
An Aspect-Oriented Approach to Model Requirements

Lyrene Fernandes da Silva
Computer Science Department – Catholic University of Rio de Janeiro - Brazil

{lyrene,julio}@inf.puc-rio.br

Abstract

The principles of crosscutting concern separation
and composition have been used by the Aspect-
Oriented Development Community in order to solve
the problems of tangling and scattering. In this work
we present a proposal for integrating crosscutting
concerns during the requirements engineering process.
This approach uses goal models and the concepts
defined in aspect-oriented languages to provide
separation, composition and visualization of
crosscutting concerns in order to facilitate their
modeling and the traceability between them.

1. Introduction

Requirements are continually changing and
understanding their impact is a problem. This problem
is even greater if we consider the crosscutting nature of
requirements. Sometimes they influence or constrain
each other, and this is known as crosscutting concerns
[19].

The separation and composition of crosscutting
concerns is a way of decreasing complexity and
facilitating the analysis of each concern, both
individually and in combination with others. These
principles have been used in programming languages,
by aspect-oriented languages [7]. However this level of
abstraction hides many prior design decisions made
without taking into account their crosscutting nature.

Research has been looking for higher abstractions
related to aspects; modeling languages and methods
have been proposed [4] and Requirement Approaches
have mainly focused on the identification of candidate
aspects [1]. In contrast to this, we are proposing a
method for modeling requirements using concepts
defined in aspect-oriented languages. This method
involves separation, composition and visualization
activities. We provide a modeling language based on
goal models [13], a composition mechanism and
different views of the created model. Our approach
contributes to comprehension, evolution and
reusability of requirement models.

The rest of this paper is organized as follows. In
Section 2 we present the related work and main
concepts used in our approach. In Section 3, we define
a new approach to model requirements, the
contributions and how we hope to validate this
approach. In Section 4, we illustrate this approach with
a case study. In the last Section, we present a summary
and our conclusions.

2. Related work

This thesis is related to two main subjects:
Requirement Modeling and Aspect-Oriented
Development. We propose to use the concepts defined
in aspect-oriented languages in order to reduce the
difficulties related to the different characteristics of
requirements and the problems in modeling and
changing these requirements.

V-graph is the model used in our approach, which is
a type of goal model [20]. Goal models represent the
functional and non-functional requirements through
decomposition trees [13]. V-graph is defined by goals,
softgoals, tasks and the following decomposition
relationships – contribution links (and, or, make, help,
unknown, hurt, break) and correlation links (make,
help, unknown, hurt, break). Each element has a Topic
and a Type. The Type defines a generic functional or
non-functional requirement. The Topic defines the
context of that element.
V-graph was chosen because with this model we can
consider requirements at three abstraction levels
(softgoals, goals and tasks). This is important because
in the same model we can represent reasons and
operations, the context and how each element
contributes to achieving the goals. Furthermore, there
are important results in goal modeling concerning: how
to analyze obstacles to the satisfaction of a goal [9];
how to qualitatively analyze the relationships in goal
models; how to analyze variability [6]; how to analyze
conflicts between goals through a propagation
mechanism of labels [5]; how to identify aspects in
goal models [20]; how to derive a feature model, a
state model and a component model from goal models

[21]; and how to provide goal reuse [11] – this last
work mentions a composition mechanism to integrate a
goal model and a reusable goal model from a library.

Our method for separating and composing goal
models does not change these approaches, but
increases their potential. We have extended the goal
models with information about how to compose them.
We were influenced by aspect-oriented languages,
which deal with crosscutting concerns in the
implementation phase [7]. In AspectJ [8], for example,
this separation is achieved by using a new element
called ‘aspect’. The combination is made by a
component called ‘weaver’. The ‘weaver’ processes
the code, changing its elements, including the behavior
or structure defined in the aspects. Similarly, we use
the elements ‘pointcut’, ‘advice’ and ‘intertype
declaration’ in order to represent how different goal
models or parts of them affect each other.

It is not clear what an aspect is in the early stages of
software production [19], but there are some
approaches trying to provide techniques and methods
for treating crosscutting concerns during the
requirement process. Many of them aim to identify
candidate aspects [1]. They use view points [14][15],
lexical analysis [2] and catalogues of non-functional
requirements [3][18]. Templates are used to describe
how and where candidate aspects have an impact
[12][3][15][18]. Use cases are used to represent
functional requirements and the ‘extend’ relationship is
used to represent candidate aspects [18]. Composition
rules are also defined, but they are manually applied
[18][2]. In Rashid’s paper [15], an interesting way to
automate this process using XML models is
demonstrated. However, just one view is created from
composition, and requirement sentences are used.

All these approaches differ from ours. First, we do
not use the concept ‘candidate aspect’, because for us,
knowing if a requirement will be an aspect in the
implementation is not an issue at this point. We want
to offer an easier way to model them. They may or
may not be aspects in the code. The important thing is
to be able to consider the scattering and tangling
problems early on. Second, we want to model sets of
requirements separately and offer a way to model the
relationships between them. Furthermore, we want to
offer different views originating from the composite
model. Identifying crosscutting concerns is not our
focus because they naturally appear during modeling.
Crosscutting relationships are necessary, either because
a requirement impacts on many points, or because it is
important to keep one requirement separate from the
others. Finally, we use goal models, which are an
intentional view, and thus more informative

representation than requirement sentences or use cases,
and more user-friendly than templates.

3. Using aspects for facilitating the
requirement modeling

Lemma: Using concepts of aspect-oriented

languages helps to deal with the tangling and
scattering problems.

Hypothesis: Considering the tangling and
scattering problems early on in the process improves
the manageability of the software construction process.

Some requirements scatter and tangle many others.
This makes it difficult to modify the model and to
perform impact analysis. In order to reduce these
problems, we have defined an integration method for
crosscutting concerns. The method is made up of three
activities, called: separation, composition and
visualization, see Figure 1.

Figure 1. Integration of crosscutting concerns

The separation activity supports the requirement
modeling - sets of requirements are modeled
separately. In this way the complexity of modeling is
reduced and the developer can consider each set of
requirements more effectively. In order to model the
requirements we developed a language based on the V-
graph. This language is composed of a goal model
specification and a crosscutting relationship
specification [17]. Figure 4 shows information about
the crosscutting relationship specification. We used the
XML pattern to define the grammar of both models.
For each pointcut do {
 select advice
 for each operand do {
 if primitive = “add” then
 include advice as a sibling where operand_name = component_name
 if primitive = “include” then
 include advice as a child where operand_name = component_name
 ...

Figure 2. Example of composition rules
The composition activity achieves the combination

of different goal models. This activity processes the
crosscutting relationships creating a new goal model
that contains all the original information. It uses
composition rules, as shown in Figure 2. The
composition activity is similar to the weaver in aspect-
oriented languages. However, the weaver generates
just one view of the system because computers are able
to interpret (execute) complex models. In contrast to
this, the visualization activity offers the developer
different models or views [10]. This way, the

Figure 3. Separation of goal models

developer can continue elaborating the application
model.

The idea is to provide requirement engineers with a
way to model how the different concerns impact on
each other. Therefore, while requirement engineers are
modeling goal models they can concentrate on one
group of requirements at a time and use crosscutting
relationships to link these groups of requirements,
representing the trace or impact between them. In order
to be able to continue the modeling process, the
engineer can obtain different views of the integrated
model. This integrated model is created by an
automatic composition mechanism.

3.1. Evaluation

In order to validate our approach, we are going to

demonstrate our hypothesis through case studies. We
will attempt to demonstrate that, through using some
concepts of aspect-oriented languages for modeling
requirements and providing views of the compound
model, we will deal with the scattering and tangling
problems during the requirement process. Therefore,
we can consider, earlier on in the development process,
some of the problems which may cause serious
difficulties if they are only discovered during the
implementation activity.

We are also implementing a set of tools to support
our strategy. . Furthermore, we have modeled a set of
crosscutting concerns that can be reused in different
projects. Some examples are: Security, Persistence and
Exception Handling. Although these examples are
considered reusable, we know that each system may
have a different definition for them. Therefore, our
integration method helps the requirements engineer,
facilitating the modeling of crosscutting concerns, the
modification, and the analysis of these models.

4. Case study

This section presents an illustrative example of our
approach. This example has four goal models: a goal
model for an information system that helps to write
scenarios and lexicon [16]; a goal model for Security; a
goal model for Persistence; and a goal model for
Reliability. Figure 3 shows these goal models. The
ellipses are softgoals, hexagons are goals and
rectangles are tasks. The pointed links are crosscutting
relationships and the others are decomposition links.

Each crosscutting relationship has one or more
pointcuts. Each pointcut is associated with ‘advices’ or
‘intertype declarations’. For example, the relationship
between Cryptography and Authentication (in Figure
3) has two pointcuts, called encrypt and decrypt, see
Figure 4. In this example each pointcut is associated to
one advice. The advices define what from
Cryptography model is going to be included into
Authentication model.

Figure 4. Crosscutting relationship

The crosscutting relationship links two elements in
the same goal model and the composition mechanism
processes this information creating a new goal model,
see Figure 5 (one view of integrated model). In Figure
5 note the new decomposition relationships inserted
into the original model. If these relationships are
created manually, when changes occur, it is necessary
to go through the whole model looking for where the
change has had an effect. In contrast to this, in our
method we can see how changes affect each part of

system separately. For example, if we decide that
Cryptography in the system-to-be is unnecessary, we
only have to eliminate the crosscutting relationships
with Cryptography.

Figure 5. Composition of goal models

5. Conclusion

This thesis contributes mainly to modeling
requirements, considering the tangling and scattering
properties of functional and non-functional
requirements. Our approach provides a new way to
deal with crosscutting concerns early on in the
development process. Using concepts of aspect-
oriented languages, we have defined a method based
on three main activities: separation, composition and
visualization. “Separation” provides a language to
model requirements, “composition” defines a
component responsible for joining requirement models,
and “visualization” makes it possible for the user to
visualize different views of compound models.

Our approach improves the treatment of
crosscutting concerns while defining requirements. We
hope that it has a positive impact on the entire software
development process. In order to implement this
approach we are working on the development of a set
of tools, the specification of a modeling language, the
definition of composition rules, the definition of views
to be extracted from goal models and on the modeling
of a set of reusable crosscutting requirements.

6. References

[1] J. Bakker, B. Tekinerdogan and M. Aksit,
“Characterization of early aspects approaches”, Proceedings
of the Early Aspects Workshop at AOSD, 2005.
[2] E. Baniassad and S. Clarke, “Theme: An approach for
aspect-oriented analysis and design”, 26th International
Conference on Software Engineering (ICSE'04), Scotland,
2004, pp. 158-167.
[3] I. Brito and A. Moreira, “Integrating the NFR framework
in an RE model”, Proceedings of the Early Aspects
Workshop at AOSD, England, 2004.
[4] C. Chavez, “A Model-Driven approach to aspect-oriented
design”, PhD Thesis, Computer Science Department, PUC-
Rio, Rio de Janeiro, Brazil, 2004.
[5] P. Giorgini, J. Mylopoulos, E. Nicchiarelli and R.

Sebastián, “Reasoning with goal models”, Proceedings of the
21st International Conference on Conceptual Modeling,
2002, pp. 167-181.
[6] B. Gonzáles, M. Laguna and J. Leite, “Visual variability
analysis with goal models”, Proceedings of IEEE
International Symposium on Requirements Engineering
(RE'04), Japan, 2004, pp. 38-47.
[7] G. Kiczales et al., “Aspect-oriented programming”,
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP’97), LNCS (1241), Springer-Verlag,
Finland, 1997.
[8] G. Kiczales et al., “An overview of aspectJ”, Proceedings
of the European Conference on Object-Oriented
Programming (ECOOP’01), Hungary, 2001.
[9] A. Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineering”, IEEE Transaction
Software Engineering, 26(10):978–1005, 2000.
[10] J. Leite and P. Freeman, “Requirements Validation
Through Viewpoint Resolution”, IEEE Transactions on
Software Engineering: Vol. 17, N. 12, 1991, pp 1253-1269.
[11] J. Leite, Y. Yu, L. Liu, E. Yu and J. Mylopoulos,
“Quality-Based Software Reuse”, Proceedings of the CAiSE
2005-LNCS 3520, 2005, pp. 535-550.
[12] A. Moreira, J. Araújo and I. Brito, “Crosscutting quality
attributes for requirements engineering”, Proceeding of the
14th International Conference on Software Engineering and
Knowledge Engineering, ACM Press, Italy, 2002.
[13] J. Mylopoulos, L. Chung, and B. Nixon, “Representing
and using nonfunctional requirements: A process-oriented
approach”, IEEE Transactions on Software Engineering,
18(6):483–497, June 1992.
[14] A. Rashid, P. Sawyer, A. Moreira and J. Araújo, “Early
aspects: a model for aspect-oriented requirements
engineering”, Proceedings of IEEE Joint Conference on
Requirements Engineering, Germany, 2002, pp. 199-202.
[15] A. Rashid, A. Moreira and J. Araújo, “Modularization
and composition of aspectual requirements”, Proceedings of
the 2nd International Conference on Aspect-Oriented
Software Development, ACM, 2003, pp. 11-20.
[16] L. Silva, J. Leite and K. Breitman, “Teaching Software
Engineering: Report on Experiments”, Education in
Computing Workshop (XII WEI), 2004 (in Portuguese).
[17] L. Silva, J. Leite, “An aspect-oriented language for
requirement modeling”, Proceedings of the Requirement
Engineering Workshop at CAiSE 2005, Porto-Portugal,
2005, pp. 13-25. (in Portuguese)
[18] G. Sousa, S. Soares, P. Borba and J. Castro, “Separation
of crosscutting concerns from requirements to design:
Adapting the use case driven approach”, Proceedings of the
Early Aspects Workshop at AOSD, England, 2004.
[19] B. Tekinerdoðan, A. Moreira, J. Araújo, P. Clements,
“Early aspects: aspect-oriented requirements engineering and
architecture design”, Report on Early Aspects Workshop at
AOSD, England, 2004.
[20] Y. Yu, J. Leite and J. Mylopoulos, “From goals to
aspects: discovering aspects from requirements goal models”,
Proceedings of IEEE International Symposium on
Requirements Engineering (RE'04), Japan, 2004, pp. 38-47.
[21] Y. Yu, J. Mylopolous, A. Lapouchnian, S. Liaskos and
J. Leite, “From stakeholder goals to high-variability software
design”, Internal report, 2005.

