [Costa, 2007]

3.4 Concluding Remarks

This chapter presented an overview about context modeling and approaches to

support the design of CSS. Some techniques for representing contextual were

analyzed and the contextual graphs approach for context dynamics modeling

was detailed.

Most architectural support for building CSS focus on providing

mechanisms for integrating contextual information provided by multiple

services and sensors to ease context sharing. They offer services for resource

and service discovery and intermediate the communication between context

providers and applications. The information they manage is generally provided

by sensors, such as location and presence of users and devices. They are

strongly influenced by the requirements imposed by the areas of Ubiquitous

Computing and Smart Spaces (smart homes, mostly). Context processing and

 Context Modeling and Support on CSS Design 41

reasoning activities are mainly related to ontology consistency and

classification and the inference of high level contexts from low level contexts.

Current context-sensitive systems base their context model on existing

languages, such as OWL [Ferrara et al., 2006, Wang et al., 2004], without

considering the reuse of a context metamodel. We believe that, since these

languages are conceived for general purposes (not specifically for treating

context particularities), they offer little support and abstractions for building

context models. There is a lack of research and consensus in specification of

generic context models and context metamodels. In metamodels a challenge is

to identify what concepts should be considered, what they mean, how they are

related to each other, and how to formalize them.

The analysed software processes for designing CSS proposals describe

the specification phase as a fundamental step. However, they do not detail how

that specification should be done. Specially, they do not support the association

of the contextual information according to the adaptation it is intended to

support. They consider the adaptation specification isolated from the context

identification. They do not consider reusing existing arteficts already produced

by the application developers or domain specialists for identifying the

application unaware behavior.

Although much work has been proposed to address part of the discussed

challenges (software infrastructure, context modeling and software processes),

there is still a lack of integrated, domain and technology independent, generic

solutions, to support designing CSS.

Next chapter describes our proposal for a domain-independent framework,

which is centered on a generic and extensible architecture for CSS, a context

metamodel and a software process with guidelines to support the activities

related to context specification and CSS design.

 42

C H A P T E R

4

A Framework for
Designing CSS

n the previous chapters we presented the motivation and the core

theoretical issues of this thesis. This chapter presents an overview of

our proposal for a framework to support the design of CSS, named

CEManTIKA (Contextual Elements Modeling and Management through

Incremental Knowledge Acquisition). A framework is a generic term for an

object-oriented reuse technique that typically emphasizes the reuse of design

patterns and architectures [Kobryn, 2000]. It includes models, design projects

and abstract classes that are specifically designed to be refined and adapted for

specific applications.

The CEManTIKA framework is centered on three main objectives: (1) to

support the design of architectural elements related to context manipulation; (2)

to support context specification and representation in a generic domain-

independent manner; and (3) to aid developers on modeling context and

designing CSS. In this sense, the artifacts offered by CEManTIKA comprise: a

Context Manipulation Architecture; a Context Metamodel (presented in Chapter

5), and a CSS Design Process (described in Chapter 6). This chapter emphasizes

the architecture description.

I

 A Framework for Designing CSS 43

The development of CEManTIKA follows two axes: (i) theoretical, which

entails understanding the concept of context and the dynamics associated to its

usage; and (ii) practical, concerning the framework instantiation in a CSS by

implementing the metamodel concepts and architectural elements according to

the specified process.

Before describing the architecture and its elements (Section 4.4), Section

4.1 presents our working definition of context, Section 4.2 presents a

conceptual definition of the activities involved in a CSS, and Section 4.3

discusses the aspects related to dealing with context dynamics.

4.1 Our Working Definition of Context

Our working definition of context is based on two definitions, presented in

Chapter 2. The first states that context is any information that can be used to

characterize the situation of an entity (e.g. person, place, object, application)

[Dey, 2000]. The second indicates that context is always related to a focus and

that, at a given focus, the context is the aggregation of three types of

knowledge: Contextual Knowledge (CK), External Knowledge (EK) and

Proceduralized Context (PC) [Brézillon and Pomerol, 1999]. An illustration of

our working definition of context is shown in Figure 4-1, which is divided into

two parts: conceptual view and implementational view.

The conceptual view presents Brézillon and Pomerol’s view about context

[Brézillon and Pomerol, 1999]. The EK, CK and PC are part of a Context. The

transformations from EK to CK and from CK to PC are guided by the focus.

The implementational view is an extension of the conceptual view designed to

turn their definition into a computable one. The central element of this view is

the Contextual Element (CE). For us, a CE is any piece of data or information

that is associated to an Entity in an application domain, and that can be used to

characterize that entity. The concepts EK, CK and PC are constructed as a

composition of CEs.

When dealing with knowledge-based systems it is necessary to separate

the part that represents statements about the world (i.e. CEs) from the part that

indicates learned associations between those statements (i.e. rules). When

44

activated, the rules trigger pre-defined behaviors. Rules affect the

transformation from CK (the set of all manageable CEs) to PC (the subset of

instantiated CEs relevant to the Focus). The generated PC affects the triggered

behavior.

characterizes

Conceptual
View

Implementation
View

Focus

Rule

Context

External
Knowledge

Contextual
Knowledge

Proceduralized
Context

Contextual
Element

(Brézillon and Pomerol, 1999)

Entity

Behavior

Transformation

Legend

Association
Constraint

is part of

triggers

is composed by

(Vieira et al., 2007)

Figure 4-1 Illustration of our Working Definition of Context

To treat context computationally it is important to make this distinction

between context and contextual element. Context is a dynamic concept that is

constructed at run time when a focus is identified. Contextual Element is a

static concept, defined at design time, and used to compose the context.

4.2 Classification of the Tasks Involved in CSS Development

As defined in Section 2.2, a CSS is an application that uses the knowledge

about context to provide relevant information and services to its users. In this

sense, a CSS development project must consider a set of tasks specifically

related to the context manipulation. We classify these tasks into three main

categories [Vieira et al., 2008]: context specification, context management and

context usage.

 A Framework for Designing CSS 45

1) Context specification refers to the identification of the possible

variations in a CSS behavior that can be affected by the context, and

the definition of what should be considered as context to support the

decision about a variation triggering;

2) Context management (CxM) is related to how context will be

implemented and used in the system and is defined in terms of the

main tasks it comprises, as follows:

CxM = acquisition + storage + processing + dissemination

(of CEs);

3) Context usage refers to the employment of the specified and managed

CEs to guide the variations in the CSS behavior, either by enhancing

users’ awareness, by influencing recommendations, or by enabling

adaptations of any kind.

We consider that a CSS may be seen from two different perspectives: a

part that is domain-dependent (context specification and context usage) and

another domain-independent part (context management). Context specification

and context usage are strongly dependent on the CSS being developed.

Different domains or different applications will demand different sets of CEs

and will imply in different considerations for their usage. On the other hand,

context management can be modularized and treated in a domain-independent

fashion, since it encompasses the mechanics of dealing with context according

to defined CEs and rules. A context management system, or context manager for

short, involves the definition of solutions to enable the separation of context-

related tasks from the applications’ business features [Vieira et al., 2007b].

As illustrated in Figure 4-2, a context manager is an intermediate layer

between context sources and context consumers, and it aims at providing CEs

acquired from these sources to interested consumers. Context sources are

software elements (e.g. external bases, physical or logical sensors, profiles, or

user dialog interfaces) that can provide up-to-date information about the entities

considered in the CSS domain. Context consumers are software elements that

identify relevant CEs to support the triggering of a context-sensitive behavior.

Both, sources and consumers, are linked to the context manager through

interfaces.

46

The context manager circumscribes the needed mechanisms: to acquire

CEs from multiple context sources; to process and semantically interpret the

acquired CEs, according to defined and learned rules; to store the sensed and

inferred CEs in a shared knowledge base; and to disseminate the managed CEs

to interested context consumers. The context consumer will use the CEs for

different purposes according to their needs.

Figure 4-2 Conceptual Elements in a CSS Architecture and

an Interaction Example

For example, as illustrated in Figure 4-2, a context consumer Phone

Forwarding Service expects to receive information about a user’s current

location, availability and scheduled activities in order to redirect phone calls

more appropriately. The current location is acquired using the context source

GeoLocation, the user’s availability is inferred from information acquired from

the context source Messenger3, and the user’s scheduled activities is obtained

by querying a third context source Google Calendar4.

The context manager acquires the information from these heterogeneous

sources, processes them and disseminates them to the interested context

consumer (the Phone Forwarding Service). The consumer will use the

information to guide its behavior. For example, by analyzing the obtained

3 http://www.windowslive.com/messenger/overview.html
4 http://www.google.com/calendar/

 A Framework for Designing CSS 47

information, the service may observe that the user is identified as “absent” and

that s/he has a meeting scheduled at the current time. The consumer may, then,

infer that the user “is busy in a meeting” and thus the phone calls should be

redirected to the user’s mobile phone (if it is an urgent call) or to her/his

answering machine (otherwise).

4.3 Dealing with Context Dynamics

Since context is a subtle and complex concept, it is necessary to reduce the

scope of what will be considered by the context manager, delimiting a

knowledge domain. As illustrated in Figure 4-3, the dynamics associated to

manipulating context comprises four requirements [Vieira et al., 2007b]:

1) CK Construction: refers to the representation of the CEs in a domain

and the acquisition of CEs from different context sources;

2) PC Building: indicates the identification, given a focus, of the set of

CEs relevant to that focus;

3) Behavior Triggering: entails the binding of the identified CEs to

trigger appropriate behaviors; and

4) Incremental Knowledge Acquisition: is related to enhancing the

existing knowledge by learning new rules and patterns.

The information flow (from EK to CK, from CK to PC) follows the

process of context evolution according to [Brézillon and Pomerol, 1999], as

described in Section 2.1.3. These four requirements guide the principles of

CEManTIKA and are embedded in the proposed architecture, metamodel and

process. Next sections discuss them in more details.

4.3.1 CK Construction

Since context is what enables the characterization of entities and entities exist

within a knowledge domain, context is also strongly influenced by the domain it

is applied in. It means that when including and managing CEs for an application

domain one must first identify the set of CEs that characterize the relevant

entities in that domain.

48

Figure 4-3 Illustration of Issues Associated to Context Dynamics

The first concern of a context manager is to identify, define and store as

much CEs as possible related to the application domain. The elements may

come from several and heterogeneous sources. The specified and acquired CEs

are used to construct a Contextual Elements Knowledge Base (CEKB) for that

domain. Different domains necessarily entail building different CEKB, since a

CE can have different meanings, when analyzed in different domains.

A well designed and filled CEKB is a key factor in a CSS. It is necessary

to look increasingly deeper in the domain, so that the manager can identify how

a change in the context affects the state of the entities and consequently the

system's actions and events. For example, considering a Global Positioning

System (GPS) application that aids drivers to identify the best itinerary from

one place to another. The CEs considered in this application includes the

device’s current location and the location of different entities. According to the

current location the system is capable to show, for example, the itinerary the

user should follow to arrive at a given destination. To provide the appropriate

paths the system must have as much information as possible about the region

where it is being used. For instance, the GPS application containing itineraries

information related to the France will be useless if the user is in Brazil.

 A Framework for Designing CSS 49

4.3.2 PC Building

To execute the task properly, the person must have previous knowledge about

the task and its knowledge domain. When a person focuses in a task, only a

portion of his/her body of knowledge is activated: the portion that is relevant to

the task at hand. This portion must be activated and instantiated to support the

person on making decisions or triggering actions. Similarly, the CSS should

identify what part of the knowledge is relevant to support the task being

developed.

The PC building process is related to distinguishing, given a focus, the

CEs that should be considered (i.e. relevant) from those that should be ignored

(i.e. not relevant). To build a PC in a focus, the manager receives the indication

about the focus, identifies and extracts from the CEKB a subset of CE that

should be considered as relevant to that focus. This relevance relation can be

defined following stated criteria and using heuristics to process these criteria.

To support relevance identification, the context manager keeps a case

repository relating historical episodes of built PC. We call this repository

Proceduralized Context Cases Base (PCCB). Past occurrences of PC built for a

focus, extracted from the PCCB, can support identifying a new set of relevant

CEs in new occurrences of the focus. A case contains information such as a

timestamp indicating its creation time, a reference to the focus, the CEs

identified for the focus, the triggered behavior and the user’s feedback (if any).

4.3.3 Behavior Triggering

The Merriam-Webster dictionary [Merriam-Webster, 2008] translates behavior

as “the way in which something functions or operates”. Each application has a

set of predefined behaviors, which are triggered according to what was

specified by the designers. Context is something that can affect the predicted

behavior of an application. A behavior variation indicates the execution of a

different set of actions according to the occurrence of a set of related

conditions.

The Behavior Triggering process is the core of any CSS and is related to

the identification of the appropriate behavior to be executed according to

conditions associated to the identified CEs. This is not an easy task, since

50

several criteria must be taken into account. Usability issues must be considered

to avoid intrusiveness, information overload, and to enable the users to control

how the adaptations occur (as discussed in Section 2.2.3).

4.3.4 Incremental Knowledge Acquisition

The difficulty of managing CEs in a domain is that the interpretation of their

meaning and relevance may widely change, according to different users. Hence,

it is difficult and not reliable for a system designer to describe a priori all CEs

and processing rules related to the knowledge domain based exclusively on

her/his own experience. To be useful and to really attend users’ expectations, a

CSS must consider ways of incrementally acquire knowledge about the context

process (i.e. CEs and their processing rules) during a system’s usage.

The CSS should provide users with ways to indicate if the provided

information was useful and if the triggered behavior was appropriate. This

feedback can be used to support learning from the users’ opinion and

experience. Learning may occur by considering users feedback, by allowing the

user to define new rules or by the analysis of historical interactions and usage

(e.g. machine learning). In this sense, the incremental knowledge acquisition

occurs through learning of new CEs and rules.

4.4 Context Architecture

This section presents an extensible architecture for CSS, named Context

Architecture (Figure 4-4). The architectural elements follow the classification

presented in Section 4.2 (Context Sources, Context Manager and Context

Consumers). The designed functionality is inspired by the tasks classification

presented in Section 4.2 and the principles for dealing with context dynamics

described in Section 4.3.

The Context Manager is organized into four main modules: Controller,

CEAcquisition, CEProcessing and CEDissemination. The Context Consumer

includes the modules: BehaviorTrigger and FeedbackHandler. Adapters

(CSAdapter and CCAdapter) enable the Context Manager to communicate with

 A Framework for Designing CSS 51

the Context Sources and the Context Consumers. Next sections detail each

architectural element, describing its internal modules.

Figure 4-4 Context Architecture Overview

4.4.1 Context Source

Context sources are, by nature, heterogeneous, autonomous and dynamic. This

is due to the fact that they exist independently from the context manager or the

CSS and they can provide the same set of CEs to different CSS. Moreover, they

may serve to different purposes other than providing CEs. These sources may

be added, made unavailable or removed at any time, according either to the CSS

requirements or to issues related to the context source (e.g. the CSS final user

may explicitly deactivate a context source).

The CSS project may demand the creation of new context sources or it

may be used existing context sources (created in other CSS projects). To allow

compatibility, each context source should implement two modules: CSAPI

(Context Source Application Programming Interface) and CSAdapter (Context

Source Adapter). The former isolates the internal functionalities of the context

source software, enabling different applications to access its information. The

latter specifies the communication protocols between the context source and the

context manager.

Each context source can provide specific CEs. The CSAdapter must

implement the appropriate translation for each CE between the context source

format and the foreseen format on the CSS context model. For example,

52

considering the CE person’s location, a context source may provide this

information in the format of geographical coordinates and a CSS may expect

this information in the format of a tuple <country, city>. The CSAdapter for

that context source must translate the location by receiving the geographical

coordinate from the context source and sending the corresponding tuple

<country, city> to the CSS context manager. Different CSS will, normally,

demand different CSAdapters. However, different CSS may reuse the CSAPI.

4.4.2 Context Manager

This section describes the modules for the Context Manager, as explained in the

following.

� Controller Module

The Controller Module is responsible to orchestrate the communication

between the other Context Manager modules, by controling the activities related

to context acquisition, processing, dissemination and storage in the managed

repositories. Two repositories were defined for the Context Manager (according

to the discussion presented in Section 4.3): Contextual Elements Knowledge

Base (CEKB) and Proceduralized Context Cases Base (PCCB). The former

stores the CEs managed by the system, while the latter keeps historical cases.

The CEStorage module is responsible to handle persistence issues related to the

shared repositories, by encapsulating the methods for accessing the shared

repositories.

� CEAcquisition Module

The CEAcquisition Module is responsible to manage the context sources used

by the CSS and to query/receive CEs to/from each context source. One of the

purposes of separating the functionalities related to context management is to

make the access to different and heterogeneous context sources transparent to

different context consumers, allowing the reuse of context acquisition solutions.

This is valuable, since the information acquired from a source may be used by

different processes in a CSS.

The functionalities associated to the CEAcquisition module includes:

 A Framework for Designing CSS 53

• To register a new context source;

• To activate or to deactivate a context source;

• To manage the communication with the context source according to

the update frequency defined for each CE acquired from that source.

Context acquisition may occur in two directions: from the sources to the

manager and from the manager to the sources. The first happens when a context

source intentionally communicates a CE value to the manager, which occurs,

for instance, when a new source enters the system or when the CE value is

updated in the source. The second direction takes place when the manager

needs an updated value of a required CE. In this case, the CE Acquisition

module should query the needed value in the corresponding context source.

� CEProcessing Module

The principle of knowledge-based systems is to combine a knowledge base

(KB) with an inference mechanism [Russell and Norvig, 2003]. The KB stores

sentences about the world, while the inference mechanism enables the system to

infer new sentences, which will be used to decide what action to take. The

CEProcessing Module uses the CEKB to assist the processing of known CEs

and the identification of new CEs. Since different engines can be used to

process the CEKB, this module abstracts the interaction between the context

manager and external inference engines. It is also responsible for the tasks

related to context dynamics, i.e., to identify, given a focus, what CEs stored in

the CEKB are relevant to that focus.

Relevance heuristics and algorithms should be considered to identify the

relevant CEs according to a focus. Distinct factors can influence the relevance

of a CE, as for example:

• Relevance weight, attributed to the relation between the CE and the

focus, indicating how relevant the CE is to that focus;

• Context source reliability, which implies that the more reliable the

source, more relevant is the CE;

• CE acquisition mode, which indicates, for instance, that a CE directly

informed by a user is more relevant than another captured by a sensor;

54

• CE age, suggesting that the older a CE value the less relevant it is.

It is especially important to consider relevance in association to a

fundamental element: the CSS final user. Different users may have different

conceptions about the relevance of a CE related to the task s/he is executing.

� CEDissemination Module

This module entails the tasks related to the communication between the context

manager and context consumers in order to deliver required CEs. The context

consumer can ask the context manager for: current value of specific CEs,

current value of all CEs related to a given entity, or the CEs relevant to an

informed focus. The CEDissemination module is responsible to register

interested consumers, to enable the identification of CEs those consumers have

interest in, and to notify those consumers when a change occurs in the value of

the required CE.

4.4.3 Context Consumer

Context consumers are software elements that change their behavior according

to conditions related to the context. A CSS may include different context

consumers, each one responsible to manage a specific focus defined in the

system. The Context Consumer element in the Context Architecture is

composed by three modules: CCAdapter, BehaviorTrigger and

FeedbackHandler.

The CCAdapter specifies the communication protocols between the

context consumer and the context manager, isolating the internal functionalities

of the context consumer. It may effectuate, when necessary, appropriate

translation for a CE value between the context manager format and the format

used in the context consumer.

The identified CEs will be used by the BehaviorTrigger module. This

module contains references to all possible behaviors defined in the focus, and

the conditions on which each behavior variation should be executed. It is

responsible to identify the appropriate behavior to execute, according to the

values identified for the CEs.

 A Framework for Designing CSS 55

The FeedbackHandler module has two main concerns: (i) to exhibit an

explanation indicating why a given behavior was triggered; and (ii) to ask the

user to inform how useful and near to their needs was the actions taken by the

CSS. This feedback could allow incremental knowledge acquisition (as

described in Section 4.3). It will support identifying a case episode related to

the context usage to support further interactions between that user and the CSS.

4.5 Concluding Remarks

This chapter presented an overview of the general ideas and concepts

underlying CEManTIKA, a framework for supporting the design of CSS. It also

described the CEManTIKA proposal for a generic and extensible architecture

for CSS. This architecture separates the tasks related to context management

and usage into independent and integrated modules. This division in modules

intends to improve reusability and extensibility, by loosely coupling the

elements and clearly separating concerns. This approach brings four additional

advantages:

• Reusability: the solution for each task can be developed in a generic

way, separating the context manipulation functionalities from the CSS’s

business features, and the modules can be reused by different CSS;

• Context source independence: the CSS can be developed independently

from the necessary context sources;

• Sharing: different CSS can share CEs acquired from distinct and

heterogeneous context sources.

To support the ideas discussed in this chapter, it is necessary to represent

the information managed by the CSS in a structured format. The concepts

related to context management should be formalized in order to be manipulated

by the manager. To this end we propose a Context Metamodel, described in the

next chapter.

 56

C H A P T E R

5

A Domain-Independent
Context Metamodel

s discussed in Chapter 3, context models, in general, aim to

specify concepts that could be used to identify and describe

situations in a domain. They enumerate all domain concepts that can be

eventually considered as context in that domain (e.g. user’s context, device’s

context, or location’s context). No specific formalism neither their relationship

to the context dynamics is considered when structuring these elements.

Moreover, much of the information modeled as “context” in these models is

actually a redesign of information specified by domain specialists or system’s

analysts. Additionally, these models do not associate the contextual information

to its usage. As part of our framework to support CSS design (presented in

Chapter 4), we propose a context metamodel that abstracts the concepts related

to the context manipulation. The metamodel is independent of specific

application domains and intends to support the creation of context models.

This chapter is organized as follows: Section 5.1 presents a scenario of

example that will be used to illustrate the metamodel description; Section 5.2

gives an overview of the metamodel discussing some design decisions; Section

5.3 presents the concepts related to the structural part of a CSS; Section 5.4

discusses the concepts related to a CSS behavioral part; Section 5.5 presents the

A

 A Domain-Independent Context Metamodel 57

proposed UML Profiles related to the structure and behavior concepts; and

Section 5.6 presents the concluding remarks for this chapter.

5.1 Example Scenario

In order to illustrate the context metamodel presentation, this section introduces

a context-sensitive system as a scenario of use.

Consider a system that supports researchers on planning their academic

missions. An academic mission is any scientific or academic event attended by

researchers, professors or students (e.g. conference, stage, lecture or meeting).

The person who is attending to a mission is called a ‘missionary’. Missions may

have particular characteristics (e.g. duration, location, tasks to be

accomplished). Distinct missionaries may execute different steps and fulfil

specific requirements when planning a mission. For example, in a university,

the steps to be executed and the available resources (e.g. finantial support) to a

professor are substantially different from those available to a student.

To accomplish a mission there are common tasks to be performed, such

as: to register a mission participation demand (start a new mission), to request

financial aid, to book a hotel for stay during the mission (in cases where the

mission occurs in a city different from the missionary’s residence), to book and

buy transportation tickets to arrive at the mission location (when the city is not

the missionary’s residence), and to accomplish the steps to finalize the mission.

These main requirements are summarized in the Use Cases Diagram for the

Academic Mission Support System (Figure 5-1). These features can be

performed by a professor or a student. The Book Hotel feature can be provided

by an external system, called HotelBookingService.

The features that can be influenced by the context include: to identify the

steps to be accomplished and requirements to be filled according to the mission

type and the missionary profile; to support the missionary on booking transport

and accommodation; and to identify other concerns related to the mission that

could be useful to the missionary (e.g. academic activities, money exchange or

tips for touristic plans). Personal history of the missionary in similar missions

could also be useful (to identify preferences or previous decisions).

58

Figure 5-1 UML Use Cases Diagram for the
Academic Mission Support System

Figure 5-2 presents the Conceptual Class Diagram for the Academic

Mission Support System. Person is a generalization for Professor and Student.

A Person has the attributes age, name, eyeColor, availability and sex. A

Student also has the attribute academicDegree. Student has an advisor

relationship with Professor indicating that a student can be advised by one or

two professors, and that a professor can advise multiple students. Person has

the following relationships: participates in zero or more Missions; isClient of

zero or more Hotels, have the identification of one living Location and one

current Location. A Mission has the attributes whoPays, duration, startDate,

endDate and type, and the relationship location indicating in what location the

mission takes place. A Hotel has the attributes: category, isCheap and

distanceToTown, the relationship with Person indicating the clients it has

(hasClient), and a relationship with Location indicating where the Hotel is

located. A Location has the attributes countryName and cityName.

In this scenario we introduce three people, named Mary, Lucy and Tom.

Mary is a professor at a Computer Science department of a University located

in Recife, Brazil. Tom is a professor at a Computer Science laboratory of a

University located in Paris, France. Lucy is a PhD student, supervised by Mary,

 A Domain-Independent Context Metamodel 59

who is currently in an academic mission performing a stage at Tom’s

laboratory. Their interactions with the system will be explained when needed.

Figure 5-2 Conceptual Class Model for the Academic Mission Scenario

5.2 Context Metamodel Overview

The Context metamodel defines the semantics for the main concepts that should

be used to build context models. It provides new modeling elements related to

context. Such a metamodel should abstract and specify the concepts related to

context and its manipulation, providing a conceptual infrastructure to support

building context models. By specifying a metamodel we can support system

developers in the context specification phase, since they will have a basis on

which to structure their model.

Since context is a novel and not well understood area, a challenge in

context metamodeling is to identify and specify what concepts are related to the

context manipulation, how they relate to each other, what their semantics are

and how to formalize them.

60

5.2.1 Objectives and Design Principles

The following goals were defined for the Context Metamodel:

• To provide a conceptual framework that identifes the main concepts

related to context manipulation and usage, in a domain independent

way;

• To support the reuse and extension of existing context models or

application models.

In order to fulfil these objectives we chose to build the metamodel as an

extension of the elements provided by the UML 2.0 Metamodel [OMG, 2007a],

following the UML standard semantics and notation. The UML specification is

also used to support the graphical representation of the metamodel concepts,

through its Class Diagram notation.

5.2.2 Context Metamodel in the Four-Layer Architecture

Modeling and metamodeling are similar activities – the difference being one of

interpretation. A model is an abstract representation of a real-world system or process.

A four-layer metamodeling architecture was established in [OMG, 1997] and is

commonly used by the metamodeling community. Table 5-1 situates the Context

Metamodel in that architecture (layer M2).

Table 5-1 Context Metamodel in the Four-Layer Metamodeling
Architecture

Layer Example
(M3) Meta-metamodel MOF model (Metaclass)

(M2) Metamodel
UML Metamodel (Class, Attribute)
Context Metamodel

(M1) Model Hotel Model (Hotel, name, Hotel has name)
(M0) Data objects Hotel Database (<h1>,<“Ritz”>, <h1, “Ritz”>)

The meta-metamodel layer (M3) defines a language for describing

metamodels. MOF (Meta Object Facility) [OMG, 2006a] is a standard language

that specifies constructs for creating metamodels (e.g. Metaclass). A metamodel

(layer M2) is an instance of a meta-metamodel and it defines a language for

specifying models. For example, the UML Metamodel [OMG, 2007a] defines

constructs that enable to describe models in that language (e.g. Class and

 A Domain-Independent Context Metamodel 61

Attribute). A model (layer M1) is an instance of a metamodel that specifies a

language for describing an information domain. For example, the conceptual

model related to a hotel booking scenario may define a Class called “Hotel”, an

Attribute called “name” and an association indicating that a Hotel “has” a name.

Data objects (layer M0) are instances that conform to the model and define a

specific information domain. In the hotel booking example, an instance of the

Class Hotel may be the object h1, an instance of the Attribute name is the string

“Ritz”, and the tuple <h1, “Ritz”> indicates that h1 has the name “Ritz”.

Existing context modeling approaches are generally related to the model

layer (M1) and the context models are constructed as extensions of existing

languages (e.g. OWL, UML). Since these languages are conceived for general

purposes, they do not offer the appropriate support and abstraction for building

context models. The Context Metamodel defines the context-related concepts in

a high level domain-independent layer. It aims to guide developers to create

their context models.

5.2.3 Metamodel Organization

The Context Metamodel is divided into two main packages that organize the

concepts in two categories (Figure 5-3):

Figure 5-3 Context Metamodel Packages Organization

62

• context.metamodel.structure, which describes the concepts

related to the conceptual and structural elements of a CSS (context

conceptual model);

• context.metamodel.behavior, which contains the concepts

related to the behavioral aspects of a CSS (context behavior model).

The UML Metamodel package offers the constructs available in the

UML 2.0 specification [OMG, 2007a] used to compose the Context Metamodel.

Next sections describe the metamodel concepts according to this package

separation: structure concepts (Section 5.3) and behavior concepts (Section

5.4).

5.3 Context Metamodel Structure Concepts

The main concepts in a context model related to the CSS structure (Figure 5-4)

are: ContextualEntity, ContextualElement, ContextSource,

Focus and Rule. Other supporting concepts are: Task, Agent, role,

relevance and acquisition. Some datatypes were specified to support

the model description: AcquisitionType, UpdateType,

RelevanceType and ContextType. Figure 5-4 also presents the relation

between the main concepts and the metaclasses they extend from the UML

Metamodel. Next sections describe these concepts.

5.3.1 ContextualEntity

Conceptual modeling, as defined in [Mylopoulos, 1992], is the activity of

formally describing some aspects of the physical and social world around us for

purposes of understanding and communication. A conceptual model, generally,

identifies the entities that are relevant to define the world being modeled, the

relationship among those entities and abstract mechanisms to classify and

organize those entities. An entity represents a concrete representation of a real

world object that can be distinctly identified and that is relevant to describe a

domain. An entity is used to classify sets of individuals with similar

 A Domain-Independent Context Metamodel 63

characteristics and it contains descriptions of these individuals through

encapsulated attributes. The entities in the conceptual model of the Academic

Mission scenario (Figure 5-2), are: Person, Professor, Student, Mission, Hotel

and Location.

Figure 5-4 Context Metamodel Structure Concepts

In a context model, a ContextualEntity represents the entities that

should be considered for context manipulation purposes. These entities can be

identified from the application conceptual model. A ContextualEntity is

characterized by at least one ContextualElement, which is explained in the

following.

64

5.3.2 ContextualElement

Properties are binary relations that link two individuals (or one individual with

itself) or an individual to a data value. The former type of property is

commonly called relationship and the latter is known as attribute. A

ContextualElement (CE) represents a property used to characterize a

ContextualEntity. A CE can be identified from the set of attributes and

relationships associated to an entity. Examples of CEs in the Academic Mission

scenario (illustrated in Figure 5-2) are:

• age, sex, academicDegree, advisor, livingLocation (characterizes the

ContextualEntity Student);

• location, duration, type (characterizes the ContextualEntity

Mission);

• location, category, isCheap, distanceToTown (characterizes the

ContextualEntity Hotel).

CE is the basic unit of information in the Context Metamodel. A context

will be composed by an aggregation of CEs. A CE should always be associated

to a ContextualEntity. However, not necessarily all properties of a

ContextualEntity is classified as CE. The criterion to identify if a

property is a CE is subjective and strongly dependent on the context

requirements defined for the CSS.

A CE may be derived from one or more CEs. For example, the CE

Mission.duration may be defined from two other CEs: Mission.startDate and

Mission.endDate using a transformation function. This relation between CEs is

indicated by the association composes.

Some authors argue the need to categorize the CEs according to the type

of information it provides in order to ease its identification and usage (e.g.

[Bulcão Neto and Pimentel, 2005, Jang et al., 2005, Truong et al., 2001]). The

5W classification indicates whether a CE is related to one of the following

questions: who (identity), what (activity), when (time), where (location) and

why (motivation). In the Context Metamodel (Figure 5-4), this classification

composes the concept ContextType. The attribute type enables to inform

 A Domain-Independent Context Metamodel 65

this classification for a CE. For example, the CE Person.livingLocation is of

type where and the CE Mission.duration is of type when.

5.3.3 Focus

Focus is what enables to determine what CEs should be instantiated and used to

compose the context. We adopt in this work the definition of focus proposed by

Brézillon and Pomerol [Brézillon and Pomerol, 1999] that considers it to be “a

step in a task execution, in a problem solving, or in a decision making”. As

stated by this definition, a focus has a strong relation with the task being

executed. We extend this interpretation by emphasizing that a focus is

determined by the task together with who is executing it. The task executor is

an agent, which can be a person, a group of people, a process or a software

agent. An agent may perform different roles when executing the task.

Therefore, in this work a Focus (as represented in Figure 5-4) is defined

as a composition of a Task and an Agent, where the Agent executes a Task

performing a role. For example, from the requirements defined in the Academic

Mission Support System (Figure 5-1) we can identify that an agent Professor

may use the CSS to execute the task Request Financial Aid, or an agent Student

may use the CSS to execute the task Book a Hotel. Each tuple <agent;

task> constitutes a distinct Focus in the CSS context model.

5.3.4 CE Relevance to a Focus

An important issue in a context model is to identify the association between a

focus and the CEs that are relevant to support it. By our definition, context is a

dynamic concept that should be rebuilt at each new focus, being composed by

all CEs that are relevant to support the task defined in the focus. The relevance

level of this association is affected by the agent who is performing the task. For

example, when executing the task book a hotel, an agent Student can indicate

that the hotel’s price must be considered with a higher relevance than the

hotel’s comfort. We may consider, on the other hand, that an agent Professor

could prefer a more comfortable hotel even if it is not the cheapest one. In this

sense, the CEs Hotel.isCheap and Hotel.category must be associated as relevant

66

to the foci <Student; book a hotel> and <Professor; book a hotel>. However,

these associations should have different relevance weights.

In the Context Metamodel (Figure 5-4) the CE relevance to a Focus is

indicated through the concept relevance, an association between a Focus

and a ContextualElement. A relevance weight indicates how relevant the

CE is to the focus and can assume one of the following values: High, Medium

or Low (defined in the RelevanceType datatype). These relevance weight

values can be used, for instance, to compose heuristic functions where different

CEs can be combined. In the book a hotel task example, an agent Student may

indicate that s/he prefers hotels that combine an intermediate relation between

price and comfort (i.e. relevance weight for the CE Hotel.price = Medium and

for the CE Hotel.category = Medium).

5.3.5 ContextSource and Acquisition association

One characteristic of CSS is that the values of a CE may originate from

heterogenous and external context sources (e.g. user dialog interfaces, profiles,

physical sensors, desktop sensors and external databases). For example, a

person’s location may be provided by a GPS device (for outdoor places), a

badge identification service (for indoor places) or still an IP (Internet Protocol)

locator service (for network connections). A context model should provide

ways to inform how the CE acquisition occurs.

In the Context Metamodel this can be done through the concept

ContextSource and the association acquisition between a

ContextSource and a ContextualElement. The attribute isExternal

in the ContextSource indicates whether the context source is external to the

CSS (i.e. implemented by other applications) or an internal element of the CSS.

For example, in the Academic Mission Support System, we consider three

context sources: an internal User Profile, an internal Mission Form and an

external IP Location Service.

The acquisition association concept indicates and parameterizes the

relationship between a ContextualElement and a ContextSource. For

example, in the Academic Mission Support System (Figure 5-2): the CE

 A Domain-Independent Context Metamodel 67

Person.currentLocation is provided by the context source IP Location Service;

the CEs Person.age and Person.sex are provided by the context source User

Profile; and the CEs Mission.startDate, Mission.endDate and Mission.type are

provided by the context source Mission Form. The way each CE is acquired

may vary, according to the CE and context source characteristics. The

acquisition association uses three attributes to configure how the

acquisition occurs: type, updateFrequency and matchingExpression:

• type: classifies the CE according to the manner it is acquired. It

expects a value of type AcquisitionType. Based on classifications

found in previous works ([Simons and Wirtz, 2007, Henricksen,

2003]), the datatype AcquisitionType accepts the values:

Sensed, Profiled, UserDefined, Queried and Derived

(explained in Table 5-2).

Table 5-2 Values for the AcquisitionType

Type Description
Sensed Provided by a physical or virtual sensor. A Sensed CE, in general, changes

frequently and is prone to be incorrect, unkown or aged, due to sensors’
failures or network disconnections.

Profiled Extracted from an existing profile (e.g. person profile or device profile). A
Profiled CE may change but not so frequently as a Sensed CE, and
depends on the user to keep the value up to date.

UserDefined Directly informed by the agent, at run-time, on demand (e.g. through a
dialog interface). A UserDefined CE is often related to CEs that cannot be
inferred automatically (e.g. a person’s mood, a person’s motivation for
making a decision) and it should be asked every time it is needed.

Queried Extracted from repositories external to the CSS. A Queried CE, in general,
changes but not as frequently as a Sensed CE, and it tends to be reliable,
since it is normally related to transactional data used by an organization.

Derived Inferred from other CEs through transformation functions or inference
rules. A Derived CE must be very reliable (e.g. a person’s age, derived
from her birth date) or prone to imperfections (e.g. a person’s availability,
derived from her status informed in a messenger service).

• updateFrequency: indicates the periodicity for the validity of a

CE value. This attribute supports the CSS to decide if it can rely on the

last value assigned for the CE or if it should ask the context source for

an updated value. It accepts a value of type UpdateType (described

68

in Table 5-3) that accepts the following values: never,

occasionally, often and always;

• matchingExpression: indicates a transformation function or

derivation rule used to convert a value received from a context source

into a value compatible with the CE described in the context model.

For example, in the Mission scenario (Figure 5-2), a CE

Person.availability expects a value of type double (higher the value

more available the person is), and a context source provides a string

with possible values “Busy”, “Away”, and “Available”. A

transformation function should be created to convert the string

value into a corresponding double value;

Table 5-3 Values for the UpdateType

Type Description
Never The CE value is stable and never changes (e.g. a person’s birth date).
Occasionally The CE value may change, but not regularly (e.g. a person’s age).
Often The CE value is dynamic and changes regularly, demanding frequent

communications between the context source and the CSS to keep it up to
date (e.g. a person’s current location).

Always The CE value is volatile, changes constantly and is out of date right after
its acquisition (e.g. the current time).

5.3.6 Rule

When processing a CE or identifying the behavior of a CSS, it may be

necessary to consider associated rules. A well known and widely used type of

rule is the so called production rules. A production rule is a statement of

programming logic that specifies the execution of one or more actions in the

case that its defined conditions are satisfied [Russell and Norvig, 2003].

In the Context Metamodel (Figure 5-4) a Rule is represented as a set of

one or more conditions and a set of one or more actions. Each condition

represents an expression, which results in a value true, false, or null (unknown)

when matched to available data. An action indicates a procedure that must be

executed when the rule’s conditions are satisfied. In a CSS, the type of the

actions may include: to trigger a system’s behavior; to assign a CE value as a

 A Domain-Independent Context Metamodel 69

result of a composition from other CEs; or to assign a new relevance weight for

an association between a CE and a Focus.

For example, in the Academic Mission scenario a rule related to the Focus

<Professor; Book a Hotel> is described as:

Rule1:
Conditions
 Professor.age >= 30;
 Professor.age < 60;
 Mission.duration = “long”;
Actions
 setPriceWeight(0.5);
 setCategoryWeight(0.8);

This rule indicates that mature professors involved in long duration

missions consider with a high relevance weight the hotel’s comfort, and with a

medium relevance weight the hotel’s price, when performing a task book a

hotel.

5.4 Context Metamodel Behavior Concepts

The package context.metamodel.behavior defines the concepts related

to the CSS context behavioral model, which indicates how the CSS behavior is

affected by the context. To support the design of the CSS behavioral part, we

use the concepts defined in the formalism of Contextual Graphs [Brézillon et

al., 2002]: contextual node, action, recombination node, activity and parallel

action grouping. The semantics of each concept is the same stablished in the

formalism, as explained in Section 3.2. The restrictions stablished for

contextual graphs are also considered (e.g. each contextual graph must have one

initial node and one final node; each contextual node must have a

corresponding recombination node, and so on).

Figure 5-5 shows a graphical representation of the contextual graphs

concepts and restrictions, using the UML Class Diagram, as part of the package

context.metamodel.behavior. In this representation we made some

changes in the name of the concepts (e.g. ActionNode instead of Action, and

ActivityNode instead of Activity), in order to avoid conflicts with the concepts

defined in the UML Metamodel. We also included some concepts that appear

70

implicitly in the contextual graphs definition (e.g. InputBranch and

OutputBranch)

Figure 5-5 Context Metamodel Behavior Concepts

5.5 UML Profiles for Context Modeling

As explained in the Appendix B, the UML profile mechanism enables the

customization of the UML Metamodel for a specific problem domain. This is

achieved by extending existing metaclasses in the UML Metamodel using three

extension constructs: stereotypes, tag definitions and constraints. We defined

two profiles for the Context Metamodel according to the concepts defined in the

packages structure (Context Profile) and behavior (CxG Profile). These

profiles are explained in the following sections.

5.5.1 Context Profile

Figure 5-6 illustrates the stereotypes and tag definitions defined for the Context

Profile. To exemplify the stereotypes descriptions, we extended the previously

defined diagrams for the Academic Mission Support System (shown in Figure

5-1 and Figure 5-2). The semantically enriched models are illustrated in Figure

5-7 (Use Cases Diagram) and Figure 5-8 (Conceptual Class Diagram). The

Conceptual Class Diagram presented in Figure 5-8 is an excerpt of the diagram

 A Domain-Independent Context Metamodel 71

shown in Figure 5-2. For the sake of clearness we brought only the elements

considered relevant to explain the Context Profile stereotypes. New elements

were included in the diagram of Figure 5-8 to explain the usage of the

stereotypes related to the concepts Focus and ContextSource.

Figure 5-6 Context Profile Stereotypes and Tag Definitions

The stereotypes defined to enrich the UML Use Cases Model are:

• <<Agent>>: extends the metaclass Actor to indicate that this actor

should be considered to compose a Focus. In Figure 5-7, Professor

and Student are identified as <<Agent>>;

• <<Task>>: extends the metaclasses UseCase and Activity. In the

Use Case Model, it indicates the use cases that should be considered in

72

a Focus composition. In Figure 5-7, the uses cases Book Hotel, Start

a Mission, Book Transport, Finalize a Mission and Request Financial

Aid, are identified as <<Task>>;

• <<executes>>: extends the metaclass Association to explicitly

represent an association between an Agent and a Task. This stereotype

should be used to link actors assigned as <<Agent>> to use cases

denoted as <<Task>>.

Figure 5-7 Academic Mission Use Cases Diagram, Enriched with the

Context Profile Stereotypes

The Context Profile enables to enrich with context semantics the UML

Class Model by the following stereotypes:

• <<ContextualEntity>>: extends the metaclass Class, and

indicates which classes from the application conceptual model should

be considered as contextual entities. In Figure 5-8, two contextual

entities were defined: Person and Mission;

• <<ContextualElement>>: extends the metaclass Property,

indicating which attributes or relationships of a contextual entity

represent contextual elements. This stereotype has a tag definition

type, to indicate the CE category (ContextType). In Figure 5-8,

 A Domain-Independent Context Metamodel 73

the contextual entity Person has the following CEs: age, eyeColor,

availability, livesIn and currentLocation. The contextual entity

Mission has the CEs whoPays and occursIn. The CE Mission.whoPays

is classified as type=who while the CEs Person.livesIn and

Mission.occursIn are classified as type=where;

• <<ContextSource>>: extends the metaclass Class, and represents

classes in the context model that designate context sources. In Figure

5-8, two context sources were defined: MSNAdapter and

GeoLocationAdapter;

Figure 5-8 Excerpt of the Academic Mission Conceptual Class Diagram

Enriched with the Context Profile Stereotypes

• <<acquisitionAssociation>>: extends the metaclass

Association to model the relationship between a CE and a

ContextSource. This stereotype contains four tag definitions:

element, acquisitionType, matchingExpression and

74

updateFrequency, with the same semantics defined in the Context

Metamodel (Section 5.3.5). The tag definition element was

necessary to overcome a limitation of the UML Metamodel that does

not allow associations between a class (ContextSource) and a

property (CE). Therefore, the ContextSource must be associated to

a ContextualEntity and the corresponding CE is mapped in the

element tag. For example, in Figure 5-8 to indicate that the CE

Person.availability is acquired from the ContextSource

MSNAdapter we created an acquisitionAssociation between

this source and the ContextualEntity Person and we assigned the

tag element = availability;

• <<Focus>>: extends the metaclass Class and contains two tag

definitions: task and agent. In Figure 5-8, the Focus

ProfessorBookTransport represents that a task Book Transport is

executed by an agent Professor;

• <<relevanceAssociation>>: extends the metaclass

Association. It enables to model the relevance relationship

between a Focus and a CE. It has two tag definitions: element and

weight. The tag element indicates a reference to the corresponding

CE. The tag weight indicates how relevant the CE is to the Focus,

following the classification defined in the RelevanceType. In

Figure 5-8 the CEs identified as relevant to the Focus

ProfessorBookTransport were: Mission.occursIn, Mission.whoPays,

Person.livesIn and Person.age;

• <<Rule>>: extends the metaclass Constraint to indicate rules

defined for the context model. Since a Constraint already has the

definition of conditions, the Rule is extended with a tag definition

action to indicate the action that should be taken when the

conditions are satisfied.

 A Domain-Independent Context Metamodel 75

5.5.2 CxG Profile

The CxG Profile enables a CSS designer to model the application behavior

using the UML Activity Diagram with the semantics defined in the Contextual

Graphs. The stereotypes defined for the CxG Profile are illustrated in Figure

5-9. An example of contextual graph built using the CxG Profile stereotypes is

illustrated in Figure 5-10. This example is related to the Focus: agent Professor

executes task Book Transport, in the Academic Mission Support System.

Figure 5-9 CxG Profile Stereotypes and Tag Definitions

• <<ContextualGraph>>: extends the metaclass Model, and

indicates a model package containing a contextual graph elements;

• <<Action>>: extends the metaclass CallBehaviorAction,

indicating a new CxG action node. For example, in Figure 5-10 an

action is “Contact CAPES Official Agency”;

• <<ParallelActionGrouping>>: extends the metaclass

ForkNode, indicating actions that can be executed in parallel;

76

• <<ContextualNode>>: extends the metaclass DecisionNode,

indicating a CxG contextual node. This stereotype has a tag definition

condition that receives a string indicating the condition to be tested

in the contextual node. For example, in Figure 5-10 a contextual node

named CE2 and its condition is the CE “Mission.whoPays”;

Figure 5-10 Contextual Graph for the Focus ProfessorBookTransport

• <<RecombinationNode>>: extends the metaclass

DecisionNode, indicating the deactivation of the condition tested in

the corresponding contextual node. According to the CxG definition,

each contextual node should have a corresponding recombination node;

• <<ContextualBranch>>: extends the metaclass ControlFlow,

and represents an association from a contextual node to: another

contextual node, an action or a parallel action grouping. This branch

contains a tag definition value that indicates the CE value that should

 A Domain-Independent Context Metamodel 77

be validated according to the condition specified in the contextual

node. For example, in Figure 5-10 the contextual node CE2 has

condition=“Mission.whoPays” and two contextual branches for the

two possible values for this CE: value=“CAPES” or value=

“missionary”.

The advantages of using the CxG Profile to model contextual graphs are

twofold: we can design a contextual graph using any UML-based tool with the

advanced modeling features provided by these tools; the CSS context behavior

model can be more easily integrated with the context conceptual model.

5.5.3 Using the CxG Profile to Model Behavior Variation

Considering the contextual graph illustrated in Figure 5-10, the condition in

CE1 (“Mission.occursIn=Missionary.livesIn”) verifies if the mission is carried

out in the same city where the missionary lives, indicating two possible

contextual branches: the first tests if value=“yes”. In this case, no transport is

necessary and thus the contextual graph points to the end of the task execution.

If value=“no”, it will activate another contextual node CE2.

The contextual node CE2 refers to the condition= Mission.whoPays.

In this case, two branches are considered. In the first case (value=“CAPES”)

the activated action is “Contact CAPES Official Agency”. In the second case,

when value= “missionary”, another contextual node CE3 is activated.

CE3 verifies condition= Person.age. Three contextual branches are

related to this contextual node. The first (value=“>=50”) tests if the person’s

age is more than 50, and in this case the <<Action>> “Classify by Comfort”

will be activated, indicating that older people give preference to comfort

conditions when traveling. The third branch (value=“<26”) triggers the

<<Action>> “Classify by Price”, and finally the second branch (value=“=26

AND < 50”), do not execute any action and moves to the recombination node of

this CE and to the next action to be executed: “Recommend Transport”. This

action execution conducts to the final node, indicating the end of the task.

The behavior variation in the contextual graph is indicated by the

different flows of actions that are triggered according to conditions associated

78

to the contextual nodes. For example, the action Lookup Transport Types will

be executed when the following conditions are satisfied:

CE1: [Mission.occursIn = Person.livesIn] = yes

CE2: [Mission.whoPays] = “missionary”

Each path in the contextual graph contains the rationale used to execute

the task in the focus. It contains the sequence of the triggered actions, the

conditions activated for each action, and the CEs related to each condition.

These paths can be converted to compose the Rules in the context conceptual

model (Figure 5-4). For example, considering the contextual graph of Figure

5-10, examples of rules are:

Rule1:
Conditions
 not (Mission.occursIn==Person.livesIn)
 Mission.whoPays=“CAPES”
Actions
 CallBehavior(“Contact CAPES Official Agency”)

Rule2:
Conditions
 not (Mission.occursIn = Person.livesIn)
 Mission.whoPays = “missionary”
 Person.age < 26
Actions
 CallBehavior(“Lookup Transport Types”)
 CallBehavior(“Classify by Price”
 CallBehavior(“Recommend Transport”)

5.6 Concluding Remarks

This chapter presented a Context Metamodel to guide the creation of context

models in a domain-independent manner. It also presented the proposed UML

Profiles [OMG, 2007a] related to the Context Metamodel: Context Profile (for

structure) and CxG Profile (for behavior).

Visual languages play an important role in software engineering because

graphical models are better readable and understandable by human beings.

Benefits of using a context metamodel include: to achieve a common

vocabulary that increases the understanding about context peculiarities; and to

 A Domain-Independent Context Metamodel 79

provide a guide for the identification of the elements to be designed in a context

model.

To exemplify the advantages of using such a metamodel, we can analyze

the original conceptual model for the Academic Mission System (Figure 5-2)

and the extended version of this model (Figure 5-8) enriched with the

stereotypes defined in the Context Profile. We can observe that the enriched

conceptual model presents much more semantics in comparison to the original

model. This semantic enrichment can ease the design and evaluation of the

context concepts in the CSS and the evolution and maintenance of the CSS

functionalities.

The design decisions related to the specification of the metamodel

concepts were made by observing weaknesses on reviewed context models

(discussed in Section 3.3). In doing so, we noticed that, in general, the analysed

approaches:

1) do not make a clear distinction between the concepts of Context and

Contextual Element, calling everything as context. Also, they do not

consider explicitly the dynamic aspect of the context in comparison

with the static aspect of the contextual element;

2) do not consider a separation between the concepts of Context and

Entity. There are cases (e.g. [Simons and Wirtz, 2007]) where an entity

is indicated as being a context, instead of assuming that, in fact,

context should be built by analysing specific properties associated to

the entities, not the entity as a whole;

3) lack support for reusing existing models in the CSS context model.

Most approaches propose the context model as a new model and not as

an extension of existing models. There is no clear separation and

differentiation between the context modeling and the application

modeling parts. This work argues against this practice and claims that

reusing existing models is a way to diminish the complexity in

building CSS.

Another contribution of our approach is a concrete application and

instantiation of the conceptual context model proposed by Brézillon and

80

Pomerol [Brézillon and Pomerol, 1999] through the creation of a UML Profile

to support modeling Contextual Graphs. In their model they indicate the need to

consider different knowledge states according to the context (external

knowledge, contextual knowledge and proceduralized context) and indicate that

the focus is what enables this knowledge state changing. However, they do not

specify how a context model designer should effectively represent the context

and the focus. In other words, they do not integrate the context model structure

definition to their proposal of a context behavioral model.

Existing UML profiles for context modeling (e.g. [Ayed et al., 2007,

Simons and Wirtz, 2007]) identify the concept equivalent to our Contextual

Element (named, respectively, context and context item) as an extension of the

Class metaclass. We propose to model Contextual Element as an extension of

the Property metaclass, instead. This decision is due to our understanding

that entities and contextual elements are two different but related concepts. A

contextual element is used to characterize a contextual entity. So, it is not

correct to consider, for example, a Person as a contextual element, but the

person’s age, or the person’s current location. Semantically, this corresponds

to the attributes associated to a class Person (e.g. age) or to the associations

between that class with another (e.g. currentLocation, between classes Person

and Location).

Next chapter presents our proposal for a CSS design process. It supports

designers on building context models and designing CSS based on the concepts

defined in the Context Metamodel.

 81

C H A P T E R

6

A CSS Design Process

oftware process is a road map with predictable steps and guidelines

related to the development of computer applications [Pressman,

2005]. It aims to support the creation of timely and high-quality products. As

discussed throughout this thesis, CSS demands that designers consider new

aspects and challenges in comparison with traditional applications. In this

sense, it is important to provide CSS developers with a software process that

could guide them through the fulfilment of context specific requirements. In

this work, we argue that including context entails a different way of thinking

about a system’s engineering. When designing a CSS, a major emphasis should

be given to the analysis of how users interact (or are expected to interact) with

the CSS and how these users expect the CSS to act on their behalf.

In this chapter, we describe our proposal for a Context Process, which

details the main activities related to context specification and the design of

CSS, providing a systematic way to execute these activities. It extends the

analysis and design phases described in any software development lifecycle (as

explained in [Pressman, 2005]) and uses the notation and terminology described

in the Software Process Engineering Metamodel (SPEM) [OMG, 2008a].

The chapter is organized as follows: Section 6.1 provides an overview of

the Context Process, indicating its main elements and activities which are

S

82

detailed in subsequent sections (6.2, 6.3 and 6.4); and, Section 6.5 presents our

concluding remarks and a comparison with related work.

6.1 Process Overview

The Software Engineering literature (e.g. [Pressman, 2005]) indicates that a

software process, in general, comprises the following main phases: analysis,

design, code generation, testing and maintenance. As illustrated in Figure 6-1

the main activities identified in the Context Process, and the corresponding

phases in a software process, are: Context Specification (analysis), Context

Management Design (design), Context Usage Design (design), Code

Generation, Testing and Evaluation (maintenance). This last activity indicates

that a CSS should undergo constant evaluations with final users to adjust

adaptation functionalities. Currently, we concentrate on the activities related to

analysis and design. The other activities are out of the scope of this thesis and

will be considered in further work.

Three main Process Roles are considered:

• System Architect is the person or team responsible for designing the

system’s architecture [IEEE, 2000];

• System Analyst is the person or team responsible to identify users’

needs and to translate business requirements into software

specifications; and

• Context Designer is the person or team responsible to identify context-

related requirements and to design context-sensitive solutions. The

context designer should have multidisciplinary expertise on subjects

related to human cognition, acquisition technologies (e.g. sensors),

artificial intelligence, software development and software usability.

We chose to follow the terminology, diagrams and notation provided by

the SPEM 2.0 (Software Process Engineering Metamodel) specification [OMG,

2008a]. SPEM is the OMG (Object Management Group) adopted standard for

modeling software processes. It is a MOF-compliant metamodel and has an

associated UML Profile. We modeled the Context Process using the SPEM

Profile and two SPEM diagrams: Workflow (to illustrate how activities interact

 A CSS Design Process 83

with each other and the order they should be performed in) and Activity Detail

(to present internal details of each activity, such as input/output artifacts and

guidances). Next sections detail each main activity.

Process
Role Activity Decision

Dependency
Flow Work FlowParallel

Activities

Legend

Figure 6-1 SPEM Workflow Diagram: Context Process Main Activities

6.2 Context Specification

This activity has the objective to identify the context requirements based on the

business requirements and to create the context conceptual model. As illustrated

in Figure 6-2, the Context Specification activity comprises the following

sequential activities: Identify Focus (S1), Identify Behavior Variations (S2),

Identify Domain Entities and CEs (S3) and Verify CEs Relevance (S4). The

activities are executed incrementally, meaning that while executing a given

activity it may be necessary to go back to a previous one. For example, after

executing S3 one may decide to go to the next activity (S4), to go back to the

previous activity (S2) for requirements review, or to start a new interaction,

going back to S1 (this flow of activities should be repeated for each identified

focus).

84

Activity

Legend

Decision
Initial

Activity
Final

Activity Work Flow

Figure 6-2 SPEM Workflow Diagram: Context Specification Activities

6.2.1 Identify Focus (S1)

The objective of the Identify Focus activity is to recognize, from the application

business requirements, which tasks and agents should be considered to compose

the CSS Foci. Figure 6-3 presents the SPEM Activity Detail Diagram for this

activity. It is performed by the Context Designer in collaboration with the

System Analyst. It is guided by the specifications defined in the Context

Metamodel and the Context Profile stereotypes. It takes as input the

application’s original Use Cases Model, previously built by the System Analyst,

which contains the main business requirements. It produces as output an

extended version of the Use Cases Model enriched with the Focus

identification.

As defined in the Context Metamodel, a Focus is composed by the

association between an Agent and a Task, indicating that this Agent uses the

CSS to execute that Task. These elements (Task and Agent) correspond,

respectively, to Use Case and Actor in the Use Cases Model. The stereotypes

 A CSS Design Process 85

<<Agent>>, <<Task>> and <<executes>> defined in the Context Profile

(Section 5.5.1), enable to identify which actors and use cases, should be

considered to compose the CSS Foci, from the Use Case Model. For example,

in the Mission Support System, examples of foci (illustrated in Figure 5-7) are

the tuples: <Student, Book Hotel>, <Professor, Request Financial Aid>.

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-3 SPEM Activity Detail Diagram: Identify Focus

6.2.2 Identify Behavior Variations (S2)

Behavior variations indicate different actions, related to a Focus, that the CSS

may execute. The objective of this activity is to identify, given a focus, which

variations are expected in the CSS behavior, and which factors affect these

variations. The characteristics of this activity (illustrated in Figure 6-4) are: it

is performed by the Context Designer and System Analyst; it uses as input the

extended Use Cases Model, which resulted from activity S1; it produces the

Context Requirements document as output; and it uses, as guidance, a Context

Requirements Guidelines document.

86

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-4 SPEM Activity Detail Diagram: Identify Behavior Variations

For the Context Requirements Guidelines, we identify some categories of

requirements where context, generally, may interfere on a CSS behavior:

1) when the CSS should keep the Agent aware of contextual information

related to the Task s/he is executing;

2) when some kind of adaptation or personalization should be provided by

the CSS (e.g. change information presentation format, adapt interfaces,

enable/disable services, and filter or classify information);

3) when the CSS functions as a recommender system; and

4) when there is a need to enrich managed knowledge with associated

contextual elements (e.g. creation date, author, rationale behind a

decision made).

This list is not exhaustive and context may affect the CSS behavior in

other ways. Ideally, CSS designers should, incrementally, increase and share

 A CSS Design Process 87

this Context Requirements Guidelines document, reporting experiences and

previously made decisions.

The produced Context Requirements document will contain a list and a

description of the identified behavior variations. This document could follow

proposed standards for requirements specification (e.g. [IEEE, 1998]).

In our example of the Academic Mission Support System, as discussed in

Section 5.5.3, some requirements that affect the system behavior in the Focus

<Professor, Book Transport> include:

R1 Recommend options of transportation for the mission location;

R2 Consider CEs related to the agent and the mission to categorize the

available transports.

6.2.3 Identify Contextual Entities and CEs (S3)

After identifying a focus and the expected behavior variations for that focus,

the next activity is to identify the domain entities related to the focus and the

characteristics from those entities that influence each variation. This is the

objective of activity S3, illustrated in Figure 6-5. This activity uses as input

artifacts: the Context Requirements Document, produced in activity S2, and the

domain Conceptual Model, previously specified by the System Analyst. The

output artifact is the Context Conceptual Model. As guidance, it uses the

Context Metamodel and Context Profile. Optionally, other guidances can

support this activity, such as domain ontologies and existing context models

(developed by other CSS designers).

The Context Conceptual Model, produced in this activity, is composed as

an extension of the Domain Conceptual Model, taking into account the

definitions identified in S2 and registered in the Context Requirements

Document. The stereotype <<ContextualEntity>>, defined in the Context

Profile, should be used to enrich the semantics of the Conceptual Model,

explicitly indicating the entities (from the Conceptual Model) that should be

considered in the Context Conceptual Model.

The Context Designer should verify, for each identified contextual entity,

which of its properties influences the behavior variations (described in the

88

Context Requirements Document). These properties should be identified in the

Context Conceptual Model with the <<ContextualElement>> stereotype. The

context requirements may demand the specification of new properties for the

domain entities, or the specification of new domain entities (not yet

contemplated in the domain Conceptual Model).

An example of this activity is illustrated in Figure 5-8. The identified

contextual entities are Person and Mission and the CEs are Person.livesIn,

Person.age, Mission.whoPays and Mission.occursIn.

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-5 SPEM Activity Detail Diagram: Identify Contextual Entities
and CEs

6.2.4 Verify CEs Relevance (S4)

The next step is to evaluate if the CSS final users and designers have the same

understanding about the relevance of the identified CEs to the Foci, and if the

 A CSS Design Process 89

defined behavior variations reflect users’ expectations. This is the objective of

activity S4. As illustrated in Figure 6-6, the activity is performed by the

Context Designer, it receives as input the Context Conceptual Model (produced

in S3) and the Context Requirements document (from S2), and produces as

output a Relevance Evaluation document. It may also produce, as output,

updated versions of the Context Conceptual Model and Context Requirements

Document. As guidance it may use Evaluation Guidelines (e.g. questionnaire

samples).

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-6 SPEM Activity Detail Diagram: Verify CEs Relevance

As stated in [Brézillon, 2007b], practices are strongly influenced by the

context. Practices are related to the real usage of the CSS by its final users. To

identify some of these practices, the Context Process suggests that a

preliminary investigation should be conducted with a group of (potential) real

users. The Evaluation Guidelines may contain indications about how to conduct

this investigation.

One approach, suggested in [Greenberg, 2001], is to use ethnographic

methods to observe and analyze many contextual episodes in real life. This

90

observation will enable the designer to recognize how people really work. It

could be possible, then, to determine the contextual elements that are relevant,

and how they are acquired and identified.

Another more direct approach is to elaborate survey questionnaires and

face-to-face interviews. They can be applied to (potential) CSS users to

investigate which CEs they consider relevant (and how relevant) when

executing the task defined in the focus. Data provided on these surveys can be

analyzed using data mining techniques to identify association patterns between

users’ characteristics and their perception of CEs relevance.

In our example of the Mission System (Section 5.1), we could perform

surveys and interviews with students and professors from distinct universities to

investigate: how they usually plan their missions and what elements influence

their decision when choosing accommodation and transportation. This

information along with personal information about each participant (e.g. age,

gender, social status and living location) could support identifying behavior

patterns that could be used to compose the Mission System contextual rules.

6.3 Context Management Design

Once the Context Specification is defined, the Context Designer has to

investigate how the specified CEs should be acquired and processed. For

projects where multiple context consumers are considered, the Context

Designer should also define how the managed CEs will be disseminated to the

different consumers. The Context Management Design activity (illustrated in

Figure 6-7) comprises the following sub-activities: Specify Context Acquisition

(M1), Design Acquisition Module (M2), Design Processing Module (M3) and

Design Dissemination Module (M4). These last three are independent from each

other, and can be executed in parallel or following any order.

6.3.1 Specify Context Acquisition (M1)

The objective of this activity is to specify the acquisition parameters for each

identified CE. As illustrated in Figure 6-8, it is performed by the Context

Designer and the System Designer. It receives as input the Context Conceptual

Model and the Context Requirements document. It produces as output an

 A CSS Design Process 91

updated version of the Context Conceptual Model and an Acquisition

Configuration document. It uses the Context Metamodel and the Context Profile

as guidances.

Activity

Legend
Initial

Activity
Final

Activity Work Flow
Parallel
Activities

Figure 6-7 SPEM Workflow Diagram: Context Management Design

Activities

Following what is specified in the Context Metamodel (Section 5.3), the

Acquisition Configuration document should contain, for each CE: a reference to

the context source that will provide its values; the acquisition mode (e.g.

sensed, profiled, userDefined, queried or derived); the update frequency (never,

occasionally, often and always); and, optionally, a matching expression

indicating any convertions that should be done in the information coming from

the context source to match with the CE expected format.

For example, in the Academic Mission System (presented in Figure 5-8),

the CE Person.availability is filled by the context source MSNAdapter. The

acquisition type is Sensed, the update frequency is often, and a matching

expression is {if Status=‘Online’ then availability=0.8; if Status=‘Busy’ then

92

availability=0.5; if Status=‘Away’ or Status=‘Offline’ then availability=0.2)},

where Status is the information provided by the MSNAdapter.

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-8 SPEM Activity Detail Diagram: Specify CE Acquisition

6.3.2 Design Acquisition Module (M2)

The objective of this activity is to design the elements responsible for the

context acquisition (e.g. context sources APIs and adapters), indicating how the

context acquisition should be implemented. As illustrated in Figure 6-9, it is

performed by the Context Designer and the System Designer, receives as input

the Acquisition Configuration document and produces as output the Acquisition

Module Specification. It uses the Context Architecture (defined in Section 4.4)

as guidance.

 A CSS Design Process 93

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-9 SPEM Activity Detail Diagram: Design Acquisition Module

According to the Context Architecture (presented in Section 4.4), each

context source should have: an API (Application Programming Interface) to

allow the access to its internal functionalities, and an Adapter to enable the

communication between the context source and the context management

module. In this sense, for each identified context source (activity M1), the

Context Designer should execute one of the following tasks:

1) Design a Context Source Adapter in the case that there is already an

API to access the context source contents and it is only necessary to

translate the information from the context source to the CSS;

2) Design a Context Source API and Adapter, when the context source

exists, but there is not a modularized way to access its internal

information; or

94

3) Design a new Context Source, when no context source was found to

provide that CE.

For example, in the Academic Mission System (illustrated in Figure 5-8),

two adapters were designed for two existing context sources: MSNAdapter and

GeoLocationAdapter; and two new context sources were designed: Missionary

Profile and Mission Form.

A CE can be acquired using one of the following three ways:

1) explicitly informed by the user, which answers, on demand, questions

about her/his context through a user interface;

2) automatically using physical or logical sensors, which monitor and

collects information either from a physical (e.g. indoor or outdoor

places) or virtual (e.g. workspace area, running applications, network)

environment;

3) semi-automatically, from shared repositories (e.g. applications’

models, filled profiles and preferences forms, organizational memory,

domain ontologies).

An important characteristic of a CSS is that they have the potential to

diminish the interaction between systems and users by acquiring, as much

information as possible, from different sources others than the user. For

example, a system may ask directly the user about his/her current location.

However, a context-sensitive system will try to acquire this information using

location sensors combined with reasoning mechanisms. In this light, a CSS is

expected to interact with several different and, possibly heterogenous context

sources.

Context acquisition services should be constantly available. These

services should, preferably, be implemented independently from the CSS, so

different applications could share information without worrying about how the

CE values are obtained. By doing so, a community of CSS designers and

context sources developers could publish the assets related to their context

sources (e.g. documentation, source code, software components, models, CEs

catalog) in a Context Sources Yellow Pages service. Such a service could guide

 A CSS Design Process 95

other CSS designers on specifying their acquisition modules. This service is out

of the scope of this work.

6.3.3 Design Processing Module (M3)

This activity has the objective to specify and design the elements related to CE

processing, i.e. CE knowledge base, inference rules and inference engine (as

indicated in the Section 4.4.2). As shown in Figure 6-10, this activity: is

performed by the Context Designer and the System Designer; receives as input

the Context Conceptual Model, the Context Requirements document and,

optionally, the Context Behavior Model; produces as output a document with

the defined Contextual Rules, a document with the specification of the

Processing Module elements, and an updated version of the Context Behavior

Model. It uses as guidance the Context Architecture (defined in Section 4.4).

In this activity, the Context Designer should identify, for each CE,

whether it is necessary to perform any processing or inferencing to determine

its value. Behaviors defined in the Context Behavior Model should be translated

into contextual rules. The designer should identify what kind of inferencing will

be needed and in this case what existing inference engine better applies.

Contextual rules should be translated into the format required by the inference

engine. Besides, the inference engine should be configured to match the CSS

processing requirements.

In the Academic Mission System, for instance, some contextual rules

were identified from the modeled contextual graph (illustrated in Figure 5-10).

An example of contextual rule is:

Rule1:
Conditions
 not (Mission.occursIn==Person.livesIn)
 Mission.whoPays=“CAPES”
Actions
 CallBehavior(“Contact CAPES Official Agency”)

In order to be used by an inference engine, this rule must be translated to

an appropriate format. Considering, for instance, the JEOPS (Java Embedded

Object Production System) inference engine notation [Figueira Filho and

Ramalho, 2000] the rule will have the following specification:

rule Rule1 {

96

 declarations
 Person p;
 Mission m;
 BookTransport bt;
 conditions
 m.getOccursIn() == p.getLivesIn();
 m.getWhoPays() == “CAPES”;
 actions
 bt.recommendTransport(false);

bt.showMessage(“Contact CAPES Official
Agency”);

}

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-10 SPEM Activity Detail Diagram: Design Processing Module

 A CSS Design Process 97

6.3.4 Design Dissemination Module (M4)

The objective of this activity is to design the elements responsible for

disseminating CEs to different context consumers. Figure 6-11 shows the

details of this activity: it is performed by the Context Designer and the System

Designer, receives as input the Context Conceptual Model and the Context

Requirements document, and produces as output the Dissemination Module

Specification. Its guidance is the Context Architecture.

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-11 SPEM Activity Detail Diagram: Design Context Dissemination

When different context consumers are considered, it is necessary to

design how context dissemination should be performed. The Context

Architecture indicates that each context consumer should have an adapter to

98

allow its communication with the CSS context management module. The

adapter indicates how the consumer desires to be notified when the CE is

updated.

6.4 Context Usage Design

This activity has the objective to design how context will be effectively used in

the CSS. It is composed by three main activities: Design Context Behavior

Model (U1), Design Context Adaptation (U2) and Design Context Presentation

(U3). The task Get Focus indicates that these activities should be performed for

each Focus identified in the Context Conceptual Model. We consider two main

usages for context in a CSS: to support behavior adaptation (of any kind); to

enrich a CSS agent´s cognition with contextual information managed by the

CSS. In this light, activities (U2) and (U3) are presented as optional in the

process, and the desiger should decide which activity is necessary given the

CSS requirements.

6.4.1 Design Context Behavior Model (U1)

This activity has the objective to produce the Context Behavior Model

corresponding to the identified focus, as well as to design the associations

between the CEs and the behavior variations. The activity (as shown in Figure

6-13) is performed by the Context Designer and System Designer. Its input is

the Context Conceptual Model and the Context Requirements document. Its

output is the Context Behavior Model for the focus. As guidance, it uses the

CxG Profile (described in Section 5.5.2).

The Context Behavior Model is a representation of the correspondent

contextual graph in the Focus (see, for example, Figure 5-10). The contextual

graph expects to receive, at least, the actions that should be triggered by the

CSS and the conditions that constrain these actions. These conditions can be

identified from the contextual rules defined in activity M3.

 A CSS Design Process 99

Task Activity Decision

Legend
Initial
Activity

Final
Activity

Work Flow

Figure 6-12 SPEM Workflow Diagram: Context Usage Design Activities

6.4.2 Design Context Adaptation (U2)

This activity aims to specify how the CSS should adapt to the context. As

illustrated in Figure 6-14 it is performed by the Context Designer and System

Designer. It uses as input the Context Conceptual Model, the Context

Requirements document, and the Context Behavior Model. As output it

generates the Adaptation Module Specification. To guide this activity, the

designer may use specifications provided by the Context Architecture and

guidelines with directives related to Adaptation and Usability Aspects.

As discussed in Section 2.2.3, misinterpretations may entail undesired

behaviors, which will make the CSS annoying and disturbing instead of useful.

In this sense, issues related to human aspects such as intelligibility and

accountability (e.g. non-intrusiveness, user control, privacy, and security)

100

should be taken into account (as also discussed in [Bellotti and Edwards,

2001]).

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-13 SPEM Activity Detail Diagram: Design Context Behavior
Model

The way the CSS interacts with its users and how users can provide

feedback about the executed adaptations should be also specified. This feedback

can aid the system to learn how to conduct future adaptations.

6.4.3 Design Context Presentation (U3)

The purpose of this activity is to design the presentation of the managed CEs to

the CSS Agents in order to enrich their knowledge about the Task being

executed. Details of this activity are illustrated in Figure 6-15: it is performed

by the Context Designer and the System Designer. The inputs are: the Context

Conceptual Model, the Context Requirements Document, and the Context

Behavior Model. As output it generates the Presentation Specification

document. To guide this activity, the designer may use specifications provided

 A CSS Design Process 101

by the Context Architecture and guidelines with directives related to Interface

and Usability Aspects.

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-14 SPEM Activity Detail Diagram: Design CSS Adaptation

The Context Designer should decide which CEs should be presented,

when and how the presentation should occurs. Issues related to human cognition

should be considered, to avoid intrusiveness or information overload. The

literature of information awareness provides many examples about how to

present contextual information to improve cognition (e.g. [Vieira et al., 2004,

Byrne, 2004, Gross and Prinz, 2003, Gutwin and Greenberg, 2002]).

6.5 Concluding Remarks

This chapter presented a software process to support the context specification

and the design of CSS. The main contributions of the Context Process are:

102

Process
Role

Task Guidance

Legend
Work

Product Association

Figure 6-15 SPEM Activity Detail Diagram: Design Context Presentation

• It proposes a clear separation of the context-related activities, creating

a new role in the software development team, the context designer;

• It emphasizes the need to work with existing artifacts when designing

a CSS (e.g. requirements, conceptual models, business logic), instead

of starting from scratch;

• It covers the main activities related to a CSS design, providing

guidelines, indicating input/output artifacts and a systematic way to

execute each activity;

• It illustrates how the context metamodel and profiles (described,

respectively in Section 5.3 and Section 5.5) and the context

 A CSS Design Process 103

architecture (described in Section 4.4) can be integrated when

designing a CSS.

As discussed in Section 3.3, few software processes were proposed to

support designing CSS (e.g. [Bulcão Neto et al., 2006, Henricksen and

Indulska, 2004]). The POCAp process [Bulcão Neto et al., 2006] is also based

on the SPEM notation and describes, in a high level, the activities related to

building a CSS, as an instantiation of a common software process. Its main

drawback is that it assumes that the CSS is an ontology-based solution. In this

sense, guidelines are specifically associated to the aspects related to ontologies

manipulation. The high-level process proposed in [Henricksen and Indulska,

2004] contains only a flow of activities that should be followed to use their

context modeling language and CSS programming abstractions. It does not

mention the artifacts (input and output work products, guidances, process roles)

related to the activities, neither provides guidelines explaining how to perform

each one. Both processes ([Bulcão Neto et al., 2006, Henricksen and Indulska,

2004]) do not go into details about the activities related to Context

Specification and CSS Design. In particular, they do not indicate how existing

business models could be reused and extended to generate the context models.

Next chapter describes a case study performed to investigate the

feasibility of the proposed ideas, and presents an instantiation of the Context

Process.

 104

C H A P T E R

7

Case Study

his chapter describes a case study carried out to verify the

feasibility of our proposal. To verify the generality of the

framework to support applications in distinct domains, we created two design

projects for different applications: the Academic Mission Support System,

introduced in Section 5.1 and described throughout this thesis, and an Expert

Recommender System, named ICARE.

ICARE (Intelligent Context Awareness for Recommending Experts)

[Petry et al., 2008, Petry et al., 2006] is an Expert Recommender System (ERS)

that considers contextual information about users1 and experts when processing

recommendations. An ERS is a system that returns references to individuals

identified as experts in a requested domain and that can be used to connect

human actors [Reichling et al., 2005]. When performing a task, solving a

problem or making a decision, people can save time and effort if they interact

with others with the necessary knowledge and experience in the task at hand.

To be effective, the ERS should consider the context of people involved

in the recommendation (i.e. the user requesting the recommendation and the

recommended expert). Context can support ERS to provide better

recommendations since it can inform who the user is, the role s/he performs in

the organization, the knowledge areas s/he has worked with, the subjects s/he is

1 In ICARE, user refers to the person who is requesting the recommendation.

T

 Case Study 105

an expert in. For example, it may be important to consider whether the expert is

available to interact, if s/he has a good reputation, if the user already knows the

recommended expert, otherwise if they have common friends that could

introduce them or if user and expert have already worked together.

In this chapter, we present a case study related to the modeling and

design of context in ICARE. The chapter is organized as follows: Section 7.1

presents the ICARE’s preliminary requirements and conceptual model, without

considering context; Section 7.2 illustrates how the Context Process was

applied to design ICARE and detail the execution of each activity defined in the

process; Section 7.3 describes a functional prototype of ICARE and discusses

its evaluation by final users; and Section 7.4 presents some concluding remarks.

7.1 Preliminary Requirements and Conceptual Model

Figure 7-1 illustrates the use case diagram for ICARE, which indicates its main

features and interactions with external entities. Three actors are considered: the

User who requests the recommendation, an External System who requests the

recommendation (when ICARE is plugged as an additional service inside

another application), and the Expert who is being recommended.

The following use cases are specified: (i) the user should register a

profile before starting using the system; (ii) the user should log in to start

searching for experts; (iii) the user or the external system can start a search for

an expert by providing keywords; (iv) ICARE generates and sends a classified

list of experts to the external system; and (v) ICARE shows the classified list of

experts to the user.

Analysing the task Search Experts, we established the following

preliminary requirements:

R1 Users must provide one or more keywords to search an expert;

R2 To produce better results, these keywords should be mapped into

concepts defined in a domain ontology;

R3 The subjects of expertise should also have a correspondence with

the concepts specified in the domain ontology;

106

R4 Experts corresponding to the user’s request will be identified by

matching the concepts related to the keywords with the subjects of

expertise associated to the experts;

R5 A list of experts classified by their expertise degree in the identified

subjects should be presented to the user.

Figure 7-1 ICARE’s Use Cases Diagram

Figure 7-2 illustrates ICARE’s Conceptual Class Diagram. The User is

classified as a Person and the Expert is also a User. A Person has personal

information (name, birthDate, photoURL, homepage, address), professional

information (academicDegree, yearsExperience, organizationLevel in the

Organization s/he worksIn), indication of Subjects of interest and

Communication Contacts (e.g. email, phoneNumber, msnId). An Expert also has

an indication of expertiseLevel in one or more Subjects.

7.2 Applying the Context Process to ICARE

This section illustrates how the Context Process was used to guide the context

specification and the design of context functionalities in ICARE. Activities are

performed following the sequence suggested in the process.

 Case Study 107

Figure 7-2 ICARE’s Preliminary Conceptual Class Diagram

7.2.1 Context Specification

The first activity in the Context Process comprises four sub-activities: Identify

the Focus, Specify Behavior Variations, Identify Contextual Elements and

Verify CEs Relevance. This section describes how these activities were

performed in ICARE.

� Identify the Focus (S1)

By analyzing ICARE’s Use Cases Diagram (Figure 7-1) we consider as Focus

the association between the <<Agent>> User and the <<Task>> Search Experts

(Figure 7-3). Our interpretation is that users come to ICARE mainly to find

experts that match their needs (by providing keywords). The other requirements

are complementary and intend to support this task. Another focus that could be

considered is the association between the <<Agent>> External System and the

<<Task>> Search Experts. This is relevant when ICARE is installed as a plugin

in another application (e.g. Text Editor or Email Reader), and the experts

search is activated by that application. However, this functionality was not

considered in the current version of the application. Figure 7-3 illustrates the

108

extended version of the Use Cases Model, enriched with the Context Profile

stereotypes (presented in Section 5.5.1) is the output product for this activity.

Figure 7-3 ICARE’s Use Case Diagram Enriched with
Context Profile Stereotypes

� Specify Behavior Variations (S2)

Next step in the Context Process is to specify the expected variations in ICARE

behavior influenced by the context.

The conventional behavior of ICARE (as described in Section 7.1) is to

receive as input a list of keywords and to return a list of experts ranked by their

expertise level in the subjects that correspond to those keywords.

The context-sensitive behavior defined for ICARE is to consider,

additionally, the users’ and experts’ context to prioritize experts that better fit

not only the informed keywords but also the user’s context. In this sense,

ICARE receives as input a list of keywords and the User CEs and returns a list

of experts ranked by their CEs. This list of experts is increased with

information about each Expert CEs.

In this light, the following context-related requirements were identified:

R6 Identify CEs associated to the User who is performing the search;

 Case Study 109

R7 Use the User’s CEs to improve the matching between keywords and

ontological terms;

R8 Identify the CEs to categorize the Experts;

R9 For each retrieved Expert, identify the current value of her/his CEs

and include these CEs in the list generated in the search;

R10 The CEs associated to the Experts should be matched to CEs

identified for the User to improve the classification of the experts’

list.

This list of requirements composes the Context Requirements document

specified in the process as the output product for this activity.

� Identify Domain Entities and CEs (S3)

Analyzing the context requirements (produced in S2) and the ICARE’s original

Conceptual Model (Figure 7-2), we identified the need to specify new CEs to

better characterize users and experts. These new elements are illustrated in

Figure 7-4 through the stereotype <<ContextualElement>>. The domain entities

Person, User and Expert are identified by the stereotype <<ContextualEntity>>.

The new defined CEs are explained below:

� availability (User, Expert): indicates how busy the user or the expert

is. An available expert is more likely to accept to engage in a new

interaction;

� knows and socialDistance (User, Expert): indicates, respectively, a

social relation between two people and the number of people that

socially separates them. According to existing studies (e.g. [Galegher

et al., 1990, Granovetter, 1973]), colleagues and friends are more

likely to assist and interact with each other than strangers;

� currentLocation (User, Expert): refers to the physical location the

person is currently in. Knowing that an expert is at the same place that

s/he is, the user may choose to contact her/him face-to-face;

� contactInfo (Expert): informs how a person can be contacted.

Knowing how to contact an expert, the user may choose to contact

110

her/him immediately (synchronous communication) or at another time

(asynchronous communication);

Figure 7-4 ICARE Conceptual Class Diagram enriched with Context
Profile Stereotypes and new CE Definitions

� worksIn and organizationalLevel (User, Expert): identifies the work

relation between a person and an organization and indicates the

position of the person in the organization. Users with a high

organizational level may demand the support of the best expert in the

subject, whether or not the expert is available. Moreover, a user that

occupies a low position may face difficulties in establishing

interactions with high position experts;

 Case Study 111

� currentActivity (User, Expert): represents the activity the person is

currently performing. The user’s current activity may support the

resolution of the provided keywords into ontological terms;

� interest (User, Expert): identifies the subjects a person has interest in.

It may help identifying mutual affinities between users and experts;

� expertise and expertiseDegree (Expert): indicates the level of

expertise of an expert in a subject;

� approachability (Expert): denotes how easy it is to contact the expert.

An expert that is frequently online, even with a busy signal, is more

accessible than another one that is regularly disconnected;

� reputation (Expert): points out the expert’s overall quality as judged

by users who contacted her/him.

The extended version of the ICARE’s Conceptual Model is the Context

Conceptual Model (Figure 7-4), which is the output for this activity.

� Verify CEs Relevance (S4)

To evaluate the CEs identified for ICARE, we designed an experiment that was

conducted with fifty (50) participants from different research and development

organizations in Informatics (presented in [Petry et al., 2008]). A questionnaire

was applied presenting some of the CEs identified in S3 to the participants.

People were asked whether or not they would consider those CEs when filtering

and ranking the searched experts. They were also asked to rank the CEs by

importance, according to their view. This investigation refers to the following

CEs, related to the experts ranking: availability, reputation, expertise degree,

organizational level and social distance.

Figure 7-5 shows the results of the CEs relevance evaluation: the

availability of the recommended expert was considered relevant by 94% of the

participants; 92% agreed with considering her/his reputation; 88% thought that

is relevant to take into account the level of expertise of the recommended expert

in the subject area; and 54% approved taking into account the differences in the

organizational level between the user and the recommended experts. An

interesting result of this investigation is that most of the participants (64%) did

not consider relevant the social relationship between users and experts. This

112

result contradicts what we initially thought; we believed that the

recommendation could be more effective (resulting in more opportunities for

collaboration) if the user already knows the recommended expert or if they have

common friends or colleagues.

94% 92% 88%

54%

36%

6% 8% 12%

46%

64%

0%

20%

40%

60%

80%

100%

Ava
ila

bil
ity

Rep
utat

ion

Exp
ert

ise
 D

egre
e

Orga
niza

tio
na

l L
ev

el

Soc
ial

 D
ist

an
ce

Relevant
Not Relevant

Figure 7-5 Evaluation of CEs Relevance

Users were also asked to rank the CEs by their level of relevance. The

results are shown in Figure 7-6, which presents the CE and their associated

weights: High, Medium and Low. For example, the CE availability has a high

relevance for ranking experts according to 58% of the participants, 22%

answered that the availability has a medium relevance in the experts ranking,

while 20% stated that its relevance is low.

7.2.2 Context Management Design

The next activity in the Context Process is to design the architectural elements

related to the three main context management concerns: acquisition, processing

and dissemination (Section 4.2). Since ICARE is the only context consumer in

this project, we did not consider the Design Dissemination Module activity. The

other activities are described in the following.

 Case Study 113

58%

38%

68%

20% 24%22%
32%

26%
20%

30% 32%

80%

50%

0%

20%

40%

60%

80%

100%

Ava
ila

bil
ity

Rep
uta

tio
n

Exp
ert

ise
 D

eg
ree

Org
an

iza
tio

na
l L

ev
el

Soc
ial

 D
ist

an
ce

High
Medium
Low

Figure 7-6 Relevance Weight Assigned to the CEs

� Specify Context Acquisition (M1)

To accomplish this activity we analyzed each relevant CE to verify how its

acquisition should be performed.

Three external context sources were identified:

� Lattes Database1: is a curricula and institutions database of Science

and Technology areas in Brazil;

� GeoLite City2: is an open source database that supports the

identification of country, state/region, city, latitude and longitude

information for IP addresses worldwide;

� Windows Live Messenger (MSN) 3: is an instant messenger application

that enables a person to connect instantly to other people. It informs

the person’s current status (busy, available, away, offline), current

activity (chatting) and people s/he knows (friends contact list).

Two internal context sources were defined:

1 http://lattes.cnpq.br/english/index.htm
2 http://www.maxmind.com/app/geolitecity
3 http://get.live.com/messenger/

114

� User Profile: is a form filled by users when they register to ICARE. It

collects information about users’ communication contacts,

professional information and subjects of interest;

� History Cases: is a historical base containing previous cases of

recommendation in ICARE. Each case contains the provided

keywords, the returned experts list and a feedback provided by the

user indicating the usefulness of the recommendation.

The acquisition parameters for each CE are summarized in Table 7-1,

showing the corresponding context source, acquisition type and update

periodicity. Different sources can provide values for the same CE. For example,

the CE interest can be acquired from the Lattes database but, eventually, the

user can update this information in her/his profile.

Table 7-1 Context Acquisition Parameters for ICARE

Contextual Element Context Source Acquisition Type Update Frequency

currentLocation GeoLite Sensed Often

availability MSN Sensed Often

currentActivity MSN Sensed Often

knows MSN Queried Occasionally

socialDistance MSN Derived Occasionally

expertise Lattes Queried Occasionally

expertiseDegree Lattes Derived Occasionally

Lattes Queried Occasionally
interest

User Profile Profiled Occasionally

contactInfo User Profile Profiled Occasionally

worksIn User Profile Profiled Occasionally

organizationalLevel User Profile Profiled Occasionally

approachability History Cases Derived Occasionally

reputation History Cases Derived Occasionally

� Design Acquisition Module (M2)

The objective of this activity is to design the interaction between ICARE and its

context sources. To access the external context sources the following decisions

were made:

� Lattes Database: we identified a tool, presented in [Ribeiro Jr, 2005],

that allows the identification of a person’s interests and expertise by

 Case Study 115

applying information retrieval techniques over specified fields in the

person’s Lattes curriculum;

� GeoLite City: this database provides a lookup API1 that receives an IP

address as input and returns the corresponding location information as

output. We specified an adapter to translate the location information

from the GeoLite City format into ICARE expected format;

� WhatIsMyIP2: since the GeoLite City expects an IP in order to provide

a location, it was necessary to identify a context source that could

provide this information. We designed, then, an adapter for the

WhatIsMyIP service;

� Windows Live Messenger (MSN): the Messenger API Type Library3 is

a set of interfaces for objects related to the MSN client that expose

events and enable to query information from a MSN client. We

designed an Adapter to manipulate information from MSN clients

using the Messenger API.

The specification for ICARE’s context sources is illustrated in Figure

7-7, using the UML Class Diagram notation. The figure also includes the

ICARE’s internal context sources (User Profile and History Cases). We used

the design pattern Façade [Gamma et al., 1995], which allows to isolate the

internal functionalities of the context manager from the context sources, thus

each context source can change without impacting its usage in the context

manager. The communication between each context source and the context

manager is done using the façade (FacadeContextSource). A supertype was

defined (ContextSourceAdapter) to uniformize the design of each particular

context source adapter. The FacadeContextSource is composed by one or more

ContextSourceAdapter. The adapter for each context source is an instantiation

of the ContextSourceAdapter class.

1 http://www.maxmind.com/app/java
2 http://whatismyip.com/automation/n09230945.asp
3 http://msdn.microsoft.com/en-us/library/ms630961(VS.85).aspx

116

Figure 7-7 UML Class Diagram for CE Acquisition in ICARE

� Design Processing Module (M3)

ICARE uses the JEOPS (Java Embedded Object Production System) inference

engine [Figueira Filho and Ramalho, 2000] to process the information in the

Contextual Elements Knowledge Base (CEKB). JEOPS considers production

rules using a forward chaining inference mechanism. It is used to process the

CEs and to adjust the relevance weights assigned to the CEs. Every time ICARE

receives a recommendation request, the User’s CEs are asserted to the CEKB.

Jeops then infers and sets the appropriate weights to be considered for the

Expert’s CEs. A sample rule is the following:

<conditions>
User.organizationalLevel < 0.5
User.availability < 0.3

<actions>
Expert.expertiseDegreeWeight = 0.8
Expert.socialDistanceWeight = 0.2

This rule indicates that if the user occupies a low position in the

organization and is not very accessible, the recommendation should favor

experts with higher expertise degree giving less importance to the social

distance.

 Case Study 117

To identify the contextual rules that assign the relevance weights, we

used a data mining software called Weka1. The questionnaire data (collected in

activity S4 – Verify CEs Relevance) was used as input to Weka. The algorithm

Farthest First was employed to identify association patterns (called clusters)

between the users CEs and their perception about CEs relevance (the CE

relevance weight). The identified clusters were transformed into contextual

rules to express these associations. The contextual rules follow the pattern:

<conditions>

contextual condition
<actions>

CE relevance weights setting

The ICARE’s Processing Module specification is illustrated in Figure

7-8, using the UML Class Diagram notation. The RankingWeights class

contains the relevance weights for the CEs considered in the experts ranking.

The Retriever class is the responsible for activating the inference engine,

asserting the User CEs, and to rank the experts.

Figure 7-8 UML Class Diagram for CE Processing in ICARE

1 http://www.cs.waikato.ac.nz/ml/weka/

118

7.2.3 Context Usage Design

This section describes how the context usage was designed for ICARE. It

discusses the activities Design Context Behavior Model, Design Context

Adaptation and Design Context Presentation, as defined in the Context Process.

� Design Context Behavior Model (U1)

Figure 7-9 presents the contextual graph correspondent to the focus <User,

Search Experts> in ICARE. Context is used to change the relevance weight

associated to the CEs used to rank experts. According to the rules identified in

activity M3 (Section 7.2.2), the conditions are associated to the CEs

User.availability and User.organizationalLevel.

� Design Context Adaptation (U2)

Context is used in ICARE to improve the classification of experts. ICARE

adapts the returned experts list by changing the experts’ classification

according to the fitness formula:

 () ()
() eu

eeee

OLOLuesocialDist
repavapedueFitness

−+×
×++×+×

=
54

321

,
 ,

αα
ααα

Where:
αi = relevance weight for each CE;
ede = expert’s expertise degree;
ape = expert’s approachability;
ave = expert’s availability;
repe = expert’s reputation;
socialDist (e, u) = Social distance between the expert and the
user;
|OLu – OLe| = Difference between the user’s (OLu) and the
expert’s organizational level (OLe)

This formula separates the elements that are directly proportional from

those that are inversely proportional to the expert’s fitness for the

recommendation. For instance, the higher an expert’s reputation is, the higher

her fitness. On the other side, the lower the social distance between the expert

and the user is, the higher the expert’s fitness.

 Case Study 119

Figure 7-9 Contextual Graph for the Focus Search Experts

120

To make the expert recommendation fit better the user’s expectation, each

CE is associated to its corresponding relevance weight. The relevance weights

are adjusted using the contextual rules defined in activity M3 - Design

Processing Module. The fitness measure is computed at run time based on the

CEs associated to each expert and to the user asking for the recommendation.

To improve usability and further recommendations, the user can provide

feedback about the received recommendation. This feedback will compose a

RecommendationCase, which stores the following values:

1) A timestamp with the date/time of the performed search;

2) An identification of the user who is performing the search;

3) A list of provided keywords;

4) A list of identified expertises (ontological terms);

5) A classified list with the returned experts;

6) An indicative of the user’s feedback for that search.

The history of recommendation cases can be used to support further

searches and to refine the relevance weights contextual rules and the fitness

formula. The learning through recommendation cases is planned to be

developed in further versions of ICARE.

� Design Context Presentation (U3)

Context is also used in ICARE to increase the user’s cognition about the

recommended experts. We believe that the perception about the appropriateness

of an expert may change from user to user. In this sense, if ICARE provides

contextual information about the experts, users themselves can make their own

identification of which experts better fit what they need.

The following CEs were identified to be presented to the users along

with the expert’s name and her/his communication contacts: subjects of

expertise and corresponding expertise degrees, reputation, availability,

organizational level, social distance (from the expert to the user performing the

search), current activity and current location.

 Case Study 121

7.3 ICARE Prototype

A prototype of ICARE was developed to implement the designed functionalities

and to serve as a proof of concepts for the elements specified in the

CEManTIKA framework. This section describes some implementation issues

related to the prototype and the results of its evaluation with final users.

7.3.1 Implementation Issues

To populate an initial Experts Base we processed a set of curricula from

researchers and developers in the Computer Science domain using the tool

presented in [Ribeiro Jr, 2005]. This tool receives a version in XML of a

person’s Lattes curriculum and generates a profile for that person containing

the identified interests and expertises for that person according to her/his Lattes

curriculum. The tool uses information retrieval techniques to extract the

interests and expertises from a set of fields in the curriculum. In ICARE, the

following fields were used:

1) Title of the undergraduate project;

2) Title of the master degree thesis;

3) Title of the PhD thesis;

4) Name of the working area;

5) Title of the research projects;

6) Title of published papers.

The ICARE client interface is illustrated in Figure 7-10. In the upper

part, the user can type the keywords to demand the recommendation. A lateral

box enables the user to know the values for the CEs as considered by ICARE.

In the case that any CE value is incorrect, the user can update this information

before performing the search. The search results are presented in a list. The user

can choose an expert from the list to see additional information about her/him.

The CEs associated to that expert is shown in the interface lower part.

The prototype of ICARE was developed using the Java language [Java,

2007]. To solve the keywords it uses a domain ontology written in RDF

(Resources Description Framework) [Klyne and Carroll, 2004]. This ontology is

122

manipulated using the Jena framework [Jena, 2006]. The context processing

was implemented using the JEOPS [Figueira Filho and Ramalho, 2000]

inference engine. Data used by ICARE are persisted in the relational database

MySQL 51.

Figure 7-10 ICARE Interface with the parameters used in the
Recommendation

7.3.2 Evaluation of ICARE Prototype

With the objective to verify the acceptance of ICARE and the adequacy of its

recommendations, we performed two experiments with a total of 46

participants. Participants were asked to inform their current context and to

execute five recommendations. Afterwards, they answered a questionnaire that

aimed at evaluating the aforementioned goals. The results found on these

experiments are summarized in the following.

1 http://www.mysql.com/

 Case Study 123

When asked if they found relevant the CEs used to rank experts, about

80% answered “yes”. The participants that answered “no” specified that, in

their opinion, the irrelevant elements were: social relationship, organizational

level and expertise degree. About 80% of the participants agreed that the

weights of the CEs should vary.

When asked if ICARE has identified adequate ontological concepts

according to the informed keywords, 60.4% answered “yes”, 26% answered

“no” and 23.6% of them said that the concepts were correctly identified, but

incorrectly ordered.

When asked if the recommended experts were adequate, 50.5% of the

participants agreed with the received recommendation and considered that the

experts’ curricula were consistent with the executed request. Amongst the

participants that disapproved the recommended experts, 27.1% of them also

classified the resolution of the keyword into ontological concept as inadequate

(in the same recommendation). Therefore, the system could not find the correct

experts if the expertise was not identified correctly first.

In summary, the experiment showed an acceptance of ICARE’s chosen

CEs. Also, the CEs’ weights and the identified ontological concepts were, in

general, adequate. Further details about the experiment can be found in [Petry

et al., 2008].

7.4 Concluding Remarks

This chapter presented a case study reporting how the CEManTIKA framework

elements, guided by the Context Process, were used to model a context-

sensitive Expert Recommender System named ICARE. To perform this case

study, we extended and adapted the proposal of ICARE presented in [Petry,

2007]. We remodelled all the system by clearly separating the part related to

context manipulation from the part related to ICARE business functionalities.

By doing this, we have built a more modular, easier to maintain and to evolve

prototype. Another contribution of the work performed in this thesis to the

ICARE prototype is the inclusion of context sources that allows the acquisition

of Sensed CEs (which changes frequently).

124

Some lessons learned during the development of ICARE, and verified in

the experiments realized with some final users, is that the application of

relevance weights when classifying experts is an interesting approach. This is

due to the fact that a user may find one identified contextual element more

relevant than another. For instance, a user might prefer to contact the more

accessible experts than the ones with good reputation. Thus, we can provide

answers that are more adequate to users with different profiles since the user’s

context is used to adjust the contextual elements’ weights in the contextual

rules. The relevance weight allows considering these user’s preferences in the

performed search.

Next chapter presents the conclusions of this work, discussing its main

contributions and perspectives for further work.

 125

C H A P T E R

8

Conclusions

ontext is a concept that is starting to gain evidence in researches

related to several disciplines in Computer Science. With the ever-

increasing use of context in computer systems there is also an increase in the

need to support designers on building their applications to include the concept

of context. Although some works address specific challenges involved in

developing CSS (e.g. [Hirschfeld et al., 2008, Yang et al., 2006]), most

solutions are proprietary or restricted to specific application domains

(particularly, to Ubiquitous Computing).

Another problem, observed in a preliminary experiment (described in the

Appendix A), is that designers have difficulties to understand and define what

exactly to consider as context and how to design a CSS. This is due to the lack

of consensus in the literature regarding the terminology, characteristics and

specificities related to context and context-sensitive systems. There is a need

for solutions that guide CSS designers on performing activities related to the

context specification, management and usage in an integrated and domain-

independent way.

This work was motivated by these issues and had the objective to specify a

framework for designing CSS in different application domains. The

CEManTIKA framework is composed by four main elements: (i) a generic

C

126

context management architecture; (ii) a domain-independent context

metamodel, which guides context modeling in different applications; (iii) a set

of UML profiles to account for context structure and context-sensitive behavior;

and (iv) a context process with guidelines that cover activities related to the

context specification, and the design of context management and usage.

The chapter is organized as follows: Section 8.1 discusses the

contributions achieved with this research; Section 8.2 presents some lessons

learned during the development of this work, together with some difficulties

that were encountered; Section 8.3 indicates some directions in which the

presented research could be extended; and Section 8.4 presents some

concluding remarks.

8.1 Thesis Contributions

Context is not a mature concept, and the community that investigates the

particularities of its usage in computer systems is still quite small, and mostly

associated to the Ubiquitous Computing area. The research presented in this

thesis represents a step towards the definition of a terminology related to

context and CSS, in a larger sense, indicating the concepts and activities

involved in including context into any computer application. This work has

contributions in two axes: conceptual, representing an advance in the literature

about context and CSS; and practical, with the conception and specification of

the CEManTIKA framework and its usage in a case study.

8.1.1 Conceptual Contributions

In the conceptual part, we carried out a review and a critical analysis of the

context usage in computer systems and the proposed techniques for context

representation (detailed in [Vieira et al., 2006a]). We investigated the

specificities related to context and context management in order to identify the

dependence relation between context and domain knowledge (discussed in

{Vieira, 2007 427 /id}). Moreover, we performed a comparative study of

existing approaches related to context modeling and management {Vieira, 2006

370 /id}. The produced bibliographic material can be used as a reference for

further researches involving context usage in computer systems.

 Conclusions 127

8.1.2 The CEManTIKA Approach

In the practical part, the principles adopted for the CEManTIKA Framework

included the request for integrating solutions related to the static part of a CSS

(i.e. the context structure modeling) and its dynamic part (i.e. dealing with

context dynamics to support behavior variations). To achieve that, we proposed

the integration of two different views about context. The view largely adopted

in the literature of Context-Aware Computing, as stated in the Dey’s definition

{Dey, 2001 83 /id} and the view related to the Cognitive Science area, as

indicated in the works conducted by Brézillon and colleagues {Gonzalez, 2008

589 /id}{Brézillon, 2007 590 /id}. Our challenge here was to investigate how to

integrate these two views diminishing the gap between them.

This investigation produced our working definition of context that

considers, in the conceptual part, the dynamics of context as conceived in

{Brézillon, 1999 38 /id}, and in the implementation part the materialization of

context into contextual elements, which are more manageable and static units of

information {Vieira, 2007 427 /id}.

From the investigation about context management we observed that the

context usage in computer systems can be considered from two points of view:

there is a part that strongly depends on particularities of a knowledge domain

and there is another part that can be considered in a domain-independent way

{Vieira, 2007 427 /id}. The former is related to the context specification and its

usage in a computer system, and the latter is related to the context management,

i.e. the mechanics of manipulating contextual elements and handling the context

dynamics.

8.1.3 Context Architecture

The conducted study on context management served as the theoretical basis for

our classification of the tasks related to CSS design and the definition of the

Context Architecture (Section 4.4). This architecture along with the CSS tasks

classification (Section 4.2) provides the basic architectural elements to be

considered when developing any CSS in any domain. The main contributions of

this architecture are the generality of the approach along with a clear separation

128

of the elements specifically related to context management from the modules

related to the application business features.

8.1.4 Context Metamodel

To support the activities that are dependent on the domain (context

specification and context usage) in a domain-independent way, we investigated

how to abstract the concepts related to context representation without falling

into the particularities of an application. This study produced the basis for the

Context Metamodel (formelly called generic context model as presented in

[Vieira et al., 2008, Vieira et al., 2007a]).

The Context Metamodel supports CSS designers involved in the context

specification activity on building new context models for their applications.

This is due to the fact that it defines the main concepts to be considered when

building a context model, identifying the relationships between those concepts.

The Context Metamodel covers two context-related aspects of a CSS: its

structural part (Context Metamodel Structure) and its behavioral part (Context

Metamodel Behavior). The Context Metamodel Structure concepts were defined

in this thesis, and the Context Metamodel Behavior concepts were extended

from the Contextual Graphs {Brézillon, 2002 612 /id}.

The Context Metamodel Structure is grounded on the principle that

contextual elements can and should be identified from the concepts already

modeled in the application domain (e.g. conceptual models and requirements

models). This observation simplifies the definition of context models, since it is

considered as an extension of a conceptual model instead of a new application

model. In this light, theories and tools that support conceptual modeling can be

used when modeling context.

To support the usage of the Context Metamodel on the design of context

models, we propose the usage of UML extensions {OMG, 2007 603 /id}. UML

was chosen due to its popularity among software designers and its ability to

integrate the structural and behavioral models of an application. Two UML

Profiles were defined: the Context Profile (for the Context Metamodel

Structure) and the CxG Profile (for the Context Metamodel Behavior). These

profiles are lightweight extensions of UML, meaning that they can be used on

 Conclusions 129

any existing UML Case tool. The context models produced using these profiles

are UML-compliant, i.e. they are themselves UML models. The Context

Metamodel and its corresponding UML Profiles represent an original

contribution of this work.

8.1.5 Context Process

Based on the knwoledge about context and CSS acquired during the

development of this research, we developed a software process to guide a CSS

development team on modeling and designing context into any application. This

process, called Context Process, covers the activities related to Context

Specification, Context Management and Context Usage (as defined in our CSS

tasks classification). It provides a systematic way to integrate the Context

Architecture, Context Metamodel and Context Profiles when designing a CSS.

It also proposes the inclusion of a new role into the CSS development team: the

Context Designer.

The Context Process uses the SPEM specification {OMG, 2008 609 /id},

a standard notation for modeling software processes. The whole process was

defined with an overall indication of the sequence of activities to be performed

and a detailed description of each activity. This detailed view presents the input

and the produced artifacts of each activity, indicating guidelines that should be

followed to support the activity execution. The Context Process is useful both

for guiding a CSS development team on designing a new application and also as

a conceptual foundation to support academic teaching activities on context and

CSS. The Context Process with its detailed view about context specification and

CSS design activities represent a novelty in the context and CSS literature.

8.1.6 Design of Context-Sensitive Systems

To investigate the feasibility of the ideas discussed in this work, and to provide

instantiation examples to support the Context Process, we conducted the design

of two applications in distincts domains: a context-sensitive Expert

Recommender System, named ICARE, and an Academic Mission Support

System.

130

To analyze implementation issues involved in developing a CSS, we

implemented a functional prototype of ICARE to evaluate the ideas identified in

this thesis. This version extends the one presented in ({Petry, 2008 568 /id}{Petry,

2006 417 /id}). The extended version adapts the proposal of ICARE to the

CEManTIKA framework and includes context sources to provide Sensed CEs. By

comparing the two versions of ICARE we observed that we have built, in the extended

version, a more modular, easier to maintain and to evolve prototype.

8.1.7 Other contributions

During the development of this work, we investigated and experimented

different techniques for representing contextual information. In particular, we

studied the usage of ontologies and as a result we have created a context

ontology for groupware systems, presented in {Vieira, 2005 268 /id}. An

architecture for manipulating this ontology and allowing its usage on groupware

applications was discussed in {Vieira, 2005 269 /id}. This ontology and

architecture served as a ground to the development of an undergraduate project

{Zarate, 2006 315 /id}. This project extended a Collaborative Writing System

{Vieira, 2005 312 /id} with context-sensitive behavior. The developed work is

described in {Vieira, 2006 321 /id}.

In another study, conducted as part of an undergraduate project {Ferraz,

2006 433 /id}, we developed some desktop sensors to support the automatic

acquisition of contextual information from a person’s workspace.

We have, also, analyzed the applicability of the CEManTIKA approach

to different application domains. In particular, we developed a study about

context applied to software reuse and how CEManTIKA could be integrated to a

context-sensitive reusable assets search tool. This work is presented in {Cruz,

2007 446 /id}.

8.2 Further Work

One of the preliminary objectives of our research was to provide conceptual

grounds and infrastructure about context and CSS, in order to support further

 Conclusions 131

and more specific researches. In this sense, this work has uncovered a myriad of

problems to be solved, which are listed below:

Context Metamodel

1. to improve the treatment of relevance between CE and Focus. Currently,

this relevance is indicated through a manually attributed weight. We

believe that the relevance association between CEs and Focus is a key

factor on building more sophisticated context-sensitive systems.

Relevance heuristics and algorithms should be investigated to

automatically infer this relevance weight. Some theories related to

relevance could support this study (e.g. [Assimakopoulos, 2003, Wilson

and Sperber, 2002, Surav and Akman, 1995, Post, 1969]);

2. to develop a new modeling and implementation language to manage the

concepts defined in the Context Metamodel. In particular, we believe that

the concepts of Focus, Contextual Element and Context could demand

new language constructs. Related works to this subject can be found in

[Hirschfeld et al., 2008, Merril, 1998];

3. to analyze the extension of the Context Metamodel to consider additional

concepts, such as Situation [Ye et al., 2008, Akman and Surav, 1997].

We define Situation as the interpretation of a set of CEs. In this sense, a

Situation should have a name, and a set of conditions related to the CEs

that must be satisfied. If all conditions are satisfied the Situation is

activated;

4. to extend the Context Metamodel with other characteristics related to the

contextual elements, for example, quality attributes (e.g. precision,

accuracy, freshness), temporal attributes (e.g. created in, modified in,

validity) and privacy attributes.

UML Profiles

5. to implement semantic constraints using OCL [OMG, 2006b]. The

current version of the Context Profile and CxG Profile only cover the

presentation of stereotypes and tagged values, and assume that designers

will follow the Context Metamodel semantic and constraints when

building their context models.

132

Context Architecture

6. to investigate the usage of Model-Driven Development [OMG, 2003]

techniques to enable the automatic generation of the implementation

modules for context acquisition and processing from information

provided in the context model (e.g. acquisition mode, update frequency,

matching expression);

Context Process

7. to specify templates for the documents indicated in the Context Process;

and to extend the Context Process to contemplate the activities related to

implementation, testing and evaluation;

8. to evaluate the Context Process and the other elements of the framework

in more complex and different case studies.

8.3 Concluding Remarks

This work investigated the specificities related to context from the Conceptual

Modeling and Software Engineering perspectives. We explored the idea that it

is possible to modularize the development of CSS by separating the elements

related to the application business domain from the specificities associated to

context manipulation. We argued that this modularization can aid the

maintenance and evolution of CSS, diminishing the complexity on building

these applications.

Since context is a novel and not yet mature concept, and its applicability

to computer systems is not a trivial task, we believe that the proposal presented

in this thesis will be incrementally improved. For this aim, it is necessary to

conduct more complex projects and experiments, as well as, to investigate

technologies that could support this task.

The research described here is targeted, especially, at designers of CSS,

particularly those responsible for knowledge engineering, requirement analysis

and architecture design.

 Conclusions 133

 134

References

 1. Akman, V. Context in Artificial Intelligence: A Fleeting Overview, La Svolta
Contestuale, C. Penco, ed. McGraw-Hill, 2002.

 2. Akman, V., Surav, M. "The use of situation theory in context modeling",
Computational Intelligence, v. 13, n. 3, 1997, pp. 427-438.

 3. Assimakopoulos, S. "Context selection and relevance", In: Theoretical & Applied
Linguistics Postgraduate Conference, 2003, Edinburgh, UK.

 4. Ayed, D., Delanote, D., Berbers, Y. "MDD Approach for the Development of Context-
Aware Applications", In: LNAI 4635, 6th International and Interdisciplinary
Conference on Modeling and Using Context (CONTEXT'07), v. 4635, 2007, pp. 15-
28, Roskilde, Denmark.

 5. Bardram, J. E. "The Java Context Awareness Framework (JCAF) - A Service
Infrastructure and Programming Framework for Context-Aware Applications", In:
Proc. of 3rd International Conference on Pervasive Computing, v. LNCS 3468,
2005, pp. 98-115, Munich, Germany.

 6. Bazire, M., Brézillon, P. "Understanding Context Before Using It", In: 5th
International and Interdisciplinary Conference, CONTEXT 2005, v. LNAI 3554,
2005, pp. 29-40, Springer Verlag, Paris, France.

 7. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L. "Web Ontology Language (OWL) Reference, W3C
Recommendation", In: http://www.w3.org/TR/owl-ref/, 2004, Access in 03/2008.

 8. Belian, R. B. "A Context-based Name Resolution Approach for Semantic Schema
Integration", D.Sc. Thesis, Centro de Informática, Universidade Federal de
Pernambuco, 2008.

 9. Bellotti, V., Edwards, K. "Intelligibility and Accountability: Human Considerations in
Context-Aware Systems", Human Computer Interaction, v. 16, n. 2-4, 2001, pp.
193-212.

 10. Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M. C., Palinginis, A. "Interplay of
Content and Context", In: International Conference on Web Engineering, 2004, pp.
187-200, Munich, Germany.

 References 135

 11. Borges, M. R. S., Brézillon, P., Pino, J. A., Pomerol, J.-C. "Dealing with the Effects of
Context Mismatch in Group Work", Decision Support Systems, v. 43, n. 4, 2007,
pp. 1692-1706.

 12. Bouquet, P., Ghidini, C., Giunchiglia, F., Blanzieri, E. "Theories and Uses of Context
in Knowledge Representation and Reasoning", Journal of Pragmatics, v. 35, n. 3,
2003, pp. 455-484.

 13. Brézillon, P. "CxG Community", In: http://www.cxg.fr/, 2007a, Access in 09/2008a.

 14. Brézillon, P. "Context modeling: Task model and model of practices", In: CONTEXT
2007, LNAI 4635, 2007b, pp. 122-135, Roskilde, Denmark.

 15. Brézillon, P. "Representation of Procedures and Practices in Contextual Graphs", The
Knowledge Engineering Review, v. 18, n. 2, 2003b, pp. 147-174.

 16. Brézillon, P. "Context Dynamic and Explanation in Contextual Graphs", In: Proc. of
CONTEXT'2003, v. LNAI 2680, 2003c, pp. 94-106, Stanford, California.

 17. Brézillon, P. "Focusing on Context in Human-Centered Computing", Human-Centered
Computing, 2003a, pp. 2-6.

 18. Brézillon, P. "Task Realization Models in Contextual Graphs", In: CONTEXT 2005,
LNAI 3554, 2005, pp. 55-68, Paris, France.

 19. Brézillon, P., Araújo, R. M. "Reinforcing Shared Context to Improve Collaborative
Work", Revue d'Intelligence Artificielle.Special Issue on "Applying Context
Management", v. 19, n. 3, 2005, pp. 537-556.

 20. Brézillon, P., Borges, M. R. S., Pino, J. A., Pomerol, J.-C. "Context-Awareness in
Group Work: Three Case Studies", In: IFIP International Conference on Decision
Support Systems (DSS-2004). Decision Support in Uncertain and Complex World.,
2004, pp. 115-124, Italia.

 21. Brézillon, P., Pasquier, L., Pomerol, J.-C. "Reasoning with Contextual Graphs",
European Journal of Operational Research, v. 136, 2002, pp. 290-298.

 22. Brézillon, P., Pomerol, J.-C. "Contextual Knowledge Sharing and Cooperation in
Intelligent Assistant Systems", Le Travail Humain, PUF, Paris, v. 62, n. 3, 1999, pp.
223-246.

 23. Bucur, O., Beaune, P., Boissier, O. "Representing Context in an Agent Architecture for
Context-Based Decision Making", In: Proc. of the International Workshop in
Context Representation and Reasoning, 2005, Paris, France.

 24. Bulcão Neto, R. F. "Um processo de software e um modelo ontológico para apoio ao
desenvolvimento de aplicações sensíveis a contexto", Tese de Doutorado, Instituto
de Ciências Matemáticas e de Computação – ICMC-USP, 2006.

 25. Bulcão Neto, R. F., Kudo, T. N., Pimentel, M. G. C. POCAp: A software process for
context-aware computing, Hong Kong, China, Proc. of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, 2006.

 26. Bulcão Neto, R. F., Pimentel, M. G. C. "Toward a Domain-Independent Semantic
Model for Context-Aware Computing", In: Proc. of the 3rd IW3C2 Latin American
Web Congress, IEEE Computer Society, 2005, pp. 61-70, Buenos Aires, Argentina.

136

 27. Bunningen, A. "Context Aware Querying - Challenges for data management in
ambient intelligence", University of Twente, TR-CTIT-04-51, 2004.

 28. Byrne, P. "Awareness Mechanisms in Groupware Systems", M.Sc. Dissertation,
University of Dublin, 2004.

 29. Chaari, T., Ejigu, D., Laforest, F., Scuturici, V. "A comprehensive approach to model
and use context for adapting applications in pervasive environments", The Journal
of Systems and Software, v. 80, 2007, pp. 1973-1992.

 30. Chalmers, M. "A Historical View of Context", Computer Supported Cooperative Work
(CSCW), v. 13, n. 3-4, 2004, pp. 223-247.

 31. Chedrawy, Z., Abidi, S. S. R. "Case Based Reasoning for Information Personalization:
Using a Context-Sensitive Compositional Case Adaptation Approach", In: IEEE
International Conference on Engineering of Intelligent Systems, 2006, pp. 1-6,
Islamabad, Pakistan.

 32. Chen, H. "An Intelligent Broker Architecture for Pervasive Context-Aware Systems",
PhD Thesis, Faculty of the Graduate School of the University of Maryland, 2004.

 33. Chen, H., Finin, T. "An Ontology for Context-Aware Pervasive Computing
Environments", The Knowledge Engineering Review, v. 18, n. 3, 2004, pp. 197-
207.

 34. Chen, P. "The Entity Relationship Model - Toward a Unified View of Data", ACM
Transactions Database Systems, v. 1, n. 1, 1976, pp. 9-36.

 35. Cheverst, K., Mitchell, K., Davies, N. "Design of an Object Model for a Context
Sensitive Tourist GUIDE", Computers and Graphics, v. 23, n. 6, 1999, pp. 883-891.

 36. Christopoulou, E., Goumopoulos, C., Zaharakis, I., Kameas, A. "An Ontology-based
Conceptual Model for Composing Context-Aware Applications", In: Sixth
International Conference on Ubiquitous Computing (Ubicomp 2004), Workshop on
"Advanced Context Modelling, Reasoning and Management", 2004, Nottingham,
England.

 37. Constanza, P., Hirschfeld, R. "Language constructs for context-oriented programming:
an overview of ContextL", In: Proc. of the 2005 Symposium on Dynamic languages,
2005, pp. 1-10, San Diego, California.

 38. Costa, P. D. Architectural Support for Context-Aware Applications - From Context
Models to Services Platforms, Enschede, The Netherlands, CTIT Ph.D.-Thesis
Series, No. 07-108, Telematica Instituut Fundamental Research Series, No. 021,
2007.

 39. Cruz, E., Vieira, V., Almeida, E. S., Meira, S., Salgado, A. C., Brézillon, P. "Modeling
Context in Software Reuse", In: 4th International Workshop on Modeling and
Reasoning in Context, v. Computer Science Research Report #112, 2007, pp. 89-
102, Roskilde, Denmark.

 40. de Bra, P., Aroyo, L., Chepegin, V. "The Next Big Thing: Adaptive Web-Based
Systems", JoDI - Journal of Digital Information, v. 5, n. 1, 2004.

 41. Degler, D., Battle, L. "Knowledge Management in Pursuit of Performance: the
Challenge of Context", Performance Improvement Journal (EPSS Special Edition),
v. 39, n. 6, 2000, pp. 25-31.

 References 137

 42. Degler, D., Battle, L. "Can Topic Maps describe context for enterprise-wide
applications?", In: Extreme Markup Languages Proceedings, 2003, Montreal,
Quebec.

 43. Desmet, B., Vallejos, J., Constanza, P., Meuter, W., D'Hondt, T. "Context-Oriented
Domain Analysis", In: CONTEXT 2007, LNAI 4635, 2007, pp. 178-191, Roskilde,
Denmark.

 44. Dey, A. K. "Providing Architectural Support for Building Context-Aware
Applications", PhD Thesis, Georgia Institute of Technology, 2000.

 45. Dey, A. K. "Understanding and Using Context", Personal and Ubiquitous Computing,
v. 5, n. 1, 2001, pp. 4-7.

 46. Dey, A. K., Salber, D., Abowd, G. D. "A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications", Human
Computer Interaction Journal, v. 16, n. Special Issue on Context-Aware Computing,
2001, pp. 97-166.

 47. Dourish, P. "What we talk about when we talk about context", Personal and
Ubiquitous Computing, v. 8, n. 1, 2004, pp. 19-30.

 48. Farias, C. R. G., Leite, M. M., Calvi, C. Z., Pessoa, R. M., Pereira Filho, J. G. "A MOF
Metamodel for the Development of Context-Aware Mobile Applications", In: Proc.
of ACM SAC'07, 2007, pp. 947-952, Seoul, Korea.

 49. Ferrara, A., Ludovico, L. A., Montanelli, S., Castano, S., Haus, G. "A Semantic Web
ontology for context-based classification and retrieval of music resources", ACM
Transactions on Multimedia Computing, Communications and Applications, v. 2, n.
3, 2006, pp. 177-198.

 50. Ferraz, J. "Aquisição de Contexto Baseada em Agentes em um Gerenciador de
Contextos Aplicado a Sistemas Colaborativos ", Trabalho Final de Graduação,
Centro de Informática - UFPE (in portuguese), 2006.

 51. Ferscha, A., Holzmann, C., Oppl, S. "Context Awareness for Group Interaction
Support", In: Proc. 2nd ACM International Workshop on Mobility Management and
Wireless Access, ACM 2004, 2004, pp. 88-97, Philadelphia, PA, USA.

 52. Figueira Filho, C., Ramalho, G. "JEOPS – Java Embedded Object Production System",
Lecture Notes in Computer Science, v. 1952, 2000, pp. 53-62.

 53. Franklin, D. "The Representation of Context: Ideas from Artificial Intelligence", Law,
Probability and Risk, v. 2, 2003, pp. 191-199.

 54. Fuchs, F., Hochstatter, I., Krause, M., Berger, M. "A Metamodel Approach to Context
Information.", In: PerCom Workshops 2005, 2005, pp. 8-14, Kauai Island, HI.

 55. Galegher, J., Kraut, R., Egido, C. Intellectual Teamwork: Social and Technological
Bases for Cooperative Work, Hillsdale, NJ: Lawrence Erlbaum Associates., 1990.

 56. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Longman Publishing Co.,
Inc., 1995.

 57. Garshol, L. M. "Metadata? Thesauri? Taxonomies? Topic maps! Making sense of it
all", Journal of Information Science, v. 30, n. 4, 2004, pp. 378-391.

138

 58. Gauvin, M., Bourry-Brisset, A. C., Auger, A. "Context, Ontology and Portfolio: Key
Concepts for a Situational Awareness Knowledge Portal", In: Proceedings of the
37th Hawaii International Conference on System Sciences - Track 4, 2004, p.
40111b.

 59. Gehlen, G., Aijaz, F., Sajjad, M., Walke, B. "A Mobile Context Dissemination
Middleware", In: Proc. of Fourth International Conference on Information
Technology, 2007, pp. 155-160, Las Vegas, Nevada, USA.

 60. Giunchiglia, F. "Contextual reasoning", In: Proceedings IJCAI Workshop on Using
Knowledge in its Context, 1993, pp. 39-49, Chambery France.

 61. Gogolla, M. "Using OCL for defining precise, domain-specific UML stereotypes", In:
Proc of the 6th Australian Workshop on Requirements Engineering, 2001, pp. 51-
60, Sydney, Australia.

 62. Gogolla, M., Sellers, B. H. "Analysis of UML Stereotypes within the UML
Metamodel", In: Proc. of the 5th Conf. Unified Modeling Language, 2002, pp. 84-
99, Dresden, Germany.

 63. Gonzalez, A. J., Brézillon, P. "Integrating two context-based formalisms for improved
representation of human tactical behavior", The Knowledge Engineering Review, v.
23, n. 2, 2008, pp. 1-21.

 64. Google "Ten things Google has found to be true", In:
http://www.google.com/intl/en/corporate/tenthings.html, 2008, Access in 09/2008.

 65. Goslar, K., Schill, A. "Modeling Contextual Information Using Active Data
Structures", In: Proceedings of the Current Trends in Database Technology - EDBT
2004, Workshops on Pervasive Information Management (PIM), v. LNCS 3268,
2004, pp. 325-334.

 66. Granovetter, M. S. "The Strength of Weak Ties", The American Journal of Sociology,
v. 78, n. 6, 1973, pp. 1360-1380.

 67. Greenberg, S. "Context as a Dynamic Construct", Human Computer Interaction,
Special Issue on Context-Aware Computing, v. 16, n. 2-4, 2001, pp. 257-268.

 68. Gross, T., Prinz, W. "Awareness in Context: A Light-Weight Approach", In:
Proceedings of the Eights European Conference on Computer-Supported
Cooperative Work - ECSCW 2003, 2003, pp. 295-314, Helsinki, Finland.

 69. Gross, T., Specht, M. "Awareness in Context-Aware Information Systems", In:
Mensch & Computer - 1. Fachuebergreifende Konferenz, 2001, pp. 173-182, Bad
Honnef, Germany.

 70. Gruber, T. "Toward Principles for the Design of Ontologies Used for Knowledge
Sharing", International Journal Human-Computer Studies, v. 43, n. 5-6, 1993, pp.
907-928.

 71. Gu, T., Pung, H. K., Zhang, D. Q. "A Service-Oriented Middleware for Building
Context-Aware Services", Elsevier Journal of Network and Computer Applications
(JNCA), v. 28, n. 1, 2005, pp. 1-18.

 72. Gu, T., Wang, X. H., Pung, H. K., Zhang, D. Q. "An Ontology-based Context Model
in Intelligent Environments", In: Proceedings of Communication Networks and

 References 139

Distributed Systems Modeling and Simulation Conference, 2004, San Diego,
California, USA.

 73. Guarino, N. "Formal Ontology and Information Systems", In: Proc. of the International
Conference on Formal Ontology in Information Systems, 1998, Trento, Italy.

 74. Guizzardi, G. "Ontological Foundations for Structural Conceptual Models", PhD
Thesis, University of Twente, The Netherlands, 2005.

 75. Gutwin, C., Greenberg, S. "A Descriptive Framework of Workspace Awareness for
Real-Time Groupware", In: Computer Supported Cooperative Work, v. 11(3-4),
2002, pp. 411-446, Special Issue on Awareness in CSCW, Kluwer Academic Press.

 76. Gutwin, C., Greenberg, S., Blum, R., Dyck, J. "Supporting Informal Collaboration in
Shared-Workspace Groupware", The Interactions Lab, University of Saskatchewan,
Canada, HCI Technical Report 2005-01, 2005.

 77. Halpin, T. "ORM - Object Role Modeling", In: http://www.orm.net/index.html, 2006,
Access in 09/2008.

 78. Harvel, L. D., Liu, L., Abowd, G. D., Lim, Y.-X., Scheibe, C., Chatam, C. "Context
Cube: Flexible and Effective Manipulation of Sensed Context Data", In: Proc. 2nd
International Conference on Pervasive Computing, LNCS 3001, 2004, pp. 51-68,
Linz/Vienna, Austria.

 79. Held, A., Buchholz, S., Schill, A. "Modeling of Context Information for Pervasive
Computing Applications", In: Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI2002), 2002, Orlando, FL, USA.

 80. Henricksen, K. "A Framework for Context-Aware Pervasive Computing
Applications", PhD Thesis, School of Information Technology and Electrical
Engineering, The University of Queensland, 2003.

 81. Henricksen, K., Indulska, J. "Developing Context-Aware Pervasive Computing
Applications: Models and Approach", Pervasive and Mobile Computing Journal, v.
2, n. 1, 2006, pp. 37-64.

 82. Henricksen, K., Indulska, J. "A software engineering framework for context-aware
pervasive computing", In: 2nd IEEE International Conference on Pervasive
Computing and Communications, 2004, pp. 77-86, Orlando, Florida, USA.

 83. Henricksen, K., Livingstone, S., Indulska, J. "Towards a Hybrid Approach to Context
Modelling, Reasoning and Interoperation", In: UbiComp 1st International
Workshop on Advanced Context Modelling, Reasoning and Management, 2004, pp.
54-61, Nottingham, UK.

 84. Hirschfeld, R., Costanza, P., Nierstrasz, O. "Context-Oriented Programming", Journal
of Object Technology, v. 7, n. 3, 2008, pp. 125-151.

 85. IEEE "IEEE Recommended Practice for Software Requirements Specifications", IEEE
Std 1471, In: http://ieeexplore.ieee.org/iel4/5841/15571/00720574.pdf, 1998,
Access in 09/2008.

 86. IEEE "IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems", IEEE Std 1471, In:
http://ieeexplore.ieee.org/iel5/7040/18957/00875998.pdf, 2000, Access in 09/2008.

140

 87. Jang, S., Ko, E. J., Woo, W. "Unified User-Centric Context: Who, Where, When,
What, How and Why", In: Proc. of the International Workshop ubiPCMM05, 2005,
pp. 26-34, Tokyo, Japan.

 88. Java "The Source for Java Technology", In: Disponível em: http://java.sun.com, 2007.

 89. Jena "Jena - A Semantic Web Framework for Java", In: http://jena.sourceforge.net/,
2006, Access in 09/2008.

 90. Kashyap, V., Sheth, A. "Semantic and schematic similarities between database objects:
a context-based approach", The VLDB Journal, v. 5, 1996, pp. 276-304.

 91. Kiniry, J. R. "Formalizing the User's Context to Support User Interfaces for Integrated
Mathematical Environments", Electronic Notes in Theoretical Computer Science, v.
103, 2004, pp. 81-103.

 92. Kirsch-Pinheiro, M., Villanova-Oliver, M., Gensel, J., Martin, H. "Context-Aware
Filtering for Collaborative Web Systems: Adapting the Awareness Information to
the User's Context", In: ACM Symposium on Applied Computing, 2005, pp. 1668-
1673, Santa Fe, New Mexico.

 93. Klemke, R. "Context Framework - an Open Approach to Enhance Organisational
Memory Systems with Context Modelling Techniques", In: Proceedings of the
Third International Conference on Practical Aspects of Knowledge Management
(PAKM 2000), 2000, Basel, Switzerland.

 94. Klyne, G., Carroll, J. J. "Resource Description Framework (RDF): Concepts and
Abstract Syntax", 2004.

 95. Kobryn, C. "Modeling Components and Frameworks with UML", Communications of
the ACM, v. 43, n. 10, 2000, pp. 31-38.

 96. Kokinov, B. "Dynamics and Automaticity of Context: A Cognitive Modeling
Approach", In: Proc. of the CONTEXT'99, 1999, pp. 200-213, Trento, Italy.

 97. Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H., Malm, E. "Managing Context
Information in Mobile Devices", IEEE Pervasive Computing, v. 2, n. 3, 2003, pp.
42-51.

 98. Kramer, R., Modsching, M., Schulze, J., Hagen, K. "Context-Aware Adaptation in a
Mobile Tour Guide", In: Proc. of the 5th International and Interdisciplinary
Conference, CONTEXT 2005, LNCS3554 , 2005, Paris, France.

 99. Leite, L. E., Lima, O., Filho, G., Meira, S., Tedesco, P. "Uma Arquitetura de Serviço
para Avaliação de Contextos em Redes de TV Digital", In: 25th Simpósio Brasileiro
de Redes de Computadores (SBRC'2007), 2007, pp. 1-13, Belém, Pará.

 100. McCarthy, J. "Notes on Formalizing Contexts", In: Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, 1993, pp. 555-560, San
Mateo, California.

 101. Merriam-Webster "Merriam-Webster Online Search: Dictionary and Thesaurus", In:
http://www.merriam-webster.com/dictionary, 2008, Access in 09/2008.

 102. Merril, D. "Knowledge Objects", CBT Solutions, v. March/April, 1998, pp. 1-11.

 103. Mylopoulos, J. "Conceptual modeling and Telos", In: Loucopoulos, P. and Zicari, R.,
Conceptual modeling, databases, and CASE, chapter 2, pp. 49-68, Wiley, 1992.

 References 141

 104. Nguyen, J. V., Gonzalez, A. J. "Contextual Graphs for a Real World Decision Support
System", In: Proc. of the FLAIRS'06, 2006, pp. 643-648, Florida, USA.

 105. Ning, K., Gong, R., Decker, S., Chen, Y., O'Sullivan, D. "A Context-Aware Resource
Recommendation System for Business Collaboration", In: CEC-EEE 2007, 2007.

 106. Nunes, V. T., Santoro, F. M., Borges, M. R. S. "Capturing Context about Group
Design Processes", In: 11th International Conference on Computer Supported
Cooperative Work in Design, 2007, pp. 18-23, Melbourne, Australia.

 107. Nurmi, P., Floréen, P. "Reasoning in Context-Aware Systems", Position Paper,
Helsinki Institute for Information Technology, In:
http://www.cs.helsinki.fi/u/ptnurmi/papers/positionpaper.pdf, 2004, Access in
09/2006.

 108. OMG "UML Semantics, Version 1.1", In: ftp://ftp.omg.org/pub/docs/ad/97-08-04.pdf,
1997, Access in 07/2008.

 109. OMG "MDA Guide Version 1.0.1", In: http://www.omg.org/mda/, 2003, Access in
06/2008.

 110. OMG "Meta Object Facility (MOF) Core Specification v. 2.0", In:
http://www.omg.org/spec/MOF/2.0/PDF/, 2006a, Access in 09/2008a.

 111. OMG "Object Constraint Language (OCL) Specification v.2.0", In:
http://www.omg.org/technology/documents/formal/ocl.htm, 2006b, Access in
09/2008b.

 112. OMG "Unified Modeling Language: Superstructure, Version 2.1.2", In:
http://www.omg.org/spec/UML/2.1.2/, 2007a, Access in 09/2008a.

 113. OMG "XML Metadata Interchange (XMI)", In: http://www.omg.org/spec/XMI/2.1.1/,
2007b, Access in 09/2008b.

 114. OMG "Software & Systems Process Engineering Meta-Model (SPEM) Specification
v.2.0", In: http://www.omg.org/technology/documents/formal/spem.htm, 2008a,
Access in 09/2008a.

 115. OMG "UML Resource Page", In: http://www.uml.org/, 2008b, Access in 06/2008b.

 116. Pan, W., Wang, Z., Gu, X. "Context-Based Adaptive Personalized Web Search for
Improving Information Retrieval Effectiveness", In: IEEE International Conference
on Wireless Communications, Networking and Mobile Computing, 2007, pp. 5427-
5430, Shanghai, China.

 117. Park, D., Hwang, S., Kim, A., Chang, B. " A Context-Aware Smart Tourist Guide
Application for an Old Palace", In: International Conference on Convergence
Information Technology, v. 00, 2007, pp. 89-94, Gyeongju, Republic of Korea.

 118. Petry, H. "ICARE: Um Sistema de Recomendação de Especialistas Sensível a
Contexto", Dissertação de Mestrado, Centro de Informática-UFPE, Brasil, 2007.

 119. Petry, H., Tedesco, P., Vieira, V., Salgado, A. C. "ICARE: A Context-Sensitive Expert
Recommendation System", In: Proc. of the Workshop on Recommender Systems
(ECAI'08), 2008, pp. 53-58, Patras, Greece.

 120. Petry, H., Vieira, V., Tedesco, P., Salgado, A. C. "Um Sistema de Recomendação de
Especialistas Sensível ao Contexto para Apoio à Colaboração Informal", In: Proc. of

142

the Simpósio Brasileiro de Sistemas Colaborativos (in portuguese), 2006, pp. 38-47,
Natal, RN.

 121. Pomerol, J.-C., Brézillon, P. "About some relationships between Knowledge and
Context", In: Proceedings of the International Conference on Modeling and Using
Context (CONTEXT-01). Springer Verlag, 2001, pp. 461-464, Dundee, UK.

 122. Post, P. B. "A Lifelike Model for Associative Relevance", In: Proc. of the International
Joint Conference on Artificial Intelligence. Available at:
http://dli.iiit.ac.in/ijcai/IJCAI-69/PDF/027.pdf, Access in 04/2008, 1969, pp. 271-
280, Washington, D.C., USA.

 123. Power, R. "Topic Maps for Context Management", In: Proc. of the Workshop on
Adaptive Systems for Ubiquitous Computing, 2003, pp. 199-204, Dublin, Ireland.

 124. Pressman, R. S. Software Engineering: A Practitioner's Approach, 6th ed., McGraw
Hill, 2005.

 125. Preuveneers, D., den Bergh, J. V., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T.,
Berbers, Y., Coninx, K., Jonckers, V., de Bosschere, K. "Towards an Extensible
Context Ontology for Ambient Intelligence", In: Ambient Intelligence: Second
European Symposium, EUSAI 2004, LNCS 3295, 2004, pp. 148-159, Eindhoven,
The Netherlands.

 126. Ranganathan, A., Al-Muhtadi, J., Campbell, R. H. "Reasoning about Uncertain
Contexts in Pervasive Computing Environments", IEEE Pervasive Computing, v. 3,
n. 2, 2004, pp. 62-70.

 127. Ranganathan, A., Lei, H. "Using Context Information to Improve Human
Communication", IEEE Computer, v. 36, n. 4, 2003, pp. 90-92.

 128. Raz, D., Juhola, A. T., Fernandes, J. S., Galis, A. Fast and Efficient Context-Aware
Services, Hoboken, USA, John Wiley & Sons, 2006.

 129. Reichling, T., Schubert, K., Wulf, V. "Matching Human Actors Based on their Texts:
Design and Evaluation of an Instance of the ExpertFinding Framework", ACM
SIGGROUP Conference on Supporting Group Work, 2005, pp. 61-70.

 130. Ribeiro Jr, L. C. "Definição Automática de Perfis de Usuários de Sistemas de
Recomendação", Escola de Informática. Universidade Católica de Pelotas, 2005.

 131. Rittenbruch, M. "Atmosphere: Towards Context-Selective Awareness Mechanisms",
In: Proc. of the 8th International Conference on Human-Computer Interaction, 1999,
pp. 332-328, Munich, Germany.

 132. Riva, O. "A Context Infrastructure for the Support of Mobile Context-Aware
Services", In: http://www.cs.helsinki.fi/u/kraatika/Courses/f4fMC/WS1/Riva.pdf,
2005, Access in 09/2008.

 133. Roque, L. "Context Engineering and Modelling Challenges", In: Proc. of Workshop on
Context Modeling and Decision Support, 2005, Available at:
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-144/01_roque.pdf,
Accessed in 02/2008.

 134. Rosa, M. G. P., Borges, M. R. S., Santoro, F. M. "A Conceptual Framework for
Analyzing the Use of Context in Groupware", In: Proc. of CRIWG'03, v. LNCS
2806, 2003, pp. 300-313, Springer-Verlag Berlin, Heidelberg.

 References 143

 135. Russell, S., Norvig, P. Artificial Intelligence – A Modern Approach, 2 ed., New
Jersey, Prentice Hall, 2003.

 136. Ryan, N. "ConteXtML: Exchanging Contextual Information between a Mobile Client
and the FieldNote Server", In:
http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html, 1999, Access in
03/2008.

 137. Sacramento, V., Endler, M., Rubinsztejn, H. K., et al. "MoCA: A Middleware for
Developing Collaborative Applications for Mobile Users", ACM/IFIP/USENIX
International Middleware Conference, In: Available at http://www-di.inf.puc-
rio.br/~endler/paperlinks/DSOnline.htm, 2004, Access in 07/2008.

 138. Santoro, F. M., Brézillon, P., Araújo, R. M. "Context Dynamics in Software
Engineering Process", International Journal of Advanced Engineering Informatics.,
v. (to appear), 2005.

 139. Sato, K. "Context-sensitive approach for interactive systems design: modular scenario-
based methods for context representation.", J Physiol Anthropol Appl Human Sci.,
v. 23, n. 6, 2004, pp. 277-281.

 140. SBC "Grandes Desafios da Pesquisa em Computação no Brasil (2006 - 2016)",
Relatório sobre o Seminário realizado em 8 e 9 de maio de 2006, In:
http://www.sbc.org.br/index.php?language=1&content=downloads&id=272, 2006,
Access in 09/8 A.D.

 141. Schilit, B., Adams, N., Want, R. "Context-Aware Computing Applications", In: Proc.
of the Workshop on Mobile Computing Systems and Applications, v. 85, 1994, pp.
90-, Santa Cruz, CA.

 142. Seyler, F., Taconet, C., Bernard, G. "Context Aware Orchestration Meta-Model", In:
Proc. of the 3rd International Conference on Autonomic and Autonomous Systems,
2007, pp. 17-25, Athens Greece.

 143. Sheng, Q. Z., Benatallah, B. "ContextUML: A UML-Based Modeling Language for
Model-Driven Development of Context-Aware Web Services", In: Proc. of the
International Conference on Mobile Business, 2005, pp. 206-212.

 144. Siebra, S. "Contextual analysis of users interactions in collaborative learning
environments", D.Sc. Thesis, Centro de Informática, Universidade Federal de
Pernambuco, 2007.

 145. Simons, C., Wirtz, G. "Modeling context in mobile distributed systems with the
UML", Journal of Visual Languages and Computing, v. 18, 2007, pp. 420-439.

 146. Souza, D., Belian, R. B., Salgado, A. C., Tedesco, P. "CODI - A Contextual Ontology
for Data Integration", In: Proc. 4th Workshop on Ontologies-based Techniques for
DataBases (ODBIS), VLDB'08, 2008, Auckland, New Zealand.

 147. Stefanidis, K., Pitoura, E., Vassiliadis, P. "On Supporting Context-Aware Preferences
in Relational Database Systems", In: Proc. of 1st International Workshop on
Managing Context Information in Mobile and Pervasive Environments, 2005, Ayia
Napa, Cyprus.

144

 148. Strang, T., Linnhoff-Popien, C. "A Context Modeling Survey", In: Workshop on
Advanced Context Modelling, Reasoning and Management, in 6th International
Conference on Ubiquitous Computing, 2004, Nottingham/England.

 149. Surav, M., Akman, V. "Contexts, Oracles, and Relevance", In: AAAI-95 Workshop on
Formalizing Context, 1995, pp. 23-30, Boston, USA.

 150. Swarts, L. "Why People Hate the Paperclip: Labels, Appearance, Behavior, and Social
Responses to User Interface Agents", B.Sc. Thesis, Symbolic Systems Program,
Stanford University, 2003, http://xenon.stanford.edu/~lswartz/paperclip/.

 151. Tedesco, P. "Mediating Meta-Cognitive Conflicts in Group Planning Situations", PhD
Thesis, The University of Leeds, Computer Based Learning Unit and School of
Computing, 2001.

 152. Truong, K. N., Abowd, G. D., Brotherton, J. A. "Who, What, When, Where, How:
Design Issues of Capture & Access Applications", In: Proceedings of the
International Conference on Ubiquitous Computing, 2001, pp. 209-224.

 153. Vajirkar, P., Singh, S., Lee, Y. "Context-Aware Data Mining Framework for Wireless
Medical Application", In: DEXA'2003 - Lecture Notes in Computer Science
(LNCS), Volume 2736, Springer-Verlag, 2003, pp. 381-391, Prague, Tcheque,
Republique.

 154. Van den Bergh, J., Coninx, K. "Using UML 2.0 and Profiles for Modeling Context-
Sensitive User Interfaces", In: Proc. of the MoDELS'05 Workshop on Model Driven
Development of Advanced User Interfaces, 2005, Montego Bay, Jamaica.

 155. van Setten, M., Pokraev, S., Koolwaaij, J. "Context-aware Recommendations in the
Mobile Tourist Application COMPASS", In: Proc. 3rd International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems, LNCS3137, 2004, pp.
235-244, Eindhoven, The Netherlands.

 156. Vieira, V. "Gerenciamento de Contexto em Sistemas Colaborativos", Exame de
Qualificação e Proposta de Tese de Doutorado, Centro de Informática-UFPE, Brasil,
2006.

 157. Vieira, V. "Ariane: Um Mecanismo de Apoio à Percepção em Bases de Dados
Compartilhadas", Dissertação de M.Sc., Programa de Engenharia e Sistemas -
COPPE - UFRJ, 2003, Rio de Janeiro, Brasil.

 158. Vieira, V., Brézillon, P., Salgado, A. C., Tedesco, P. "Towards a Generic Contextual
Elements Model to Support Context Management", In: Proc. of the 4th International
Workshop on Modeling and Reasoning in Context, v. Computer Science Research
Report #112, 2007a, pp. 49-60, Roskilde, Denmark.

 159. Vieira, V., Brézillon, P., Salgado, A. C., Tedesco, P. "A Context-Oriented Model for
Domain-Independent Context Management", Revue d'Intelligence Artificiel, v. 22,
n. 5, 2008.

 160. Vieira, V., Lucena, B., Rocha, F. "CoWS - Collaborative Writing through Shared
Spaces", In: http://www.cin.ufpe.br/~vvs/cows, 2005a, Access in 04/2006a.

 161. Vieira, V., Mangan, M. A. S., Werner, C. M. L., Mattoso, M. L. Q. "Ariane: An
Awareness Mechanism for Shared Databases", In: Proceedings of the X

 References 145

International Workshop on Groupware, CRIWG2004, San Carlos, Costa Rica, 2004,
pp. 92-104.

 162. Vieira, V., Souza, D., Salgado, A. C., Tedesco, P. "Uso e Representação de Contexto
em Sistemas Computacionais", In: Cesar A.C.Teixeira, Clever Ricardo G.de Farias,
Jair C.Leite, and Raquel O.Prates.(Org.)., Tópicos em Sistemas Interativos e
Colaborativos, pp. 127-166, São Carlos: UFSCAR, 2006a.

 163. Vieira, V., Tedesco, P., Salgado, A. C. "Representação de Contextos em Ambientes
Colaborativos Usando Ontologia", In: Anais do II Workshop Brasileiro de
Tecnologias para Colaboração, WCSCW2005, 2005b.

 164. Vieira, V., Tedesco, P., Salgado, A. C. "Towards an Ontology for Context
Representation in Groupware", In: Proc. of the 11th International Workshop on
Groupware, v. LNCS3706, 2005c, pp. 367-375, Porto de Galinhas, Brasil.

 165. Vieira, V., Tedesco, P., Salgado, A. C., Brézillon, P. "Investigating the Specificities of
Contextual Elements Management: The CEManTIKA Approach", In: CONTEXT
2007, LNAI 4635, 2007b, pp. 493-506, Roskilde, Denmark.

 166. Vieira, V., Zarate, D., Tedesco, P., Salgado, A. C. "An Ontology-Based Reasoning
Mechanism for Context Management in Groupware", In:
www.cin.ufpe.br/~vvs/cows/2006_cows_jena.pdf, 2006b, Access in 06/2007b.

 167. Wang, X. H., Gu, T., Zhang, D. Q., Pung, H. K. "Ontology based context modeling
and reasoning using OWL", In: Proc. of the 1st Workshop on Context Modeling and
Reasoning, 2004, Orlando, Florida.

 168. Weiser, M. "The computer for the 21st century", Scientific American, v. 265, n. 3,
1991, pp. 66-75.

 169. Wilson, D., Sperber, D. "Relevance Theory", In: Ward, G. and Horn, L., Handbook of
Pragmatics, pp. 607-632, Oxford: Blackwell, 2002.

 170. Yang, S. J. H., Huang, A. F. M., Chen, R., Tseng, S.-S., Shen, Y.-S. "Context Model
and Context Acquisition for Ubiquitous Content Access in U-Learning
Environments", In: Proc. of the IEEE International Conference on Sensor Networks,
Ubiquitous and Trustworthy Computing, v. 2, 2006, pp. 78-83.

 171. Yau, S. S., Huang, D., Gong, H., Yao, Y. "Support for Situation-Awareness in
Trustworthy Ubiquitous Computing Application Software", Software-Practice &
Experience, v. 36, n. 9, 2006, pp. 893-921.

 172. Ye, J., Coyle, L., Dobson, S., Nixon, P. "Representing and Manipulating Situation
Hierarchies using Situation Lattices", Revue d'Intelligence Artificielle, v. (accepted,
waiting for publication), 2008.

 173. Zacarias, M., Caetano, A., Pinto, H. S., Tribolet, J. M. "Modeling Contexts for
Business Process Oriented Knowledge Support", In: WissensManagement 2005,
Knowledge Management for Distributed Agile Processes: Models, Techniques, and
Infrastructure, 2005, pp. 389-396.

 174. Zarate, D. "Aplicação de Contexto ao CoWS, uma Ferramenta de Escrita
Colaborativa", Trabalho Final de Graduação, Centro de Informática - UFPE, 2006,
Recife - Brasil.

146

 175. Zimmermann, A., Lorenz, A., Oppermann, R. "An Operational Definition of Context",
In: CONTEXT 2007, LNAI 4635, 2007, pp. 558-571, Roskilde, Denmark.

 176. Zimmermann, A., Lorenz, A., Specht, M. "Applications of a Context-Management
System", In: Proc. of the CONTEXT-2005, v. LNCS3554, 2005a, pp. 556-569,
Paris, France.

 177. Zimmermann, A., Specht, M., Lorenz, A. "Personalization and Context Management",
User Modeling and User-Adapted Interaction, v. 15, n. 3-4, 2005b, pp. 275-302.

 147

A P P E N D I X

A

Preliminary Study

Based on the studies of Cawsey [1992] and Mark and Greer [1993], Tedesco [,

2001] argues that a formative evaluation of a practical system should be used in

the system’s development, to refine and improve different aspects, based on the

feedback of the system’s users. A preliminary formative evaluation was

conducted with system designers consisting of face-to-face interviews with the

purpose to refine the ideas elaborated to the CEManTIKA framework with the

observation of real requirements. This section describes this experiment.

A.1 Objectives

The objectives of this preliminary experiment were:

1) to identify different real scenarios of computer systems where

CEManTIKA could be applied;

2) to elicite the perception of the intervieweds about CEManTIKA

applicability; and

3) to identify their view about what context is and how it could be

implemented in their systems.

By doing this experiment, we expected to identify insights that could help

us to refine the concepts defined in the context metamodel and the activities

defined in the context process, providing means to enable its use in different

domains.

148

A.2 Design and Execution

The experiment was performed through pre-scheduled, face-to-face, interviews,

following an interview guide (shown in Appendix A – in Portuguese). Each

interview took around 30 minutes. Before starting the inquest, a brief

explanation about the research objectives was given. Planned questions were

conducted more or less in the order presented in the guide. Two distinct sets of

questions were elaborated according to the declared use of context in the

system. If the system was classified as context-unsensitive, the questions were

directed to investigate: potential variations in the system behavior that could be

implemented; how the developer imagines that these variations could be

designed; and the reasons why they were not implemented. For declared

context-sensitive systems, the questions were related to investigate how

designers carried out the context modeling and how the context-sensitivity

functionalities were designed and implemented.

A.3 Participants

The subjects of the experiment were systems’ designers involved in the

development of (potentially) context-sensitive systems. We interviewed six (6)

people, working on academic and commercial projects. About the participants’

profile, four of them are PhD students with about ten years of experience

working with computer systems. One has a master degree and 2 years of

experience in system development and the sixth was an undergraduate student

with three years of experience in system development.

About their knowledge about context, one declared no interest in context

research and indicated having no knowledge about context applied to computer

systems. Two of them declared high knowledge degree in context in theoretical

terms and medium experience developing context in computer systems. The

other three indicated medium knowledge about context in theory and medium

experience implementing context-sensitive systems. From those who declared

interest in context, two desire to apply the concept in Ubiquitous Computing

systems, one in services for Digital Television, one in Recommender Systems

and one in Collaborative Writing System.

 Appendix A 149

A.4 Observed Results

All participants agreed that providing adaptation in the system’s behavior,

according to changes in the context, is a desired functionality for their systems.

Three participants indicated that context was already considered in their

projects as an essential requirement (we will call them Group A). The other

three participants declared their systems as context-unsensitive (Group B).

Group A participants declared to use the following context sources: user

profile (314), device profile (2), location provider middleware (1), user dialog

interface (2) and external database (1). All participants declared to have faced

difficulties in developing their projects due to the lack of knowledge,

understanding and experience about context and the development of context-

sensitive systems. They found very difficult to identify what to be considered as

context and how to model it and how to model behavior variation. They all

pointed out the lack of practical projects and tools to support novel developers

in building these systems. One participant declared the use of an existing

middleware. Her experience is that the supporting tool is still immature and it

only attends partially the problem, since the offered support is mainly on

acquisition services related to location and devices’ characteristics.

The interview with participants of Group B was directed to identify how

they plan to include context in their systems (since in the current version

context was not considered in their projects). One participant (the same that

declared having no knowledge about context) indicated that it will be

interesting for her system to be context-sensitive, but she showed no interest in

including this feature at the present. The other two declared that they are

already investigating how to extend their systems to consider context, but this

is a future work on their projects. When asked about the reason why context

was left out of the project scope, since they believe it is an interesting feature,

the three of them stated that the reason was limitations in resources and time.

This is due to the fact that context is not an essential requirement in these

systems, but a desirable optional feature.

14 Number in parentheses indicate how many people uses the indicated source.

150

When asked about whether it would be useful to have a framework to

support the design of context manipulation in their systems, all participants

from Group A and two from Group B answered yes. The participant in Group B

with no knowledge about context demonstrated little interest in solutions of any

kind for context handling. When people who answered yes were asked about the

kind of support they wish to find in such a framework they indicated

methodologies, processes and software components.

A.5 Discussion

This preliminary study gave us the opportunity to discuss with researchers and

designers involved in real projects about the use of context in their applications.

This feedback assured us about the need to have tools, models and

methodologies to support developers in including context into their systems.

We also conclude that our target audience should be a designer already

involved in a context-sensitive project, where context is seen as an essencial

requirement. This is due to the observation that, in general, context is seen as

an optional, complementary, and expensive feature in a system. In this sense,

designers do not feel the need to include these functionalities if they are not

specified, from the start, as an essencial requirement. However, since all

designers indicated that the adaptation to the context is an interesting feature on

theis systems, we believe that as long as the implementation of context becomes

easier and less expensive (e.g. with effective framework support), this scenario

can change, and designers may consider the benefits of using context greater

than its cost.

 Appendix A 151

A.6 Interview Guide (In Portuguese)

Pesquisa sobre o Desenvolvimento de Sistemas
Sensíveis ao Contexto

O objetivo desta pesquisa é identificar cenários de uso reais que permitam estabelecer
padrões que apóiem a criação de um framework de suporte ao desenvolvimento de sistemas
sensíveis ao contexto. Esses sistemas possuem a característica de poder adaptar seu
comportamento a diferentes usuários e situações externas. Dessa maneira, pedimos que você
nos apresente um sistema que seja sensível ao contexto ou que você acredite que possa se
beneficiar de sensibilidade ao contexto para tornar-se mais atraente e útil aos seus usuários,
e responda as perguntas a seguir.

1. Qual a sua formação/titulação?

2. Há quanto tempo você atua como profissional de informática?

3. Quais são suas áreas de interesse acadêmico e/ou profissional?

4. Qual é a finalidade do sistema em que está trabalhando?

() pesquisa () comercial

5. Quais funções você desempenha no projeto desse sistema?

() Programador () Analista/Projetista () Gerente
() Consultor () Pesquisador () Outra ? Qual?

6. O sistema está relacionado a que domínio de conhecimento?

7. Como você classificaria o sistema (ex. sistema de recomendação, de suporte

à decisão)?

8. De uma maneira geral, quais são as principais funcionalidades do sistema?

9. Em uma escala de 0 (nenhum) a 5 (experiente), qual o seu nível de

conhecimento sobre sistemas sensíveis a contexto?
a. Teórico (0) (1) (2) (3) (4) (5)
b. Prático (participação projetos)(0) (1) (2) (3) (4) (5)

10. Você diria que o seu sistema é sensível ao contexto?

Se a resposta à questão 10 for Não, responda as perguntas 11 a 13.

11. Você acha importante que seu sistema possa se adaptar ao contexto dos seus

usuários (ex. antecipando serviços/informações que possam ser úteis ao
usuário, mudando o comportamento de acordo com diferentes situações em
que o usuário se encontre)? Porque?

152

12. Você poderia citar algumas situações em que você imagina que o seu
sistema deveria se comportar de maneira diferenciada? Que critérios
disparariam os diferentes comportamentos?

13. Porque essas funcionalidades não foram implementadas?

Se a resposta à questão 11 for Sim, responda as perguntas 14 a 18.

14. Como o contexto é usado em seu sistema? Que critérios você utiliza para

determinar os diferentes comportamentos do sistema?

15. Como você captura as informações de contexto que o sistema utiliza?
() Usuário cadastra Perfil ao se inscrever no sistema
() Configuração de Preferências
() Monitoramento com Sensores. De que tipo? ________
() Uso de técnicas de análise e mineração de dados
() Formulários de coleta de informações gerados à medida que o

sistema precise delas
() Outra? Qual? __________

16. Quais dificuldades você enfrentou ao incluir contexto em seu sistema?

17. Você gostaria de contar com um framework que te apoiasse no

desenvolvimento de funcionalidades de adaptação em seu sistema?
() Sim. Porque?
() Depende. Do que?
() Não. Porque?

18. Que tipo de suporte você esperaria encontrar nesse framework?

 () Modelagem Conceitual
() Metodologia / Processo
() Componentes de software
() Outro? Qual?

 153

A P P E N D I X

B

Metamodeling and
UML Profiles

his appendix gives an overview about the UML extension mechanism,

called UML Profiles.

B.1 UML Profiles Definition

UML [OMG, 2008b] is a general purpose visual modeling language for

specifying, constructing and documenting the artifacts of systems. It has been

widely adopted by both industry and academia as the standard language for

describing software systems. The UML Metamodel Specification [OMG, 2007a]

provides different and interrelated concepts and diagrams to enable the

definition and visualization of separated aspects of a software application. They

are classified in three main categories: static application structure (e.g. Class

Diagram and Object Diagram), general types of behavior (e.g. Use Case

Diagram, Activity Diagram, and State Machine Diagram); and different aspects

of interactions (e.g. Collaboration Diagram and Sequence Diagram).

However, the fact that UML is a general purpose notation may limit its

suitability for modeling some particular specific domains for which specialized

languages and tools may be more appropriate. To allow customized extensions

for particular application domains, the UML provides a set of extension

mechanisms (stereotypes, tag definitions, and constraints). These

T

154

customizations extends elements from the UML Metamodel and are grouped

into UML profiles.

A UML profile can be used to introduce the specific terminology of a

particular domain, to specialize the semantics of the UML and to add new

semantics to the UML [Gogolla and Sellers, 2002]. Any specific model built

upon a UML profile is still a UML model and, in consequence, it can be defined

and interchanged with any existing UML modeling tool by XMI (XML

Metadata Interchange) [OMG, 2007b]. This is the main benefit of constructing a

metamodel as a customization of the UML metamodel. Instead of defining new

notations to support the language and building new modeling tools to recognize

this notation, one can benefit of the broad variety of features already available

in many developed UML modeling tools.

B.2 Elements of a UML Profile

A UML profile is basically a specific kind of package that contains stereotypes,

tag definitions and constraints [OMG, 2007a]:

• Stereotypes: possess a unique name, which can be used to introduce the

domain specific terminology into a modeling language. It extends

metaclasses of the UML metamodel and can only be applied to

instances of the extended metaclasses. For example, Figure B-1

exhibits the definition of the stereotype “Persistent” that extends the

metaclass “Class” to indicate classes in a UML model that should be

marked as persistent classes. In the usage example, the classes

“Order”, “Customer” and “Product” are identified as <<Persistent>>

unlike the class “UserInterface”;

• Tag definitions: represent properties of a stereotype and can be used to

define additional attributes, which are not provided by the extended

metaclass. When a stereotype is applied to a model element, the values

of the properties are referred to as tagged values. In the example in

Figure B-1, storedInFile is a tag definition for the stereotype

Persistent, and it assumes the value true for the class Order and the

value false for Product and Customer;

 Appendix B 155

• Constraints: represent additional semantic information attached to the

constrained elements that indicates a restriction that must be satisfied

by a correct design of the system. The modeling constraints express the

so called well formedness rules for the profile [Gogolla, 2001]. A

constraint is represented as a statement, enclosed in braces ([Vieira et

al., 2007b]), in some formal language (e.g. OCL) or a natural language.

OCL (Object Constraint Language) [OMG, 2006b] represents a

condition as a boolean expression, which can be added to any model

element, stating that an instance of the model element must hold that

condition.

Figure B-1 Example of Stereotype Definition and Use [Gogolla and Sellers,
2002]

To be supported by existing UML based tools, a UML Profile should be

defined as a lightweight extension. It means that the specialized semantics of

the UML profile must not contradict the semantics defined in the UML

Metamodel.

